
A Parallel High-Order Discontinuous Galerkin Solver For

the Unsteady Incompressible Navier-Stokes Equations in

Complex Geometries

by

Khosro Shahbazi

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy
Graduate Department of Mechanical and Industrial Engineering

University of Toronto

Copyright c© 2007 by Khosro Shahbazi



Abstract

A Parallel High-Order Discontinuous Galerkin Solver For the Unsteady Incompressible

Navier-Stokes Equations in Complex Geometries

Khosro Shahbazi

Doctor of Philosophy

Graduate Department of Mechanical and Industrial Engineering

University of Toronto

2007

We develop a parallel method and corresponding code for the numerical solution of

the unsteady incompressible Navier-Stokes equations, with application to the direct nu-

merical simulation of transitional and turbulent flows through mechanical heart valves.

The solver is based on a simple and efficient scheme, namely a high-order discontinuous

Galerkin method on triangular and tetrahedral elements. Spatial discretization of the

Stokes operator employed both equal-order (Pk −Pk) and mixed-order (Pk −Pk−1) veloc-

ity and pressure approximations. The interior penalty method and local Lax-Friedrichs

fluxes are used for the discretizations of the viscous term and the nonlinear term in the

divergence form, respectively. A second order approximate algebraic splitting is used

to decouple the velocity and pressure calculations leading to an algebraic Helmholtz

equation for each component of the velocity and a consistent Poisson equation for the

pressure. The consistent Poisson operator is replaced by an equivalent operator, namely

that arising from the interior penalty discretization of the standard Poisson operator with

appropriate boundary conditions. An explicit lower bound is derived for the penalty pa-

rameter of the interior penalty method that ensures the coercivity of the bilinear form.

Efficiency aspects of the scheme include knowing an explicit expression for the penalty

parameter of the interior penalty method and compact stencil size for the discretizations

of the velocity and pressure equations and the nonlinear term.
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We verify the accuracy and stability of the method on several two- and three-dimensional

benchmarking problems. On the challenging Orr-Sommerfeld test problem, the equal-

order polynomial approximation of the velocity and pressure (Pk − Pk) leads to a stable

and accurate solution, while the mixed-order method (Pk − Pk−1) yields a non-physical

instability. In simulating vortex shedding past a square cylinder at Re = 100 and in

simulating a three-dimensional backward-facing step flow using the equal-order method,

excellent agreement with other computational and experimental results are obtained.

The developed solver is used to study flow through a two-dimensional bileaflet mechani-

cal heart valve geometry.

We conclude that the proposed discontinuous Galerkin method with the Pk − Pk

formulation is a suitable scheme for simulations of flows through mechanical heart valve

geometries.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Mechanical Heart Valves

The heart and the circulatory system together form the cardiovascular system. The heart

works as a pump that pushes blood to the organs, tissues and cells of the body. It consists

of four chambers: the upper two, called the left and right atria, and the lower two, called

the left and right ventricles (Fig.1.1). A muscular wall called the septum separates the

left and right ventricles. Four valves, namely the tricuspid, pulmonic, mitral and aortic,

regulate blood flow through the heart (Fig.1.1). The tricuspid valve regulates blood flow

between the right atrium and the right ventricle. The pulmonic (or pulmonary) valve

controls blood flow from the right ventricle to the pulmonary artery, which carries the

deoxygenated blood to the lung to pick up oxygen. The mitral valve lets oxygenated

blood from the lungs pass from the left atrium into the left ventricle. The aortic valve

controls blood flow from the left ventricle to the aorta, which carries the oxygenated

blood to all parts of body. The tricuspid, pulmonic and aortic valves all have three

leaflets, while the mitral valve has two leaflets. The general function of all these valves

is to prevent retrograde blood flow and regurgitation.

1
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Figure 1.1: Drawing of a human heart [1]

However, these valves may malfunction due to valvular disease. When valvular dis-

ease become significant, the condition of the patient deteriorates and valve replacement

becomes necessary. Approximately 180,000 valve replacements are performed each year

worldwide [123]. Replacement valves are either tissue valves or mechanical heart valves

(MHVs). Compared to mechanical heart valves, tissue valves resemble more closely the

geometry and function of native physiological valves and result in better haemodynamic

performance. However, the major drawback of tissue valves is their limited life-span,

on average 10 − 15 years. This makes these valves suitable for elderly patients, but less

attractive to younger individuals. MHVs, on the other hand, exhibit superior durability

and are thus preferred in the younger patients with life expectancies of longer than 15

years.

The design of MHVs and their surgical implantation have evolved during the last

several decades, representing a compromise between the ideal configuration and what is

practicable. The common design includes a flow occluder system housed in a frame or a

ring that is fitted with an appropriate sewing cuff (see Fig. 1.2a). From a hydrodynamic

point of view, the major difference between the MHVs and the natural heart valves
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Leaflet
Hinge

Housing

(a) (b)

Figure 1.2: (a) Downstream view of a St. Jude Medical bileaflet heart valve [2], (b) schematic of a

generic bileaflet heart valve, demonstrating the leaflets, hinges and housing.

is the positioning of the occluder system. In the natural design, the aortic valve opens

completely to produce an unobstructed flow passage. On the other hand, a manufactured

valve inevitably contains some obstructions embodying the occluder mechanism around

which the blood must flow. This causes a smaller effective cross sectional area and thus

non-physiological orifice (stenosis) flow with higher energy dissipation, locally higher

kinetic energy, and greater turbulence.

The most recent and popular MHV design is the bileaflet valve, first introduced in

1977 by St. Jude with the standard model. In a bileaflet MHV, the occluder mechanism

comprises two half discs that pivot to the center of the ring (see Fig.1.2). The leaflets,

together with the housing frame, are coated with pyrolytic carbon. The shape of the

discs, the opening angle and the hinge configuration vary in different designs. When

open, the valve is divided into two major orifices on the sides and one minor orifice in

the center (see Fig. 1.2a).
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1.1.2 Design and Clinical Impact

Despite improvements in the performance of MHVs during the past five decades, MHVs

still induce very significant complications due to thrombosis and hemolysis. Thrombosis

is defined as the formation of a blood clot within a blood vessel during life and hemol-

ysis is referred to as the lysis of red blood cells. These complications are promoted by

non-physiological flows characterized by high incidence of flow stagnation, separation

and turbulence. These non-physiological flow patterns are related to valve design non-

optimality. Realizing this problem thus puts forward the need to improve current valve

designs and/or strive for radical new designs.

Many studies have investigated the associations of fluid mechanics with thrombosis

and hemolysis (e.g., [17, 96, 107, 109, 100, 91, 85, 76, 66, 84, 55]). Thrombus formation,

which is a consequence of platelet activation, can be correlated with shear stress and tur-

bulence and the exposure time of a platelet to these fluid mechanical effects. Employing

a laminar rotational viscometer, Brown et al. [17] reported that a shear stress of 5Pa

resulted in platelet aggregation. They also concluded that platelet lysis occurred at shear

stresses of 10Pa, and a shear stress of 25Pa resulted in platelet fragmentation. On the

other hand, in a laminar tube flow experiment, Ramstack et al. [96] considered higher

shear stresses of 30, 75 and 100Pa and average residence times of 25−165ms. While they

reported platelet activation, they did not observe any platelet lysis. This shows that

exposure time affects platelet damage: longer exposure time requires lower level of stress

to damage platelets and mutatis mutandis. To study the effects of turbulence, Stein and

Sabbah [109] and Smith et al. [107] conducted in vivo experiments on dogs. In each dog,

they established two arteriovenous shunts, one from each femoral artery to the contralat-

eral vein. Only one shunt contained a turbulence-producing device; otherwise the shunts

were identical in shape, size and material. They found that in each dog, more thrombi,

by weight, accumulated in the turbulent shunt than in the laminar shunt. Moreover, they

reported that the weight of thrombi accumulating in the turbulent system appeared to
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be related to the turbulence intensity.

Analogously, researchers have correlated hemolysis with shear stress and Reynolds

shear stress. In a laminar Couette flow, Paul et al. [91] used plasma hemoglobin to

quantify red cell damage due to shear stress. For exposure times of 25−1250ms and shear

stresses ranging from 25 to 450Pa, they reported a remarkably low level of hemolysis.

However, a significant increase in red cell damage was reported for shear stresses greater

than 450Pa and residence times longer than 620ms. Sallam and Hwang [100] using a two

dimensional submerged turbulent jet experiment, presented a Reynolds shear stress of

400Pa as a threshold above which lethal red cell damage occurs.

The fact that current MHV designs cause non-physiological flow patterns has also been

realized in the literature [15]. The evolution of valve configurations from the cage and ball,

the earliest design, to the bileaflet, the most recent design, has been aimed at achieving

more natural flow characteristics, although it has not been completely successful. The

general features of flow through different MHV designs have been characterized by in

vitro experiments (e.g., [124]). In the open position of a bileaflet valve, the three orifices

(Fig. 1.2a) divide the forward flow into two lateral jets and one central jet. In a St.

Jude Medical valve, the maximum velocity along these jets reaches approximately 2m/s

at peak systole. After traveling 20 − 30mm downstream of the valve, these jets merge

into a central flow region. Regions of flow separation lie around the jets adjacent to the

channel wall. Small regions of low-velocity reverse flows occur adjacent to the pivot/hinge

mechanism of the valve. Turbulent shear stresses as high as 170Pa along large velocity

gradients approximately 10mm downstream of the leaflets have been measured. Higher

turbulent shear stresses are expected closer to the valve. The leakage flow primarily

occurs around the hinge mechanism and the peripheral gap between the housing and the

leaflets in the closed positions. Maximum leakage velocities of approximately 1 − 4m/s

and maximum turbulent shear stresses of approximately 200 − 700Pa around the hinge

mechanism have been reported in different bileaflet valve designs at the mitral position
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[124].

Current research related to bileaflet valve design is concentrated on examining critical

valve parameters including leaflet shape, hinge mechanism, and clearance between the

leaflet edges and the valve housing. For example, Grigioni et al. [51] have used a laser

Doppler anemometer (LDA) to study the turbulence characteristics in the wake of two

similar valve models, but with different leaflet curvatures. They have found distinct

turbulence fields suggesting that leaflet curvature is a key design parameter. Leo et al.

[75] have also used LDA measurements to study the hinge region flow during the closure

period of the CarboMedics bileaflet valve. To assess the potential of blood cell damage,

they have quantified the associated turbulent flow field and compared it with those of

two other models, the St. Jude Medical and the Medtronic Parallel.

1.1.3 Synergy of Simulation and Experiment for Design

Refinement of current MHV designs as well as introduction of radical new designs, with

the aim of zero or at least minimal thromboembolic complications, can be achieved

effectively through both physical experimentations and computer simulations in a com-

plementary manner. Computer simulations offer unique capabilities of obtaining full-field

attributes and conducting inexpensive parametric studies which are needed for evaluat-

ing preliminary designs. Through the preliminary design stage, the overall bulk hydro-

dynamic performance of a proposed valve such as pressure drop and regurgitant volume

(closing and leakage volumes) are examined. Since current MHV designs satisfy the ISO

and GEN Heart Valves Standards, these tests are only necessary for valves with sub-

stantially new designs. However, all current valve designs, as well as any new designs,

must be evaluated for their potential for blood cell damage and platelet activation. Using

accurate computational techniques, in this stage, can reduce prototype fabrications as

well as expensive and long physical experimental runs. Finally, to test the preliminary

designs in physical situations and obtain design parameters unachievable by computer
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simulations, in vitro and in vivo experiments must be employed.

Different experimental techniques are currently used for in vitro studies. These in-

clude flow visualization, LDA and particle image velocimetry (PIV). For in vivo testing,

magnetic resonance imaging (MRI) is a popular approach. Since we concentrate in this

work on computational methods, we will not explain these experimental techniques and

refer the reader to the article by Yoganathan et al. [124] for the present state of the art.

1.2 Mechanical Heart Valve Simulations

In this section, we first review previous MHV flow simulations. Based on the complexities

of the simulation, we then propose our approach, direct numerical simulation, and analyze

the resolution requirements and the associated cost.

1.2.1 Previous Simulations

Several mechanical heart valve simulations, in two and three space dimensions, have

been reported in the literature (see the review article [123]). We here review only four

representative papers.

Although it was two dimensional and lacked real clinical input parameters such as

Reynolds number, the pioneering work by McQueen and Peskin in 1983 [83] serves as an

excellent paradigm demonstrating how computer simulations can actually be used in the

design of prosthetic mitral heart valves. Their numerical procedure solved the coupled

equations of blood flow and heart wall mechanics and heart valve motion. They chose

two design parameters: the radius of curvature of the occluder, and the location of the

pivot point. For different values of these design indices, they examined three performance

criteria including the net stroke volume, the mean forward pressure difference and the

peak anterior velocity, in the search for an optimum result. They concluded that the

best overall valve had a radius of curvature equal to 1.5 times its diameter and a pivot
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point located 0.39 mitral-ring diameters from the anterior border of the mitral annulus.

Motivated by the structural failure reports of prosthetic mitral heart valves [37],

Lai et al. [74] used numerical simulations to analyze the role of bileaflet tip geometry

in the incidence of a negative pressure transient on the atrial side. They employed a

two dimensional finite volume method capable of capturing the leaflet motion via an

arbitrary Lagrangian-Eulerian (ALE) technique. Their results did not show significant

differences of pressure as a function of different leaflet tip angles. However, they reported

the importance of the leaflet tip velocity on the fluid dynamics during the closing phase.

King et al. [70] conducted a parametric study on the design of bileaflet MHVs at an

aortic site. They used a finite element based commercial code to study the effect of two

leaflet opening angles on the time-dependent laminar flow through a three dimensional

model of the valve. This model was geometrically symmetric and did not contain the

hinge configuration. They found that as the leaflet opening angle increased the flow

downstream of the valve became more centralized and the wakes of the leaflets decreased

in size.

In an attempt to find out the effect of implantation techniques such as misalignment

of the valve on the thromboembolic potential of MHVs, Bluestein et al. [16] simulated

blood flow through a two dimensional model of an implanted St. Jude Medical bileaflet

heart valve in the aortic position. They used a k − ω turbulence model and the FIDAP

CFD package (Fluent) to study turbulence, shed vortices in the wake of the leaflets and

the recirculation locations during the deceleration phase of systole. They found that a

tilted valve generates narrower and stronger jets through the valve’s orifices and a wider

wake with larger vortices. They also reported the typical high shear layers at the interface

of jets and recirculation zones which contribute to platelet activation.
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1.2.2 Complexities of Simulation

The design and clinical implications of the above-cited efforts, as well as literature we

have not reviewed, have been very limited because all studies have considered highly

simplified models of the real situation. The complexities involved in the real problem

are:

• a three dimensional complex geometry,

• pulsatility, transition and highly anisotropic and intermittent turbulence at Reynolds

number (Re) ≈ O(7000),

• flow-structure interaction due to the compliant walls of the heart and arteries, and

motion of the valve leaflets and their possible fluttering,

• non-Newtonian behavior of blood at low shear rates,

• the particulate nature of the blood once turbulence scales become comparable to

the blood cell sizes.

Any computer simulation aiming to reveal accurate and useful results must first fully

address the individual difficulties and then integrate them all together. Simulations

involving all these complexities not only require significant advances in computational

techniques, but are also a challenging task for today’s largest parallel computers. To

be pragmatic, we focus, for now, on addressing the first two complexities, namely the

transitional and turbulent flow through complex MHV geometry. For simulating such

flow, we propose direct numerical simulation, which we will describe in the following

subsection.

1.2.3 Direct Numerical Simulation

In simulating fully developed high Reynolds-number turbulent flows, the Reynolds-averaged

Navier-Stokes equations (temporal averaged models) and large eddy simulations (spatial
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averaged models) have proven to be effective. However, these averaged techniques are

not amenable to simulating low Reynolds-number transitional and turbulent flows, since

these flows lack an inertial subrange [41]. Hence, the only reliable approach is to resolve

all active temporal and spatial scales through direct numerical simulations (DNS).

The most important question arising when one proposes to carry out DNS of a turbu-

lent flow is what the computational costs associated with resolving all the active spatial

and temporal scales of the turbulence are. To answer this, we need an estimate of the

required resolution.

Length Scale Estimation and Resolution Requirement

An estimate of smallest length scales involved in a turbulent flow, which are also called

Kolmogorov length scales, can be derived by using Kolmogorov’s universal equilibrium

theory [114]. The basis of this theory is the assumption that the time scale associated

with the small scale motion of the turbulence is much smaller than that of the mean flow

and large scale motions. The small scale only depends on the rate of energy cascading

from the large scales and of course the kinematic viscosity ν. The former is balanced

with the rate of energy dissipation ǫ occurring on the small scale because the net rate of

change of the small scale energy depends on the mean flow. This leads to an expression

for the small length scale η of the form

η ≡ (
ν3

ǫ
)1/4. (1.1)

To proceed further, we need an estimate of ǫ. We use an inviscid estimate which is valid

for large Reynolds numbers [114]. Due to diminished viscous dissipation of the large scale

fluctuations at high Reynolds numbers, the rate of energy transferred to the small scales

(which is balanced with ǫ) is proportional to the square of the velocity of the large scales

u2 and the inverse of their time scale u/l, where l denotes the length of large scales,

ǫ ∝ u3

l
. (1.2)
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Substituting 1.2 in 1.1 leads to

η

l
≡ (ul/ν)−3/4 = (Rel)

−3/4, (1.3)

where Rel is the Reynolds number associated with the largest (integral) turbulent scale.

If we are to use equation 1.3 to calculate the resolution requirement for turbulence simu-

lation through MHVs, we must assume that equation 1.1 is valid for pulsatile flow since

time scales related to the pulsatile flow might be comparable with those of small scales,

which might lead to violation of Kolmogorov’s universal equilibrium theory. We calculate

Rel for the maximum blood flow rate of 30L/min occurring at the peak of the cardiac

cycle (systole). Other researchers have also used this value for the maximum flow rate

(see e.g [18]). The integral length scale l is chosen to be the typical diameter of a MHV

(25mm) and the kinematic viscosity of blood is assumed to be 3.5×10−6m2/s. Based on

the forgoing parameters ReL is 7000. Thus,

η

l
≡ (7000)−3/4 = 0.0013,

or equivalently the smallest scale is 0.0013 × 25mm = 33µm.

We now discuss length scale estimations resulting from experiments. There have been

only a few papers dealing with turbulence characteristics (in particular scale analysis)

downstream of MHVs. Among those, the most recent and perhaps most reliable one is

that of Liu et al. [78]. They conducted a series of in vitro measurements downstream of

three bileaflet MHVs employing a bidimensional LDA. The sampling area of the LDA,

which is a measure of the resolution, was an ellipsoidal region with a short axis of 50µm

and a long axis of 400µm. Liu et al. measured the mean (U) and fluctuating (u)

velocities and then based on an autocorrelation coefficient they calculated the integral

and Taylor micro time scales. Based on Taylor’s hypothesis, which states that the entire

flow remains unchanged as it passes by a certain point ( ∂
∂t

= −U ∂
∂x

, see [61], section

1.8), they calculated the integral length scale and Taylor micro length scale λ. They also
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assumed that the fluctuating scales are isotropic and used the formula

ǫ = 15ν(
∂u

∂x
)2 = 15ν

u2

λ2
(1.4)

to calculate the dissipation rate ǫ. Finally they used equation 1.1 to calculate the smallest

length scales. They reported scales as small as 20 − 30µm.

Since Liu et al.’s measurements led to u/U > 0.1, the Taylor hypothesis is not valid

[114] despite it being used throughout the calculation. Moreover, due to the small

Reynolds number turbulent flow, the isotropy assumption does not seem to yield ac-

curate results. Liu et al. did not report any uncertainty for their results. To have a

sense of uncertainties associated with LDA measurements, we refer to the recent work

by DeGraaff and Eaton [33]. For their high resolution LDA (with sampling volume size

of 35µm in diameter and 60µm in length) for turbulence at Re = 1450, they reported up

to 10% uncertainty for the Reynolds shear stress. They also mentioned that near wall

measurements are subjected to higher uncertainties. Considering the uncertainties in-

volved, assumptions often made (e.g. isotropy and validity of the Taylor hypothesis) and

the inherent order of magnitude estimate of equation 1.1, all we expect from this length

scale analysis is just an order of magnitude estimate of the smallest scales. Therefore,

based on the smallest length scale obtained from Kolmogorov theory (η = 33µm) and

that obtained from the Liu et al.’s experiment (η = 20−30µm), we consider the smallest

length scale η to be 20µm in all three directions. Using the integral length scale l1 of

25 mm in the spanwise and radial directions and the computational domain size l2 of

250mm in the streamwise direction leads to the total grid points N

N = (
l1
η

)2(
l2
η

) = (
25 × 103

20
)2(

250 × 103

20
) = 27503.

However, the resolution of actual DNS on simple geometries has typically been one order

of magnitude less in each dimension than the resolution deduced from the Kolmogorov

theory [86]. Moser and Moin [88] also noted that the actual dissipation in turbulent plane

channel flow occurs on a scale 15 times larger than the Kolmogorov scale. Thus, based



Chapter 1. Introduction 13

on the preceding analysis the resolution requirement for the DNS simulation ≈ O(3003)

or roughly 27 million grid points. We now compare this estimate with what is available

as the resolution requirement for similar flows.

Using a spectral element solver with an explicit-implicit time integration scheme,

Fischer et al. [41, 40] have recently performed DNS of weakly turbulent flows in two

vascular bifurcations, namely a stenosed carotid artery and an arteriovenous graft. The

size of geometries in these simulations were comparable with that in the proposed MHV

simulation and Reynolds numbers based on the peak systole bulk velocity were 1350 and

1200 in the carotid artery and arteriovenous graft simulations, respectively. In the carotid

artery case, Fischer et al. used a mesh of 2544 hexahedral elements with orders k = 7, 9,

and 11 and time step size ∆t = 5 × 10−6. They found resolution-independent results

in calculating mean and root-mean-square (RMS) statistics collected for 30 flow-through

times at k = 9, yielding roughly two million gridpoints as resolution requirements. The

simulation at these resolution required 20 hours of CPU time on 256 processors of the

Alpha-based TCS1 at the NSF Pittsburgh Supercomputing Center. In the arteriovenous

graft simulation, the mean and RMS quantities were in good agreement with experimental

data when using roughly four million gridpoints (2640 hexahedrons of order k = 12).

We note that if one uses the typical explicit-implicit (semi-explicit) time integration

schemes (such as used in Fischer et al.’s solver), the simulation is well resolved for the

physical time scales. This conjecture is supported by the fact that the time step restriction

in an semi-explicit scheme is governed by the CFL condition which leads to a time step

size often smaller than the Kolmogorov time scale

τ =
√

νL/u3.

(e.g. [122]). Moreover, in their carotid artery simulations, Fischer et al. reported physical

time scales as small as 5 × 10−3 which is much larger than the time step size they used

(5 × 10−6).

These verify our estimate of the resolution requirements for DNS of MHV flows.
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MHV flows occur at a few-fold higher Re than those considered by Fischer et al., and

accordingly DNS of such flows require several times higher resolutions (approximately 27

million gridpoints). Consequently, we need computational resources consisting of several

hundred to several thousand processors as well as highly efficient parallel flow solvers.

1.3 Methodology of Direct Numerical Simulation

The governing equations we seek to solve are the unsteady incompressible Navier-Stokes

(NS) equations introduced in the third chapter. The speed of a particular solver for

the NS equations depends on hardware, methodology (algorithm) and implementation.

The last two factors, namely efficient schemes for the Navier-Stokes equation and their

implementation, are the subjects of this thesis.

Solution of the unsteady NS equations consists of two parts: temporal discretiza-

tion and spatial discretization. For temporal discretization several options are possible:

fully implicit schemes, semi-Lagrangian schemes, and semi-explicit schemes with explicit

treatment of the non-linear term and implicit treatment of the Stokes operator. The

first method requires Newton iterations and the solution of nonsymmetric systems, ren-

dering the solution algorithm inefficient for time-accurate calculations [122]. The semi-

Lagrangian schemes do not exhibit good parallel performance, despite allowing large time

step sizes based on large CFL numbers (≈ O(10)) [122].

Semi-explicit methods, on the other hand, are simple, efficient and widely used in

the DNS of transitional and turbulent flows. Thus, for temporal discretization, we pro-

pose to adopt a semi-explicit scheme. Below, we discuss the importance of high-order

approximation, before evaluating possible techniques for the spatial discretizations.
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1.3.1 Dispersion Error and High-Order Approximation

In transitional and turbulent MHV flows, physical dissipation is very small; thus, it is

essential that the numerical solution scheme yield minimal dissipative and dispersive

errors. Low order approximations leave high-wave number components of the solution

unresolved. Due to the absence of physical dissipations, these errors accumulate and

pollute the solution over long integration time, yielding high dispersion. However, high-

order approximations, at the same resolution, accurately propagate a larger portion of the

solution spectrum. Thus, they are capable of maintaining high accuracy over prolonged

integration time (i.e., yielding low dispersive errors) [50, 36]. We now illustrate this fact

with a simple example.

Let us consider an unsteady advection equation in the d-dimensional domain Ω =

[0, 2π]d with periodic boundary conditions in the form

∂u

∂t
+ ∇ · (cu) = 0 in Ω, (1.5a)

u(x, 0) = cos(ω · x) in Ω, (1.5b)

with exact solution u(x, t) = cos(ω · (x− ct)). For simplicity, we assume isotropic wave

number and wave velocity vectors, i.e., ω = (ω, .., ω) and c = (c, ..., c). We consider

solving eq. 1.5 using a finite difference scheme of order k over q periods in time; that is

t = 2πq/ωc. The approximate solution has the form

uh = cos(ω · (x − ckt)), (1.6)

where the ck depends on the number of grid points Nk and the approximation order k.

Following [53], one can easily show that to achieve a phase error equal to or smaller than

ǫ, the number of grid points per wavelength, Mk, scales as

Mk =
Nk

ω
∝ (

q

ǫ
)

d
k , k = 2, 4, .... (1.7)

This yields the computational work per wavelength, W ,

W ∝ (k)dMk ∝ (k)d(
q

ǫ
)

d
k . (1.8)
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The above relation, for approximation orders k = 2, 4, 8 and 16, is depicted in Figs. 1.3a,

b and c for d = 1, 2 and 3, respectively. It is clear from the figures that as q/ǫ grows, higher

order approximations become increasingly efficient. However, there is a limit as to how

high one should choose the approximation order; in this case the limit is approximately

k = 8. Also notable from Figs. 1.3a, b and c is the fact that the efficiency gain due to

higher order methods is greater for multidimensional problems than for one-dimensional

problems. For instance, comparing Fig. 1.3a with Fig. 1.3c, we observe that while in the

one-dimensional problem for q/ǫ = 1000−10000, the cost of order k = 8 is approximately

ten-fold lower than the cost of order k = 2, in the three-dimensional problem for the same

range of q/ǫ, the cost of order k = 8 is approximately one hundred- to one thousand-fold

lower than the cost of order k = 2.

Although the efficiency of high-order methods has been demonstrated using the simple

advection equation, a similar result holds for more complicated problems where multidi-

mensional simulations with high accuracy over long integration times are required. This

is certainly the case for the problem we are aiming to solve, namely the direct numeri-

cal simulation of transitional and turbulent flows through three-dimensional mechanical

heart valve geometries. Since these flows involve small and large scales, and since all

these scales must be resolved in direct numerical simulations, a high level of accuracy

is definitely required. Moreover, long integration times (at least ten-fold higher than

the cardiac cycle [40]) are also essential to damp out the artificial transients caused by

uncertainties in initial and boundary conditions and to obtain accurate statistics.

1.3.2 Choice of Spatial Discretization

Spectral methods have been traditionally used for the DNS of transition and turbulence

[90]. However, despite their high accuracy and efficiency, they are limited to very simple

geometries such as boxes. Among methods suitable for complex geometries are finite

volume methods, continuous Galerkin (CG) methods and discontinuous Galerkin (DG)
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Figure 1.3: Work vs. q/ǫ in solving the d-dimensional advection equation (1.5) using a finite difference

method with orders 2, 4, 8 and 16; (a) d = 1; (b) d = 2; (c) d = 3. q/ǫ represents the ratio of number of

periods in time (q) to a given accuracy tolerance (ǫ).
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methods.

While finite volume methods are locally conservative and suitable for convection-

dominated flows, their high-order versions (developed by Barth [11]) require large stencil

sizes, yielding poor parallel efficiency.

High-order continuous Galerkin (CG) methods, on the other hand, offer both ge-

ometric flexibility and high parallel efficiency. However, the implementation of these

methods is rather complex, in particular in parallel and adaptive algorithms. Moreover,

in convection-dominated flows, they yield spurious oscillations if mesh elements are not

sufficiently fine to yield a grid Reynolds number of O(1) [117]. The grid Reynolds number

is defined based on the local element size and the local velocity. As the (global) Reynolds

number increases the restriction on the element sizes become more severe, rending the

numerical scheme inefficient. To circumvent this drawback, such schemes require special

modifications such as filtering [36] or stabilizations [45, 64].

High-order DG methods are simple methods that combine the advantages of both fi-

nite volume and continuous Galerkin methods, namely robustness at high Reynolds num-

bers flows (i.e., yielding stable solutions even on coarse meshes with large grid Reynolds

numbers), geometric flexibility, high-parallel efficiency, local conservativity and adaptiv-

ity. In view of these advantages, we propose to adopt high-order DG methods for the

spatial discretization of the NS equations.

1.4 Objectives

Discontinuous Galerkin methods for the stationary incompressible Navier-Stokes equa-

tions have been recently developed [48, 23]. However, the corresponding numerical so-

lution procedure for the unsteady incompressible Navier-Stokes equations have not yet

been proposed. Therefore, the objectives of this thesis are:

• to develop an efficient high-order discontinuous Galerkin scheme for solving the
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unsteady incompressible Navier-Stokes equations using triangular and tetrahedral

elements in two and three space dimensions, respectively; and

• to implement the scheme in parallel and verify the accuracy and stability of the

method by solving popular benchmarking problems in two and three space dimen-

sions.

The ultimate goal of the work is to use the developed code to carry out parametric studies

of contemporary mechanical valve designs and even new configurations, with the aim of

suggesting optimal designs based on performance criteria such as the desired pressure

drop, regurgitant volume, and minimal thromboembolism. However, this solver will have

much broader application. It can be used in simulating blood flow in other parts of the

vascular system for both laminar and transitional flow regimes. These simulations may

have implications in medical device design [73], disease research (such as investigating

the effect of blood flow on blood cells and arterial walls) [65, 112, 92, 79] and surgical

planning (such as analysis of different options in arterial bypass surgery) [111].

The remainder of the thesis is structured as follows. In chapter 3, we introduce our

scheme and its validation for two dimensional problems. This is followed by validation

in three dimensions in chapter 4. In chapter 5, we address the issue of choosing the

penalty parameter for the interior penalty method. In chapter 6, some implementation

details and a performance study are presented. Finally, in the conclusions chapter, we

summarize the work and explore some future directions. Note that chapters 3 and 5

are based on the articles [104, 105], respectively. Although this may cause some overlap

among different chapters, it contributes to the readability of each individual chapter.



Chapter 2

Overview of Discontinuous Galerkin

Methods

In this chapter, we introduce DG methods for hyperbolic and elliptic problems and

present some results on their accuracy in comparison with the CG method. We then give

details of their important features, again as compared with the CG methods. We end

the chapter by mentioning some drawbacks of DG methods.

2.1 DG Method for a Hyperbolic Equation

The first DG method was introduced in 1973 by Reed and Hill [97] in solving a hyperbolic

equation (the neutron transport equation)

u + ∇ · (cu) = 0 in Ω, (2.1)

where c is the characteristic velocity vector. To develop the DG method, the above

equation is multiplied by a test function v and then integrated over a subset of Ω, K.

After integration by parts we obtain

∫

K

uvdx +

∫

K

∇v · (cu)dx−
∫

∂K

n · (cu)vds = 0, (2.2)

20
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where n is the unit outward normal of ∂K. We now construct a triangulation of Ω,

Th = {K}. The discontinuous approximate solution uh, belonging to a polynomial space

P k
K of degree at most k, is defined as the solution of the following system:

∀K ∈ Th:

∫

K

uhvhdx +

∫

K

∇vh · (cuh)dx −
∫

∂K

̂(n · cuh)vhds = 0, ∀vh ∈ P k
K . (2.3)

To complete the definition of the DG method, we define the numerical flux ̂(n · cuh)

̂(n · cuh)(x) = n · c lim
s↓0

uh(x − cs). (2.4)

The term lims↓0 uh(x − cs) represents the upstream value of uh, where “upstream” is

defined with reference to the characteristic direction c. Consequently, the degrees of

freedom of the approximate solution uh in the element K can be calculated using the

values of uh upstream of the characteristics impinging on ∂K. If elements are suitably

sorted according to the characteristic directions, the solution can be calculated on an

element-by-element basis.

We note that besides the above upwind numerical flux, there are other possible choices

for the numerical flux including the Godunov flux, the Engquist-Osher flux and the Lax-

Friedrichs flux [27]. The Lax-Friedrichs flux is particularly attractive due to its simplicity

for arbitrary mesh configurations. This flux is used for the discretization of the nonlinear

term in the Navier-Stokes equations as shown in chapter 3.

This feature of the DG formulation, namely that the direction of the convection is

taken into account, is absent in the CG formulation, which does not respect the direction

of characteristics. This is why DG methods lead to superior results in problems where

convection plays an important role. To illustrate this fact, we present the numerical

results of Giraldo [47] on passive advection of a cylindrically shaped perturbation on the

surface of a sphere. The perturbation represented a geopotential height, and the test was

carried out in the context of solving the shallow water equations with relevance in climate

modeling. Giraldo compared the performance of both DG and CG discretizations. In
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Figure 2.1: Profile of geopotential height, Φ, along the equator undergoing passive advection for 12

days; the exact profile (left); the profile calculated using the DG method (center); the profile calculated

using the CG method (right). From Giraldo [47].

both discretizations, a mesh consisting of 64 triangular element of order k = 1 was used.

The results after 12 days of integration are shown in Fig. 2.1. It is clear that the DG

method yielded a superior solution compared to the CG method. While the DG method

yields relatively smooth solution with only minimal, and more importantly, localized

overshoots and undershoots, the CG method yielded a spurious solution over the entire

domain (global effect). We note that similar undesirable results may be also observed

when simulating incompressible flows using a CG method, despite the absence of physical

discontinuities. In an unresolved (or marginally resolved) solution, sharp gradients can

introduce artificial discontinuities and similar global spurious oscillations will pollute the

solution.

2.1.1 DG Method for an Elliptic Problem

We here describe the DG formulation of the elliptic problem

u − ∆u = f in Ω, (2.5a)

u = 0 on ∂Ω, (2.5b)
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The Laplacian is first written as two first-order operators by introducing the auxiliary

variable σ:

∇u = σ, (2.6a)

u −∇ · σ = f. (2.6b)

Following the same procedure as the hyperbolic case, we then multiply the above equa-

tions with test functions τ and v and integrate over the element K. After integration by

parts we obtain

−
∫

K

∇ · τudx +

∫

∂K

τ · nuds =

∫

K

σ · τdx, (2.7a)

∫

K

uvdx +

∫

K

σ · ∇vdx −
∫

∂K

σ · nvds =

∫

K

fvdx, (2.7b)

Now the approximate solutions uh ∈ P k
K and σh ∈ (P k

K)d are defined as the solution of

the system

∀K ∈ Th:

−
∫

K

∇ · τ huhdx +

∫

∂K

τ h · nûhds =

∫

K

σh · τ hdx ∀τ h ∈ (P k
K)d, (2.8a)

∫

K

uhvhdx +

∫

K

σh · ∇vhdx −
∫

∂K

σ̂h · nvhds =

∫

K

fvhdx ∀vh ∈ P k
K . (2.8b)

The numerical fluxes ûh and σ̂h are defined as

ûh(x) =
1

2
(u(x+) + u(x−)), (2.9a)

σ̂h(x) =
1

2
(∇uh(x

+) + ∇uh(x
−)) − µ(u(x+) − u(x−))n, (2.9b)

where x+ = lims↓0(x + sn) and x− = lims↓0(x− sn). For ∂K ∈ ∂Ω, the numerical fluxes

are defined as

ûh(x) = u(x+), (2.10a)

σ̂h(x) = ∇uh(x
+) − µu(x+)n, (2.10b)

We note that unlike the hyperbolic case where the fluxes depend on the solution on one

side of ∂K, here the numerical fluxes depend on the value of u on both sides of ∂K. This
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Figure 2.2: Maximum nodal error vs. element size for different orders k using two methods to solve the

Helmholtz equation on the unit square: triangles are results of the IP method, and squares are results

of the CG method reported in [119]. A best-fit line with associated slope is shown for the IP method

results for each k.

definition of fluxes correspond to the interior penalty (IP) method introduced by Arnold

[4]. The second term in eq. 2.10b is referred to as the penalty (stabilization) term and

it is added to enforce the coercivity (stability) of the method. µ is called the penalty

parameter and must be chosen large enough. While other choices for the numerical

fluxes are possible [5], we prefer the IP method due to its simplicity, compact stencil

size, stability and optimal rate of convergence. However, one drawback to this scheme is

the lack of an explicit expression for the penalty parameter. This issue will be the focus

of the fifth chapter, where an explicit lower bound for µ will be derived. For now, we

assume µ is known for a given mesh and approximation order k.

We compared the accuracy of the IP method with the CG method in solving the

Helmholtz equation with f = (1 + 2π2) sin(πx) sin(πy), corresponding to the (smooth)
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exact solution u = sin(πx) sin(πy). The domain was [−1, 1]× [−1, 1] and was partitioned

into N = 2M2 structured triangles. Fig. 2.2 shows how the maximum error depended

on mesh size for orders k = 4, 6, 8 and 10. It can be seen that the IP method yielded

results almost identical to those obtained by the CG method using the same nodal sets, as

reported by Warburton et al. [119]. We also calculated the convergence rates for different

k, obtaining a convergence order of approximately k + 1, similar to that of the CG

method reported in [119]. We conclude that the IP method is competitive with classical

CG methods for elliptic problems.

2.2 Simplicity

DG methods offer simplicity in design and implementation of important strategies, namely

parallelization, and non-conforming geometric (h) and functional (p) adaptivities. The

simplicity results from the fact that in the DG setting no continuity constraint is enforced

at element interfaces, a property that is not offered by the CG method.

2.2.1 Parallelization

In the DG method we develop in the following chapters, the degrees of freedom of an

element are coupled only with those of its immediate neighbors. (Two elements are

defined as immediate neighbors if they share an edge or a face in two or three space

dimensions, respectively.) This means that in parallel implementations of DG algorithms,

two processors communicate with each other only if they share an edge (face) in two

(three) space dimensions. As a result, parallelization of the DG method is highly efficient

and simple, which we now demonstrate with an example.

An unstructured mesh consisting of 72 triangles of order k = 3 is partitioned into

four submeshes (Fig. 2.3), and each is assigned to a processor. Fig. 2.4a demonstrates the

communication pattern of the DG method in evaluating the second order Laplacian term.
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Figure 2.3: Partitioning of an unstructured mesh consisting of 72 triangles of order 3 into four sub-

meshes using [99]. The squares signify the nodal points of order 3; the red polylines trace the partition

boundaries.

Each processor communicates with two other processors, and sends only the information

for those triangles that have an edge on the partition boundaries. Due to large start up

costs, it is important to pack all the information destined to a given processor into a

single message. Consequently, each processor sends only two separate messages in this

example.

Fig. 2.4b shows the communication pattern for the direct stiffness summation proce-

dure [36] required in evaluating the Laplacian term using the CG method. Here, each

processor sends three separate messages. In the CG method, two processors exchange

information if they share a vertex, or an edge (or a face in three space dimensions) on the

partition boundary. Since in three space dimensions, the number of elements surrounding

a given element can be large, the communication cost of a CG algorithm can be high. For

example, assume a computational mesh is divided into several hexahedral regions and
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(a), DG method

(b), CG method

Figure 2.4: Communication pattern on an unstructured mesh (Fig. 2.3), distributed among four pro-

cessors. (a) In the DG method, each processor sends two separate messages containing information

about elements inside the red and blue perimeters. (b) In the CG method, each processor sends three

separate messages containing information about nodes inside the red, blue and green perimeters. Arrows

are colored according to the perimeters showing the direction of the messages sent.
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each region is assigned to a processor. Since a given region has typically 26 neighbors,

based on the procedure of the preceding example, the direct stiffness step would require

roughly 26 messages to be sent [36]. This is high, particularly when compared to the DG

algorithm which requires roughly sending only 6 messages. Note that although in the

CG method shorter messages are exchanged compared to the DG method, the commu-

nication cost of the CG method would still be higher. This is due to the fact that the

start up time is much higher than the message transfer rate; a message can be as long

as 100-1500 words before a two-fold increase in the communication cost will be realized

[36].

There have been several efforts to devise efficient communication strategies for the

CG method [36]. For instance, Tufo and Fischer [116] developed a general directional

exchange algorithm suitable for unstructured meshes. This strategy has proved to be

successful in simulations carried out on several thousands processors [36].

In a nutshell, while a simple communication algorithm can yield an efficient paral-

lelization in a DG discretization, efficient communication strategies for a CG discretiza-

tion, though available, are rather sophisticated and their implementations are cumber-

some.

2.2.2 Non-conforming hp-adaptivity

Non-conforming h-adaptivity is a series of non-conforming local mesh refinement (or

coarsening) in regions where the solution exhibits singularities or sharp gradients, to ef-

fectively achieve a desired level of accuracy. Non-conforming refinements result in meshes

with hanging nodes (i.e., meshes with elements that are not face-to-face in three dimen-

sions and are not edge-to-edge in two dimensions). An example of a non-conformingly

refined mesh is shown in Fig. 2.5. Compared to conforming refinement, non-conforming

refinement has the advantage of maintaining the original isotropy of the mesh.

P-adaptivity, on the other hand, is local order enrichment (or reduction) in regions
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Figure 2.5: A non-conformingly refined mesh consisting of 1160 triangles. The original conforming

mesh consisted of 72 triangles. DG methods handle such refinements easily.

with a smooth solution to efficiently achieve a given accuracy. hp-adaptivity is the

simultaneous use of both h-adaptivity and p-adaptivity to achieve an exponential rate of

convergence [34].

As the complexity of the problem grows, so does the need for adaptation. Considering

the geometric complexity of MHVs, characterized by thin leaflets and a small hinge

mechanism, non-conforming mesh refinement, easily supported in DG methods, is an

effective tool to resolve large gradients of vorticity at leaflet edges and the micro structure

of flow in the vicinity of the hinge mechanism.
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2.3 Weak Imposition of Dirichlet Boundary Condi-

tions

In DG methods, Dirichlet boundary conditions are imposed weakly, yielding boundary

operators similar to the flux operators defined on the elemental interfaces. In the classical

CG methods, BCs have traditionally been enforced strongly; however, extending the weak

concept to the CG method is also possible.

Several studies have compared the performance of weakly imposed Dirichlet boundary

conditions with the strongly imposed conditions, and concluded that the former are more

advantageous than the latter. In direct numerical simulations and large eddy simulations

of turbulent channel flows using high-order DG methods, Collis and Ramakrishnan [28,

95] showed that the weak imposition of the wall boundary conditions prevents the need

to resolve the viscous sublayer. Barzilevs and Hughes [13] also compared weak and strong

enforcement of the no-slip boundary conditions for a convection-diffusion equation and for

the incompressible Navier-Stokes equations, but in the continuous Galerkin discretization.

They found that weakly enforced conditions are effective and superior to the strongly

enforced conditions. Moreover, similar to the results in the DG context [28, 95], they

reported that weakly imposed conditions act like a wall function and thus avoid the need

for high resolution close to the wall.

Based on the above evidence, we expect that imposing boundary conditions weakly

in our DG scheme will have beneficial efficiency implications in blood flow simulations

through mechanical heart valves.

2.4 Conservativity

Practitioners who numerically solve nonlinear conservation laws overwhelmingly prefer

locally conservative methods. [25]. In climate and atmospheric chemistry applications,
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both local and global conservations of quantities such as mass and total kinetic energy

are important [35, 77]. There is also evidence in incompressible flow simulations (at

high Reynolds number), using finite difference schemes, that conservative schemes lead

to more accurate results than those of non-conservative forms (e.g., [87]).

Most DG methods are locally and globally conservative. The former implies elemental

conservation and the latter implies conservation over the entire computational domain.

Local conservation stems from the property that the test function can be set to value

one over the element of interest and zero on the rest of the computational domain. Due

to the discontinuous nature of test function spaces, this is possible in the DG methods.

This is also true in the global sense. On the other hand, in most continuous Galerkin

methods, this is neither possible element-wise due to the continuity constraint along

the element boundaries nor over the entire domain due to the strong enforcement of the

Dirichlet boundary conditions. CG methods are globally conservative only in the absence

of Dirichlet boundary conditions [62]. The non-conforming Crouzeix-Raviart elements is

among a few CG methods with the element-wise mass conservation property [30].

In an attempt to prove the conservation property of CG methods, Hughes et al. [62]

introduced a modified formulation. While in the DG method the approximate solution

alone satisfies the conservation law directly, this is not the case in this modified form of

the CG method. An additional variable, a numerical flux on the Dirichlet part of the

boundary (or element interfaces) calculated in a postprocessing stage, is required to be

able to write a conservation statement.

2.5 Efficiency

2.5.1 Total Number of Unknowns

Due to the multiple values for the degrees of freedoms on elemental interfaces, DG meth-

ods yield larger number of unknowns compared to CG methods, and consequently they
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Figure 2.6: The standard triangle and its nodal sets for (a) k = 2, (b) k = 5, (c) k = 8 [57]; the

corresponding percentages of the internal nodes are 0%, 29% and 40%.

may be considered less efficient than CG methods. This argument is only valid for low-

order approximations where the ratio of the number of unknowns of the DG method

(NDG) to those of the CG method (NCG), NDG/NCG, is large. While in low order ap-

proximations, the degrees of freedom are mostly located on the boundary of an element,

in high order approximations, the number of internal degrees of freedoms increases and so

does the percentage of internal degrees of freedoms. Fig. 2.6 shows the nodal set distribu-

tions for orders k = 2, 5 and 8. The percentage of number of internal nodes has increased

from 0% at k = 2 to 40% at k = 8. Therefore, as the percentage of the internal degrees

of freedom increases, the percentage of the interfacial degrees of freedoms decreases, and

NDG approaches NCG. To illustrate this fact, we measure NDG and NCG as a function

of k on a structured mesh. The domain is a square (or cube in three dimensions), and is

partitioned into 2n2 (6n3) semi-structured triangular (tetrahedral) elements, where n is
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the number of subdivisions in each direction. Then one may easily show that

NDG = 2n2(k + 1)(k + 2)/2 d = 2, (2.11a)

NDG = 6n3(k + 1)(k + 2)(k + 3)/6 d = 3, (2.11b)

NCG = (n + 1)(n + 1) + (3n2 + 2n)(k − 1)

+ 2n2((k + 1)(k + 2)/2 − 3k) d = 2, (2.11c)

NCG = (n + 1)(n + 1)(n + 1) + {(6n2 + 3n)(n + 1) + n3}(k − 1)

+ (6(n + 1)n2 + 6n3){(k + 1)(k + 2)/2 − 3k}

+ 6(n3){(k + 1)(k + 2)(k + 3)/6 − 2(k2 + 1)} d = 3. (2.11d)

Table 1.1 shows NDG/NCG (for n ≫ 1) for k = 1, ..., 10 and ∞ for both triangular

and tetrahedral meshes. It is clear from the table that even for moderately high orders

(5 ≤ k ≤ 10), NDG is only a few times higher than NCG (NDG/NCG < 3).

Furthermore, in high-order CG methods, the cost is not directly proportional to the

total number of unknowns. Since the implementation of high-order CG methods is often

based on elemental operations [36, 67], the cost scales as Ekα with E the total number

of elements and α = 2d (or d + 1 if tensor product forms are available). This cost is

identical to the cost of a DG method.

In view of the above analysis and some evidence, such as that in chapter 3 that

reveals that for some convection dominated flows we may require smaller resolution using

a DG method than the CG method, we conclude that using (moderately) high-order DG

methods can be computationally competitive with their continuous counterparts.

2.5.2 Block Diagonal Mass Matrix

In fully explicit or semi-explicit time integration schemes, it is required to invert a global

mass matrix to directly solve a system or to precondition a system. Consequently, it is

important to have a mass matrix which is diagonal or block diagonal.
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NDG/NCG

Order Triangular mesh Tetrahedral mesh

1 6 23.93

2 3 7.49

3 2.22 4.44

4 1.87 3.28

5 1.70 2.69

6 1.56 2.33

7 1.47 2.1

8 1.41 1.93

9 1.36 1.81

10 1.32 1.72

∞ 1 1

Table 2.1: The ratio of total number of unknowns for a DG method to those for a CG method,

NDG/NCG, vs. approximation orders for both triangular and tetrahedral meshes.

Some CG methods, such as spectral element methods, yield diagonal mass matrices

only if quadrilateral or hexahedral meshes are used. However, on triangular and tetra-

hedral elements, they lead to a sparse global mass matrix whose inversion is expensive.

DG methods, on the other hand, lead to block diagonal mass matrices. Each block cor-

responds to an elemental mass matrix of size (k + 1)× (k + 1) which is easily invertible.

In the case of straight-sided triangles or planar-faced tetrahedrons, only one elemental

mass matrix corresponding to the standard element is inverted and the inverse of each

block is recovered through a constant scaling.

There are some numerical results in the literature verifying the importance of a block

diagonal mass matrix for explicit time integration schemes. In solving a hyperbolic equa-

tion on a sphere with a discontinuous solution, Giraldo [47] compared the performance of
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Figure 2.7: CPU time vs. refinement levels in solving a hyperbolic equation using CG and DG methods

[47].

a triangular spectral element method with a triangular DG discretization. In the spectral

element method, strong filtering was used for stabilization and a state-of-the-art solver

(GMRES with a fast projection method [47]) was used to solve the global mass matrix.

The results favored the DG method in both accuracy and computational time. The tim-

ing results are depicted in Fig. 2.7, demonstrating the higher speed of the DG solver over

the CG solver, in particular as the problem size grows.

2.6 Drawbacks of DG methods

In the previous sections, we have described the benefits of DG methods, we now men-

tion two drawbacks of these methods. First, as mentioned in subsection 2.5.1, for low

approximation orders, DG methods yield larger number of unknowns than the CG meth-

ods, and possibly are less efficient than CG methods. Second, the solution strategies

for the systems arising from DG discretizations are not as mature as those for the CG

discretizations. In particular, the optimal overlapping elemental (multigrid) Schwarz pre-
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conditioners for the spectral element discretization of the elliptic equations [80, 43] are

not applicable to the DG setting. Also, the applicability of recently developed optimal

two-level overlapping Schwarz preconditioners for the high-order CG methods on trian-

gular and tetrahedral elements [101] to the DG discretization needs to be investigated.



Chapter 3

A High-Order DG Method for the

NS Equations

This chapter presents our proposed high-order discontinuous Galerkin scheme for the

solution of the unsteady incompressible Navier-Stokes equations and its verification on

two-dimensional benchmarking problems.

3.1 Introduction

DG methods for pure elliptic problems and hyperbolic conservation laws have been exten-

sively developed and analyzed during the past three decades (e.g, see the review articles

[5] for elliptic problems and [27] for hyperbolic systems). Only recently, however have the

DG methods been extended to the numerical solution of incompressible flows, including

the Stokes and the incompressible Navier-Stokes equations (see articles [54, 102, 24] for

the Stokes problem and [48, 23] for the Navier-Stokes equations). All of the above work

has considered only the stationary Stokes or Navier-Stokes equations. Therefore, the

objective of this paper is to propose an efficient DG scheme for the unsteady incompress-

ible Navier-Stokes equations. Our approach is tailored to convection-dominated regimes

encountered in transitional and turbulent flows. The approach is based on a semi-explicit

37
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temporal discretization in which the convective term is treated explicitly and the Stokes

operator is treated implicitly. It employs a high-order DG spatial discretization on tri-

angular and tetrahedral elements in two and three space dimensions, respectively. To

put our methodology in perspective, we review related work on the DG treatment of the

convective and Stokes operators.

3.1.1 Review of DG Discretization of the Convective Operator

Several DG methods for the spatial discretization of the convective term have recently

been proposed. Cockburn et al. [22] provided an a priori error estimate for the DG

solution of the Oseen problem by treating the linear convective term with an upwinding

scheme. For the nonlinear Navier-Stokes equations with nonoverlapping domain decom-

positions, Girault et al. [48] devised a stable method by discretizing the convective term

in a skew-symmetric form. To assure that the DG formulation yields a locally conserva-

tive discretization, a property that is not offered by the above two methods, Cockburn et

al. [23] proposed two strategies. In the first, they linearized the convective term and then

used the results of [22] for the Oseen problem to prove the stability of the discrete solu-

tion. Through an iterative procedure they then recovered a locally conservative velocity

field. In their second formulation, the pressure p was replaced with the Bernoulli pressure

p + 1
2
|u|2; hence, local conservativity was attained. With this method, one can prove the

boundedness of the approximate solution for the case of Dirichlet boundary conditions.

For the case of outflow boundary conditions, however, this type of formulation leads

to an unphysical solution at the outlet, as previously shown in the context of the con-

tinuous Galerkin approximation [60]. Thus, for engineering problems that are typically

formulated on truncated domains with outflow boundary conditions, this method is not

suitable.

We here propose a new strategy. We discretize the nonlinear term in the divergence

form and use the local Lax-Friedrichs numerical fluxes to obtain stable results. Discretiz-
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ing the nonlinear term in the divergence form immediately yields local conservativity, a

property that the two previously proposed methods either do not offer (the method of

Girault et al. [48]) or require an extra iteration procedure to attain (the first method of

Cockburn et al. [23]). Unlike the second method of Cockburn et al. [23], our method

applies for any boundary conditions, including Dirichlet, periodic, and outflow conditions.

3.1.2 Review of DG Discretization of the Stokes Operator

For the DG discretization of the Stokes operator, several studies have been reported in

the literature, beginning with Hansbo and Larson [54]. For simplicial triangulations,

they used the interior penalty (IP) method [4] for the viscous term and approximating

polynomial degrees k and k−1 for the velocity and the pressure, respectively (Pk −Pk−1,

mixed-order formulation). Cockburn et al. [24] used the so-called local DG method

for the viscous term [12, 26] and proved an inf-sup condition for equal approximating

polynomial degree, k for the velocity and pressure (Pk − Pk, equal-order formulation),

by adding a stabilization term to the discretized divergence-free constraint. Schötzau et

al. [103] similarly employed the equal-order formulation but with an IP discretization of

the Laplacian. In our methodology, we consider the IP method for the viscous term and

both the Pk − Pk−1 and Pk − Pk formulations. We prefer the IP method over the local

DG method for its simplicity and its compact stencil size.

Employing a semi-explicit temporal discretization and the DG spatial discretization

leads to an algebraic Stokes system to solve at each time step. For this system, we

propose a new class of second-order approximate splitting methods. Applying algebraic

splitting procedures introduced earlier in the context of the finite volume, finite element

or spectral element methods (e.g., [93, 56, 29], respectively) yields a Helmholtz system

for the velocity and a consistent Poisson equation with an extended stencil size for the

pressure variable to be solved at each time step. In the DG setting, however, we are

able to replace this pressure operator with an equivalent operator that is simpler and
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computationally more efficient. This operator offers a compact stencil size and arises

from the IP discretization of the Poisson equation with appropriate boundary conditions.

We note that the application of algebraic splitting for solving the Stokes system on

triangular or tetrahedral meshes is more advantageous in the DG setting than in the

continuous Galerkin method. In the DG setting, the pressure operator has compact

stencil-size, and the mass matrix is block diagonal. The block diagonal structure of the

mass matrix permits a simple and efficient preconditioner for the iterative solution of the

Helmholtz system of the velocity as explained in Section 3.2. None of these properties

exists in the continuous counterpart. Furthermore, our algebraic splitting approach is

superior to the Chorin-Temam projection scheme (differential splittings) [21, 113] in the

sense that our scheme avoids unphysical boundary conditions for the pressure equation

inherent in the differential splittings.

Below, we describe details of our solution procedure. We then present some implemen-

tation details in Section 3.3. These are followed in Section 3.4 by numerical experiments

to demonstrate the temporal and spatial accuracy of the method. In Section 3.5, the

developed solver is used to simulate flow through a two-dimensional mechanical heart

valve.
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3.2 Navier-Stokes Discretization

We seek the numerical solution of the unsteady incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u =

1

Re
∇2u−∇p + f in Ω × [0, T ], (3.1a)

∇ · u = 0 in Ω × [0, T ], (3.1b)

u(t = 0) = u0 in Ω, (3.1c)

u = gD on ∂ΩD, (3.1d)

1

Re

∂u

∂n
− pn = 0 on ∂ΩN , (3.1e)

s(x) = s(x′) x,x′ ∈ ∂ΩP , (3.1f)

where u, p and t are the non-dimensionalized velocity vector, pressure and time, respec-

tively, and f is a known body force. The Reynolds number is Re = (UL)/ν, with U a char-

acteristic velocity, L a length scale, and ν the kinematic viscosity. Equation 3.1c repre-

sents an appropriate initial condition, and eqs. 3.1d, e, and f represent Dirichlet, outflow,

and periodic boundary conditions (BCs), respectively. Note that ∂Ω = ∂ΩD∪∂ΩN ∪∂ΩP .

s represents any component of the velocity vector or the pressure, and x and x′ are two

periodic points. Ω is a polygonal domain of dimension d = 2, or 3, and T is the total

integration time.

The numerical solution of the above system consists of two parts: temporal discretiza-

tion and spatial discretization. For temporal discretization, we use a semi-explicit scheme,

in which the nonlinear term is treated explicitly and the Stokes operator is treated im-

plicitly. We use a third-order backward differentiation (BD3) scheme for the unsteady

term and a third-order extrapolation (EX3) for the nonlinear term, as proposed by Kar-

niadakis et al. [68]. Let the total integration time T be divided into uniform time steps
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of size ∆t. Then the semi-discretized forms of eqs. 3.1a and 3.1b at time step n become

(− 1

Re
∇2 +

β0

∆t
)un+1 + ∇pn+1 = (

β1

∆t
un

1 +
β2

∆t
un−1

2 +
β3

∆t
un−2

2 )

− (γ1c
n + γ2c

n−1 + γ3c
n−2) + fn+1 in Ω, (3.2a)

∇ · un+1 = 0 in Ω. (3.2b)

Here c represents the nonlinear term; β0 = 11/6, β1 = 3, β2 = −3/2, and β3 = 1/3

are coefficients associated with BD3; and γ1 = 3, γ2 = −3, and γ3 = 1 are coefficients

associated with EX3. For ease of notation, we will drop the superscripts referring to the

time steps and absorb the right-hand side of eq. 3.2a into f .

Due to the explicit treatment of the convective term, time steps are limited by a CFL

condition. We choose ∆t based on the estimate

∆t ≈ O(
L
Uk2

), (3.3)

reported in [67] for an advection model problem. Here L is an integral length scale

(typically the mesh element size) and U is a characteristic velocity.

Below, we introduce some notation and approximate spaces, then describe the spatial

discretization including the DG treatment of the nonlinear and Stokes operators.

3.2.1 Preliminaries

Let ΓI denote the collection of all interior faces 1. Then ΓIDP = ΓI ∪ ∂ΩD ∪ ∂ΩP ,

ΓINP = ΓI ∪ ∂ΩN ∪ ∂ΩP , and ΓIDNP = ΓI ∪ ∂ΩD ∪ ∂ΩN ∪ ∂ΩP . On a face e ∈ ΓI shared

with two elements K+ and K−, we permanently associate e with a unit normal vector

ne directed from K+ to K−, and define the jump and average operators of a function φ

by

JφK := (φ|K+)|e − (φ|K−)|e {φ} =
1

2
(φ|K+)|e +

1

2
(φ|K−)|e.

1The terms “face” and “surface integral” denote edge and line integral in two space dimensions as
well.
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For e ∈ ∂ΩP , we use the same definitions except that if K+ contains e, K− is an element

containing the periodic face of e. On a Dirichlet or outflow face e, ne is the unit normal

vector n outward to Ω, and the jump and average of the operator φ coincide with the

trace of φ.

The discontinuous approximate spaces we use are

Vk := {v ∈ L2(Ω)|v|K ∈ Pk(K), ∀K ∈ Th} (3.4)

and its vector version Vd
k . Pk(K) is the set of polynomials of total degree at most k on K,

k ≥ 1, with K being a simplicial element of the geometrically conforming triangulation

Th of the domain Ω. While our methodology applies to a geometrically and functionally

nonconforming approximation, for simplicity, we consider only conforming triangulations

and uniform polynomial degrees over all elements.

3.2.2 Nonlinear Treatment

Using the divergence free constraint ∇ · u = 0, we write the nonlinear term in the

divergence form

u · ∇u = u · ∇u + u∇ · u ≡ ∇ · (u ⊗ u),

where u⊗v := uivj, i, j = 1, ..., d. We can now use ideas for the DG discretization of the

nonlinear term previously developed in the context of hyperbolic conservation laws [27].

Let u be approximated by uh ∈ Vd
k , and for notational simplicity we denote uh ⊗ uh by

g hereafter. Multiplying the nonlinear term by a test function vh ∈ Vd
k , integrating over

the whole domain Ω, and carrying out integration by parts, we obtain

∫

Ω

vh · (∇ · g)dx = −
∑

K

∫

K

(g · ∇) · vhdx +
∑

ΓIDNP

∫

e

ne · Jg · vhKds.

To complete the discretization, we replace the integrand ne ·Jg ·vhK in the surface integral

with the local Lax-Friedrich fluxes
︷ ︸︸ ︷
ne · Jg · vhK

∫

Ω

vh · (∇ · g)dx = −
∑

K

∫

K

(g · ∇) · vhdx +
∑

ΓIDNP

∫

e

︷ ︸︸ ︷
ne · Jg · vhK ds, (3.5)
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where
︷ ︸︸ ︷
ne · Jg · vhK = ne · {g} · JvhK +

1

2
ΛK,eJuhK · JvhK. (3.6)

In eq. 3.6, and only in eq. 3.6, and for e ∈ ΩD, the operators {} and JK have slightly

different interpretations than those previously defined. Specifically, for e ∈ ΩD, {g} =

1
2
((uh ⊗ uh)|e + (gD ⊗ gD)|e) and JuhK = (uh|e − gD|e). To define ΛK,e, let λ+ and λ−

be the largest eigenvalue (in absolute value) of the Jacobians (∂/∂u)(g · ne)|ū
K+

and

(∂/∂u)(g ·ne)|ū
K−

, respectively, with ūK+ and ūK− being the mean values of uh over the

entire element K+ and K−, respectively. Then,

ΛK,e = max(λ+, λ−). (3.7)

For e ∈ ΩP and e ∈ ΩD, ΛK,e is defined similarly. Specifically, for e ∈ ΩP and K+

containing e, K− contains the periodic face of e. For e ∈ ΩD and ūK+ being the mean

of uh on K+ containing e, ūK− = gD. For e ∈ ΩN , ΛK,e = 0.

Remark 1. The terms (g · ∇) · vh and ne · {g} · JvhK in eqs. 3.5 and 3.6 are evaluated

in index notation as:

(g · ∇) · vh := gij
∂vhi

∂xj
i, j = 1, ..., d, (3.8a)

ne · {g} · JvhK := nej{gij}JvhiK i, j = 1, ..., d, (3.8b)

where repeated indices imply summation.

Remark 2. This choice of the numerical fluxes leads to a compact stencil size. As

shown in Fig. 3.1a, the degrees of freedom (DOF) of a reference element (black triangle)

couple only with those of its immediate neighbors (dark grey triangles).

3.2.3 Stokes Discretization

To set the stage for describing our solution procedure for the unsteady Stokes system 3.2,

we first review two DG discretizations of the Poisson problem: the IP method of Arnold
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[4] and the method of Bassi and Rebay [12], further developed in [26]. The latter method

is referred to as the local DG method.

We seek the IP and the local DG formulations of the Poisson equation with Dirichlet,

Neumann, and periodic boundary conditions:

−∆u = f in Ω, (3.9a)

u = gD on ∂ΩD, (3.9b)

∇u · n = gN , on ∂ΩN , (3.9c)

u(x) = u(x′) x,x′ ∈ ∂ΩP . (3.9d)

IP Formulation of the Poisson Equation

In the IP formulation, the discontinuous approximation to the exact solution u, uh, is a

member of the finite element space Vk. The approximate solution is defined by requiring

that

ah(uh, vh) = fh(vh) ∀vh ∈ Vk,

where

ah(u, v) =
∑

K

∫

K

∇u · ∇vdx −
∑

ΓIDP

∫

e

[
ne · {∇u}JvK + ne · {∇v}JuK

]
ds+

∑

ΓIDP

∫

e

µJuKJvKds, (3.10a)

fh(v) =

∫

Ω

fvdx +

∫

∂ΩN

gNvds +

∫

∂ΩD

gD(µv −∇v · n)ds. (3.10b)

The last term in eq. 3.10a is called the penalty term. It is added to enforce the coercivity

of the bilinear form, which requires the choice of a sufficiently large value for the penalty

parameter µ. The last integral in eq. 3.10b is due to the weak imposition of the Dirichlet

boundary conditions.

The minimum acceptable value for µ depends on the triangulation and the approx-

imating polynomial degree. Although an explicit expression for µ is not known for a
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general mesh topology, we will derive an expression for the case of simplicial elements in

chapter 5 [104]. Specifically, here we have used

µ =
(k + 1)(k + d)

d
max

K
(
SK

VK
), (3.11)

where SK and VK represent the surface area (perimeter in two dimensions) and volume

(area in two dimensions) of the element K, respectively. This is a slightly simplified

version of eq. 5.8. Note that instead of the global expression in eq. 3.11, the local

penalty parameter derived in eq. 5.8 can also be used.

Local DG Formulation of the Poisson Equation

In the local DG method, the Laplacian is first written as two first-order operators by

introducing the auxiliary variable σ:

∇u = σ, (3.12a)

−∇ · σ = f. (3.12b)

In previous work, the approximations to u and σ, uh and σh, have belonged to Vk and

Vd
k , that is, spaces with equal polynomial degrees (equal-order method). In addition to

equal-order polynomial degree spaces, here we allow uh ∈ Vk and σh ∈ Vd
k+1, spaces with

mixed polynomial degrees (mixed-order method). This approach is similar to our DG

method for the Stokes operator, where both equal- and mixed-order methods are allowed.

The approximate solutions uh and σh are then defined by requiring that

dh(τ h, uh) = bh(σh, τ h) + gh(τ h) ∀τ h ∈ Vd
k/Vd

k+1, (3.13a)

−dh(σh, vh) + eh(uh, vh) = fh(vh) ∀vh ∈ Vk, (3.13b)
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where

dh(τ , u) = −
∑

K

∫

K

u∇ · τdx +
∑

ΓINP

∫

e

{u}Jτ K · neds, (3.14a)

bh(σ, τ ) =

∫

Ω

σ · τdx, (3.14b)

eh(u, v) =
∑

ΓIDP

∫

e

αJuKJvKds, (3.14c)

gh(τ ) = −
∫

∂ΩD

gDτ · nds, (3.14d)

fh(v) =

∫

Ω

fvhdx +

∫

∂ΩN

gNvds +

∫

∂ΩD

αgDvds. (3.14e)

Here eh(u, v) is the penalty (stabilization) term and α = η/he, with η any positive

number, and he ≡ diam(e). Since η ≪ 1 and η ≫ 1 yield ill-conditioned matrices, as

shown by Castillo [20], moderate values of η (≈ O(1)) should be chosen in practice. Note

that the original formulation of Bassi and Rebay [12] lacks stabilization, i.e., eh(u, v) = 0.

Remark 3. In the weak imposition of periodic BCs, for the IP and the local DG

formulation, ∇u is also assumed to be periodic, so as to yield a symmetric discretization.

Remark 4. Applying the nodal high-order basis (described in Section 3.3) in eqs.

3.13a and 3.13b yields

[
B D

T

D E

][
σh

uh

]
=

[
z1

z2

]
, (3.15)

where z1 and z2 represent the given right-hand side and boundary data. Here, a bold

matrix consists of d identical blocks. If nu and nσ are the number of degrees of freedom

of a component of uh and σh, respectively, the matrix B consists of d diagonal blocks of

size nσ×nσ each, corresponding to the mass term, and the matrix D consists of d blocks

of size nu × nσ each, corresponding to the divergence term. The matrix E is nu × nu,

corresponding to the penalty term. After elimination of σh from the above system, the

matrix equation for finding uh becomes

(−D B
−1

D
T + E)uh = z, (3.16)
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(a) (b)

Figure 3.1: (a) Compact stencil of the IP discretization of the Laplacian, and the DG treatment of the

nonlinear term discussed in Section 3.2 on an unstructured triangular mesh (DOF of the black triangle

couple with those of dark grey triangles); (b) the extended stencil size of the local DG discretization of

the Laplacian on the same mesh (DOF of the black triangle couple with those of dark grey as well as

light grey triangles). The reference triangle is shown in black, the immediate neighbors of the reference

triangle are denoted in dark grey, and the second layer of the neighbors is in light grey.

where z corresponds to the given right-hand side and boundary data.

Remark 5. While the IP method offers a compact stencil size (Fig. 3.1a), the local

DG method yields an extended stencil size (Fig. 3.1b). The larger stencil size leads to

higher computations and communications per global stiffness matrix construction and

global stiffness matrix-vector product.

3.2.4 DG Formulation of the Unsteady Stokes Operator

Following [54, 103], we first present the DG discretization of the system 3.2. The discon-

tinuous approximations uh and ph are defined by requiring that

Ah(uh,vh) + Bh(uh,vh) + Dh(vh, ph) = Fh(vh) ∀vh ∈ Vd
k , (3.17a)

Dh(uh, qh) = Gh(qh) ∀qh ∈ Vk/Vk−1, (3.17b)
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where

Ah(u,v) =
∑

K

∫

K

1

Re
∇u : ∇vdx−

∑

ΓIDP

∫

e

1

Re

[
ne · {∇u} · JvK + ne · {∇v} · JuK

]
ds

+
∑

ΓIDP

∫

e

µ

Re
JuK · JvKds, (3.18a)

Bh(u,v) =
∑

K

∫

K

β0

∆t
u · vdx, (3.18b)

Dh(v, q) = −
∑

K

∫

K

q∇ · vdx +
∑

ΓIDP

∫

e

{q}JvK · neds, (3.18c)

Fh(v) =

∫

Ω

f · vdx +

∫

ΩD

1

Re

[
−gD · ∇v · n + µgD · v

]
ds, (3.18d)

Gh(q) =

∫

ΩD

qgD · nds. (3.18e)

For the viscous term, the IP method is used because of its simplicity and compact stencil

size. The discretization of the two operators ∇p and ∇ · u are similar to that of ∇u

and ∇ · σ in eqs. 3.13a and 3.13b. The only difference is that the roles of the Dirichlet

and outflow boundary conditions are switched in the surface integrals of Dh(v, q) and

dh(u, τ ).

Remark 6. Analogous to Remark 1, the terms ∇u : ∇v and ne · {∇u} · JvK in eq.

3.18a are evaluated as:

∇u : ∇v :=
∂ui

∂xj

∂vi

∂xj
i, j = 1, ..., d, (3.19a)

ne · {∇u} · JvK := nej{
∂ui

∂xj
}JviK i, j = 1, ..., d. (3.19b)

Now, let the matrix form of the discretized Stokes system be

[
H DT

D 0

][
un+1

pn+1

]
=

[
fn+1

gn+1

]
, (3.20)

where H = (1/Re)A+(β0/∆t)B with A and B denoting the Laplacian and block diagonal

mass matrices, respectively. The descriptions of the matrices are similar to those in eq.

3.15. fn+1 and gn+1 correspond to the given right-hand-side and boundary data.
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Applying an LU factorization procedure to the above system and writing the system

for the pressure increment variable pn+1 − pn, instead of pn+1, yields

[
H 0

D − DH−1DT

][
I H−1DT

0 I

][
un+1

pn+1 − pn

]
=

[
fn+1

gn+1

]
+

[ −DT pn

0

]
.

By introducing the auxiliary vector ũn+1, the solution procedure for the above system

can be written in three steps as follows:

1. Hũn+1 = fn+1 − DT pn,

2.
(
−DH−1DT

) (
pn+1 − pn

)
= −Dũn+1 + gn+1, (3.21)

3. un+1 = ũn+1 −H−1DT
(
pn+1 − pn

)
.

The first and second steps involve linear system solves, and the preferred approach is

an iterative method. For the pressure increment solution, step 2, each iteration requires

extra inner iterations associated with the inversion of the matrix H. The inner iterations

can be avoided by replacing H−1 with the computationally more efficient matrix HI =

(∆t/β0)B
−1, where B is block diagonal, and easily invertible. As shown in [56], this

choice leads to a second-order accurate approximation in time. Replacing H−1 with HI

in 3.21, we obtain the approximate split solution procedure

1. Hũn+1 = fn+1 −DT p̂n,

2. (−DHID
T )
(
p̂n+1 − p̂n

)
= −Dũn+1 + gn+1, (3.22)

3. ûn+1 = ũn+1 −HID
T
(
p̂n+1 − p̂n

)

where û and p̂ are the approximations to u and p, respectively.

The first and second steps are solved iteratively by using the conjugate gradient

method. Since Re/∆t ≫ 1, the Helmholtz solves are effectively preconditioned by the

block diagonal mass matrix, leading to a small number of iterations typically of O(1).

On the other hand, the pressure solve requires a more sophisticated and more expensive

preconditioner, and thus it is the dominant computation in terms of cost. Moreover,
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the cost of a single iteration without preconditioning is also higher for the pressure case,

since the pressure operator (−DHID
T ) has an extended stencil similar to Fig. 3.1b.

To alleviate this cost, one may attempt to reduce the pressure stencil size. In the DG

setting, this strategy appears plausible.

Careful inspection of the pressure operator (−DHID
T ) reveals that this operator is

identical (to within a multiplicative constant) to the operator in eq. 3.16 with E = 0,

except that the roles of Dirichlet and Neumann BCs are switched in D and D (compare

the definition of the divergence in eqs. 3.18c and 3.14a). In other word, (−DHID
T ) re-

sults from the application of the local DG method (with zero stabilization) to a Laplacian

with the following BCs:

∇v · n = 0 on ∂ΩD (3.23a)

v = 0 on ∂ΩN (3.23b)

v(x) = v(x′) x,x′ ∈ ∂ΩP . (3.23c)

Having realized this, we propose to replace the pressure operator (−DHID
T ) with the

operator arising from the IP discretization of the (negative) Laplacian with the above

BCs:

Ah(u,v) =
∑

K

∫

K

∇u : ∇vdx−
∑

ΓINP

∫

e

[
ne · {∇u} · JvK + ne · {∇v} · JuK

]
ds

+
∑

ΓINP

∫

e

µJuK · JvKds. (3.24)

The justification is that the IP method and the local DG method are asymptotically

similar for stability, boundedness, and the optimal rate of convergence as shown by

Arnold et al. [5] in a unified analysis of the DG methods for elliptic problems. Note

that since the replacement is applied at the algebraic level, no unphysical BCs have been

introduced. Denoting the matrix form of the operator 3.24 with A and then replacing
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(−DHID
T ) with A in 3.22 yields

1. Hũn+1 = fn+1 − DT p̂n,

2.
∆t

β0
A
(
p̂n+1 − p̂n

)
= Dũn+1 − gn+1, (3.25)

3. ûn+1 = ũn+1 −HID
T
(
p̂n+1 − p̂n

)
.

Using the solution procedure 3.25 instead of 3.22 simplifies the whole method, in the

sense that we use the same scheme (the IP method) for the velocity and pressure opera-

tors. Moreover, it enhances the overall efficiency of the scheme by reducing the cost per

iteration of a pressure solve.

3.3 Implementation

For the approximating polynomial space for the velocity or pressure restricted to each

element, Pk(K), we choose a high-order nodal basis consisting of Lagrange interpolating

polynomials defined on a reference simplex and the nodal set introduced in [57, 58], in

two and three space dimensions. More specifically, let Ξ = {ξi ∈ O : 0 ≤ i ≤ N}

denote the nodal set, where O is the reference element, and N + 1 = (k + 1)(k + 2)/2

or N + 1 = (k + 1)(k + 2)(k + 3)/6 for triangular or tetrahedral elements, respectively.

Then, the nodal basis is a set of Lagrange interpolating polynomials with

Li(ξj) = δij, ∀i, j = 0, ..., N,

where δij denotes the Kronecker delta. The interpolation representation of a function

f ∈ Pk(K) is

f(ξ) =
N∑

j=0

f(ξj)Lj(ξ). (3.26)

The Lagrange polynomials are the solution of the following system:

N∑

j=0

bi(ξj)Lj(ξ) = bi(ξ), ∀i = 0, ..., N, (3.27)



Chapter 3. A High-Order DG Method for the NS Equations 53

with J = {bi(ξ)|ξ ∈ O, 0 ≤ i ≤ N} being an orthonormal basis consisting of multivariate

analogues of the Jacobi polynomials (see [71, 38]). The coefficient matrix in eq. 3.27 is

called Vandemonde matrix and is denoted by V hereafter.

Below, we first briefly present the derivative and inner-product calculations following

[119, 59], before describing a quadrature scheme for the nonlinear term evaluation.

3.3.1 Differentiation

For differentiation of a function, let us consider ∂f
∂x

, where x is a coordinate direction

defined over an arbitrary tetrahedron K. Taking the derivative of the interpolation

representation of f(x), eq. 3.26, at the nodal point xi leads to

∂f(xi)

∂x
=

N∑

i=0

f(xj)
∂Lj(xi)

∂x
.

Then, expanding the derivatives for the reference coordinates (ξ, η, ζ) defined on the

reference tetrahedron O yields

∂Lj(xi)

∂x
=

∂Lj(ξi)

∂ξ

∂ξ

∂x
+

∂Lj(ξi)

∂η

∂η

∂x
+

∂Lj(ξi)

∂ζ

∂ζ

∂x
.

Let us define the coefficients of the above expression as

Dξ
ij =

∂Lj(ξi)

∂ξ
, Dη

ij =
∂Lj(ξi)

∂η
, Dζ

ij =
∂Lj(ξi)

∂ζ
,

where ∂ξ/∂x, ∂η/∂x, and ∂ζ/∂x result from the affine map between O and K. Then

Dξ
ij =

N∑

k=0

V −1
jk

∂bk(ξi)

∂ξ
, Dη

ij =
N∑

k=0

V −1
jk

∂bk(ξi)

∂η
, Dζ

ij =
N∑

k=0

V −1
jk

∂bk(ξi)

∂ζ
,

where derivatives of bi(ξ) are analytically given (e.g., [110]). V −1 is the inverse of the

Vandermonde matrix, V .

3.3.2 Inner-Product Evaluations

For DG methods, we need to evaluate inner products of two functions on an element and

on the boundary of an element, as well as inner products of the derivatives of functions.
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Here, we describe only the procedure for calculating the inner product of two functions

(f, g)K =

∫

K

f(x)g(x)dx.

Other inner-product evaluations follow similarly. Using the interpolation approximation,

eq. 3.26, we obtain

(f, g)K =

∫

K

N∑

i=0

fiLi(x)
N∑

j=0

gjLj(x)dx =
N∑

i=0

N∑

j=0

figj

∫

K

Li(x)Lj(x)dx.

The integral is evaluated on the reference element by using the Jacobian of the transfor-

mation JK

(f, g)K =
N∑

i=0

N∑

j=0

figj

∫

O

Li(ξ)Lj(ξ)JKdξ.

Using eq. 3.27 yields

(f, g)K =

N∑

i=0

N∑

j=0

figj

∫

O

N∑

k=0

V −1
ik bk(ξ)

N∑

l=0

V −1
jl bl(ξ)JKdξ

=
N∑

i=0

N∑

j=0

figj

N∑

k=0

N∑

l=0

V −1
ik V −1

jl

∫

O

bk(ξ)bl(ξ)JKdξ.

In matrix form

(f, g)K = [f0...fN ]




V −1
00 ... V −1

0N

. . .

. . .

. . .

V −1
N0 ... V −1

NN




W







b0(ξ)

.

.

.

bN (ξ)




[b0(ξ)...bN (ξ)]







V −1
00 ... V −1

N0

. . .

. . .

. . .

V −1
0N ... V −1

NN







g0

.

.

.

gN




,

(3.28)

where

Wkl(bb
T ) =

∫

O

bk(ξ)bl(ξ)JKdξ.

For each element, the matrix V −1W (V −1)T is calculated in a preprocessing step. In the

case of straight-sided triangles or tetrahedrons with planar faces, the Jacobian is constant.

Thus, W = JKI, where I is the identity matrix. In this case, the matrix V −1(V −1)T
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may be precalculated. Then the inner product for element K becomes JKfT V −1(V −1)T g.

For the case of curved elements with nonconstant Jacobians, the integrals Wkl(bb
T ) are

evaluated exactly using numerical quadrature [32].

3.3.3 Quadrature for the Nonlinear Term

The nonlinear term is evaluated by using quadrature of sufficiently high order to ensure

accurate and stable integration. Specifically, to eliminate any possible quadrature effects

in the following tests, for k ≤ 6, a quadrature order q = 3k has been used, while for k = 7,

and 8, q = 19 has been used. This yields exact integral evaluation for k ≤ 6 and a highly

accurate integration scheme for k = 7, and 8. Let R = {ζi ∈ O : 0 ≤ i ≤ M} denote a

set of (M +1) quadrature points and W = {wi| : 0 ≤ i ≤ M} be the corresponding set of

quadrature weights. Then, the numerical integration of the first term on the right-hand

side of eq. 3.5 is carried out as

∫

K

g · ∇ · vhdx ≈
M∑

i=0

JKwig(ζi) · ∇ · vh(ζi), (3.29)

where

g(ζi) =

N∑

j=0

Lj(ζi)g(ξj), (3.30a)

∇ · vh(ζi) =

N∑

j=0

Lj(ζi)∇ · vh(ξj). (3.30b)

The numerical integration of the surface integral in eq. 3.5 is carried out in a similar

manner and the quadrature rule of q ≈ 3k is also used. For the following tests, we have

used R and W reported in [108].

3.4 Verification on Two-dimensional Problems

Below, we present some benchmarking tests to verify the accuracy of the proposed

method. We will solve an unsteady Stokes problem to confirm temporal convergence
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and will then examine the spatial accuracy and the stability of the scheme using equal-

and mixed-order methods for the Navier-Stokes equations for three tests: the Taylor vor-

tex problem, the Orr-Sommerfeld plane channel stability problem and flow past a square

cylinder at Re = 100.

3.4.1 Temporal Error Test

Using a second-order backward differentiation temporal discretization and our proposed

DG scheme, we solved the unsteady Stokes problem (eqs. 3.1a and 3.1b without the

nonlinear term and the body force, Re = 1.0), having the exact solution

u = (sin(x)(a sin(ay) − cos(a)sinh(y))i

+ cos(x)(cos(ay) + cos(a) cosh(y))j) exp(−λt), (3.31a)

p = λ cos(a) cos(x) sinh(y) exp(−λt), (3.31b)

where a = 2.883356 and λ = 9.313739 [82]. The computational domain was Ω = [−1, 1]2,

and Dirichlet BCs and initial conditions were based on the above exact solution. We

used equal interpolation orders of 8 for the velocity and pressure, and the mesh consisted

of 72 semi-structured triangles (similar to that in Fig. 3.3a). The following results were

essentially identical to those obtained using a lower interpolation order k = 7, confirming

that spatial errors were dominated by the temporal errors, as required for a temporal

convergence study. We measured the errors in the L2 norms:

||eu|| =
||u(n∆t) − uh(n∆t)||L2(Ω)

||un||L2(Ω)

, (3.32a)

||ep|| =
||p(n∆t) − ph(n∆t)||L2(Ω)

||pn||L2(Ω)

. (3.32b)

The L2 norms were calculated based on the nodal values. For this problem test and

the next two tests, namely the Taylor vortex and Orr-Sommerfeld stability problems, we

used absolute tolerances of 10−11 for the preconditioned conjugate gradient iterations of

the velocity and pressure calculations. For a total integration time T = 0.1 during which
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Time step size
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Figure 3.2: L2 norm errors in velocity and pressure calculated based on eq. 3.32 vs. the time step size

in solving an unsteady Stokes problem with the DG method described in Section 3.2, a semi-structured

mesh consisting of 72 triangles (Fig. 3.3a), and equal interpolation orders of 8. For each data set, the

best linear fit and its slope are also shown.

the initial solution decayed approximately three-fold, the results are depicted in Fig. 3.2.

The slope of the best linear fit for the velocity is 1.99, verifying the expected convergence

rate. For the pressure the slope is 1.83, slightly smaller than, but close to, the expected

theoretical value.

3.4.2 Taylor Vortex Problem

For the first spatial error test, we solved the unsteady Navier-Stokes equations on the

square domain [−1, 1]2 with Re = 100, Dirichlet BCs and initial conditions based on the

exact solution:

u = (− cos(πx) sin(πy)i + sin(πx) cos(πy)j) exp(
−2π2t

Re
), (3.33a)

p = −cos(2πx) + cos(2πy)

4
exp(

−4π2t

Re
). (3.33b)

We carried out convergence studies for both successive approximation order enrichment

(p-convergence) and successive mesh refinements (h-convergence).
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Figure 3.3: (a) Computational domain used for tests partitioned into 72 semi-structured triangular

elements; (b) the same domain partitioned into 72 unstructured triangular elements generated using

Gmsh software [46]; (c) and (d) maximum errors in calculated velocity and pressure vs. approximating

polynomial degrees in solving the Taylor vortex problem using meshes in Figs. 3.3a and b, respectively.

In the legend, “u-equal” refers to the error in velocity for equal order interpolation. “p-equal” is the

corresponding error in the pressure. “mixed” refers to the Pk − Pk−1 formulation.
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Figure 3.4: (a) and (b) L2 velocity errors vs. element size of semi-structured meshes for interpolation

order k = 4, ..., 8, in solving the Taylor vortex problem using equal- and mixed-order methods, respec-

tively. (c) and (d) the corresponding equal- and mixed-order data for the pressure. For each data set,

the best linear fit and its slope are also shown.
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For the p-convergence test, two meshes were used: a semi-structured mesh (Fig. 3.3a)

and a fully unstructured one (Fig. 3.3b). The time step size ∆t = 10−4 was chosen to sat-

isfy the CFL condition and to ensure that the dominant error was the spatial error. (This

was verified by choosing a larger time step ∆t = 2× 10−4, which gave virtually identical

results). The relative maximum errors in the calculated velocity and pressure for both

equal- and mixed-order methods at T = 5 (corresponding to an approximately three-fold

decay of the initial solution) and for a range of polynomial degrees k = 2, ..., 6 are de-

picted in Figs. 3.3c and d for the semi-structured and unstructured meshes, respectively.

Several points about the results are notable. First, a spectral rate of convergence was

obtained with respect to the approximating polynomial degree for both velocity and pres-

sure and for both mixed- and equal-order formulations. Second, for the semi-structured

mesh, equal- and mixed-order methods led to results with very similar accuracy. On the

other hand, for the unstructured mesh, using Pk−Pk interpolations yielded more accurate

results in both velocity and pressure than those resulting from Pk − Pk−1 interpolations.

To test the h-convergence, we only used a series of semi-structured meshes (similar to

Fig. 3.3a). For the same time step size and the total time as the former case, the relative

L2 errors in calculated velocity versus element size for a range of polynomial degrees

k = 4, ..., 8 for both Pk −Pk and Pk −Pk−1 formulations are depicted in Figs. 3.4a and b,

respectively. Figs. 3.4c and d show the corresponding results of equal- and mixed-order

methods for the calculated pressure. Similar to the p-convergence test, Pk −Pk methods

led to slightly more accurate results than those of Pk − Pk−1 for most cases. Moreover,

we observed optimal rates of convergence in velocity for both Pk − Pk and Pk − Pk−1

formulations. For the pressure, on the other hand, optimal rates of convergence were

only obtained for the mixed-order method, as expected. The equal-order method led to

suboptimal rates for the pressure.

Note that although both equal- and mixed-order methods led to stable results for this

simple problem, the mixed-order method leads to unstable results for more challenging
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(high Reynolds number) tests such as Orr-Sommerfeld stability problem as shown below.

3.4.3 Orr-Sommerfeld Stability Problem

We further investigated the spatial accuracy as well as the stability of our proposed

method by solving the Orr-Sommerfeld stability problem. This is a suitable benchmark-

ing test in that it is an unforced time-dependent solution of the Navier-Stokes equations

for which an accurate solution is available from linear stability analysis. The geometry

was a two-dimensional channel [x = 0, x = 2π] × [y = −1, y = 1]. Dirichlet BCs were

imposed in the spanwise direction (at y = −1 and y = 1) and periodic BCs were applied

in the streamwise direction (at x = 0 and x = 2π). The initial conditions were

u = 1 − y2 + ǫû, (3.34a)

v = ǫv̂, (3.34b)

where (u, v) represent the velocity components in the (x, y) directions. Here (û, v̂)

(Tollmien-Schlichting waves, T-S waves) correspond to the only unstable eigensolution of

the Orr-Sommerfeld equation with wave number unity at Re = 7500. We set ǫ to 10−4.

More details of this test can be found in [19].

According to linear stability theory, the perturbation energy

E(t) =

∫ 2π

0

∫ 1

−1

[(1 − y2 − u)2 + v2]dydx (3.35)

should grow as e2ωit, where ωi = 0.002234976 is the growth rate.

For both Pk − Pk and Pk − Pk−1 formulations with k = 6 and 8 and for a semi-

structured mesh consisting of 128 triangles, and ∆t = 10−3 (smaller than ∆t arising

from the CFL condition) we plot the computed perturbation energy and its growth rate

versus the normalized time (T/T0) in Figs. 3.5a and b, respectively. In the same figures,

the corresponding results from linear stability theory are also depicted. In the Pk − Pk

formulation for k = 6, we observed some dissipation (Fig. 3.5a); however, increasing the
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Figure 3.5: (a) Perturbation energy vs. normalized time in solving the Orr-Sommerfeld problem for

both equal- and mixed-order methods; (b) the same test, showing the energy growth rate. The symbols

NS-6/6 and NS-6/5 (NS-8/8 and NS-8/7) represent the computed Navier-Stokes solutions using Pk −Pk

and Pk − Pk−1 with k = 6 (k = 8). Scaling parameters are E0 = E(t = 0), and T0 = 25.1437, the time

taken for a T-S wave to travel the channel length, 2π.

resolution to k = 8 led to perturbation energy growth almost identical to the theoretical

one. We also calculated the error in the growth rate at T = 60. For k = 6, 7, and

8, we obtained growth rates ω = 0.001936496, 0.002156142, and 0.002234850. The

corresponding errors calculated as eg = |ω − ωi|/ωi were eg = 1.34e − 1, 3.53e − 2, and

5.62e − 5. A spectral rate of convergence was clearly obtained.

In the Pk − Pk−1 formulation, however, we observed a totally different behavior. For

k = 6, we observed perturbation energy blowup at T ≈ 0.3T0. As shown in Fig. 3.5b, this

unphysical behavior was characterized by an orders-of-magnitude increase in the energy

growth rate in a very short period of time. When the resolution was increased to k = 8,

the same blowup occurred, but at a later time T/T0 ≈ 1, making the diagnosis of this

instability more difficult.

The source of this instability is similar to that of the instability occurring in the

Qk − Qk−2 spectral element solution scheme for the Navier-Stokes equations reported
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Figure 3.6: The mesh for flow past a square cylinder generated using Gmsh software [46]. Entire

domain with 1706 triangles (left), and zoomed-in view near the cylinder (right).

in [121]. For the same Orr-Sommerfeld problem, Wilhelm and Kleiser [121] observed

unphysical perturbation energy growth when the divergence form of the nonlinear term

was discretized. Through an eigenvalue analysis of the full discretized linear system,

they found eigenvalues with positive real parts (see Fig. 8 in [121]). Furthermore, they

showed that the divergence of the velocity field grew exponentially at those points for

which the divergence-free constraint was not enforced (see Figs. 4, 5 in [121]). For our

mixed-order DG formulation the situation is similar. Since the velocity and pressure

nodes are different, the divergence of the velocity field (in the weak sense) evaluated at

the velocity nodes may grow and thus there is a chance of unphysical instability. For

the equal-order method, however, velocity and pressure nodes are identical; thus, the

divergence of the velocity field (in the weak sense) vanishes and the formulation is stable.

The rigorous analysis of the stability of the method will be addressed in a forthcoming

paper.
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Figure 3.7: Snapshot of vorticity contours at Re=100. Solid and dashed lines denote positive and

negative vorticity levels in [−1, 1] with an increment of 0.25, respectively.

3.4.4 Flow Past a Square Cylinder

As a final test, we examine the spatial accuracy of our method by simulating vortex

shedding in flow past a square cylinder at Re = 100, based on the unit inflow velocity and

the square edge length. The geometry consisted of a unit square located in a rectangular

domain with vertices (−16,−22), (25,−22), (−16, 22), and (25, 22), where the origin was

placed in the center of the cylinder (see Fig. 3.6, left). This yields a blockage ratio

B = 2.3%. This geometry is identical to the geometry used in [31] and is chosen because

it leads to geometry-independent results as shown in [10]. With flow in the positive

x direction, we imposed the following boundary conditions: zero Dirichlet BCs on the

square, u = (1, 0) on the inlet and side walls and outflow BCs at the outlet. The mesh

consisted of 1706 triangles concentrated on the cylinder to resolve the large gradient of

vorticity associated with the sharp corners (Fig. 3.6). We used the Pk −Pk method with

k = 4 and ∆t = 10−3. For this and the following test, we used absolute tolerances of

10−10 and 10−8 for the preconditioned conjugate gradient iterations of the velocity and

pressure calculations, respectively.

An instantaneous view of the calculated vorticity contours is shown in Fig. 3.7,

demonstrating the von-Karman vortex street downstream of the cylinder. For comparison
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with available data in the literature, we calculated the Strouhal number St = fD/u,

where f is the frequency of the vortex shedding, u = 1 is the inflow velocity and D = 1

is the edge length of the cylinder. The frequency was obtained from spectral analysis

of the lift coefficient sampled over the time span of t = 20 dimensionless times, D/u.

Our results, along with experimental data of Okajima [89] and the computational result

of Darekar and Sherwin [31], are listed in Table 3.1. The latter was obtained using a

spectral element Navier-Stokes solver with 1502 triangular elements of order k = 6. The

total number of unknowns of this simulation was almost identical to that used in our

DG simulation (1706 triangles of order k = 4). As is clear from the table, we obtained

excellent agreement with both experimental and computational data.

Approach St

Okajima (experimental) (1982), B = 0% 0.141 − 0.145

Darekar and Sherwin (2001), B = 2.3% 0.145

Present, B = 2.3% 0.145

Table 3.1: Comparison of Strouhal number for vortex shedding in flow over a square cylinder at

Re = 100. B is the blockage ratio.

3.5 Flow through a Two-dimensional Mechanical Heart

Valve

Having verified the accuracy and stability of our developed methodology on several two-

dimensional benchmarking problems with known solutions, in this section we consider

flow through a simplified two-dimensional bileaflet mechanical heart valve geometry for

which no detailed study, either experimental or computational, has been conducted previ-

ously. This two-dimensional study is the first step toward a three-dimensional mechanical
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Figure 3.8: Geometry of the two-dimensional mechanical heart valve flow problem. The valve has two

leaflets located symmetrically about, and parallel to, the centerline of the channel (the dashed-dotted

line). The dimensions (in millimeters) are based on the Carbomedic aortic bileaflet valve with nominal

diameter 23mm.

heart valve flow simulation and will reveal important features of the flow including sym-

metry breaking and vortex shedding, which can cause two-dimensional flows to transition

to a three-dimensional flow.

The geometry consisted of a two-dimensional bileaflet mechanical heart valve located

inside a straight channel (Fig. 3.8). The size and shape of the leaflets corresponded to the

Carbomedic aortic bileaflet valve with nominal diameter 23mm [63]. The channel width

was based on the three-dimensional model used for experimental investigation of the

steady flow downstream of a bileaflet mechanical heart valve [18]. The outlet length was

chosen to be approximately eight leaflet lengths to minimize the effect of the truncated

domain.

The boundary conditions were specified as follows: homogeneous Dirichlet conditions

for all walls and the leaflets, outflow conditions on the outlet (eq. 3.1e), and inflow at
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Figure 3.9: Triangular mesh (generated using Gmesh software [46]) used for simulating flow through

a two-dimensional mechanical heart valve geometry; (a) the entire domain with 15902 triangles; (b) the

zoomed-in view near the leaflets.

the inlet:

u = uI(1 −
y2

11.552
), (3.36a)

v = 0, (3.36b)

where, uI the maximum inlet velocity. The Reynolds number was defined based on the

maximum inlet velocity and the leaflet width (0.76mm). We here only studied the flow

at Re = 76, leaving higher Reynolds number simulations for the future. Note that the

corresponding Reynolds number based on the channel height and the mean inlet velocity
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is 1540, which is close to the time-averaged Reynolds number for blood flow in the aorta.

The mesh consisted of 15902 triangles with very small elements concentrated around

the leaflets to resolve the large gradient of velocity associated with the sharp corners

(Fig. 3.9). Note that no effort was made to optimize the mesh. For instance, it would be

possible to construct a more optimized mesh with smaller number of elements if highly

anisotropic triangles with large sizes in the streamwise direction and small sizes in the

spanwise direction were employed close to the channel walls.

A simulation was carried out using the equal-order scheme, with approximation order

k = 4 and ∆t = 4 × 10−3. Starting with the initial condition corresponding to the

solution at Re = 1, the simulation ran for approximately two flow-through times until

the L2 norm of the difference in the consecutive velocity solutions dropped below 3×10−6.

After the initial artificial transients, the flow reached a steady state condition, and no

vortex shedding was observed. The calculated streamwise velocity contours are shown

in Fig. 3.10, from which several points are notable. First, the flow remains symmetric

with respect to the center line. Moreover, around each leaflet, two negative streamwise

velocity regions are formed: one in the wake of the leaflet and the other on the outer

edge of the leaflet near the leading edge. These retrograde flow regions indicate the

existence of two recirculation zones. Finally, as is clear from Fig. 3.10c, the leaflet wake

recirculation is asymmetric with respect to the leaflet. To validate these results, we

carried out simulation with higher resolution of k = 6. For this simulation all parameters

remained the same, except that the initial conditions were the solution obtained with

k = 4. We plotted the velocity contours and found that they were indistinguishable from

those at k = 4, confirming the resolution-independence of our results.

For solutions obtained using both k = 4 and 6, we also plotted the streamwise velocity

along three observation lines and the spanwise velocity along two observation lines in Fig.

3.11a and b, respectively. As can be seen from the figures, we obtained indistinguishable

results for both approximation orders. Also notable from Fig. 3.11a and b are very large
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velocity gradients close to the leading leaflet’s corner (along the line y = −2.98). This

highlights the importance of using very fine elements close to the sharp corners.

This two-dimensional study suggests several important considerations for simulating

flow through the three-dimensional valve geometry. First, since the ratio of the leaflet

thickness to the vessel wall diameter is small (approximately 0.03) very fine elements are

required close to the the leaflet to capture the geometry of the leaflet. This requirement of

using very fine elements close to the leaflet is also critical for resolving the large gradient

of field variables (such as velocity, vorticity) close to the sharp corners. Second, using

optimized meshes with highly anisotropic elements along the vessel wall, stretched in

the streamwise direction, is essential in reducing the high cost of simulating the three-

dimensional flow.
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Figure 3.10: Streamwise velocity contours for flow through the two-dimensional mechanical heart valve

at Re = 76 simulated using the DG method with k = 4; (a) the entire domain; (b) a zoomed-in view near

the leaflets; (c) streamlines in the leaflet wakes. For each leaflet, two recirculation zones, one in the wake

of the leaflet and the other at the outer edge close to the leading edge, are observed. (Computations

were partially carried out by L. Vaisman.)
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Figure 3.11: Velocity components along different lines for flow through the two-dimensional mechanical

heart valve at Re = 76 calculated using the DG method with k = 4 and 6; (a) location of observation

lines for panels (b) and (c); (b) streamwise velocity; (c) spanwise velocity. X ≈ 0 corresponds to the

leading edge of the valve.



Chapter 4

Verification on Three-dimensional

Problems

In the previous chapter, we verified the performance of our method by solving two-

dimensional benchmarking problems. It is also essential to examine the accuracy of the

method by solving three-dimensional (3D) problems. To this end, we solve three problems

in the this chapter, namely a generalized Taylor vortex flow, Orr-Sommerfeld stability

problem and a backward-facing step flow.

4.1 Three-dimensional Taylor Vortex

Using the methodology developed in the previous chapters, we solved the unsteady

Navier-Stokes equations on the cubic domain [0, 2π]3 with Re = 1, and Dirichlet BCs

72
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Figure 4.1: A structured mesh consisting of 384 tetrahedra (M = 4) used for the 3D Taylor vortex

problem.

and initial conditions based on the exact solutions u = (u, v, w) and p:

u = −1

2
(
√

3 cos(x) sin(y) sin(z) + sin(x) cos(y) cos(z)) exp(
−3t

Re
), (4.1a)

v =
1

2
(
√

3 sin(x) cos(y) sin(z) − cos(x) sin(y) cos(z)) exp(
−3t

Re
), (4.1b)

w = cos(x) cos(y) sin(z) exp(
−3t

Re
), (4.1c)

p = −u2 + v2 + w2

2
. (4.1d)

This solution of the Navier-Stokes equations first derived in [106] is a 3D generalization

of the Taylor vortex problem studied in the previous chapter. We carried out convergence

studies using a mesh series and for a range of approximation orders k = 2, ..., 6. We used

a structured mesh obtained from partitioning the domain into 6M3 uniform tetrahedra

for M = 3, ..., 10 (Fig. 4.1). The time step size ∆t = 10−4 was chosen to satisfy the CFL

condition and to ensure that the dominant error was the spatial error. (This was verified

by choosing a larger time step ∆t = 2× 10−4, which gave virtually identical results). We

used absolute tolerances of 10−11 for the preconditioned conjugate gradient iterations of
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Figure 4.2: (a) L2 velocity errors vs. M (the number of partitions in each coordinate direction) for

interpolation orders k = 2, ..., 6, in solving the 3D Taylor vortex problem using Pk − Pk equal-order

method; (b) the same test showing the pressure error. The best linear fit and its slope are also shown

for each data set.
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Velocity

k M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

2 2.23 2.63 2.80 2.87 2.93 3.00 2.99 3.01

3 3.46 3.58 3.66 3.65 3.65 3.70 3.74 3.76

4 4.37 4.57 4.75 4.88 4.94 ∗ ∗ ∗

5 5.51 5.69 5.75 5.74 5.80 ∗ ∗ ∗

6 6.48 6.64 6.80 ∗ ∗ ∗ ∗ ∗

Pressure

k M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

2 1.59 0.43 1.26 1.08 1.14 1.53 2.08 2.54

3 2.61 1.21 2.17 2.27 2.40 2.50 2.55 2.61

4 3.78 2.59 2.97 4.07 4.36 ∗ ∗ ∗

5 4.77 3.55 4.44 4.58 4.74 ∗ ∗ ∗

6 5.91 5.19 6.12 ∗ ∗ ∗ ∗ ∗

Table 4.1: Convergence rates for solving the 3D Taylor vortex problem, as defined by eq. 4.2. “*”

indicates that no data are available.

the velocity and pressure calculations. The relative L2 errors were measured based on

formulae similar to eq. 3.32. These errors in the calculated velocity and pressure for the

Pk − Pk equal-order method at T = 0.4 (corresponding to an approximately three-fold

decay of the initial solution) are depicted in Figs. 4.2a and b, respectively. From Figs. 4.2a

and b, it is clear that increasing the approximation order by one yields roughly an order

of magnitude reduction in the velocity and pressure errors, consistent with a spectral rate

of convergence. We further realize that the slope of the best linear fits for the velocity

and pressure data are slightly smaller than the expected theoretical convergence rates

(i.e., k + 1 for velocity and k for pressure). This is due to fact that some of the meshes
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Order ω error

2 −0.0278808 1.24e − 2

3 −0.0280851 4.84e − 3

4 −0.0282074 4.71e − 4

5 −0.0282286 6.83e − 5

6 −0.0282314 3.30e − 5

Table 4.2: The averaged observed growth rates and the corresponding errors in the growth rate at

different approximation orders in solving 3D Orr-Sommerfeld stability problem.

used (those with small M) were not sufficiently fine to yield the theoretical convergence

rates. However, as shown in Table 4.1, pointwise convergence rates calculated based on

the formula

convergence rate =
log( error(M)

error(M+1)
)

log(M+1
M

)
(4.2)

grew with the refinement level M and approached the theoretical rates.

4.2 Three-dimensional Orr-Sommerfeld Stability

Our second test problem is the 3D version of the Orr-Sommerfeld stability problem

considered in the previous chapter. The 3D Orr-Sommerfeld problem was previously

studied by Krist and Zang [72]. The geometry was a 3D channel [x = 0, x = 2π] × [y =

0, y = 2π] × [z = −1, z = 1]. Homogeneous Dirichlet BCs were imposed at z = −1 and

z = 1 and periodic BCs were applied in the streamwise direction (at x = 0 and x = 2π)

and spanwise direction (at y = 0 and y = 2π). A parabolic mean flow was maintained

in the x-direction by using a constant body force. This mean flow was disturbed with a
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Figure 4.3: Eigenfunctions of the 3D Orr-Sommerfeld problem for Re = 1500 and wave numbers unity

as described by eq. 4.3c; (a) x-direction eigenfunction; (b) y-direction eigenfunction; (c) z-direction

eigenfunction.
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Figure 4.4: A structured mesh consisting of 1536 tetrahedra used for the 3D Orr-Sommerfeld problem.

The number of partitions in z−direction is four-fold higher than that in each of x− and y−directions.

small amplitude 3D wave. Thus, the initial condition had the form

u = 1 − z2 + ǫû, (4.3a)

v = ǫv̂, (4.3b)

w = ǫŵ, (4.3c)

where (û, v̂, ŵ) are the least damped eigensolution of the Orr-Sommerfeld equation with

wave numbers unity at Re = 1500. These eigensolutions are depicted in Fig. 4.3. Since

(û, v̂, ŵ) are normalized, ǫ represents the magnitude of the disturbances and we set ǫ to

10−4.

According to linear stability theory, the perturbation energy

E(t) =

∫ 2π

0

∫ 2π

0

∫ 1

−1

[(1 − z2 − u)2 + v2 + w2]dzdxdy (4.4)

should grow as e2ωit, where ωi = −0.0282305 is the growth rate. Note that the growth

rate is negative and disturbances will damp.

We used Pk−Pk formulation with a range of approximating orders k = 2, ..., 6 and for

a semi-structured mesh consisting of 1536 tetrahedra (Fig. 4.4), and ∆t = 10−3 (smaller
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Figure 4.5: The computed perturbation growth rates vs. normalized time T/T0 in solving the 3D

Orr-Sommerfeld stability problem at Re = 1500. T0 = 15.657 is the time taken for the perturbation

wave to travel the channel length, 2π. A symbol of the form NS−k/k signifies a Navier-Stokes solutions

computed using the equal-order formulation of order k.

than ∆t arising from the CFL condition). Absolute tolerances of 10−10 were used as

convergence criteria for the velocity and pressure iterations. We plot the computed per-

turbation growth rates versus the normalized time (T/T0) in Fig. 4.5. From the figure,

two points are notable. First, at all orders k, we observe a transient period with unphysi-

cal growth rates. These unphysical growth rates are due to the initial solution, which does

not satisfy the discretized system exactly. Second, after passing the transient period, the

computed growth rates converge to the growth rate predicted by linear stability theory.

To quantify the error in the calculated growth rates, we have calculated the averaged

growth rates over a normalized time T/T0 = 1 as well as the corresponding normalized

errors. The results are listed in Table 4.2. Spectral convergence is clearly observed at all

orders except at k = 6, where the spatial error size become comparable to the temporal
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Figure 4.6: Geometry of the backward-facing step flow problem with a expansion ratio 1:1.94. The

inflow velocity profile is given as a tensor product of a parabola and a Blasius boundary layer defined in

the z direction. For the Re values considered here, only one recirculation area is formed whose location

is indicated in the symmetry plane.

Figure 4.7: Mesh (consisting of 128 hexahedra) for backward-facing step problem (Fig. 4.6) used in a

spectral element simulation with k = 9 and 11 by Couzy [29]. True aspect ratio is shown.

error size.

4.3 Backward-facing step flow

As a final test problem, we simulate flow over a 3D backward-facing step (BFS). This

flow is characterized by three recirculation zones whose occurrences, sizes and locations

depend on the Reynolds number of the flow and the expansion ratio of the step [3]. At

an expansion ratio of 1 : 1.94 the first (primary) recirculation zone occurs on the bottom

wall, directly at the base of the step. The second recirculation zone is formed on the

upper wall downstream of the expansion for 400 ≤ Re ≤ 6600. The third recirculation
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Figure 4.8: Tetrahedral Mesh consisting of 2016 elements used for simulating flow over a backward-

facing step using the DG method with k = 4; (a) x − y plane view; (b) x − z plane view. The mesh is

generated based on the spectral element mesh (Fig. 4.7) used by Couzy [29], but with two-fold higher

partitioning in the z direction.

zone occurs at the bottom wall, just downstream of the first one for 1200 ≤ Re ≤ 2300.

Here, we focus on values of Re < 400, for which there exists only the primary recirculation

zone.

The geometry consisted of a 3D step with the expansion ratio 1 : 1.94 (Fig. 4.6). This

geometry was previously used in the spectral element (SE) simulations by Couzy [29] and

is based on the experimental setup of Armaly et al. [3]. The two-dimensional (2D) version

of the geometry was also used by Biswas et al. [14]. The length of channel downstream

of the step was chosen long enough to guarantee a fully developed flow at the outlet [29].

The Reynolds number is defined based on the bulk inlet velocity (i.e., two-thirds of
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Figure 4.9: Length of the first recirculation zone in the backward-facing step problem. The results of

the present 3D discontinuous Galerkin (DG) simulations are shown along with results of the experiments

of Armaly et al. [3], the 2D simulations of Biswas et al. [14] and the 3D spectral element (SE) simulations

of Couzy [29]. (In the original figure reporting the spectral element results [29], the value for higher

Reynolds number of 344 was shown erroneously. It is corrected in this plot.)

the maximum inlet velocity, equal to unity) and a characteristic length which is chosen

as twice the height of the inlet channel. We carried out simulations for two Reynolds

numbers, Re = 172 and 344, for which detailed experimental and numerical data are

available in the literature for comparison purposes.

The boundary conditions were specified as follows: homogeneous Dirichlet conditions

for all walls, symmetry conditions (i.e., zero spanwise velocity component and zero normal

derivatives of streamwise and vertical velocity components) on the plane of symmetry,

outflow conditions (zero normal stress and pressure, eq. 3.1e ) on the outlet. The inflow
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boundary conditions at x = −3 are

u = [15.08739(0.5149− y)y]b(z), (4.5a)

v = 0, (4.5b)

w = 0, (4.5c)

where the streamwise velocity u is a product of a parabola and a Blasius boundary layer

profile b(z). The Blasius boundary layer profile, b(z), is characterized by the boundary

layer thickness δ.99(x) which represents the z-value at which u attains 99% of its maximum

(e.g., [120]). Following [29], we set δ.99(−3) = 0.5. Hence, 4.5a yields a maximum inlet

velocity of unity at z > 0.5 and y = 0.5149/2.

The initial conditions for Re = 172 was the solution at Re = 1 and for Re = 344 was

the solution at Re = 172.

Based on the hexahedral mesh used in spectral element simulations by Couzy [29]

(Fig. 4.7), we generated an anisotropic semi-structured mesh consisting of 2016 tetrahedra

(Fig. 4.8). The mesh consisted of 42 partitions in the xy-plane with smaller elements

concentrated close to the step to resolve the large gradients at the sharp corner, and

larger elements located toward the outlet. In the z-direction, there were eight partitions

with smaller elements located in the side wall boundary layer and larger elements laid

close to the symmetry plane. This yielded highly stretched elements with aspect ratios

as small as 0.08.

We used ∆t = 2 × 10−3, and absolute tolerances of 10−8 and 10−7 for the precondi-

tioned conjugate gradient iterations of the velocity and pressure calculations, respectively.

Starting with initial conditions corresponding to a lower Reynolds number, the simula-

tion typically ran for four to five flow-through times until the L2 norm of the difference

between consecutive velocity solutions and between consecutive pressure solutions both

dropped below 5 × 10−8.

We identified the length of the primary recirculation zone x1 on the symmetry plane
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based on the Prandtl criteria [94]:

∂u

∂y
|x1

= 0. (4.6)

An alternative approach to measure the recirculation length is to draw the surface shear

stress (limiting) streamlines and identify the saddle points. However, as shown by Biswas

et al. [14], these two approaches yield almost identical results so long the measurement is

performed on a plane far from the side wall (such as the symmetry plane). The measured

recirculation length along with results of three other studies, namely the experiments of

Armaly at al. [3], two-dimensional (2D) simulations of Biswas et al. [14] and the 3D spec-

tral element simulations of Couzy [29], are plotted in Fig. 4.9. At both Reynolds numbers,

our results are in very good agreement with the other data. Specifically, for Re = 172

and 344, our calculations predict lengths of x0 = 2.10 and 3.62 respectively, yielding

approximately 1% errors when compared with the corresponding lengths determined ex-

perimentally.

In the following subsections, we give more details of the simulated flow at Re = 172

and 344 and compare our results with those of spectral element simulations of Couzy

[29]. Couzy used a mesh consisting of 128 hexahedrons (Fig. 4.7). He reported resolution

independent results for order k = 9, corresponding to a total number of grid points of

128000. This is approximately twice the total grid points (70560) used in our simulations.

4.3.1 Re = 172

To understand the flow patterns near the recirculation zone, we present contour plots of

the streamwise velocity on the symmetry plane z = 9 (Fig. 4.10a) and of the streamwise

and spanwise velocity components at the plane x = 1.0 (Fig. 4.10b and c, respectively).

The negative velocity region in Fig. 4.10a shows the retrograde flow zone, which is an

indication of the recirculation region. Non-negligible spanwise velocities close to the side

wall boundary layers are observed in Fig. 4.10c, confirming the three-dimensionality of
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the flow. These contour plots are very similar to those reported in [29] (Fig. 4.11). Both

simulations predicted negative velocity regions near z = 0 as in Fig. 4.10b and Fig. 4.10c.

Note that in Fig. 4.10c, the negative velocity contours (with absolute values as large

as 10−3) close to the symmetry plane are due to the weak imposition of the symmetry

boundary condition.

We also plotted the streamwise velocity downstream of the step along four observa-

tion lines in the lower and upper parts of the geometry (Fig. 4.12) as well as the spanwise

velocity along two observation lines (Fig. 4.13). The corresponding streamwise veloc-

ity profiles from the spectral element simulations of Couzy are also shown in Fig. 4.12.

Couzy’s results in 4.12 are based on digitization of data presented in his thesis. Overall,

there is very good agreement between our results and those of Couzy, although slight

differences along two observation lines (at x = 5.75) are noticeable. These differences

may be due to the fact that we used less resolution than Couzy did. Specifically, the fact

that better agreement was obtained along the lines close to the step compared to those

further downstream of the step might suggest that while the resolution used close to the

step is sufficient, higher resolution is required further downstream of the step. As is clear

from Fig. 4.12, the velocity profiles have smaller maximum values on planes at higher

values of x, suggesting the rapid development of the flow downstream of the recircula-

tion zone. Fig. 4.13 specifically shows non-negligible values of the spanwise velocity even

outside the side wall boundary layer.

4.3.2 Re = 344

We present contour plots of the streamwise velocity on the symmetry plane z = 9

(Fig. 4.14a) and of the streamwise and spanwise velocity components on the plane x = 2.0

(Fig. 4.14b and c, respectively). Similar observations as those in the Re = 172 case can be

made. The negative flow region in Fig. 4.14a indicates a recirculation zone. Non-negligible

spanwise velocity close to the side wall boundary layers is observed in Fig. 4.14c, con-
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Figure 4.10: Velocity contours for the backward-facing step flow at Re = 172, calculated using the DG

method; (a) streamwise velocity component on the symmetry plane, with the dark blue region indicating

the retrograde flow zone; (b) streamwise velocity component at x = 1.0, which is approximately half-way

through the recirculation zone; (c) spanwise velocity component at x = 1.0. In figure (a), the y-axis was

enlarged six-fold, and in figures (b) and (c) it was enlarged two-and-half-fold.
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Figure 4.11: Velocity contours for the backward-facing step flow at Re = 172, calculated using the

spectral element method as reported by Couzy [29]; (a) streamwise velocity component on the symmetry

plane, with the black region indicating the retrograde flow zone; (b) streamwise velocity component at

x = 1.0, which is approximately half-way through the recirculation zone; (c) spanwise velocity component

at x = 1.0. The consecutive shades of gray indicate a velocity increase of 0.2 each with the black zones

representing negative velocity values. The resolution of the figures are limited by the resolution of the

source.
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Figure 4.12: Streamwise velocity components at Re = 172. (a) Location of observation lines for panels

(b) and (c); (b) velocities along two observation lines in the lower part of the geometry of the backward-

facing step problem; (c) velocities along two observation lines in the upper part of the geometry. The

DG results are given along with the spectral element (SE) results of Couzy [29].
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Figure 4.13: The spanwise velocity components along two observation lines in the lower part of the

geometry of the backward-facing step problem at Re = 172.

firming the three-dimensionality of the flow. These contour plots match well with those

reported in [29] (Fig. 4.15), even in some small details such as the negative velocity

regions in Fig. 4.14b and that in Fig. 4.14c near z = 0. Some negative velocity contours

(with absolute values as large as 10−3) close to the symmetry plane in Fig. 4.14c are

observed.

We also plotted the streamwise velocity downstream of the step along six observation

lines in the lower and upper parts of geometry (Fig. 4.16) as well as the spanwise velocity

along three observation lines (Fig. 4.17). The corresponding streamwise velocity profiles

from the spectral element simulations of Couzy are also plotted in Figs. 4.16 and 4.17.

The overall behaviors are again very similar, but slight differences along some observation

lines are noticeable. We again believe the lower resolution in our calculations contributes

to these variations. Analogous to the former case, from Figs. 4.16 and 4.17, we learn

that flow develops rapidly downstream of the recirculation zone. Also, it is clear from

Fig. 4.17, that the three-dimensionality of flow is not limited to the boundary layer, and

it is more pronounced than that at the lower Re = 172.
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4.4 Summary

Overall the developed solver performed very well in solving the three-dimensional prob-

lems. In the first problem test, the theoretical convergence rates were obtained in solving

the three-dimensional Taylor vortex problem. In solving the Orr-Sommerfeld stabil-

ity problem at Re = 1500, the perturbation energy growth rate was predicted highly

accurately, up to four significant digits using a mesh consisting of 1536 tetrahedra of

order k = 6. Finally, in simulating backward-facing step flow, excellent agreement with

other computational and experimental data was obtained in calculating the length of the

primary recirculation zone. On the same test, in comparison with a spectral element

Navier-Stokes solver [29], similar accuracy, at lower cost, was obtained in capturing even

fine features of flow such as small retrograde flow regions inside the side wall boundary

layer. This last test implies that our solver based on the DG scheme is competitive with

the spectral element solver of Couzy [29] in both accuracy and efficiency.
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Figure 4.14: Velocity contours for the backward-facing step flow at Re = 344; (a) streamwise velocity

component at the symmetry plane with dark blue region indicating the recirculation zone; (b) streamwise

velocity component at x = 2.0 approximately half-way the recirculation zone; (c) spanwise velocity

component at x = 2.0. In figure (a), the y-axis was enlarged six-fold, and in figures (b) and (c) it was

enlarged two-and-half-fold.
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Figure 4.15: Velocity contours for the backward-facing step flow at Re = 344, calculated using the

spectral element method as reported by Couzy [29]; (a) streamwise velocity component on the symmetry

plane, with the black region indicating the recirculation zone; (b) streamwise velocity component at

x = 2.0, which is approximately half-way through the recirculation zone; (c) spanwise velocity component

at x = 2.0. The consecutive shades of gray indicate a velocity increase of 0.2 each with the black zones

representing negative velocity values. The resolution of the figures are limited to the resolution of the

source.
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Figure 4.16: Streamwise velocity components at Re = 344. (a) Location of observation lines for panels

(b) and (c); (b) velocities along three observation lines in the lower part of the geometry of the backward-

facing step problem; (c) velocities along three observation lines in the upper part of the geometry. The

DG results are given along with the spectral element (SE) results of Couzy [29].
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Figure 4.17: Spanwise velocity components along three observation lines in the lower part of the

geometry of the backward-facing step problem at Re = 344. The DG results are given along with the

spectral element (SE) results of Couzy [29].



Chapter 5

An Explicit Expression for the

Penalty Parameter

In this chapter, we derive an explicit expression for the penalty parameter of the interior

penalty method for the elliptic problems. The expression yields a coercive bilinear form

and is valid for general meshes consisting of (geometrically nonconforming) simplicial

elements.

5.1 Introduction

The interior penalty (IP) method devised in the late 1970s [4] is a type of discontinu-

ous Galerkin method for the spatial discretization of elliptic partial differential equations.

The IP method, like other discontinuous Galerkin methods, has advantages over the clas-

sical continuous Galerkin method in facilitating hp-adaptivity and yielding block diagonal

mass matrices important in time-dependent problems. Moreover, the IP method gives a

symmetric, locally conservative, and small-stencil discretization. This last property, in

which the degrees of freedom of each element couple only with those of its immediate

neighbors, is critical in reducing memory requirements and achieving efficient paralleliza-

tion in large scale computations.

95
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Despite its early introduction and its advantages, the IP method has not been popular.

One drawback to this scheme is that it requires the user to specify a mesh-dependent

parameter, known as a penalty parameter. If the value of this parameter is not sufficiently

large, the approximate solution is unstable 1. On the other hand, an arbitrarily large value

of the penalty parameter degrades the performance of the iterative solver of the linear

system arising from the IP discretization, as shown in Section 3.2. In real applications,

where highly anisotropic and heterogeneous mesh geometries are used and in adaptive

algorithms, where varying approximation orders are also used, it is difficult to know a

priori the minimum acceptable value of the penalty parameter. Therefore, the objective

of this paper is to derive an explicit expression for the value of the penalty parameter

guaranteed to give a stable solution. We consider a domain partitioned into triangular

or tetrahedral elements in two or three space dimensions.

Before deriving this expression, we briefly describe the IP method and show the effect

of the penalty parameter on the overall efficiency of the scheme.

5.2 Interior Penalty Method

We seek the IP formulation of the Poisson equation with Dirichlet boundary conditions:

−∆u = f in Ω, (5.1a)

u = g on ∂Ω, (5.1b)

where Ω is a polygonal domain of dimension d = 1, 2, or 3.

We first introduce some notation. Let K+ and K− be two adjacent elements in Th, a

triangulation of Ω; let x be an arbitrary point of the interior set e = ∂K− ∩ ∂K+, which

1Here instability is a direct consequence of non-coercivity of the associated bilinear form. Its char-
acteristic is that small variations in the penalty parameter yield large variations in the field variable, as
will be seen below.
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is assumed to have non-zero dimension (d − 1) and is referred to as a face; and let n−

and n+ be the corresponding normal vectors at that point. Let u be a smooth function

inside each element K± and let us denote by u± the trace of u on e from the interior of

K±. Then we define the mean {·} and the jump J·K at x ∈ e as

{u} := (u+ + u−)/2, JuK := u+n+ + u−n−.

For a point x on the boundary set ∂K ∩ ∂Ω with normal vector n, we define the trace

operators as

{u} := u, JuK := un.

The mean of a vector-valued function is defined in a similar way. We also denote by ΓI

the union of all interior sets e, and we set Γ = ΓI ∪ ∂Ω.

We take the discontinuous approximation to the exact solution u, uh, in the finite

element space Vh, where

Vh := {v ∈ L2(Ω)|v|K ∈ QkK
(K), ∀K ∈ Th}.

Here QkK
(K) is the set of polynomials of degree at most kK on K, k ≥ 0. The approxi-

mate solution is then defined by requiring that

a(uh, vh) = F (vh) ∀uh, vh ∈ Vh.

where

a(u, v) =
∑

K

∫

K

∇u · ∇vdx −
∫

Γ

(JvK · {∇u} + JuK · {∇v})ds+

∫

Γ

µJuK · JvKds, (5.2a)

F (v) =

∫

Ω

fvdx−
∫

∂Ω

g∇v · nds +

∫

∂Ω

µgvds. (5.2b)

The last term on the r.h.s of equation 5.2a is defined for interior and boundary faces, Γ.

This is the penalty term, which is added to enforce the coercivity of the bilinear form
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a(u, v). We must specify a value for the penalty parameter µ that ensures the coercivity

of the bilinear form and, thus, the stability of the approximate solution. In previous

work, µ has only been defined to within a multiplicative constant. For example, Arnold

[4] defined µ = γ0/le, where le = diam(e), and γ0 is a large unknown positive constant.

In the context of the mixed hp-discontinuous Galerkin finite element method, Schötzau

et al. [102] defined µ = ηh−1k2, where h = min(hK+, hK−), k = max(kK+, kK−), and

hK = diam(K), again leaving η as a large unknown positive constant.

Unfortunately, the above expressions for µ are less than optimal in practice, because a

large value of µ has a detrimental effect on the conditioning of the matrix that represents

the bilinear form a(u, v). As proved by Castillo [20] for all approximating polynomial

degrees, the spectral condition number of this matrix in L2 norm grows linearly with µ

(see Theorem 3.4 in [20]). It is therefore expected that the magnitude of µ will affect the

overall efficiency of the iterative solver of the system arising from the IP discretization.

To further investigate this, we conducted the following experiment. Using the nodal

high order IP method, we discretized eq. 5.1 with g = 0 and f = 2π2sin(πx)sin(πy), on

the square domain [−1, 1]×[−1, 1]. The corresponding exact solution is u = sin(πx)sin(πy).

Our nodal basis was the Lagrange polynomials calculated based on the nodal set of Hes-

thaven [57] defined on the standard triangle. The domain was partitioned once into 72

structured triangles and once into 72 unstructured (heterogeneous) triangles as shown in

Figs. 5.1a and b, respectively. To solve the resulting linear system, we used the precon-

ditioned conjugate gradient method. The preconditioner was a two-level element-based

Schwarz preconditioner. Its local part corresponded to the IP discretization on each

element, similar to that of Feng and Karakashian [39], and its global coarse part corre-

sponded to the IP discretization on the same mesh but with the lower approximation

order k = 1. (A similar preconditioner will be discussed in chapter 7.) Our implementa-

tion was based on the Algorithm Oriented Mesh Database (AOMD) [98] and Portable,

Extensible Toolkit for Scientific Computing (PETSc) [8, 7, 9]. We carried out simulations
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Figure 5.1: (a) The computational domain used for tests partitioned into 72 structured triangu-

lar elements; (b) the same domain partitioned into 72 unstructured (heterogeneous) triangular

elements generated using Gmsh software [46]; (c) and (d) the number of preconditioned conju-

gate gradient (PCG) iterations needed to solve the Poisson problem vs. the penalty parameter

µ using meshes in (a) and (b), respectively. The nodal high order IP method was used, with

the range of approximation orders (k = 2, · · · , 6).
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using different values of µ and with the range of approximation orders (k = 2, · · · , 6).

The initial guess for the conjugate gradient iterations was a vector with random entries

confined to the interval [0, 1] and the stopping criterion was a relative residual smaller

than 10−11. The results are shown in Figs. 5.1c and d for the structured and unstruc-

tured meshes, respectively. Although the iteration counts are higher for the unstructured

mesh, it is clear that the iteration counts in both cases grow almost logarithmically with

µ, implying that arbitrarily large values of µ yield unacceptably large iteration counts. It

is therefore clear that an explicit expression for the penalty parameter would be useful,

so as to guarantee coercivity while minimizing computational expense.

5.3 Explicit Expression for the Penalty Parameter

Here we derive an explicit expression for the penalty parameter µ for a d-dimensional

simplex. Our derivation is based on the results of Warburton and Hesthaven [118] on trace

inverse inequalities. Using orthogonal polynomials, they proved the following inequality

for a simplicial element K and ∀v ∈ Qk(K):

∫

e

v2ds ≤ (k + 1)(k + d)

d

A(e)

V(K)

∫

K

v2dx, (5.3)

where for d = 3, A and V denote area and volume, respectively, and for d = 2, they

denote length and area, respectively. For d = 1, A(·) = 1 and V denotes length. (See

theorems 2, 3, 4 in [118]).

We must find µ such that the bilinear form a(u, v) is coercive, i.e. so that there exists

a positive constant cs such that

a(v, v) ≥ cs‖v‖2
h ∀v ∈ Vh, (5.4)

where

a(v, v) =
∑

K

∫

K

(∇v)2dx − 2

∫

Γ

JvK · {∇v}ds +

∫

Γ

µJvK2ds, (5.5)
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and

‖v‖2
h =

∑

K

|v|21,K +

∫

Γ

JvK2ds,

with the seminorm | · |1,K defined over H1(K) by

|v|21,K =

∫

K

(∇v)2dx.

We first find a bound on the negative term on the r.h.s. of equation 5.5. Using the

arithmetic-geometric mean inequality ab ≤ (ǫe/2)a2 + (1/2ǫe)b
2 with ǫe > 0 yields

∫

e

JvK · {∇v}ds ≤ ǫe

2

∫

e

JvK2ds +
1

2ǫe

∫

e

{∇v}2ds ∀e ∈ Γ.

Adding the above inequality over all e, noting that on ΓI , {∇v}2 = (∇v+)2/4+(∇v−)2/4+

(∇v+ · ∇v−)/2 and on ∂Ω, {∇v}2 = (∇v)2, and using the inequality a2 + b2 + 2ab ≤

2a2 + 2b2 yields

∫

Γ

JvK · {∇v}ds ≤
∑

e∈Γ

ǫe

2

∫

e

JvK2ds +
∑

e∈ΓI

1

2ǫe

∫

e

[
1

2
(∇v+)2 +

1

2
(∇v−)2]ds

+
∑

e∈∂Ω

1

2ǫe

∫

e

(∇v)2ds.

Substituting the above inequality in equation 5.5, and then using equation 5.3 yields

a(v, v) ≥
∑

K

n∑

ie=1

(
ce,K

cK

− ce,K

ǫe

)

∫

K

(∇v)2dx +
∑

e∈Γ

∫

e

(µ − ǫe)JvK2ds, (5.6)

where

ce,K =






(kK+1)(kK+d)
d

A(e)
V(K)

e ∈ ∂Ω,

(kK+1)(kK+d)
d

A(e)/2
V(K)

e ∈ ΓI ,

cK =
(kK + 1)(kK + d)

d

[A(∂K\∂Ω)/2 + A(∂K ∩ ∂Ω)]

V(K)
K ∈ Th. (5.7)

In equation 5.6, ie denotes the local index of face e restricted to the element K, and n

denotes the total number of faces of each element K. To yield a positive r.h.s in equation

5.6, it is sufficient to choose ǫe ≥ cK for e ∈ ∂Ω, ǫe ≥ max(cK+, cK−) for e ∈ ΓI , and
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µ ≥ ǫe. Thus, we choose the local penalty parameter µe as

µe = cK ∀e ∈ ∂Ω, (5.8a)

µe = max(cK+, cK−) ∀e ∈ ΓI . (5.8b)

Now, if we set

c1 = min
K,e

(
ce,K

cK
− ce,K

ǫe
) ∀e ∈ Γ, K ∈ Th,

c2 = min
e

(µ − ǫe) ∀e ∈ Γ,

we obtain

a(v, v) ≥ c1

∑

K

∫

K

(∇v)2dx + c2

∫

Γ

JvK2ds,

Finally, if we choose cs = min(c1, c2), the coercivity of the bilinear form, 5.4, results.

Remark 1. The penalty expression in equation 5.8 is defined for each face e ∈ Γ and

depends on the geometries and approximating polynomial orders within the elements

sharing e. Obviously, a global bound for the penalty parameter can be derived as

µ = max
e

(µe). (5.9)

Remark 2. Our estimation in equation 5.9 is sharp, which we demonstrate by the following

numerical experiment. By once again solving the Poisson equation 5.1 using the method-

ology of Section 3.2 and the structured triangular mesh in Fig. 5.1a, we computed the

maximum nodal error versus µ for polynomial approximation orders k = 1, · · · , 8 (Fig.

5.2). It can be seen that the solution is unstable for µ < µ∗ (i.e., a small variation in the

penalty parameter yields a large variation in the field variable u) and stable for µ > µ∗

(i.e., variations in µ yields almost no variations in u). The critical values of penalty

parameter µ∗ are approximately 10, 50, 50, 90, 90, 150, 200, and 200 for k = 1, · · · , 8, re-

spectively. On the same figure, we also show the value of the penalty parameter computed

using equation 5.9. We observe that the estimation based on 5.9 yields a stable solution

and it is roughly three times larger than µ∗ at each k. Based on the results of Fig. 5.1c,
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Figure 5.2: Maximum nodal error vs. penalty parameter µ for different orders of approximation

k = 1, · · · , 8; the triangles represent the values of the penalty parameter calculated using

equation 5.9.

this means that selecting µ according to equation 5.9 guarantees a stable solution at

a computational cost within a factor of roughly 1.2 of that of the (unknown) optimal

penalty parameter, µ∗, for the higher approximation orders (k = 6, 7, and 8), at least for

the mesh used in this study.

Remark 3. For the case of a general mesh, when the elements are not face-to-face

including those with hanging nodes, an explicit expression for the penalty parameter for

a face ef shared by a collection of adjacent elements {Ki|i = 1, ..., N} can be defined as

µef
= max(cKi

), i = 1, · · · , N, (5.10)

where cKi
is computed using equation 5.7. Following the above procedure, it is proved

that choosing the penalty parameter based on equation 5.10 guarantees a coercive bilinear

form for general meshes.

Remark 4. Through a similar procedure, an explicit expression for the penalty pa-

rameter of the discontinuous Galerkin method of Baker [6] can be derived. The same
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formulas 5.8 and 5.10 are valid in this method, but with a slightly different cK

cK =
(kK + 1)(kK + d)

d

A(∂K)

V(K)
K ∈ Th.



Chapter 6

Implementation and Performance

Study

In chapter 2, we described the numerical implementation of integrals and derivatives

arising from the discontinuous Galerkin scheme. We also presented quadrature schemes

for evaluating the nonlinear term. We now present the strategy for solving the linear

systems arising from the discontinuous Galerkin discretization of the velocity and pressure

equations, further implementation and coding details and profiling studies demonstrating

the performance of the developed solver.

6.1 Linear System Solves

For the velocity and pressure we must solve a system of the form

Axn = bn n = 1, 2, ..., (6.1)

where A is the coefficient matrix, bn the right-hand-side vector, xn is the approximate

solution vector and n is the time step number. Since A is typically large and very sparse,

iterative methods are suitable for solving the above system and since A is positive definite

the conjugate gradient method is a natural choice. To accelerate the convergence of the

105
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conjugate gradient method, instead of solving the system 6.1 directly, the equivalent

system

B−1Axn = B−1bn n = 1, 2, ... (6.2)

is solved. 6.2 is called the preconditioned system corresponding to 6.1 and the matrix

B−1 is referred to as a preconditioner matrix. B−1 should closely approximate the in-

verse of matrix A and should be easily computable. For the velocity systems, we use a

preconditioner corresponding to the inverse of the block diagonal mass matrix. For the

pressure equation, an incomplete LU (ILU) factorization preconditioner is a convenient

choice. The ILU factorization process consists of forming a sparse lower triangular matrix

L and a sparse upper triangular matrix U such that the residual matrix R = LU − A

satisfies a certain constraint. For instance, one constraint is that the matrix R has zero

entries in locations where A has nonzero entries, yielding an ILU factorization with no

fill-in (ILU(0)). We use the serial version of ILU(0) factorization corresponding to the

factorization of nonoverlapping blocks of the matrix A owned by each processor.

As shown by numerical examples in the following section, a mass matrix precon-

ditioner for the velocity equations yields very small iteration numbers. However, the

pressure solve with the ILU(0) precondtioner requires a large number of iterations, im-

plying the suboptimality of this preconditioner. Thus, to reduce iteration numbers, we

need to either use a better preconditioner or find a suitable initial guess for the con-

jugate gradient iterations. Although an improved preconditioner may be obtained by

adding a coarse grid correction, we here adopt a simple yet effective approach, namely

the projection method of Fischer [42]. In the projection method, an optimal initial guess

for the conjugate gradient iterations is constructed using the previous solution vectors.

Although the detail of the projection method can be found in [42], for the purpose of

completeness, we briefly describe the method below.
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6.1.1 Projection Technique for the Pressure System

Consider system 6.1 for the pressure. Having stored a set of previous solution vectors

Pl = {xi|i = 1, ..., l}, we seek an approximation vector to xn, x, given by

x =

l∑

i=1

αixi, (6.3)

where αi is defined such that the error in the A-norm,

‖x − xn‖A =

(
(xn)T Axn − 2

l∑

i=1

αi(xi)
T Axn +

l∑

i=1

l∑

j=1

αiαj(xi)
T Axj

)1/2

, (6.4)

is minimized. The minimization procedure is simplified if we insist on having an or-

thonormal basis, i.e.,

(xi)
T Axj = δij ∀i, j = 1, ..., l, (6.5)

where δij is the Kronecker delta. Applying this orthonormality relation to 6.4, then

requiring that the first derivative of 6.4 with respect to αi vanish, yields

αi = (xi)
T Axn = (xi)

T bn. (6.6)

Thus, using 6.3 and 6.6, we can calculate the initial guess for the iterative solution of 6.1.

After solving the system, we update the set Pl for the next system solve. The update

is performed through a standard Gram-Schmidt orthogonalization [49]. Specifically, if

l < L with L being the maximum number of vectors to be stored,

βi = (xi)
T Ax̃ i = 1, ..., l, (6.7a)

xl+1 =

(
x̃ −

l∑

i=1

βixi

)/wwwwwx̃ −
l∑

i=1

βixi

wwwww
A

(6.7b)

where

x̃ = xn − x. (6.8)

If l = L, we simply re-initialize the approximation set with l = 1 and Pl = {x1}, where

x1 = xn/‖xn‖A. (6.9)
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Using the orthonormality relation 6.5 and 6.7a, one can easily show that

wwwwwx̃ −
l∑

i=1

βixi

wwwww
A

=

(
x̃T Ax̃ −

l∑

i=1

α2
i

)1/2

. (6.10)

Thus, the above update procedure requires only one matrix-vector product. The com-

munication intensive parts of the above projection algorithm are calculation of the vector

inner-products in 6.7a and 6.6. Suppose the vectors are distributed among NP processors.

Then, the vector inner-products in 6.7a can be carried out in a single O(log2 NP ) data ex-

change by first calculating Ax̃ and then passing the resultant vector along with l vectors,

xi, to a routine that performs multiple vector inner-products. The vector inner-products

in 6.6 are implemented in a similar fashion.

6.2 Some Coding Details

We have implemented two-dimensional and three-dimensional versions of the developed

scheme in parallel using the C++ programming language, the Algorithm Oriented Mesh

Database (AOMD) [98] and the Portable Extensible Toolkit for Scientific Computation

(PETSc) [8, 7, 9].

We have exploited the object-oriented and data-encapsulation features of C++. In

particular, for our nodal high-order discontinuous Galekrin approximation, we have de-

signed and programmed the namespace “nodalFamily” and the class “mixedDGNodalEle-

ment”. Putting all variables and routines in the namespace nodalFamily reduces the

chance of name conflict among libraries. The class mixedDGNodalElement allows the

instantiation of an object with mixedDGNodalElement type by passing its dimension and

the velocity and pressure approximation orders. Via an instantiation, the Vandermonde

matrix V , V −1, the derivative matrices and other discontinuous Galerkin operators de-

fined on the standard elements are automatically constructed and can be accessed through

the accessors provided in the class.
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Each processor must read its own part of the mesh in the adopted parallel strategy,

and so the mesh needs be partitioned into submeshes where each submesh is assigned to

a processor. The partitioning is handled through calling the “split” program provided

by the AOMD library. The “split” program internally uses the METIS library [69] to

perform the partitioning. The AOMD library also provides grid adjacencies based on

the algorithm needs, a (generic) class “mAttachableData” for attaching data to a mesh

entity and another (generic) class “AMOD DataExhanger” for exchanging data related

to the partition boundaries.

The communication required to construct the global velocity and pressure matrices

are performed through deriving a class “DGDataExchanger” from the

“AMOD DataExhanger”. All elemental data such as Jacobians, derivative metrics, and

the iD of a given element having a face (in three dimensions) or an edge (in two di-

mensions) on the partition boundary are first packed together and then sent to a des-

tination processor through a single message. This is performed by calling functions

“AP alloc and fill buffer” and “receiveData” responsible for message packing, sending

and receiving. These functions are programmed based on AUTOPACK [81], which is a

library that provides several useful features such as automatic message packing, and man-

agement of send and receive requests for programs using the Message Passing Interface

(MPI) [52].

Other required data exchanges are those associated with the evaluation of surface

integrals in the discretization of the nonlinear term. We implemented this communica-

tion through a simple procedure. The d components of the velocity corresponding to

each face (edge) on the partition boundary are first packed together and then the result-

ing data is sent to the destination processor. This strategy is programmed in the class

“dataExchangerForNSNonlinearity” derived also from “AMOD DataExhanger”. While

the communication for constructing the global matrices is performed only once in the pre-

processing stage, the communication call for the nonlinear term needs to be repeated at
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each time step. Therefore, it is important to verify the efficiency of this implementation,

and we will address this issue in the following section.

The global right-hand-side vectors, solution vectors and any other global auxiliary

vectors are programmed based on the parallel vectors of PETSc. The global pressure

and velocity matrices were based on the parallel sparse matrix type of PETSc. The

conjugate gradient method and ILU(0) preconditioner were accessed through the Krylov

subspace class of PETSc. The shell preconditioner feature of PETSc was exploited for

implementing our block diagonal mass matrix preconditioner. The shell preconditioning

context allows an easy interface for programming a user-defined preconditioner. Note

that the required communication for matrix-vector products, vector inner-products and

norm evaluations are automatically handled by PETSc.

6.3 Performance Study

Below, we first study the performance enhancement achieved by using the projection

method. We then show the parallel and computational performance of the solver.

6.3.1 Performance Enhancement due to the Projection Method

We compare the performance of the code in solving the three-dimensional Orr-Sommerfeld

stability problem studied in the previous chapter with and without the projection method

for the pressure solve. We first ran the code without the projection method, i.e. with a

zero vector as an initial guess for the pressure iterations. The runs were in parallel using

16 processors (1500 MHz Itanium 2 with 6 MBytes L3 cache) arranged in four nodes

of four processors per node. We used absolute tolerances of 10−10 for the convergence

criteria for the velocity and pressure iterations. Fig. 6.1a shows the pressure iteration

numbers and summation of three velocity iteration numbers for 500 time steps. From

the figure, it is clear that the number of velocity iterations are very small, verifying the
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Figure 6.1: Performance of the code in solving the three-dimensional Orr-Sommerfeld stability problem

without the projection method for the pressure equation. (a) Velocity (all three components) and pressure

iteration numbers per time step vs. time step number; (b) CPU times per time step for all three velocity

solves, the pressure solve, nonlinear term evaluation, and the total operations vs. the time step number.

In (b), the percentage time of each individual stage is also shown. All timings were obtained using the

“PetscGetTime” function.
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Figure 6.2: Performance of the code in solving the three-dimensional Orr-Sommerfeld stability problem

with the projection method for the pressure equation. (a) Pressure iteration numbers per time step for

L = 0 (without the projection method) and L = 80 (up to 80 previous solution vectors used in the

projection method) vs. time step number; (b) CPU times per time step for all three velocity solves (pink

line), the pressure solve (blue line), nonlinear term evaluation (green line), and the total operations (red

line) vs. the time step number. In (b), the CPU time for the total operations with L = 0 is also shown.

All timings were obtained using the “PetscGetTime” function.
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effectiveness of the block diagonal mass matrix preconditioner. On the other hand, the

number of pressure iterations is at least one order of magnitude larger than the total

number of velocity iterations. We plot in Fig. 6.1b the total CPU time per step along

with the CPU time breakdowns for the pressure solve, velocity solves and the nonlinear

term evaluation. It is clear that the pressure solve is the dominant computational cost.

We next ran the code with the projection method (L = 80), i.e. initial guesses for

the pressure iterations were constructed using up to 80 previous solution vectors. Fig.

6.2a shows the pressure iteration numbers in comparison with those of the former case.

A significant reduction (approximately eleven-fold on average) in the pressure iterations

is observed. This reduction readily translates into a four-fold reduction in the total CPU

time as shown in Fig. 6.2b. Another important point notable from Fig. 6.2b is that now

the pressure solve and the nonlinear term constitute comparable portions (on average

35% and 55%, respectively) of the total CPU time. This balanced role of the pressure

solve and nonlinear term evaluation is typical of our solver and was also observed in other

simulations. For example, in simulating flow over a backward-facing step at Re = 344, for

a time interval of approximately three flow-through times and with L = 60, the pressure

solve and the nonlinear term evaluation accounted for 59% and 29% of the total CPU

time, respectively.

6.3.2 Parallel Performance

We examined the parallel performance of the developed code in simulating the backward-

facing step flow at Re = 172 with the initial condition being the solution at Re = 1. We

carried out runs for five cases: (NP , DOF)= (4, 35280), (8, 35280), (16, 70560), (32, 70560)

and (64, 141120) with NP and DOF denoting the number of processors and the number

of degrees of freedom, respectively. The three DOFs correspond to a fixed approximation

order k = 4 and three meshes obtained from (anisotropic) refinement of a reference mesh.
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Case NP DOF CPU time(seconds)/step Parallel efficiency

1 4 35280 23.06 −

2 8 35280 12.64 91%

3 16 70560 17.24 73%

4 32 70560 8.09 94%

5 64 141120 8.35 97%

Table 6.1: Parallel efficiency in solving three-dimensional backward-facing step problem at Re = 172,

with initial condition being the solution at Re = 1. NP and DOF denote the number of processors and

the number of degrees of freedom, respectively. The CPU time(seconds)/step is the total time per step

averaged over the first 400 steps.

The parallel efficiency of the solver, η, was measured based on

η = (
Ti

Ti+1
)(

NP |i
NP |i+1

)(
DOF |i+1

DOF |i
) × 100 i = 1, ..., 4, (6.11)

where Ti denotes the CPU time per time step for case i. We chose this definition because,

unfortunately, the parallel code has evolved independently of the sequential version,

making the standard definition of the parallel efficiency impossible to calculate. (The

standard definition of the parallel efficiency is

η = (
TS

Ti

1

NP |i
) × 100 i = 1, ..., 5, (6.12)

with subscript S referring to the fastest serial solver [44].) The definition given in 6.11 is

a reasonable compromise in this situation. The characteristics of the processors were as

mentioned in the previous section. The CPU time per step averaged over the first 400

time steps for each case along with the corresponding parallel efficiencies are listed in

Table 6.1. Parallel efficiencies of above 90% were obtained in all cases except for case 3.

The reduced efficiency in case 3 was due to the higher pressure iteration numbers in case

3 than that in the case 2. To verify this, the number of pressure iterations (averaged over

400 time steps) are shown in Table 6.2 for different cases. Clearly, a jump of almost 30%
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Pressure solve Nonlinear term evaluation 3 velocity solves

Case Iter TP (%T) ηP TC (%T) TN (%T) ηN Iter TV (%T) ηV

1 481.0 20.54 (89%) - 0.001 (0%) 1.8 (8%) - 18 0.32 (1%) -

2 557.3 11.34 (90%) 91% 0.001 (0%) 0.92 (7%) 98% 18 0.16 (1%) 100%

3 748.3 15.85 (92%) 72% 0.002 (0%) 0.93 (5%) 99% 24 0.23 (1%) 70%

4 821.8 7.37 (91%) 95% 0.003 (0%) 0.48 (6%) 97% 24 0.06 (1%) 192%

5 807.6 7.49 (90%) 98% 0.1 (1%) 0.56 (7%) 86% 25 0.07 (1%) 86%

Table 6.2: Profiling of the solver and parallel performance of the pressure solve, the nonlinear term

evaluation and the velocity solves for the three-dimensional backward-facing step problem. Cases 1-5

correspond to those in Table 6.1 and “Iter” denotes the number of pressure (or summation of three

velocity) iterations averaged over the first 400 time steps. TP (TC , TN , or TV ) denote the CPU time in

seconds per time step of the pressure (the nonlinear term communication, the nonlinear term evaluation,

or the summation of three velocity solves) averaged over the first 400 steps. “%T” denotes the percentage

of the total CPU time spent on a particular stage. ηP , ηN and ηV represent the parallel efficiency of the

pressure solve, the nonlinear term evaluation and the velocity solves, respectively.

in the pressure iteration numbers in case 3 compared to case 2 is observed. A similar

jump is also observed in the velocity iteration numbers (Table 6.2). We believe that

these jumps in the iteration numbers are due to the increased anisotropy of the mesh in

case 3 and the fact that the velocity and pressure preconditioners are not optimized for

anisotropic meshes.

Besides the velocity and pressure iterations, we list in Table 6.2 both the CPU time

breakdown and the percentage of the total CPU time for the pressure solve, the velocity

solves, the nonlinear term evaluations, and the communication required for the nonlinear

term evaluation (all averaged over the first 400 time steps). The parallel efficiency of

the pressure solve (ηP ), the velocity solves (ηV ) and the nonlinear term evaluation (ηN)

defined analogously to 6.11 are also given in Table 6.2. From Table 6.2, several points are
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Mat-Vec PCApply VecDot/VecNorm PCGSolve

Case VecScatter %T %T γs %T γs %T γs γs

1 0% 29% 13.7% 54% 4.7% 6% 3.1% 8.9%

2 0% 31% 13.0% 50% 6.8% 7% 1.5% 9.1%

3 0% 31% 12.5% 49% 6.7% 10% 1.2% 8.8%

4 0% 33% 12.7% 40% 8.9% 16% 0.3% 10.2%

5 2% 31% 12.2% 37% 8.8% 20% 0.5% 9.9%

Table 6.3: Profiling of the preconditioned conjugate gradient solve (“PCGSolve”) in simulating three-

dimensional flow over a backward-facing step. For cases 1-5 introduced in table 6.1, the percentage of the

total CPU time (%T) spent on the matrix-vector products (“Mat-Vec”), the communication required in

the matrix-vector products (“VecScatter”), the application of the preconditioned matrix (“PCApply”),

and vector inner products/norm evaluations (“VecDot/VecNorm”) are listed. The computational rate

efficiency γs, as defined in eq. 6.13, is also given for each operation and for the whole PCGSolve. In the

second column, percentages smaller than 0.1% are shown as 0%.

notable. First, while the pressure solve requires 89−92% of the total time, the nonlinear

term evaluation and the velocity solves take 6 − 8% and 1% of the total CPU time,

respectively. Note that these figures are different from those presented in the previous

section, which shows that pressure solve and the nonlinear term evaluation constitute

comparable portions of the total CPU time. This is because at early simulation times,

the number of pressure iterations is high due to the inexact initial condition, and as

the simulation goes on the pressure iteration numbers drop, on average. Therefore, if

instead of the first 400 time steps, the whole simulation time (two or three flow-through

times) was considered, the average pressure iterations would be a few-fold lower than

those presented in Table 6.2, and correspondingly the percentage of pressure solve time

would drop to 50 − 60% of the total CPU time. This would then yield a more balanced

role of the pressure solve and the nonlinear term evaluation.
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Second, the communication for the nonlinear term evaluation was for all cases equal

to or smaller than 1% of the total CPU time, verifying the compactness of the scheme

and the effective implementation of the required communication.

Third, parallel efficiencies of higher than 86% for most cases and for the three tasks

(velocity solves, pressure solve and the nonlinear term evaluation) are observed. The

exception is again case 3, where the elevated iteration numbers degrade the parallel

performance of the pressure and the velocity solves to 72% and 70%, respectively. Since

the velocity solves only constitute a very small portion (1%) of the total time, this reduced

performance does not materially affect overall performance. On the other hand, since

the pressure solve constitutes the majority of the total CPU time, this reduced efficiency

directly translates into a reduced overall efficiency of 73%, as seen in Table 6.1. However,

if instead of only the first 400 time step, a realistic time interval of two-three flow-through

times (40000 − 60000 time steps) was considered, the relatively low pressure efficiency

would have less negative impact on the overall efficiency. This is due to the fact that

during longer time periods, the pressure solve time is reduced to approximately 50% of

the total CPU time as seen in the previous subsection, and the nonlinear term evaluation

with very high parallel efficiency would contribute to higher overall efficiency.

We also list the percentage of the total CPU time required by different operations in

the preconditioned conjugate gradient (PCG) iterations in Table 6.3. These operations

are matrix vector products, the application of the preconditioner, vector inner-products

and norm evaluations. Since all other operations including vector additions, scalar vector

products and LU factorization contributed less than 0.5% of the total CPU time, they

are not listed in the table. Also listed in Table 6.3 is the computational rate efficiency

γs for each phase of operations and for the entire PCG solve. γs, also referred to as per

processor (serial) efficiency, is defined as

γs =
MFlops

NP SP
× 100, (6.13)
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where SP = 1500MHz is the nominal speed of the processors, and

MFlops = 10−6(sum of flops over all processors)/(maximum time over all processors).

(6.14)

The sum of flops over all processors was measured by calling the flag “log summary” of

the PETSc library. Here one flop is defined as one operation of any of the following types:

addition, subtraction, multiplication and division. As in the nonlinear term evaluation,

we observe a very small communication time (maximum 2% of the total CPU time) in the

matrix-vector products. Since we used the serial ILU precondtioner for the pressure and

a block diagonal mass matrix for the velocity equations, application of the preconditioner

does not require any communication. On the other hand, the vector inner products and

vector norm evaluations require global data exchanges. The very small computational

rate efficiencies for these operations are the direct consequence of the required global

communications. Despite negligible or zero communication required, small computational

efficiencies of 12 − 13% and 5 − 8% are observed for matrix-vector products and the

preconditioner applications, respectively. This is mainly due to memory loads and stores

(out of cache operations) which are the real performance barriers. A total computational

rate efficiency of approximately 10% is observed for the whole PCG solves.

We now compare this performance with two other high-order flow solvers. The first

is the highly optimized spectral element Navier-Stokes code of Tufo and Fischer [115].

In a three-dimensional simulation with 27, 799, 110 DOF (8168 hexahedral elements of

order k = 15) on 2048 processors of the Intel ASCI-Red machine with 333 MHz CPU

at the US Sandia National Laboratory, Tufo and Fischer achieved approximately 46%

computational efficiency. The second is the global discontinuous Galerkin atmospheric

simulator of Dennis et al. [35]. In a two dimensional simulation with 393, 216 DOF

(6144 quadrilateral elements of order 7) on 16 − 2048 processors of the IBM Blue Gene

machines (with 700 MHz speed and 2 Mbytes of L3 cache), they obtained approximately

8− 11% computational efficiency. Compared with the latter case, our code performance
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is considered acceptable, while compared with the former, our code requires further

improvements. To this end, some implementation strategies will be explored in the

following chapter.



Chapter 7

Conclusions and Future Directions

In this final chapter, we summarize the entire work and the contributions before exploring

some future directions.

7.1 Summary and Conclusions

The objectives of this thesis were two-fold:

• to develop an efficient high-order discontinuous Galerkin scheme for solving the

unsteady incompressible Navier-Stokes equations using triangular and tetrahedral

elements in two and three space dimensions, respectively; and

• to implement the scheme in parallel and verify the accuracy and stability of the

method by solving popular benchmarking problems in two and three space dimen-

sions.

We here present the results and conclusions addressing each objective.

7.1.1 First Objective

We have developed an efficient and simple method for the numerical solution of the

unsteady incompressible Navier-Stokes equations in convection-dominated flow regimes.

120
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The scheme is based on a semi-explicit temporal discretization with explicit treatment of

the nonlinear term and implicit treatment of the Stokes operator. The spatial discretiza-

tion in the scheme is based on a high-order discontinuous Galerkin method on triangular

and tetrahedral elements. The nonlinear term is discretized in divergence form by using

the local Lax-Friedrichs fluxes. Spatial discretization of the Stokes operator employs both

equal-order (Pk−Pk) and mixed-order (Pk−Pk−1) velocity and pressure approximations.

The interior penalty method is used for the discretization of the diffusion term. A second

order approximate algebraic splitting is used to decouple the velocity and pressure cal-

culations leading to an algebraic Helmholtz equation for each component of the velocity

and a consistent Poisson equation for the pressure. The consistent Poisson operator was

replaced by an equivalent (in stability and convergence) operator, namely that arising

from the interior penalty discretization of the standard Poisson operator with appropriate

boundary conditions. An important efficiency aspect of our scheme is compact stencil

size discretization of the nonlinear term, and velocity and pressure equations.

For the penalty parameter of the interior penalty method, an explicit lower bound

based on trace inverse inequalities has been derived that ensures the coercivity (stability)

of the bilinear form for the second order Laplacian. The sharpness of the expression

has been demonstrated by numerical examples. Knowing an explicit expression for the

penalty parameter has a significant efficiency implication.

7.1.2 Second Objective

We have extensively verified the temporal and spatial accuracy of the method on several

two- and three-dimensional benchmarking problems. We obtained second-order tempo-

ral convergence and the expected theoretical spatial convergence rates in solving test

problems with known exact solutions. On the challenging Orr-Sommerfeld test problem

at Re = 7500, the equal-order polynomial approximations of the velocity and pressure

(Pk−Pk) led to a stable and accurate solution, while the mixed-order method (Pk−Pk−1)
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yielded a non-physical instability. In simulating vortex shedding past a square cylinder

at Re = 100 and in simulating a three-dimensional backward-facing step flow using the

equal-order method, excellent agreement with other computational and experimental re-

sults was obtained.

Moreover, the developed solver was used to study the flow through a two-dimensional

bileaflet mechanical heart valve geometry at Re = 76 (based on the leaflet thickness).

Based on resolution independent results, a steady state solution was obtained. This

solution was characterized by two recirculation zones associated with each leaflet: an

asymmetric recirculation zone at the wake of the leaflet and another zone on the outer

leading edge of the leaflet.

As regards implementation, the integrals involving the nonlinear term evaluations

are carried out using quadrature schemes of sufficiently high order to ensure the sta-

bility of the discretization. The linear systems arising from the velocity and pressure

discretizations are solved using the preconditioned conjugate gradient method. The ve-

locity preconditioner is the matrix associated with the block diagonal mass matrix and

the pressure preconditioner is based on the serial ILU(0) factorization. To accelerate the

convergence of the pressure solve, an optimal initial guess based on the previous solution

vectors through the projection method of Fischer [42] is used. The parallel implementa-

tion of the algorithm is based on the AOMD mesh library, the PETSc library and the

C++ programming language. Basing the programming on these three elements greatly

reduced the code development time and enhanced the readability, extendibility and the

ease of maintenance of the code.

The performance of the solver was also studied. It appears that the nonlinear term

evaluation and pressure solves constitute comparable portions of the total computational

time and together account for the overwhelming majority (approximately 90%) of the

total computational time. The parallel performance of the code was examined by simu-

lating the backward-facing step flow problem on a series of anisotropically refined meshes
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using 4 − 64 processors. Overall very good parallel performance was obtained. A total

computational rate efficiency of approximately 10% was observed for the preconditioned

conjugate gradient iterations.

7.2 Contributions

The main contributions of this work include the following:

• We solved a long-standing problem arising from a class of discontinuous Galerkin

methods for elliptic problems, namely the lack of an explicit expression for the

penalty parameter. Specifically, an explicit lower bound for the penalty parameter

of the interior penalty method of Arnold [4] and the similar method of Baker [6]

for the case of triangular and tetrahedral meshes and for both conforming and

non-conforming discretizations was derived.

• A new strategy for the discretization of the non-linear term in the Navier-Stokes

equations was introduced. This method is characterized by its simplicity and inher-

ent local conservativity, properties that are absent in previously developed schemes

for the nonlinear term discretization.

• A new method for solving the Stokes system based on an algebraic splitting method

was also introduced. An important feature of the method is its compact stencil

size for both velocity and pressure operators, enhancing the overall efficiency and

simplicity of the scheme.

7.3 Future Directions

As emphasized in the introductory chapter, our ultimate goal is to use the developed

code to perform direct numerical simulations of transitional and turbulent flows through

mechanical heart valve geometries. Since extensive validations on a variety of two- and
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three-dimensional problems have been conducted, we are confident that the developed

numerical scheme for the Navier-Stokes equations is suitable for mechanical heart valve

flow simulations. However, several immediate tasks related to implementation and per-

formance must be accomplished before realistic mechanical heart valve flow simulations

become possible. These steps include further efficiency evaluation and possible efficiency

improvements, tuning the code for large numbers of processors, and programming curved

elements. We describe these steps below.

7.3.1 Strategies for Efficiency Improvement

As seen in the previous chapter, the pressure solve and the nonlinear term evaluations

typically constitute more than 90% of the total computational time. Moreover, the domi-

nant operations involving the pressure solve are the Laplacian matrix-vector product and

the application of the preconditioner. Therefore, any attempt to improve the efficiency

must address the three operations: nonlinear term evaluation, Laplacian matrix-vector

product and the preconditioning strategy for the pressure equations. Here we present al-

ternatives for the implementation of these operations which may enhance code efficiency.

Nonlinear Term Evaluation

For simplicity, let’s consider the nonlinear term of the form

Ci =

∫

O

u2
h

∂Li

∂ξ
dξdη i = 0, ..., N. (7.1)

Applying the quadrature formulae described in chapter 3 in evaluating this integral yields

Ci ≈
M∑

j=0

wju
2
h(ζj)

∂Li

∂ξ

∣∣
ζ

j

i = 0, ..., N, (7.2)

where

uh(ζj) =

N∑

i=0

uh(ξi)Li(ζj) j = 0, ..., M. (7.3)
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Here, {ξi} denotes the set of nodal points with the total number of N + 1 corresponding

to the approximation order k, and {ζi} represents a set of economic quadrature points

([108]) with total number of M +1 corresponding to the quadrature order q. For stability

reasons the nonlinear term must be evaluated exactly using quadrature order q ≈ 3k;

thus, M ≈ γN where γ > 1. The cost associated with the operations in 7.2 and 7.3 are

(2M + 1)(N + 1) + 2(M + 1) and (M + 1)(2N + 1) floating point operations (or memory

references), respectively. Note that wju
2
h(ζj) is computed and the resulting vector is used

in the evaluation of eq. 7.2. The total cost is then

C = (2M + 1)(N + 1) + (M + 1)(2N + 1) + 2(M + 1). (7.4)

Since in two space dimensions N + 1 = (k+1)(k+2)
2

(in three space dimensions N + 1 =

(k+1)(k+2)(k+3)
6

) the leading complexity order is O(4γk4) (O(4γk6)).

To reduce this cost, we suggest to first expand uh and ∂Li

∂ξ
with respect to a orthonor-

mal tensor-product basis function, namely multivariate analogues of Jacobi polynomials

[71, 38], as follows

uh =
N∑

i=0

αibi(ξ), (7.5a)

∂Li

∂ξ
=

N∑

i=0

βi,jbj(ξ), (7.5b)

where

bi(ξ) := brs(ξ) := φr(ζ)φrs(η), (7.6)

with ζ = 2(1+ξ)
1+η

− 1, (0 ≤ r, s; r + s ≤ i) and

φi(z) = P 0,0
i (z) (7.7a)

φij(z) =

(
(2r + 1)(r + s + 1)

2

)1/2(
1 − z

2

2
)

P 2i+1,0
j (z). (7.7b)

Here, P a,b
i (z) signifies Jacobi polynomials (e.g., [110]). Then the integral in 7.1 can be

written as

Ci =

∫

O

u2
h

N∑

j=0

βi,jbj(ξ)dξdη =

N∑

j=0

βi,j

∫

O

u2
hbj(ξ)dξdη, (7.8)
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or in matrix form


C0

.

.

.

CN




=




β0,0 . . . β0,N

. . .

. . .

. . .

βN,0 . . . βN,N







∫
O

u2
hb0(ξ)dξdη

.

.

.
∫

O
u2

hbN(ξ)dξdη




, (7.9)

To evaluate the integral, we follow the procedure described in [67]. We exploit the tensor-

product form of bi(ξ), map the integral over a unit square, and use the composite one

dimensional Gauss quadratures to carry out the integral. Specifically,
∫

O

u2
hbi(ξ)dξdη =

∫ 1

−1

∫ 1

−1

u2
h(ζ, η)bi(ζ, η)

(1− η)

2
dζdη (7.10a)

≈
Q∑

m=0

Q∑

l=0

u2
h(ζl, ηm)φr(ζl)φrs(ηm)wlwm (7.10b)

=

Q∑

m=0

φrs(ηm)

Q∑

l=0

u2
h(ζl, ηm)φr(ζl)wlwm, (7.10c)

(ζl, ηm) are quadrature points with total number of (Q + 1) in each direction. Exact

integration requires Q+1 ≈ 3k/2. wl and wm are quadrature weights which for definition

we refer to [67]. The last equation can be evaluated in two steps as

f̃r(ηm) =

Q∑

l=0

u2
h(ζl, ηm)φr(ζl)wlwm, (7.11a)

∫

O

u2
hbi(ξ)dξdη ≈

Q∑

m=0

f̃r(ζm)φrs(ηm) (7.11b)

Assuming u2
h(ζl, ηm)wlwm can be computed before the evaluation of the summation in

the first step, the first step requires Q(2Q+1)(k+1)+2(Q+1)2 floating point operations,

while the second step requires (2Q+1)(N +1) floating point operations. After evaluating

this integral, the vector Ci in eq. 7.9 is recovered through the matrix-vector product with

the cost of (N + 1)(2N + 1) floating point operations.

We now step back and find the complexity of representing uh based on the modal

basis, eq. 7.5a, as well as the complexity of projecting uh to the quadrature points
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(ζl, ηm) required in eq. 7.11a. Note that since ∂Li

∂ξ
is constant for all elements, the

expansion coefficients in eq. 7.5b can be computed and stored in a preprocessing stage.

To compute the expansion coefficient of uh, we start with the equivalence of nodal and

modal representation of uh, namely

uh =
N∑

i=0

uh(ξi)Li(ξ) =
N∑

i=0

αibi(ξ). (7.12)

Taking the elemental inner-product of both sides of the second equality with respect to

the basis function bj(ξ) yields

N∑

i=0

αi

∫

O

bi(ξ)bj(ξ)dξdη =

N∑

i=0

uh(ξi)

∫

O

Li(ξ)bj(ξ)dξdη, j = 0, ..., N, (7.13)

which in matrix form reads




∫
O

b0b0 . . .
∫

O
b0bN

. . .

. . .

. . .
∫

O
bNb0 . . .

∫
O

bNbN







α0

.

.

.

αN




=




∫
O

L0b0 . . .
∫

O
LNb0

. . .

. . .

. . .
∫

O
L0bN . . .

∫
O

LNbN







uh(ξ0)

.

.

.

uh(ξN)




,

(7.14)

In this system, the matrix on the left is identity due to the fact that the modal basis

functions are orthonormal. The matrix on the right is constant for all elements and can

be computed and stored in a preprocessing stage. Therefore, the expansion coefficients

αi can be calculated through the matrix-vector product in (N +1)(2N +1) floating point

operations.

Finally, to obtain uh(ζl, ηm) we once again exploit the tensor-product structure of the

modal basis. We have

uh(ζl, ηm) =
N∑

rs

αrsbrs(ζl, ηm) =
∑

r

∑

s

αrsφr(ζl)φrs(ηm), (7.15)
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which can be evaluated in two steps as

f̃r(ηm) =
∑

s

αrsφrs(ηm) (7.16a)

uh(ζl, ηm) =
∑

r

f̃r(ηm)φr(ζl). (7.16b)

The first and the second steps can be performed in (Q + 1)(2(N + 1) − (k + 1)) and

(Q + 1)2(2k + 1) floating point operations, respectively.

Below we summarize each significant step and its complexity in evaluating the non-

linear term (eq. 7.1).

• Evaluation of the right-hand-side vector in eq. 7.9 with the cost of Q(2Q + 1)(k +

1) + 2(Q + 1)2 + (2Q + 1)(N + 1) floating point operations.

• Matrix-vector product in eq. 7.9 requiring (N+1)(2N+1) floating point operations.

• Matrix-vector product on the right-hand-side of eq. 7.14 requiring (N +1)(2N +1)

floating point operations.

• Projection in eq. 7.15 with the cost of (Q+1)(2(N +1)− (k+1))+(Q+1)2(2k+1)

floating point operations.

Therefore, the total number of floating point operations in evaluating the nonlinear term

(eq. 7.1) using the new procedure is

C2D = 2(N + 1)(2N + 1) + Q(2Q + 1)(k + 1) + (2Q + 1)(N + 1) + 2(Q + 1)2

+(Q + 1)(2(N + 1) − (k + 1)) + (Q + 1)2(2k + 1) (7.17)

The first term is O(k4) operations while the remaining terms are O(k3) operations. Sim-

ilar procedure can be followed for the evaluation of the integral in three space dimensions

leading to the total cost of

C3D = 2(N + 1)(2N + 1) + Q2(2Q + 1)(k + 1) + Q(2Q − 1)(k + 1)(k + 2)/2

+(2Q + 1)(N + 1) + 2(Q + 1)3 + Q(2(N + 1) − (k + 1)(k + 2)/2)

+Q2((k + 1)(k + 2) − (k + 1)) + Q3(2k + 1) (7.18)
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In the above equation the first term is proportional to O(k6) while the remaining terms

are proportional to O(k4).

# of floating point operations

Two dimensions Three dimensions

Order C C2D C C3D

1 49 60 81 116

2 294 297 974 967

3 769 859 4273 4008

4 1998 1911 29575 11791

5 4059 3648 74194 28337

6 7882 6283 240871 59571

7 15951 10059 481361 113838

8 26019 15237 1142043 202509

9 40223 22108 2167371 340661

10 59559 30981 3864089 547831

Table 7.1: The number of floating point operations in evaluating the nonlinear term (eq. 7.1) using two

different approaches: current implementation using the quadrature formulae eq. 7.2; and new approach

based on the tensor-product modal basis functions. C (eq. 7.4) is the number of operations for the current

implementation and C2D (eq. 7.17) and C3D (eq. 7.18) denote the corresponding operation counts for

the new approach. Note that since economic quadratures on standard triangle and tetrahedron have

been reported only up to quadrature orders q = 20 and q = 21 [108], the complexity estimate C for k ≥ 6

in two dimensions (and k ≥ 7 in three dimensions) are based on composite one-dimensional quadrature

formulae.

Table 7.1 shows the total number of floating point operations with respect to the

approximation orders k = 1, ..., 10 for the current implementation (eq. 7.4) and for the

new approach (eqs. 7.17 and 7.18) for both two and three space dimensions. As is
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clear from the table, the new approach does not offer any advantage over the current

implementation for low orders k ≤ 3 in both two and three space dimensions. On the

other hand, for higher orders the new approach appears more efficient. While in two

dimensions the advantage of the new approach is only notable at high orders k > 8, in

three dimensions the advantage of the new approach is significant even for k = 4 and

increases as k increases. For example, for k = 4, the evaluation of the nonlinear term

using the new approach requires less than half of the number of floating point operations

required using the current implementation.

Matrix-vector product

Since in the current implementation, the matrix associated with the global Laplacian is

explicitly constructed, a Laplacian matrix-vector product requires O(Ek2d) floating point

operations and O(Ek2d) memory references with E denoting the number of elements.

This complexity is higher than the complexity O(Ekd) used (in chapter 1, section 1.3.1)

to demonstrate the efficiency of the high-order methods over the low-order methods.

Therefore, a more efficient implementation scheme needs to be adopted. As mentioned

in the previous chapter, the real performance barriers are out of cache operations. This

is due to the fact that in current computer architectures, the regular memory speed is

much lower than the microprocessor speed and a single noncached memory reference

can cost 10 − 100 clock cycles [36]. Thus, an effective strategy for reducing cost is to

reduce the memory reference rate. We here present a matrix-free approach for the global

matrix-vector products with a reduced memory reference rate.

For simplicity, let us consider the evaluation of the term

S ≡
E∑

K=1

∫

K

(
∂v

∂x

∂u

∂x
+

∂v

∂y

∂u

∂y
)dx, (7.19)

appearing in the interior penalty discretization of the Laplacian in two space dimensions

(d = 2) on a mesh consisting of straight-sided triangles. After applying the nodal basis
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described in chapter 3, the above integral can be evaluated as

S ≡




S1

.

.

.

SE







u1

.

.

.

uE




, (7.20)

where SK is a (N + 1) × (N + 1) matrix defined as

SK = JK

(
Dx

K
T (V −1)T V −1Dx

K + DyT
K(V −1)T V −1Dy

K

)
, (7.21)

with

Dx
K = Dξ ∂ξ

∂x

∣∣∣∣
K

+ Dη ∂η

∂x

∣∣∣∣
K

, (7.22a)

Dy
K = Dξ ∂ξ

∂y

∣∣∣∣
K

+ Dη ∂η

∂y

∣∣∣∣
K

(7.22b)

and uK ≡ (u0, ..., uN) is the vector containing the unknown values of element K. The

matrices V , Dξ and Dη were defined in chapter 3. If matrix SK is constructed for each

element and then the matrix-vector multiplication is carried out (similar to the current

explicit construction of the global matrix), the cost scales as O(Ek2d) floating point

operations and O(Ek2d) memory references.

Alternatively, for a matrix-free approach, we first write the matrix SK as

SK = aKDξξ + bKDηη + cKDξη, (7.23)

where

Dξξ = DξT
(V −1)T V −1Dξ, (7.24a)

Dηη = DηT (V −1)T V −1Dη, (7.24b)

Dξη = DξT
(V −1)T V −1Dη + DηT (V −1)T V −1Dξ, (7.24c)
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aK = JK

(
(
∂ξ

∂x
)2

∣∣∣∣
K

+ (
∂ξ

∂y
)2

∣∣∣∣
K

)
, (7.25a)

bK = JK

(
(
∂η

∂x
)2

∣∣∣∣
K

+ (
∂η

∂y
)2

∣∣∣∣
K

)
, (7.25b)

cK = JK

(
∂ξ

∂x

∣∣∣∣
K

∂η

∂x

∣∣∣∣
K

+
∂ξ

∂y

∣∣∣∣
K

∂η

∂y

∣∣∣∣
K

)
. (7.25c)

Note that the matrices in 7.24 are identical for all straight-sided triangles and are (N +

1) × (N + 1). The global integral can then be written as

S ≡




a1I

.

.

.

aEI







Dξξ

.

.

.

Dξξ







u1

.

.

.

uE




+




b1I

.

.

.

bEI


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Dηη

.

.

.

Dηη
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u1

.

.

.

uE
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+


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c1I

.

.

.

cEI





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Dξη

.

.

.

Dξη







u1

.

.

.

uE




, (7.26)

where I is the identity matrix of order N + 1. Using 7.26, the global integral (7.19) is

evaluated in O(Ek2d) floating point operations which is the same as the former approach;

however, the memory reference rate drops to max(O(Ekd),O(k2d)) which is significantly

lower. Note that a similar approach can be used for matrix-vector products in three
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dimensions.

Pressure Preconditioner

If the global pressure matrix is not to be explicitly constructed, the ILU(0) precondition-

ing strategy for the pressure equation as employed in the current implementation is no

longer possible and we need to adopt a different preconditioning approach. We suggest

a two level element-based additive Schwarz method with a global coarse part and a local

fine part. Specifically, the preconditioner matrix B has the form

B = JA−1
C JT +

K=E∑

K=1

RT
KJKA−1

f RK , (7.27)

where J is the interpolation matrix from coarse to fine space, consistent with the fine

space, and RK is a boolean operator that maps global indices to the local ones restricted

to the element K. With approximation order k > 1, AC is the matrix associated with the

IP discretization on the original mesh but with lower order approximation kC = 1. JK is

the Jacobian of each element and Af corresponds to the discretization of the operator

∫

O

∇uh · ∇vdx−
∫

∂O

(
1

2
uh∇v · n +

1

2
v∇uh · n

)
ds +

∫

∂O

µvuhds, (7.28)

where O is the standard element. This preconditioner is not optimal with respect to

the approximation order and mesh isotropy; that is, the iteration numbers grow as the

approximation order increases or as the mesh becomes more anisotropic. Despite this, it

is potentially an effective preconditioner. There exists a fast parallel direct solver for the

solution of the global coarse preconditioner system [116]. This solver is easily accessible

through the PETSc library. Moreover, the local part of the preconditioner involves only a

single matrix inversion of order O(kd) and the application of the preconditioner requires

only max(O(Ekd),O(k2d)) memory references. The performance of this preconditioner

on large problems needs to be investigated.
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7.3.2 Performance Tuning on Large Parallel Computers

As seen in the previous chapter, the parallel performance of the code has been studied for

up to 64 processors. Since mechanical heart valve flow simulations require larger number

of processors (order several hundreds to several thousands), the code must be tested on

and tuned for such large machines. During the testing process, possible improvements

regarding communication strategies may become necessary. In particular, in the current

implementation, the communication pattern for nonlinear term evaluations requires n

data exchanges per processor where n is the number of elements on the partition bound-

aries. To reduce this, the data for all elements destined to a given processor must be first

packed together and then sent to the destination through a single message. This can be

programmed using the general scatter class provided by the PETSc library.

7.3.3 Curved Elements

Physiological flow simulations involve geometries with curved boundaries. As a result,

the corresponding computational meshes contain curved elements along the geometry

boundaries. While a numerical scheme for operator evaluations over curved elements was

presented in chapter 3, the scheme has not yet been implemented. This is the subject

of future work. The AOMD library will facilitate this task by providing functions for

constructing Bezier and Lagrange curves. Although some efficiency strategies such as

those for inner product evaluation and system preconditioning described in the previous

sections may not directly apply to the curved elements, the use of curved elements does

not have a significant impact on the efficiency of the solver. This is because the use of

curved elements is limited to boundaries of the domain and the majority of the elements

still remain straight-sided (or planar) to fill in the interior of the domain.
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