Figure 1: Comparing peer-to-peer and grid computing styles [image: image1.wmf]Grid

•

Flexible, high

-

performance, high

-

availability access to

all

significant

resources

•

Heterogeneous, specialized resources

within a trusted environment

•

On

-

demand creation of

general

-

purpose

powerful, virtual computing

systems

•

Computing as a utility rather than a

commodity

Sensor

‘nets’

Data archives

Supercomputers

Software

Colleagues

Peer

-

to

-

Peer

•

Embodies the global sharing of

resources for a specific task

•

Homogeneous resources within a

mutually

-

distrustful environment

•

Often created for specialist uses

(e.g. file sharing, number

factorization, searching for alien life)

Grid

•

Flexible, high

-

performance, high

-

availability access to

all

significant

resources

•

Heterogeneous, specialized resources

within a trusted environment

•

On

-

demand creation of

general

-

purpose

powerful, virtual computing

systems

•

Computing as a utility rather than a

commodity

Sensor

‘nets’

Data archives

Supercomputers

Software

Colleagues

Sensor

‘nets’

Data archives

Supercomputers

Software

Colleagues

Peer

-

to

-

Peer

•

Embodies the global sharing of

resources for a specific task

•

Homogeneous resources within a

mutually

-

distrustful environment

•

Often created for specialist uses

(e.g. file sharing, number

factorization, searching for alien life)

[image: image2.wmf]

1.

The peer requests files

matching a given search name

2.

The

Napster

server sends

a list of peers offering

suitable matching files

Napster

Server

4.

The file(s) are sent

directly

5.

Downloaded files

are saved and re

-

shared (hopefully)

Requesting

Peer

Serving Peer

3.

The peer requests

files directly from one of

the serving peers

1.

The peer requests files

matching a given search name

2.

The

Napster

server sends

a list of peers offering

suitable matching files

Napster

Server

4.

The file(s) are sent

directly

5.

Downloaded files

are saved and re

-

shared (hopefully)

Requesting

Peer

Serving Peer

3.

The peer requests

files directly from one of

the serving peers

Figure 2: Napster – an example of a centralized peer-to-peer system

[image: image3.wmf]3.

The file(s) are

downloaded directly from

the selected peer

1.

Peer sends a

request to all of

its

neighbours

Requesting

Peer

2.

Request is ‘flooded’

through the network, and

suitable peers returned

Serving Peer

4.

The file(s) are stored

and this peer can now

serve them for others

3.

The file(s) are

downloaded directly from

the selected peer

1.

Peer sends a

request to all of

its

neighbours

Requesting

Peer

2.

Request is ‘flooded’

through the network, and

suitable peers returned

Serving Peer

4.

The file(s) are stored

and this peer can now

serve them for others

Figure 3: Gnutella – an example of a fully decentralized peer-to-peer system

[image: image4.wmf]Requested Key

Source node

Routing a message

between nodes in

Pastry.

Black dots represent

live nodes in the circular

namespace

Closest live node

to requested key

Requested Key

Source node

Routing a message

between nodes in

Pastry.

Black dots represent

live nodes in the circular

namespace

Closest live node

to requested key

Figure 4: Routing a message between nodes in Pastry, a distributed hash table (DHT). Black dots represent live nodes in the circular key space.

[image: image5.wmf]Requested Key

Source node

Closest live node

to requested key

1.

Source node gets

routing tables entries

from successively

closer nodes

2.

Eventually, the source

node communicates directly

with the destination node

The ‘conceptual route’ taken

Requested Key

Source node

Closest live node

to requested key

1.

Source node gets

routing tables entries

from successively

closer nodes

2.

Eventually, the source

node communicates directly

with the destination node

The ‘conceptual route’ taken

Figure 5: Routing a message between nodes in Kademlia, a distributed hash table (DHT). The key space is acyclic and the source node locates the node closest to the requested key by successively learning about and querying nodes closer to it. The dashed line represents the route that Pastry would have taken.

[image: image6.wmf]Peer

-

to

-

peer

routing substrate

Grid services

infrastructure

Peer

-

to

-

peer

routing substrate

Grid services

infrastructure

Figure 6: A peer-to-peer grid computer? One seeks to combine the varied resources, services and power of grid computing with the global-scale, resilient and self-organizing properties of large peer-to-peer systems. A peer-to-peer substrate provides lower-level services on which to build a globally-distributed grid services infrastructure. Issues such as trust which grid computing assumes but are lacking in peer-to-peer systems need to managed between the layers.

[image: image7.wmf]2.

The result (and possibly

a proof of its correctness)

is returned to the server

1.

The

client requests

a new

‘task’ from the SETI server

Clients

Homogeneous

workstations

The clients do the bulk

of the processing,

unlike in traditional

client

-

server models

SETI server

Responsible for

producing tasks and

collating their results

2.

The result (and possibly

a proof of its correctness)

is returned to the server

1.

The

client requests

a new

‘task’ from the SETI server

Clients

Homogeneous

workstations

The clients do the bulk

of the processing,

unlike in traditional

client

-

server models

SETI server

Responsible for

producing tasks and

collating their results

Figure 7: SETI@home is an efficient peer-to-peer use of computational resources. The communication : computation ratio is particularly low, so the clients do the bulk of the processing and the server merely checks and collates the results, unlike in traditional client-server systems where the server often does most of the work.

[image: image8.wmf]2.

The result (and possibly

a proof of its correctness)

is returned to the server

1.

The

SETI server sends

a new

‘task’ to a compute grid service

SETI server

Responsible for

producing tasks and

collating their results

Compute GRID

service

Massive computational

resources are exposed as

a single service

(

virtualization

)

2.

The result (and possibly

a proof of its correctness)

is returned to the server

1.

The

SETI server sends

a new

‘task’ to a compute grid service

SETI server

Responsible for

producing tasks and

collating their results

Compute GRID

service

Massive computational

resources are exposed as

a single service

(

virtualization

)

Figure 8: What would SETI@home look like over a computational grid? Imagine grid services which expose massive computational resources (such as a supercomputer). Rather than clients requesting tasks, a SETI server can distribute them to these services for processing. The job of discovering and using the best services (resource discovery) now rests with the server.

[image: image9.wmf]43,75,321

‘computer’

…

…

21,65A,321

‘

cambridge’

DocumentIDs

Word

43,75,321

‘computer’

…

…

21,65A,321

‘

cambridge’

DocumentIDs

Word

DocumentIDs

are

mapped to

keys

in the

key space, not

nodes

Closest live node to the key

stores the data for those

documents containing the

word ‘

cambridge’

An enhancement is to

redundantly encode the data

over the

k

nearest nodes

An

inverted index

maps words to

documents containing that word

Figure 9: Distributing an inverted index over a distributed hash table, such as Pastry’s circular key space. An inverted index maps keywords to documents containing those words. This inverted index is distributed in two ways: horizontally or vertically (TODO: describe these). A web page containing certain keywords is found by intersecting (using bloom filters passed between peers) the sets of possible documentIDs.
