1 Model development

In this section we outline our plan to develop a self-consistent numerical model that can be used to study problems relating to the dynamics of the convection zone and the solar dynamo. The model will be based on the fully nonlinear magnetohydrodynamics (MHD) equations for an anelastic
 fluid in a in a rotating spherical shell. In order, properly to motivate our development plan, we must compare our proposed model with some previous work.

In the eighties Gilman and Glatzmaier carried out a series of remarkable numerical simulations of thermally driven convection in rotating spherical shells with the explicit objective of studying the solar dynamo problem. Their later calculations were based on the fully nonlinear anelastic MHD equations, and both in scope and complexity, defined the state-of-the-art in scientific computing at the time. One of the more robust results to emerge from their simulations was that, in agreement with observations, the surface differential rotation showed an equatorial acceleration, and also, that in the convective interior, the axi-symmetric part of the angular velocity was roughly constant on cylinders. This second prediction seemed reasonable enough at the time based on considerations of the Taylor-Proudman theorem
. However, it became increasingly at odds with the inferences of helioseismology that indicated that the solar differential rotation in the convection zone, was constant on conical surfaces, and not on cylinders. An interesting “side effect” of the angular velocity being constant on cylinders was that the in the simulations, dynamo waves propagated away from the equator and towards higher latitudes, in contrast to the solar case where, as the solar cycle progresses,  the locations of active regions propagate from mid latitudes to the equator. Thus one had the paradoxical situations in which the most sophisticated numerical model of its time could not reproduce two of the more basic features of the solar convection zone—the differential rotation profile and the propagation direction of dynamo activity. These discrepancies between the predictions of the Gilman-Glatzmaier simulations and observations have never been satisfactorily explained. 

Since, to a large extent, we are planning to re-visit the Gilman-Glatmaier simulations, it is natural to ask to what extent we expect to be able to produce a more realistic model. Our optimism is based on two areas that have seen a substantial improvement since the eighties: numerics and sub-grid scale (SGS) modeling. 

Computers are larger and faster and algorithms have greater efficiency and adaptivity. The combination of these factors should provide approximately a tenfold increase in effective resolution over the original Gilman-Glatzamer simulations. This increase should make it possible to describe solutions with a discernible inertial range, thus allowing us to study dynamical behavior in the turbulent regime. 

SGS modeling is necessary whenever it is unrealistic or impossible to capture with a numerical model the full dynamical range of the original physical problem. The range of scales below the available resolution is then described by an SGS model. In the Gilman-Glatzmaier formulation the unresolved scales were described by Smagorinski-type turbulent diffusivities. These are widely used in atmospheric sciences and oceanography and perform well in cases in which the unresolved dynamics is “local” and driven by local instabilities. We shall argue presently that may not be the case in the solar convection zone and that a much better description may now be available in terms of Lagrangian based SGS models.

1.1 Numerics

The following things should all be mentioned in some order.

Code based on MHD equations for an anelastic fluid, in rotating spherical shells. 

Primitive variable formulation preferred. (I don’t know how technical we want to get?)

Method of solution based on spectral finite elements methods. Explain the advantages: accuracy, adaptivity, efficiency.

Typical class of simulation : 512^3 resolution or thereabouts. 

Anticipate having preliminary code at the end of the first year and a ``public’’ release version at the end of the second year in time to take advantage of the TeraGrid project. Chicago (Argonne) uniquely suited for the task: i.e. easy access to computational resources, visualization faciclities, mass storage etc.

Grid also useful in terms of making results available to community.

Work on code development to continue for the full duration of the project with yearly releases of the updated codes and supporting software. 

Whatever else you may think relevant. 

1.2 Sub-Grid models

The work on the description of the unresolved scales of motion—SGS modeling, will be a substantial part of the overall effort. In this section we explain why sophisticated SGS models are necessary, and the type of research that is needed to develop and implement them. 

The need for  “good’’ SGS models for the solar convection zone problem can easily be stated. The solar radius is approximately 
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 km. Assuming that the typical calculation uses 500 equivalent numerical gridpoints along a circumference, and that 4-5 gridpoints are used accurately to represent gradients, then the limit of numerical resolution corresponds to 30,000-40,000 km. This scale is slightly larger than a supergranule, is comparable to the Rossby radius
 for the Sun, and is much, much larger than any diffusive cutoff scale. Thus, in a typical simulation, the smallest scales that can accurately be resolved are squarely in the inertial range, and affected by rotational effects. Their dynamics is likely to be strongly non-isotropic, affected by inverse cascades of both kinetic and magnetic helicities, and by global constraints like conservation of angular momentum and of magnetic flux. For these reasons it is unlikely that a simple description based on local, isotropic, diffusive processes like, for instance, Smagorinski-type turbulent diffusivities, can accurately capture the complex dynamics associated with the motions from the numerical resolution scale down to the scale at which the dynamics indeed becomes local, isotropic, and diffusive. It should be noted that trying to beat this problem by increasing the numerical resolution alone is not an altogether  smart way to proceed. In a three-dimensional, explicit code like the one under consideration, the computational effort increases as the fourth power of the resolution. Thus a tenfold increase in resolution, which would bring the it down to 3,000 km, a scale slightly larger than a granule and most likely not strongly rotationally constrained, would require an increase in computational resources of a factor of 10,000. Clearly, the way to proceed is to make the best of the resolution one has, and to develop good SGS models for the dynamics of the unresolved scales.  
1.2.1 Eulerian vs Lagrangian averages

The construction of any SGS model requires two basic ingredients: an averaging procedure, and a closure scheme. The averaging is used to replace the dynamics over the many unwanted or unresolved degrees of freedom by their net effect on the resolved scales. The closure scheme gives a relation between the evolution of the resolved scales and the evolution of the averaged quantities. Both averaging and closure must be chosen carefully to develop a SGS model that accurately described the unresolved dynamics. For reasons that will be discussed presently, we are favoring SGS models based on Lagrangian averaging. We anticipate that a large part of our  effort will be devoted to  the extension  of such schemes to the MHD equations for an anelastic fluid and to the development of effective closure schemes. 

Averages for fluid equations come in two basic flavors: Eulerian and Lagrangian. Both have advantages and disadvantages and the choice of one over the other depends to some extent on the nature of the problem. Eulerian averages are the ones most commonly used; they are taken at a fixed spatial location and  commute with both time and space derivatives. Their advantages are that they are easy to implement, and give rise to averaged terms with straightforward physical interpretations. The main disadvantage is that they do not preserve the geometrical structure of the original un-averaged equations. For example, the conservation of circulation along a co-moving closed curve—Kelvin circulation theorem, is an important property in many  fluid dynamic situations that is not preserved by Eulerian averaging. A similar result applies in MHD to the conservation of magnetic flux threading a co-moving closed curve—Cowling’s theorem

Lagrangian averages are taken following a fluid trajectory and do not commute with either time or space derivatives separately, but they do commute with the advective derivative 
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 Their implementation is mathematically more involved than that for Eulerian averages and often give rise to terms that are more difficult to interpret physically. Their great advantage is that, if correctly implemented, they generate averaged equations that do preserve the geometrical structure of the original equations. In particular many of the important conservation laws of the original equations, like Kelvin’s and Cowling’s theorems, remain valid in  the averaged equations. Because the  turbulent transport of angular momentum and magnetic flux play such crucial roles in the convection zone/solar dynamo problem, and because some non-negligible fraction of this transport is mediated by unresolved scales we have chosen to adopt Lagranian based SGS schemes, with the premise that they will provide a better representation of these important processes. The price to pay is that some substantial effort is required both for their mathematical development and their numerical implementation.

Recently, Holm and collaborators have developed an elegant and powerful formalism to generate averaged equations based on Lagrangian averages. The method can be used with any system whose dynamics can be written in terms of a Lagrangian. The procedure to obtain the averaged equations of motions from the averaged Lagrangian is somewhat involved and outside the scope of this document, however what is important is that the MHD equations for an anelastic fluid fall into this general category and are therefore amenable to this treatment.  

To give a flavor of the type of work that is required to implement these schemes as workable SGS models we present a simple illustrative example based on the incompressible Euler equations. After (Lagrangian) averaging the Euler  equation is replaced by the averaged equation
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Here 
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is the averaged velocity,  and 
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 is the averaged advective velocity. The two are not the same in general, but are related by the elliptic equation 
(0.2)

 whose structure depends on the tensor quantity  GOTOBUTTON ZEqnNum911845  \* MERGEFORMAT , where 
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 is the displacement of a fluid particle relative to its average Lagrangian position. The displacement covariance tensor 
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 plays a central role in these Lagrangian models by encoding the statistical information required to close the scheme. In the simple case of  stationary, homogeneous, isotropic, turbulence closure can be achieved by assuming that 
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 has dimensions of length, and physically corresponds to the coherence length of the small scale turbulent fluctuations. Under these assumptions (0.2)

 becomes
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We notice a number of important points. The effect of the averaging is to introduce a new dispersive term, as opposed to a diffusive one as is commonly the case with Eulerian averages. The averaged equations, like the original unaveraged ones, conserve energy and preserve Kelvin’s circulation theorem. Finally, we recognize (0.3)

 as a smoothing operation. Thus, within this model, the effect of the small scale fluctuations is to generate an advective velocity that is smoother than  the velocity being advected; this last property, in particular, being characteristic of Lagrangian models. The assumptions of homogeneity and isotropy are somewhat restrictive, in more general situations different closure schemes must be sought. Three possible schemes could, for instance, be given by
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and



[image: image15.wmf](

)

.

t

xxxx

¶+×Ñ=×Ñ

vu


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (0.6)

Expression 
(0.5)

 but with the further assumption that the fluctuation statistics has finite memory determined by the relaxation time (0.6)

 is like (0.5)

 assumes that the covariance tensor is advected by the averaged velocity, and modified by the presence of shear. Expression (0.4)

, assumes that the covariance tensor is advected by the averaged velocity just like a passive scalar. Expression  GOTOBUTTON ZEqnNum358116  \* MERGEFORMAT  These three expressions correspond to different underlying assumptions regarding the nature of the unresolved scales, nevertheless, in all three cases the resulting set of equations are closed and can in principle be solved. Furthermore, in all three cases, and trivially for 
(0.3)

, the closure expressions can be though of as defining a deterministic transformation defining the evolution of  GOTOBUTTON ZEqnNum503148  \* MERGEFORMAT  given the evolution of the averaged quantities. This, in a sense, maps the closure problem into that of the construction of a transformation that encodes the relevant physical properties governing  the evolution of 
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. In most cases, and certainly for the ones above, the closure expressions are linear in 
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, and the corresponding transformations can be constructed in terms of  Greens functions. It is important to note that the effects of different closure approximations, or alternatively, of  different choices of transformations (Greens functions) can be studied by numerical experiments to select the ones that best capture the desired physics.

1.2.2 Proposed work

The considerations of the previous sections naturally suggest a  sequence of steps for the development and implementation of SGS models. The first three steps are mostly analytical while the last two are numerical. 

1. Derivation of the Lagrangian averaged equations. The derivation of the Lagrangian averaged equations must be extended to the case of an anelastic magnetofluid in both Cartesian and spherical geometry. This is a somewhat laborious process involving recasting the ideal equations in terms of a Lagrangian, averaging the Lagrangian, and then taking a variational derivative of the Lagrangian to obtain the averaged (ideal) equations of motions. Dissipative processes are then included phenomenologically to regularize the equations. 

2.  Check for mathematical consistency. This step is necessary to verify that the averaged equations preserve the transport properties of the original equations.  In particular that Kelvin’s circulation theorem and Cowling’s theorem hold for the averaged equations. Also the conservation of invariant properties like energy, momentum, kinetic, magnetic and cross helicities in the ideal limit  must be verified.

3. Formulate closure schemes.  In order to close the schemes the evolution of the statistical properties of two quantities must be provided as functions of the averaged variables. For MHD the two quantities are the displacement covariance tensor, as illustrated in the previous section, and the correlation tensor between the displacement and its Lagrangian curl, which arises in the expression for the averaged Lorentz force. We anticipate formulating closure schemes similar to those described in the previous section.

4. Test and calibrate closure schemes. The closure schemes, whether they are formulated in terms of differential equations or Greens functions, describe the evolution of the statistical properties in terms of advection, rotation, and distortion by the averaged flow, and typically include finite memory cutoffs measured by characteristic relaxation times which need not be the same for the different statistical quantities. The assumptions regarding the relative importance of these processes can be verified by numerical experiments in which the results of high resolution simulations without SGS modeling are compared with the results of simulations at moderate resolution with SGS modeling. Most of these experiments can be carried out in Cartesian geometry, and in simplified configurations designed to focus, in turn, on each of the aspects of SGS modeling—transport of energy, angular momentum, magnetic flux, calibration of the relaxation parameters, etc.

5. Streamline for numerical work. Once one or more satisfactory schemes are defined they must be implemented numerically  in full spherical geometry for an anelastic fluid. The most time consuming part of the SGS models is typically the inversion of one or more elliptic operators to obtain the averaged advective (transport) velocities from the averaged variables. The detailed nature of these operators, of course depends on the closure schemes. Because these inversion must be carried out at each time step, the elliptic solvers must be efficiently implemented, either in terms of direct, or iterative solvers so as not to impose an unacceptable burden on the overall code performance.

1.3 Boundary condition

We include, for completeness a brief discussion of boundary conditions. The natural geometry of the model is that of a spherical shell, thus boundary conditions should be provided at both the inner and outer radii. The proposed numerical approach in terms of spectral finite elements allows the application of practically any  boundary condition, both linear and nonlinear. However, we anticipate that for the most part idealized boundary conditions will be adequate. Thus mechanical and thermal boundary conditions will be expressed in terms of impenetrable, stress free boundaries with some prescribed combination of flux and temperature. The conditions for the magnetic field may require more attention. The natural choice is to assume that the inner boundary is a flux surface and that at the outer radius the magnetic field matches continuously to a potential field. 

Recently, however, there have been suggestions that the flux of magnetic helicity through the boundary of the dynamo region may play an important role in the overall dynamo process. At the moment, the evidence for or against this argument is inconclusive. Pending the resolution of this issue, either by convincing analytical or numerical work, we will keep an open mind and design the code so that, if it should turn out that the helicity flux is an important ingredient in the solar dynamo process it could easily be incorporated into the model. 

� The anelastic approximation is derived from the equations for a compressible fluid by filtering off the sound waves (p-modes). The resulting equations describe the evolution of a stratified fluid moving at speed smaller than the speed of sound. 

� According to the  Taylor-Proudman theorem, in a rapidly rotating system, the solutions become invariant along the direction parallel to the rotation axis. 

�  In a rotating system the Rossby radius characterizes the scale at which the Coriolis force becomes important so that scales much smaller than the Rossby radius are unaffected by the rotation, while scale comparable or larger than the Rossby radius are rotationally constrained.
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