Terascale Computing:

The deployment of multi-terascale computing hardware places us on the threshold of a new era in high-performance parallel supercomputing. Terascale computing will enable dramatic improvements in several areas, including the fidelity with which complex problem geometries can be resolved, the numerical accuracy/convergence of discretization methods, and the increased integration of problem physics. Ensuring that our software technologies scale well on terascale architectures is critical to the success of this Center. Each of the three major thrust areas of this Center (mesh generation, discretization, and software interoperability) will be impacted by our approach to terascale computing. Even with multi-teraflop hardware we will not see a reduction in time with which it takes to execute simulations because the size and complexity of the simulations will increase faster than the computer hardware speeds. Therefore, software developers will continue to remain fanatical in their attempt to design and implement scalable parallel, high performance software that takes advantage of these resources. 

Scalable performance of mesh generation and discretization algorithms are critically dependent on the distribution of data and balancing of the work load across a set of distributed memory parallel processors. Adaptive mesh refinement and adaptive discretization algorithms, complicate this issue because of their dynamic, time-dependent nature. Partitioning software, such as Zoltan (SNL), RPM (RPI), and PADRE (LLNL) have been designed to distributed data and data structures uniformly across a parallel machine so as to minimize interprocessor communication relative to the amount of work to be performed within each processing node. In practice partitioning software solves this problem using weighted constraints and a minimization procedure which converges to an approximately optimal mapping solution. For mesh technology that uses static, non-hierarchical data structures static partitioning algorithms solves this problem.

The proposed hybridization of mesh related technology produced by this Center presents two challenges that will be addressed relative to static and dynamic partitioning. The first is that dynamic, adaptive mesh and discretization methods require dynamic partitioning to remain well distributed and balanced. And the second has to do with hierarchical data structure representations of the problem geometry and the mesh that is generated and/or refined from it. A first approximation of a dynamic partitioning involves applying one of the static partitioning algorithms periodically to repartition a problem. This can be costly in both time and memory. It is costly in computer time because static partitioning algorithms don’t take advantage of the fact that we already have a reasonable starting point, based on the existing partitioning structure, and the new partitioning is typically a perturbation on this existing distribution. And redistributing data structures based on a new partitioning is costly because we have to preserve the old data structures while building the reordered ones. A more attractive long term solution will be to design an interoperable dynamic partitioning component based on one (or a combination) of the three existing partitioners (Zoltan, RPM, PADRE). The contribution of the Center will be the definition of the interfaces (in conjunction with CCA ETC) to make these partitioning algorithms interoperable and to extend them toward dynamic partitioning. The contribution of the partitioning component to this Center would be to provide a uniformity in the definition of how data is partitioned and repartitioned within/between the various meshing and discretization components.

The design and implementation of partitioning algorithms that take into account hierarchical data structures is more long term because this affects our whole strategy of initial (parallel) mesh generation and dynamic adaptive mesh refinement. Here we are referring to two different hierarchical data structures. One defines the underlying geometry definition for a problem and it’s relationship to the mesh that is initially generated from it and subsequently refined by using it. The second hierarchical data structure refers to the grid-to-grid mappings generated through successive mesh refinement steps or overlapping meshes. Parallelized, adaptive structured mesh and overlapping mesh codes have already addressed this issue to some extent, but not in a broad enough context for the Centers hybrid meshes. This Center’s partitioning software component, for both static and dynamic environments, must take into account the existence of either or both of these data structures and preserve them across partitioning cycles for the hybrid of meshes that we support. 

As part of this Center we will generalize dynamic partitioning algorithms and define new models for balancing the workload, minimizing communication costs, and addressing the additional overhead potential in hybrid solutions strategies. We will also interoperate with existing partitioning tools including, e.g.,

Zoltan, RPM, and PADRE and with the CCA ETC through interface definitions, data-object definitions, and component libraries contributions. We will address issues related to the distribution and management of hierarchical data structure definitions for mesh data structures and geometry data structures for the support of parallel mesh generation and adaptive mesh refinement. As needed, we will develop scalable algorithms and implementations for mesh generation tools, high-order methods, and adaptive techniques. Finally, we will ensure our tools take full advantage of the memory and communication hierarchies prevalent in terascale computers. We will not be directly addressing single node performance or memory cache related issues related to this meshing and discretization ETC, but we will work with the Performance ETC to provide tools, such as ROSE, that can help in achieving performance.

