Chapter 21

Data Management in Grids

Ann L. Chervenak, Peter Z. Kunszt, Arie Shoshani

21.1 Challenges of Grid Data Management

Data management issues in grids range from the efficient storage and transfer of data items to the federation of heterogeneous data sources to the interpretation of the data meaning. In this section of the book, we address these issues in three chapters. The first presents a grid services architecture for data management and describes specific implementations of several architecture components; the second chapter examines the specific problem of databases and grids; and the final chapter focuses on the extraction of knowledge from data sets stored in a grid.

Data intensive applications for grids come from both the scientific and business domains. In science, a variety of applications including high energy physics, climate modeling, astronomy and biology require efficient management of large amounts (terabytes or petabytes) of data shared among researchers distributed throughout the world. Scientists require mechanisms to transfer, publish, replicate, discover, share and analyze data sets. Business applications include financial services, pharmaceutical research, and providing online business services. These applications require mechanisms that maintain database consistency regionally or worldwide, manage data replication, facilitate data discovery, and dynamically respond to changes in load.

Some of the key challenges of data management in grids include:
· Management of storage resources: A grid may contain a diverse array of storage systems, including disk caches, network-attached storage devices, disk arrays, and hierarchical storage systems. Managing these devices efficiently may require the ability to control caching, to pre-allocate and reserve space for data transfers, to stage data from tape systems to disk caches, and to schedule individual storage devices.
· Support for diverse data types: A data grid must support a variety of data types. These include files, collections of files, data in relational databases, XML databases and semi-structured data, data objects, collections of objects and abstract data concepts like virtual data. Each data type may require services for registration, discovery, lifetime management and access control at different levels of quality of service.

· Efficient and reliable transfer of large data sets: Applications may require movement of data sets up to terabytes or petabytes in size for analysis, simulation, or data replication operations. Because data sets may be large and since wide area data transfer delays can be significant, efficient data transfer is an important requirement for grids. Grid users may also filter data before transferring it, effectively running a query or analysis to extract only a desired subset of the data to produced a new data product or to minimize the amount of data transferred. Many applications are particularly concerned with transmitting data reliably, including maintaining state on outstanding data transfer operations, retrying failed transfers and restarting transfers that are interrupted.
· Replication management: Large data sets are frequently replicated within a virtual organization to reduce access latency, maintain local control over necessary data, or to improve reliability and load balancing. An important challenge for grids is to provide services for replicating data, locating existing replicas, selecting among available replicas and proactively replicating data items to satisfy demand.

· Federation of heterogeneous data sources: A grid may contain diverse data sources, including a wide variety of file systems, databases and directory services. To allow federation of these data sources, a grid may provide services including data filtering, data format transformation, data schema mapping, and distributed query optimizers.
· Management of metadata: Metadata describe the contents of data objects, including a description of what a data object represents and how it was generated. Often, members of a virtual organization or application domain produce a set of metadata conventions that allow the community to share data using common vocabulary and semantics. Grid users require the ability to locate desired data based on metadata attributes rather than knowledge of the exact data name or location.
· Ensuring data consistency: Given the heterogeneous data resources, long communication delays of wide area networks, and likelihood of frequent failures that characterize grid environments, guaranteeing consistency among replicated data objects in grids is a challenging problem. Consistency requirements vary widely by application. While some scientific communities have relatively few consistency requirements because they provide read-only access to published data sets, many other applications require higher levels of data consistency.
· Ensuring data security: Grid applications have a range of security requirements. The data grid must be flexible enough to support a variety of security models.
Since data sets may be valuable, grid users require the ability to share their data in a controlled manner throughout a virtual organization, permitting or denying access to data sets on a relatively fine grain. Such sharing requires authentication of users to determine their identities and access control that enforces local and community policies for data access and resource usage. Grid data transfers must also be secure; users must be authenticated and authorized to access the data being transferred and to consume space on the destination storage system.

· Planning, scheduling and workflow management: To perform an analysis on a data grid, both compute and data resources must be selected and allocated to perform a series of tasks. There is a challenging set of issues related to managing execution, including planning the computation, or breaking it into a series of data movement and computational tasks; selecting the best storage and computational resources to perform each task and scheduling them; and monitoring the progress of the analysis, including recovery from task failures.
· Extraction of data knowledge: A final challenge for data grids is to extract meaning and knowledge from diverse data resources. Management of data knowledge requires the ability to annotate data objects with metadata, the development of ontologies for common understanding of the semantics or meaning of data, and inference of relationships among data objects.
In the remainder of this chapter, we describe examples of data intensive computing applications. We present an overall architecture for grid services that support data management and describe several implementations of data grid components.

21.2 Data-Intensive Applications

In this section, we describe application examples and use cases for a variety of scientific and commercial data-intensive applications running on grids.
21.2.1 Scientific Applications
Scientific communities that make use of grids to manage access to large data sets include high-energy physicists, astronomers, climate modelers, seismologists, earthquake engineers, and biologists. Typically, a community of scientific researchers wants to share data sets ranging up to terabytes or petabytes in size and produced using a combination of shared instrumentation, simulation and analysis.

Scientific data sets are often published by the community and subsequently accessed in a read-only manner. Some examples of how read-only data sets are used by scientific applications include the following.

· Data mining is used in astrophysics data grids to scan the data coming from satellites, telescopes and other instruments for peculiar, rare objects. In the Sloan Digital Sky Survey project, researchers have used data mining techniques to identify high-redshift quasars.

· Statistical analysis is carried out in high-energy physics applications, where events generated by particle detectors are stored in a data grid and categorized by their properties. Based on histograms generated from these events, physicists can measure their understanding of the basic forces of nature.

· Simulation and analysis are used in biological applications such as genomics to combine published data about known genomes into new sequences, which are stored as derived data products in the data grid and analysed for their chemical properties.

Alternatively, data grids may allow that individual data items be modified. If so, then the data grid may enforce consistency constraints on replicated data.

Next, we describe detailed use case scenarios for scientific applications on grids. Scientific exploration consists typically of three phases: 1) the data generation phase; 2) the post-processing phase; and 3) the analysis phase. The data generation phase consists of running large simulations that require the full use of a supercomputer for many hours. During this phase, the main concern is storing the resulting data fast enough to avoid slowing down the computer simulation run. Based on current experience, estimates are that the rate of data production can often reach one gigabyte per second. In addition, the data must be moved to archival storage at the same rate to make room for data from the next run. For example, climate models already generate terabytes of data per run. Today’s models use 140 kilometers per dimension of a cell, but higher resolution will greatly enhance the accuracy of the models and lead to new discoveries of climate behaviour. However, even a very conservative increase in the granularity of the model meshes – a factor of two per dimension of space and time – will generate a factor of 16 more data. This example illustrates that it is prohibitive to move entire datasets to the scientist’s site. Rather, subset selection and filtering of the data need to be performed at the simulation site, and only the results sent to the scientist for further analysis.

In the post-processing phase, all the data generated during a simulation run has to be read and processed. This presents a large load on the storage system. The type of post-processing varies with the application, such as applying scientific codes to interpret the data in Fusion applications, generating reduced summaries, for example, monthly means in Climate application, or generating multi-resolution representations of the data for visualization purposes. In some cases, the amount of data generated in the post-processing phase is equal or greater than the original data, especially if indexes are built for use in the analysis phase. We note that the post-processing of the data may also have to be done on the supercomputer in some applications, but often can be done on less powerful computer clusters. Unlike the data generation phase, post processing of the data can be done at multiple computational sites. Thus, it is typical that large subsets of the original dataset have to be replicated from one mass storage system to another on the grid. This presents a difficult problem, since it requires transferring thousands of files over many hours. Over such long period of time, it is likely that some system or network component will fail. To avoid the need to restart the multiple file transfer operation, the grid requires a robust multi-file replication capability. There are today several High Energy Physics experiments that need to replicate files at a sustained rate of 1-2 terabytes a day, or about 10-20 megabytes per second.

In the analysis phase, the main problem is one of discovering and selecting subsets of the data. Efficient indexing methods over the attributes of such massive data sets are essential. The indexes can be built during the post-processing phase according to anticipated access patterns. Also, metadata about the content of the datasets can help reduce unnecessary access and transfer of data. The reduced subsets may be further analysed at the site where the data resides, or may have to be shipped to the analysts’ sites. The selection of data is an additional burden on the storage systems where the simulation and post-processed data are, while shipping large quantities of data to the analyst is a burden on network resources. Since some subsets of the data are accessed more often, it is useful to keep frequently accessed data in shared disk systems on the grid rather than in the archive. Similarly, data sets that are accessed together are often clustered for more efficient access. Such techniques, called “hot clustering” can be made part of the storage system to enhance access efficiency during the analysis phase. As will be discussed in a later section, this function can be implemented by middleware components called Storage Resource Managers. Since files can be replicated dynamically, it is necessary to have middleware grid services that keep track of the location of replicas.

The following table summarizes the three phases described above in terms of the amount of data needed as input to that phase, the amount of data generated, and the amount of computation needed. Note that in the analysis phase, the amount of computation is relatively small since analysis is typically applied only to small subsets of selected, summarized, or filtered data. For this reason, the analysis is often performed at the scientist’s site or even his/her workstation.

Figure 21.1
A summary of the three data exploration phases

21.2.2 Business Applications
Some examples of commercial applications that may use data grid services include online browsing and product sales, distributed database management for financial services companies and research and development at pharmaceutical companies.

 Online browsing and sales applications consist of a complex sequence of tasks that must be executed with high performance, strong security and strict transactional consistency. These applications must support efficient browsing of a potentially large product database. Once particular products are requested, the system must verify product availability, allocate the desired products, perform billing operations, organize shipment of products, track completion of the order and inform customers of order status. Such applications require high-performance despite variations in load. They might use grids to automatically increase the allocation of geographically distributed resources to the application during periods of heavy load, as well as to enforce privacy and authorization policies on data.

Another example of a commercial application that may use grid services is a large financial services company whose operations are globally distributed. Requests for stock trading and account management may vary by time of day, with high loads in different regions of the world that coincide with typical waking hours and which financial markets are open. Such financial services companies may use a collection of federated regional databases. The primary or “master” copies of data could migrate to regions with highest load. As updates are made to the master copies of data items, these updates are propagated to database replicas in other regions with some delay. Grid services can be used for efficient and secure dissemination of database updates, federation of multiple database types, and for keeping track of replicas, their versions, and their master copies.

Finally, some commercial research and development organizations will run applications with similar characteristics to scientific applications. For example, a pharmaceutical company researching the effects of a new drug may require the same services of for data analysis, replication, metadata management and security as have already been described for physics and climate modelling applications.

·
·
·

21.3 Data Grid Architecture
Providing the functionality described in these use cases requires that a grid contain a variety of data management services. We group these together based on their characteristics in the figure below.
Figure 21.2
A layered grid architecture.

The layered grid architecture shown in Figure 21.2 is based on the layered architecture described in Chapter *. At the lowest fabric layer are the basic components of the grid, including storage systems, compute systems and networks. Above this, the connectivity layer includes communication and security protocols. The resource layer consists of services that allow sharing of individual resources. The collective layer includes services that are used to coordinate multiple resources. We divide services in the collective layer into two categories: general collective services and collective services that are specific to a particular application domain or to a virtual organization. Next, we describe services at the resource and collective layers.

21.3.1 Resource Layer Services

Data Access Protocols or Services

Protocols or services that allow data access on individual storage resources are a fundamental component of data grids. A grid may support a variety of data access protocols, including protocols for accessing files, databases and objects.

Storage Resource Management Service

Storage resource management services optimize the use of storage systems. Functions of a storage resource manager may include cache management, pre-allocation and advance reservation of space for data transfers, staging of data from slow to fast storage in a hierarchical storage system, and scheduling of storage system requests. A grid may include specialized storage resource managers for disk caches, tape systems and hierarchical storage systems.

Data Filtering or Transformation Services

There may be services associated with storage resources that filter or transform the data transferred from those storage resources. Data filtering may be used to query a file or data object to extract a desired subset of the data, typically with the goal of generating a derived data product or reducing the amount of data transferred. Data transformation services may convert data to different formats, for example, converting data stored on a file system into relational tables that can be ingested into a database.

Database Management Service

Also at the resource layer of the data grid architecture are individual database management services, such as relational database management systems, that control access to database storage.
Compute Resource Management Service

There may be services that control access to computational resources in the grid, for example, a front-end system that manages and schedules jobs submitted to a supercomputer or a computational cluster. Functions of computational resource managers include enforcement of policies on how a resource may be used, for example, limiting the amount of resources that a particular user may consume or enforcing user priorities or preferences. Special functionality for executing remote jobs include protecting the remote computation from processes on the local compute resource and also the reverse.
Resource Monitoring/Auditing

Services for monitoring the use of individual resources are essential to the operation of a grid. Monitoring services keep track of the current state of grid resources, including such characteristics as how long they have been operational, the current utilization of compute resources, the available free space on storage resources, etc. Monitoring services may also monitor the progress of individual operations on a resource, providing indications of success and failure that can be used by higher-level workflow management services to restart failed tasks and provide coordination of complex tasks.

Auditing services keep track of the consumption of resources by users and services, providing an infrastructure necessary to enforce resource allocations and charge users based on their resource usage.
21.3.2 General Collective Layer Services

Data transport services

There are a variety of possible services at the collective level that manage the transport of data among grid resources. These services might include reliable data transfer services, which maintain state about outstanding data transfer operations, restart interrupted transfers and retry failed transfers. Another service in this category is a multiple data object transfer service, which allows grid users to submit a large number of simultaneous data transfer operations and monitors the status of each of them.

Data federation services

In some cases, cooperation among storage resources requires federation of individual resources. In the case of a distributed database, this might require federation of several database management services. (Database federation is discussed in detail in Chapter **.) For a distributed file system, federation may require integration of individual file system resources. If the storage resources being federated are heterogeneous, then data filtering and transformation services may be required.
Data filtering and transformation services

Collective data transformation services are responsible for converting data shared by multiple resources, while collective filtering services may be used to construct query results or new data products by filtering and combining data from multiple storage resources.

In many cases the data transferred among grid services and users needs to be transformed for reasons of compatibility, formatting and access control. Due to the heterogeneous nature of the grid, different resources may have different data readers at their disposal, requiring that conversion services be invoked before the data can be accessed. This is especially important for applications that provide access to legacy data stored in formats that are not widely supported.
In addition, applications may have different definitions of the exact semantics of data equality, so that data replicas may have different hardware representations (for example, a compressed file may or may not be considered a replica of an uncompressed version of the same file). The users of the data need not be aware of the hardware representation of the data being accessed if the appropriate filtering and transformation services are automatically invoked. It is the responsibility of separate metadata services to keep track of the exact format and filtering options available for particular data objects.
General Data Discovery Services

Data discovery services allow grid users to identify data items that match specified characteristics. These characteristics might simply be logical or physical names that identify the data, or they may be high-level attributes that describe the data. By general data discovery services, we refer to those services that are not specific to a particular application domain. Examples include replica location services, which provide mappings from logical, user- or application-defined names to the names of one or more instances or replicas of data objects, and generic metadata services, which store metadata attributes that are not specific to a particular application. Examples of general metadata attributes include information about the creator, owner and last modifier of the data; creation and last modification times; physical metadata such as data size and access control information; checksums that can be used to verify data correctness; annotations that describe the data; information about how the data was generated by an experimental apparatus, simulation or analysis; and information about collections of data objects.
Collective Storage and Computational Resource Management or Brokering

A data grid may include services that collectively manage and schedule storage or computational resources. Collective brokers must implement community policies for resource allocation, scheduling new storage and computational tasks for grid users only if the user and its institution have not exceeded the maximum resource allocation specified by virtual organization policies. To accomplish this policy enforcement, collective resource managers must interact with monitoring services that keep track of the resources currently being consumed by each user and institution. Users may also specify resource preferences to brokers, which may take these into account when scheduling tasks. Collective brokers must cooperate with local schedulers when allocating resources. [cite architecture paper]

Collective monitoring and auditing services

Monitoring and auditing services are essential to implementing various policies in grids, including resource brokering (described above) and workflow management (below). Collective monitoring services keep track of the status of grid operations that span multiple resources. Collective auditing services keep track of overall grid resource usage by individual users and institutions within a virtual organization.
21.3.3 Collective Services Specific to an Application Domain or Virtual Organization

Request Interpretation and Planning Services

A user may initiate execution of a computation on a grid by specifying a high-level description of the computation. A request interpreter is responsible for breaking the overall computation into a collection of data movement and computational tasks. These tasks are then mapped by a planning service onto specific grid resources for execution. The planning task may require a sequence of steps, first creating an abstract task graph for the computation; consulting information services and community authorization services to determine the available resources for executing each task; selecting among possible resources, for example, based on optimization algorithms, the load on computational resources or the bandwidth or access times of storage resources; and finally, submitting each task to the selected resource. Because grid resources are dynamic, periodic replanning based on the current state of the grid may be desirable.
Workflow or Request Management Services
A Workflow Management system is responsible for initiating execution of individual tasks in the order specified by the task graph that is generated by the planning service. Functions of the Workflow Manager include monitoring the status of a collection of tasks that have been submitted to a grid, enforcing dependencies specified by a task graph, and attempting to restart failed tasks or resubmit them to alternate resources. A Workflow Management system depends on task status information provided by monitoring and auditing services. In the case of task failures, the Workflow Manager may invoke the planner to generate an optimized plan to resubmit the remaining tasks to currently available resources.
Application-Specific Data Discovery Services

Some data discovery services may be specific to an application domain or to a particular virtual organization. For example, many application domains will provide customized metadata services that allow attribute-based discovery of data based on community conventions or ontologies for metadata. Metadata conventions allow the members of a virtual organization to agree on the exact semantics of metadata attributes, facilitating data sharing and conversion among different data formats. Such ontologies also form the basis for higher-level services that attempt to extract knowledge from grid data.
Community Authorization Services

A fundamental goal of grid environments is to promote sharing of resources within highly dynamic scientific or commercial virtual organizations. Community authorization services maintain policies set by a virtual organization for how members of the community are allowed to access community resources. [CAS reference] Use of a community authorization service requires that resource providers delegate some fine-grained access control over resources to the virtual organization. The service then authorizes members of the community to use these resources according to the access policies set by the virtual organization. These community policies governing who can use what resources for what purpose are often complex and dynamic. Although the community sets policies for resource usage, resource providers want to maintain ultimate control over local resources. Typically, the operations that are allowed on a resource represent the intersection of community and local authorizations.
Consistency Services

Consistency requirements for replicated data in grid systems vary widely. At one extreme, a data grid that provides read-only access to published data may not require services to maintain consistency among replicas. At the other extreme, a data grid could provide strict consistency with synchronous, transactional semantics for updating replicas, thereby allowing traditional distributed file systems or databases to run on a grid.

While the same strict consistency algorithms that are used in distributed databases and distributed file systems may be used in grid environments, grids present special challenges for maintaining consistency among replicated data. Because grid storage resources are distributed over the wide area, invalidation protocols, distributed locking mechanisms and two-phase commit protocols may experience long communication delays. In addition, grid resources are dynamic: grid storage resources may fail and networks connecting storage resources may be partitioned. Thus, it may be difficult to synchronously update all existing replicas in a grid, because some replicas may not be available.

Because of these challenges, many data grid systems are being designed with more relaxed consistency semantics. For example, these systems may restrict updates to designated master copies of data items; subsequently, these updates are propagated to other replicas with some delay. To facilitate management of these temporary inconsistencies, a grid may support explicit maintenance of data version information. An example of how this relaxed consistency might be used in wide area distributed databases is a financial services company that maintains strict consistency over a database in one geographic region of operations, and propagates these changes with some delay over the grid to database replicas in other regions of the world.
Knowledge services

Knowledge services have been proposed for data grids. The purpose of these services is to extract meaning and knowledge from diverse data resources. In addition to metadata services, which have already been described, proposed knowledge services include services for automatic conversion or federation of data sources that use different metadata ontologies as well as services that can automatically infer relationships among data objects. Knowledge services for the grid are described extensively in Chapter 23.
21.4 Detailed examples of data grid components
The architecture picture presented in Figure 21.2 shows an overall view of the services that are necessary or desirable in a grid that supports efficient access to large data sets. To date, the most fundamental of these grid services have been implemented, including data transport protocols, reliable data transfer services, storage resource management and replication cataloguing. Higher-level functionality such as data federation services and data consistency management, which depend on the existence of these low-level services, are still being designed. In this section, we describe in detail the implementations of several basic data grid services.
21.4.1 Data Transport Protocol
The distributed and heterogeneous nature of data sources and consumers in a grid require that data access and transfer must be secure, efficient and reliable. One example of a data transport protocol that addresses these requirements is GridFTP, developed as part of the Globus toolkit and standardized through the Global Grid Forum.

The motivation for the design of GridFTP was to create a protocol that would provide a uniform interface to various storage systems, including hierarchical storage systems, disk systems and storage brokers. Typically, these storage systems have incompatible data access protocols. These incompatible protocols effectively partition the datasets available on the grid: applications must either choose only a subset of storage systems or must use multiple methods to retrieve data. GridFTP was designed with the assumption that it would be mutually advantageous to both storage providers and users to have a common but extensible underlying data transfer protocol that provides interoperability between disparate storage systems. Storage providers would gain a broader user base, because their data would be available to any client. Storage users would gain secure, efficient access to a broader range of storage systems and data.

GridFTP functionality includes features that are supported by the FTP standard, extensions that are under consideration, and additional extensions. Standard FTP was chosen as the basis for a grid transport protocol for several reasons. First, FTP is the protocol most commonly used for data transfer on the Internet. In addition, the FTP protocol provides a well-defined architecture for protocol extensions and supports dynamic discovery of the extensions supported by a particular implementation. Third, numerous groups have added extensions through the IETF, and some of these extensions are particularly useful in the Grid.

The GridFTP protocol provides the following features:

· Grid Security Infrastructure (GSI) support for robust and flexible authentication, integrity, and confidentiality.

· Third-party control of data transfer that allows a user or application at one site to initiate, monitor and control a data transfer operation between two other sites. A third-party transfer is illustrated in Figure **.
· Parallel data transfer that uses multiple TCP streams between a source and destination, which can improve aggregate bandwidth in some situations.

· Server side processing that allows for the inclusion of user written code that can process the data prior to transmission or storage. Partial file retrieval is included by default.

· Support for reliable and restartable data transfer to handle failures such as transient network and server outages. Also includes support for user-written fault recovery algorithms.

Figure 21.3
A third-party transfer operation is used by a client at one site to initiate a transfer between two GridFTP servers at other sites.

There is a specialized GridFTP server implementation that also supports striped data transfers. Striped transfers increases parallelism by allowing data objects to be interleaved across multiple hosts. For even more parallelism, striping can be combined with multiple TCP streams between each pair of hosts.

21.4.2 Reliable File/Object Transfer Services

Reliable data transfer services maintain state about outstanding data transfers, monitor the progress of transfers, and attempt to restart failed transfers. A Reliable File Transfer Service (RFT) prototype has been developed by the Globus project as an Open Grid Services Architecture grid service. The RFT service allows monitoring and control of a single third-party GridFTP data transfer between two GridFTP servers. The service is reliable, maintaining persistent state about the outstanding data transfer operation using a PostgreSQL database. This state allows the service to restart an interrupted or failed data transfer. There are plans to extend the RFT service to reliably manage multiple concurrent data transfers, maintaining state about the status of each transfer.
21.4.3 Storage Resource Managers
Storage Resource Managers (SRMs) are middleware components whose function is to manage shared storage resources. Several SRMs for managing disk caches, tape systems and hierarchical storage systems have been developed by the Scientific Data Management Research Group at Lawrence Berkeley National Laboratory.

An SRM has to manage two types of shared resources: files and space. An SRM’s most fundamental functionality is to allocate space to a client upon demand, check that the client has permission to use that space, assign the space to the client for a period of time according to its policy, and release the space either when the client requests its release or when the lifetime assigned to the space expires. However, an SRM also manages the sharing of files. Thus, when a file is moved into its space on behalf of a client, the file needs to be “pinned” for a period of time that it sufficiently large for the client to read the file or to copy the file to its space. The client can then “release” the file to unpin it. Read-only files can be shared among clients. In such cases SRMs keep track of the pin lifetime expiration associated with each user for each file.

We refer to SRMs that manage a disk cache as a Disk Resource Manager (DRM) to distinguish it from an SRM that manages access to a hierarchical mass storage system, which we call a Hierarchical Resource Manager (HRM). For now, let us consider DRMs only.

DRMs have been designed to manage files on behalf of a client even when they do not support explicit space reservation. Consider the following scenario. A client needs 500 files, but it can start processing as soon as one file is available. The client should be able to submit a single request for the 500 files to a DRM that manages a shared disk in his/her site. The DRM will queue the request, allocate a default quota space to the client, and check if it has any of the files in its disk cache. Such files may be in the disk cache because some client accessed them earlier. If so, it will pin the files (up to a total size of the quota assigned to the client), and return to the client with this information. The client can then start processing the files, and release each file when it is done, so that the DRM can put another file into the released space. If a requested file is not in the disk cache, the DRM will use the URL provided to it to get it from its source location. The actual transfer of the file is performed by a File Transfer Service that DRM invokes, such as GridFTP.

The incentive to release files is based on the client’s wish to release space for the next file as soon as possible. This helps the DRM manage its space efficiently. However, if the client neglects to release a file that was pinned for him, that file will be released after the lifetime of the pin expires. Thus, DRMs perform automatic garbage collection, which is otherwise a real problem of shared storage resources. Files are not removed from the disk cache unless space is needed. This is because a popular file that was released may be requested again by the same or other clients. The DRM can choose which files to remove from its cache when space is needed. This policy is a way to maximize the sharing of files. The policy, called “replacement policy” is the subject of many studies, and is usually based on the history of accessing files.

SRMs can also be used to store files “permanently”. For DRMs that provide such a service, a “permanent” file can only be removed by its owner, very much like a regular file system. However, there are circumstances when a file is intended to be only “parked” temporarily in a storage system on its way to an archive (for example, the results of a simulation). For this reason, the concept of a “durable” file was introduced for SRMs. A lifetime is assigned to a durable file, but the file cannot be removed when it expires. Rather the owner is notified, so he/she can act on moving the file and releasing the space.

HRMs are basically DRMs that are associated with a mass storage system (MSS), such as the High Performance Storage System (HPSS). They usually have a disk cache that they control, just like a DRM. When a file is requested from the MSS, the HRM will contact the MSS, and get the file transferred into its disk. At this point it can make the file available for transfer with GridFTP. The main advantage of HRMs is that they can act as front-end storage managers to MSSs, and they do not have to be part of the MSS system itself. Usually, they are run on a system that is in the same site as the MSS, so a to avoid firewall and security pitfalls. HRMs are designed to queue multi-file requests for putting and getting files into and out of MSSs. They can make such requests concurrently, but are usually restricted as to the number of concurrent requests in order to avoid flooding the MSS. Because they maintain a queue, they can reorder file requests so that files that are stored on the same tape can be read at the same time. This capability avoids unnecessary dismounts and mounts of tape, which are very slow (in the order of 30 sec). HRMs also monitor the success of file transfers from/to the MSS. If a temporary failure occurs, they wait till the MSS recovers, and reissue the file request.
Figure 21.4
Illustrates the replication of files between hierarchical storage systems using HRMs.

To illustrate the usefulness of HRMs, consider how they can be used for “file replication”, the difficult problem mentioned above because of unreliable system and network components. Consider the case that HRMs exist at two locations that wish to replicate a large number of files, as illustrated in Figure **. A request for the files is issued to the HRM at the receiving end (the target). The target HRM allocates space in it disk cache, and sends a request for each file in turn to the source HRM. The source HRM allocates space, and stages each requested file from the MSS in turn. After a file is staged, the source HRM notifies the target HRM, which then proceeds to issue a GridFTP to transfer the file, and then queue it for archival. After the file is archived the space is released and can be used for the next transfer. This process repeats until all the files are replicated. Since the target HRM is the component that issues the file transfer request, it can also monitor the transfer for failures, and re-issue the file transfer request in such a case. We note that this entire handshake follows exactly the same protocol described for the DRM when a client makes a multi-file request. Consequently, HRMs and DRMs have the same interface. This example illustrates that SRMs can communicate with each other in the same way that a client communicates with an SRM.

HRMs have now been developed for a number of MSSs, including HPSS at multiple sites, Enstore at Fermilab, JasMINE at Jefferson Lab, and MSS at NCAR. There is also a preliminary version developed for Castor at CERN. The obvious advantage to a common interface design is that all these systems as well as DRMs communicate in a uniform way, masking the details of the underlying systems and various implementations.

21.4.4 General data discovery services: Replica Management
One class of general data discovery services are services for managing replication of data. Two generations of replica management tools have been developed within the Globus toolkit: the replica catalog/replica management APIs and the Replica Location Service (RLS).
The Globus Replica Catalog/Replica Management APIs

The original replica management infrastructure developed within the Globus project consists of a simple, centralized replica catalog implemented as an LDAP hierarchical directory and a replica management API that provides reliable file copy and registration of new replicas. The replica catalog contains information about logical files, collections of logical files and physical locations where complete or partial replicas of logical collections are stored. Figure 21.5 shows an example of a replica catalog. While the catalog keeps track of existing replicas, it does not enforce consistency constraints among replicas.
Figure 21.5
An example replica catalog for a climate modelling application.

The replica management API provides a reliable replication capability, combining GridFTP operations to copy files with replica catalog registration operations. The replica management operations are reliable because if either the data copy or registration operations fail, the state of the replica catalog is rolled back to a previously consistent state to prevent catalog corruption.

While the replica catalog proved useful in a variety of applications, its centralized design presents reliability, performance and scalability problems. The centralized catalog represents a single point of failure, and it may also create a performance bottleneck if many clients try to create or query replicas simultaneously. There was also concern about whether the system would scale to handle millions of data items efficiently. These concerns motivated the design of a distributed replica location service that offered higher reliability, scalability and performance.
The Replica Location Service
A replica location service maintains and provides mappings between logical names for data items and the locations of one or more copies or replicas of the data. An RLS prototype was co-developed by the Globus project and Work Package 2 of the European DataGrid project. The RLS implementation is a distributed service that is based on a flexible framework that allows users to make tradeoffs among requirements for consistency, space overhead, reliability, update costs and query costs. Figure ** shows an example of a distributed RLS.

Figure 21.6
A Replica Location Service that consists of four local replica catalogs and three replica location index nodes.

The RLS design framework is based on several mechanisms:

· Consistent local state maintained in Local Replica Catalogs (LRCs): Local catalogs maintain mappings between arbitrary logical names for data and target names (either logical or physical) associated with replicas of the data.

· Collective state with relaxed consistency maintained in Replica Location Indices (RLIs): Each RLI contains a set of mappings from logical names to target names. A variety of index structures can be defined with different performance characteristics, simply by varying the number of RLIs and the amount of redundancy and partitioning among the RLIs.

· Soft state maintenance of RLI state: LRCs send information about their state to RLIs using soft state protocols. State information in RLIs times out and must be periodically refreshed by soft state updates.

· Compression of soft state updates: To reduce the amount of soft state information that must be sent and the storage requirements of RLIs, soft state updates may be compressed. In our current RLS implementation, we use bloom filter compression to summarize the state of an LRC. A bloom filter is a bit map constructed by executing a series of hash functions against the logical names registered in an LRC.

Our implementation consists of a multi-threaded server front-end that performs authentication using the Grid Security Infrastructure (GSI). LRC mappings are stored in a mySQL relational database back-end. RLS will also be re-implemented as a grid service that conforms to the Open Grid Services Infrastructure specifications.

Like the original Globus replica catalog, the RLS does not enforce consistency constraints among replicas. The RLS provides simple a distributed registry, allowing clients to register and discover mappings. Higher-level consistency services are being designed by several groups to provide various levels of consistency on top of the basic replica location service.

21.6 Conclusions
We began this chapter with a broad overview of the grid requirements of scientific and commercial applications that produce and consume large amounts of data. We presented a layered architectural view of the services that make up a data grid, and we provided implementation details for several grid services, including reliable data transfer, storage resource management and replication management.

In many ways, the most interesting challenges for data grid designers lie ahead, as they build upon the basic protocols and services described in this chapter to provide rich higher-level functionality, including data federation, data consistency, workflow management, and knowledge extraction from data grids. The two chapters that follow examine two classes of higher-level services: database management and knowledge services in grids.
� EMBED Visio.Drawing.6 ���

[image: image2.emf]Compute

Systems

Networks

Storage

systems

Storage

Resource

Management

Compute

Resource

Management

General Data

Discovery

Services

Community

Authorization

Services

Application-

Specific Data

Discovery Services

 Storage

Management

(Brokering)

Compute

Scheduling

(Brokering)

Data Filtering or

Transformation

Services

Database

Management

Services

Request

Interpretation

and Planning

Services

Data Access

Protocol or

Service

Data

Transport

Services

Monitoring/

Auditing

Services

Workflow or

Request

Management

Services

Consistency Services

(e.g., Update Subscription,

Versioning, Master Copies)

Data

Federation

Services

R

E

S

O

U

R

C

E

:

S

H

A

R

I

N

G

S

I

N

G

L

E

R

E

S

O

U

R

C

E

S

C

O

L

L

E

C

T

I

V

E

1

:

G

E

N

E

R

A

L

S

E

R

V

I

C

E

S

F

O

R

C

O

O

R

D

I

N

A

T

I

N

G

M

U

L

T

I

P

L

E

R

E

S

O

U

R

C

E

S

C

O

L

L

E

C

T

I

V

E

2

:

S

E

R

V

I

C

E

S

S

P

E

C

I

F

I

C

T

O

A

P

P

L

I

C

A

T

I

O

N

D

O

M

A

I

N

O

R

V

I

R

T

U

A

L

O

R

G

.

Resource

Monitoring/

Auditing

F

A

B

R

I

C

C

O

N

N

E

C

T

I

V

I

T

Y

Communication

Protocols (e.g.,

TCP/IP stack)

Authentication and

Authorization

Protocols (e.g., GSI)

Data Filtering or

Transformation

Services

C

O

L

L

E

C

T

I

V

E

_1096880575.vsd
Community
Authorization Services�

Application-Specific Data Discovery Services�

 Storage Management (Brokering) �

Data Access Protocol or Service�

Compute Scheduling
(Brokering) �

Data Filtering or Transformation Services�

�

Database Management Services�

Request Interpretation and Planning Services�

�

CONNECTIVITY�

RESOURCE: SHARING SINGLE RESOURCES�

COLLECTIVE 1: GENERAL SERVICES FOR COORDINATING MULTIPLE RESOURCES
�

Data
Transport Services�

Data Filtering or Transformation Services�

Monitoring/Auditing Services�

Workflow or Request Management Services�

Consistency Services
(e.g., Update Subscription, Versioning, Master Copies) �

COLLECTIVE�

Data Federation Services�

COLLECTIVE 2: SERVICES SPECIFIC TO APPLICATION DOMAIN OR VIRTUAL ORG.�

Resource Monitoring/Auditing�

Communication Protocols (e.g., TCP/IP stack)�

Authentication and Authorization Protocols (e.g., GSI)�

Compute Systems�

Networks�

Storage systems�

Storage Resource Management �

Compute Resource Management�

General Data Discovery Services �

FABRIC�

