Figure 1: Comparing peer-to-peer and grid computing styles [image: image1.wmf]Grid
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Figure 2: Napster – an example of a centralized peer-to-peer system
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Figure 3: Gnutella – an example of a fully decentralized peer-to-peer system
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Figure 4: Routing a message between nodes in Pastry, a distributed hash table (DHT). Black dots represent live nodes in the circular key space.
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Figure 5: Routing a message between nodes in Kademlia, a distributed hash table (DHT). The key space is acyclic and the source node locates the node closest to the requested key by successively learning about and querying nodes closer to it. The dashed line represents the route that Pastry would have taken.
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Figure 6: A peer-to-peer grid computer? One seeks to combine the varied resources, services and power of grid computing with the global-scale, resilient and self-organizing properties of large peer-to-peer systems. A peer-to-peer substrate provides lower-level services on which to build a globally-distributed grid services infrastructure. Issues such as trust which grid computing assumes but are lacking in peer-to-peer systems need to managed between the layers.
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Figure 7: SETI@home is an efficient peer-to-peer use of computational resources. The communication : computation ratio is particularly low, so the clients do the bulk of the processing and the server merely checks and collates the results, unlike in traditional client-server systems where the server often does most of the work.
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Figure 8: What would SETI@home look like over a computational grid? Imagine grid services which expose massive computational resources (such as a supercomputer). Rather than clients requesting tasks, a SETI server can distribute them to these services for processing. The job of discovering and using the best services (resource discovery) now rests with the server.
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Figure 9: Distributing an inverted index over a distributed hash table, such as Pastry’s circular key space. An inverted index maps keywords to documents containing those words. This inverted index is distributed in two ways: horizontally or vertically (TODO: describe these).  A web page containing certain keywords is found by intersecting (using bloom filters passed between peers) the sets of possible documentIDs.
