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17 CHAPTER Resource and Service Management

Karl Czajkowski, Ian Foster, Carl Kesselman

The term resource management refers to the operations used to control how capabilities provided by Grid resources and services are made available to other entities, whether users, applications, or services. Strictly speaking, resource management is concerned not with the core function of a resource or service—that is, what it does for clients—but rather with the manner in which this function is performed, such as when a requested operation starts or how long it takes to complete.

Early work on resource management in networks and Grids has led to the development of a range of management abstractions and interfaces that are specialized to the different classes of entities that need to be managed. For example, RSVP and differentiated services have been developed for networks [1] (Chapter I:19), GRAM for computational resources [2], and SRM functions for storage [3];[4] (Chapter DATA). However, these domain-specific approaches become increasingly unwieldy and inappropriate as more sophisticated applications demand increased levels of control. In future Grids, resource management functions must permeate the Grid infrastructure and we will require broadly applicable basic management functions that can be applied to a range of resources and services in a uniform fashion.

In this chapter, we both define the Grid resource management problem and present a set of general mechanisms that can be used to address the challenges just noted. Our approach is to introduce a generalized resource management framework and use it as a basis for characterizing existing approaches and for defining a direction for resource management development, particularly as framed within the Open Grid Services Architecture (OGSA). 

17.1 Resource Management on the Grid

At the heart of the Grid is the ability to discover, allocate, and negotiate the use of network-accessible capabilities—be they computational services offered by a computer, application services offered by a piece of software, bandwidth delivered on a network, or storage space provided by a storage system. While there are many facets to acquiring capabilities for a Grid application, we use the term resource management to describe all aspects of the process: locating a capability, arranging for its use, utilizing it, and monitoring its state.

Traditionally, the term “resource” has been interpreted narrowly as denoting a physical entity, such as a computer, network, or storage system. In contrast, we use the term here in a highly generic sense, to denote any capability that may be shared and exploited in a networked environment. This more general definition is consistent with a service-oriented architecture (Chapter OGSA), within which both traditional “resources” and virtualized “services” (e.g., database, data transfer, simulation) may differ in the function they provide to users but are consistent in the manner in which they deliver that function across the network. From this perspective, we could quite reasonably have titled this chapter “Service Management.” In the interest of retaining established terminology, however, we continue to use the term resource management but with the understanding that we are applying it in this more general context.

Resource management in traditional computing systems is a well-studied problem. Resource managers exist for many computing environments and include batch schedulers, workflow engines, and operating systems. These systems are local, have complete control of a resource, and thus can implement the mechanisms and policies needed for effective use of that resource in isolation.

What distinguishes resource management in the Grid environment from these local systems is the fact that the managed resources span administrative domains. This distribution can present problems due to heterogeneity in the way that similar resources are configured and administered. For example, cluster schedulers such as Platform’s Load Sharing Facility and Sun’s Grid Engine have incompatible interfaces for submitting jobs to a compute platform. Thus, much early work in Grid resource management focused on overcoming these issues of heterogeneity, for example through the definition of standard resource management protocols [2],[5] and standard mechanisms for expressing resource and task requirements [6].

More important than such issues of “plumbing,” however, is the fact that different organizations operate their resources under different policies; the goals of the resource user and the resource provider may be inconsistent, or even in conflict. Further complicating the situation is the fact that Grid applications often require the concurrent allocation of multiple resources, necessitating a structure in which resource use can be coordinated across administrative domains [5],[7]. Much current activity in Grid resource management is focused on understanding and managing these diverse policies from the perspective of both the resource provider and the consumer.

In this chapter, we take a broad look at Grid resource management. We first examine the basic requirements for a Grid resource management system and then present a generic resource management model that addresses these requirements. This model provides a general framework for describing resource management independent of the type of resource that is managed. We use this model to describe several existing Grid resource management systems and to place current and future directions in Grid resource management in context. The next chapter provides a more in-depth presentation of one specific approach to resource management, namely, that provided by the Condor system.

17.2 Requirements

The core goal of resource management is to establish a mutual agreement between a resource provider and a resource consumer by which the provider agrees to supply a capability that can be used to perform some task on behalf of the consumer.

This perspective on resource management is somewhat unconventional. Traditionally, tasks have been handled through job submission, while resource capabilities have been handled through specialized quality-of-service interfaces. As we shall explain, however, a unified approach offers significant advantages.

Grids systems and applications encompass a rich variety of both tasks and resources. Hence, it is not surprising that Grid resource management encompasses a wide range of different scenarios. The following examples capture some of the diverse resource management situations that can arise:

· Task submission, in which the resource accepts responsibility to perform a specified task, for example, execute a program, move a file, or perform a database lookup. This is the most basic type of resource management agreement, in which the provider simply commits to perform the agreed-upon function without necessarily committing to when the task will start and finish, how many additional tasks the resource would be able to take on for the user, how many other tasks it might take on in the future, and so forth.

· Workload management extends the task submission scenario described above by provisioning tasks to provide a specified level of capability, such as processors on a computer, threads or memory in a server, bandwidth on a network, or disk space on a storage system. This extension enables the client to control not only what task will be done but also aspects of how tasks are performed. Levels of capability might be expressed as maximum task turnaround time, average turnaround time, task throughput, and so forth.

· On-demand access, in which resource capability is made available at a specified point in time, and for a specified duration. This type of resource management can be particularly important in so called on-line applications, such as teleoperation in NEESGrid (Chapter NEESgrid).

· Co-scheduling, in which a set of resources is made available simultaneously by coordinating on-demand agreements across the required resources. Use of this type of management function is typified by data-transfer services (Chapter DATAGRID), in which source and sink storage systems must be coordinated along with network bandwidth, or distributed parallel computations (Chapter LIBRARIES-MPI), in which multiple compute resources are to be made available at the same period of time.

· Resource brokering scenarios, in which a broker service acts as an intermediary to a set of resource capabilities and directs tasks to appropriate resources based on broker-specific policy. One such policy is to maximize total job throughput. (High-throughput brokers are discussed in more detail in Chapter MIRON).

As these examples illustrate, resource agreements can encompass not only a commitment to perform a task but also commitments to level of performance, or quality of service. Creating agreements of this type is sometimes called provisioning. For example, a database service can be provisioned to support 100 simultaneous queries, with a average throughput of 10 queries per second; a consumer can be provisioned storage system space to support transfers of up to 10 TB; or a computer system can be provisioned to allow submission of jobs requiring up to 200 processors. The timing and duration of the agreement provide a third dimension to a resource management agreement. By creating different combinations of what, how, and when agreements are held, one can address a range of resource management paradigms. 

We note that Grid-based resource management systems generally cannot create quality-of-service agreements without cooperation from the resource being managed. The reason is that a resource is typically not dedicated to a specific virtual organization (VO) but rather is shared across VOs—or, as is often the case, between Grid and non-Grid users. Unless the resource has provisioning as a fundamental capability, predictable quality of service cannot be delivered to a Grid consumer of such a resource. To date, provisioning capabilities have been limited to fairly localized and tightly coupled resources and services. As we discuss further in Section 0, however, with the emergence of more sophisticated distributed resource management systems oriented toward pools or clusters, such as Oceano [8] and Utility Data Center [9, 10], the underlying service behaviors required for Grid-based end-to-end provisioning are now becoming available.

The general case of on-demand access (specifying the time and duration in an agreement) is often referred to as creating an “advance reservation” [11, 12]. Advance reservation is particularly important if one wishes to coordinate the use of two or more resources. For example, large distributed simulations [13] can require access to many large computational resources at one time. On-line experiments [14] require that computational resources be available when the experiment is being conducted; multimedia applications can require network, CPU, and disk [15]; and processing pipelines such as data-transfer [16], data-analysis [17-19], and distributed visualization [20] require simultaneous access to a balanced resource set. Having the ability to negotiate an agreement for a specific time enables an application to ensure that the necessary capabilities will be available when required.

Introducing reservation raises the possibility that one knows a resource capability will be required but does not yet know how it will be used. For example, in space-shared supercomputers, nodes may be set aside for special high-priority users without knowing what application (or parameters) will be executed. In utility computing, nodes may be allocated to an enterprise that will specify the software configuration at a later time. In these examples, the resource management paradigm is to obtain commitment for resource capability without expressing the details of how that capability will be used. The converse is also possible: One may wish to specify a task to be performed in the absence of having the capability to perform that task with any given level of performance. An example of this situation is traditional batch queuing system, in which jobs are specified and resource capability is allocated and assigned to the task at a later time. 

17.3 A Generalized Resource Management Framework

Motivated by the above discussion, one can synthesis a uniform view of resource management, as illustrated in Figure 17.1, in which resource management operations are abstracted in a way that is independent of the type of resource being managed. The basic resource management operations from this figure (submit, acquire, bind) are applicable to any resource type. It is in the details of these agreements that the specifics of the resource utilization (number of processors, amount of bandwidth, name of a program or file, etc.) appear. By identifying an underlying resource management model, we hope to provide a context within which we can characterize and understand the function of different resource management systems as well as provide guidelines as to how resource management systems should be constructed.

NOTE that the figure needs to be redone: the word Utilizatio  n and Acquir  e are awkward
In the figure, resource management activities flow bottom-up, with the top of the figure representing the eventual goal of resource management: a resource used to perform a task on behalf of a requestor. The two paths flowing toward utilization capture the resource management process from the perspective of the task as presented by resource consumer (left-hand path) and the resource capability as offered by the resource provider (right-hand path). [WHY IS THIS FIGURE INVERTED FROM THE USUAL CLIENT-TO-SERVICE OR ABSTRACT-TO-CONCRETE TOP-DOWN VIEW?]
17.3.1 Service-Level Agreements
Underlying the resource management model defined above is the need to represent agreements negotiated by the submit, acquire, and bind operations. (As we discuss later, planning and discovery are not generally represented through agreements.) Within this model, a resource consumer needs to understand and affect resource behavior, often requiring assurances or guarantees concerning the level and type of service being provided by the resource. Conversely, the owner wants to maintain local control over how the resource can be used and how much service information is exposed to the client. 

A common means for reconciling these two competing demands is to negotiate a service-level agreement (SLA), by which a resource provider “contracts” with a client to provide some measurable capability or to perform a task. Service-level agreements explicitly state the terms of the agreement between a resource user and resource provider. SLAs provide a simple abstraction of a resource on the Grid. Local policy, non-Grid usage, detailed configuration information, and so forth all becomes irrelevant as the resource is defined only by the SLAs it is willing to negotiate. An SLA allows clients to understand what to expect from resources, without requiring detailed knowledge of competing workloads or resource owners’ policies. This concept holds whether the managed resources are physical equipment, data, or logical services.

Given that each of the resources in question may be owned and operated by a different provider, establishing a single SLA across all of the desired resources is not possible. Our solution to this problem is to implement the resource management model by decomposing management functions into different kinds of SLAs that can be composed incrementally, allowing for coordinated management across the desired resource set. 

More specifically, we express general resource management functions as some combination of three different kinds of SLAs:

· Task service–level agreements (TSLAs), in which one negotiates for the performance of an activity or task. For example, a TSLA is created by submitting a job description to a queuing system. The TSLA characterizes a task in terms of its service steps and resource requirements.

· Resource service–level agreements (RSLAs), in which one negotiates for the right to consume a resource. An RSLA can be negotiated without specifying the activity for which the resource will be used. For example, an advance reservation takes the form of an RSLA. The RSLA characterizes a resource in terms of its abstract service capabilities.

· Binding service–level agreements (BSLAs), in which one negotiates for the application of a resource to a task. For example, an RSLA promising network bandwidth might be applied to a particular TCP socket, or a RSLA promising parallel computer nodes might be applied to a particular job task. The BSLA associates a task, defined by its TSLA with the RSLA and the resource capabilities that should be met by exploiting the RSLA.

The above SLAs implement the resource management modelof Figure 17.1, in which one can submit tasks to be performed, get promises of capability, and lazily bind the two. By combining these agreements in different ways, we can represent a variety of resource management approaches, including: batch submission, resource brokering, co-allocation, and co-scheduling.
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Figure 17.2: Three kinds of SLA—RSLA, TSLA, and BSLA—allow a client to schedule resources as time progresses from t0 to t6.

Figure 17.2 illustrates how the SLAs can be combined over time to allow a client to schedule resources as time progresses. In this case, at time t0 the client acquires ta resource promise (RSLA) for a future time; at t1 a complex task is submitted as the sole TSLA, using RSLA 1 to get initial portions of the job provisioned, and an additional RSLA is obtained; later, the client applies the second RSLA via a BSLA to accelerate provisioning of another component of the job. Finally, at t5 the resource provider binds the last piece of the job to a capability without an explicit BSLA. 

SLAs can be linked to address more complex resource co-allocation situations. Consider a job that transfers data from a storage system to an intermediate location, computes on the data, and transfers the results to a final destination. The computation is performed on resources allocated to a community of users. For security reasons, however, the computation is not performed by using a group account. Instead, a temporary account is dynamically created for the computation. In this situation, the activation and persistence of this temporary account are an asbtract task and are maintained by establishing a TSLA to which all jobs in the account are linked. (In order for the account to be reclaimed safely, all linked TSLAs must be destroyed.) The resource management activities then map to the following set of SLAs

· TSLA1 establishes the temporary user account and initializes it to meet user requirements—for example, by installing and initializing specified software.

· RSLA1 promises the client 50 GB of storage in a particular file system on the resource.

· BSLA1 binds part of the promised storage space to a particular set of files within the file system.

· TSLA2 runs a complex job that spawns constituent parts for staging of input and output data. The job scheduled by TSLA2 might have built-in logic to establish the staging jobs TSLA3 and TSLA4, or this logic might be part of the provider that performs task TSLA2 on behalf of the client.

· TSLA3 is the first file transfer task, to stage the input to the job site without requiring any additional quality-of-service guarantees in this case.

· TSLA4 is the second file transfer task, to stage the large output from the job site, under a deadline, before the local file-system space is lost.

· RSLA2 and BSLA2 are used by the file transfer service to achieve the additional bandwidth required to complete the (large) transfer before the deadline.

As mentioned above, job submission must be done in the context of the temporary account SLA. Consequently, an implementation of the SLAs must have mechanisms for enforcing this nesting, such as triggering recursive destruction of all SLAs from the root to hasten reclamation of application-grouped resources.

17.3.2 Policy and Security in Resource Agreements

Typically, resource policy controls by whom and how its resources may be used. For example, the resource may be used only by certain users or during specific times of the day or may require different levels of payment for different levels of service. Thus, the policy will govern the service-level agreements to which the resource provider is willing to agree. Policy enforcement is symmetric: It may be applied by both entities entering into an SLA.

Detailed knowledge of the policy is not required to establish an SLA; knowledge of the resource is limited to the terms of the SLA. This aspect is critical in that often a provider may not wish to make its policy public. In practice this means that the provider (or consumer) will publish whatever policy information it wishes to make available to potential consumers for the purposes of service discovery, but private policy may be applied when SLAs are negotiated.

In general, issues of policy enforcement will require mechanisms for authenticating the participants in an SLA negotiation, associating properties to the entities in question (role, group membership, ability to pay, etc.), and providing mechanisms for enforcing restrictions based on identity and attribute. This enforcement can be complicated by the fact that resource agreements sometimes may not be made with the actual consumer of the resource but may be obtained by a third party on behalf of the consumer. This behavior is typical of resource brokers that obtain a commitment of resource capabilities and redistribute them, often applying additional policy or cost functions. A consumer may interact with a broker by requesting submission of the task (expecting the broker to complete it), or the consumer may ask a broker to allocate capability across one or more resources with which the broker has established agreements. In both scenarios, the resource management process is complicated by the introduction of the broker’s additional administrative domain (thus we now have the consumer, the broker, and potentially a different administrative domain for each resource selected by the broker). Of course, brokers can interact with other brokers, adding to the list of administrative domains that are touched in a single resource management operation. Grid resource management systems must address issues of cross-domain trust and policy and if and how delegation of rights between intermediaries is allowed. The requirements for resource management functions are not unique in this regard, and the techniques discussed in Chapter SECURITY should be an integral part of the resource management system.

17.3.3 Resource Descriptions

While the type of agreements established between resource providers and consumers can be generically defined, the exact nature of those agreements is highly dependent on the type of resource being provided. Clients in general must request resources by property, for example, by capability, quality, or configuration. These requirements are expressed through a resource description language. This language fills three roles:

· Enables the resource consumer to describe what capabilities that are desired, and what they will be used for (e.g., job configuration).

· Enables a resource provider to describe the capabilities that it can offer, and under what terms. This description does not have to completely model the resource being offered; rather, it expresses only those capabilities that the resource is prepared to negotiate.

· Provide a vehicle for the propagation of resource and agreement state through monitoring and discovery data paths of the resource management system. 

 Moved to end of section
Experience suggests that a resource description framework should contain the following basic primitives: 

· Parameterized resource attribute metrics describing a particular property of the resource. Examples of such metrics are bandwidth, latency, and space. These attribute descriptions can express limits (e.g., between 10-100 Mbits/s), and they may scope these metrics to a window of time in which the attribute value (or range) is being asserted.

· Resource composition operators that allow complex resources to be described as compositions of simpler resource primitives. A resource description language may contain a variety of composition operators, including the following: 

· Conjunctive sets that itemize required elements. 

· Typed sets that name specific sets of resources for the purpose of associating meaning with a set. For example, the typed set{space, bandwidth}disk tells us that we are constraining the speed and size of a secondary storage device with reusable metrics for space and bandwidth.

· Arrays that are sets of identical elements.

· Disjunctive alternatives, which differ from a resource set in that only one element must be satisfied. Alternatives can be used to express other solution spaces for the application requirements within distinct planning regimes or to phrase similar requirements using basic and specialized metrics in the event that a client could benefit from unconventional extensions, that may or may not be recognized by a given manager.

As with resource metrics, compositions may be required to hold for specific time intervals. Each subgroup within a composite must have a lifetime wholly included within the lifetime of the parent group.

In addition to these basic elements, we may want to intermingle control, or configuration, directives within a resource description. In an open environment, this intermingling is notational convenience to avoid presenting two statements—one modelling the requirements placed on the structured resource and one providing control data to the resource manager for the structured resource. 

We believe, moreover, that resource descriptions must be dynamically extensible and that the correct mechanism for extension is heavily dependent on the technology chosen to implement the resource manager. Sets of clients and resources must be able to define new resource syntax to capture novel devices and services, so the language should support these extensions in a structured way. With the widespread adoption of OGSA as the core technology for implementing Grid infrastructure, the resource descriptions and the mechanisms for extension are likely to be rooted in XML Schema Definitions. 

17.3.4 Resource Description Languages

Two major resource description languages are in widespread use in current Grid environments: the Globus Resource Specification Language (RSL) and Condor Classified Ads (ClassAds). Both languages provide most of the primitives and composition operators outlined above. Neither language supports any temporal notation, although either could be easily augmented to support start time and end time as a resource metric.

RSL is the specification language used by the Globus Toolkit® to describe task configuration and service requirements. RSL syntax was based on the search string format for the Lightweight Directory Access Protocol (LDAP) and consists of attribute value pairs combined with a fixed set of composition operators in prefix notation. The following RSL example illustrates its major features:

+( & (resourceManagerContact=

 *** “flash.isi.edu/O=Grid/…/CN=host/flash.isi.edu”)

 (count=1)

 (label="subjob A")

 (executable= my_app1)

 )

 ( & (resourceManagerContact= 

 ***“sp139.sdsc.edu:2119:/O=Grid/…/CN=host/sp097.sdsc.edu")

 (count=2)

 (label="subjob B")

 (executable=my_app2)

 )

An attribute/value pair can represent either a resource metric (e.g., “count” which specifies the requested number of processors), or a configuration parameter (e.g., “executable,” which specifies the name of a program to execute). Note the two alternative representations of conjunction: The “&” operator specifies a conjunction of resource metrics, while the “+” operator is used to express a set of separate resource requests that must be fulfilled. This second notation is particularly useful for specifying co-allocation requests (i.e., coordinated resource usage).

In contrast, Classified Advertisements (ClassAds) [6] use a symmetric notation to describe both task and resource requirements, thus simplifying the process of matching task and resource requirements. ClassAds descriptions are semistructured, not schema based: the set of attributes in a ClassAd, as well as their names and meaning, is determined by convention, and not by any agreed-upon schema. ClassAds are discussed in more detail in Chapter LIVNY.  ClassAds have been extended to support matching with multiple resources [21] and sets of resources [22] and matching via constraint solving [23].

Within the commercial non-Grid computer sector, significant progress has been made in developing resource models for enterprise wide system management. The Simple Network Management Protocol Management Information Base and, more recently, the Common Information Model (CIM) are two of the more common examples of this technology. In particular, CIM seems potentially applicable in the Grid environment. 

CIM is being developed by the Distributed Management Task Force, a multivendor standards organization whose goal is to develop interoperable standards for management software. CIM is based on an object-oriented metamodel that enables all of the types of composition described above, while providing an extensible framework describing new resource types. The metamodel is defined in a syntax-neutral format (the Meta-Object Format) that can be encoded into a variety of syntactic structures, including XML. This makes CIM based descriptions attractive to Web services–based Grid systems, such as those being defined by OGSA (see Chapter OGSA). In addition to the metamodel, CIM defines a growing set of object definitions for hardware and software resources. While some of these will be of direct interest to the Grid community (e.g., descriptions of computing elements, storage systems, and some basic software services), they clearly do not encompass the range of resources and tasks that will be present in a typical Grid. Hence, significant object development will be required before CIM can be used. Given its broad industry backing and its flexible object model, however, we believe that CIM offers considerable promise as a description language for resource management agreements.

17.3.5 Resource Discovery and Selection

While resource capability agreements are at the core of the resource management model defined in Figure 17.1, additional functions are specified as part of the model. Resource discovery is the process of querying the distributed state of the Grid to identify those resources whose characteristics and state match those desired by the resource consumer. Resource selection is the process of choosing from a set of candidates provided by resource discovery. The selection is typically driven by high-level application criteria, such as time to completion, reliability, or cost.

The distributed nature of the Grid environment makes precise determination of resource state difficult. Furthermore, the introduction of multiple policy domains makes precise control of resource state difficult by preventing traditional strategies such as transactions with so-called ACID properties. Hence, discovery and selection are often intermingled with resource management activities: One identifies potential resources and then engages in a detailed negotiation with the resource to determine whether the resource provider will make the specific commitments to the resource consumer that will satisfy the application needs. 

The separation of discovery from allocation operations has important ramifications. Since discovery does not imply any commitment, we can make it a lightweight, nonauthoritative operation (i.e., not the subject of an SLA negotiation). Service acquisition, on the other hand, implies a guarantee of service and will, in general, be more costly to establish. A second advantage to separating discovery, is that the methods used to aggregate resource information for the purposes of Grid-wide discovery can exploit a loose coherency model, further reducing the overhead of collecting and searching information about large, distributed resource sets [24, 25]. 

Clearly, a relationship exists between the description of the service used for the purposes of discovery, and the description used for establishing an SLA with that service. In the Globus Toolkit, this relationship is indirect, since the description language used by the Monitoring and Discovery Service (MDS) [ref] is based on LDAP object classes, which have a similar but not identical syntax to that used to express job and resource requirements in RSL. Thus, once a desired resource is discovered and selected, information about the resource as well as descriptions of the task must be explicitly mapped into RSL before an SLA can be negotiated. ClassAds take a more symmetric approach, using the same notation for describing task and resource characteristics. As discussed in the next chapter, this simplifies the process of resource selection, since no transliteration is required when moving from discovery to allocation operations. CIM-based descriptions are not currently being used for resource allocation. However, an approach similar to that being used by ClassAds could be easily taken.

17.3.6 Task Management

Resource management does not stop with the initiation of the requested activity. Typically we want to monitor the status of the task during its execution, as well as the status of the managed resource, if for no other reason than to ensure that the agreed-upon capability is being provided. Monitoring activities is complicated, not only because the environment is distributed, but because the resources may have been provided through intermediaries such as resource brokers. The view of the resource may have been abstracted, making it difficult for the consumer to know enough about the underlying resource set to directly monitor the environment. 

Monitoring in general is discussed in detail in Chapter TIERNEY. In addition to the generic functions discussed in that chapter, however, resource management systems often include monitoring capabilities specific to resource management, for example to monitor the status of an SLA. Monitoring can be especially important in SLA implementations in which an SLA can be in different states. For example, there may be a delay between negotiating a TSLA (i.e., submitting a program to a batch queue) and actually performing the task (i.e., executing the program). In these situations, it is desirable to monitor the SLA status in order to determine when the task was initiated (and completed or aborted). Such a monitoring capability is often included as a part of the resource management system, rather than relying on a more generic monitoring system. However, as more services are created that provide management abstractions to the Grid (e.g., brokers, data transfer services), an integrated approach to resource and application monitoring may become more desirable.

Based on the results of task and resource monitoring, one may want to perform additional management functions, altering the state of current SLAs or perhaps negotiating additional agreements. Of course any modification of an SLA must be consistent with both the terms negotiated as part of the SLA setup, as well as the explicit and implicit policy of parties that entered into the agreement in the first place. While not intended to be exhaustive, the following indicates the types of management functions we may wish to perform after SLAs have been established and potentially during task execution: Note that the author says he is not happy with these bullets, since they don’t distinguish between the lifetime of an SLA and the lifetime of provisioning commitments captured in the SLA.
· Terminate an SLA. SLAs may be terminated for various reasons, for example, application error, the availability of a better resource provider, or unsatisfactory performance of the provider (including SLA violation). In the case of nested or linked SLAs, termination of an outer SLA may automatically terminate contained SLAs. Alternatively, premature termination of an SLA may not be allowed until all contained SLAs have been terminated as well.

· Extend the lifetime of an SLA. This is the simplest form of renegotiation in which the duration of the SLA is extended without modifying any other terms of the agreement. Extension may be necessary because the task has taken longer than expected to complete. Another important situation is one in which a provider is not willing to give out large resource commitments at once but instead requires periodic update to ensure that the requestor has not failed. This soft-state approach to lifetime management is fundamental to the structure of OGSA, and we expect that it will be applied to SLAs.

· Renegotiate the terms of the SLA. Often, requirements change, making the terms of a currently held SLA undesirable. Constraints on existing terms may be modified (e.g., allocating increased disk space, or reducing the upper bound on transaction response time). Alternatively, new terms may be added to an existing SLA (e.g., moving from a best-effort arrangement to a guaranteed quality of service on specific resource capabilities). 

· Create a new SLA. If modification of an existing SLA is not appropriate or not allowed, we may wish to create a new SLA. If the SLA is for a different resource or for a new type of SLA for an existing resource, normal negotiation mechanisms for establishing an SLA can be used. If the new SLA is to replace an existing one, however, the ability to create a new SLA may be impeded by the commitments associated with the existing SLA. Hence, a specialized negotiation protocol may be needed that creates a new SLA predicated on the assumption that an existing SLA will be terminated when the new SLA is created.

17.4 Grid Resource Management Systems

In the preceding sections, we identified the basic concepts of a Grid resource management system and created a general resource management framework that can be used to describe a wide variety of resource management approaches across a broad class of resources. In the rest of this chapter, we apply the resource management framework to several specific resource management systems.

Before looking at these specific systems, however, we make some general observations. Current Grid resource management systems have tended to focus on management of compute resources, with an emphasis on job submission. Although a range of attributes can be specified, start-time and end-time constraints generally are not exploited. Thus, while current systems can be understood in the context of the resource management framework, in practice they tend to explicitly manage only TSLAs, with the underlying local resource management implicitly provisioning and binding as part of the their implementation.

Perhaps the most significant reason Grid resource managers have been limited in scope is the dearth of functionality in the underlying local resource management systems that Grid resource managers must rely on to implement SLAs. Job submission services tend not to support advanced reservation, network quality-of-service support is not widely available, and even storage quality-of-service support is limited. While sophisticated workload management systems exist on commercial environment [26], to date these platforms have not been integrated into the Grid environment.

Nevertheless, we have reason to be optimistic.. As the Grid becomes more widespread and as applications increasingly rely on Grids for their execution environment, there will be pressure to both create and deploy richer local resource management solutions and to export their functionality via Grid-based resource management. A case in point is utility computing, which most major computer vendors are advocating as the next step in the evolution of the corporate IT infrastructure. For utility computing to work, service must extend beyond best effort, and end-to-end performance requirements will be essential. 

17.4.1 The Globus Grid Resource Allocation Manager

The Globus Toolkit’s Grid Resource Allocation Manager (GRAM) [ref] is representative of first-generation Grid resource management systems. GRAM defines a layered resource management architecture, following the model presented in Chapter XX. At its core, GRAM defines the resource-layer protocols and APIs that enable clients to securely instantiate a computational task. GRAM itself does not implement any local resource management functionally but insteadrelies on local resource management interfaces to provide this function. Typically, the GRAM server interfaces to a local job management system such at Platform’s Load Sharing Facility, Veridian’s Portable Batch System, IBM’s LoadLeveler, or Sun’s Grid Engine. GRAM can also provide a submission interface into resources managed by the Condor system (Chapter LIVNY).

FIGURE FROM THE ORIGINAL GRAM PAPER?
The GRAM protocol can be layered onto any resource management system that can be abstracted as a job submission. Typically, such an action results in the execution of a specified program. The GRAM protocol does not require this, however. Indeed, the protocol has been used for managing a number of different types of computational resourcesSome of the more interesting GRAM interfaces include a layering onto Oracle’s database products for access to database utilities, invocation of SQL commands and access to the Oracle scheduler, and the LIGO Data Acquisition System [27] for integrating a special purpose data processing software environment for the Laser Interferometer Gravitational Wave Observatory.

GRAM has no notion of advanced reservation. Clients submit TSLAs while provisioning and binding are performed implicitly by the resource supporting the GRAM protocol. Co-allocation is supported without advanced reservation via a lightweight broker called DUROC [5], enabling simultaneous co-allocation of distributed resources by layering on top of the GRAM API. Of course, without reservation support, simultaneous access requires luck or out-of-band resource provisioning agreements (essentially, manual creation of an RSLA that is implicitly claimed by the TSLAs through techniques such as dedicated queues, or exclusive resource access). DUROC has been used to build parallel message-passing libraries [28], to execute large-scale parallel simulations [29, 30], and to acquire clustered storage nodes for real-time access to large scientific datasets for exploratory visualization [20].

As discussed in Section 0, the GRAM protocol uses RSL as its resource description language. Because GRAM has no separation of different agreement types, RSL conveys information about resource requirements (resource description) as well as task descriptions (task description). The GRAM implementation defines RSL to contain a specific set of portable resource metrics, and it allows clients to pass through explicit configuration parameters to the local resource management system.

17.4.2 GARA

The General-purpose Architecture for Reservation and Allocation (GARA) generalizes the GRAM architecture to provide for advanced reservations and end-to-end management of quality of service on different types of resources, including networks, CPUs, and disks [7, 16]. It defines APIs that allow users and applications to manipulate both reservations and allocations of different types of resources in uniform ways. 

GARA extends the GRAM resource management model in two ways: by generalizing the API and protocols from managing compute resources into more generic resource management objects, and by introducing ReservationHandles and associated interfaces and protocol extensions to allow the creation of advanced reservations. GARA reservations can be established without indicating what task the reservation is to be used for, thus implementing an RSLA. Subsequent GRAM-style job submissions can be made by providing the reservation handle along with the job description, creating a TSLA. For network flows, clients initiate a similar claiming operation by providing the reservation handle and socket address information, creating a BSLA.

GARA uses a specialized form of RSL for describing reservations. This RSL includes reservation start-time and end time parameters, as well are attributes related to the quality of service that is being reserved, for example network bandwidth, number of processors, fraction of a CPU, and amount of memory. 

The terms of a reservation vary from resource to resource. One especially interesting set of experiments focused on the use of GARA to reserve and provide access to network bandwidth [16]. In these experiments, we created a bandwidth broker architecture that was implemented by creating a slot manager: a GARA-enabled resource manager that can set aside fractions of channel capacity for fixed duration. Reserving an end-to-end network path may require spanning network links that are in separate administrative domains. In order to address the problem of diverse trust relationships and usage policies that can apply in multidomain network reservations, individual bandwidth brokers communicate via bilaterally authenticated channels between peered domains. GARA provides the secure transport of requests from source domain to destination domain, with each bandwidth broker on the path being able to enforce local policies and modify the request with additional constraints. The lack of a transitive trust relationship between source- and end-domains is addressed by a delegation model where each bandwidth broker on the path is able to identify all upstream partners by accessing the credentials of the full delegation chain [31].

17.4.3 Condor 

Condor [32, 33] (Chapters I:13 and LIVNY) is a widely used, high-throughput scheduler that uses ClassAds for discovery and resource matching and an opportunistic scheduling discipline. Like most current resource management systems, Condor explicitly manages TSLAs between a client and the management system. Condor implements client TSLAs by establishing further RSLAs and TSLAs between the submission service and individual resources. These low-level jobs execute user tasks and stage checkpoint data in and out of the resources. Condor also provides a mechanism called glide-ins, in which the Condor environment can be dynamically established on a resource using GRAM as a creation mechanism. The glide-in is a GRAM job created by TSLA with the GRAM resource. It virtualizes the compute nodes hosting the GRAM job to provide a Condor RSLA/TSLA manager. 

17.4.4 Resource Brokers

Resource brokers, or metaschedulers, are commonly used to virtualize the interface to sets of resources. A broker acts as an intermediary between a user community and a set of associated resources by providing a single point of submission for tasks, using standard Grid resource management protocols such as GRAM to forward the task to one or more of the underlying resources for execution. To date, broker implementations have focused primarily on computational jobs or workflows [34, 35] (and see also Chapter I:12), although brokers for other resources such as network bandwidth are also possible [36, 37]. Resource brokers can be advantageous for a number of reasons:

· Resource virtualization. One primary virtue of a broker is that it provides a simplified view of a resource set, isolating the end user from having to understand the specifics of the resources that are available to a virtual organization.

· Policy enforcement. A central function of a broker is to decide onto which underlying resource a task should be directed. While this decision may be purely based on resource management considerations (e.g., equal distribution of load, or achieving best resource utilization), the broker also offers a control point at which community based policy can be asserted. This policy can enforce community priorities, the roles of users, cost models, and so forth. 

· Protocol conversion. While Grid protocols such as GRAM define standardized methods for remote job submission, a range of legacy tools are useful that do not speak Grid protocols. In these cases, a broker can serve as a protocol converter, in addition to its normal resource selection function. For example, a group at Sandia National Laboratories has developed a resource broker [38] that provides a CORBA submission interface for clients, while using GRAM for actual task submission to the underlying resource.

The algorithms used to distribute work to underlying resources vary from broker to broker and generally consider some utilization model (such as fair share) along with community policy. Usually, however, a Grid resource broker does not control the underlying resources. In the absence of such capability, the broker is limited in the types of guarantees it can make to its clients. These issues are discussed further in Section 0.

A number of Grid-based brokers for computational resources are in use, for example, Sun Grid Engine (SGE: see Chapter SUN) and Platform’s Load Sharing Facility (LSF: see Chapter PLATFORM). It is important to distinguish between the deployment of such brokers as a local resource management solution, using local interfaces and protocols, and their deployment at a Grid level, using GRAM as the underlying protocol. Indeed, LSF may submit a task to a resource that is managed by a different local manager such as SGE, Oceano [8], or Condor.

Brokers have also been developed that are more specialized, oriented toward stereotypical workflows and deployment environments. The job submission broker developed for the EU Data Grid (EDG) project is a good example. The EDG broker supports the generic three-step paradigm of (1) stage data, (2) compute on the data, and (3) place the results on a repository. Details about data and computation are provided via a broker submit file. The EDG broker chooses between various compute resources and data sources based on a simple cost minimization model, which considers the overhead of moving data, the compute resources available for execution, and the network bandwidth connecting storage and compute resources. Information required to drive these decisions is obtained by querying standard Grid information services [20]. This broker is deployed as a standard part of the EDG Grid environment and has been used to support a range of science-oriented applications.

17.5 The Service Negotiation and Acquisition Protocol

Future directions in Grid resource management are being driven by three major trends. First is the shift toward service-oriented architecture, specifically the use of OGSA (Chapter OGSA), as the common foundation on which Grid infrastructure is created.

Second is the extension of management requirements from limited classes of resources (computational, storage, network), to more general management interfaces across all types of services, in addition to traditional hardware resources.

Third is the increased use of provisioned rather than best-effort service. This trend is itself driven by two factors: the need to support more predictable behavior in application-level workflows, and the emergence of a utility computing/service model in which sets of services are aggregated and virtualized, presenting them to the network in a manner undistinguishable from a single “basic” service.

Taken together, these trends argue for an implementation of the SLA-based resource management model as described in Section 17.3 in such a way as they could become part of the basic behavior of any OGSA service. The proposed SLA model is independent of the service being managed—the semantics of specific services are accommodated by the details of the agreement, and not in the types of agreements negotiated. Because of its general applicability, we refer to the protocols used to negotiate these SLAs as the Service Negotiation and Acquisition Protocol (SNAP) [39].

17.5.1 SNAP Protocol Elements

The author suggests you may wish to cut this and the next section down, that it may overlap stuff in 17.3. 

The emergence of OGSA as the common means for creating Grid infrastructure has a number of implications for the implementation of the resource management framework. In OGSA, all operations are defined with respect to a portType, which defines a set of operations and associated data types. SLA negotiations are fundamentally no different from any other service operations. Consequently, a service can offer resource management functionality by including SLA negotiation portTypes within its service definition. 

One can imagine a small number of fairly general SLA negotiation protocols. A very basic negotiation protocol may be for the requestor to send the terms of a desired SLA to a target service, which then accepts or rejects the terms. We anticipate, however, that in many cases it will be desirable to have complex negotiations that more closely reflect the nature of the service being provided. For example, we expect that the following negotiation patterns will be of use:

· propose/accept, an interaction in which a request for an SLA is either accepted or rejected. 
· propose/counter-propose*/accept*, a generalization of submit/accept in which either party may prolong negotiation of SLA terms before accepting.

· …/accept/commit, a protocol in which agreement is reached to establish an SLA, as in the previous patterns, but the SLA is not activated until an explicit commit operation is performed. This protocol may be desirable if a cost is associated with creation of the SLA.

· OTHERS??

In addition to these common negotiation patterns, we expect that specific service types will have their own idiosyncratic negotiation styles that can also be captured as portTypes, perhaps by extending (i.e., inheriting from) one of the common negotiation portTypes. These patterns may in turn be specialized as specific services are instantiated.

In practice, each such negotiation pattern may be preceded by a discovery phase in which a service publishes or advertises what type of SLAs and negotiation patterns it is willing to support, and this information is used by a requestor to select a candidate service provider. While these advertisements may be made available by specialized operations, a more generalized approach would be to represent SLA advertisements as service data elements and access them with the standard OGSA mechanisms: Notify and FindServiceData. 

The negotiation protocols as represented by operations and portTypes capture one aspect of SNAP. However, without a means for expressing the requirements and terms of an SLA, these protocols are not very useful. Regardless of the service type, common elements will appear in any SLA: the time period for which it holds, identity of the negotiating parties, the terms of agreement, and so forth. These structures can be described by a common set of extensible XML Schema definitions (XSDs), which are included in the definition of a SLA negotiation portType. 

Attributes will also exist whose type and value must be specialized to the service being managed. In many instances it will be possible to construct SLA descriptions by combining general and service specific attributes with a standard set of composition operators as described in Section 0. Hence, the schema definitions for describing an SLA must be extensible so as to accommodate both additional attribute types and additional operators for combining attributes within an SLA. Moreover, we must also admit the possibility that a service may be so idiosyncratic so as to prohibit reuse of any descriptive elements outside of the specification of SLA kinds (i.e., TSLA, RSLA, and BSLA). Hence the SLA schemas must be designed to support extensibility with respect to the basic structure of the SLA as well.

An example of the use of the SNAP architecture can be found in the design and implementation of GRAM-II, the next generation of job submission protocols for the Globus toolkit. GRAM-II replaces the current GRAM. The basic GRAM job-submission mechanism is recast into TSLA negotiation. Similarly, the reserve and claim mechanisms of GARA will be mapped into RSLA and BSLA negotiations when local schedulers can provide such capability. In merging the two models, we find two forms of resource claim: TSLAs claim resources implicitly as part of a task creation, snf BSLAs claim resources in order to augment existing tasks.

The initial release of GRAM-II will support only TSLAs, by providing a TSLA façade to existing GRAM implementation code. This implementation demonstrates how a negotiation portType can map down to well-understood stateful implementations. More efficient results will be obtained by providing customized implementations of the negotiation portType for specific local schedulers (bypassing the expensive multiple-sandbox adapter framework implemented by GRAM and GRAM-II). The design of adapters for RSLA or BSLA negotiations will depend upon further experience with generic and specialized TSLA negotiator implementations. Similarly, the extension of TSLAs into different abstract tasks may yield lightweight broker patterns for which the heavyweight GRAM adapter framework is ill-suited.

To summarize, rather than the single-purpose resource management systems and interfaces we see today, we anticipate the next several years will see the distribution of resource management functionality to virtually every corner of the Grid with virtually any service having the ability to establish task, resource, and binding SLAs. The interfaces to these managers must be standardized in a community forum to achieve maximum benefit from such ubiquitous deployment.

17.5.2 Interfacing to Local Resource Management Systems

SNAP defines the structure of how a service presents resource management functionality to the network. For the resulting SLAs to be more than empty promises, however, the service implementation must provide the mechanisms required to deliver the agreed upon capabilities. In situations in which a service is structured only for Grid based operation, support for SLAs is an integral part of the service operation. Alternatively, the service implementation may rely on external mechanisms, i.e., local resource managers, to honor the commitments in an SLA. 

The SNAP protocol agreements can be mapped onto a range of existing local resource managers, to deploy its capabilities without requiring wholesale replacement of existing infrastructure. Results from GRAM testbeds have shown the feasibility of mapping TSLAs onto a range of local job schedulers, as well as simple time-sharing computers [40, 41]. The GARA prototype has shown how RSLAs and BSLAs can be mapped down to contemporary network and CPU QoS systems [7, 16, 42]. Following this model, SNAP manager services represent adaptation points between the SNAP protocol domain and local RM mechanisms. While mapping of SLAs onto underlying resource management systems will remain an important vehicle for implementing SLAs in legacy environments, we anticipate that local resource management services will increasingly become Grid enabled, exporting SLA negotiation interfaces natively. Such native support might improve protocol endpoint efficiency as well as reduce semantic conflicts between global and local management systems.

As discussed above, support for SLAs with any type of quality-of-service constraints is virtually impossible unless the ability to provision services is supported throughout, since Grid services are shared across virtual organizations as well as with non-Grid users. Historically, local resource management systems have offered little in the way of provisioning. While tightly coupled, single-system image commercial environments have long offered infrastructure for workload management, these facilities have not be available on larger-scale, more loosely structured resources such as clusters. With the emergence of processor farms, utility computing, and “blades,” however, we are seeing the increased availability of local resource managers such as Oceano [8], UDC [9, 10], SRM [3, 4], and MUSE [43] that support more sophisticated provisioning interfaces for both computational and storage resources. In addition, trends in optical networking, specifically in the area of dynamic allocation of whole optical wavelengths (i.e., lambda switching) point toward a similar capability in networking resources. 

These advances will ensure that basic functionality needed to implement RSLA agreements will become more widely available. In addition, as Grid services take hold, we expect that Grid-based use will become the main driver for many types of local resource managers and that their implementation will migrate toward being Grid service–based. As this happens, the current boundaries between Grid resource management and local resource management will blur, with Grid-based interfaces being the primary (or sole) interface to a local resource manager. This blurring has the potential to improve the robustness and performance of Grid resource management, as OGSA-based interfaces can have access to internal state and management mechanisms. A second important consequence is that we obtain a completely uniform view of resource and service management, from the local site to the large-scale VOs that result from Grid technology.

17.6 Future Directions
The emergence of service-oriented architecture, increased interest in supporting a broad range of commercial applications, and natural evolution of functionality are collectively driving significant advances in resource management capabilities. While today’s Grid environment is primarily oriented towards best effort service, we expect the situation to become substantially different in the next several years, with provisioning becoming the rule rather than the exception. 

We possess a good understanding of the basic mechanisms required for a provisioned Grid. Significant challenges remain, however, in understanding how these mechanisms can be effectively combined to create seamless virtualized views of underlying resources and services. Some of these challenges lie strictly within the domain of resource management: for example, robust distributed algorithms for negotiating simultaneous SLAs across a set of resources, and techniques for renegotiating SLAs to meet changing demands. Other issues, such as expression of resource policy for purposes of discovery, and enhanced security models that support flexible delegation of resource management to intermediate brokers, are closely tied to advances in other aspects of Grid infrastructure. Hence, the key to progress in the coming years is to create an extensible and open infrastructure that can incorporate these advances as they become available. The SNAP approach presented here has these characteristics, and we anticipate that future resource management infrastructure will rely heavily on these principles.

Further Reading

Chapters I:9 and I:10 provide good reviews of the Condor resource management system and previous work in scheduling for high-performance computing.

The book Resource Management for Grid Computing [44] provides more details on many of the technologies and concepts discussed here.
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