22
Amgoud and Cayrol

21
Inferring from inconsistency in preference-based argumentation frameworks

Inferring from inconsistency in preference-based argumentation frameworks
Leila AMGOUD (amgoud@irit.fr)

Claudette CAYROL (ccayrol@irit.fr)
Institut de Recherche en Informatique de Toulouse (I.R.I.T)

Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Abstract. Argumentation is a promising approach to handle inconsistent knowledge bases, based on the justification of plausible conclusions by arguments. Due to inconsistency, arguments may be defeated by counterarguments (or defeaters). The problem is thus to select the most acceptable arguments. In this paper we investigate preference-based acceptability. The basic idea is to accept undefeated arguments and also arguments which are preferred to their defeaters. We say that these arguments defend themselves against their defeaters. We define argumentation frameworks based on that preference-based acceptability. Finally, we study associated inference relations for reasoning with inconsistent knowledge bases.

Key words: Handling inconsistency, Argumentation, Preference relations
1.
Introduction

1.1.
INCONSISTENCY HANDLING

An important problem in the management of knowledge-based systems is the handling of inconsistency. Inconsistency may be present for mainly three reasons:

· The knowledge base includes default rules [6, 7, 8, 23, 29]. Let’s consider for instance the general rules "birds fly", "penguins are birds" and the specific rule "penguins do not fly". If we add the fact "Tweety is a penguin", we may conclude that Tweety does not fly because it is a penguin, and also that Tweety flies because it is a bird.

· In model-based diagnosis [21, 22, 30], a knowledge base contains a description of the normal behavior of a system, together with observations made on this system. Failure detection occurs when observations conflict with the normal functioning mode of the system and the hypothesis that the components of the system are working well; that leads to diagnose which component fails;

· Several consistent knowledge bases pertaining to the same domain, but coming from different sources of information, are available. For instance, each source is a reliable specialist in some aspect of the concerned domain but is less reliable in other aspects [11]. A straightforward way of building a global base is to concatenate the knowledge bases i provided by each source. Even if each base i is consistent, it is unlikely that their concatenation will be consistent also.

Moreover, Gabbay and Hunter [18] claim that inconsistency in a database exists on purpose and may be useful if its presence triggers suitable actions that cope with it. They give the example of overbooking in airline booking systems.

1.2.
ARGUMENT-BASED APPROACHES

Classical logic has many appealing features for knowledge representation and reasoning, but unfortunately when reasoning with inconsistent information, i.e. drawing conclusions from an inconsistent knowledge base, the set of classical consequences is trivialized. To solve this problem, two kinds of approaches have been proposed: One is to revise the knowledge base and restore consistency. The other one is to accept inconsistency and to cope with it.

The first approach initiated in [31] proposes to give up some formulas of the knowledge base in order to get one or several consistent subbases of the original base. Then plausible conclusions may be obtained by applying classical entailment on these subbases. In [12], Cayrol and Lagasquie have presented a thorough comparative study of consequence relations based on the selection of consistent subbases. That so-called coherence-based approach may be natural when handling exceptions. It also makes sense in model-based diagnosis, since it comes down to finding the reasons for a failure. In the case of multiple sources, restoring consistency looks debatable, since the goal of retaining all available information is quite legitimate in that case. Two difficulties are met by coherence-based approaches: there are several ways of restoring consistency yielding different results; moreover part of the information is thrown away and we no longer have access to it.

In contrast, paraconsistent approaches bypass these difficulties. They proceed differently since they retain all the available information but prohibit the logic from deriving trivial conclusions. The work reported here lies in that framework. More precisely, we are interested in the development of argumentation systems for inferring from inconsistent knowledge bases. The basic idea is that each plausible conclusion inferred from the knowledge base is justified by some strong reason for believing in it. Such reasons are based on the idea of argument which goes back to [33], and is related to previous proposals by [24, 25, 26, 32, 34] which were however suggested in the framework of defeasible reasoning for handling exceptions. Argumentation is a promising model for reasoning with inconsistent knowledge, based on the construction and the comparison of arguments. It may be also considered as a different method for handling uncertainty in the sense that it should be possible to say more about the certainty of a particular fact than the certainty quantified with a degree in [0, 1]. In particular, it should be possible to assess the reason why a fact holds, under the form of arguments, and to combine these arguments for the certainty evaluation. Indeed, the process of combination may be viewed as a kind of reasoning about the arguments in order to determine the most acceptable of them.

1.3.
THE KEY CONCEPT OF ACCEPTABILITY

The main approaches which have been developed for reasoning within an argumentation system rely on the idea of differentiating arguments with a notion of acceptability. Two kinds of acceptability have been proposed:

· An individual acceptability where a level is assigned to each argument depending on the existence of direct defeaters (or counter-arguments). That leads to the concept of acceptability class introduced in [16, 17].

· A joint acceptability which relies upon a notion of defence [14, 15]: The set of all the arguments that a rational agent may accept must defend itself against any defeater.

In [3], we have shown that individual acceptability is a special case of joint acceptability and that the arguments accepted using individual acceptability are also accepted using joint acceptability, but the reverse is not true.

These notions of acceptability have been defined purely on the basis of other constructable arguments. For instance, an argument supporting a given fact defeats an argument supporting the opposite fact.

1.4.
PREFERENCE-BASED ARGUMENTATION FRAMEWORKS

The notion of priority plays a crucial role in the study of knowledge-based systems. When priorities attached to pieces of knowledge are available, the task of coping with inconsistency is greatly simplified, since conflicts have a better chance to be resolved. Our aim is to take advantage of these priorities in argumentation frameworks.

In [10] we have proposed a methodological approach to the integration of preference orderings into argumentation frameworks. Principles have been specified for taking into account preference orderings in the selection of acceptable arguments. Then in [1], we have investigated the definition of preference relations for comparing conflicting arguments. The topic of this paper is to report results on the combination of these previous works.

Our purpose is to enforce the so-called individual acceptability. The basic idea is to keep as many arguments as possible. Indeed, we accept arguments which are not defeated and also some defeated arguments provided that they are preferred to their defeaters. Those arguments defend themselves against any attack.

In another work [3], we have enforced the joint acceptability by introducing preference relations. We have also developed a proof theory for a preference-based argumentation framework in order to check if a given argument is acceptable.

1.5.
OVERVIEW OF THE PAPER

This paper is organized as follows: Section 2 introduces the basic definitions of an argumentation framework and of the acceptability concept. Examples taken from [16] are presented in section 3. Section 4 is divided in two parts: the first one is devoted to the study of preference relations between arguments. The second part introduces a general and abstract preference-based argumentation framework based on a notion of defence. An application of that framework to handling inconsistency in knowledge bases is presented in Section 5. In Section 6, we show that our approach enables the recovery of other proposals for combining preferences and arguments, and allows us to generalize previous results about argumentative inference. Section 7 is devoted to some concluding remarks and perspectives. Proofs are given in the appendix.

2.
The basic argumentation framework

According to Dung [14, 15], a basic argumentation framework is defined as a pair consisting of a set of arguments and a binary relation representing the defeasibility relationship between arguments. Here, an argument is an abstract entity whose role is only determined by its relation to other arguments. Then its structure and its origin are not known. Such representation of an argumentation framework is important since it allows one to focus exclusively on the acceptability of arguments without getting entagled in the details of what arguments are.

DEFINITION 1. An argumentation framework is a pair <A, R> where A is a set of arguments and R is a binary relation representing a defeasibility relationship between arguments, i.e. R A A. (A, B) R or equivalently "A R B" means that the argument A defeats the argument B. We also say that A and B are in conflict.

Each defeasibility relation leads to an argumentation framework. In a given argumentation framework, three categories of arguments are distinguished:

· The non defeated arguments. They are gathered in the so-called class of acceptable arguments. Acceptable arguments represent the "good" arguments. In the case of handling inconsistency in knowledge bases, the formulas supported by such arguments will be inferred from the base.

· The arguments defeated (in the sence of the relation R) by acceptable arguments. These arguments are gathered in the so-called class of rejected arguments. Such arguments would not be considered in the process of inference from a knowledge base.

· The arguments which are neither acceptable nor rejected are gathered in the so-called class of arguments in abeyance. This class contains the arguments defeated (in the sence of R) by other arguments which are not acceptable.

Formally we define these classes as follows:

DEFINITION 2. Let <A, R> be an argumentation framework. The class of acceptable arguments, denoted by AccR (if no ambiguity on A), is the set {A A | there does not exist B A such that B R A}. The class of rejected arguments is denoted by RejR = {A A | (B AccR such that B R A}. The class of arguments in abeyance is AbR = A \ (AccR (RejR).
On the same set of arguments, for each defeasibility relation a class of acceptable arguments, a class of rejected arguments and a class of arguments in abeyance can be defined.
EXAMPLE 1. Let <A, R> be the argumentation framework defined by A = {A, B, C, D} and R = {(A, B), (C, D), (D, C)}. The argument A is not defeated so AccR = {A}. The argument B is defeated by A which is acceptable so RejR = {B}. The two arguments C and D defeat each other so neither C nor D is acceptable, AbR = {C, D}.

EXAMPLE 2. Let <A, R> be the argumentation framework defined by A = {A} and R = {(A, A)}. In this case AccR = (, RejR = (and AbR = {A}.
The construction of the three classes allows the definition of the status of the arguments. These statuses will be used to determine the conclusions to be inferred from a knowledge base.

The argumentation process is summarized on the following schema:

Figure 1. Argumentation process
3. The argumentation frameworks of Elvang-Goransson, Fox and Krause

As said in the introduction, we focus on the problem of handling inconsistency in knowledge bases. Elvang-Goransson & al. [16] have proposed argumentation frameworks for that purpose. The arguments are built from an inconsistent knowledge base = (E, K) which is not assumed deductively closed. The sets E and K contain formulas of a propositional language L. K represents a core of knowledge and is assumed consistent. In contrast, formulas of E represent defeasible pieces of knowledge, or beliefs. So K E may be inconsistent. We denote by |– the classical entailment and by the classical logical equivalence.

3.1. THE NOTION OF ARGUMENT

The following definition of argument has been used:

DEFINITION 3. An argument of E in the context K is a pair (H, h), where h is a formula of L and H is a subbase of E satisfying: (i) K H is consistent, (ii) K H | - h, (iii) H is minimal (no strict subset of H satisfies i and ii). H is called the support and h the conclusion of the argument.

We denote by A() the set of all the arguments which are constructed from a knowledge base . There exist other definitions of an argument. In [27, 28], an argument is a sequence of chained implicative rules. Each rule has a consequent part (consisting of one literal) and an antecedent part (consisting of a conjunction of literals). The consequent of each rule in a given argument is considered as a conclusion of that argument. In that sense, one argument may have contradictory conclusions.

DEFINITION 4. (H', h') is a subargument of the argument (H, h) iff H' H.

3.2. THE DEFEASIBILITY RELATION

We present below the relations "Rebut" and "Undercut" used in [16].

DEFINITION 5. Let (H, h) and (H', h') be two arguments of A().

· (H, h) rebuts (H', h') iff h h'. An argument is rebutted iff there exists an argument for the negated conclusion.

· (H, h) undercuts (H', h') iff for some h" H', h h". An argument is undercut iff there exists an argument against one element of its support.

Another defeasibility relation is the relation "Contradict" based on the relation "Rebut" and defined in [10] as follows:

· (H, h) contradicts (H', h') iff (H, h) rebuts a subargument of (H', h').

EXAMPLE 3. K = Ø, E = {p, pb, pf, bf} where p means penguin, b means bird, f means fly. Let H = {p, pb, bf}, H' = {p, pf} and H" = {p, pb, pf} be three subsets of E. The argument (H, f) is rebutted by the argument (H', f) and is undercut by the argument (H", (bf)).

PROPOSITION 1. Let (H, h), (H', h') be two arguments of A().

· If (H, h) undercuts an argument then (H, h) is rebutted.

· If (H, h) is rebutted then it is undercut.

· If (H, h) rebuts (H', h') then (H, h) contradicts (H', h').

3.3. THE CLASSES OF ARGUMENTS

In their work, Elvang-Goransson, Fox and Krause were interested only by what they call the acceptability class or the set of acceptable arguments. So for both previous argumentation frameworks, <A(), Rebut> and <A(), Undercut>, an acceptability class has been defined. AccRebut gathers all the arguments of A() which are not rebutted and AccUndercut gathers all the arguments of A() which are not undercut. There exists also another acceptability class which does not depend on the defeasibility relation. This class, denoted by Acc*, gathers all the arguments with an empty support.

The following inclusions hold:

PROPERTY 1. Acc* AccUndercut AccRebut A().

The above inclusions allow comparison of the results of the two frameworks. An argument (H, h) is said more acceptable than an argument (H', h') iff there exists an acceptability class containing (H, h) and not (H', h'). Hence, the arguments of AccUndercut are more acceptable than the ones of AccRebut.

In addition to property 1, we can show that the arguments of AccUndercut can be defined from the class AccRebut.

PROPOSITION 2. Let (H, h) be an argument of A(). (H, h) belongs to AccUndercut

iff for each element (of H, ({(}, () belongs to AccRebut

iff for each subargument (H', h') of (H, h), (H', h') belongs to AccRebut.

As for the two previous argumentation frameworks, an acceptability class can also be defined for the framework <A(), Contradict>. This class will be denoted by AccContradict and we can easily show that: AccContradict = AccUndercut.

Following definition 2, we define also the classes of rejected arguments, RejRebut, RejUndercut and RejContradict, and the classes of arguments in abeyance, AbRebut, AbUndercut, and AbContradict, associated respectively to the frameworks <A(), Rebut>, <A(), Undercut> and <A(), Contradict>. As a consequence of proposition 1, we have the following result:

PROPOSITION 3. RejRebut = RejUndercut = RejContradict = (and AbRebut (AbUndercut = AbContradict.

The above result means that there are no rejected arguments in the frameworks <A(), Rebut>, <A(), Undercut> and <A(), Contradict>. Hence, AbRebut, AbUndercut and AbContradict contain respectively the rebutted arguments, the undercut ones and the contradicted aguments. (The proofs of the above results are in the appendix)
3.4. THE CONSEQUENCE RELATIONS

Selecting the most acceptable arguments enables us to find the most plausible inferences. So from the hierarchy of acceptability classes, a hierarchy of consequence relations has been defined as follows in [16]:

DEFINITION 6.
· h is a certain consequence of , denoted by |~ce h, iff ((H, h) (Acc*.

· h is a confirmed consequence of denoted by |~co h, iff ((H, h) AccUndercut.

· h is a probable consequence of , denoted by |~pr h, iff ((H, h) AccRebut.

· h is a plausible consequence of , denoted by |~pl h, iff ((H, h) A().
The different inclusions between the classes induce links between the above consequence relations:

PROPERTY 2. Let be a knowledge base and h a formula of the language L. |~ce h (|~co h (|~pr h (|~pl h.

EXAMPLE 4. K = Ø,E = {a, ab, a}. ab is a confirmed but not a certain consequence. b is a probable but not a confirmed consequence; the argument ({a, ab}, b) belongs to AccRebut but is undercut by ({a}, a). a is a plausible but not a probable consequence.

3.5. THE LIMITS OF THE TWO FRAMEWORKS

The above defined argumentation frameworks lead to a cautious definition of acceptability. An argument (and by extension an inference) is accepted if it is undefeated. With many defeasibility relations, when a given argument is defeated, the defeater itself is defeated and then unacceptable. So the acceptable arguments don’t appear in any conflict. For instance, from the knowledge base given in example 3, we can find one argument in favor of "f": ({p, pb, bf}, f) and one argument in favor of "¬f": ({p, pf}, f). These two arguments rebut each other, so they are not acceptable. Consequently, neither f nor f is inferred from the knowledge base in the framework (A(), "Rebut") although we would like to infer f since we know that "pinguins don't fly". The same problem occurs in the framework (A(), "Undercut") since each argument is undercut. So, other ways to select acceptable arguments are needed. In the next section, the previous frameworks are extended so that more arguments are accepted.

4.
Preference-based argumentation frameworks

The notion of acceptability has been most often defined purely on the basis of other constructible arguments. But other criteria may be considered for comparing arguments. In the case of knowledge bases, for instance, specificity [32], or explicit priorities on the beliefs can be taken into account. More generally, preference relations can be used for comparing arguments. Indeed, recent work (for instance [8, 12, 13]) has proved that preference relations allow for more sophisticated and more appropriate handling of conflict resolution and uncertain knowledge.

As we are concerned with inconsistent knowledge bases, we present below some of the preference relations proposed in that case. The relations between the arguments are usually defined from priorities over the beliefs. Two kinds of priorities are most commonly encountered:

· Implicit priorities are extracted from the knowledge base. They are used in conditional approaches. Default rules can be (partially) ordered by exploiting specificity relations between the contexts. For example we know that all birds are animals; that generally animals do not fly and birds fly. For a given bird, the conflict is solved by privileging the rule about birds.

· Static priorities or explicit priorities are specified outside the logical theory to which they apply. They may be given under the form of a partial order on the beliefs.

The preference relations between arguments are defined from a preordering over the supports of that arguments. The preordering over the supports is itself computed from the (explicit or implicit) priorities over the beliefs of the set E.
Reminder: A binary relation P defined on a set X is a preordering iff it is reflexive and transitive.

From a preordering P, a relation of equivalence EP and a strict ordering relation SP can be defined as follows: x EP y iff x P y and y P x and x SP y iff x P y and not (y P x).

The relation of equivalence enables to partition X into several classes of equivalence. If the preordering is partial, which means that there exist elements of X not comparable, the different classes are not all comparable too. However, if the preordering is total, a strict total ordering may be defined on the classes.

When a belief base E is equipped with a total preordering, it is equivalent to consider its partition into classes E1, (, En such that E1 contains the most preferred beliefs and En contains the less preferred ones. We say also that the belief base is stratified and we denote it by E = E1 (((En.

Let’s consider P a preordering over the elements of the belief base E. From P we define a preordering, denoted by Pref, between sets of beliefs. Pref will allow comparison of supports of arguments. Finally, the preference between arguments is defined as follows:

DEFINITION 7. Let Pref be a (partial or total) preordering on subsets of E and let (H, h), (H', h') be two arguments of A(). (H, h) is Pref-preferred to (H', h') iff H is preferred to H' w.r.t Pref.

NOTATION: Let (H, h), (H', h') be two arguments of A(). If Pref is a preordering then (H, h) Pref-preferred to (H', h') means that (H, h) is at least as "good" as (H', h'). >>Pref and (Pref will denote respectively the strict ordering and the relation of equivalence associated with the preference between arguments. Hence, (H, h) >>Pref (H', h') means that (H, h) is strictly Pref-preferred to (H', h'). (H, h) (Pref (H', h') means that (H, h) is Pref-preferred to (H', h') and (H', h') is Pref-preferred to (H, h). Figure 2 synthesizes the process of constructing preference relations between arguments.

Figure 2. Constructing preference relations

4.1. PROPERTIES OF PREFERENCE RELATIONS

We present here some interesting properties that a preference relation may satisfy. These properties are of great importance since they allow us to prove interesting properties of argumentation frameworks and their associated consequence relations in next sections. Let Pref denote a (partial or total) preordering on subsets of the belief base E.

Minimality: Pref satisfies "Minimality" for set inclusion iff H, H' (E, if H' (H then H' is preferred to H w.r.t Pref.

This property is of great importance since the support of an argument is a minimal subset of the considered belief base.

And: Pref satisfies "And" iff for any H, H', H" subsets of the belief base E, if H is preferred to H' w.r.t Pref and H" is preferred to H' w.r.t Pref then H H" is preferred to H' w.r.t Pref.

Monotonicity: Pref satisfies "Monotonicity" iff for any H, H', H" subsets of the belief base E such that H' (H" = (. If H is preferred to H' then H H" is preferred to H' H".
4.2.
EXAMPLES OF PREFERENCE RELATIONS

Examples of such relations are those based on the certainty level of the beliefs. The belief base E is supposed to be equipped with a total preordering (.

a (b iff a is at least as certain as b.

In that case the set E is stratified into E1 … En such that beliefs in Ei have the same certainty level and are more certain than beliefs in Ej where j > i. The stratification of E enables to define a certainty level of a subset H of E. It is the highest number of a stratum met by this subset. In [4], it is defined as level(H) = min {j | 1 j n and Hj+1 …Hn = }, where Hi denotes H Ei (min is taken equal to n).
EXAMPLE 5. Let K = , E = E1 E2 E3 where E1 = {p, pb}, E2 = {p¬f}, E3 = {bf}. The certainty level of the subset {p, p¬f} is 2 whereas the certainty level of the subset {p, bf, pb} is 3.

The certainty level may be used to define a total preordering on the subsets of E.

DEFINITION 8. Let H and H' be two consistent subsets of E. H is preferred to H' iff level(H) level(H'). The associated preference relation between arguments will be denoted by BDP.

We can define the strict partial ordering associated to the above relation as follows: H is strictly preferred to H' iff level(H) < level(H') iff i 1 such that Hi = , H'I and for j > i Hj = H'j = .

EXAMPLE 5. (continued) The argument ({p, p¬f}, ¬f) is strictly BDP-preferred to the argument ({p, bf, pb}, f) i.e. ({p, p¬f}, ¬f) >>BDP ({p, bf, pb}, f) since {p, p¬f} is preferred to {p, bf, pb} w.r.t BDP preference relation.

When the knowledge base is equipped with a partial preordering , definition 8 may be generalized as follows: H is strictly preferred to H' iff k H, k' H' such that k > k' (i.e. k k' and not k' k).

PROPERTY 3. The strict BDP-preference does not satisfy "Monotonicity". (See the following counter-example)

EXAMPLE 6. Let K = , E = E1 E2 E3 E4 E5 E6 with E1 = {a}, E2 = {b}, E3 = {c, d}, E4 = {e}, E5 = {f} and E6 = {g}. Let A = {a, c}, B = {b, e}, C = {g}. A is preferred to B since level(A) = 3 < level(B) = 4 but level(A C) = level(B C) = 6.
PROPERTY 4. The BDP-preference respects "Minimality" and the "And".

Another interesting preference relation is the one defined in [13] and corresponding to the well-known principle of "elitism": "Everything kept must be better than something removed". This relation assumes that the knowledge base is equipped with a partial preordering denoted by .

DEFINITION 9. Let H and H' be two consistent subsets of E. H is preferred to H' iff k H \ H', k' H' \ H such that k > k' (i.e. k k' and not k' k). The associated preference relation between arguments will be denoted by ELI.

It can be proved that when the knowledge base is equipped with a total preordering, this preference relation can also be defined in terms of the certainty level as follows:

H is preferred to H' iff level(H \ H') < level(H'\H).

EXAMPLE 7. Let K = , E = E1 E2 E3 E4 where E1 = {a}, E2 = {b, c}, E3 = {d}, E4 = {e}. The subset H = {a, b, e} is preferred to the subset H' = {c, d, e} w.r.t ELI-preference whereas H and H' are not comparable by the BDP-preference (level(H) = level(H') = 4).
PROPERTY 5. When the belief base E is equipped with a total preordering, the ELI-preference respects "Minimality" and "Monotonicity".

PROPERTY 6. The ELI-preference does not verify "And". (See the following counter-example)

EXAMPLE 6. (continued). A = {c, e}, B = {d, f} and C = {b, f}. A is preferred to B since level(A\B) < level(B\A), C is preferred to B but B is preferred to A C.

BDP-preference and ELI-preference have been introduced quite independently, but have analogous behavior in many situations.

PROPOSITION 4. Let = (K, E) be a knowledge base with E stratified in E1 …En. Let (H, h) and (H', h') be two arguments of A(). If (H, h) >>BDP (H', h') then (H, h) >>ELI (H', h').

The converse holds iff level(H H') < level (H' \ H) (i.e. when the common elements are of high importance).

The above result shows that the ELI-preference may be viewed as a refinement of the BDP-preference in the sense that the common elements (of H and H') are excluded before taking the level into account. Another refinement of the BDP-preference consists of extending the concept of level as follows:

DEFINITION 10. Let E = E1 … En be a stratified belief base and H a consistent subset of E. For each 1 k n, let us define levelk(H) = level (H1 …Hk) = min{j / 1 j k andHj+1 …Hk = } (with min taken equal to k). Then, level(H) = leveln(H).

Using that new definition of certainty level, pairs of subsets of the belief base can be compared as follows:

DEFINITION 11. Let H and H' be two consistent subsets of E. H is preferred to H' iff 1 k n such that levelk(H) < levelk(H') and for each j>k, levelj(H) = levelj(H'). This preference relation will be denoted by WBDP.

PROPERTY 7. The WBDP-preference respects "Minimality" but it does not verify Monotonicity and the "And".

Preference relations enable us to compare the arguments of A(). So they can be used to choose between two conflicting arguments (i.e. for instance with contradictory conclusions). However, considering these preference relations alone without taking into account the logical structure of the arguments may lead to adventurous results as shown by the following example:
EXAMPLE 8. Let K = , E = E1 E2 E3 E4 where E1 = {a, b}, E2 = {ab}, E3 = {bc} and E4 = {ac}. We can find one argument in favor of c, ({a, ab, bc}, c), which is preferred w.r.t. the BDP preference to the unique argument supporting c ({a, ac}, c).

So c may be inferred. By contrast, in coherence-based approaches, only one maximal consistent subset of E is selected: {a, b, bc, ac}. It contains as many prioritary formulas as possible. From that selected subset, c is inferred. These contradictory results can be explained by considering the support of the argument in favor of c. One element of the support, ab, is disqualified in the sense that there is a preferred argument ({a, b}, ab) for its negation.
So, we propose to combine the preference relations with the defeasibility relations in order to refine the comparison between arguments and to enforce the concept of acceptability.

4.3.
INDIVIDUAL DEFENCE
The result of combining preference relations with defeasibility relations leads to more complex argumentation frameworks defined as follows:

DEFINITION 12. A preference-based argumentation framework (PAF) is a triplet <A, R, Pref> where Pref is a (partial or total) preordering on A A. We recall that >>Pref denotes the associated strict partial ordering.

To enforce the concept of acceptability used in basic argumentation frameworks, we introduce preference orderings into the definition of acceptability classes. Instead of keeping only the arguments which are not defeated, we accept also the arguments which are preferred to their defeaters. We say that such an argument defends itself against all attacks. So taking into account preference orderings enables us to formalize a notion of defence.

DEFINITION 13. Let <A, R, Pref> be an argumentation framework. Let A, B be two arguments such that B R A. A defends itself against B iff A>>Pref B.

In a preference-based argumentation framework, the acceptability concept is then weakened as follows:

DEFINITION 14. The class of acceptable arguments w.r.t the argumentation framework <A, R, Pref> is {A A | B A if B R A then A >>Pref B} and will be denoted by AccR, Pref. As a consequence, the class of the rejected arguments, denoted by RejR, Pref, is {A A | (B AccR, Pref s.t B R A and not (A >>Pref B)}. The class of arguments in abeyance, denoted by AbR, Pref, is A \ (AccR, Pref (RejR, Pref).

EXAMPLE 1. (continued) In example 1, if we suppose that C >>Pref D, then the class of acceptable arguments corresponding to the argumentation framework <A, R, Pref> is AccR, Pref = {A, C}. Consequently, RejR, Pref = {B, D} and AbR, Pref = (.

PROPERTY 8. The new class of acceptable arguments AccR, Pref enriches the class AccR: AccR (AccR, Pref.

5.
Inferring from inconsistency in preference-based argumentation frameworks

5.1
 NEW CLASSES

In this section, we apply the above framework for handling inconsistency in knowledge bases. For this purpose, we consider the three frameworks <A(), Rebut, Pref>, <A(), Undercut, Pref> and <A(), Contradict, Pref> which represent extensions of <A(), Rebut>, <A(), Undercut> and <A(), Contradict>. The preference relations considered are defined on the supports of the arguments and are assumed to satisfy minimality (for set inclusion). Throughout the following sections, the preference relations presented in section 4.2 will be used to illustrate our ideas.

The idea of the extension is instead of keeping only the arguments which are not rebutted or undercut or contradicted by another argument, we keep also those defending themselves against all attacks (i.e. which are preferred to each rebutting or undercutting or contradicting argument).

DEFINITION 15.

· AccRebut, Pref denotes the set of arguments of A() which are strictly preferred (w.r.t. Pref) to each rebutting argument.

· AccUndercut, Pref denotes the set of arguments of A() which are strictly preferred (w.r.t. Pref) to each undercutting argument.

· AccContradict, Pref denotes the set of arguments of A() which are strictly preferred (w.r.t. Pref) to each contradicting argument.

The acceptability class AccContradict, Pref may be defined in another elegant way using the definition of the class AccRebut, Pref.

DEFINITION 16. Let (H, h) be an argument of A(). (H, h) belongs to AccContradict, Pref iff for each subargument (H', h') of (H, h), (H', h') belongs to AccRebut, Pref.

EXAMPLE 5. (Continued) The argument ({p, p¬f}, ¬f) is preferred w.r.t. the BDP-preference to the unique argument which rebuts it, ({p, pb, bf}, f), so it belongs to the class AccRebut, BDP. It is also preferred w.r.t. the BDP preference to each undercutting argument, ({pb, bf, p¬f}, ¬p) and ({p, pb, bf}, ¬(p¬f)), then it also belongs to the class AccUndercut, BDP.

Taking into account preferences in argumentation frameworks enriches the class of acceptable arguments. Arguments which were rejected or in abeyance in the basic framework are accepted in the new one. However, the use of preferences restricts the properties of the acceptable arguments class. Namely, the properties satisfied by AccRebut and AccUndercut are not all verified by the classes AccRebut, Pref and AccUndercut, Pref. Proposition 2 shows that an argument is not undercut if no element of its support is rebutted. This property is not verified by the class AccUndercut, Pref.
EXAMPLE 9. Let K = (and E = E1 … E5 with E1 = {a, x, ¬r}, E2 = {a¬x}, E3 = {xt}, E4 = {tr} and E5 = {¬rp}. Let’s consider the argument supporting p: ({¬r, ¬rp}, p). The two arguments ({¬r}, ¬r) and ({¬rp}, ¬rp) belong to the class AccRebut, BDP. However, the argument ({¬r, ¬rp}, p) does not belong to the class AccUndercut, BDP since it is undercut by the argument ({x, xt, tr}, r) and ({x, xt, tr}, r) >>BDP ({¬r, ¬rp}, p). Indeed, ({¬r, ¬rp}, p) is undercut since ({¬r}, ¬r) is rebutted by ({x, xt, tr}, r). ({¬r, ¬rp}, p) is not preferred to the undercutting argument, while ({¬r}, ¬r) is preferred to the rebutting argument.

The above example shows that the first part of proposition 2 no longer holds in preference-based argumentation frameworks. Moreover that suggests further refinement of the concept of acceptability in the framework of knowledge bases. The refinement is based on the following observation: the argument ({x, xt, tr}, r) undercuts ({¬r, ¬rp}, p) and this last does not defend itself. However, the argument ({¬r, ¬rp}, p) is only undercut on the formula ¬r and the argument ({¬r}, ¬r) is acceptable. So comparing a whole argument to its undercutting argument seems useless. We introduce then a new class of arguments, denoted by SingPref, which gathers the arguments for which each element of the support is preferred to each rebutting argument.

DEFINITION 17. Let (H, h) be an argument of A(). (H, h) belongs to SingPref iff for each element k of H, the argument ({k}, k) belongs to AccRebut,Pref (or equivalently to AccUndercut, Pref).

EXAMPLE 9. (Continued) The argument ({¬r }, ¬r) is preferred to its rebutting argument, ({x, xt, tr}, r), then it belongs to AccRebut, BDP. The argument ({¬rp},¬rp) is not rebutted then it belongs to AccRebut, BDP. Consequently, the argument ({¬r, ¬rp}, p) belongs to the class SingBDP.

The second part of proposition 2 shows that an argument is not undercut if and only if all its subarguments belong to the class AccRebut. This property is not satisfied by the class AccUndercut, Pref. The following example shows that we can find an argument whose subarguments are all in AccRebut, Pref but which does not belong to the class AccUndercut, Pref.

EXAMPLE 10. Let’s take the knowledge base given in example 8 but with a new stratification of its belief base E. K = (, E = E1 … E5 with E1 = {a}, E2 = {ab}, E3 = {¬b}, E4 = {bc} and E5 = {a¬c}. The argument ({a, ab, bc}, c) does not belong to the class AccUndercut, BDP since it does not defend itself against ({a, ¬b}, ¬(ab)). However, all its subarguments are in AccRebut, BDP.

In addition to the above remark, we show through the following example that not taking into account the subarguments may lead to adventurous results.

EXAMPLE 8. (continued) The unique argument in favor of c is ({a, ab, bc}, c) (AccRebut, BDP. However, one of its subarguments, ({a, ab}, b), is rebutted by ({(b}, (b) and ({(b}, (b) >>BDP ({a, ab}, b). That’s why the argumentation-based approach gives a different result from the approach based on maximal consistent subsets which infers (c.

Such adventurous results are prevented by the acceptability class AccContradict, Pref of the framework <A(), Contradict, Pref>. Contrary to the case when the preference relations are not considered, the class AccContradict, Pref is not always equal to the class AccUndercut, Pref.

The above definitions enable us to recover other proposals for combining preferences and defeasibity relations. For instance, [20] defines "the argument A supporting h conflicts with the argument B supporting h iff B is not strictly preferred to A". We can easily show that: "There exists an argument (H, h) in AccRebut, Pref iff no argument conflicts with (H, h)". In [32], we find the definition "(H, h) defeats (H', h') iff there exists a subargument of (H', h') which rebuts (H, h) and is not strictly preferred to (H, h)". We can prove that: "The argument (H, h) belongs to AccContradict, Pref iff (H, h) is never defeated by some argument of A()".

5.2.
PROPERTIES OF THE NEW CLASSES

The aim of this section is to present the important properties of each class of acceptable arguments defined in section 5.1. We are particularly interested in two main properties: the consistency of the results delivered by the classes and their completeness.

Consistency is important since it allows us to know whether a given class of acceptable arguments delivers safe conclusions or not. To verify the consistency of a class, we start by characterising both the set of all the supports of that class and the set of the conclusions supported by arguments of that class.

Completeness is concerned with the study of whether a given class is complete or not. In other terms, we verify if the set of all the arguments constructed from the union of all the arguments’ supports of a class is the class itself or not.

Another property which has strong effects on the consequence relations associated with the classes is about the subarguments. We would like to verify whether the subarguments of an acceptable argument are also acceptable.

DEFINITION 18. Let B be a subset of A(). Supp(B) denotes the union of the supports of arguments of B. T being a subset of E, Arg(T) denotes the set of arguments having their support included in T.

· The class AccRebut, Pref
Among the four classes, AccRebut, Pref is the one which verifies less properties. This is due to the fact that it takes into account only the conclusions of the arguments and ignores their supports. Let’s consider the framework <A(), Rebut, Pref> such that Pref satisfies minimality (for set inclusion). When Pref ({BDP, WBDP, ELI}, the following inclusions hold.

PROPERTY 9.

· AccRebut, BDP (AccRebut, WBDP (A()

· AccRebut, BDP (AccRebut, ELI (A()
As said before, this class may lead to adventurous results, this can be shown by the fact that the union of all the supports of arguments of AccRebut, Pref may be inconsistent. Formally: Supp(AccRebut, Pref) may be inconsistent. For this reason, this class is discarded and will not be used for handling inconsistency in knowledge bases.

EXAMPLE 8. (continued) The two arguments ({a, a(b, b(c}, c) and ({(b}, (b) belong to AccRebut, BDP but {a, a(b, b(c} ({(b} is inconsistent.

PROPERTY 10. Let (be a knowledge base and <A(), Rebut, Pref> be a PAF. The following (generally strict) inclusion holds: AccRebut, Pref (Arg(Supp(AccRebut, Pref)).

EXAMPLE 8. (continued) The two arguments ({a, a(b, b(c}, c) and ({(b}, (b) belong to AccRebut, BDP then {a, a(b, b(c, (b} (Supp(AccRebut, BDP). From Supp(AccRebut, BDP), we can construct the argument ({a(b, (b}, (a) which does not belong to AccRebut, BDP since it is rebutted by ({a}, a) and ({a}, a) >>BDP ({a(b, (b}, (a).

· The class AccUndercut, Pref
The class AccUndercut, Pref is more cautious than the class AccRebut, Pref, hence it verifies more properties. The most important one is that it does not deliver adventurous results.

Let’s consider the framework <A(), Undercut, Pref>. When Pref ({BDP, WBDP, ELI}, the following inclusions hold.

PROPERTY 11.

· AccUndercut, BDP (AccUndercut, WBDP (A()

· AccUndercut, BDP (AccUndercut, ELI (A()
Another important property of the class AccUndercut, Pref concerns the subarguments.
PROPERTY 12. Let (H, h) be an argument in AccUndercut, Pref.

· (H' (H, if (H', h') (A() then (H', h') (AccUndercut, Pref.

· H, ({},) AccUndercut, Pref.
Contrary to the class AccRebut, Pref, the union of all the arguments supports of the class AccUndercut, Pref is consistent. So AccUndercut, Pref verifies consistency.

PROPERTY 13. Let (be a knowledge base and <A(), Undercut, Pref> be a PAF.

· Supp(AccUndercut, Pref) = | such that ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(AccUndercut, Pref) is consistent.
· Let Pref be a relation without circuit (its definition is not circular). The set of consequences associated with AccUndercut, Pref, {h | (H, h) AccUndercut, Pref}, is consistent.
· AccUndercut, Pref (Arg(Supp(AccUndercut, Pref)). This means that AccUndercut, Pref is not complete.
The results stated in property 13 are of great importance. Indeed, they prove that argument-based inference defined through the class AccUndercut, Pref delivers safe conclusions. Moreover, since the set of consequences obtained with this class is consistent, it will be possible to close it deductively.
· The class AccContradict, Pref
The class of acceptable arguments AccContradict, Pref palliates the limits of the class AccRebut, Pref.

PROPERTY 14. Let (H, h) be an argument in AccContradict, Pref.

· (H' (H, if (H', h') (A() then (H', h') (AccContradict, Pref.

· H, ({},) AccContradict, Pref.
PROPERTY 15. Let (be a knowledge base and <A(), Contradict, Pref> be a PAF.

· Supp(AccContradict, Pref) = | such that ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(AccContradict, Pref) is consistent. Thus, the class AccContradict, Pref satisfies consistency.
· Let Pref be a relation without circuit. {h | (H, h) AccContradict, Pref} is consistent which means that the set of consequences associated with AccContradict, Pref is consistent.
· AccContradict, Pref (Arg(Supp(AccContradict, Pref)). So the class AccContradict, Pref is not complete.
· The class Sing Pref
As shown in Section 5.1, the class SingPref refines the class AccUndercut, Pref. SingPref is the class verifying most interesting properties. It satisfies both consistency and completeness.

PROPERTY 16. Let (be a knowledge base and <A(), Undercut, Pref> be a PAF.

· Let (H, h) SingPref. (H' (H, if (H', h') (A() then (H', h') (SingPref.
· Supp(SingPref) = | and ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(SingPref) is consistent.
· Let Pref be a relation without circuit. {h | (H, h) SingPref} is consistent.
The class SingPref is complete: all the arguments which can be constructed from the union of the argument supports of the class SingPref are elements of that class. Formally:

PROPERTY 17. SingPref = Arg(Supp(SingPref)).
We will denote by Accx, Pref a class of acceptable arguments such that x ({Rebut, Undercut, Contradict, Sing}. Table 1 synthesizes all the above results.

	
	AccRebut, Pref
	AccUndercut, Pref
	AccContradict, Pref
	SingPref

	(H, h) (Accx, Pref. (H' (H, if (H', h') A() then (H', h') (Accx, Pref.
	
	(
	(
	(

	If (H, h) (Accx, Pref then (((H, ({(}, () (AccRebut, Pref.
	
	(
	(
	(

	Supp(Accx, Pref) = {(| ({(}, () (AccRebut, Pref}
	
	(
	(
	(

	Supp(Accx, Pref) is consistent
	
	(
	(
	(

	Arg(Supp(Accx, Pref)) = Accx, Pref
	
	
	
	(

	{h | (H, h) Accx, Pref} is consistent
	
	(
	(
	(

TABLE 1. (the property is satisfied, the property is not satisfied)

5.3.
COMPARATIVE STUDY OF THE FOUR CLASSES

In the previous section, we have presented the properties satisfied by each class, and we have shown that SingPref satisfies more properties and consequently it is the most interesting one.

The purpose of this section is to present a comparative study of the different classes of acceptable arguments: AccRebut, Pref, AccUndercut, Pref, AccContradict, Pref and SingPref. We would like to know whether SingPref captures the results of the other classes satisfying consistency or not.

First, we give some properties which hold for any preference relation Pref defined from the knowledge base and respecting the minimality for set-inclusion. Then, we consider the particular case of a relation Pref based on the concept of certainty level (relations BDP, ELI).

PROPOSITION 5. Let Pref be any preference relation respecting minimality for set-inclusion. The inclusions below hold and they are generally strict:
· AccUndercut AccContradict, Pref AccRebut, Pref.

· AccUndercut AccUndercut, Pref SingPref.

· AccContradict, Pref SingPref.
The above inclusions show that SingPref captures all the arguments of the classes AccUndercut, Pref and AccContradict, Pref and the converse is not true. Thus, in the framework of handling inconsistency in knowledge bases, one should use the preference-based argumentation system <A(), Undercut, Pref> such that Pref satisfyies minimality for set-inclusion and compute SingPref as the set of its acceptable arguments.

In the general case, (for any preference relation), there is no link between the two classes AccUndercut, Pref and AccContradict, Pref. However, when the preference relation is defined in terms of certainty level, we have shown that AccContradict, Pref is more general than the class AccUndercut, Pref. Consequently, AccContradict, Pref is more important than AccUndercut, Pref.

PROPOSITION 6. Let Pref be in {BDP, ELI}.

· AccUndercut, Pref AccContradict, Pref

· AccUndercut, Pref AccRebut, Pref
EXAMPLE 11.Let K = and E = E1 …E5 with E1 = {p, t}, E2 = {pb}, E3 = {t¬b},E4 = {bf} and E5 = {p¬f}. Let H = {p, pb, b f}. (H, f) AccContradict, BDP and (H, f) AccUndercut, BDP because there exists an argument (H1, ¬p) with H1 = {pb, t, t¬b} such that (H1, ¬p) >>BDP (H, f).

These inclusions are summarized in figure 3 below.

FIGURE 3. The links between the classes (: general case, : Pref ({BDP, ELI})

5.4. NEW CONSEQUENCE RELATIONS

In the previous sections we have studied three argumentation frameworks (with three attack relations). Four classes of acceptable arguments have been defined and their properties have been also investigated. The aim of this section is to define the consequence relations associated with the classes and to show that the properties of the classes allow us to prove some interesting logical properties of the consequence relations. We show also that the consequence relation associated with the class SingPref satisfies more properties than the other relations.

Let , be two formulas, = (K, E) be a knowledge base and E be equipped with a total preoredering . It is then equivalent to consider E stratified (E = E1 … En). Let Pref be a preference relation defined on the supports of arguments and which respects minimality (for set-inclusion).

A consequence relation is a set of assertions |~ with the following meaning: Given (, is a plausible consequence of .
As in the case of flat bases (i.e. without any priority on the beliefs), a consequence relation may be associated to each class of acceptable arguments.

DEFINITION 19. Let = (K, E) be a knowledge base, and two propositional formulas and Pref a preference relation.

· |~r iff ((H,) AccRebut, Pref).

· |~u iff ((H,) AccUndercut, Pref).

· |~c iff ((H,) AccContradict, Pref).

· |~s iff ((H,) SingPref).

 is defined by adding a layer E0 = {} to the set E. The obtained knowledge base is then ' = (K, E') with E' = E0 E (i.e. E' = E0 E1 …En).

Before presenting a complete study of the logical properties of the four consequence relations defined above, let’s give some important properties of the classes.

PROPOSITION 7. Let H E.

· If (H, h) AccRebut, Pref({}) then (H, h) AccRebut, Pref().

· If (H, h) AccUndercut, Pref({}) then (H, h) AccUndercut, Pref().

· If (H, h) AccContradict, Pref({}) then (H, h) AccContradict, Pref().

· If (H, h) SingPref({}) then (H, h) SingPref().

In the following, x will denote an element of the set {r, u, c, s}. Let’s note that given a formula and an argument (H, h), we can’t have |~x since the support H is consistent with K.

PROPOSITION 8. Let = (K, E) be a knowledge base. |~s iff Supp(AccUndercut, Pref) iff Supp(AccContradict, Pref) iff Supp(SingPref) .

DEFINITION 20. The deductive closure of by a consequence relation |~x, denoted by Cx(), is defined as follows: Cx() = {h | |~x h with = T (true)}. The deductive closure of classical inference is denoted by Cn: Cn(S) = { such that S } for a given set S of formulas.

PROPOSITION 9. Let Pref be any preference relation respecting minimality (for set inclusion). The following inclusions hold:

· Cc() Cr()

· Cc() Cs()

· Cu() Cs()

When Pref {BDP, WBDP, ELI} we have the following additional inclusions:

· Cu() Cc()

· Cu() Cr()

PROPOSITION 10. Let = (K, E) be a knowledge base. If K (E is consistent then for any x we have: Cx() = Cn().

PROPOSITION 11. Let , be two formulas. If Cx() and then Cx(). In other words, if is a consequence of the relation |~x and is inferred classically from then is also a consequence of the relation |~ x.
The standard rationality postulates

The following properties of consequence relations have been adapted from those given by Gärdenfors and Makinson [19]. Let |~x be a consequence relation.

· If |– then |~ x

(Supraclassicality)

· If |– / and |– then |~ x

(Weak supraclassicality)

· |~ x

(Reflexivity)

· If |– / then |~ x

(Weak reflexivity)

· If |~ x and |– then |~ x

(Left logical equivalence)

· If |~ x and |– then |~ x

(Right weakening)

· If |~ x and |~ x then |~ x

(And)

· If |~/ x ¬ and |~ x then |~ x

(Rational monotonicity)

· If |~/ x ¬ and |~ x then |~ x

(Weak rational monotonicity)

· If |~ x and |~ x then |~ x

(Cautious monotonicity)

· If |~ x and |~ x then |~ x

(Cut)

· If |~ x then |–

(Consistency preservation)

· If |~ x then |~ x

(Conditionalization)

· If |~ x then |~ x

(Weak conditionalization)

· If |~ x and |~ x then |~ x

(OR)

The obtained results are summarized in Table 2.

Due to the non-satisfaction of cautious monotonicity, Cut and Reflexivity, the four consequence relations don‘t belong to the system C. Let’s note that generally the properties satisfied and the ones not satisfied are the same for all the consequence relations. However, only the relation |~ s satisfies the property "AND" and only |~ r satisfies "Conditionalization".

In the case of flat bases (without priorities), a similar comparative study of argumentative consequence relations has been done in [17], particularly the "probable" (resp. "confirmed") consequence relation associated with the class AccRebut (resp. AccUndercut). All the properties which hold for the "probable" relation are still verified by |~ r. Whereas the introduction of preferences in the argumentation framework <A((), Undercut> discards some interesting properties such as "AND", "Cautious monotonicity", "Cut" and "Conditionalization".
	 Properties
	|~ r
	|~ u
	|~ c
	|~ s

	 Supraclassicality
	°
	°
	°
	°

	 Weak Supraclassicality
	
	
	
	

	 Reflexivity
	°
	°
	°
	°

	 Weak reflexivity
	
	
	
	

	 Left logical equivalence
	
	
	
	

	 Right weakening
	
	
	
	

	 And
	°
	°
	°
	

	 Rational monotonicity
	°
	°
	°
	°

	 Weak rational monotonicity
	°
	°
	°
	°

	 Cautious monotonicity
	°
	°
	°
	°

	 Cut
	°
	°
	°
	°

	 Consistency preservation
	
	
	
	

	 OR
	°
	°
	°
	°

	 Conditionalization
	
	°
	°
	°

	 Weak conditionalization
	
	
	
	

Table 2. The logical properties of the consequence relations

The property is satisfied by the consequence relation.

°
The property is not satisfied by the consequence relation.

6.
Related work

Our work can be related to other approaches to the management of inconsistency along two different lines. First, we generalize previous results concerning two argumentative entailment relations, proposed in [4, 5], in the framework of possibilistic logic. Secondly, we are able to connect preference-based argumentation with prioritized coherence-based inference schemas (see [12] for a thorough presentation of these inference schemas).

DEFINITION 21. [5]

· Safe(H) = min {level(H') such that (H', ¬) A() and H}.

· h is a safely-supported consequence of , denoted by |~ ss h, iff (H, h) s.t level(H) < Safe(H).

PROPOSITION 12.

· The "argued consequence" defined in [4] exactly corresponds to the acceptability class AccRebut, BDP: h is an argued consequence of iff (H, h) AccRebut, BDP.

· The "safely-supported consequence" exactly corresponds to the class AccUndercut, BDP.

As said in the introduction, one of the approaches for reasoning with inconsistent information proposes to give up some formulas of the knowledge base in order to get one or several consistent subbases of the original base. Then plausible conclusions may be obtained by applying classical entailment on these subbases.

A common proposal to handle multiple consistent subbases is to accept a formula as a consequence when it can be classically inferred from each subbase (conservative point of view), or when it can be classically inferred from at least one subbase (permissive point of view). Reasoning with inconsistent knowledge bases is then a process which follows three steps:

1. Constructing consistent subbases,

2. Selecting among all the subbases the preferred ones, called preferred subbases,

3. Applying classical entailment on a choice of the preferred subbases.

Strong relationships (and sometimes exact correspondences) have been established between most of these consequence relations and the ones defined in section 2 in the case of flat bases (without preferences) (see [9]).

In the case of prioritized knowledge bases, Brewka has proposed in [7] a definition of the preferred subbases. In the following we give some results on the connection of our classes of acceptable arguments with the preferred subbases of Brewka. These results are not very strong since joint acceptability is not considered. However, in [3] we have proposed to refine the argumentation framework proposed in this paper with joint acceptability. We have proposed a general preference-based argumentation framework where the definition of acceptability combines different independent evaluations: an evaluation based on direct or indirect defeaters and on defenders, and a preference-based comparison between conflicting arguments. One basic idea is to accept an argument if it is not defeated, if it defends itself against its defeaters (because it is preferred or stronger than its defeaters), or if it is defended by other arguments (joint acceptability). In the new framework strong correspondences have been established with the preferred subbases defined by Brewka.

We suppose that K = and E = E1 … En.

DEFINITION 22. [7] A consistent subbase S = S1 … Sn is an INCL-preferred subbase of E if and only if j = 1…n, S1 … Sj is a maximal (for set-inclusion) consistent subbase of E1 … Ej. INCL(E) denotes the set of INCL-preferred subbases of E and INCL(E) denotes the intersection of the INCL-preferred subbases of E.

PROPOSITION 13. Let Pref {BDP, ELI}.

· If ({h}, h) AccRebut, Pref then h INCL(E).

As consequences, we have:

· Supp(AccContradict, Pref), Supp(SingPref), Supp(AccUndercut, Pref) INCL(E).

· If (H, h) AccContradict, Pref or AccUndercut, Pref or SingPref then INCL(E) |– h.
Note that Prakken and Sartor have also introduced preferences to argumentation frameworks in [27, 28]. As we did in [3], they have extended Dung’s framework with priorities. However, the route taken is quite different. They present a language with defeasible and strict rules, and strong negation (sort of classical negation) and weak negation (a negation-by-failure), before considering the use of priorities and defeat. This extra layer of logic programming notation and concepts masks the underlying simplicity of Dung's proposal. So our extension is more direct. (see [3] for a comparison of the two frameworks)

7.
Conclusion

The work reported here concerns the acceptability of arguments in preference-based argumentation frameworks. Our principle contribution is to take into account preference relations between arguments in order to select the most acceptable of them. Using preferences enables us to define a notion of individual defence. So we have proposed an abstract and general framework in which an argument is acceptable if it defends itself against all counter-arguments. This framework has been applied for handling inconsistent knowledge bases. We have defined and studied new classes of acceptable arguments and the associated inference relations. We have proved that some argumentative inference relations defined in [4, 5] in the possibilistic framework can be restated using our classes. Moreover, we have obtained preliminary results concerning the relationship between preference-based argumentation and prioritized coherence-based non-monotonic inference.

The acceptability concept defined in this paper presents some limits since it considers only direct counter-arguments. An extension of this work is to take into account joint acceptability, so that an argument will be acceptable if it is not defeated or if it defends itself against its defeaters or if it is defended by other arguments. Results of this extension are reported in [3]. Studying the consequence relations associated to preference-based joint acceptability is the subject of ongoing work. Our aim is to compare the results of those consequence relations with the ones defined in this paper.

8.
References

[1]
L. Amgoud, C. Cayrol, D. Le Berre. Comparing Arguments using Preference Orderings for Argument-based Reasoning. In: Proc. of the 8th International Conference on Tools with Artificial Intelligence, ICTAI'96. pp. 400- 403, 1996.

[2]
L. Amgoud, C. Cayrol. Integrating Preference Orderings into Argument-Based Reasoning. In: Proc. of the first International Joint Conference on Qualitative and Quantitative Practical Reasoning, ECSQARU-FAPR'97. pp. 159-170, 1997.

[3]
L. Amgoud, C. Cayrol. A model of reasoning based on the production of acceptable arguments. In Annals of Mathematics and Artificial Intelligence (AMAI). To appear in 2002.

[4]
S. Benferhat, D. Dubois, H. Prade. Argumentative Inference in Uncertain and Inconsistent Knowledge Bases. In: Proc. of the 9th Conference on Uncertainty in Artificial Intelligence, UAI'93. pp. 411- 419, 1993.

[5]
S. Benferhat, D. Dubois, H. Prade. How to infer from inconsistent beliefs without revising? In: Proc. of the 14th International Joint Conference on Artificial Intelligence, IJCAI'95. pp. 1449-1455, 1995.

[6]
W. Bibel. Methods of automated reasoning. Fundamentals in Artificial Intelligence, LNCS 232. 1985.

[7]
G. Brewka. Preferred subtheories: an extended logical framework for default reasoning. In: Proc. of the 11th International Joint Conference on Artificial Intelligence, IJCAI'89. pp. 1043-1048, 1989.

[8]
G. Brewka. Reasoning about priorities in default logic. In: Proc. of the National Conference on Artificial Intelligence, AAAI'94. pp. 940-945, 1994.

[9]
C. Cayrol. On the relation between Argumentation and Non-monotonic Coherence-based Entailment. In: Proc. of the 14th International Joint Conference on Artificial Intelligence, IJCAI'95. pp. 1443-1448, 1995.

[10]
C. Cayrol. From Non-monotonic Syntax-based Entailment to Preference-based Argumentation. In: Proc. of the European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'95. pp. 99-106, 1995.

[11]
L. Cholvy. Automated reasoning with merged contradictory information whose reliability depends on topics. In: Proc. of the European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'95. pp. 125-132, 1995.

[12]
C. Cayrol, M.C. Lagasquie-Schiex. Non-monotonic syntax-based entailment: A classification of consequence relations. In: Proc. of the European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'95. pp. 107-114, 1995.

[13]
C. Cayrol, V. Royer, C. Saurel. Management of preferences in Assumption-Based Reasoning. In: Advanced Methods in Artificial Intelligence, Lecture notes in computer science, Vol. 682, Springer Verlag. pp. 13-22, 1993.

[14]
P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning and logic programming. In: Proc. of the 13th International Joint Conference on Artificial Intelligence, IJCAI'93. pp. 852-857, 1993.

[15]
P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence. Vol.77, pp. 321-357, 1995.

[16]
M. Elvang-Goransson, J. Fox, P. Krause. Acceptability of arguments as "logical uncertainty". In: Proc. of the European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, ECSQARU'93. pp. 85 -90, 1993.

[17]
M. Elvang-Goransson, A. Hunter. Argumentative logics: Reasoning with classically inconsistent information. Data & Knowledge Engineering. Vol. 16, pp. 125-145, 1995.

[18]
D. M. Gabbay, A. Hunter. Making inconsistency respectable: a logical framework for inconsistency in reasoning. Fundamentals of Artificial Intelligence Research. LNAI 535, pp. 19- 32, 1991.

[19]
P. Gärdenfors, D. Makinson. Nonmonotonic inference based on expectations. Artificial Intelligence. Vol. 65, pp. 197-245, 1994.

[20]
A. Hunter. Defeasible reasoning with structured information. In: Proc. of the International Conference on Principles of Knowledge Representation and Reasoning, KR'94. pp. 281-292, 1994.

[21]
J. De Kleer (1990). Using crude probability estimates to guide diagnosis. Artificial Intelligence. Vol. 45, pp. 381-391, 1990.

[22]
J. De Kleer and B. C. Williams (1987). Diagnosing multiple faults. Artificial Intelligence. Vol. 32, pp. 97-130, 1987.

[23]
J. Pearl (1990). System Z: A natural ordering of defaults with tractable applications to default reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, TARK'90. pp. 121-135, 1990.

[24]
J. L. Pollock. Defeasible reasoning. Cognitive Science. Vol. 11, pp. 481-518, 1987.

[25]
J. L. Pollock. How to reason defeasibly. Artificial Intelligence. Vol. 57, pp. 1-42, 1992.

[26]
D. Poole. On the comparison of theories: preferring the most specific explanation. In: Proc. of the 9th International Joint Conference on Artificial Intelligence, IJCAI'85. pp. 144-147, 1985.

[27]
H. Prakken, G. Sartor. On the relation between legal language and legal argument: assumptions, applicability and dynamic priorities. In: Proc. of the 8th International Conference on Artificial Intelligence and Law. 1995.

[28]
H. Prakken, G. Sartor. A Dialectical Model of Assessing Conflicting Arguments in Legal Reasoning. Artificial Intelligence and Law. pp. 331-368, 1996.

[29]
R. Reiter. A logic for default reasoning. Artificial Intelligence. Vol. 13, pp. 81-132, 1980.

[30]
R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence. Vol. 32, pp. 57-95, 1987.

[31]
N. Rescher, R. Manor. On inference from inconsistent premises. Theory and decision. Vol. 1, pp. 179-219, 1970.

[32]
G. R. Simari, R. P. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence. Vol. 53, pp. 125-157, 1992.

[33]
S. Toulmin. The uses of argument. Cambridge University Press. 1958.

[34]
G. Vreeswijk. Abstract argumentation systems. In: Journal of Artificial Intelligence. Vol. 90, pp. 225-279, 1997.

[35]
G. Vreeswijk, H. Prakken. Logical systems for defeasible argumentation. To appear in D. Gabbay (ed.), Handbook of Philosophical Logic, second edition. Kluwer Academic Publishers, Dordrecht.

9. Appendix

PROPOSITION 1. Let (H, h), (H', h') be two arguments of A().

· If (H, h) undercuts an argument then (H, h) is rebutted.

· If (H, h) is rebutted then it is undercut.

· If (H, h) rebuts (H', h') then (H, h) contradicts (H', h').

Proof:

· Let’s suppose that (H, h) undercuts (H', h') k (H' such that h ((k.
({k}, k) is an argument then (H, h) is rebutted by ({k}, k).

· Let’s suppose that (H, h) is rebutted by (H', ¬h) K H H' is inconsistent.

Let H1 be a minimal (for set-inclusion) subset of H such that K H1 H' is inconsistent. H1 ((because K H' is consistent.

Let k be an element of H1 and H2 = H1 \ {k}. According to the definition of H1, K H2 H' is consistent and K H2 H' k. We have then an argument in favour of k and k is an element of H. So (H, h) is undercut.

· Let’s suppose that (H, h) rebuts (H', h'). (H, h) rebuts a subarguement of (H', h') which is (H', h') then (H, h) contradicts (H', h').

PROPOSITION 2. Let (H, h) be an argument of A((). (H, h) belongs to AccUndercut

iff for each element (of H, ({(}, () belongs to AccRebut

iff for each subargument (H', h') of (H, h), (H', h') belongs to AccRebut.
Proof:

· (H, h) belongs to AccUndercut iff for each element (of H, ({k}, k) belongs to AccRebut.

 (H, h) belongs to AccUndercut iff (H, h) is not undercut
 iff(H, there does not exist (H’, () A()
 iff (H, ({(}, () AccRebut
· (H, h) belongs to AccUndercut iff for each subargument (H', h') of (H, h), (H', h') belongs to AccRebut.

Let (H, h) AccUndercut and (H', h') a subargument of (H, h). Suppose that (H', h') AccRebut.
(H', h') AccRebut (H", ¬h') A() H" H' is inconsistent

Let H'1 be a minimal subset of H' such that H'1 H" is inconsistent, H'1 is not empty since H" is consistent. Let's take (H'1 then (H.

H2 = H'1\ {(} H" H2 is consistent and H" H2 |– ¬(
 H3 H" H2 such that H3 |– ¬(
 (H3, ¬() | (H3, ¬() undercuts (H, h) Contradiction with (H, h) AccUndercut

Let’s suppose now that (H', h') | H' H, (H', h') AccRebut
We suppose that (H, h) AccUndercut (H such that H' |– ¬(, (H', ¬() A()

 ({(}, () is rebutted by (H', ¬() ({(}, () AccRebut
But ({(},() is a subargument of (H, h), so contradiction with our assumption.

PROPOSITION 3. RejRebut = RejUndercut = (and AbRebut (AbUndercut.

Proof:

· RejRebut = RejUndercut = (
a) RejRebut = (since the relation Rebut is symetric, i.e if an argument x rebuts y then y rebuts x.

b) RejUndercut = (.

Let A be an argument of the class RejUndercut and B an argument such that A undercuts B. According to the first part of proposition 1, A is rebutted and consequently it is undercut (according to the second part of proposition 1). Contradiction with the fact A belongs to RejUndercut.

· AbRebut (AbUndercut. It is a direct consequence of AccUndercut (AccRebut, AbRebut = A()\AccRebut and AbUndercut = A()\AccUndercut.

PROPOSITION 4. Let = (K, E) be a knowledge base with E stratified in E1 …En. Let (H, h) and (H', h') be two arguments of A(). If (H, h) >>BDP (H', h') then (H, h) >>ELI (H', h').

The converse holds iff level(H H') < level (H' \ H) (i.e. when the common elements are of high importance).

Proof:

Let (H, h) and (H', h') be two arguments such that (H, h) >>BDP (H', h')
(H, h) >>BDP (H', h') iff i 1 | Hi = , H'i and j > i, Hj = H'j =
Hi H'i and Hj = H'j = , j > iH is ELI-preferred to H' (H, h) >> ELI (H', h')

When does the converse hold?

Let’s suppose that (H, h) >>ELI (H', h') i 1 / Hi H'i and j > i, Hj = H'j
Case 1: H H' = (a very particular case)
Case 2: level(H H') < level(H' \ H)

We prove the following result : [(H, h) >>ELI (H', h') (H, h) >>BDP (H', h')] [level(H H') < level(H' \ H)]

Let’s suppose that level(H H') level(H' \ H) and that (H, h) >>ELI (H', h'). We take level (H' \ H) = i.

level(H H') i then level(H) = level(H'). So the two arguments are not comparable with the BDP-preference.

PROPERTY 4. The BDP preference respects "Minimality" and the "And".

Proof

Minimality

Let A, B be two consistent subbases of a belief base E such that A B. It is clear that level(A) level(B).

And
Let A, B, C be three consistent subbases of a belief base E. level(A C) = maximum(level(A), level(C))

· maximum (level(A), level(C)) = level(A)

A is preferred to B level(A) < level(B) maximum (level(A), level(C)) < level(B) A C is preferred to B

· maximum (level(A), level(C)) = level(C)

C is preferred to B level(C) < level(B) maximum (level(A), level(C)) < level(B) A C is preferred to B

PROPERTY 5. When the belief base E is equipped with a total preordering, the ELI preference respects "Minimality" and "Monotonicity".

Proof

Minimality

Let A, B be two consistent subbases of a belief base E such that A B. Let’s suppose that B is preferred to A level(B\A) < level(A\B). A\B = because A B then level(A\B) = 0 level(B\A) < 0 impossible
Monotonicity
Let A, B and C be three consistent subbases of a belief base E. Let’s suppose that A is preferred to B then level(A\B) < level(B\A).

(A C) \ (B C) = A\ (B C) (A \ B

Then level (A C \ B C) (level (A\B)

(B C) \ (A C) = B \ (A C) = B \ A since B (C = (.

level(B C\ A C) = level (B\A)

So level(A C\ B C) < level(B C\ A C) then A C is preferred to B C.
PROPERTY 12. Let (H, h) be an argument in AccUndercut, Pref.

· H' H, if (H', h') (A(() then (H', h') AccUndercut, Pref.

· ((H, ({(}, () AccUndercut, Pref.

Proof

· (H', h') | H' H, (H', h') AccUndercut, Pref.
Let (H, h) AccUndercut, Pref. Let (H', h') be an argument such that H' H

 (H', h') >>Pref (H, h) because Pref verifies minimality (for set-inclusion).

Moreover, H' (H), (H, h) >>Pref (A, ¬). By transitivity, we have (H', h') >>Pref (A, ¬), H'.

· ((H, ({(}, () AccUndercut, Pref.
 ((H, ({(}, () is a subargument of (H, h). Accoding to the above result, ({(}, () AccUndercut, Pref.
PROPERTY 13. Let (be a knowledge base and <A(), Undercut, Pref> be a PAF.

· Supp(AccUndercut, Pref) = | such that ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(AccUndercut, Pref) is consistent.
· Let Pref be a relation without circuit. The set of consequences associated with AccUndercut, Pref, {h | (H, h) AccUndercut, Pref}, is consistent.
· AccUndercut, Pref (Arg(Supp(AccUndercut, Pref)).
Proof

· Supp(AccUndercut, Pref) = | such that ({},) AccRebut, Pref}

a) Supp(AccUndercut, Pref) | such that ({},) AccRebut, Pref}

(H, h) AccUndercut, Pref H, ({},) AccUndercut, Pref (({},) AccRebut, Pref) because ({},) is a subargument of (H, h).

b) | such that ({},) AccRebut, Pref} Supp(AccUndercut, Pref) trivial.

· If the preference relation Pref does not admit circuit then Supp(AccUndercut, Pref) is consistent.

Supp(AccUndercut, Pref) = | such that ({},) AccRebut, Pref}

Let’s suppose that Supp(AccUndercut, Pref) is inconsistent then there exists a minimal inconsistent subset Li1 … Lip such that Lij Hij h Li1 … Lip, Li1 … Lip \ {h} |– ¬hwithLi1 … Lip\{h} is consistent

 ((Li1 Li2 …Lip) \{h} , ¬h) A() u / h Hu then ({h}, h) AccUndercut, Pref
 {h} is preferred to ((Li1 … Lip) \ {h})

 Li1 … Lip is a finite and inconsistent set and Li1 … Lip = {hi1, hi2 …him}

 m p such that{hij} is preferred to {hi1, hi2 …him} 1 j m (impossible if Pref does not admit circuit).

· {h | (H, h) AccUndercut, Pref}, is consistent.

Let C = {h | (H, h) AccUndercut, Pref}. If C is inconsistent then there exists a finite and inconsistent subset {h1…hn}. H1…Hn such that (Hi, hi) AccUndercut, Pref

 H1 … Hn Supp(AccUndercut, Pref) (which is consistent) Contradiction.

· AccUndercut, Pref (Arg(Supp(AccUndercut, Pref)). Trivial

PROPERTY 14. Let (H, h) be an argument in AccContradict, Pref.

· (H' (H, if (H', h') (A() then (H', h') (AccContradict, Pref.

· H, ({},) AccContradict, Pref.
Proof

· (H' (H, if (H', h') (A() then (H', h') (AccContradict, Pref.

Let sub-arg(H, h) denotes the set of all the subarguments of (H, h) and let (H', h') be a subargument of (H, h). (H", h") | (H", h") sub-arg(H', h'), (H", h") is a subargument of (H, h) then (H", h") AccRebut, Pref. (H', h') AccRebut, Pref and (H", h") | H" H' (H", h") AccRebut, Pref (H', h') AccContradict, Pref.

· H, ({},) AccContradict, Pref.

 ((H, ({(}, () is a subargument of (H, h). Accoding to the above result, ({(}, () AccContradict, Pref.

PROPERTY 15. Let (be a knowledge base and <A(), Contradict, Pref> be a PAF.

· Supp(AccContradict, Pref) = | such that ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(AccContradict, Pref) is consistent.
· Let Pref be a relation without circuit. {h | (H, h) AccContradict, Pref} is consistent which means that the set of consequences associated with AccContradict, Pref is consistent.
· AccContradict, Pref (Arg(Supp(AccContradict, Pref)).
Proof

· Supp(AccContradict, Pref) = | such that ({},) AccRebut, Pref}

a) Supp(AccContrarie, Pref) | such that ({},) AccRebut, Pref}

If Supp(AccContrarie, Pref) then (H, h) AccContrarie, Pref such that H

 ({},) is a subargument of (H, h) then ({},) AccRebut, Pref and AccUndercut, Pref
b | such that ({},) AccRebut, Pref} Supp(AccContrarie, Pref)

({},) AccRebut, Pref then ({},) AccContradict, Pref (the definition of AccContradict, Pref)

 Supp(AccContradict, Pref).

· If the preference relation Pref does not admit circuit then Supp(AccContradict, Pref) is consistent.

Supp(AccContradict, Pref) = Supp(AccUndercut, Pref) and according to property 13, Supp(AccUndercut, Pref) is consistent then Supp(AccContradict, Pref) is also consistent.

· Let Pref be a relation without circuit. {h | (H, h) AccContradict, Pref} is consistent which means that the set of consequences associated with AccContradict, Pref is consistent.

Let C = {h | (H, h) AccContradict, Pref}. If C is inconsistent then there exists a finite and inconsistent subset {h1…hn}. H1…Hn such that (Hi, hi) AccContradict, Pref

 H1 … Hn Supp(AccContradict, Pref) (which is consistent) Contradiction.

· AccContradict, Pref (Arg(Supp(AccContradict, Pref)). It is trivial.

PROPERTY 16. Let (be a knowledge base and <A(), Undercut, Pref> be a PAF.

· Let (H, h) SingPref. (H' (H, if (H', h') (A() then (H', h') (SingPref.
· Supp(SingPref) = | and ({},) AccRebut, Pref}.
· If the preference relation Pref does not admit circuit then Supp(SingPref) is consistent.
· Let Pref be a relation without circuit. {h | (H, h) SingPref} is consistent.
Proof

· Let (H, h) SingPref. (H' (H, if (H', h') (A() then (H', h') (SingPref.
Let (H, h) SingPref. Let (H', h') be an argument such that H' H H', H then H', ({},) AccRebut, Pref then (H', h') SingPref.

· Supp(SingPref) = | and ({},) AccRebut, Pref}. A consequence of the definition of the class SingPref.
· If the preference relation Pref does not admit circuit then Supp(SingPref) is consistent. Supp(SingPref) = Supp(AccContradict, Pref) = Supp(AccUndercut, Pref) and Supp(AccContradict, Pref), Supp(AccUndercut, Pref) are consistent.
· Let Pref be a relation without circuit. {h | (H, h) SingPref} is consistent.
Let C = {h | (H, h) SingPref}. If C is inconsistent then there exists a finite and inconsistent subset {h1…hn}. H1…Hn such that (Hi, hi) SingPref H1 … Hn Supp(SingPref) (which is consistent) Contradiction.
PROPERTY 17. SingPref = Arg(Supp(SingPref)).
Proof:
· (H, h) Arg(Supp(SingPref)) then H Supp(SingPref) H, ({},) AccUndercut, Pref (H, h) SingPref.

· (H, h) SingPref then H Supp(SingPref) (H, h) Arg(Supp(SingPref)).

PROPOSITION 5. Let Pref be any preference relation respecting minimality for set-inclusion. The inclusions below hold and they are generally strict:
· AccUndercut AccContradict, Pref AccRebut, Pref.

· AccUndercut AccUndercut, Pref SingPref.

· AccContradict, Pref SingPref.

Proof:

· AccContradict, Pref AccRebut, Pref. It is a direct consequence of the definition of AccContradict, Pref.
· AccUndercut, Pref SingPref
(H, h) AccUndercut, Pref (H', ¬) such that H, (H, h) >> Pref (H', ¬)

But H ({},) >>Pref (H, h) (Pref satisfies minimality for set-inclusion)

 ({},) >>Pref (H', ¬)

 ({},) AccRebut, Pref, H
 (H, h) SingPref
· AccContradict, Pref SingPref. Trivial because for each element H, ({},) is a subargument of (H, h).
PROPOSITION 6. Let Pref be in {BDP, ELI}.

· AccUndercut, Pref AccContradict, Pref

· AccUndercut, Pref AccRebut, Pref
Proof:
· AccUndercut, Pref AccRebut, Pref
a) Case of BDP-preference
Let (A, () (AccUndercut, BDP and let's show that (A, () (AccRebut, BDP

(A, () (AccUndercut, BDP ((A, () >>BDP (H', ¬(), (((A

Let's consider an argument in favor of ¬(, (B, ¬()

Problem: (A, () >>BDP (B, ¬() ?

We have A (((and B ((¬(with A B is inconsistent
Let A' B' be a minimal inconsistent subset of A B with A' (A, B' (B and A' (Ø (because B is consistent)

((A' (A' \ {(} B' {(} is inconsistent

 (A' \ {(} B' ((¬ (with A' \ {(} B' is consistent by construction of A' and B'

 (((H, ¬() / H (A' \ {(} B'

 ((A, () >>BDP (H, ¬() (the hypothesis)

 (level(A) < level(H)

But H (A' \ {(} B' (level(H) (level(A' \ {(} B') (minimality)

 (level(A) < level(A' \ {(} B')

level(A' \ {(} B') = max [level(A' \ {(}), level(B')]

A' \ {(} (A (level(A' \ {(}) (level(A)

 (level(A) < level(B') (level(B) because B'(B

 (A is preferred to B

 ((A, () >>BDP (B, ¬()

b) Case of ELI-preference
Let (A, () (AccUndercut, ELI and let's show that (A, () (AccRebut, ELI
Let's suppose that (H, () (AccRebut, ELI ((H', ¬() such that level(H\ H') (level(H'\H)
Let x (H\ H' with level({x}) = level(H \ H')

H H' is inconsistent. Let A A' be a minimal inconsistent subset of H H' with A(H, A' (H' and A (Ø , A' (Ø (because H and H' are consistent).

1) x (A
Let's take (= x

A \ {(} A' {(} is inconsistent

 (A \ {(} A' ((¬(with A\ {(} A' is consistent by construction of A and A'

 ((A \ {(} A', ¬() undercuts (H, ()

level((A \ {(} A')\ H) = level(A' \ H) since A\{(} (H

We have A' (H' (A' \ H (H' \H

 (level(A' \ H) (level(H' \H) (level(H \ H')
((A (((H

But ((A \ {(} A' ((((H \ (A \ {(} A'))

 (level(H \ (A \ {(} A')) (level(H \ H')

level(A' \ H) (level(H' \ H) (level(H \ H') (level(H \ (A \ {(} A'))

 (level((A \ {(} A')\ H) (level(H \ (A \ {(} A'))
 ((H, () is not strictly preferred to (A \ {(} A' , ¬() according to ELI.

 ((H, () (AccUndercut, ELI

2) Si x (A

Let ((A

A \ {(} A' ((¬(such that A\ {(} A' is consistent

 ((A \ {(} A', ¬() undercuts (H, ()

level((A \ {(} A')\ H) = level(A' \ H) (level(H' \H) (level(H \ H')
x (A and x (H\ H' (x (A'

 (x (H\ (A \ {(} A')

 (level(H\ (A \ {(} A')) (rank(x) = level(H \ H')

level((A \ {(} A') \ H) (level(H \ H') level(H\ (A \ {(} A'))

 ((H, () is not strictly preferred to (A \ {(} A' , ¬() according to ELI

 ((H, () (AccUndercut, ELI
· AccUndercut, Pref AccContradict, Pref.

(H, h) AccUndercut, Pref (H, h) AccRebut, Pref and (H', h') such that H' H, (H', h') AccUndercut, Pref and AccRebut, Pref (H, h) AccContradict, Pref.

PROPOSITION 7. Let H E.

· If (H, h) AccRebut, Pref({}) then (H, h) AccRebut, Pref().

· If (H, h) AccUndercut, Pref({}) then (H, h) AccUndercut, Pref().

· If (H, h) AccContradict, Pref({}) then (H, h) AccContradict, Pref().

· If (H, h) SingPref({}) then (H, h) SingPref().

Proof:

· If (H, h) AccRebut, Pref({}) then (H, h) AccRebut, Pref().

(H, h) AccRebut, Pref({}) iff (H, h) >>Pref (H', ¬h), (H', ¬h) such that H' E' (E' = E0 (E with E0 = {(}).

H E then (H, h) A(). Let’s suppose that (H, h) AccRebut, Pref() (H", ¬h) | (H, h) is not strictly preferred to (H", ¬h). H" E H" E' (H", ¬h) A({}) and (H, h) is not strictly preferred to (H", ¬h): Contradiction.

· If (H, h) AccUndercut, Pref({}) then (H, h) AccUndercut, Pref().

(H, h) AccUndercut, Pref({}) iff (H, h) >>Pref (H', ¬), H, H' E'

H E (H, h) A(). Let’s suppose that (H, h) AccUndercut, Pref() H such that (H', ¬) and (H, h) is not strictly preferred to (H', ¬).

H' E H' E' (H', ¬) A({}): Contradiction.

· If (H, h) AccContradict, Pref({}) then (H, h) AccContradict, Pref().

(H, h) AccContradict, Pref ({}) iff H' H, (H', h') AccRebut, Pref({})

H E (H, h) A() and H' H, (H', h') A(). Let’s suppose that (H, h) AccContradict, Pref() (H', h') AccRebut, Pref() and H' H. According to the above property, (H', h') AccRebut, Pref({}): Contradiction.

· If (H, h) SingPref({}) then (H, h) SingPref().

(H, h) SingPref({}) iff H, ({},) AccRebut, Pref({}) H, ({},) AccRebut, Pref() (it is a consequence of the first part of proposition 7) (H, h) SingPref().

PROPOSITION 11. Let , be two formulas. If Cx() and then Cx(). In other words, if is a consequence of the relation |~x and is inferred classically from then is also a consequence of the relation |~ x.

Proof

Let’s suppose that Cx() |~ x
 (H,) {AccRebut, Pref, AccUndercut, Pref, AccContradict, Pref, SingPref}

But |– H |– then H1 H such that (H1,) A()

· Case of |~ r
(H,) AccRebut, Pref (H,) >> Pref (H', ¬) (1)

H1 H (H1,) >> Pref (H,) (2) (Pref respects minimality for set-inclusion)

Let’s suppose that (H1,) AccRebut, Pref (H1', ¬) such that (H1,) is not strictly preferred to (H1', ¬)

 |– ¬ |– ¬ H1' |– ¬ H' H1' such that (H', ¬) A()

 (H,) >>Pref (H', ¬) according to (1)

But H' H1' (H', ¬) >>Pref (H1', ¬) (H,) >>Pref (H1', ¬) (3)
from (2) and (3), (H1,) >>Pref (H1', ¬) Contradiction.

· Case of |~ c
(H,) AccContradict, Pref H' H, (H', ') AccContradict, Pref (property of AccContradict,Pref)

H1 H H1, AccContradict, Pref |~c CContradict()

· Case of |~ u
(H,) AccUndercut, Pref and H1 H (H1,) AccUndercut, Pref (property of AccUndercut, Pref) |~u Cu()

· Case of |~ s
(H,) SingPref and H1 H (H1,) SingPref (property of SingPref) |~ s Cs()

· Supraclassicality generally fails for the four consequence relations.
A counter example

Let's consider the knowledge base given in example 5. E |– f. (H, f) is the unique argument supporting "f" with H = {p, pb, bf} and (H', ¬f) is an argument for "¬f " with H' = {p, p¬f}. If we consider the BDP preference, (H', ¬f) >>BDP (H, f) then (H, f) AccRebut, BDP, AccContradict, BDP. Moreover, there exists bf H such that (H", ¬(bf)) A() with H" = {p, pb, p¬f} and (H", ¬(bf)) >>BDP (H, f) then (H, f) SingBDP, AccUndercut, BDP.

· When the preference relation is defined in terms of certainty level, restricted reflexivity succeeds for the four consequence relations.

Proof

Let be a knowledge base such that K = (and E is stratified in E = E1 … En with E1 = {} and |–/ .
In case of a preference relation Pref defined in terms of certainty level, there exists an argument for , ({},) such that (H', ¬), ({},) >>Pref (H', ¬) then ({},) AccRebut, Pref, AccContradict, Pref, AccUndercut, Pref, SingPref because level({}) = 1 and level(H') > 1 since H' is consistent. As a consequence we have: |~r , |~c , |~u and |~s
· Left logical equivalence succeeds for the four consequence relations.
Proof
 {} |~x then (H,) AccRebut, Pref({}) or AccContradict, Pref({}) or AccUndercut, Pref({}) or SingPref({}) with H (the interesting case). But |– , moreover , E0

 we can replace in H, by
 (H',) such that H' = (H \ {}) {}

 (H',) AccRebut, Pref({}) or AccContradict, Pref({}) or AccUndercut, Pref({}) or SingPref({})

 E {} |~ x with x {r, u, c, s}

· Right Weakening succeeds for the four consequence relations.
Proof: It is a direct consequence of proposition 11.
· Reflexivity generally fails for the four consequence relations.

Proof
This result is a direct consequence of the following property proved in [KLM90]:

Property. Let |~ be a consequence relation. If |~ verifies "Reflexivity" and "Right Weakening" then |~ verifies "Supraclassicality".

Since Supraclassicality is not verified and Right Weakening succeeds for the four consequence relations then according to the above property Reflexivity fails.

· When the preference relation is defined in terms of certainty level, Supraclassicality succeeds for the four consequence relations.

Proof

This result is a direct consequence of the following property proved in [KLM90]:

Property. Let |~ be a nonmonotonic consequence relation. If it verifies Restricted Reflexivity and Right Weakening then it verifies also Restricted Supraclassicality.

· The And postulate succeeds for the consequence relation |~ s and fails for the others.

Proof

 |~s (H1,) SingPref ({}) then H1, ({},) >>Pref (H1', ¬)

 |~s (H2,) SingPref ({}) then ' H2, ({'}, ') >>Pref (H2', ¬')

 H1 H2 |– and H1 H2 is consistent since Supp(SingPref) is consistent. Then we can find a set H H1 H2 such that (H, a) SingPref ({}) and consequently |~s
· Counter example for |~r and |~c
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {x, y, xt}, E2 = {t}, E3 = {y¬} and E4 = {y}. The two arguments ({x, xt, t},), ({y, y},) are in the classes AccRebut, BDP and AccContradict, BDP then |~x and |~x with x {r, c}. There exists only one argument in favor of , ({x, xt, t, y, y},). It is rebutted by ({y, y¬}, ¬) and ({y, y¬}, ¬) >>BDP ({x, xt, ta, y, y},) then |~/ x.

· Counter example for |~u
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {x, y}, E2 = {xt, t}, E3 = {y¬} and E4 = {}. The two arguments ({},), ({x, xt, t},) belong to the class AccUndercut, BDP then |~u and |~u . But there exists only one argument supporting , ({x, xt, t, },) which does not belong to the class AccUndercut, BDP since it is undercut by ({y, y¬, xt, t}, ¬x) and ({y, y¬, xt, t}, ¬x) >>BDP ({x, xt, t, },).
· Rational monotonicity fails for all the consequence relations.

Proof

· Counter example for |~r and |~c
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 with E1 = {(x)}, E2 = {x}, E3 = {x, x}. The argument ({x, x},) belongs to AccRebut, BDP() and AccContradict, BDP() (since there does not exist an argument in favor of ¬ and the unique argument of ¬x is ({¬x}, ¬x) but ({x}, x) >>BDP ({¬x}, ¬x)).

Moreover, |~/ x ¬. If we add a layer E0 containing then we will get an argument supporting ¬, ({, ¬x, (¬x)¬}, ¬) such that ({x, x},) is not strictly BDP preferred to ({, ¬x, (¬x)¬}, ¬) |~/ x .
· Counter example for |~u
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {u, ¬u, (u)¬}, E2 = {x}, E3 = {x}, E4 = {¬x}. There exists an argument in favor of , ({x, x},), which belongs to AccUndercut, BDP() (because it is undercut by ({¬x}, ¬x) and ({x, x},) >>BDP ({¬x}, ¬x)) then |~u . Moreover, |~/u ¬ because there exists only one argument supporting ¬, ({u, x, x, (u)¬}, ¬), which is less preferred than its undercutting argument ({¬u}, ¬u). ({u, x, x, (u)¬}, ¬) AccUndercut, BDP(). If we add a layer E0 containing ab we will get another argument which undercuts ({x, x},), ({x, u, , (u)¬}, ¬(x)), such that ({x, u, , (u)¬}, ¬(x)) >>BDP ({x, x},) then ({x, x},) AccUndercut, BDP() and |~/ u .
· Counter example for |~s
In the above example, ({x, x},) SingBDP() then |~s and |~/ s ¬. When we add the layer E0, we get an argument ({x, u, , (u)¬}, ¬(x)) >>BDP ({x}, x) ({x, x},) SingBDP() then |~/ s .

· Weak rational monotonicity fails for all the consequence relations.

Proof

· Counter example for |~r
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 with E1 = {¬x, x}, E2 = {(x)¬} and E3 = {x}. There does not exist an argument in favor of ¬ then |~/ r¬. But, there exists an argument supporting , ({x, x},), then there exists an argument for . ({x, x},) AccRebut, BDP() then |~r a. If we add a layer E0 containing then we will get an argument for ¬, ({, ¬x, (¬x)¬}, ¬) >>BDP ({x, x},) then ({x, x},) AccRebut, BDP()) |~/ r.
· Counter example for |~c
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {¬x}, E2 = {x}, E3 = {x¬b} and E4 = {}. ({x, x¬, }, ¬) AccContradict, BDP() because it has a subargument ({x}, x) which is not in AccRebut, BDP(). ({¬x}, ¬x) >>BDP ({x}, x) then |~/ c¬. The argument ({},) AccContradict, BDP() then |~c . If we add a layer E0 containing , we will get an argument supporting , {, },) AccContradict, BDP() (because ({, },) AccContradict, BDP()) |~/ c.

· Counter example for |~u
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {x}, E2 = {¬x}, E3 = {x¬}, E4 = {}. ({x, x¬}, ¬) AccUndercut, BDP() (because it is undercut by ({¬x}, ¬x) and ({¬x}, ¬x) >>BDP ({x, x¬}, ¬)) then |~/u ¬. There exists an argument supporting , ({},) AccUndercut, BDP(). If we add a layer E0 containing , we will get an argument supporting , {, },) AccUndercut, BDP() (because it is undercut by ({x, x¬}, ¬) and ({x, x¬}, ¬) >>BDP ({, },)) then |~/ u .

· Counter example for |~s
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {u, ¬u, (u)¬}, E2 = {x}, E3 = {x}, E4 = {¬x}. There exists one argument in favor of ¬, ({u, x, x, (u)¬}, ¬) SingBDP() because ({u}, u) AccRebut, BDP() then |~/ s ¬. But |~s because we can find one argument ({x, x},) SingBDP(). If we add a layer E0 containing then |~/ s since the unique argument in favor of is ({x, x},) SingBDP() (({x}, x) is not strictly preferred to ({u, x, , (u)¬}, x¬)).

· Cautious monotonicity generally fails for all the consequence relations.

Proof

· Counter example for |~r
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 with E1 = {¬d (¬)} and E2 = {}. The argument ({},) AccRebut then ({ },) AccRebut, Pref and |~r . The argument ({ },) AccRebut then ({},) AccRebut, Pref and |~r .

If we add a layer E0 containing , we will get an argument for ¬, ({, ¬ (¬)}, ¬) >>BDP ({ },) and |~/ r .

· Counter example for |~c
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {¬x¬}, E2 = {x}, E3 ={¬x, x} and E4 = {}. The preference relation used in this example is the one given in definition 11 (WBDP). Let's take = T (True). The argument ({},) AccRebut then ({},) AccRebut, Pref and consequently ({},) AccContradict, Pref and |~c . Similarly, ({x, x },) AccContradict, Pref then |~c . If we add a layer E0 containing , we will get an argument for ¬, ({, ¬x, ¬x¬}, ¬} >>Pref ({x, x},) then |~/ c .
· Counter example for |~u and |~s
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 with E1 = {x}, E2 = {¬}, E3 = {, x}. The preference relation used in this example is the one given in definition 11 (WBDP). Let's take = T. The argument ({},) is rebutted by ({x, x, ¬}, ¬) but ({},) >>Pref ({x, x, ¬}, ¬) then ({},) AccUndercut, Pref and SingPref and consequently |~s and |~u.

Similarly, ({x, x},) AccUndercut, Pref and SingPref since ({x}, x) is rebutted by ({, ¬, x}, ¬x) with ({x}, x) >>Pref ({, ¬, x }, ¬x) and ({x, x},) >>Pref ({, ¬, x}, ¬x). The argument ({x}, x) is rebutted by ({x, , ¬}, ¬(x)) but ({x}, x) >>Pref ({x, , ¬}, ¬(x)) and ({x, x},) >>Pref ({x, , ¬}, ¬(x)) |~s and |~u .

If we add a layer E0 containing the argument ({x, x},) AccUndercut, Pref and SingPref since ({x, , ¬}, ¬(x)) >>Pref ({x, x},) and ({x, , ¬}, ¬(x)) >>Pref ({x}, x) then |~/s and |~/ u .

· Cut fails for all the consequence relations.

Proof
· Counter example for |~r
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 with E1 = {, ¬}, E2 = {}, E3 = {¬()}. Let's take = T. There exists an argument ({, },) AccRebut, BDP then |~r . If we add a layer containing , we will get an argument supporting , ({, ¬, ¬()},) AccRebut, BDP() then |~r but |~/ r because there does not exist an argument in favor of in E.

· Counter example for |~c
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 E5 with E1 = {(¬x)}, E2 = {¬x}, E3 = {x¬}, E4 = {x} and E5 = {}. The argument ({},) AccContradict, BDP then |~c. If we add a layer containing , we will get an argument ({, ¬x, (¬x))},) AccContradict, BDP() then |~c but |~/c since there exists an argument in favor of , ({, ¬x, (¬x) },) which is not preferred to its rebutting argument ({x, x¬}, ¬).

· Counter example for |~u
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {u, (u)}, E2 = {x, ¬u}, E3 = {x}, E4 = {¬x}. ({x, x},) AccUndercut, BDP then |~u . If we add a layer E0 containing , we will get an argument supporting , ({u, , u},) AccUndercut, BDP() then |~u . But the unique argument for in the base is ({x, u, x, (u)},) AccUndercut, BDP since it is undercut by ({¬u}, ¬u) >>BDP ({x, u, x, u},) then |~/u .

· Counter example for |~s
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1 = {}, E2 = {¬, }, E3 = {(¬)¬} and E4 = (}. If we add a layer containing , we will get the argument ({},) AccRebut, BDP() then ({},) SingBDP() and consequently |~s .

 |~s since there exists only one argument for , ({, },) SingBDP({ }). But if we add a layer E0 containing , we can find an argument in favor of , ({, },) SingBDP() because ({},) is rebutted by ({¬, , , (¬)¬}, ¬) and ({¬, , , ¬ ¬}, ¬) >>BDP ({},) then |~/s
· Consistency preservation succeeds for all the consequence relations.

Proof: The support of an argument is consistent then we can't have |~x .
· Weak conditionalization succeeds for all the consequence relations.

Proof

 |~ x (H,) {AccRebut, Pref(), AccContradict, Pref(), AccUndercut, Pref(), SingPref()}.

H = H'1 H2 with H'1 = H {} and H2 E

H |– H'1 H2 |– H2 |– H1 H2 such that (H1,) A(), A()

· Case of |~ r
(H,) AccRebut, Pref() (H,) >>Pref (H', ¬) H' |– ¬ and H' E'

H1 H then(H1,) >>Pref (H,) (minimality) (1)

Let's suppose that (H1,) AccRebut, Pref() (A, ¬) with A E | (H1,) is not strictly preferred to (A, ¬).

A |– ¬ A2 A such that (A2, ¬) A() (A2, ¬) A()

 (H,) >>Pref (A2, ¬)

(A2, ¬) >>Pref (A, ¬) (minimality). By transitivity, (H,) >>Pref (A, ¬) (2). From (1) and (2) we have (H1,) >>Pref (A, ¬) contradiction

· Case of |~c
(H,) AccContradict, Pref() and H1 H (H1,) AccContradict, Pref()

But H1 E (H1,) AccContradict, Pref() according to proposition 7 |~c
· Case of |~ u
(H,) AccUndercut, Pref() and H1 H (H1,) AccUndercut, Pref()

But H1 E (H1,) AccUndercut, Pref() according to proposition 7 |~u
· Case of |~ s
(H,) SingPref() and H1 H (H1,) SingPref()

But H1 E (H1,) SingPref() according to proposition 7 |~ s
· When the preference relation is defined in terms of certainty level, conditionalization succeeds for the consequence relation |~ r.

Proof
 |~r (H,) AccRebut, Pref({}) with H = H1 H2 | H1 = H {} and H2 E.

 (H,) >>Pref (H', ¬), H' E' with E' = E ({}

· Case H1 =
H1 = H E H |– H' H | (H',) A()

 (H',) A()

Let's suppose that there exists (A, ¬) A().

 A

A |– ¬ A is consistent with and . Let's take A' = (A\ {}) {} (we replace by in A)

 A" A' such that (A", ¬) A({})

 A

A E (A, ¬) A({}). Let's take A = A". A" |– ¬ A1 A" such that (A1, ¬) A({}) (H,) >>Pref (A1, ¬).

(A1, ¬) >>Pref (A", ¬) (minimality) (H,) >>Pref (A", ¬) by transitivity). But H' H (H',) >>Pref (A", ¬): Contradiction

· Case H1 ø
H = H2 {} H2 {} |– (H2 {},) A()

Let's suppose that there exists (A, ¬) A():

 A

A |– ¬ A is consistent with and . Let's take A' = (A\ {}) {} (we replace by in A)

 A" A' such that (A", ¬) A({})

 A

A E (A, ¬) A({}). Let's take A = A". A" |– ¬ A1 A" such that (A1, ¬) A({}) (H,) >>Pref (A1, ¬) (H,) >>Pref (A", ¬). But H = H1 H2. It is equivalent to H2 {} when the preference relation is defined in terms of certainty level (H',) >>Pref (A", ¬).

· Counter example for the other consequence relations

Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 with E1 = {¬, , }, E2 = {(¬)¬} and E3 = {}. |~x since ({, },) SingPref({}) and AccContradict, Pref({}) and AccRebut, Pref({}) and AccUndercut, Pref({}). If we add a layer containing we will get two arguments in favor of :

- ({, },) SingPref(), AccUndercut, Pref({}) and AccContradict, Pref() because ({},) is rebutted by ({¬, , , ¬¬}, ¬). Moreover, ({¬, , , ¬¬}, ¬) >>BDP ({ },) and ({¬, , , ¬¬}, ¬) >>BDP ({, },).

- ({¬},) SingPref(), AccUndercut, Pref() and AccContradict, Pref() since ({¬}, ¬) is not BDP preferred to ({},). Then |~/ x .
· OR fails for all the consequence relations.

Proof
· Counter example for |~r
Let’s consider the knowledge base (= (K, E) such that K = (and E = {()¬, ()}. |~r since there exists an argument ({, ()¬},) AccRebut, Pref(). Similarly |~r since there exists an argument ({, ()},) AccRebut, Pref(). But |~/r because there does not exist an argument supporting in AccRebut, Pref().

· Counter example for |~ c, |~s
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 with E1= {¬, }, E2 = {, ()}. |~x with x {c, s} because there exists only one argument for , ({, ()},) AccContradict, Pref() and SingPref().

Similarly, |~x because there exists an argument for , ({, },) AccContradict, Pref(), SingPref(). But, |~/ x since we can find two arguments for :

- ({, ¬, },) AccContradict, Pref() because it has a subargument ({¬}, ¬) which is not BDP preferred to ({, },).

- {, ()},) AccContradict, Pref() because it has a subargument, ({},), which is not BDP preferred to ({, ¬}, ¬).

· Counter example for |~u
Let’s consider the knowledge base (= (K, E) such that K = (and E = E1 E2 E3 E4 with E1= {t}, E2 = {(t)}, E3 = {¬t} and E4 = {}. |~u because there exists an argument for ({, },) AccUndercut, Pref(). Similarly, |~u since there exists an argument ({t, , (t)},) AccUndercut, Pref(). But if we add {} to the first layer, we will get an argument for , ({t, , (t), },) which is not in AccUndercut, Pref(). It is undercut by ({¬t}, ¬t) and ({¬t}, ¬t) >>BDP ({t, , (t), },) then |~/ u .
Proposition 13. Let Pref {BDP, ELI}.

· If ({h}, h) AccRebut, Pref then h INCL(().

As consequences, we have:

· Supp(AccContradict, Pref), Supp(SingPref), Supp(AccUndercut, Pref) INCL(().

· If (H, h) AccContradict, Pref or AccUndercut, Pref or SingPref then INCL(() |– h.

Proof
· If ({h}, h) AccRebut, Pref then h INCL(().

Let ({h}, h) AccRebut, Pref ({h}, h) >>Pref (H', ¬h). Let’s suppose that h INCL((). T INCL(() and h T, i | h Ei.

T1 … Ti is a maximal consistent subbase of E1 … Ei, h T and h Ei

 T1 …Ti |– ¬h
- If T1 … Ti-1 |– ¬h (H, ¬h) such that H T1 …Ti-1

 level(H) = i-1 and level({h}) = i

 level(H) < level({h})

 there exists an argument for ¬h which is BDP preferred to {h}.

- If T1 …Ti-1 is h-consistent (H, ¬h) such that H T1 …Ti and H Ti . But h H

 H {h} =

 level(H \ {h}) = level(H) = i and level({h}\ H) = level({h}) = i

 there exists an argument for ¬h and {h} is not BDP-preferred to that argument.

· Supp(AccContradict, Pref), Supp(SingPref), Supp(AccUndercut, Pref) INCL(().

h Supp(AccContradict, Pref) ({h}, h) AccRebut, Pref h INCL(()

<AccR, RejR, AbR>

Computation

Reasoning

<A, R>

(Decisions, inferences,…)

SingPref

AccRebut, Pref

AccUndercut, Pref

AccContradict, Pref

AccRebut

AccUndercut

>>Pref, (Pref

(Between arguments)

Pref

(Between supports)

P

(Between beliefs)

