

20

Chapter 4
Grid Concepts and Architecture

Ian Foster Carl Kesselman
In this introductory chapter, we lay the groundwork for the rest of the book by providing an overview of the purpose, evolution, architecture, and implementation of Grid systems—a picture that will then be filled out in subsequent chapters. This chapter thus serves as both an introduction to Grids and a roadmap for the material presented in the rest of the book.

·
·
·
·
·

1 The Emergence of the Grid

The term “the Grid” was coined in the mid 1990s to denote a (then) proposed distributed computing infrastructure for advanced science and engineering [35]. Much progress has since been made on the construction of such an infrastructure [9, 16, 49, 63] and on its extension and application to commercial computing problems. And while the term “Grid” has also been on occasion conflated to embrace everything from advanced networking and computing clusters to artificial intelligence, there has also emerged a good understanding of the problems that Grid technologies address, and at least a first set of applications for which they are suited.

Grid concepts and technologies were first developed to enable resource sharing within far-flung scientific collaborations [22, 23, 31, 35, 49, 63]. Applications in this context include distributed computing for computationally demanding data analyses (pooling of compute power and storage), collaborative visualization of large scientific datasets (pooling of expertise), and coupling of scientific instruments with remote computers and archives (increasing functionality as well as availability) [48]. The same concepts and technologies are now becoming important in commercial settings, initially for scientific and technical computing applications (where we can already point to success stories) and increasingly also for commercial distributed computing applications, including enterprise application integration and business to business (B2B) partner collaboration over the Internet. Just as the World Wide Web began as a technology for scientific collaboration and was adopted for e-business, we see a similar trajectory for Grid technologies.

What these different application domains have in common is a need for coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. The sharing that we are concerned with is not primarily file exchange but rather direct access to computers, software, data, and other resources, as is required by a range of collaborative problem-solving and resource-brokering strategies emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing occurs. A set of individuals and/or institutions defined by such sharing rules form what we call a virtual organization (VO), a concept that we believe is becoming fundamental to much of modern computing. VOs enable disparate groups of organizations and/or individuals to share resources in a controlled fashion, so that members may collaborate to achieve a shared goal.

The following are examples of VOs: the application service providers, storage service providers, cycle providers, and consultants engaged by a car manufacturer to perform scenario evaluation during planning for a new factory; members of an industrial consortium bidding on a new aircraft; a crisis management team and the databases and simulation systems that they use to plan a response to an emergency situation; and members of a large, international, multiyear high-energy physics collaboration. Each of these examples represents an approach to computing and problem solving based on collaboration in computation- and data-rich environments
.

As these examples show, VOs vary tremendously in their purpose, scope, size, duration, structure, community, and sociology. Nevertheless, careful study of underlying technology requirements leads us to identify a broad set of common concerns and requirements. In particular, we see a need for highly flexible sharing relationships, ranging from client-server to peer-to-peer; for sophisticated and precise levels of control over how shared resources are used, including fine-grained and multi-stakeholder access control, delegation, and application of local and global policies; for sharing of varied resources, ranging from programs, files, and data to computers, sensors, and networks; and for diverse usage modes, ranging from single user to multi-user and from performance sensitive to cost-sensitive and hence embracing issues of quality of service, scheduling, co-allocation, and accounting.

It is here that Grid technologies enter the picture. Grid technologies provide the means for dynamic VOs to be formed and operate by providing mechanisms that make it possible to share and coordinate the use of diverse resources—that is, the creation, from geographically and organizationally distributed components, of virtual computing systems that are sufficiently integrated to deliver desired qualities of service [38]. These technologies include security solutions that support management of credentials and policies when computations span multiple institutions; resource management protocols and services that support secure remote access to computing and data resources and the co-allocation of multiple resources; information query protocols and services that provide configuration and status information about resources, organizations, and services; and data management services that locate and transport datasets between storage systems and applications.

Grid technologies have emerged from some 10 years of research and development in both academia and industry, which furthermore continues today. As illustrated Figure X, we can distinguish four distinct phases in this evolution.

1. Starting in the early 1990s, work in “metacomputing” and related fields involved the development of custom solutions to Grid computing problems. The focus of these often heroic efforts was on making things work and exploring what was possible. Applications were built directly on Internet protocols with typically only limited functionality in terms of security, scalability, and robustness. Interoperability was not a significant concern.

2. From 1997 onwards, the open source Globus Toolkit (GT) emerged as the de facto standard for Grid computing. Focusing on usability and interoperability, GT defined and implemented protocols, APIs, and services used in hundreds of Grid deployments worldwide. By providing solutions to common problems such as authentication, resource discovery, and resource access, GT accelerated the construction of real Grid applications. And by defining and implementing standard protocols and services, GT pioneered the creation of interoperable Grid systems.

3. 2002 saw the emergence of the Open Grid Services Architecture (OGSA), a true community standard with multiple implementations (including, in particular, the OGSA-based GT 3.0, released in 2003). Building on and significantly extending GT concepts and technologies, OGSA firmly aligns Grid computing with broad industry initiatives in service-oriented architecture and Web services.

4. Building on OGSA’s service-oriented infrastructure, we expect the future to bring an expanding set of interoperable domain-specific services addressing requirements of various application groups and that likely deliver new approaches to collaborative work that rival the Web in scope and exceed it in capability.

Because of their focus on dynamic, cross-organizational sharing, Grid technologies complement rather than compete with existing distributed computing technologies. For example, enterprise distributed computing systems can use Grid technologies to achieve resource sharing across institutional boundaries; in the Application Service Provider (ASP)/Storage Service Provider (SSP) space, Grid technologies can be used to establish dynamic markets for computing and storage resources, hence overcoming the limitations of current static configurations. We discuss the relationship between Grids and these technologies in more detail below.

[image: image1.wmf]Increased functionality,

standardization

Time

Globus Toolkit

Open Grid

Services Arch

GGF: OGSI, …

(+ OASIS, W3C)

Multiple implementations

Defacto standards

GGF: GridFTP, GSI

Custom

solutions

X.509,

LDAP,

FTP, …

Web services

Higher

-

level

Services

2 Why Grids?

Consider the following four scenarios:

1. A company needing to reach a decision on the placement of a new factory invokes a sophisticated financial forecasting model from an ASP, providing it with access to appropriate proprietary historical data from a corporate database on storage systems operated by an SSP. During the decision-making meeting, what-if scenarios are run collaboratively and interactively, even though the division heads participating in the decision are located in different cities. The ASP itself contracts with an on -demand cycle provider for additional “oomph” during particularly demanding scenarios, requiring of course that cycles meet desired security and performance requirements.

2. An industrial consortium formed to develop a feasibility study for a next-generation supersonic aircraft undertakes a highly accurate multidisciplinary simulation of the entire aircraft. This simulation integrates proprietary software components developed by different participants, with each component operating on that participant’s computers and having access to appropriate design databases and other data made available to the consortium by its members.

3. A crisis management team responds to a chemical spill by using local weather and soil models to estimate the spread of the spill, determining the impact based on population location as well as geographic features such as rivers and water supplies, creating a short-term mitigation plan (perhaps based on chemical reaction models), and tasking emergency response personnel by planning and coordinating evacuation, notifying hospitals, and so forth.

4. Thousands of physicists at hundreds of laboratories and universities worldwide come together to design, create, operate, and analyze the products of a major detector at CERN, the European high energy physics laboratory. During the analysis phase, they pool their computing, storage, and networking resources to create a “Data Grid” capable of analyzing petabytes of data [24, 46, 55].

5. A large scale internet game consists of many virtual worlds, each with its own physical laws and consequences. Each world many have large number of inhabitants that interact with one another and move from one world to another. Each virtual world may expand in an on-demand basis to accommodate population growth, new simulation technology to model the physical laws of the world will need to be added, and simulations will need to be coupled to determine what happens “when worlds collide.”
6. A biologist wants to understand how changes in neuron synapse response induced by a drug impact the performance of specific brain functions. To answer this question, they need to perform low-level chemical simulations of the synapse and then map this information upwards in the structural hierarchy of the brain. This analysis requires mapping simulation across many different databases, each containing information about different levels of the biological system.

These six examples differ in many respects: the number and type of participants, the types of activities, the duration and scale of the interaction, and the resources being shared. But they also have much in common. In each case, a number of mutually distrustful participants with varying degrees of prior relationship (perhaps none at all) want to share resources in order to perform some task. Furthermore, sharing is about more than simply document exchange (as in “virtual enterprises” [18]): it can involve direct access to remote software, computers, data, sensors, and other resources. For example, members of a consortium may provide access to specialized software and data and/or pool their computational resources.

Such requirements frequently arise in scientific research. Big science projects such as partial accelerators, telescopes, and even computers are often multi-institutional due to budgetary issues, or more often the fact that all of the expertise required does not exist in a single location. Complex systems are often multidisciplinary in structure required a diverse and hence distributed skill set. Even small scientific teams often need to rely on resources and services such as computers, databases and software, that are outside of their immediate control. It is important to realize that constraints on issues such as security and policy are often as stringent in the scientific environment as they are in commercial settings.

Grid concepts are also critically important for commercial computing not primarily as a means of enhancing capability, but rather as a solution to new challenges relating to the construction of reliable, scalable, and secure distributed systems. In the past, computing typically was performed within highly integrated host-centric enterprise computing centers. The rise of the Internet and the emergence of e-business have, however, led to a growing awareness that an enterprise’s IT infrastructure is becoming increasingly decomposed, both externally, as it extends to encompass external networks, resources, and services—and internally, as enterprise IT facilities become more heterogeneous and distributed. The overall result is a decomposition of highly integrated internal IT infrastructure into a collection of heterogeneous and fragmented systems.

Enterprises must then reintegrate (with QoS) these distributed servers and data resources, addressing issues of navigation, distributed security, and content distribution inside the enterprise, much as on external networks. Enterprises are also now expanding the scope and scale of their enterprise resource planning projects as they try to provide better integration with customer relationship management, integrated supply chain, and existing core systems. The aggregate effect is that qualities of service traditionally associated with mainframe host-centric computing [57] are now essential to the effective conduct of e-business across distributed compute resources, inside as well as outside the enterprise. In many ways, this requirement is simply a restatement of the need for infrastructure that facilitates controlled sharing of resources across organizational boundaries: i.e. the Grid.

Ref to Irving chapter?
The preceding we can see that both science and industry can benefit from Grids. However, at the risk of being stating the case too broadly, we can make a more comprehensive statement. A primary purpose of information technology and our information technology infrastructure is to enable people to perform the various tasks that they face more efficiently or more effectively. To the extent that much of our daily activities are performed in collaboration with others, Grids are more then just a niche technology, but rather they are a direction that our infrastructure must evolve if it is to effectively support our social structures and they way work gets done in our society.

3 Technical Requirements of Virtual Organizations
Within scientific collaborations, internal enterprise IT infrastructures, SP-enhanced IT infrastructures, and multi-organizational Grids, computing is increasingly concerned with the creation, management, and application of dynamic ensembles of resources and services (and people)—what we call virtual organizations [38]. Depending on context, these ensembles can be small or large, short-lived or long-lived, single institutional or multi-institutional, and homogeneous or heterogeneous. Individual ensembles may be structured hierarchically from smaller systems and may overlap in membership.

Furthermore, regardless of these differences, developers of applications for VOs face common requirements as they seek to deliver QoS—whether measured in terms of common security semantics, distributed workflow and resource management, coordinated fail-over, problem determination services, or other metrics—across a collection of resources with heterogeneous and often dynamic characteristics.

The example in REF _Ref502124044 \h
 * MERGEFORMAT illustrates some of the complexities that we face in addressing these issues. Resource sharing is often conditional: each resource owner makes resources available, subject to constraints on when, where, and what can be done. For example, a participant in VO P of REF _Ref502124044 \h
 * MERGEFORMAT might allow VO partners to invoke their simulation service only for “simple” problems. Resource consumers may also place constraints on properties of the resources they are prepared to work with. For example, a participant in VO Q might accept only pooled computational resources certified as “secure.” The implementation of such constraints requires mechanisms for expressing policies, for establishing the identity of a consumer or resource (authentication), and for determining whether an operation is consistent with applicable sharing relationships (authorization).

Sharing relationships can vary dynamically over time, in terms of the resources involved, the nature of the access permitted, and the participants to whom access is permitted. And these relationships do not necessarily involve an explicitly named set of individuals, but rather may be defined implicitly by the policies that govern access to resources. For example, an organization might enable access by anyone who can demonstrate that they are a “customer” or a “student.”

The dynamic nature of sharing relationships means that we require mechanisms for discovering and characterizing the nature of the relationships that exist at a particular point in time. For example, a new participant joining VO Q must be able to determine what resources it is able to access, the “quality” of these resources, and the policies that govern access.

Sharing relationships are often not simply client-server, but peer to peer: providers can be consumers, and sharing relationships can exist among any subset of participants. Sharing relationships may be combined to coordinate use across many resources, each owned by different organizations. For example, in VO Q, a computation started on one pooled computational resource may subsequently access data or initiate subcomputations elsewhere. The ability to delegate authority in controlled ways becomes important in such situations, as do mechanisms for coordinating operations across multiple resources (e.g., coscheduling).

The same resource may be used in different ways, depending on the restrictions placed on the sharing and the goal of the sharing. For example, a computer may be used only to run a specific piece of software in one sharing arrangement, while it may provide generic compute cycles in another. Because of the lack of a priori knowledge about how a resource may be used, performance metrics, expectations, and limitations (i.e., quality of service) may be part of the conditions placed on resource sharing or usage.

4 The Need for Grid Technologies

The current status of computation is analogous in some respects to that of electricity around 1910. At that time, electric power generation was possible, and new devices were being devised that depended on electric power, but the need for each user to build and operate a new generator hindered use. The truly revolutionary development was not, in fact, electricity, but the electric power grid and the associated transmission and distribution technologies. Together, these developments provided reliable, low-cost access to a standardized service, with the result that power—which for most of human history has been accessible only in crude and not especially portable forms (human effort, horses, water power, steam engines, candles)—became universally accessible. In the language of computer science, electricity was virtualized: transformed into something that could be obtained on demand without concern for where and how it was produced. By thus allowing both individuals and industries to take for granted the availability of cheap, reliable power, the electric power grid made possible both new devices and the new industries that manufactured them.

By analogy, we adopt the term Grid for the information technology infrastructure that will reduce barriers to computing, data, programs, collaboration, and all other aspects of our information society. Just like the power grid virtualizes power generation, making it look as if every house and office had their own personal generator, the Grid virtualizes computers, storage systems, and sensors. With the Grid, it should be indistinguishable as to where an IT resource is, or who owns it. We should note that this concept is not in any way new. For example, in 1969 Len Kleinrock suggested presciently, if prematurely:

“We will probably see the spread of ‘computer utilities’, which, like present electric and telephone utilities, will service individual homes and offices across the country.” [link]

(Corbato)
4.1 What is the Grid?

These considerations motivate the following simple checklist, according to which a Grid is a system that:

1. coordinates distributed resources … (A Grid integrates and coordinates resources and users that live within different control domains—for example, the user’s desktop vs. central computing; different administrative units of the same company; or different companies; and addresses the issues of security, policy, payment, membership, and so forth that arise in these settings. Otherwise, we are dealing with a local management system.)

2. … using standard, open, general-purpose protocols and interfaces … (A Grid is built from multi-purpose protocols and interfaces that address such fundamental issues as authentication, authorization, resource discovery, and resource access. As we discuss further below, it is important that these protocols and interfaces be standard and open. Otherwise, we are dealing with an application-specific system.)

3. … to deliver nontrivial qualities of service. (A Grid allows its constituent resources to be used in a coordinated fashion to deliver various qualities of service, relating for example to response time, throughput, availability, and security, and/or co-allocation of multiple resource types to meet complex user demands, so that the utility of the combined system is significantly greater than that of the sum of its parts.)

4.2 One Grid or Many?

The second point of the checklist above is of particular importance.
Standard protocols (and interfaces and policies) allow us to establish resource-sharing arrangements dynamically with any interested party and thus to create something more than a plethora of balkanized, incompatible, non-interoperable distributed systems. As we discuss at greater length below, standards are being developed rapidly within the Global Grid Forum and other bodies within the context of the Open Grid Services Architecture. For an entity to be part of the Grid it must implement OGSA InterGrid protocols, just as to be part of the Internet an entity must speak IP (among other things). Both open source and commercial products can interoperate effectively in this heterogeneous, multi-vendor Grid world, thus providing the pervasive infrastructure that will enable successful Grid applications.
In the Internet, it is not uncommon that a specific set of hosts are disconnected from other hosts within an Intranet. However, it is important to note that this partitioning occurs as a result of policy and not because of implementation. In general all networked computers use TCP/IP and its associated protocols, and in spite of these policy restrictions, we still talk about a single Internet.
Similarly, we speak about the Grid as a single entity, even though we can be quite certain that different organizations and communities will use Grid protocols to create disconnected Grids for specific purposes. As with the Internet, it is issues of policy (e.g. security, cost, operational mode) that prevent a service or resource from being accessible, not implementation.

5 Grid Architecture Description
The establishment, management, and exploitation of dynamic, cross-organizational VO sharing relationships require new technology. We structure our discussion of this technology in terms of a Grid architecture that identifies fundamental system components, specifies the purpose and function of these components, and indicates how these components interact with one another. Our goal is not to provide a complete enumeration of all required components, but rather to identify requirements for general component classes. The result is an extensible, open architectural structure within which can be placed solutions to key VO requirements. Our architecture and the subsequent discussion organize components into layers, as shown in REF _Ref497278910 \h
 * MERGEFORMAT . Components within each layer share common characteristics but can build on capabilities and behaviors provided by any lower layer.

In specifying the various layers of the Grid architecture, we follow the principles of the “hourglass model” [1]. The narrow neck of the hourglass defines a small set of core abstractions and protocols (e.g., TCP and HTTP in the Internet), onto which many different high-level behaviors can be mapped (the top of the hourglass), and which themselves can be mapped onto many different underlying technologies (the base of the hourglass). By definition, the number of protocols defined at the neck must be small. In our architecture, the neck of the hourglass consists of Resource and Connectivity protocols, which facilitate the sharing of individual resources. Protocols at these layers are designed so that they can be implemented on top of a diverse range of resource types, defined at the Fabric layer, and can in turn be used to construct a wide range of global services and application-specific behaviors at the Collective layer—so called because they involve the coordinated (“collective”) use of multiple resources.

Our architectural description is high level and places few constraints on design and implementation. To make this abstract discussion more concrete, we also present in Section 6.1 below the components defined within the Globus Toolkit [33].

.

5.1 Fabric: Interfaces to Local Control
The Grid Fabric layer provides the resources to which shared access is mediated by Grid protocols: for example, computational resources, storage systems, catalogs, network resources, and sensors. A “resource” may be a logical entity, such as a distributed file system, computer cluster, or distributed computer pool; in such cases, a resource implementation may involve internal protocols (e.g., the NFS storage access protocol or a cluster resource management system’s process management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific operations that occur on specific resources (whether physical or logical) as a result of sharing operations at higher levels. There is thus a tight and subtle interdependence between the functions implemented at the Fabric level, on the one hand, and the sharing operations supported, on the other. Richer Fabric functionality enables more sophisticated sharing operations; at the same time, if we place few demands on Fabric elements, then deployment of Grid infrastructure is simplified. For example, resource-level support for advance reservations makes it possible for higher-level services to aggregate (coschedule) resources in interesting ways that would otherwise be impossible to achieve. However, as in practice few resources support advance reservation “out of the box,” a requirement for advance reservation increases the cost of incorporating new resources into a Grid.

Experience suggests that at a minimum, resources should implement enquiry mechanisms that permit discovery of their structure, state, and capabilities (e.g., whether they support advance reservation) on the one hand, and resource management mechanisms that provide some control of delivered quality of service, on the other. The following brief and partial list provides a resource-specific characterization of capabilities.

· Computational resources: Mechanisms are required for starting programs and for monitoring and controlling the execution of the resulting processes. Management mechanisms that allow control over the resources allocated to processes are useful, as are advance reservation mechanisms. Enquiry functions are needed for determining hardware and software characteristics as well as relevant state information such as current load and queue state in the case of scheduler-managed resources.

· Storage resources: Mechanisms are required for putting and getting files. Third-party and high-performance (e.g., striped) transfers are useful [65]. So are mechanisms for reading and writing subsets of a file and/or executing remote data selection or reduction functions [14]. Management mechanisms that allow control over the resources allocated to data transfers (space, disk bandwidth, network bandwidth, CPU) are useful, as are advance reservation mechanisms. Enquiry functions are needed for determining hardware and software characteristics as well as relevant load information such as available space and bandwidth utilization.

· Network resources: Management mechanisms that provide control over the resources allocated to network transfers (e.g., prioritization, reservation) can be useful. Enquiry functions should be provided to determine network characteristics and load.

· Code repositories: This specialized form of storage resource requires mechanisms for managing versioned source and object code: for example, a control system such as CVS.
· Catalogs: This specialized form of storage resource requires mechanisms for implementing catalog query and update operations: for example, a relational database [8].
5.2 Connectivity: Communicating Easily and Securely

The Connectivity layer defines core communication and authentication protocols required for Grid-specific network transactions. Communication protocols enable the exchange of data between Fabric layer resources. Authentication protocols build on communication services to provide cryptographically secure mechanisms for verifying the identity of users and resources.

Communication requirements include transport, routing, and naming. While alternatives certainly exist, we assume here that these protocols are drawn from the TCP/IP protocol stack: specifically, the Internet (IP and ICMP), transport (TCP, UDP), and application (DNS, OSPF, RSVP, etc.) layers of the Internet layered protocol architecture [7]. This is not to say that in the future, Grid communications will not demand new protocols that take into account particular types of network dynamics.

With respect to security aspects of the Connectivity layer, we observe that the complexity of the security problem makes it important that any solutions be based on existing standards whenever possible. As with communication, many of the security standards developed within the context of the Internet protocol suite are applicable.

Authentication solutions for VO environments should have the following characteristics [17]:

· Single sign on. Users must be able to “log on” (authenticate) just once and then have access to multiple Grid resources defined in the Fabric layer, without further user intervention.

· Delegation [37, 43, 47]. A user must be able to endow a program with the ability to run on that user’s behalf, so that the program is able to access the resources on which the user is authorized. The program should (optionally) also be able to conditionally delegate a subset of its rights to another program (sometimes referred to as restricted delegation).

· Integration with various local security solutions: Each site or resource provider may employ any of a variety of local security solutions, including Kerberos and Unix security. Grid security solutions must be able to interoperate with these various local solutions. They cannot, realistically, require wholesale replacement of local security solutions but rather must allow mapping into the local environment.

· User-based trust relationships: In order for a user to use resources from multiple providers together, the security system must not require each of the resource providers to cooperate or interact with each other in configuring the security environment. For example, if a user has the right to use sites A and B, the user should be able to use sites A and B together without requiring that A’s and B’s security administrators interact.

Grid security solutions should also provide flexible support for communication protection (e.g., control over the degree of protection, independent data unit protection for unreliable protocols, support for reliable transport protocols other than TCP) and enable stakeholder control over authorization decisions, including the ability to restrict the delegation of rights in various ways.
5.3 Resource: Sharing Single Resources

The Resource layer builds on Connectivity layer communication and authentication protocols to define protocols (and APIs and SDKs) for the secure negotiation, initiation, monitoring, control, accounting, and payment of sharing operations on individual resources. Resource layer implementations of these protocols call Fabric layer functions to access and control local resources. Resource layer protocols are concerned entirely with individual resources and hence ignore issues of global state and atomic actions across distributed collections; such issues are the concern of the Collective layer discussed next.

Two primary classes of Resource layer protocols can be distinguished:

· Information protocols are used to obtain information about the structure and state of a resource, for example, its configuration, current load, and usage policy (e.g., cost).

· Management protocols are used to negotiate access to a shared resource, specifying, for example, resource requirements (including advanced reservation and quality of service) and the operation(s) to be performed, such as process creation, or data access. Since management protocols are responsible for instantiating sharing relationships, they must serve as a “policy application point,” ensuring that the requested protocol operations are consistent with the policy under which the resource is to be shared. Issues that must be considered include accounting and payment. A protocol may also support monitoring the status of an operation and controlling (for example, terminating) the operation.

While many such protocols can be imagined, the Resource (and Connectivity) protocol layers form the neck of our hourglass model, and as such should be limited to a small and focused set. These protocols must be chosen so as to capture the fundamental mechanisms of sharing across many different resource types (for example, different local resource management systems), while not overly constraining the types or performance of higher-level protocols that may be developed.

The list of desirable Fabric functionality provided in Section 5.1 summarizes the major features required in Resource layer protocols. To this list we add the need for “exactly once” semantics for many operations, with reliable error reporting indicating when operations fail.
5.4 Collective: Coordinating Multiple Resources

While the Resource layer is focused on interactions with a single resource, the next layer in the architecture contains protocols and services (and APIs and SDKs) that are not associated with any one specific resource but rather are global in nature and capture interactions across collections of resources. For this reason, we refer to the next layer of the architecture as the Collective layer. Because Collective components build on the narrow Resource and Connectivity layer “neck” in the protocol hourglass, they can implement a wide variety of sharing behaviors without placing new requirements on the resources being shared. For example:

· Directory services allow VO participants to discover the existence and/or properties of VO resources. A directory service may allow its users to query for resources by name and/or by attributes such as type, availability, or load [26].
· Co-allocation, scheduling, and brokering services allow VO participants to request the allocation of one or more resources for a specific purpose and the scheduling of tasks on the appropriate resources. Examples include AppLeS [11, 13], Condor-G [40], Nimrod-G [3], and the DRM broker [9].

· Monitoring and diagnostics services support the monitoring of VO resources for failure, adversarial attack (“intrusion detection”), overload, and so forth.

· Data replication services support the management of VO storage (and perhaps also network and computing) resources to maximize data access performance with respect to metrics such as response time, reliability, and cost [5, 46].

· Grid-enabled programming systems enable familiar programming models to be used in Grid environments, using various Grid services to address resource discovery, security, resource allocation, and other concerns. Examples include Grid-enabled implementations of the Message Passing Interface [32, 41] and manager-worker frameworks [21, 44].

· Workload management systems and collaboration frameworks—also known as problem solving environments (“PSEs”)—provide for the description, use, and management of multi-step, asynchronous, multi-component workflows

· Software discovery services discover and select the best software implementation and execution platform based on the parameters of the problem being solved [20]. Examples include NetSolve [19] and Ninf [56].

· Community authorization servers enforce community policies governing resource access, generating capabilities that community members can use to access community resources [60]. These servers provide a global policy enforcement service by building on resource information, and resource management protocols (in the Resource layer) and security protocols in the Connectivity layer. Akenti [64] addresses some of these issues.

· Community accounting and payment services gather resource usage information for the purpose of accounting, payment, and/or limiting of resource usage by community members.

· Collaboratory services support the coordinated exchange of information within potentially large user communities, whether synchronously or asynchronously. Examples are CAVERNsoft [29, 50], Access Grid [25], and commodity groupware systems.
These examples illustrate the wide variety of Collective layer protocols and services that are encountered in practice. Notice that while Resource layer protocols must be general in nature and are widely deployed, Collective layer protocols span the spectrum from general purpose to highly application or domain specific, with the latter existing perhaps only within specific VOs.

Collective functions can be implemented as standalone services or as libraries designed to be linked with applications. In both cases, their implementation can build on Resource layer (or other Collective layer) protocols and APIs. For example, REF _Ref501186194 \h
 * MERGEFORMAT shows a Collective co-allocation API and SDK (the middle tier) that uses a Resource layer management protocol to manipulate underlying resources. Above this, we define a co-reservation service protocol and implement a co-reservation service that speaks this protocol, calling the co-allocation API to implement co-allocation operations and perhaps providing additional functionality, such as authorization, fault tolerance, and logging. An application might then use the co-reservation service protocol to request end-to-end network reservations.

Collective components may be tailored to the requirements of a specific user community, VO, or application domain, for example, an SDK that implements an application-specific coherency protocol, or a co-reservation service for a specific set of network resources. Other Collective components can be more general-purpose, for example, a replication service that manages an international collection of storage systems for multiple communities, or a directory service designed to enable the discovery of VOs. In general, the larger the target user community, the more important it is that a Collective component’s protocol(s) and API(s) be standards based.

5.5 Applications

The final layer in our Grid architecture comprises the user applications that operate within a VO environment. REF _Ref503536079 \h
 * MERGEFORMAT illustrates an application programmer’s view of Grid architecture. Applications are constructed in terms of, and by calling upon, services defined at any layer. At each layer, we have well-defined protocols that provide access to some useful service: resource management, data access, resource discovery, and so forth. At each layer, APIs may also be defined whose implementation (ideally provided by third-party SDKs) exchange protocol messages with the appropriate service(s) to perform desired actions.

We emphasize that what we label “applications” and show in a single layer in REF _Ref503536079 \h
 * MERGEFORMAT may in practice call upon sophisticated frameworks and libraries (e.g., the Common Component Architecture [6], SciRun [20], CORBA [42, 53], Cactus [10], workflow systems [15]) and feature much internal structure that would, if captured in our figure, expand it out to many times its current size. These frameworks may themselves define protocols, services, and/or APIs: for example, web service orchestration frameworks.
6 Implementing Grid Architecture

As discussed in the introduction, the technologies used to implement Grid architecture concepts have evolved over time, from a de facto standard in the form of the Globus Toolkit version 2 (GT2) to the more formal standard Open Grid Services Architecture (OGSA), implemented by the Globus Toolkit version 3 (GT3) as well as other open source and commercial systems.

In this section we first briefly review the principal features of GT2 and explain both how these features address the Grid technology requirements introduced above and how they fit into our Grid architecture. We then introduce OGSA. We start our discussion with some general remarks concerning the utility of a service-oriented Grid architecture, the importance of being able to virtualize Grid services, and essential service characteristics. Then, we introduce the specific aspects that we standardize in our definition of what we call a Grid service. Technical details on OGSA are provided in Chapter X and subsequent chapters.
6.1 Globus Toolkit v2

We summarize key features of the Globus Toolkit version 2 (GT2) [34, 38], a community-based, open-architecture, open-source set of services and software libraries that support Grids and Grid applications. GT addresses issues of security, information discovery, resource management, data management, communication, fault detection, and portability. GT is the foundation for hundreds of major Grid projects worldwide in both academia and industry, including such major efforts as the NSF’s National Technology Grid [63], NASA’s Information Power Grid [49], DOE’s DISCOM [9], GriPhyN (www.griphyn.org), NEESgrid (www.neesgrid.org), Particle Physics Data Grid (www.ppdg.net), and the European Data Grid (www.eu-datagrid.org).

 REF _Ref534074393 \h
 * MERGEFORMAT illustrates the three principal GT2 resource-layer protocols, GRAM, MDS-2, and GridFTP, and the GSI connectivity layer protocol. The Grid Resource Allocation and Management (GRAM) protocol and its “gatekeeper” service provide for secure, reliable, service creation and management [27]; the Monitoring and Discovery Service (MDS-2) [26] provides for information discovery through soft state registration [61, 68], data modeling, and a local registry (“GRAM reporter” [27]); GridFTP [4] provides for high-performance, reliable data movement; and the Grid Security Infrastructure (GSI) supports single sign on, delegation, and credential mapping.

The GRAM protocol provides for the reliable, secure remote creation and management of arbitrary computations: what we term in this chapter transient service instances. GSI mechanisms are used for authentication, authorization, and credential delegation [43] to remote computations. A two-phase commit protocol is used for reliable invocation, based on techniques used in the Condor system [52]. Service creation is handled by a small, trusted “gatekeeper” process, while a GRAM reporter monitors and publishes information about the identity and state of local computations (registry).

MDS-2 [26] provides a uniform framework for discovering and accessing system configuration and status information such as compute server configuration, network status, or the locations of replicated datasets (what we term a discovery interface here). MDS-2 uses a soft-state protocol, the Grid Notification Protocol [45], for lifetime management of published information.

An extended version of the File Transfer Protocol (FTP), GridFTP, is used as a management protocol for data access; extensions include use of Connectivity layer security protocols, partial file access, and management of parallelism for high-speed transfers [5]. FTP is adopted as a base data transfer protocol because of its support for third-party transfers and because its separate control and data channels facilitate the implementation of sophisticated servers.

GT2’s connectivity layer protocols comprise Internet protocols and the public-key-based Grid Security Infrastructure (GSI) protocol [37], which provides single sign-on authentication, communication protection, and some initial support for restricted delegation. In brief, single sign-on allows a user to authenticate once and thus create a proxy credential that a program can use to authenticate with any remote service on the user’s behalf. Delegation allows for the creation and communication to a remote service of delegated proxy credentials that the remote service can use to act on the user’s behalf, perhaps with various restrictions; this capability is important for nested operations. (Similar mechanisms can be implemented within the context of other security technologies, such as Kerberos [62], although with potentially different characteristics.)

GSI uses X.509 certificates, a widely employed standard for PKI certificates, as the basis for user authentication. GSI defines an X.509 proxy certificate [66] to leverage X.509 for support of single sign-on and delegation. (This proxy certificate is similar in concept to a Kerberos forwardable ticket but is based purely on public key cryptographic techniques.) GSI typically uses the Transport Layer Security (TLS) protocol (the follow-on to SSL) for authentication, although other public key-based authentication protocols could be used with X.509 proxy certificates. A remote delegation protocol of X.509 proxy certificates is layered on top of TLS. An Internet Engineering Task Force draft defines the X.509 Proxy Certificate extensions [66]. Global Grid Forum drafts define the delegation protocol for remote creation of an X.509 Proxy Certificate [66] and GSS-API extensions that allow this API to be used effectively for Grid programming.

Rich support for restricted delegation has been demonstrated in prototypes and is a critical part of the proposed X.509 Proxy Certificate Profile [66]. Restricted delegation allows one entity to delegate just a subset of its total privileges to another entity. Such restriction is important to reduce the adverse effects of either intentional or accidental misuse of the delegated credential.
GT2 collective layer services include replica catalog and replica management services used to support the management of dataset replicas in a Grid environment [5]; an online credential repository service (“MyProxy”), which provides secure storage for proxy credentials [58]; and the DUROC co-allocation library provides an SDK and API for resource co-allocation [28].

GT2 has been designed to use (primarily) existing fabric components, including vendor-supplied protocols and interfaces. However, if a vendor does not provide the necessary fabric-level behavior, the Globus Toolkit includes the missing functionality. For example, enquiry software is provided for discovering structure and state information for various common resource types, such as computers (e.g., OS version, hardware configuration, load [30], scheduler queue status), storage systems (e.g., available space), and networks (e.g., current and predicted future load [54, 67]), and for packaging this information in a form that facilitates the implementation of higher-level protocols, specifically at the Resource layer. Resource management, on the other hand, is generally assumed to be the domain of local resource managers. One exception is the General-purpose Architecture for Reservation and Allocation (GARA) [39], which provides a “slot manager” that can be used to implement advance reservation for resources that do not support this capability. Others have developed enhancements to the Portable Batch System (PBS) [59] and Condor [51, 52] that support advance reservation capabilities.

GT2 has proven to be effective and influential not only because it provides technical solutions to challenging problems encountered when building Grids, such as authentication and secure resource access, but also because it does so by defining standard protocols that enable interoperability. Both advantages have proven important in practice, with many developers writing tools and applications that assume GSI security, GRAM resource access, GridFTP data access, etc., and large numbers of sites deploying GT2 services in support of these tools and applications.

6.2 Open Grid Services Architecture

By 2001, the rapidly increasing uptake of Grid technologies and the emergence of the Global Grid Forum as a standards body made it timely and feasible to undertake a standardization (and, in the process, a significant redesign) of the core GT protocols. The following three design goals drove this activity, which ultimately produced the Open Grid Services Architecture (OGSA).

1. Factoring of component behaviors. GT2 protocols such as GRAM combined several functions (e.g., reliable messaging, notification) that ended up being either reimplemented or unavailable to other functions such as GridFTP or application programs. Thus, a goal in OGSA was to identify essential Grid functions and then to express them in a way that would allow their use in many different settings.

2. Service orientation. A service is a network-enabled entity with a well-defined interface that provides some capability. While GT2 defined service interfaces to specific resource types (e.g., GRAM for compute resources), service orientation was not consistently applied, and it did nothing to facilitate the definition of arbitrary services or service composition. A goal in OGSA was to enable a uniform treatment of all network entities so that, for example, collective layer behaviors could be expressed as virtualizations of underlying resource layer protocols.

3. Align with Web services: GT2 builds on a mix of low-level protocols and did not provide any standard interface definition language. With the emergence of Web services as a viable Internet-based distributed computing platform, a design goal for OGSA was to leverage the Web services standards (e.g., the Web Services Definition language, or WSDL), and application platforms, and development tools.

The result of this design activity is a service-oriented framework defined by a set of standards that are being developed within the Global Grid Forum (GGF). The most fundamental concept in OGSA is that of the Grid service: a Web service that implements standard interfaces, behaviors, and conventions that collectively allow for services that can be transient (i.e., can be created and destroyed) and stateful (i.e., we can distinguish one service instance from another). The Open Grid Services Infrastructure (OGSI) is the fundamental OGSA specification, defining the interfaces, behaviors, and conventions that define how Grid services can be created, destroyed, named, monitored, and so forth.
Building on this OGSI foundation, what is termed the
OGSA Platform defines a framework for building a functional Grid environment, identifying required functions, the rendering of these functions as OGSI-compliant interfaces, and the relationships among the resulting service definitions. For example, services are required for discovery, data management, resource provisioning, and service virtualization. Other services are required for security, policy, accounting, and billing. Service orchestration services provide for the coordination of service workflow. And so on. From an organizational perspective, these OGSA services can be viewed within the context of the layered architecture of REF _Ref501186194 \h
 * MERGEFORMAT . At the connectivity layer, we have services that deal with issues of authentication, credential mapping, and policy verification, while at the resource level we can identify services for data access, job submission, bandwidth allocation, and so on. Interestingly, in a virtualized environment, we find that interfaces defined at the resource layer can reappear the collective layer as interfaces to virtualized services that from their observable behavior are indistinguishable from resource layer services. Our Grid architecture is thus recursive, with services being composed of services.
Block diagram?

OGSA has been broadly adopted as a unifying framework for Grid computing with backing both from all major scientific and academic Grid communities as well as significant acceptance in the commercial section, from vendors to end users.

A more detailed discussion of OGSA and OGSI can be found in Chapter XX. In addition, many of the applications and services discussed in other chapters are built on OGSA. The reader can consult these chapters for further discussion of specific functionalities and services.
6.3 OGSA Implementations

An advantage of a standards-based, protocol-oriented approach to infrastructure is that it is possible to have multiple interoperable implementations. Indeed, this is already happening with OGSI and OGSA. In this section, we provide an overview of some of the existing OGSA implementations.
The Globus Toolkit version 3 (GT3), is an open source reference implementation of the OGSI and basic OGSA services. As released, it runs on top of an open source Web services platform (Appache Axis) and provides all of the functionality of GT2, but refactored into an OGSA framework. In addition, GT3 has been rehosted in commercial application platforms, e.g. IBM’s Websphere product.

Entropia, United Devices, UniCore,
Sun …

7 Grid Architecture in Practice

We use two examples to illustrate how Grid architecture functions in practice. Table 1 shows the services that might be used to implement the multidisciplinary simulation and cycle sharing (ray tracing) applications introduced in REF _Ref502124044 \h
 * MERGEFORMAT . The basic Fabric elements are the same in each case: computers, storage systems, and networks. Furthermore, we assume that each resource speaks standard OGSA-based Connectivity protocols for communication and security, and Resource protocols for enquiry, allocation, and management. Above this, each application uses a mix of generic and more application-specific Collective services.

In the case of the ray tracing application, we assume that this is based on a high-throughput computing system [40, 52]. In order to manage the execution of large numbers of largely independent tasks in a VO environment, this system must keep track of the set of active and pending tasks, locate appropriate resources for each task, stage executables to those resources, detect and respond to various types of failure, and so forth. An OGSA-based implementation will use both domain-specific Collective services (dynamic checkpoint, task pool management, failover) and more generic Collective services (brokering, data replication for executables and common input files), as well as standard Resource and Connectivity protocols. Condor-G is a example of a high-throughput computing system that uses Grid protocols in this way [40].
Table 1: The Grid services used to construct the two example applications of Figure 1.

	
	Multidisciplinary Simulation
	Ray Tracing

	Collective (application-specific)
	Solver coupler, distributed data archiver
	Checkpointing, job management, failover, staging

	Collective (generic)
	Resource discovery, resource brokering, system monitoring, community authorization, certificate revocation

	Resource
	Access to computation; access to data; access to information about system structure, state, performance.

	Connectivity
	Communication (IP), service discovery (DNS), authentication, authorization, delegation

	Fabric
	Storage systems, computers, networks, code repositories, catalogs

In the case of the multidisciplinary simulation application, the problems are quite different at the highest level. Some application framework (e.g., a Web services orchestration language) may be used to construct the application from its various components. We also require mechanisms for discovering appropriate computational resources, for reserving time on those resources, for staging executables (perhaps), for providing access to remote storage, and so forth. Again, a number of domain-specific Collective services will be used (e.g., solver coupler, distributed data archiver), but the basic underpinnings are the same as in the first example.

Recast in OGSA, with a figure or two perhaps?
8 Future Directions

At the time of writing, OGSA stands poised to become the dominant infrastructure for Grids, with significant consolidation around both the general approach and specific specifications such as OGSI. The next major hurdle is to continue refinement of the OGSA model and specifically to define and develop the additional building block services (e.g., end-to-end provisioning, global service discovery, service virtualization) that will raise the level of abstraction for all Grid applications. If we take the Internet as an analogy, then OGSI provides us with TCP/IP; now we need to create the domain name service, routing protocols, and ultimately HTTP analogs. The chapters that follow include discussions of specific capabilities and services that, collectively, define a good part of what we expect to be the research, development, and product agendas for the next five years.
The development of new application paradigms is a major focus of current work and can be expected to expand in the future. Predictions by industry analysts have focused primarily on Intranet deployments with a particular emphasis on increasing resource utilization. Yet this perspective only scratches the service of what the Grid is capable of: the flexible formation of dynamic collaborations. This potential can have a profound effect on organizational structure and even business models. However, to achieve this potential, we need to see advances first in the way applications are structured, and we need to see these advances reflected in the definition of new OGSA services. For example, dynamic federation requires not only a service for dynamically evaluating and enforcing trust relationships, but also a dynamic provisioning and payment model to produce a federated (or virtualized) service set that maps to the requirements of the collaboration.
In closing we mention one other
Grid architecture that we find particularly promising, namely the integration of emerging Semantic Web technologies with OGSA. Grid environments offer an embarrassment of riches in terms of resources and services, with many alternatives existing for every decision. Exploiting more flexible and deeper representations of service behavior, and using this information to reason about application composition, has the potential of producing far more robust, scalable and manageable systems. Conversely, the authors believe that the Grid agenda will have a significant impact on the ultimate structure and scalability of the Semantic Web, for the introduction of distributed and cooperating inference engines starts to look a lot like a Grid.
9 Summary

We have introduced the principal topics to be discussed at greater length in the chapters that follow. We provided a concise statement of the “Grid problem,” which we define as controlled and coordinated resource sharing and resource use in dynamic, scalable virtual organizations. We have also both motivated and defined a Grid architecture, in which are identified the principal functions required to enable sharing within VOs and the key relationships that exist among these different functions. Finally, we have introduced the open source Globus Toolkit that has enabled the rapid adoption of Grid technologies and the Open Grid Services Architecture specifications that are now supporting the continued expansion of Grid technologies and applications.
FURTHER READING

For more information on the topics covered in this chapter, see www.mkp.com/grids and also the following references.
· Much of the material in Chapter I:2 is not repeated here, and remains highly relevant.
· The 2003 report of the National Science Foundation’s Blue Ribbon Panel on Cyberinfrastructure summarizes the scientific motivation for Grids [2].
· A recent book edited by Berman, Fox, and Hey provides good coverage of research in Grid computing [12]. See also the proceedings of the annual IEEE Symposium on High Performance Distributed Computing (HPDC).
· Two articles on the anatomy [38] and physiology [36] of the Grid provide further background on Grid architecture and technologies.
· A good sampling of analyst and press coverage of Grid computing can be found at XXX.

·

·
·
·

·

Bibliography
1.
Realizing the Information Future: The Internet and Beyond. National Academy Press, 1994.

2.
Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation Blue Ribbon Advisory Panel on Cyberinfrastructure, NSF, 2003. www.communitytechnology.org/nsf_ci_report.

3.
Abramson, D., Sosic, R., Giddy, J. and Hall, B., Nimrod: A Tool for Performing Parameterised Simulations Using Distributed Workstations. Proc. 4th IEEE Symp. on High Performance Distributed Computing, 1995.

4.
Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D. and Tuecke, S. Data Management and Transfer in High-Performance Computational Grid Environments. Parallel Computing, 28 (5). 749-771. 2002.

5.
Allcock, W., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D. and Tuecke, S., Secure, Efficient Data Transport and Replica Management for High-Performance Data-Intensive Computing. Mass Storage Conference, 2001.

6.
Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L. and Parker, S. Toward a Common Component Architecture for High Performance Scientific Computing. Proc. 8th IEEE Symp. on High Performance Distributed Computing, 1999.

7.
Baker, F. Requirements for IP Version 4 Routers, IETF, 1995. http://www.ietf.org/rfc/rfc1812.txt.

8.
Baru, C., Moore, R., Rajasekar, A. and Wan, M., The SDSC Storage Resource Broker. Proc. CASCON'98 Conference, 1998.

9.
Beiriger, J., Johnson, W., Bivens, H., Humphreys, S. and Rhea, R., Constructing the ASCI Grid. Proc. 9th IEEE Symposium on High Performance Distributed Computing, 2000, IEEE Press.

10.
Benger, W., Foster, I., Novotny, J., Seidel, E., Shalf, J., Smith, W. and Walker, P., Numerical Relativity in a Distributed Environment. Proc. 9th SIAM Conference on Parallel Processing for Scientific Computing, 1999.

11.
Berman, F. High-Performance Schedulers. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 279-309.

12.
Berman, F., Fox, G. and Hey, T. (eds.). Grid Computing: Making the Global Infrastructure a Reality. John Wiley & Sons, 2003.

13.
Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao, G. Application-Level Scheduling on Distributed Heterogeneous Networks. Proc. Supercomputing '96, 1996.

14.
Beynon, M., Ferreira, R., Kurc, T., Sussman, A. and Saltz, J., DataCutter: Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems. Proc. 8th Goddard Conference on Mass Storage Systems and Technologies/17th IEEE Symposium on Mass Storage Systems, 2000, 119-133.

15.
Bolcer, G.A. and Kaiser, G.E. SWAP: Leveraging the Web To Manage Workflow. IEEE Internet Computing, 3 (1). 85-88. 1999.

16.
Brunett, S., Czajkowski, K., Fitzgerald, S., Foster, I., Johnson, A., Kesselman, C., Leigh, J. and Tuecke, S., Application Experiences with the Globus Toolkit. Proc. 7th IEEE Symp. on High Performance Distributed Computing, 1998, IEEE Press, 81-89.

17.
Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and Welch, V. A National-Scale Authentication Infrastructure. IEEE Computer, 33 (12). 60-66. 2000.

18.
Camarinha-Matos, L.M., Afsarmanesh, H., Garita, C. and Lima, C. Towards an Architecture for Virtual Enterprises. J. Intelligent Manufacturing, 9 (2). 189-199. 1998.

19.
Casanova, H. and Dongarra, J. NetSolve: A Network Server for Solving Computational Science Problems. International Journal of Supercomputer Applications and High Performance Computing, 11 (3). 212-223. 1997.

20.
Casanova, H., Dongarra, J., Johnson, C. and Miller, M. Application-Specific Tools. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 159-180.

21.
Casanova, H., Obertelli, G., Berman, F. and Wolski, R., The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. Proc. SC'2000, 2000.

22.
Catlett, C. In Search of Gigabit Applications. IEEE Communications Magazine (April). 42-51. 1992.

23.
Catlett, C. and Smarr, L. Metacomputing. Communications of the ACM, 35 (6). 44--52. 1992.

24.
Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Data Sets. J. Network and Computer Applications (23). 187-200. 2001.

25.
Childers, L., Disz, T., Olson, R., Papka, M.E., Stevens, R. and Udeshi, T. Access Grid: Immersive Group-to-Group Collaborative Visualization. Proc. 4th International Immersive Projection Technology Workshop, 2000.

26.
Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid Information Services for Distributed Resource Sharing. 10th IEEE International Symposium on High Performance Distributed Computing, 2001, IEEE Press, 181-184.

27.
Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and Tuecke, S. A Resource Management Architecture for Metacomputing Systems. 4th Workshop on Job Scheduling Strategies for Parallel Processing, Springer-Verlag, 1998, 62-82.

28.
Czajkowski, K., Foster, I. and Kesselman, C., Co-allocation Services for Computational Grids. Proc. 8th IEEE Symposium on High Performance Distributed Computing, 1999, IEEE Press.

29.
DeFanti, T. and Stevens, R. Teleimmersion. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 131-155.

30.
Dinda, P. and O'Hallaron, D., An Evaluation of Linear Models for Host Load Prediction. Proc. 8th IEEE Symposium on High-Performance Distributed Computing, 1999, IEEE Press.

31.
Foster, I. The Grid: A New Infrastructure for 21st Century Science. Physics Today, 55 (2). 42-47. 2002.

32.
Foster, I. and Karonis, N. A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. Proc. SC'98, 1998.

33.
Foster, I. and Kesselman, C. The Globus Project: A Status Report. Proc. Heterogeneous Computing Workshop, IEEE Press, 1998, 4-18.

34.
Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 259-278.

35.
Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.

36.
Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Globus Project, 2002. www.globus.org/research/papers/ogsa.pdf.

37.
Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A Security Architecture for Computational Grids. ACM Conference on Computers and Security, 1998, 83-91.

38.
Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications, 15 (3). 200-222. 2001.

39.
Foster, I., Roy, A. and Sander, V., A Quality of Service Architecture that Combines Resource Reservation and Application Adaptation. Proc. 8th International Workshop on Quality of Service, 2000.

40.
Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S., Condor-G: A Computation Management Agent for Multi-Institutional Grids. 10th International Symposium on High Performance Distributed Computing, 2001, IEEE Press, 55-66.

41.
Gabriel, E., Resch, M., Beisel, T. and Keller, R. Distributed Computing in a Heterogenous Computing Environment. Proc. EuroPVM/MPI'98, 1998.

42.
Gannon, D. and Grimshaw, A. Object-Based Approaches. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 205-236.

43.
Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a Distributed System. Proc. 1990 IEEE Symposium on Research in Security and Privacy, 1990, IEEE Press, 20-30.

44.
Goux, J.-P., Kulkarni, S., Linderoth, J. and Yoder, M., An Enabling Framework for Master-Worker Applications on the Computational Grid. Proc. 9th IEEE Symp. on High Performance Distributed Computing, 2000, IEEE Press.

45.
Gullapalli, S., Czajkowski, K., Kesselman, C. and Fitzgerald, S. The Grid Notification Framework, Global Grid Forum, 2001.

46.
Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. and Stockinger, K., Data Management in an International Data Grid Project. International Workshop on Grid Computing, 2000, Springer Verlag Press.

47.
Howell, J. and Kotz, D., End-to-end authorization. Proc. 2000 Symposium on Operating Systems Design and Implementation, 2000, USENIX Association.

48.
Johnston, W. Realtime Widely Distributed Instrumentation Systems. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 75-103.

49.
Johnston, W.E., Gannon, D. and Nitzberg, B., Grids as Production Computing Environments: The Engineering Aspects of NASA's Information Power Grid. 8th IEEE Symposium on High Performance Distributed Computing, 1999, IEEE Press.

50.
Leigh, J., Johnson, A. and DeFanti, T.A. CAVERN: A Distributed Architecture for Supporting Scalable Persistence and Interoperability in Collaborative Virtual Environments. Virtual Reality: Research, Development and Applications, 2 (2). 217-237. 1997.

51.
Litzkow, M., Livny, M. and Mutka, M. Condor - A Hunter of Idle Workstations. Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, 104-111.

52.
Livny, M. High-Throughput Resource Management. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 311-337.

53.
Lopez, I., Follen, G., Gutierrez, R., Foster, I., Ginsburg, B., Larsson, O., S. Martin and Tuecke, S., NPSS on NASA's IPG: Using CORBA and Globus to Coordinate Multidisciplinary Aeroscience Applications. Proc. NASA HPCC/CAS Workshop, NASA Ames Research Center, 2000.

54.
Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steenkiste, P. and Subhlok, J., A Resource Query Interface for Network-Aware Applications. Proc. 7th IEEE Symposium on High-Performance Distributed Computing, 1998, IEEE Press.

55.
Moore, R., Baru, C., Marciano, R., Rajasekar, A. and Wan, M. Data-Intensive Computing. Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 105-129.

56.
Nakada, H., Sato, M. and Sekiguchi, S. Design and Implementations of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, 15 (5-6). 649-658. 1999.

57.
Nick, J.M., Moore, B.B., Chung, J.-Y. and Bowen, N.S. S/390 Cluster Technology: Parallel Sysplex. IBM Systems Journal, 36 (2). 172-201. 1997.

58.
Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for the Grid: MyProxy. 10th IEEE International Symposium on High Performance Distributed Computing, 2001, IEEE Press, 104-111.

59.
Papakhian, M. Comparing Job-Management Systems: The User's Perspective. IEEE Computationial Science & Engineering (April-June). 1998.

60.
Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S., A Community Authorization Service for Group Collaboration. IEEE 3rd International Workshop on Policies for Distributed Systems and Networks, 2002.

61.
Raman, S. and McCanne, S. A Model, Analysis, and Protocol Framework for Soft State-based Communication. Computer Communication Review, 29 (4). 1999.

62.
Steiner, J., Neuman, B.C. and Schiller, J., Kerberos: An Authentication System for Open Network Systems. Proc. Usenix Conference, 1988, 191-202.

63.
Stevens, R., Woodward, P., DeFanti, T. and Catlett, C. From the I-WAY to the National Technology Grid. Communications of the ACM, 40 (11). 50-61. 1997.

64.
Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. and Essiari, A., Certificate-based Access Control for Widely Distributed Resources. 8th Usenix Security Symposium, 1999.

65.
Tierney, B., Johnston, W., Lee, J. and Hoo, G. Performance Analysis in High-Speed Wide Area IP over ATM Networks: Top-to-Bottom End-to-End Monitoring. IEEE Network, 10 (3). 1996.

66.
Tuecke, S., Engert, D., Foster, I., Thompson, M., Pearlman, L. and Kesselman, C. Internet X.509 Public Key Infrastructure Proxy Certificate Profile, IETF, 2001.

67.
Wolski, R. Forecasting Network Performance to Support Dynamic Scheduling Using the Network Weather Service. Proc. 6th IEEE Symp. on High Performance Distributed Computing, Portland, Oregon, 1997.

68.
Zhang, L., Braden, B., Estrin, D., Herzog, S. and Jamin, S., RSVP: A new Resource ReSerVation Protocol. IEEE Network, 1993, 8-18.

�PAGE \# "'Page: '#'�'" ��Perhaps make these examples of real-VO?

_1040670158.doc

Fabric

Collective

Resource

Connectivity

Application

Link

Transport

Internet

Internet Protocol Architecture

Grid Protocol Architecture

Application

_1049194570.doc

Co

-

reservation Service

Application

Co

-

reservation Service API & SDK

Resource Mgmt API & SDK

Network

Resource

Network

Resource

Compute

Resource

Co

-

reservation Protocol

…

Resource Mgmt Protocol

Co

-

Allocation API & SDK

Fabric Layer

Resource Layer

Collective Layer

