Chapter 22

Services for Data Management in Grids

Ann L. Chervenak and Arie ShoshaniMalcolm Atkinson, Ann L. Chervenak, Peter Kunszt, Inderpal Narang, Norman W. Paton, Dave Pearson, Arie Shoshani and Paul Watson

Digital data are now fundamental to all branches of science and engineering; they play a major role in medical research and diagnosis, and underpin business and governmental decision processes. Increasingly these data are organised as shared and structured collections, which are held in databases, in XML documents and in structured assemblies of binary files. Driven by the advances in simulation and sensor technology discussed in Chapter [SCIENCE IMPARITIVE], we find that significant data collections have grown to the extent that multiple terabyte, and soon petabyte sized collections of data will become prevalent.

The shear size of data sets being generated makes interpretation of the data in any one collection challenging: analysis might demand teraflops of compute power, requiring the access to terabytes of data distributed across millions of binary files and multiple databases. Furthermore, analysis may require complex series of processing steps, each generating intermediate data products of size comparable to the input data sets. These intermediate data need to be stored, either temporarily or permanently, and potentially be made available for discovery and use by other analysis processes. Effective manipulation, processing and use of these large-scale, distributed data resources requires an infrastructure in which shared data, storage, networking and compute resources can be delivered to data analysis activities in a integrated, flexible manner.

With the advent of ubiquitous network connectivity and the scale of modern challenges such as deciphering the function of all the genes in a large number of species has led to widespread collaboration in the creation, curation, publication, management and exploitation of these structured collections. Further complicating the matter is that although individual collections are typically specialised to hold data of interest to particular communities, substantial advances can be achieved by combining information from multiple data resources. For example, astronomers are building virtual observatories, where data collected at different frequencies, X-ray, radio, optical, infrared, etc., and at different times, can be conveniently combined to discover new properties of the universe. Similarly, functional genomics requires comparison between species, integration with protein biochemistry and crystallography databases, laboratory phenotypical data and population studies. Consequently, data analysis must not only deal with issues of large-scale computation and data movement, but it must also provide mechanisms to integrate information from a diverse, geographically distributed structured collections, hosted on a variety of platforms and administered independently according to differing policies.

As collections increase in scale and number it becomes impractical to arrange for integration of data access and analysis into application workflows via ad hoc schemes and more structured mechanisms for discovering, accessing, analyzing and integrating data becomes critical if these important assets are to be shared and exploited to their potential. Clearly the Grid and Grid services as described in this book provides the necessary foundation for the types of integration needed to meet the data access and analysis needs of science and industry.

The Open Grid Services Architecture (OGSA) presented in Chapter (CITE OGSA), defines the basic architectural structure and mechanisms for creating general service oriented infrastructure and as such can be applied directly to the challenges associated with the sharing and interpretation analysis of shared data collections. It is also clear, however, that integration of large-scale distributed data collections into the Grid environment creates the need for Grid services whose function is tailored towards the requirements of data intensive applications. It is on these services that we focus our attention within this chapter.

In the discussion that follows, it is important to keep in mind that data has a somewhat complex relationship to Grid infrastructure. Firstly, as should be clear from the discussion so far, a great many of the applications of the Grid include a significant data access and analysis requirements. Virtually every scientific, engineering, medical and decision-support application depends on accessing distributed heterogeneous collections of structured data. Secondly, and perhaps less obvious, the Grid itself uses many structured data collections for its own operation and administration, with service data elements (See Chapter OGSA), being just one example. As Grid technology becomes more sophisticated and autonomic, the number, volume and diversity of these collections will increase. Hence, systematic data access and integration methods become important not only for Grid applications, but for the Grid itself.

We note that in the past, the term “data grid” has been used to refer to Grid architectures oriented toward data-intensive applications. We avoid using this term, since it implies a false distinction between “data Grids” and “computational Grids” as separate types of infrastructure. Furthermore, this term is problematic in that any analysis of data will require access to the full range of Grid services, including computing, network, security and so on. For this reason, we use the term Grid in all cases, with the understanding that services oriented to the management of data will be available, along with all of the other services one expects to find to support the operation of virtual organizations.

1 Data-Intensive Applications

Data intensive applications for grids come from both the scientific and business domains. Scientists require mechanisms to transfer, publish, replicate, discover, share and analyze data sets. Business applications include financial services, pharmaceutical research, and providing online business services. These applications require mechanisms that maintain database consistency regionally or worldwide, manage data replication, facilitate data discovery, and dynamically respond to changes in load.

1.1 Scientific Applications

New discoveries become possible as scientists mine correlations and anomalies from multiple data sources. This is becoming a major modus operandi for scientific collaboration [10]. That is, more and more data will be recorded and organised as structured data resources available to large communities of scientists from many disciplines. More and more investigations will involve accessing subsets of these resources, extracting specific data from each, and using that data in combination to test or develop some scientific model. In some cases, these will combine moderate volumes of data to derive specific results. In other cases, large volumes of data (terabytes to petabyes) will be examined in pursuit of more general understanding. In virtually all cases, the integration of the different data depends on scientifically based transformations and comparisons. These typically require the execution of complex code, specific to the application or domain, written by the relevant scientists. That code, often encapsulated in a mixture of separate programs and sophisticated query predicates linked by a workflow script, must be executed in conjunction with the data extraction and transfers. The results are often accumulated in other data collections that may be immediately shared, or retained by a local team and subsequently contributed to public repositories, perhaps only in digest form or after the scientists have tested and validated the results. As a consequence, many data resources will have multiple applications using them and typical applications will use multiple data resources.

Some specific examples that illustrating this type of analysis include:

· Data mining is used in astrophysics grids to scan the data coming from satellites, telescopes and other instruments for peculiar, rare objects. In the Sloan Digital Sky Survey project, researchers have used data mining techniques to identify high-redshift quasars.

· Statistical analysis is carried out in high-energy physics applications, where events generated by particle detectors are stored in a grid and categorized by their properties. Based on histograms generated from these events, physicists can measure their understanding of the basic forces of nature.

· Simulation and analysis are used in biological applications such as genomics to combine published data about known genomes into new sequences, which are stored as derived data products in the grid and analysed for their chemical properties.

In these and many other cases, the communities generating and consuming the data are large, multi-disciplinary collaborations, with participants filling many different roles. Experimentalists organise the processes by which data is collected, provide records describing how it was collected, engage in interpretation of the data and arrange the generation of standard data products. Theoreticians create and run simulations that produce data, provide records describing how it was produced and engage in the interpretation of data. Data curators organise, maintain and publish shared collections of data, including primary data, data products, annotations and their own interpretations and integrations of data. They will also provide so called meta-data, data describing how their collection is organised and the policies governing its use. Database engineers, computer scientists and developers of scientific applications jointly establish and optimise the supporting infrastructure, and formulate and develop schemas, queries and code that represent the science. Collaboration between all of these groups is essential for scientific advance.

Scientific data exploration consists typically of three phases: 1) the data generation phase; 2) the post-processing phase; and 3) the analysis phase. Due to the nature of scientific analysis, data sets at all phases are often published by the community and subsequently accessed in a read-only manner. Alternatively, there are situations, for example when adding new attributes to a structured data set, in which the data may be updated rather then augmented. This may have ramifications with respect to consistency constraints if data has been replicated. In all cases, keeping a record of what processing steps the data has been subjected to, e.g. data provenance, is important to maintain the veracity of any scientific results.

The data generation phase may consist of running large simulations that require the full use of a supercomputer for many hours. During this phase, the main concern is storing the resulting data fast enough to avoid slowing down the computer simulation run. Current rates of data production often reach one gigabyte per second. Data sets may also need to be moved to archival storage at the same rate to make room for data from the next simulation run. The data sets produced by these simulations may be large. For example, climate models generate terabytes of data per simulation run, and increases in simulation resolution will greatly increase data storage requirements. Even a very conservative increase in the granularity of the model meshes – a factor of two per dimension of space and time – will generate a factor of 16 more data. Given their size, it is often prohibitive to move entire datasets to the scientist’s site. Rather, subset selection and filtering of the data need to be performed at the simulation site, and only the results sent to the scientist for further analysis.

In the post-processing phase, all the data generated during a simulation run is typically validated, subjected to some initial processing and formatting, and is annotated with appropriate auxiliary information (i.e. metadata) so as to form a data collection. The type of post-processing varies with the application, such as applying scientific codes to interpret the data in Fusion applications; generating reduced summaries, for example, monthly means in Climate applications; or generating multi-resolution representations of the data for visualization purposes. In some cases, the amount of data generated in the post-processing phase is equal or greater than the original data, especially if indexes are built for use in the analysis phase.

Post processing of the data can be done at multiple computational sites. Thus, it is typical that large subsets of the original dataset are replicated at multiple locations. Hence, it is desirable to have access to a robust data replication capability. Today, there are several High Energy Physics experiments that need to replicate files at a sustained rate of 1-2 terabytes a day, or about 10-20 megabytes per second. Services for registering the location of replicas and for discovery of data replicas are also required.

In the analysis phase, different combinations of data from one or more data collections must be accessed and processed to provide the desired result. A typical application structure is shown in Figure 1. P1 and P2 denote application programs, DS1 to DS4 denote four independent data resources held at different sites, with different structures, which are independently managed. The data flows, DF1 to DF5, denote transport of structured data. For example, DF1 and DF2 could be the result of queries sent as part of the workflow organising the whole computation, DF4 could be the result of a query sent by P2, partially determined as a result of the data delivered by DF3. DF5 might denote the addition of data to DS4. Scientific workflows that access and integrate structured data will often be significantly more complex than this.

[image: image1.wmf]D

F3

D

F5

D

F4

D

F2

D

F1

P

1

P

2

D

S1

D

S4

D

S3

D

S2

F

ig

u

re

23.2

:

An

 exa

m

p

l

e

d

a

t

a

acce

s

s

a

nd

i

n

t

e

gratio

n

a

pp

li

c

atio

n

str

u

c

tu

re

Figure 1: An example data processing workflow

1.2 Business Applications

Business applications cover many different usage scenerios. There are certainly commercial application, in areas such as engineering design and pharmaceutical research and development that are essentially scientific in nature, and hence we would expect these applications to have much in common with scientific applications. Others, in areas such as financial services, have different charactistics, both in the use of the data and data volumes. While use of Grid technologies in the commercial sector is just beginning to take hold, we are starting to see certain classes of applications evolve.

Data mining plays a significant role in many commercial endevors. For example, in the financial services sector, data mining is used for fraud detection, while in retail supply chains, data mining is used to detect trends and patterns in purchasing behaviours. In general, the size of the data collections associated with commercial data mining tend to be smaller then those found in large scale scientific applications. However, in spite of the differential in size, the need to integrate distributed data and compute resources remains just has urgent, or even more so. Industries that are sensitive to capitol costs will want to diverse data processing resources, from desktop machines and data center servers eUtility servers allocated on demand. For this reason, these applications are just as sensitive to issues of discovery, data placement, scheduling and workflow management as scientific analysis applications.

A second important class of application that are being explored in the commercial space focuses on providing pragmatic approaches to integrated data access both within and between enterprises. To an increasing extent, data to support business operations is distributed across multiple data bases. Some of this distribution is due to the fact that any one data base doesn’t hold all the required information for an application. Alternatively, for performance or reliability reasons, applications will require local copies of either entire data sets, or subsets of the data (i.e. a view). Current database federation technology is not sufficient to address these requirements, and current approach to application development is to support replication and federation in a completely ad hoc and application specific manner. This results in both in increased fragility of the application code, and a squandering of capitol resources due to lack of sharing. Hence, there is a strong motivation to migrate these applications to an infrastructure in which basic data access, replication, and data integration services are pushed into standard infrastructure elements.

These integration applications differ from scientific applications in several regards. The structured data is almost exclusively stored in databases, rather then binary files. The size of the data tends to be small compared to scientific data sets: terabytes rather then hundreds of terabytes. Finally, unlike scientific data sets in which update can be rare (due to the important of preserving provenance), updates in commercial data sets are frequent. This complicates issues of replication, coherency, and often requires some type of transactional semantics. It is important to realize however, then even in financial data sets, total coherency of all distributed and replicated data products is not a prerequisite, but rather a property whose application can often be constrained based on application semantics.

2 Categories and Origins of Structured Data

The usage scenarios above indicated that there were a variety of classes of data, each generated at a different stage in the scientific process, each with different characteristics. In this section, we take a more comprehensive view of the different types of data.

We focus our attention on so called structured data, a term that is used to denote any data whose structure is explicitly defined so that operations may exploit that structure, e.g. queries may extract subsets of data based on that structure. We limit our discussion to structured data as structuring is required to understand data, and hence a prerequisite for sharing data across a collaboration.

The structure of data is often expressed via a schema which is metadata that describes the logical structure of a database in terms of some data model, such as the relational model. There may be additional metadata available, describing the physical organisation of the database, the access policies and some of its enforced invariants, called integrity constraints. It is useful to discriminate the technology independent description, logical schema, from the technology dependent physical schema.

Often the data is structured relationally, or more recently via XML documents and associated XML schema. Data structured via these mechanisms are often stored or managed in traditional database systems. However, data may also may be binary data for which there is an explicit structure definition and software that exploits that structure, such as HDF [CITE HDF], or NetCDF [CITE NETCEF]. There are also many cases, particularly in legacy biological and earth systems ‘databases’, where data are held as semi-structured data. This is ASCII text data where the structure is represented by formatting conventions [1]. These data can be integrated and queried [2, 3] (wrappers are constructed to access the relevant data and present it against an agreed schema). In some cases, the data in scientific papers may be extracted automatically and presented with regular structure [4].

Five categories of structured data are introduced, to illustrate diversity and prevalence. This diversity needs to be considered in approaches to data access and integration for the following reasons.

· The multiple categories of structured data make it sensible to amortise the costs of developing generic data access and integration technology over a wide spectrum of uses.

· They make that technology hard to design because of the many different usage patterns.

· This diversity leads to different and dynamically varying operational loads that require adaptive optimisation.

Primary structured data: Scientists and instruments may record observations, e.g. a time series of measurements, and their supporting metadata directly in databases. This would not support the highest data rates from digital scanners, which will continue to deliver binary “images”, typically as multi-dimensional arrays
. Frequently, these image collections become part of a structured collection after processing, e.g. to achieve normalisation, interpretation and annotation. For example, the primary data from scanning microarrays is collected and shared according to standard structures: MIAME [17] and MAGE [18]. Direct recording in databases supports many other forms of data collection, from a field-worker’s personal record keeping to the output of highly automated laboratories.

Ancillary data: the structured metadata that is used to support bulk binary or structured data. Very large volumes of data are required when hunting for evidence of rare events, such as Higgs bosons [19] or gravity waves [20], or when scientists are attempting to develop a “complete” view, as in digital sky surveys [21, 22], atmospheric, geophysical and environmental research. Four forms are common:

· Technical metadata used to support the management technology that underpins data grid operations, e.g. to record where there are copies of a logical file. The Chimera project [11] provides another illustration where structured data is used to plan and record the data derivation processes.

· Technical metadata used to organise the interpretation of the primary data, e.g. indexes that accelerate near-neighbour searches in a digital sky survey.

· Application metadata that guides the interpretation of the primary data, e.g. to select the data that is catalogued with relevant properties.

· Data products, including summaries, catalogues and indexes that are produced by successive steps in deriving information from the primary data, e.g. a table of classified astronomical objects found in a digital sky survey. Data products may be treated as primary data by some scientists and as metadata by others.

Collaboration data: the data that is collected to enable scientific information to be shared quickly and precisely. It accounts for much of the legacy structured data in e‑Science, and represents an emergent mode of collaborative scientific behaviour. Scientists increasingly collaborate by recording and sharing data via databases, normally using agreed terminologies, a practice that the Grid will encourage. In the life sciences, this has been a major activity for fifteen to twenty years. Groups of scientists have communicated by writing to publicly available structured data collections, for example, to record the genetics, phylogeny, ontology and phenotype of a particular species, to record protein structures and function, and to develop and interpret whole genome sequences. This leads to many collections of related data, each curated by a particular group who impose standards and structure. Mechanisms have emerged for others to annotate some of the collections in independently stored databases that refer to data in curated collections [23]. Other examples are the MIPS database recording the developing understanding of yeast functional genomics [24] and the Kegg database recording biochemical pathways [25]. Scientific databases need to reflect the complexity of the systems they describe. For example, the PEDRO system [26], integrated with GIMS [27], requires a complex UML schema to represent proteomic data.

Ineluctably, as a science progresses, new understanding emerges. This means that there is frequent addition and revision to the entries in the collection and that the original structures often prove inconvenient or inadequate for holding the new topics of importance. Hence, not only the content of the collection but also its structure evolves with time.

Personal data: data assembled by or about individual users. This may contain profile data, such as preferences and re-usable working methods, digital laboratory notebooks, representations of work in progress and personalised workflow scripts. This data is typically private, in contrast to collaborative data where the intention is to communicate with other researchers. It may refer to collaboration and primary data, and selections may eventually be transferred to that communal data.

Service data: data used to provide a Grid, a data access and integration infrastructure and other e‑Science enabling technology. Examples include: the data in registries, the data describing services, data defining authorisation policies, data describing progress enacting work flows and data defining the current state of the system. Current systems include: Grid Information Services [28] and Spitfire [29], which use relational storage to provide database administration, user management, data-dictionary access and statement evaluation.

Another established example of implementation data is the catalogues mapping logical names to physical names and tracking the location of physical files [30] (described in the preceding chapter). This uses a distributed database approach, with a uniform schema, and bespoke protocols for maintaining consistent catalogues and continuous operation despite partial failures – the design depends on centralised decisions though the operation exploits autonomous databases.

3 Challenges of Data Management in Grids

Generalizing from the examples of Section 1, we can identify some of the application requirements for data management services and the associated challenges that result from those requirements. At a high level, the challenges are driven by three main factors:

· Diversity of usage scenarios. For example, while some applications require updates, others will operate in a read only mode. If data is updated, via writes or versions, there will be different requirements with respect to consistancy, some applications will need access to binary formatted data, while others relational, and so on.

· Heterogeneity at all levels of the system including storage systems, data formats, data access mechanisms, policy, etc.

· Performance demands associated with access, manipulation and analysis for very large quantities of data.

We will now examine the challenges resulting from these factors.
3.1 Data sources

The term data source is used in this chapter to denote any facility that may accept or provide data, including the full range of forms described above. A data source may be a read only data resource, an instrument generating structured data, or a program, e.g. a simulation or distributed query evaluator, generating structured data. Perhaps the most common case is that of a data source being one of a range of storage devices, including databases, disk caches, network-attached storage devices, disk arrays, tape based mass storage systems, and hierarchical storage systems.
Not all data sources are permanent, but rather can be transient: created and destroyed on the fly. For example, some applications use their own internal databases, e.g. to hold progress data or to accumulate results. Temporary, local databases may be installed and used to store and process results during the application’s execution, e.g. in a Monte Carlo exploration of a parameter space, a new database and the set of model runs may be co-located on the processor farm dynamically chosen by a work-load scheduler. At the end of that set of model runs, the key database contents, or derivatives computed from them, may be added into a persistent, shared results archive located elsewhere on the network, while the local database is discarded.

Another illustration is provided when the model requires a database defining its “boundary conditions”, e.g. terrain and vegetation data, when exploring the likely development of a bush fire. In this case, a large primary data resource may be queried and the pertinent data for the locale and season extracted. That snapshot may be formed into a new read-only database of appropriate structure for this application, which can then be cloned and moved to each computer where the simulation is running thus avoiding network latency and database contention whenever boundary condition data is queried. These examples highlight a need for Grid-enabled data sources that can be quickly and automatically installed, configured and torn-down along with the need for data movement and replication. Within the OGSA framework, this requirement can be met by ensuring that data sources can be produced via factory operations.

The most basic function of a data source is to provide access to data: read or write. The Grid is likely to contain a diverse set of data resources, characterized by different storage system types, data types, data models and access mechanisms. Storage system types include a wide variety of file systems, caches, databases, hierarchical storage systems and directory services. Different data types include files, collections of files, tabular data from relational databases, structured data from XML databases, semi-structured data, data and abstract data concepts like virtual data. Examples of different data models include databases with different schemas. Access mechanisms include file system style open/close/read/write versus SQL or XPath query mechanisms. This diversity of access methods can result in undesirable complexity in an application, or inhibit the ability of an application to adapt to new, unanticipated data sources. For this reason, it is desirable to have uniform methods for accessing a data source along with the ability transform data among between types, mediating among the data models.

Perhaps more then any other resource or service in a Grid environment, sharing of data resources must be controlled as the consequences of unauthorized access can be catastrophic. Since data sets may be valuable, data source stakeholders require the ability to share their data in a controlled manner throughout a virtual organization, permitting or denying access to data sets on a relatively fine grain. Such sharing requires authentication of users to determine their identities and access control that enforces local and community policies for data access and resource usage. Grid data transfers must also be secure; users must be authenticated and authorized to access the data being transferred and to consume space on the destination storage system.

Finally, we note that efficient and coordinated use of data sources may require the ability to manage the data source itself: allocating and reserving space for data transfers, staging data from tape systems to disk caches, reserving bandwidth into the storage system, etc. These functions fall under the heading of resource management, and in Chapter (CITE RESOURCE), a general mechanism for specifying and executing management functions are described. In this chapter, we will however, discuss particulars of management functions that are specific to data sources.

3.2 Data Management (NEED BETTER TITLE)
We now concern ourselves with the challenges associated with managing data resources, specifically how we locate data sources of interest, how we move data between locations, etc. The most basic data management operation is the movement of data from one storage system to another. Applications may require movement for analysis, simulation, or data replication operations. Data movement provides the foundation for replication, caching and bulk data access.

Because data sets may be large and since wide area data transfer delays can be significant, efficient data transfer is an important requirement for grids. Grid users may also filter data before transferring it, effectively running a query or analysis to extract only a desired subset of the data to produce a new data product or to minimize the amount of data transferred. Many applications are particularly concerned with transmitting data reliably, including maintaining state on outstanding data transfer operations, retrying failed transfers and restarting transfers that are interrupted.

One reason for moving data is to create replicas within a virtual organization to reduce access latency, maintain local control over necessary data, or to improve reliability and load balancing. An important challenge for grids is to provide services for replicating data, locating existing replicas, selecting among available replicas and proactively replicating data items to satisfy demand.

Once data has been replicated, one is faced with the question as to if is needs to be kept consistent, and if so, how. Requirements for consistency among replicated data items can vary widely by application. While some communities have relatively few consistency requirements because they provide read-only access to published data sets, many other applications require higher levels of data consistency. Even within commercial applications with updates, such as financial services, there is a recognition that a once size fits all consistency model is not necessary or even desirable and some data can be allowed to become inconsistent. In this situation what is important is that the consistency model is made explicit so that applications have the correct expectations. Guaranteeing consistency among replicated data objects in grids is challenging, given the heterogeneous data resources, wide area communication delays, and likelihood of frequent resource failures that characterize grid environments.

Another aspect of data management is the process of discovering data sources of interest. Often, members of a virtual organization or application domain produce a set of metadata conventions that allow the community to share data using common vocabulary and semantics. Grid users require the ability to locate desired data based on metadata attributes rather than knowledge of the exact data name or location.

Issues of discovery show up in many different situations in Grid environments, and all of the challenges associated with discovery in these situations applies to data sources as well: how to describe the relevant attributes of the data sources (i.e. metadata), how to publish the information, how to index it, how to keep it up to date. Given the previous discussion that identifies service data as just another structured data collection, the relationship between general discovery on the Grid and location of data sources is not a surprise.
3.3 Data Analysis and Processing

In Figure 1, we illustrated how data analysis may consist of a series of data processing and data analysis steps. Constructing and subsequently executing such a complex series of operations can poise significant challenges in terms of both determining appropriate operations and efficiently executing the operations across distributed data sources, compute resources and so on.

One approach to reducing the complexity of delivering desired data products to an application is to adopt a virtual data abstraction in which desired data collections are specified via name, or attributes, and underlying services construct the processing step, taking into consideration pre-existing intermediate results, data location, computational resource availability, etc. Virtual data tools include languages for specifying virtual data products, interpreters that map from a virtual data description to a plan for creation of the data, and grid infrastructure that can discover whether the data item already exists or can initiate production of the data item. A virtual data system must also include catalogs for recording provenance information for newly-created data items.

While virtual data tools can be used to deliver data products to specific applications (using application specific planning tools, schedulers, etc.), these tools can also be used to construct a more general, unified, virtual database view of distributed data sources.

Once an execution graph such as shown in Figure 1 is produced, either the result of an explicit query or produced via a virtual data system, one must map the execution of the operations on to the underlying services and resources available to a virtual organization. There is a challenging set of issues related to managing execution, including planning the computation, or breaking it into a series of data movement and computational tasks; selecting the best storage and computational resources to perform each task and scheduling them; and monitoring the progress of the analysis, including recovery from task failures.

Finely, we note that for any derived data product it will be important to record not only information about the data, but information about how the data was produced as well, what is called provenance information. Provenance information includes exact information about analysis or simulation programs that produced a data item and the inputs to those programs. While provenance data is another form of meta-data, it presents some unique challenges with respect to its structure, how it is obtained, and how to use it to reconstruct data analysis chains being some examples.

4 Architectural Approaches

In the past, the design of infrastructure to support data intensive applications has taken a variety of approaches ranging from monolithic integrated architectures targeted towards specific usage scenarios, to layered general layered protocol architectures. However, with the emergence of the Open Grid Services Architecture (CITE OGSA), convergence towards a more standard, service oriented architecture seems likely.

Of course the devil is in the details and factoring the general space of data oriented applications into an orthogonal, reusable, efficient and complete set of data services remains a challenging task. In many ways, design of a good service oriented architecture for data oriented applications is no different than service design for the rest of the Grid. We require a set of services that are not overly prescriptive with respect to semantics or implementation, that can be easily reused across a wide range of usage scenarios and capture fundamental usage paradigms that can be combined with other services to construct higher level behaviours.

At the time of this writing, only the most basic data oriented Grid services are being put forward for standardization. However, a rapidly expanding base of practical experience with globally distributed large-scale data intensive application domains, combined with past results in building distributed data management systems, such as distributed databases and distributed files systems, does make it possible to identify classes of Grid services that are critical to integrating large distributed data collections into the Grid environment.

Following the layered service architecture outline in Figure (LAYERED FROM ARCH), we can categorize data oriented services into several classes:

· Resource level services for data sources. In introducing data collections to the Grid, we find it useful to distinguish between data access interfaces and data movement interfaces. Access services must provide, secure, high-performance access and update of structured data and may include support for creating data views, accessing (and possibly filtering data) via a range of query mechanisms. Movement services are oriented toward transport of data from place to place, and are generally oblivious to the structure of the data once access methods have been stabled. Beyond the core services and interfaces associated with the actual data, a number of services and interfaces that manipulate the data source itself are also indicated. These include monitoring, auditing and discovery interfaces for distinguishing the capabilities offered by one data source from another and management services that control the quality of service associated with the use of a data source.

· Collective services for managing data. These include primitive services for managing data across more then one data source. Services in this category include services for third party data transfer, data discovery, data transformation and filtering, and scheduling.

· Collective services that federate data sources. This class of services combines or federates two or more data sources, integrating them at some level of functionality. In general, federation services should be structured so as to support a wide range of integration strategies, from a completely unified and transparent view of the combined data sources (e.g. a virtual data base) to much weaker forms of integration, such as replication without coherency (e.g. a federated namespace only). Federation services may include replication services, data naming and location, data federation (schema mediation), consistency management, distributed query management, among others.

· Domain specific services. These include specialized data management, processing, and analysis operations that are oriented towards specific application domains. For example, specific applications may have unique relaxed transactional semantics that would yield good performance, but exploit domain knowledge.
In reviewing the above classes of services, one must remember that they are in no way intended to be comprehensive if for no other reason then there is a universe of non-data oriented services (many of which are described in other chapters of this book) that are used in conjunction with services oriented towards data. In this sense, the line between data and other Grid services is quite blurred: security (CITE SECURITY), resource management (CITE RM), computational (CITE PLATFORMS), and network Grid services are all combined to create complex data-oriented services such as distributed query processing, or data analysis workflows.

5 Data Sources

In this section, we will describe in more detail the basic resource level services that are required for managing and accessing data sources. We confine our discussion only to data sources, as the representation of computing, networking, security and other services are discussed elsewhere in this book.

5.1 Data Access

At the root of all the services discussed in this chapter is the need to access data. In this section we consider the nature of how data is stored and a variety of techniques by which data sources can be rendered as Grid services. Data may physically reside on a variety of devices: standard disks with various degrees of reliability, access latency and data bandwidth, network attached storage devices, distributed file systems, tape mass storage systems and hierarchal storage devices that combine one or more of the above. From the perspective of a data source, however, we are concerned only about the methods presented to access data stored on the device, and the performance characteristics advertised for those access methods.

Broadly speaking, there are two main classes of data sources: file oriented and database oriented. With few exceptions (e.g. the Storage Resource Broker [CITE SRB]), much of the original work in data oriented services focused on file oriented data sources. There were two reasons for this. Much of the original data oriented work in Grids has been driven by simulation based science. The output mode for these simulations is typically file oriented. Second, is the fact that database systems often sit on top of file-system, hence data services that manipulate files without looking at their content (for example data transfer) can be applied to data services as well. That said, current and future directions in data sources are strongly focused at support for database technology and providing integrated services that accommodate both file and database oriented data sources.

The maturity of database technology means that it is used extensively in applications, including virtually all of those in the e‑Science domain and in building the infrastructure itself. If this already provides nearly all that a virtual organisation requires, then it is unlikely that investment in combing databases with the Grid will be worthwhile. However, consider two cases that motivate combining Grid and database technology.

The first is the case where a virtual organisation is already using Grid technology for other reasons, e.g. it needs to dynamically adapt the virtual organisation, and to dynamically create, monitor and schedule computational workloads using its shared resources, etc., then it will still need to use databases and database management systems. It is infeasible to re-implement the equivalent functionality, even if ownership and invested interests permitted this, which would be unusual (the cost, delay, unnecessary unreliability and disruption would be unacceptable). Therefore access to these existing data resources is essential. This is a common situation in today’s e‑Science projects, and hence the current emphasis is on developing technology that makes that access convenient [10].

Even in this case, there will be pressures on the database providers, DBMS providers and database platform providers to make changes as this usage develops. For example, the Grid will enable tools and services to be built that rely on a uniform model for charging, metering, diagnostic probing, etc. As interactions with data resources are intimately connected to the remainder of the computations, operations teams, application developers and application users, will begin to expect this uniform technology to extend to those data management components themselves. A similar pressure will exist to develop consistent authentication and authorisation mechanisms, e.g. single-sign-on acceptable to all parties. The applications will require notifications from databases as a result of triggers. DBMS may use the Grid’s established lifetime management regimes to recover resources, e.g. notification obligations. DBMS may eventually use Grid infrastructure to implement distributed databases and Grid Services to expose data and functionality.

The second is the case where functions are required that are not yet provided by simple extensions to database technology. For example, the coupling of computations with operations on data resources introduces many new optimisation challenges. Short-term optimisations, data location / movement, process location / movement and scheduling of data operations and computation can, in principle, be brought into the same framework as the long-term optimisations about how and where to store data. This holistic and multi-scale optimisation requires substantial research and development. More radical re-engineering of Grid and database technology may be provoked in this case. For example, where databases need to be created or moved as part of a Grid application, the DBMS must have its location and lifetime managed by the Grid’s technology.

In the following subsections, we explore first, services for file oriented access, and then services for data oriented access.

5.1.1 GridFTP as a File Access Service

GridFTP was designed to be a fundamental service for both data access and data transport. The motivation for the design of GridFTP was to create a protocol that would provide a uniform interface to various storage systems, including hierarchical storage systems, disk systems and storage brokers. Typically, these storage systems have incompatible data access protocols. These incompatible protocols effectively partition the datasets available on the grid: applications must either choose only a subset of storage systems or must use multiple methods to retrieve data. GridFTP was designed with the assumption that it would be mutually advantageous to both storage providers and users to have a common but extensible underlying data transfer protocol that provides interoperability between disparate storage systems. Storage providers would gain a broader user base, because their data would be available to any client. Storage users would gain secure, efficient access to a broader range of storage systems and data.

GridFTP can be used for both data access and data transfer. We can distinguish between the two operations in the data access concerns itself with the structure of the data, looking at its values, while data transfer views the data as a structure-less blob, to be moved from point to point.

GridFTP functionality includes features that are supported by the FTP standard, extensions that are under consideration, and additional extensions. Standard FTP was chosen as the basis for a grid transport protocol for several reasons. First, FTP is the protocol most commonly used for data transfer on the Internet. In addition, the FTP protocol provides a well-defined architecture for protocol extensions and supports dynamic discovery of the extensions supported by a particular implementation. Third, numerous groups have added extensions through the IETF, and some of these extensions are particularly useful in the Grid.

The GridFTP protocol provides a number of features. To facilitate interoperation with other Grid services, authentication to GridFTP services uses the widely deployed Grid Security Infrastructure (GSI) [CITE SECURITY] support for robust and flexible authentication, integrity, and confidentiality. To facilitate its use as a data access protocol, server side processing that allows for the inclusion of user written code that can process the data prior to transmission or storage. Partial file retrieval is included by default. Alternatively, use as a data transport protocol is facilitated by third-party control of data transfer that allows a user or application at one site to initiate, monitor and control a data transfer operation between two other sites, as shown in Figure 1.

The need to access very large amounts of data, issues of performance and reliability critical aspects of the protocol. To address these issues, GridFTP supports parallel data transfer that uses multiple TCP streams between a source and destination, which can improve aggregate bandwidth in some situations. In addition, the use of large TCP windows to improves the efficiency of file transfer for large files, greatly reducing the overhead of control message and TPC synchronization. Finally, because very large transfers will take a long time, and hence be more susceptible to failure, GridFTP contains mechanisms for reliable and restartable data transfer and user-provided fault recovery algorithms to handle failures such as transient network and server outages.

[image: image2.wmf]GridFTP

Server

GridFTP

Server

Host A

Host B

Host C

GridFTP

Client

Data Transfer

Control

Messages

Transfer

Status

Figure 2: A third-party transfer operation is used by a client at one site to initiate a transfer between two GridFTP servers at other sites.

There is a specialized GridFTP server implementation that also supports striped data transfers. Striped transfers increases parallelism by allowing data objects to be interleaved across multiple hosts. For even more parallelism, striping can be combined with multiple TCP streams between each pair of hosts.

The distributed and heterogeneous nature of data sources and consumers in a grid require that data access and transfer must be secure, efficient and reliable. One example of a data transport protocol that addresses these requirements is GridFTP, developed as part of the Globus toolkit and standardized through the Global Grid Forum.

5.1.2 Data Access and Integration

Data access functionality in GridFTP is primarily oriented towards file oriented structured data with access primitive to return subsections of files. While FTP’s extended data commands do make it possible to do get operations with complex specifications, even queries, a higher level, more direct query interface is desirable and will facilitate more uniform access to data sources.

Standard interfaces for accessing structured data within an enterprise from an application exist. These typically establish a session, and then submit a series of query statements within some transaction regime. Each submission obtains a response, either a result set or a status response indicating whether the execution succeeded or failed. Using standard mechanisms, such as ODBC and JDBC, the application program is independent of some aspects of the database to which it connects and remote connection is supported.

Using these standard interfaces as a baseline, the Data Access and Integration Services Working Group of the GGF has set out to define standards for data access and integration [39] appropriate for the Grid environment. The OGSA-DAI components will form an open source reference implementation of this standard and at the time of writing, the UK e-Science Programme project OGSA-DAI has constructed “plug and play” data access and integration components [38], the first version of which was released in conjunction with the Globus Toolkit 3 (GT3) in June 2003.

The OGSA-DAI project assumes an architecture that matches the Open Grid Services Architecture [40] and provides a simple set of composable components. The principle components and their use are illustrated in Figure 23.3.

[image: image3.wmf]

1a. Request to Registry for

sources of data about

“x”

1b. Registry

responds with

Factory handle

2a. Request to Factory for access to database

2b. Factory creates

GridDataService to

manage access

2c. Factory returns

handle of GDS to client

3a. Client queries GDS with

XPa

th, SQL, etc

3b. GDS

interacts with

database

3c. Results of

query returned to client as XML

SOAP/HTTP

service creation

API interactions

Registry

Factory

Grid Data

Service

Client

XML /

Relational

database

Figure 23.3: Illustration of the OGSA

-

DAI architecture

The client, typically an application program or portal, uses a Data Registry first to locate a Grid Data Service Factory (GDSF) service that is capable of generating the required access and integration facilities. The information returned allows the client to choose an appropriate GDSF and activate it using its Grid Service Handle (GSH). The client then asks that GDSF to produce a set (here one) of Grid Data Services (GDS) that provide the required access to data resources. They may be the data resources themselves or proxies for those data resources, as illustrated here. The client then uses the GDS to obtain a sequence of required services.

In addition to basic database operations, such as update, query, bulk load, and schema edit. To enable an open-ended range of data models and operations the required operations are requested using a request document, which specifies a sequence of activities such as database operations defined using standard query languages and data delivery. Additional components required for data translation: Grid Data Translation Services (GDTS) are included in the DAI architecture.

5.2 Managing Data Sources

We now shift our attention from data access to services and interfaces that manage the storage system which is responsible for holding the data collections being access. These functions fall under the general heading of resource management, a topic which is covered in more depth in Chapter XX. With respect to storage resources, the most critical resource to be managed is storage space. Note that this is more then simply enforcing storage quotas, which limit the total amount of storage that any user, group, project, etc. may consume. Rather we are talking about storage reservations, which ensures that agreed upon amounts of storage will be available for a specified duration of time.

Storage space is not the only element of a storage system that can be managed. Bandwidth and throughput of data requests are examples of other elements of storage systems that can be managed. However, as discussed in more detail in Chapter XX, our ability to manage resources is typically limited by the local resource management software that is available on the resource. While some realtime operating systems provide guaranteed rate I/O to storage systems (e.g. SGI’s GRIO facility [CITE GRIO]), these functions are not yet generally available. However, this is a limitation we would expect to see increasingly diminish in the coming years.

In the next two subsections, we will discuss some current solutions to storage resource management.

5.2.1 NeST

NeST is a software-only Grid storage appliance developed by the Condor Project at the University of Wisconsin at Madison [cite]. The Condor group argues that to be useful in a Grid environment, storage appliances must provide two features. First, they must be able to make guarantees about storage availability so that wide area schedulers can move large data sets without fear of resource revocation. Second, they must be self-cleaning to ensure that failed operations or misbehaving clients do not permanently fill the storage appliance and prevent other users from accessing it.

NeST provides these two features using a concept called a lot which provides a guaranteed capacity to a particular user or group and can be also used to logically group sets of files to facilitate sharing, discovery and removal. Lots can either be guaranteed or best-effort. Best-effort lots are removed lazily as space becomes scarce. Guaranteed lots have a specified duration that can be renewed as necessary. When its duration expires, a guaranteed lot becomes a best-effort one.

[image: image4]
Figure 22.5: NeST Components

As shown in Figure 22.5, NeST is has four main components: a storage manager, a transfer manager, a dispatcher and a protocol layer. The storage manager controls and virtualizes the underlying physical storage of a machine and enforces access control and storage space guarantees. The transfer manager asynchronously manages data transfers between protocol connections. The dispatcher is the main scheduler for NeST and controls the flow of information among components. Finally, the protocol layer virtualizes specific protocols used by clients to and from a common interface understood by NeST components. Protocols supported by NeST include FTP, GridFTP, HTTP, a subset of NFS and Chirp, the native protocol of NeST.

5.2.2 Storage Resource Managers

The NeST approach is to develop storage with management function as part of its core behaviour. An alternative approach is to create a specialized service known as a Storage Resource Manager (SRM) whose function is to manage the associated storage via a range of techniques including: cache management, pre-allocation and advance reservation of space for data transfers, staging of data from slow to fast storage in a hierarchical storage system, and scheduling of storage system requests. SRMs can also manage the file content of shared temporary space, and use replacement policies to maximize sharing of files. SRMs were initially designed to manage file caching for hierarchal storage systems. However, recent work generalized their functionality so can be used to manage a wide range of storage.

An SRM typically manages two types of shared resources: files and space. The SRM’s basic function is to allocate space to a client upon demand, check that the client has permission to use that space, assign the space to the client for a period of time according to its policy, and release the space either when the client requests its release or when the lifetime assigned to the space expires. When a file is moved into the space managed by an SRM, the file can be “pinned” for a period of time to ensure that the space occupied by the file is not reclaimed before the client that requested the file can complete its operations on that file. By allowing subsequent requests for the same file from different requests to extend the duration of the pinning, the SRM promotes sharing of files between clients of the storage system. In such cases, the SRM keep track of the pin lifetime expiration and space consumed by the file with each user for each file.

We refer to SRMs that manage a disk cache as a Disk Resource Manager (DRM) to distinguish it from an SRM that manages access to a hierarchical mass storage system, which we call a Hierarchical Resource Manager (HRM). DRMs have been designed to manage files on behalf of a client even when they do not support explicit space reservation [CITE??]. Consider the following scenario. A client needs 500 files, but it can start processing as soon as one file is available. The client should be able to submit a single request for the 500 files to a DRM that manages a shared disk in his/her site. The DRM will queue the request, assign a default space allocation to the client, and check if it has any of the files in its disk cache. Such files may be in the disk cache because some client accessed them earlier. If so, it will pin the files (up to a total size of the allocation assigned to the client), and return to the client with this information. The client can then start processing the files, and release each file when it is done, so that the DRM can put another file into the released space. If a requested file is not in the disk cache, the DRM will use the information provided in the request to get it from its source location, using data transport protocols such as GridFTP.

The incentive to release files is based on the client’s wish to release space for the next file as soon as possible. This helps the DRM manage its space efficiently. However, if the client neglects to release a file that was pinned for him, that file will be released after the lifetime of the pin expires. Thus, DRMs perform automatic garbage collection. Files are not removed from the disk cache unless space is needed. The DRM can choose which files to remove from its cache when space is needed in order to maximize the sharing of files.

HRMs are basically DRMs that are associated with a mass storage system (MSS), such as HPSS. They usually have a disk cache that they control. When a file is requested from the HRM, the HRM will contact the MSS, and get the file transferred into its disk. At this point it can make the file available for transfer with GridFTP. The main advantage of HRMs is that they can act as front-end storage managers to MSSs. Usually, an HRM runs on a system that is at the same site as the MSS, to avoid firewall and security pitfalls.

HRMs are designed to queue multi-file requests for putting and getting files into and out of MSSs. They can make such requests concurrently, but are usually restricted as to the number of concurrent requests in order to avoid flooding the MSS with file transfer requests. Because they maintain a queue, they can reorder file requests so that files that are stored on the same tape can be read at the same time. This capability avoids unnecessary dismounts and mounts of tape. HRMs also monitor the success of file transfers from/to the MSS. If a temporary failure occurs, they wait till the MSS recovers, and reissue the file request.

5.2.3 Monitoring and auditing services

Services for monitoring the use of individual resources are essential to the operation of a grid. Monitoring services keep track of the current state of grid resources, including such characteristics as how long they have been operational, the current utilization of compute resources, the available free space on storage resources, etc. Monitoring services may also monitor the progress of individual operations on a resource, providing indications of success and failure that can be used by higher-level workflow management services to restart failed tasks and provide coordination of complex tasks. Auditing services keep track of the consumption of resources by users and services, providing the infrastructure necessary to enforce resource allocations and charge users based on their resource usage. Monitoring of Grid services is discussed in more depth in Chapter [CITE TIERNY]

6 Collective Data Management Services

Collective services define functions whose operates span services including storage service, management services and computational services. One can imagine a wide range of collective level services, and although the service presented in this section have proven to be critical, they are only reprehensive of a much broader set of services.

6.1.1 Data transport services

There may be a variety of services at the collective level that manage the transport of data between data storage services. These may include reliable data transfer services, which maintain state concerning outstanding data transfer operations, restart interrupted transfers and retry failed transfers. Another service in this category is a multiple data object transfer service, which allows users to submit a large number of simultaneous data transfer operations and monitors the status of each.

Reliable data transfer services maintain the state of outstanding data transfers, monitor the progress of transfers, and attempt to restart failed transfers. Reliable transfer services build on top of the basic data transfer services described above (e.g. GridFTP), but augment them with enhanced failure semantics and reliability. Some of the issues associated with building reliable services are discussed in more detail in Chapter [CITE CONDOR].

[image: image5]
Figure 3: Illustration of the Reliable File Transfer Service

An OGSA compliant reliable transfer service that allows monitoring and control of third-party data transfer operations between two GridFTP servers has been developed as part of the Globus toolkit. Figure 3 illustrates the structure of the RFT service, and shows how it constructs a higher level behaviour by combining a set of more basic services. A client issues a request to an RFT factory, which instantiates an RFT service instance. That RFT instance controls the transfer and stores state about the transfer in persistent storage (in this case a database). The RFT instance communicates with two storage resources that are running GridFTP servers as well as storage resource managers. The RFT instance initiates a third-party transfer from the source to the destination GridFTP server and monitors the status of the transfer, updating the state describing the transfer in the database. If the transfer fails because the client or one of the storage resources fails, then the transfer state in the RFT database is sufficient to resume or restart the interrupted transfer when all resources become available.

6.1.2 General Data Discovery Services

A necessary prerequisite to access, integration and analysis of data is to find the relevant data collections. The general mechanisms provided in OGSA for services to publish their properties via registries and for clients to query registries to find the relevant service apply to data services as well. A challenge faced by data service is how to describe, query and match the relevant properties. This is complicated by the number of objects we may wish to discover, the complexity of the data model, and the need to model various subsets and alterative views of a data collection. A similar problem has been recognised in the World Wide Web [12]. A promising strategy in both cases is to exploit metadata to construct a Semantic Web / Grid [13] (see following chapter).

Data discovery services are registries that allow grid users to identify data items that match specified characteristics or metadata. These characteristics might simply be logical or physical names that identify the data, or they may be high-level attributes that describe the data. Discovery may be based on general attributes that may be common to all data collections such as information about the creator, owner and last modifier of the data; physical metadata such as data size and access control information; and information about how the data was generated by an experimental apparatus, simulation or analysis.

In addition, some data discovery services may be specific to an application domain or to a particular virtual organization. For example, many application domains will provide customized metadata services that allow attribute-based discovery of data based on community conventions or ontologies for metadata. Metadata conventions allow the members of a virtual organization to agree on the exact semantics of metadata attributes, facilitating data sharing and conversion among different data formats. Such ontologies also form the basis for higher-level services that attempt to extract knowledge from grid data.

One example of a metadata service is the Metadata Catalog (MCAT) that is provided as part of the Storage Resource Broker (SRB) [cite]. The SRB MCAT is used for storage and discovery of logical and physical metadata attributes in a relational database as well as for enforcing access control and providing consistency among replicated data stored in the Storage Resource Broker servers. However, metadata services can be further decomposed, for example only storing relationships between attributes and logical (location independent) collection names, e.g. MCS [CITE MCS].

The SRB MCAT and MCS both provide a general metadata schema. In addition, both services are extensible to allow the specification of attributes specific to a particular application community, since these communities often produce one or more domain-specific metadata schemas. The metadata services will likely also make use of standard schemas for data characterization and discovery, such as the Dublin Core [cite] produced by the digital library community.

At their core, both MCAT and MCS are not much more then databases, with standard schema, and perhaps domain specific interfaces so as to simplify common case queries. As such, we observe that discovery poses a new requirement on traditional database management systems. At present they hold metadata that describe their contents, e.g. the schemas and views, and metadata that describes their policies, e.g. privacy constraints. It is infeasible to presume that data describing each database can be rewritten by hand to meet the Grid registry requirements, particularly when the normally high rate of schema editing is considered. A system must be devised to automate the registration of the relevant data about databases. Initially it might infer content description from the identifiers and comments in schema or read from a data dictionary, but ultimately, the database description itself will need to adapt to meet these requirements. This is an issue as much for policy and standards within domain communities as it is for technology. Traditionally contextual metadata management [14] has been seen to be application specific although the common data warehouse model [15] has attempted to address some of these issues in the commercial sector.

6.1.3 Workflow management, planning and scheduling

Data analysis workflows, as illustrated in Figure 1, require the delivering data from a data source to an appropriate program executable so as to perform the required analysis. As the scale of data increases, it becomes progressively more economic to ship computation to the data. The computations that correspond to scientific models linking, selecting or deriving data are much more demanding than those currently permitted as programmed methods in queries. They may for example have large intermediate results, large processor demands, or shift large quantities of data to and from multiple resources. The Grid provides mechanisms to install and execute code on remote processors that can in principle enable this. These remote executions would then need to be observed, controlled, monitored and managed by the standard Grid mechanisms.

At present the storage service providers would not countenance hosting such large computations, and the required monitoring interfaces are not supported. For example, they are typically serving many groups and have to be careful not to compromise these services. Significant work in precisely characterising the behaviour of this class of computation, e.g. with proof-carrying-code techniques, safety, scheduling, monitoring and accounting mechanisms, and new policy and authorisation managers will be needed. Even if the migration of code to data could be reliably provided, computation resources of significant quantity are typically not configured into the platforms hosting large scale data storage. Furthermore transferring the code to the data only works if the bulk of the data can be found at one location for the relevant data. Taken together, these factors point toward the fact that analysis workflows will span multiple data sources and computation resources.

Analysis workflows may be manually decomposed to ship parts of the model to each data source and to bring the results to a code representing the remainder of the processing steps. This manual process is labour intensive, makes the model harder to understand and verify, and does not adapt well to dynamic requirements. Two strategies may address this are:

1. Develop very high-level abstractions and languages for composing model parts so that the mapping of the computation and the data activity may be mechanised; and

2. Develop decomposition and re-composition methods for applications, so that they may be partitioned, “containerised” to constrain and predict behaviour, and then shipped to data resources that “agree” to execute their computations.

Both of these complementary strategies may be expected to develop. Early signs can be seen in systems that are built by composing parts (these can presumably be decomposed) and in systems for describing data derivation [11]. But there is much research needed to develop this.

Eventually, both the DBMS and data components and the application components may be decomposable and re-composable under the direction of dynamic optimisers, placement algorithms and schedulers that can address optimisations on the scale of the whole system. As these dynamic and integrated holistic re-composition and optimisation approaches are not yet practicable, our focus returns to the incremental techniques emerging today [10].

Much scientific, diagnostic and analytic work requires repetitive routine, e.g. running similar evaluations for many candidate drugs, making similar comparisons using data from similar equipment, or evaluating phenotypes from genetically related subjects. These repetitive processes generally operate in a relatively stable context with pre-chosen mostly read-only data and established workflows. Such cases are supported today by products such as DiscoveryLink [3], Kleisli [2], K2 [2] and Polar* [31]. Established data mining methods [32-36] over data warehouses [37] may also suit some of these stable applications and deliver the required virtual database for the application scientists; in these cases, the Grid may be used to operate the workflows that populate the data warehouse and to provide access to the warehouse.

High level analysis tasks may be decomposed into subtasks prior to execution. For example within the Chimera system, a virtual data definition language is used to specify various data derivation sequences that can be used to convert available data collections into data sets of the requested type. This high level description of processing steps must be mapped into an execution sequence consisting of movement of data between data sources, and the specification of computations services to be used for analysis steps. The planning and mapping step can happen prior to the start of execution, during execution, or a combination of the two. Because of the dynamic nature of Grid services and the potential for failure, either replanning or just in time task allocation may be necessary.

A workflow management system is responsible for initiating execution of individual tasks in the order specified by the task graph that is generated by the planning service. Functions of the workflow manager include monitoring the status of a collection of tasks that have been submitted to a grid, enforcing dependencies specified by a task graph, and attempting to restart failed tasks or resubmit them to alternate resources. In the case of task failures, the Workflow Manager may try execution alternatives, or it may notify higher level planning services to create an alternative workflow or task mapping.

To date, a number of planning and workflow management service have been constructed. Early success have been observed with systems that have been targeted towards specific usage scenerios. DataCutter [cite] is an example of such an approach. DataCutter, a data filtering service produced by the Chaos project from Ohio State University and the University of Maryland at College Park, uses a programming model called filter-stream programming that decomposes an application into a set of filters. Filters are connected using a stream abstraction for communication among filters, which perfom application-specfici data processing. The planning system of DataCutter controls placement of the location-independent filters that compose the application onto hosts. DataCutter also contains an integrated execution system follows the plan at runtime, instantiating filters on the designated hosts, connecting filters using communication streams, and initiating execution. Filter placement may be recomputed during application execution.

Alternatively, one can develop more general, reusable services that can be targeted to a range of different usage scenerios. This is typified by the Virtual Data Toolkit (VDT), which is consists of a a set of catalogs, planning engines, and workflow management services to support the creation and execution of data analysi tasks.

At the core of VDT is the Chimera system which provides support for virtual data technologies. As mentioned above, virtual data is an abstraction in which the user specifies a desired data type and uses a catalog of data transformations to construct an analysis workflow. Chimera consists of a Virtual Data Language Interpreter that accepts and interprets definitions and queries for virtual data and a Virtual Data Catalog that records the computational procedures used to create data sets, provenance information: the history of how those procedures were invoked, and the data sets that were created. The goal of this provenance information is to track how data products are produced with sufficient precision that data products can be recreated. Chimera can then turn to a range of planning services to map the execution graph onto specific services for execution.

The Pegasus (Planning and Execution in Grids) system provides planning services which can be used by Chimera to maps high level data requirements into detailed execution plans. When used in cooperation with Chimera, Pegasus accepts an abstract description of an application workflow from Chimera and maps that abstract description onto particular Grid resources; once this mapping is complete, Pegasus submits the plan to DAGMan, which manages the execution of the workflow. In keeping with the virtual data concept, Pegasus checks whether desired data products already exist (by querying the Replica Location Service) and reuses existing data products when possible.

Workflow execution within VDT is provided by the Condor DAGMan (Directed Acyclic Graph Manager) system allows users to specify dependencies between tasks that compose a Condor job. Once these dependencies are satisfied, the DAGMan acts as a scheduler, submitting tasks to Condor resources when their dependencies are satisfied. If a job fails, DAGMan creates a “rescue DAG” that can be used to try to restart the failed job at a later time.

7 Federation Services

We now turn to the question of services for federation. As a starting point, lets consider what federation means in the context of current database technology. In a federated database, many databases contribute data and resources to a multi-database federation, but each participant has full local autonomy. In a loosely-coupled federated database, the schemas of the participating databases remain distinguishable, whereas in a tightly-coupled federated database, a global schema hides (to a greater or lesser extent) schematic and semantic differences between resources [8] – single logical schema mapped to multiple physical schemas. In the Grid setting, federation is more general then integrating databases, but rather attempts to provide a uniform framework in which the diverse data sources, be they relational, file-structured, XML, etc., can be integrated [1].

One approach to integrating across data sources is to create a virtual database, an ideal wherein a set of databases are presented as a single integrated view with a single federated schema, that users would then use directly, unaware of the separate databases behind the view. The concept of federated databases was popular in database research and the logical construction of the single view implemented by distributed queries was shown to be feasible. However, the operational management of such systems has never proved feasible, as autonomous change in the contributing databases makes costly and continuous maintenance of the view realisation necessary. Automation to address this is a research issue [8].

However, one a strategy that delivers aspects of virtual databases is to combine specific subdomains of contributing queries that are required for some specific and limited purpose, examples include: DiscoveryLink [3], Kleisli [2], K2 [2] and Polar* [31]. Further research is needed to improve optimisation, automate integration, extend the range of applications, address more complex systems and automate accommodation of autonomous changes.

The diversity of usage scenarios makes it highly unlikely that a one-size fits all approach to federation will be feasible. Rather, many different types of loose federations can be constructed, differing from one another in the ways in which aspects of the distributed data sources are being federated, and to what extend the distribution is made transparent to the user of the federation. Application developers will use additional knowledge to decide when the operational cost of delivering a transparency is warranted by savings in development and maintenance costs of higher-level applications or by improved user convenience. Loose federation can provide a number of different types of transparency:

· Location Transparency: Mechanisms for accessing data should be independent of its location.

· Name Transparency: An application should be able to access data without knowing its name or location, i.e., it should be possible to discover it using registry queries that describe requirements in terms of data content and operations.

· Distribution Transparency: An application should be able to query and update data without being aware that it comes from a set of distributed sources.

· Replication Transparency: An application should be able to access data without being aware of replica and caching mechanisms.

· Ownership and Cost Transparency: Applications should be spared from separately negotiating for access to individual sources.

· Heterogeneity Transparency: The access mechanism should be independent of the actual implementation of the data source.

· Schema Change Transparency: Data resources should be allowed to rearrange their data, e.g. across different tables to meet performance requirements or to accommodate new information, without affecting applications.

With the introduction of these diverse, weaker forms of federations, bespoke or customized integration becomes an alternative to creating a virtual database. To facilitate this, different types of transparency are provided by separate, specialized federation services (e.g. name federation, replica federation, consistent replica federation), which can be combined to construct the specific cost/performance/functionality trade-off appropriate to the application domain.

Many of the scientific projects that combine multiple data resources today depend on the application scientists developing their own integration system: queries, programs, data flows and workflows, specific to a project. These scientific application developers find relevant data resources, at present from knowing work in their field, but soon we hope, by enquiry from data resource registries. The choice of a resource involves scientific and computational judgements, which cannot be automated. The developers partition the integration task into queries, program executions, construction of intermediate data resources, explicit data transfers and transformations, and updates to data resources holding data products. This requires much investment in designing, implementing, tuning, maintaining and operating the application and utilises knowledge about the application and the resources. Providing basic federation services which can be leveraged in domain specific way by developers into the service should make these tasks less costly, less time consuming and less error prone providing easily used components that combine well and that perform the commonly required operations. Ideally, these services will be accompanied by tools that assist the scientists with all of the steps in a scientific integration application’s life cycle.

Virtual databases and engagement by scientists in the detailed construction of a scientific integration system are not a dichotomy but rather two ends of a spectrum. The virtual database is an idealised goal. Currently users often have to engage with every detail of the integration, but as more sophisticated data access and integration components are developed larger steps of the integration will be automated. It is unlikely that the ideal will ever satisfy all requirements, as the essence of scientific research is advancing understanding and models. Hence, a user will often make creative steps to combine data in new ways that involve encoding the science. Where large volumes of data are involved, users will develop and negotiate arrangements for processing at the limits of available computational resources.

This leads to an evolutionary approach to the use of federated data services by applications as illustrated in Figure 4 and Figure 5. These show the structure of a typical application in some data intensive science, X, such as functional genomics, atmospheric systems science or combustion engineering. In each of these, the final goal is the same: to give access to sophisticated analysis and simulation computations using integrated data from multiple resources. Each builds on a standard Grid infrastructure, e.g. OGSI [41], and services such as those described above, and basic federation services that we will describe in the following sections.

In current e‑Science projects, the community of X scientists will typically have built common components that they share across many applications as shown in Figure Figure 4. This requires that within their domain they have established common data representations and common function specifications necessary for reuse. Particular applications are constructed using this community developed “marzipan” layer of common components [42] in conjunction with more generic Grid services, data management services and federation services.

In Figure 5, a virtualisation layer has been interposed below the marzipan layer. It should make no difference to code that has already been built directly using the existing community specific service, i.e. following the incremental integration model. However, its availability should substantially reduce the cost of building more subject-specific code, as it would provide consistent structured data access, which is difficult to implement. It should also give opportunities for improving efficiency.

[image: image6.wmf]F

i

gu

re

23.4a:

I

n

cre

m

e

n

t

a

l

 I

n

t

e

g

r

a

t

ion

Ar

c

h

i

te

c

t

u

re

G

ri

d In

fr

a

st

ru

ct

u

r

e

S

c

h

e

dul

i

ng

A

cc

oun

t

ing

M

oni

t

o

r

ing

D

ia

gno

s

i

s

D

ata

In

te

n

s

iv

e

App

li

c

at

ion

s f

or

S

c

ie

n

ce

 X

Co

m

put

e

,

Da

t

a &

Sto

ra

g

e

 R

es

our

ces

D

is

t

ri

but

e

d

Au

t

ho

r

i

sa

t

i

on

S

t

ru

ct

ur

e

d

Da

t

a

A

ccess

S

t

ru

ct

ur

e

d

Da

t

a

I

nt

e

g

ra

t

i

on

S

t

ru

ct

ur

e

d

Da

t

a

S

i

mu

la

t

i

on, An

al

ys

is

&

I

n

t

eg

ra

t

i

on T

ec

hno

l

ogy fo

r

S

c

i

e

n

ce

 X

D

ata

In

te

n

s

iv

e

X

S

c

ie

nt

is

t

s

T

ra

n

s

por

t

N

am

ing

C

ac

h

i

ng

Re

lati

o

n

a

l

X

M

L

S

em

i-

s

t

r

u

c

t.

T

ra

n

s

fo

r

m

at

ion

Figure 4: Incremental federation

[image: image7.wmf]

Grid Infrastructure

Scheduling

Accounting

Monitoring

Diagnosis

Data Intensive Applications for Science X

Compute, Data & Storage Resources

Distributed

Authorisation

Structured Data Access

Structured Data

Integratio

n

Structured Data

Simulation, Analysis & Integration Technology for Science X

Data Intensive X Scientists

Figure 23.4b: Virtual Integration Architecture

Transport

Naming

Caching

Generic Virtual Data Access and Integration Layer

Relati

onal

XML

Semi

-

struct.

Transformation

Figure 5: Generic federation

The capabilities of generic virtual data access and integration layer will develop incrementally. This could be manifest by creating progressively more sophisticated federation services, combining federation attributes with planning and workflow services to perform progressively larger tasks expressed in increasingly abstract terms. The factories that create these services may specialise generic facilities and produce new factories optimised for some particular task, e.g. supporting a materialised view stored in a form that is optimised for that class of tasks. Other strategies of delivering more advanced capabilities, e.g. increasing the sophistication of individual federation services may prove effective.

Knowledge of applications and data resources will always enable some expert scientific-applications developers to outperform advanced integration services. However, as the of robust and reusable federation services becomes more widely available, the majority of application developers will eventually benefit from using automatically supported integration and, just as with database query, in most cases, the system-supplied optimisers will (eventually) perform better than application developers because of access to system data and accumulated research.

An example of system-based optimisation is Google. Intense loads on a single resource would be unsupportable, so randomised allocation of requests to a network of high-end data servers. Similar techniques are emerging to handle intensive bioinformatics queries, such as the databases at the European Bioinformatics Institute. In order to expose heterogeneous data, the entry points sometimes act as portals, relaying the requests to a set of underlying database services. An example of such a service is the Multimission Archive at Space Telescope (MAST) [43] that provides a uniform interface to retrieve data from many different data sources, databases or files

Services for federating and integrating diverse data resources may include services for mediating among different data models and for accessing data resources with different access methods, for replicating data and keeping it consistent. In the following sections, we examine a few of these services in more detail.

7.1.1 Data Mediation

Data mediation services provide transparency with respect to data models. Mediation can be as simple as renaming attribute name, or as complex as providing sophisticated semantic based mappings from elements in one data model to one or more elements in a second data model. Combining data mediation with the mechanisms that provide uniform access to data discussed in Section 5.1.2 data models relieves applications from the specifics of how to retrieve data elements of interest.

The simples type of mediation can be achieved by transformation based services that map data names, and potentially data values from one data model to another. This is especially important for applications that provide access to legacy data stored in formats that are not widely supported. In addition, applications may have different definitions of the exact semantics of data equality, so that data replicas may have different hardware representations (for example, big-Endian of little-Endian data storage). IBM’s DiscoveryLink[3] is an example of this approach in which various data sources register to a federation server, providing a source specific mapping function into a globally defined schema.

More sophisticated approaches attempt to mediate between data models based on well defined semantics of the assorted models. This knowledge based approach to mediation is based on the creation of data vocabularies (ontologies) and rules for mapping between terms. This knowledge based approach to data mediation is dealt with in much greater detail in the next chapter.

7.1.2 Replication Services for Location Transparency

Replication services provide for replication transparency. In defining replication services, one might be tempted to simply create a service that makes copies of data, and responds to queries by returning all of the locations where the data elements in question exist. However, in keeping with an approach that in which basic functions are factored out into separate services, we decompose replication into three different classes of service:

· Replica management services, which create copies and update location services so that the location of a replica can be identified.

· Replica location services which serve as registries to locate where replicas exist by defining a mapping between a data object name (logical name) and the storage services that can provide access to the data object (physical names). Note that with the replication location services, replicas are not constraint to be “bitwise” copies. This leads to,

· Consistency services, which control the relationship between the various replicas.

Within each type of service, there may be many different service definitions, each providing alternative federation semantics.

A replication management service is responsible for creating replica, and potently supported selection between alternative replicas. Hence this service can define a replication policy and combines decision making with interaction to data transport services, such as RFT, replica location services, and consistency services. One example of a replica management service is the Reptor [cite] system being built by the European DataGrid project. The current implementation of Reptor provides management of data replication operations, controlling the copy of an existing data item and its registration with a Replica Location Service and a metadata catalog. Reptor also includes an optimization component that selects among existing replicas and picks the best location for creation of new replicas. Future planned functionality for Reptor includes providing consistency among replicated data items, including update propagation and detection of inconsistencies among replicas. Other planned Reptor development includes fault tolerance features, including restart or rollback of failed operations, and support for managing data collections

A replica location service maintains and provides mappings between logical names for data items and the locations of one or more copies or replicas of the data. It is in a very real sense, a data location service whose mechanisms for creating and updating registries are optimized for logical to physical name mapping. To illustrate, we will describe the replica location service that was designed in collaboration between the Globus project and the European Data Grid project and an included as part of the Globus Toolkit™.

The RLS design framework is based on several mechanisms:

Consistent local state maintained in Local Replica Catalogs (LRCs): Local catalogs maintain mappings between arbitrary logical names for data and target names (either logical or physical) associated with replicas of the data.

Collective state with relaxed consistency maintained in Replica Location Indices (RLIs): Each RLI contains a set of mappings from logical names to target names. A variety of index structures can be defined with different performance characteristics, simply by varying the number of RLIs and the amount of redundancy and partitioning among the RLIs.

Soft state maintenance of RLI state: LRCs send information about their state to RLIs using soft state protocols. State information in RLIs times out and must be periodically refreshed by soft state updates.

Compression of soft state updates: To reduce the amount of soft state information that must be sent and the storage requirements of RLIs, soft state updates may be compressed. In our current RLS implementation, we use bloom filter compression to summarize the state of an LRC. A bloom filter is a bit map constructed by executing a series of hash functions against the logical names registered in an LRC.

The RLS implementation defines a distributed service that is based on a flexible framework that allows users to make tradeoffs among requirements for consistency, space overhead, reliability, update costs and query costs. Figure 1 shows an example of a distributed RLS that consists of four local replica catalogs and three replica location index nodes.

[image: image8.wmf]

LRC

LRC

LRC

LRC

RLI

RLI

RLI

Replica Location Index Nodes

Local Replica Catalogs

Figure 6: A Replica Location Service example.

The RLS does not enforce consistency constraints among replicas, rather it only provides a simple distributed registry, allowing clients to register and discover mappings. We now discuss consistency services that can be layered on top of RLS.

7.2 Consistency Services

Grid consistency services allow replication of data items, possibly with some level of consistency guaranteed among replicas. In systems that provide read-only access to data, no mechanisms for consistency are required. Where data item updates are possible, the level of consistency provided may range from relaxed consistency, in which updates to one replica are eventually propagated to other replicas, to strict consistency, in which updates are made synchronously to all replicas using transactional semantics.

Consistency requirements for replicated data in grid systems vary widely. At one extreme, a Frid that provides read-only access to published data may not require services to maintain consistency among replicas. At the other extreme, a grid could provide strict consistency with synchronous, transactional semantics for updating replicas, thereby allowing traditional distributed file systems or databases to run on a grid.

While the same strict consistency algorithms that are used in distributed databases and distributed file systems may be used in Grid environments, grids present special challenges for maintaining consistency among replicated data. Because Grid storage resources are distributed over the wide area, invalidation protocols, distributed locking mechanisms and two-phase commit protocols may experience long communication delays. In addition, grid resources are dynamic: Grid storage resources may fail and networks connecting storage resources may be partitioned. Thus, it may be difficult to synchronously update all existing replicas in a grid, because some replicas may not be available.

Because of these challenges, many grid systems are being designed with more relaxed consistency semantics. For example, these systems may restrict updates to designated master copies of data items; subsequently, these updates are propagated to other replicas with some delay. To facilitate management of these temporary inconsistencies, a grid may support explicit maintenance of data version information. An example of how this relaxed consistency might be used in wide area distributed databases is a financial services company that maintains strict consistency over a database in one geographic region of operations, and propagates these changes with some delay over the grid to database replicas in other regions of the world.

A the time of this writing, a number of Grid consistency services are in design, but to date, none have been deployed an evaluated on a large scale. Simple strategies such as master/copy replication strategies and versioning can help provide usable and implementable replication strategies. However, more tightly coupled consistency models are much more difficult to implement scalably and robustly. Distributed database systems provide mechanisms for maintaining consistency across copies, however, these techniques generally don’t scale to the distribution and scope of replication that we anticipate seeing in Grid deployments. In general, this is an area in which further research and development must take place.

8 A Case Study: The Earth System Grid

To illustrate how all the data services described in the preceding sections can be combined to deliver integrated data access to a application domain, we present a case study: the Earth Systems Grid (ESG). The ESG project supports climate modeling researchers as they create advanced climate simulation programs and integrate computational grid infrastructure for efficient management of massive data resources, computational resources and wide area networks. ESG is designed to enable geographically distributed teams of researchers to effectively and rapidly develop new knowledge from massive, distributed data holdings and to share results with a wider community [Allcock, 2001 #4].

[image: image10.jpg]LBNL: Climate storage
facility

LLNL: Model diagnostics
& inter-comparison

USCIISI: Computational grids,
& grid-based applications

NCAR: Climate change
predication and scenarios

LANL: Next generation
coupled models & computing

ORNL: Climate storage &
computational resources

[image: image11.emf]Compute

Systems

Networks

Storage

systems

Storage

Resource

Management

Compute

Resource

Management

General Data

Discovery

Services

Community

Authorization

Services

Application-

Specific Data

Discovery Services

 Storage

Management

(Brokering)

Compute

Scheduling

(Brokering)

Data Filtering or

Transformation

Services

Database

Management

Services

Request

Interpretation

and Planning

Services

Data Access

Protocol or

Service

Data

Transport

Services

Monitoring/

Auditing

Services

Workflow or

Request

Management

Services

Consistency Services

(e.g., Update Subscription,

Versioning, Master Copies)

Data

Federation

Services

R

E

S

O

U

R

C

E

:

S

H

A

R

I

N

G

S

I

N

G

L

E

R

E

S

O

U

R

C

E

S

C

O

L

L

E

C

T

I

V

E

1

:

G

E

N

E

R

A

L

S

E

R

V

I

C

E

S

F

O

R

C

O

O

R

D

I

N

A

T

I

N

G

M

U

L

T

I

P

L

E

R

E

S

O

U

R

C

E

S

C

O

L

L

E

C

T

I

V

E

2

:

S

E

R

V

I

C

E

S

S

P

E

C

I

F

I

C

T

O

A

P

P

L

I

C

A

T

I

O

N

D

O

M

A

I

N

O

R

V

I

R

T

U

A

L

O

R

G

.

Resource

Monitoring/

Auditing

F

A

B

R

I

C

C

O

N

N

E

C

T

I

V

I

T

Y

Communication

Protocols (e.g.,

TCP/IP stack)

Authentication and

Authorization

Protocols (e.g., GSI)

Data Filtering or

Transformation

Services

C

O

L

L

E

C

T

I

V

E

Climate simulation models produce a tremendous volume of data, and this volume will increase rapidly with the increasing data resolution and computational capabilities. For example, ESG scientists run 100-year simulations of the Community Climate Simulation Model (CCSM). These 100-year simulation runs currently produce approximately 0.75 terabytes of output data. Improved data resolution is expected to increase simulation output size to approximately 11 terabytes per 100-year simulation run. Analysis of climate simulation data sets has the potential to revolutionize our understanding of complex climate processes. Computational requirements for analyzing simulation output are expected to increase by a factor of 1000 or more due to improved spatial and temporal data resolution; better models for clouds, convection, ocean physics, land, etc.; and increased scope of analysis being performed. Climate modelling applications are therefore good candidates to take advantage of the resources offered by grid computing environments.

The ESG consists of a number of institutions around the United States, including the National Center for Atmospheric Research (NCAR), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL), and the University of Southern California’s Information Sciences Institute (ISI). Figure 22.8 shows the institutions that compose the ESG. Researchers at these institutions require access to significant fractions of the data, and many will require significant computational analysis.

The current phase of the ESG project (ESG-II) focuses on developing a production system for storing and delivering ESG data to climate scientists, sophisticated metadata services for climate data discovery, and filtering data servers to reduce data transfer requirements. The output data sets of climate model simulations are stored in terabyte and eventually petabyte-scale data archives, currently using the High Performance Storage System (HPSS).

The ESG infrastructure deploys the Hierarchical Resource Manager (HRM) middleware from LBNL to provide management of HPSS storage, scheduling of data requests, staging of data from tape storage to disk cache, cache management and efficient copying of multiple data files among storage locations.

ESG data sets are accessed and filtered using the OpenDAP (open source project for a network data access protocol) system, formerly known as DODS (Distributed Oceanographic Data System). OpenDAP is a data access protocol that is widely used in the climate modelling community. Researchers at NCAR modified the OpenDAP server implementation to include Grid functionality for accessing remote data, including providing authentication of users via the Grid Security Infrastructure, performance through the GridFTP data transfer protocol, and authorization using the Globus Community Authorization Service (CAS). By using OpenDAP as a gateway to Grid data services, ESG is able to provide high performance access to replicated and distributed data sets to end users analysis tools without modification. This is exactly the incremental integration strategy described in Section 7and illustrated in Figure 4
Metadata services are an important part of ESG. These services include automatic extraction and generation of metadata as well as services for data discovery and query based on metadata attributes. ESG metadata research includes work on developing a common metadata schema to be used throughout ESG and defining the relationship of this ESG schema to other metadata schemas, including federal standards, the NASA Global Change Master Directory (GCMD), digital library standards such as the Dublin Core, and metadata schemas used by climate researchers in other nations. The ESG metadata schema is being developed by researchers at LLNL, NCAR and ORNL. ESG metadata are stored in a metadata catalog Service developed by Globus researchers. The ESG infrastructure also includes the Globus Replica Location Service for discovery of data replicas.

Finally, an ESG web portal developed at NCAR provides access to published climate data sets and metadata and manages workflow for accessing the various components of the ESG infrastructure. Figure 22.9 shows grid services deployed at several ESG sites.

[image: image9.emf]Community

Authorization

Service

(ANL, ISI)

Metadata Catalog

Service

(ISI)

HPSS

NCAR

HRM

OpenDAP

Server

Replica

Location

Service

Striped

GridFTP

Server

HPSS

LLNL

HRM

OpenDAP

Server

Replica

Location

Service

Striped

GridFTP

Server

HPSS

ORNL

HRM

OpenDAP

Server

Replica

Location

Service

Striped

GridFTP

Server

ESG

Web Portal

(NCAR)

Figure 22.9: Components deployed in ESG Infrastructure

9 Summary and Future Directions

The term ‘e‑Science’ captures an emerging culture in scientific, engineering and medical research. One of its primary features is new and systematic ways of collecting, managing, sharing, publishing and exploiting large volumes of data. Another crucial feature is growing international, multi-disciplinary collaborations, which jointly address challenging problems. Corrispond development in ‘e-Business’ are also taking place. On both fronts, this combination requires new technological infrastructure as well as new behaviours. Great challenges lie ahead for designers of Grid data management, as they build on the existing protocols and services described in this chapter to provide rich higher-level functionality, including data federation, data consistency, workflow management, and knowledge extraction from grids.

The next five years will see a continued evolution of the data oriented Grid services. Many of the services described here will continue to be refined, while new classes of services will emerge as the data oriented element of the Open Grid Services architecture become better understood.

Virtual data abstractions appear to be very powerful, and the planners, schedulers, workflow managers have the potential to become critical components not only for virtual data, but in making progress toward creating more integrated virtual database abstraction layers. Future work will include improved languages for specifying virtual data and more complete schemas for recording provenance information as well as more sophisticated planners and workflow managers.

Much effort in the grid community will be focused on developing a collection of federating data services that will facilitate sharing, integration and interoperability among diverse data sources. Necessary services include distributed, heterogeneous metadata services that provide query and discovery capabilities across heterogeneous metadata catalogs; data model federation services that map among data models; transformation services that convert data among diverse formats; and consistency services that manage replicated data, providing varying levels of synchronization among replicas.

Database research and experience has much to offer here and we recommend that researchers not familiar with its achievements invest time in understanding them. The interplay between Grid technology and database technology will provoke advances and adaptation on both sides. In the short term, because of the large investment in DBMS and installed databases, the emphasis will be on providing mechanisms that allow Grid applications to conveniently connect to existing database technology, with due concern for performance, accounting, authorisation and notification. These provide significant initial challenges, as the database mechanisms are already sophisticated. In the longer term a more radical co-evolution may be expected. Early stages will include support by DBMS of the monitoring, diagnostic and lifetime management mechanisms, as these are most beneficial to applications when they are uniformly and ubiquitously supported. This will progress, with the DBMS using the uniform platform for dependability, such as load sharing and permitting co-located validated installation of processes to avoid data movement.

A particular challenge is to develop compatible and consistent approaches to metadata. There are two driving forces: facilitating discovery of relevant data, where relevance is defined in some application terms, and facilitating co-optimisation of the data operations with the computational operations. Whilst such consistent metadata is highly desirable, there is, as yet, little progress towards specifying its structure, content and representation.

Once basic access and integration components are robust and the required consistent metadata is in place, then more sophisticated access and integration technologies should emerge. This will require two related avenues of research: (1) the development of more abstract notations specifying combinations of computation and data extraction, and (2) the development of models for these combined tasks that permit planning and optimisation. These may be encapsulated as factory services that will build networks of grid services, including other factories to handle repeated subtasks.

It is likely that the challenge of making best use of large data volumes will mean that the structure of virtually all data is described and that software will exist to support the use of this structure. Therefore, we may expect to see all data being brought into one framework, so that computations over all forms of data may be described and implemented within that framework. Ineluctably, the strengths of the structured data approach described in this chapter will be the foundation for that framework.

Two important facets of the intensive use of data in e‑Science are: its use as a source of information, which can be extracted by data mining and hypothesis testing, and its use as a mechanism for collaboration based on communication via shared databases. These are provoking advances in the management of data that will have long-term impact on the arrangements for data access and integration. A few examples follow.

Archiving is already an important activity that has new requirements in the context of scientific data. Decisions, claims and patents are made on the basis of the state of a scientific database at a particular time. To validate or re-evaluate the science, a normal scientific procedure, requires recovery of that particular prior state. Exploiting the structure allows all of the prior states to be retrieved with very little overhead [44].

Annotation associates new data with existing data. It may be automatically produced, for example, as data is generated by instruments and programs to record derivation and provenance, or it may be added by researchers sharing their understandings and discoveries about the data [45]. Both will increase, which should deliver better quality metadata, accelerate communication among collaborators and allow more flexible, larger-scale, collaborating communities to grow. The technical and social challenges of managing this growing body of data are many. For example, if a scientist attaches annotation to a visualisation of some spatio-temporal phenomena, how is that linked with the primary data and with which subsequent evaluations should it be available?

New storage structures and indexes will emerge to support the combinations of computation and data intensive operations. Data scanning becomes very costly at the scales emerging in scientific data. Arrangements that increase parallelism and improve cache use, such as vectorisation, will have substantial benefits. Many of the searches on scientific data involve approximate matching, which poses complex co-design tasks for indexes and algorithms [46]. The Grid may be useful in permitting the construction of optimised indexes to be shipped to large memory systems. The resulting index can then be shipped to smaller machines to enable parallel and distributed searching. This exploits the particular update properties of much scientific data. Replication for durability may use different structures at different locations, then the appropriateness of each copy for a particular computation may be considered by optimisers.

As the scale and number of data resources used by e‑Scientists grows, it becomes progressively more difficult for scientists to have reliable intuitions about the quality and relevance of data. For example, it is impossible for humans to read more than a small fragment of the contents of the databases they use and collaborative content construction makes it hard to transfer faith in a fellow scientist to the data collection – no individual takes responsibility. As automation progresses to better support integrated data use, the scientists become less aware of which data are used and how they are used. Thus there is a danger that progress will lead to unreliable inferences and decisions. There is therefore a responsibility, both on those that construct data access and integration tools and those who use them, to take due care about the quality and comprehensibility of those tools and processes.

10 Acknowledgments

Support was received from the UK e-Science Core Programme through grants to the National e‑Science Centre, the North West e-Science Centre, the North East e-Science Centre, the OGSA-DAI Centre Project and from the EPSRC myGrid e-Science Pilot project. European Commission funding for the European Data Grid project supported Peter Kunszt. IBM and Oracle supported Inderpal Narang and Dave Pearson respectively. Comments by Peter Buneman and Christoph Koch on an early draft were particularly helpful.

Acknowledge GRYPHIN, DOE SIDAC.
References
1. S. Abiteboul, P. Buneman and D. Suciu, Data on the web: from relations to semistructured data and XML, Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1999.

2. S.B. Davidson, J. Crabtree, B.P. Brunk, J. Schug, V. Tannen, G.C. Overton, C.J. Stoeckert Jr, K2/Kleisli and GUS: Experiments in integrated access to genomic data sources. IBM Systems Journal 40(2): 512-531, 2001.

3. L.M. Haas, P.M. Schwarz, P. Kodali, E. Kotlar, J.E. Rice and W.C. Swope: DiscoveryLink: A system for integrated access to life sciences data sources. IBM Systems Journal 40(2): 489-511, 2001.

4. L. Hirschman, J.C. Park, J. Tsujii, L. Wong and C.H. Wu, Accomplishments and challenges in literature data mining for biology, Bioinformatics 18 (12) 1553-1561, 2002.

5. R. Elmasri and S.B. Navathe, Fundamentals of Database Systems (Third edition), Addison-Wesley, 2000.

6. D. Kossmann, The State of the art in distributed query processing. ACM Computing Surveys 32 (4): 422-469, 2000.

7. F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey and S. Thatte, Web Services Transaction (WS-Transaction), August 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/?dwzone=webservices

8. P. McBrien, A. Poulovassilis: Schema Evolution in Heterogeneous Database Architectures, A Schema Transformation Approach, CAiSE 2002: 484-499.

9. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations, International J. Supercomputer Applications, 15(3), 2001.

10. D. Pearson, Data Requirements for The Grid: Scoping Study Report. UK Grid Database Taskforce. 2002.
 HYPERLINK "http://www.cs.man.ac.uk/grid-db/documents.html"
http://www.cs.man.ac.uk/grid-db/documents.html

11. I. Foster, J. Vöckler, M. Wilde, and Y. Zhao, Chimera: A Virtual Data System for Representing, Querying and Automating Data Derivation, in Proceedings of the 14th Conference on Scientific and Statistical Database Management, Edinburgh, Scotland, July 2002.

12. T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web. Scientific American, 2001(May).

13. D. DeRoure, N. Jennings and N. Shadbolt, Research Agenda for the Semantic Grid: A Future e-Science Infrastructure, Dec. 2001. http://umbriel.dcs.gla.ac.uk/NeSC/general/technical_papers/

14. D. Pearson, The Grid: Requirements for Establishing the Provenance of Derived Data, Data Derivation and Provenance Workshop, Chicago, October 2002.
 HYPERLINK "http://people.cs.uchicago.edu/~yongzh/papers/Provenance_Requirements.doc"

http://people.cs.uchicago.edu/~yongzh/papers/Provenance_Requirements.doc

 HYPERLINK "http://people.cs.uchicago.edu/~yongzh/papers/Data_Provenance_workshop_GGF6.ppt"

http://people.cs.uchicago.edu/~yongzh/papers/Data_Provenance_workshop_GGF6.ppt
.

15. OMG, Common Warehouse Metamodel,
 HYPERLINK "http://www.omg.org/technology/cwm/"

http://www.omg.org/technology/cwm/

16. M. Beynon, R. Ferreira, T.M. Kurc, A. Sussman and J.H. Saltz, DataCutter: Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems, in Proceedings of the IEEE Symposium on Mass Storage Systems, 119-134, 2000. citeseer.nj.nec.com/beynon00datacutter.html

17. A. Brazma, at al., Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nature Genetics, volume 29, no. 4 pp 365 - 371, 2002.

18. P.T. Spellman, et al., Design and implementation of microarray gene expression markup language (MAGE-ML), Genome Biology, volume 9, no. 9, 0046.1-0046.9, 2002.

19. LHC, The Large Hadron Collider,
 HYPERLINK "http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/"

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

20. LIGO, Laser Interferometer Gravitational Wave Observatory,
 HYPERLINK "http://www.ligo.caltech.edu/"

http://www.ligo.caltech.edu/

21. A.S. Szalay and J. Gray, The World Wide Telescope, Science, V.293 pp. 2037-2038, Sept 2001.
 HYPERLINK "http://research.microsoft.com/research/pubs/view.aspx?msr_tr_id=MSR-TR-2001-77"
http://research.microsoft.com/research/pubs/view.aspx?msr_tr_id=MSR-TR-2001-77

22. ESO/ESA/NASA/NSF Astronomy Conference, Toward an International Virtual Observatory, June 2002.
 HYPERLINK "http://www.eso.org/gen-fac/meetings/vo2002/up/VO2002_program.html"

http://www.eso.org/gen-fac/meetings/vo2002/up/VO2002_program.html
 (to be published by Springer Verlag)

23. R.D. Dowell, R.M. Jokerst, A. Day, S.R. Eddy and L. Stein, The Distributed Annotation System, BMC Bioinformatics, 2(1):7, 2001.

24. H. W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Münsterkötter, S. Rudd, and B. Weil, MIPS: a database for genomes and protein sequences Nucl. Acids. Res. 2002 30: 31-34.

25. M. Kanehisa, S. Goto, S. Kawashima, A. Nakaya, The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42-46 (2002).

26. C.F. Taylor, et al., A systematic approach to modelling, capturing and disseminating proteomics experimental data, Nature Biotechnology, 21 (3), 247-254, 2003.

27. M. Cornell, et al., GIMS - A Data Warehouse for Storage and Analysis of Genome Sequence and Functional Data, in Proc. 2nd IEEE International Symposium on Bioinformatics and Bioengineering (BIBE), IEEE Press, 15-22, 2001.

28. P. Dinda and B. Plale, A unified relational approach to Grid information services, Technical Report GWD-GIS-012-1, Global Grid Forum, 2001.

29. W.H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance and M. Silander, Project Spitfire – Towards Grid Web Service Databases, DAIS Working Group Informational Document, Global Grid Forum, 2002.

30. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunszt, M. Ripenu, B. Schwartzkopf, H. Stocking, K. Stockinger and B. Tierney, Giggle: A Framework for Constructing Scalable Replica Location Services, in Proceedings of SC2002, Nov. 2002.

31. J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes, R. Sakellariou, Distributed Query Processing on the Grid, Proc. 3rd Intl Workshop on Grid Computing, Springer-Verlag, 2002.

32. L. Silverston, The Data Model Resource Book, Wiley, 2001.

33. D. Hand, H. Mamilla and P. Smyth, Principles of Data Mining, Bradford Books, 2001.

34. M.H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, 2003.

35. R. Groth, Data Mining, A Hands-On Approach for Business Professionals, Prentice Hall, 1997.

36. C. Westphal and T. Blaxton, Data Mining Solutions: Methods and Tools for Solving Real-World Problems, Wiley, 1998.

37. M. Jarke, M. Lenzerini, Y. Vassiliou, et al., Fundamentals of Data Warehousing, Springer Verlag, 2000.

38. M. Antonioletti and M. Jackson, OGSA-DAI Product Overview, 2003
http://www.ogsa-dai.org.uk/downloads/docs/OGSA-DAI-USER-M3-PRODUCT-OVERVIEW.pdf

39. N.P.C. Hong, A. Krause, S. Malaika, G. McCance, S.Laws, J. Magowan, N.W. Paton and G. Ricardi, Grid Database Services Specification, GGF Informational Document, February 2003.

40. I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, http://www.globus.org/research/papers/ogsa.pdf

41. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling and P. Vanderbilt, Open Grid Services Infrastructure (OGSI), GGF Informational Document, Feb. 2003.

42. R. Mann, R. Williams, M.P. Atkinson, K. Brodlie, A. Storkey, C. Williams, Scientific Data Mining, Integration and Visualisation, UK e-Science Report, UKeS-2002-06, Oct. 2002. http://umbriel.dcs.gla.ac.uk/NeSC/general/technical_papers/

43. D. Christian, F. Abney, T. Comeau, et al., The Multimission Archive at Space Telescope, 1999, in ASP Conf. Ser., Vol. 172, Astronomical Data Analysis Software and Systems VIII, eds. D. M. Mehringer, R. L. Plante, & D. A. Roberts (San Francisco: ASP), 233.

44. P. Buneman, S. Khanna, K. Tajima and W-C. Tan, Archiving Scientific Data, in Proceedings of ACM SIGMOD International Conference on Management of Data, June, 2002.

45. P. Buneman, S. Khanna and W-C. Tan, On Propagation of Deletions and Annotations Through Views, in Proceedings of the 21st ACM Symposium on Principles of Database Systems (PODS), June, 2002.

46. E. Hunt, M.P. Atkinson and R.W. Irving, Database indexing for large DNA and protein sequence collections, VLDB Journal, 11(3), pp 256-271, 2002.

47. I. Foster, C. Kesselman, J. Nick, S. Tuecke, Grid Services for Distributed System Integration. Tuecke. Computer, 35(6), 2002.

48. J. Shiers, Building a Multi-Petabyte Database: The RD45 Project at CERN, in Object Databases in Practice (eds M.E.S. Loomis and A.B. Chaudhri), pp 164-176,1998, Prentice Hall.

49. A.S. Szalay, J. Gray, A. Thakar, P.Z. Kunszt, T. Malik, J. Raddick, C. Stoughton, J. van den Berg, The SDSS SkyServer - Public Access to the Sloan Digital Sky Server Data. Proc. ACM SIGMOD Conference, 2002.

50. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder and S. Tuecke. GridFTP Protocol Specification, GGF GridFTP Working Group Document, September 2002.

Datal flow

Control flow

Storage Mgr

Multiple concurrencies

Transfer Mgr

Dispatcher

Common protocol layer

NFS

Grid ftp

HTTP

Chirp

Physical storage layer

Handle returned;�Service Data can be monitored

Request committed to DB

Client connection transferred to Instance

Data Transfer

Control connections Established

RFT Instance Started

RFT Instance

DB

SOAP Request

RFT Client

RFT Factory

Storage Resource

SRM�Service

GridFTP�Server

Storage Resource

 SRM�Service

GridFTP�Server

Figure � SEQ Figure * ARABIC �7�: ESG partner sites

� The multi-dimensional array is itself a structure, that can be exploited, e.g. to retrieve hypercuboid slices, as in Data Cutter [16].

_1097434372.vsd
Data�

�

GridFTP Server�

�

GridFTP Server�

�

Host A�

Host B�

Host C�

GridFTP Client�

�

Data Transfer�

Control
Messages�

Transfer
Status�

_1108270898.doc
[image: image1.bmp][image: image2.bmp]

Semi-struct.

Generic Virtual Data Access and Integration Layer

Caching

Data Intensive X Scientists

Transport

XML

Naming

Simulation, Analysis & Integration Technology for Science X

Structured Data

Structured Data Integration

Structured Data Access

Authorisation

Distributed

Compute, Data & Storage Resources

Data Intensive Applications for Science X

Figure 23.4b: Virtual Integration Architecture

Diagnosis

Monitoring

Accounting

Scheduling

Grid Infrastructure

Relational

Transformation

_1111414588.vsd
HPSS�

NCAR�

HRM�

OpenDAP
Server�

Community Authorization
Service
(ANL, ISI)�

Replica
Location
Service�

Metadata Catalog Service
(ISI)�

Striped
GridFTP
Server�

ESG
Web Portal
(NCAR)�

HPSS�

LLNL�

HRM�

OpenDAP
Server�

Replica
Location
Service�

Striped
GridFTP
Server�

HPSS�

ORNL�

HRM�

OpenDAP
Server�

Replica
Location
Service�

Striped
GridFTP
Server�

_1108173239.doc
[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

XML / Relational database

Client

Grid Data Service

Factory

Registry

SOAP/HTTP

service creation

API interactions

3c. Results of �query returned to client as XML

3b. GDS interacts with database

3a. Client queries GDS with XPath, SQL, etc

2c. Factory returns �handle of GDS to client

2b. Factory creates �GridDataService to�manage access

2a. Request to Factory for access to database

1b. Registry �responds with�Factory handle

1a. Request to Registry for sources of data about “x”

Figure 23.3: Illustration of the OGSA-DAI architecture

_985190231.doc

P1

P2

DS1

DS4

DS3

DS2

DF1

DF4

DF3

DF2

DF5

Figure 23.2: An example data access and integration application structure

_984675315.doc
[image: image1.bmp][image: image2.bmp]

Semi-struct.

Relational

Caching

Data Intensive X Scientists

Transport

XML

Naming

Simulation, Analysis & Integration Technology for Science X

Structured Data

Structured Data Integration

Structured Data Access

Authorisation

Distributed

Compute, Data & Storage Resources

Data Intensive Applications for Science X

Figure 23.4a: Incremental Integration Architecture

Diagnosis

Monitoring

Accounting

Scheduling

Grid Infrastructure

Transformation

