

39

Chapter 17

Designing and Building Grid Services:

The Open Grid Services Architecture
Ian Foster Carl Kesselman Jeffrey M. Nick Steven Tuecke

The past several years have seen a remarkable maturation and standardization of Grid technologies around the banner of the Open Grid Services Architecture (OGSA). We first introduced OGSA in Chapter 5, and several of the application chapters have also referred to it. We now drill down on the details of what OGSA is and what it does for Grid computing. Our goals are not only to communicate the key concepts but also to indicate how OGSA mechanisms can both simplify the development of secure, robust systems and enable the creation of interoperable, portable, and reusable components and systems. While this chapter is certainly not a programming manual, we do provide enough technical detail to allow readers to start down the path of designing OGSA-based systems.
Our presentation follows a staged approach. After reviewing the principles of service-oriented architecture (Section 1), we introduce in Sections 2 and 3 the primary elements of the OGSA Platform (Section) and an example that we use throughout the chapter to illustrate the use of OGSA mechanisms. Subsequent sections cover various elements of the OGSA Platform. We first review in Section 4 the Web services technologies on which OGSA is based, focusing on the Web Services Description Language (WSDL) that OGSA adopts as an interface definition language. Then, in Section 5, we describe the foundational Open Grid Services Infrastructure (OGSI), a set of WSDL interfaces and associated conventions, extensions and refinements to Web services standards designed to support basic Grid behaviors. We use a series of increasingly sophisticated examples to illustrate the various OGSI components and behaviors.

OGSI defines essential building blocks for distributed systems, including standard interfaces and associated behaviors for describing and discovering service attributes, creating service instances, managing service lifetime, and subscribing to and delivering notifications. OGSI-compliant web services—what we call Grid services—are intended to form the components of Grid infrastructure and application stacks. However, OGSI certainly does not define all elements that arise when creating large-scale systems. We may also need address a wide variety of other issues, both fundamental and domain-specific, of which the following are just examples. How do I establish identity and negotiate authentication? How is policy expressed and negotiated? How do I discover services? How do I negotiate and monitor service level agreements? How do I manage membership of, and communication within, virtual organizations? How do I organize service collections hierarchically so as to deliver reliable and scalable service semantics? How do I integrate data resources into computations? How do I monitor and manage collections of services? Without standardization in each of these (and other) areas, it is hard to build large-scale systems in standard fashions, to achieve code reuse, and to achieve interoperability among components—three distinct and important goals.

The core set of interfaces, behaviors, profiles, models, and bindings that address these issues form what we term the OGSA Platform, which we discuss in Section 6. The OGSA Platform encompasses not only broadly applicable service definitions but also models for commonly used components. Not all details of the OGSA Platform are defined at the time of writing, but we document the current understanding of the elements that must be contained within this platform and the application requirements that motivate their inclusion (?). We also point to more detailed discussion of various OGSA Platform elements in subsequent chapters.

We conclude the chapter with a detailed application case study (Section 7), a discussion of OGSA implementation (Section 8), and some thoughts on future directions (Section 9).

31
Service Oriented Architecture


31.1
Service Orientation: What and Why


31.2
Virtualization, Interfaces, and Behaviors


51.3
Multiple Protocol Bindings


51.4
Service Oriented Architecture and Interoperability


61.5
Service Oriented Architecture and Objects


62
Open Grid Services Architecture


73
An Example


84
Web Services


105
Open Grid Services Infrastructure


115.1
Grid Service Descriptions and Instances


125.2
Service Data


145.3
Naming


165.4
Creating Transient Services: Factories


175.5
Service Lifetime Management


185.6
Notification


195.7
Fault Model


205.8
Service Groups


206
The OGSA Platform


216.1
Service Groups and Discovery Interfaces


216.2
Service Domain Interfaces


226.3
Security


246.4
Policy


266.5
Data Management Services


276.6
Service Level Agreements


276.7
Messaging and Queuing


286.8
Events


286.9
Distributed Logging


306.10
Metering and Accounting


306.10.1
Metering Interface


316.10.2
Rating Interface


316.10.3
Accounting Interface


316.10.4
Billing/Payment Interface


326.11
Administrative Services


326.12
Transactions


326.13
Grid Service Orchestration


337
Storage Services Revisited


368
Implementation


379
Future Directions


3710
Summary


38Acknowledgments


38Further Reading


38Bibliography




1 Service Oriented Architecture

Grid technologies are based on a service-oriented architecture. In this section we describe what this term means and why it is important.

1.1 Service Orientation: What and Why

A service is an entity that provides some capability to its clients via a messaging mechanism. A service-oriented architecture is one in which all entities are treated as services, with standard mechanisms provided for describing the operations supported by services (their interfaces), for invoking operations on services, and for managing various aspects of service operation. For example:

· A storage service might provide operations for storing and retrieving data, reserving space, monitoring the status of the storage service, and querying and defining the policies that govern who is allowed to access the service.

· A data transfer service might provide operations for effecting the transfers of data from one storage service to another, managing and monitoring the status of such transfers, and querying and defining the policies that govern how different transfer requests are prioritized. 

· A troubleshooting service might monitor the status of various other services, such as storage and data transfer services, and provide operations allowing other entities to request notification on various error conditions and to query and define the policies that determine who is allowed to receive such notifications.

These examples emphasize, first of all, the generality and broad applicability of the “service” concept, which can encompass, as shown here, functionalities ranging from low-level resource management (e.g., the storage service) to high-level system monitoring functions. (In the language of Chapter X, a “service” can implement both resource- and collective-level functions.)

The examples also introduce two important themes that we will revisit later in detail. First, we see that common behaviors, such as “monitor status” and “query and define policy,” can reoccur in different contexts. A goal of the OGSA design is to allow these behaviors to be expressed in standard ways regardless of context, so as to simplify application design and encourage code reuse. Second, we see here an example of a higher-level service behavior (data transfer) being implemented via the composition of simpler behaviors (storage service). Ease of composition is a second major design goal for OGSA.

1.2 Virtualization, Interfaces, and Behaviors

Service oriented architectures encourage service virtualization, i.e., the encapsulation behind a common interface of diverse implementations that can be assumed to implement the same behavior(s). For example, consider the storage service mentioned above, which presents the user with an interface that defines, among other things, a “store file” operation. The user should be able to invoke that operation on a particular instance of that storage service without regard to how that instance implements the storage service interface. However, behind the scenes, different implementations are free to store the file on the user’s local computer, in a distributed file system, on a remote archival storage system, or in free space within a department desktop pool—or even to choose from among such alternatives depending on context, load, amount paid, or other factors. Regardless of implementation approach, the user is aware only that the requested operation is executed—albeit with varying cost and other qualities of service, factors that may be subject to negotiation between the client and service.

Virtualization is easier if service functions can be expressed in a standard form, so that all services are invoked in the same manner. More specifically:

1. A standard interface definition language is needed for defining the operations supported by a service, thus providing a uniform representation for any service interface. For example, the interface to a “file transfer service” might define operations for requesting, monitoring, and terminating file transfers. 

2. A service should need to be specified only by its interface and behavior, not by its implementation, thus allowing different implementations to be substituted without modification to clients. For example, different vendors might provide different implementations of a file transfer service, written in different languages and hosted on different platforms. A client should need only to know the service’s interface (and behavior) to invoke it.

A well-defined interface definition language and a separation of concerns between service interface and implementation also simplify service discovery, composition, and specialization. 

Service discovery is important in distributed computing because we frequently must operate in unfamiliar environments in which the identity and detailed characteristics of available services are unknown to us. In a service-oriented architecture, we can easily create registries containing information about the interfaces of available services, which users can query to find suitable candidates.

Service composition is important because it enables code reuse and the dynamic construction of complex systems from simpler components. A well-defined interface definition language simplifies composition because a client need only know a service’s interface to invoke it. Support for multiple protocol bindings (discussed below) can be important for service composition, by allowing for optimizations designed to reduce the cost of service invocation within specialized settings, such as a single address space.

Specialization refers to the use of different implementations on different platforms, which can facilitate seamless overlay not only to native platform facilities but also, via the nesting of service implementations, to virtual ensembles of resources. Depending on the platform and context, we might use the following implementation approaches.

· We can use a reference implementation constructed for full portability across multiple platforms to support the execution environment (container) for hosting a service.

· On a platform possessing specialized native facilities for delivering service functionality, we might map from the service interface definition to the native platform facilities.

· We can also apply these mechanisms recursively so that a higher-level service is constructed by the composition of multiple lower-level services, which themselves may either map to native facilities or decompose further. The service implementation then dispatches operations to lower-level services.

As an example, consider a distributed trace facility that records trace records to a repository. On a platform that does not support a robust trace facility, a reference implementation can be created and hosted in a service execution environment for storing and retrieving trace records on demand. On a platform already possessing a robust trace facility, however, we can integrate the distributed trace service capability with the native platform trace mechanism, thus leveraging existing operational trace management tools, auxiliary offload, dump/restore, and the like, while semantically preserving the logical trace stream through the distributed trace service. Finally, in the case of a higher-level service, trace records obtained from lower-level services would be combined and presented as the integrated trace facility for the service. By thus exploiting native capabilities when they are available, we avoid the Grid environment becoming the least common denominator of its constituent pieces. Grid service discovery mechanisms are important in this regard, allowing higher-level services to discover what capabilities are supported by a particular implementation of an interface. 

1.3 Multiple Protocol Bindings

A service-oriented system that defines a single “standard” mechanism for invoking service operations can suffer from performance problems in certain settings. For example, a standard mechanism based on Internet protocol communications may be unacceptably slow when a client and the service that it wants to access are located on the same physical computer.

These difficulties can be overcome if services can define multiple protocol bindings for a specific interface and clients can discover and select from among different bindings. These mechanisms can allow for implementation optimizations in specific settings, such as when a service is co-located with a client, as well as enabling protocol negotiation for network flows across organizational boundaries, where we may wish to choose between several interGrid protocols, each optimized for a different purpose.

As an example of when this third capability is important, consider a workflow service that coordinates multiple application tasks, including file transfers. Support for multiple protocol bindings could allow this service to interact with a file transfer service located on the same machine via in-memory operations rather than more expensive TCP/IP communications. A second example, a storage service might support two different protocol bindings for its data transfer operations: a generic protocol based on a general-purpose transport and an optimized data channel protocol that supports more rapid data movement.

1.4 Service Oriented Architecture and Interoperability

We talked in Chapter 5 about the importance of achieving interoperability within Grid systems. In the service oriented architectures discussed here, the separation of concerns between interface and protocol leads to a partitioning of the interoperability problem into two subproblems: the service interface and the identification of the protocol(s) used to invoke a particular interface. For two entities to interoperate, they must first agree on common interface definitions for any operations that they need to invoke, and then they must agree on the protocols that are to be used to invoke those interfaces.

In closing this subsection, we should point out that service-oriented architectures are not without potential problems. For example, the interface definition language may be insufficiently expressive to allow for the convenient representation and invocation of interesting services and associated operations; features of the interface definition language and/or its implementation may hinder high-performance execution; critical aspects of the service-oriented architecture (e.g., security) may be left unspecified, or may be limited in their capabilities; and/or there may not be the critical mass of users and developers for the other benefits listed above to apply. In our view, the Web services base and the derivative Open Grid Services Architecture described in this chapter and book have overcome these potential limitations in a way that previous distributed systems technologies (e.g., CORBA, DCE, COM) have not. However, despite promising early results, it is still relatively early days in the adoption and application of this technology, and surprises may lie ahead.

1.5 Service Oriented Architecture and Objects

We conclude this section with some observations on service oriented architecture and objects. Typed interfaces and other features of service oriented architectures are frequently also cited as fundamental characteristics of so-called distributed object-based systems. However, various other aspects of distributed object models (as traditionally defined) are specifically not required or prescribed in the service-oriented architecture used for Grid computing: specifically, implementation inheritance, service mobility, development approach, and hosting technology. Thus, OGSI and other aspects of the OGSA Platform neither require nor prevent implementations based upon object technologies that support inheritance at either the interface or the implementation level. There is no requirement in the architecture to expose the notion of implementation inheritance either at the client side or the service provider side of the usage contract. In addition, the Grid service specification does not prescribe, dictate, or prevent the use of any particular development approach or hosting technology for the Grid service. For example, there is nothing about OGSI that is Java-specific: one can implement OGSI behaviors in C, C#, Python, or other languages, and indeed implementations in these languages are appearing.
2 Open Grid Services Architecture 

We introduce in this book a specific practical realization of a service oriented architecture, namely that provided by the Open Grid Services Architecture (OGSA). We focus our attention in this chapter on the set of core OGSA components that form the OGSA Platform.

As illustrated in Error! Reference source not found., the four principal elements of the OGSA Platform are Web services, the Open Grid Services Infrastructure, OGSA Platform Interfaces, and OGSA Platform Models, which we characterize briefly in the following paragraphs, and describe in more details later in the chapter.

The term Web services denotes a distributed computing paradigm that is XXX.

Building on both Grid and Web services technologies, the Open Grid Services Infrastructure (OGSI) defines mechanisms for creating, managing, and exchanging information among entities called Grid services. Succinctly, a Grid service is a Web service that conforms to a set of conventions (interfaces and behaviors) that define how a client interacts with a Grid service. These conventions, and other OGSI mechanisms associated with Grid service creation and discovery, provide for the controlled, fault resilient, and secure management of the distributed and often long-lived state that is commonly required in distributed applications.

OGSA Platform Interfaces build on OGSI mechanisms to define interfaces and associated behaviors for various functions not supported directly within OGSI, such as service discovery, data access, data integration, messaging, and monitoring.

OGSA Platform Models support these interface specifications by defining models for common resource and service types.

These OGSA Platform components are supplemented by a set of OGSA Platform Profiles addressing issues such as the following. We mention these here for completeness; they are not discussed further in this chapter.

Protocol bindings. Profiles of this sort enable interoperability among different Grid services by defining common mechanisms for transport and authentication—issues that are not addressed by OGSI, but rather defined as binding properties, meaning that different service implementations may implement them in different ways. Thus, for example, “SOAP over HTTP” is a useful Grid service transport profile. Another example of such a profile is the recently proposed GSSAPI profile for security context establishment and message protection using WS-SecureConversation and WS-Trust [ref].

Hosting environment bindings. Profiles of this sort enable portability of Grid service implementations. For example, an “OGSA J2EE Profile” might define standardized Java APIs that allow for portability of Grid services among OGSI-enabled Java Enterprise Edition (J2EE) systems. An “OGSA Desktop Grid Profile” could allow for interoperability among systems that allow untrusted (and untrusting) desktop computers to participate in distributed computations (see Chapter-Chien2). An “OGSA Scientific Linux Profile” could define standard execution environments for Linux-based computers that run scientific applications, specifying conventions for the locations of key executables and libraries, and for the names of certain environment variables

Sets of domain-specific services. Profiles of this sort define interfaces and models in addition to those defined within the OGSA Platform to address the needs of specific application domains. For example, an “OGSA Database Profile” might define a set of interfaces and models for distributed database management; an “OGSA eCommerce Profile” might define interfaces and models for e-commerce applications.

3 An Example

We shall use a single example throughout this chapter to illustrate both the principles and the details of OGSA as described here and in subsequent chapters. Here we set the scene by introducing the example. As illustrated in Error! Reference source not found., we consider a system comprising the following components.

· Multiple storage provider services each implement a standard storage provider service interface. (Further to our discussion of virtualization, note that each storage service instance may be implemented in a different way and provide different qualities of service to users. For example, one implementation might encapsulate a simple local file system, while another stripes user files across free storage on desktop systems.)

· One or more file transfer services handle requests to perform transfers from one storage system to another. (Different file transfer service instances might implement the same or different interfaces, with the same or different qualities of service.)

· Various other services provide additional functionality, such as discovery (brokering) and troubleshooting (monitoring).

· Various clients access these services.

The arrows in the figure indicate some of the interactions that occur between the various components: a client communicates requests to the file transfer service, which may in turn communicate with the storage broker and then with various storage providers. Meanwhile the monitoring service receives and processes status updates from the various storage providers.

As we proceed through the chapter, we shall see how various OGSA features can be used to implement increasingly functional versions of this basic scenario. The various elements are brought together in Section 7, which provides an integrated discussion of the scenario.
4 Web Services

OGSA instantiates service-oriented architecture principles within the context of a distributed computing paradigm called Web services, which we introduce here briefly.

Above all, OGSA makes use of the Web Services Description Language (WSDL) [22], a standard developed within the World Wide Web Consortium (W3C) for describing software components or services in a manner independent of any particular programming language or implementation approach. WSDL service definitions are documents in another W3C standard, the eXtensible Markup Language (XML) [14, 27]. (XML syntax features potentially recursively defined XML elements, each with the format <element-name optional-parameters> list-of-zero-or-more-XML-elements </element-name>.)

A WSDL definition comprises a service description, which defines the service interface, and implementation details, which describe how the interface maps to protocol messages. Figure X shows a simple example of a WSDL service description, which has elements as follows.

The <portType> element defines an interface (here, the StorageService interface) by specifying the zero or more operations supported by a Web service that implements the interface. Each operation is specified by an <operation> element, which defines the messages used to implement the operation. In Figure X, a single operation, getFile, is specified; this has an input message getFileRequest and output message getFileResponse. (This example involves a request-response exchange between client and service. A WSDL operation definition can also omit the output message to implement an asynchronous communication.)

The <message> element defines a message used by the Web service to implement an operation. A message element defines the parts of a message and the associated data types. Both the input and output messages specified in Figure X comprise a single part, with type xs:string referring to a string type defined in a system library.

A WSDL definition can also include <type> elements to define data types used by the Web service. In object-oriented terms, one can think of a <portType> as a class, an <operation> as a method, and a <message> as a method argument. 


The details of WSDL implementation descriptions are not particularly relevant to our discussions here, but in brief, the <binding> element is used to specify the messaging protocol, message interpretation model, data encoding model, and transport used for communicating messages. The example in Figure Y specifies the commonly used Simple Object Access Protocol (SOAP) [4] and HTTP as messaging and transport protocols, respectively; document (rather than RPC) messaging style, and literal rather than SOAP encoding. SOAP/HTTP is 
WSDL allows for multiple bindings for a single interface. Thus, for example, a single service implementation might support both a distributed communication protocol (e.g., SOAP over HTTP—and/or some more optimized protocol) and a locally optimized binding (e.g., local IPC) for interactions between request and service processes on the same host. Other binding properties may include reliability (and other forms of QoS) as well as authentication and delegation of credentials. The choice of binding should always be transparent to the requestor with respect to service invocation semantics—but not with respect to other things: for example, a requestor should be able to choose a particular binding for performance reasons.

Web services thus partition the specification of the “protocol” used to interact with a service into the interface (the abstract messages communicated), the message protocol (e.g., SOAP), and the transport protocol (e.g., HTTP).

In addition to WSDL, the Web services community has defined or is defining a variety of other standards concerned with such issues as service registry [5], security, policy, and workflow [6]—and, as we describe in Section 5, Grid services. These definition activities are taking place within W3C, GGF, OASIS, and other standards bodies and form the basis for major new industry initiatives such as Microsoft’s .NET, IBM’s e-Business on Demand, and Sun ONE.
The Web services framework has been adopted as a basis for OGSA for two reasons. First, WSDL and related mechanisms address the requirements presented in Section 1, allowing for the specification of interface definitions separately from their embodiment within a particular binding (transport protocol and data encoding format) and implementation. Second, and more pragmatically, the widespread adoption of Web services mechanisms means that a framework based on Web services can exploit numerous tools and extant services, such as WSDL processors that can generate language bindings for a variety of languages (e.g., Web Services Invocation Framework: WSIF [53]), workflow systems that sit on top of WSDL, and hosting environments for Web services (e.g., Microsoft .NET, IBM WebSphere, BEA XXX, and the open source Apache Axis).
5 Open Grid Services Infrastructure

Our ability to virtualize and compose services depends on more than a standard interface definition language and standard interface definitions. We also require standard semantics for common service interactions so that—to give just one example—different services follow the same conventions for error notification. In the absence of such standard semantics, it is impossible to build interoperable, reusable components that, for example, process error notifications uniformly, regardless of source.

These standard semantics are provided in OGSA by the Open Grid Services Infrastructure (OGSI). Building on both Grid and Web services technologies, OGSI defines mechanisms for creating, naming, managing, and exchanging information among entities called Grid services. Succinctly, a Grid service is a Web service that conforms to a set of conventions (expressed as WSDL interfaces, extensions, and behaviors) for such purposes as lifetime management, discovery of characteristics, and notification. These conventions provide for the controlled, fault resilient, and secure management of the distributed and often long-lived state that is commonly required in distributed applications. OGSI also introduces standard factory and registration interfaces for creating and discovering Grid services.

Concretely, OGSI defines several interfaces (portTypes): the GridService interface (Table 1) that must be supported by any Grid service, and a set of additional interfaces (Table 2) defining optional operations. In the rest of this section, we expand on these various aspects of OGSI.

Table 1: The OGSI GridService interface (see text for details).

	Operation

	Description

	FindServiceData
	Query information about the Grid service instance.

	queryByServiceDataNames
	Retrieve values for specific service data elements.

	setServiceData
	Modify SDE values

	setByServiceDataNames
	Modify SDE values

	deleteByServiceDataNames
	Delete SDEs

	requestTerminationAfter
	Specify earliest desired termination time

	requestTerminationBefore
	Specify latest desired termination time

	Destroy
	Terminate Grid service instance


Table 2: The standard interfaces defined by OGSI

	PortType Name

	Description

	GridService
	encapsulates the root behavior of the service model

	HandleResolver
	mapping from a GSH to a GSR

	NotificationSource
	allows clients to subscribe to notification messages

	NotificationSubscription
	defines the relationship between a single NotificationSource and NotificationSink pair

	NotificationSink
	defines a single operation for delivering a notification message to the service instance that implements the operation

	Factory
	standard operation for creation of Grid service instances

	ServiceGroup
	allows clients to maintain groups of services

	ServiceGroupRegistration
	allows Grid services to be added and removed from a ServiceGroup

	ServiceGroupEntry
	defines the relationship between a Grid service and its membership within a ServiceGroup


5.1 Grid Service Descriptions and Instances

In the basic Web services model, services are assumed to be created (and destroyed) by mechanisms that are out of the scope of the Web services standards themselves. Yet applications often need to instantiate new transient services dynamically—for example, to handle the management and interactions associated with the state of particular requested activities. When the activity’s state is no longer needed, the service can be destroyed. For example:

· In a videoconferencing system, the establishment of a conferencing session might involve the creation of services at intermediate points to manage end-to-end data flows according to quality of service constraints.

· In a Web serving environment, we might want to vary the number of request-processing services, so as to provide for consistent user response time by managing application workload through dynamically added capacity.

Other examples of transient services might be a query against a database, a data mining operation, a network bandwidth allocation, a running data transfer, and an advance reservation for processing capability. As these examples emphasize, services can be extremely lightweight entities, created to manage even short-lived activities.

Transience has significant implications for how services are managed, named, discovered, and used. In fact, the need to be able to treat services as first-class entities that can be created, named, and destroyed in standard ways is a primary motivator for OGSI design: many of the interfaces and conventions that define a Grid service are concerned with these issues.

In a system in which services can instantiated dynamically, we need terminology that allows us to distinguish between the definition of a service definition and an instantiation of that service definition in the form of an executing service. Thus OGSI introduces the two terms Grid service description and Grid service instance. A Grid service description comprises the WSDL (with OGSI extensions) defining the Grid service’s interfaces and its service data (discussed next); a Grid service instance is an addressable, potentially stateful, and potentially transient, instantiation of such a description. These concepts provide basic organizing principles for OGSA-based distributed systems: Grid service descriptions define interfaces and behaviors, and a distributed system comprises a set of Grid service instances that implement those behaviors, have a notion of identity with respect to the other instances in the system, and can be characterized as state coupled with behavior published through type-specific operations.

For example, in the example of Error! Reference source not found., each “storage service” would be an instance of the Grid service description, StorageService. Each StorageService instance has unique local state (Section 5.2), has a unique name (Section 5.3), and can be managed independently of other StorageService instances—but implements the same interfaces and behaviors. As we shall see in the following, our implementations of this and other services in Error! Reference source not found. can themselves involve the creation of additional service instances used to represent various transient state components.

5.2 Service Data

Standard WSDL allows only for the representation of the operations supported by a service. Any state encapsulated by the service is implicit in the service implementation and the semantics of its operations, and the service’s interface must include operations for accessing that state. It might appear that this is not too onerous: for example, if a service has state elements A, B, and C, one can easily define additional operations GetA, GetB, and GetC to access that state—and similarly, SetA, SetB, and SetC, if desired. However, these operations are insufficient if transactional semantics are required: e.g., if we want to determine whether a service has certain values for A and B at the same time. We could presumably define a “GetAB” operation, but the number of such operations tends to grow exponentially.

OGSI addresses these issues by defining WSDL extensions that allow for the explicit representation of metadata and state data associated with a service instance, and for access (via both queries and subscriptions) to that data. More specifically, OGSI allows so-called service data to be declared explicitly in the Grid service description. Each interface defined in the service description can specify zero or more service data elements (SDEs) each a named, typed XML element with additional information representing, for example, lifetime (useful when SDE values are propagated to other entities).

Figure X provides an example. Note the gwsdl name on the portType definition, indicating that we are using Grid-extended WSDL, and the various serviceData element definitions. As this example indicates, and we discuss further in the following, SDEs can be used to represent a wide variety of information, including relatively static characteristics of a Grid service instance (e.g., capacity, location, speed), more dynamic state information (freeSpace, load), information about error conditions (e.g., outOfSpaceError), access control policies, and currently active transfers.

fix types: should Error be error type, should activeTransfer be a service group? Is there an xsd:Integer?
Table 3: Service data elements defined in the GridService interface

	SDE

	#
	Description

	interface
	1+
	One per service instance interface portType

	serviceDataName
	0+
	One per service instance SDE

	factoryLocator
	1
	Creating factory, or NIL if none

	gridServiceHandle
	0+
	GSHs for Grid service instance

	gridServiceReference
	1+
	GSRs for Grid service instance

	findServiceDataExtensibility
	1+
	Valid query types

	setServiceDataExtensibility
	2+
	???

	terminationTime
	1
	Earliest and latest termination times

	currentTime
	1
	Current time known to service instance


As this example shows, SDEs are defined in the WSDL that describes a Grid service interface. The standard OGSI interfaces define SDEs, too: for example, Table 3 summarizes the SDEs defined in the GridService interface. Note that some SDEs can have multiple instances.

Q: is it singular or plural queryByServiceDataName?

OGSI defines both pull- and push-mode mechanisms for accessing service data. The FindServiceData and queryByServiceDataName operations associated with the GridService interface provides “pull-mode” access, allowing clients to query a Grid service instance’s service data. The input to this operation is the query to be performed and the output is the result. For example, Figure X shows first the query and then the response generated when a query is made to retrieve the value of the FileTransferProgress SDE from a file transfer service instance (this tells what percent of file has been transferred) and the response gives the percentComplete.
The OGSI notification interfaces provide push-mode access, allowing clients to request asynchronous notification when certain conditions are satisfied. We say more about this in Section 5.6 below.

OGSI service data mechanisms can be used for a wide variety of purposes. For example, a client may query SDEs representing static and dynamic characteristics of a service instance to determine whether the service instance meets its requirements. More commonly, as we discusss in greater detail below, a service instance would be configured to communicate this information using notification operations to one or more registry services so as to support more efficient discovery. Notification mechanisms can also be used to communicate changes in values representing service status (e.g., error conditions and load) to management applications, thus allowing them to detect and respond to erroneous conditions.

5.3 Naming

Because Grid services are dynamic and stateful, we need a way to distinguish one dynamically created service instance from another. For example, we might want this information so that we can communicate to other Grid entities the information needed to access it. Thus, we need a naming scheme for Grid service instances. Such a naming scheme should allow Grid services to be upgraded during their lifetime, for example to support new protocol versions or to add alternative protocols. It is also desirable that a naming scheme not require a fixed mapping of service instances to network addresses, as that would make it difficult to relocate a service instance—or to construct implementations that use replication.
OGSI addresses these requirements by defining a two-level naming scheme for Grid service instances based on abstract, long-lived Grid service handles that can be mapped by handle resolution services (i.e., services that implement the OGSI-defined HandleMapper interface) to concrete but potentially less-long-lived Grid service references.
A Grid service handle (GSH) is a globally unique name that distinguishes that specific Grid service instance from all other Grid service instances that have existed, exist now, or will exist in the future. (If a Grid service fails and is restarted in such as way as to preserve its state, then it is essentially the same instance, and the same GSH can be used.)

A GSH carries no protocol- or instance-specific information such as network address or supported protocol bindings. Instead, this information is encapsulated, along with all other instance-specific information required to interact with a specific service instance, into a single abstraction called a Grid service reference (GSR). The format and contents of a GSR are dependent on the underlying protocol binding, but in a SOAP environment one can expect to see GSRs represented as WSDL documents. Unlike a GSH, which is invariant, the GSR(s) for a Grid service instance can change over that service’s lifetime. A GSR has an explicit expiration time, or may become invalid at any time during a service’s lifetime, and OGSI defines handle resolution mechanisms for obtaining an updated GSR. 
GSRs are basically network-wide pointers to specific Grid service instances hosted in (potentially remote) execution environments. A client application can use a Grid Service Reference to send requests (represented by the operations defined in the interfaces of the target service) directly to the specific instance at the specified network-attached service endpoint identified by the GSR. The result of using a GSR whose lifetime has expired is undefined. Holding a valid GSR does not guarantee access to a Grid service instance: local policy or access control constraints (for example maximum number of current requests) may prohibit servicing a request. In addition, the referenced Grid service instance may have failed, preventing the use of the GSR.
FIGURE.
The OGSI specification states that a GSH must globally and for all time refer to the same Grid service instance. It is important to understand that this statement does not imply that the GSH must refer to the same network address. A service instance may be implemented in any way, as long as it obeys the semantics associated with its service description: i.e., the portType(s) that the service instance implements. For example, the implementation of a service may be distributed or replicated across multiple resources, as long as it obeys the semantics associated with its service description. A single GSH would be associated with this service, though that GSH may resolve to different GSRs referring to different resources, based on such factors as resource availability and utilization, locality of a client, and client privileges. Some service descriptions may require tight state coherency between any such replicated implementations—for example, the semantics of the service description may require that the service move through a series of well-defined states in response to a particular sequence of messages, thus requiring state coherence regardless of how GSHs are resolved to GSRs. In that case, constructing such a replicated implementation might be difficult. However, other service descriptions may be defined that allow for looser consistency between the various members of the distributed service implementation.

5.4 Creating Transient Services: Factories 

Grid service instances may be created either via manual, out-of-band mechanisms (like any Web service) or via a request to a Grid service that implements the OGSI Factory interface: what is called a factory. The Factory interface’s CreateService operation creates a requested Grid service with a specified interface and returns the GSH and initial GSR for the new service instance. It should also register the new service instance with a handle resolution service.

PROGRAM TO PROVIDE
Figure X illustrates the use of the factory interface by showing how it can be used to implement the file transfer service of Error! Reference source not found.. Recall that this service responds to requests to perform data transfers. In the implementation of Figure X, the file transfer service acts as a factory, responding to a request to perform a transfer by creating a new instance of a PerformTransfer service that is then responsible for monitoring and managing the progress of the requested transfer. This representation of the file transfer as a service instance has the advantages that normal OGSI naming, service data, and lifetime management mechanisms can be used for subsequent management.

This example emphasizes that different hosting environments may implement Grid service instances in different ways, depending on both their own capabilities and/or the characteristics of the service instances that are being created. In some circumstances, Grid service instances may be heavyweight entities corresponding to operating system processes; in others (including, probably, the file transfer example just discussed), a Grid service instance may be represented simply by an entry in a table. The point of this discussion is that the OGSA programmer should not assume that creating a Grid service instance is an expensive operation, but should nevertheless be aware that costs may vary significantly between implementations. 

Like any OGSA interface, the Factory interface can be virtualized in various ways. Error! Reference source not found. depicts three possible approaches. First, the factory interface can be implemented directly by a hosting environment (e.g., .NET, J2EE, or Linux system) that provides mechanisms for creating and subsequently managing new service instances. Such a factory processes a client CreateService request by invoking hosting-environment-specific capabilities to create the new instance. For example, a J2EE-based factory might spawn a new thread (if that is how service instances are represented), while in a high-performance computing environment, the factory might map CreateService requests into requests to an underlying scheduler able to start jobs on a Linux cluster. Services may be implemented in very different ways in these two cases, but such differences are transparent to service requestors, who see only the factory and service interfaces.

Second, one can construct virtual hosting environment that create services by delegating the request to other factory services. This strategy could be useful in a Web serving environment, in which a new computer is integrated into the active pool by asking an appropriate factory service to instantiate a “Web serving” service on an idle computer.

The third approach depicted in Error! Reference source not found. shows a virtual hosting environment that define new semantics by creating higher-level “virtual services” comprising multiple components. A request to create an instance of such a service is implemented by asking lower-level factories to create multiple service instances and by composing the behaviors of those multiple lower-level service instances into that single, higher-level service instance.

In each case, the “hosting environment” that implements the factory interface is responsible not only for creating the new service instance but also for registering it with a handle resolution service, obtaining a GSH, and other housekeeping tasks required to manage the new service instance. The factories would also, presumably, be registered with appropriate discovery services so that clients could discover their existence.

These examples illustrate how Grid service mechanisms can provide uniform interfaces to collections of distributed resources. Implementations that map to native platform resources and APIs enable seamless integration of higher-level Grid services such as those just described with underlying platform components. Furthermore, service sets associated with multiple virtual hosting environments can map to the same underlying physical resources, with those services represented as logically distinct at one level but sharing physical resource systems at lower levels.
5.5 Service Lifetime Management

The introduction of transient service instances raises the issue of determining the service’s lifetime: that is, determining when a service can or should be terminated so that associated resources can be recovered. In normal operating conditions, a transient service instance is created to perform a specific task and either terminates on completion of this task or via an explicit request from the requestor or from another service designated by the requestor. In distributed systems, however, components may fail and messages may be lost. One result is that a service may never see an expected explicit termination request, thus causing it to consume resources indefinitely.

OGSA addresses this problem through a soft state approach [23, 69] in which Grid service instances are created with a specified lifetime. The initial lifetime can be extended by a specified time period by explicit request of the client or another Grid service acting on the client’s behalf (subject of course to policy). If that time period expires without having received a re-affirmation of interest from a client, either the hosting environment or the service instance itself is at liberty to terminate the service instance and release any associated resources. The OGSI mechanisms used to manage the lifecycle of a Grid service instance in this way work as follows.
Negotiating an initial lifetime. When requesting the creation of a new Grid service instance through a factory’s CreateService operation (Section 5.4), a client indicates minimum and maximum acceptable initial lifetimes. The factory selects an initial lifetime and returns this to the client. The lifetime “indefinite” indicates that the Grid service instance is not subject to soft-state lifetime management.

Explicit termination. The Grid service interface’s Destroy operation allows a client to request that a Grid service instance terminate.

Requesting a lifetime modification. A client requests a lifetime modification by directing “keepalive” messages, as implemented by the GridService interface’s requestTerminationBefore or requestTerminationAfter messages, to the Grid service instance. These messages specify a maximum and minimum acceptable new lifetime, respectively; the service instance responds by selecting a new lifetime and returning this to the client. Note that such messages are effectively idempotent: the result of a sequence of requests is the same, even if intermediate requests are lost or reordered, as long as not so many requests are lost that the service instance’s lifetime expires.

FIGURE DEPICTING LIFETIME MGMT?
The periodicity of keepalive messages can be determined by the client based on the initial lifetime negotiated with the service instance (and perhaps renegotiated via subsequent keepalive messages) and knowledge about network reliability. The interval size allows tradeoffs between currency of information and overhead.
We illustrate the use of these mechanisms by showing how they might be used in the data transfer example.

EXAMPLE.
The OGSI approach to the lifetime management of Grid service instances has the desirable property that a client knows, or can determine, when a Grid service instance will terminate. This knowledge allows the client to determine reliably when a service instance has terminated and hence its resources have been recovered, even in the face of system faults (e.g., failures of servers, networks, clients). The client knows exactly how long it has to request a final status from the service instance or to request an extension to the service’s lifetime. Moreover, it also knows that if system faults occur, it need not continue attempting to contact a service after a known termination time, and that any resources associated with that service would be released after that time—unless another client succeeded in extending the lifetime. In brief, lifetime management enables robust termination and failure detection, by clearly defining the lifetime semantics of a service instance. Similarly, a hosting environment is guaranteed that resource consumption is bounded, even in the face of system failures outside of its control. If the termination time of a service is reached, the hosting environment can reclaim all associated resources.

At the same time, this approach to lifetime management provides a service with considerable autonomy. Lifetime extension requests from clients are not mandatory: the service can apply its own policies on granting such request. A service can decide at any time to extend its lifetime, either in response to a lifetime extension request by a client or any other reason. A service instance can also cancel itself at any time, for example if resource constraints and priorities dictate that it relinquishes its resources. Subsequent client requests that refer to this service will fail.

5.6 Notification

OGSI defines standard mechanisms for registering interest in receiving specified messages and for delivering such messages. This notification model is closely integrated with service data: a subscription operation is just a request for subsequent “push” delivery of service data that meet specified conditions. (Recall that the FindServiceData operation provides a “pull” model.)

The OGSI notification framework allows clients to register interest in being notified of particular messages (the NotificationSource interface) and supports asynchronous, one-way delivery of such notifications (NotificationSink). If a particular service wishes to support subscription of notification messages, it must support the NotificationSource interface to manage the subscriptions. A service that wishes to receive notification messages must implement the NotificationSink interface, which is used to deliver notification messages. To start notification from a particular service, a client invokes the subscribe operation on the notification source interface, specifying the notification sink and an initial lifetime. A stream of notification messages then flow from the source to the sink, while the sink sends periodic keepalive messages to notify the source that it is still interested in receiving notifications. If reliable delivery is desired, this behavior can be implemented by defining an appropriate protocol binding for this service. 

Figure X illustrates the use of these mechanisms, showing how they can be used by a monitoring service to request notifications of excessive load conditions on a storage service. The subscription request issued by the monitoring service specifies:

1. A subscription expression, which describes (a) the content(s) and type(s) of the XML element(s) to be sent from the notification source to the notification sink, and (b) when messages should be sent, based on changes to values within a service instance’s service data.

2. The Grid service instance to which notification messages should be delivered (the sink). 

3. An initial lifetime for the subscription. Here, as elsewhere in OGSI, soft-state lifetime management mechanisms are supported.

A notification source processes a subscription request by creating a Grid service instance, called a subscription, that implements the NotificationSubscription portType. This portType may be used by clients to manage the (soft-state) lifetime of the subscription, and to discover properties of the subscription.

PROGRAM TO BE PROVIDED.
The OGSI notification framework allows both for direct service-to-service notification message delivery, and for integration with various third-party services, such as messaging services commonly used in the commercial world, or custom services that filter, transform, archive, or specially deliver notification messages on behalf of the notification source. Notification semantics are a property of the protocol binding used to deliver the message. For example, a SOAP/HTTP protocol or direct UDP binding would provide point-to-point, best-effort, notification, while other bindings (e.g., some proprietary message service) would provide better than best-effort delivery. A multicast protocol binding would support multiple receivers.

5.7 Fault Model

Automatic adaptation to faults, as can be required in a Grid setting, requires the ability to return faults (also called exceptions in some programming languages) that are not only rich with information about the cause of the fault, but also consistent in their content, semantics, and means of delivery. Thus, OGSI defines a common approach for conveying fault information from operations. This common approach is used consistently within OGSI itself and is recommended for use within other OGSA components and applications.

The OGSI fault model comprises a standard fault type, the XSD type (?) ogsi:FaultType, which defines two required elements, the originating service and a timestamp, and several optional elements, including plain language description(s) of the fault, further ogsi:FaultType element(s) describing an underlying cause for the fault, a fault code to provides support for legacy fault reporting systems, such as POSIX errno, and extensibility elements that can be used to communicate arbitrary additional information.

EXAMPLE?
5.8 Service Groups

The final three OGSI interfaces that we describe, ServiceGroup, ServiceGroupEntry and ServiceGroupRegistration, are concerned with organizing groups of service instances. A service group is a Grid service that maintains information about a group of Grid service instances. Any arbitrary collection of service instances can be grouped in this way: they need not have the same interface, creator, lifetime, purpose, or any other point in common. The only requirement is that someone want to group them. Examples of situations in which service group mechanisms could be used include the virtual hosting environments of Error! Reference source not found., the monitor and broker of Error! Reference source not found., and a registry service used to keep track of service instances created within a particular VO.

FIGURE
The basic ideas underlying the service group construct are illustrated in Figure X. In brief:

· The ServiceGroup portType defines service data elements used (a) to represent the zero or more member service instances that form a service group (the Entry SDE) and (b) to define constraints on the service instances that are allowed as members (the membershipContentRule SDE).

· Each Entry SDE refers not directly to the corresponding member service instance, but to a service instance implementing the ServiceGroupEntry portType, which defines SDEs referring to the member service instance plus optional descriptive information. The ServiceGroupEntry portType provides independent lifetime management functions for individual entries, a unique key (GSH) for each entry, and can be extended to provide more advanced entry management functions.

· The ServiceGroupRegistration portType defines add and remove operations that can be used to add and remove ServiceGroupEntry instances from a ServiceGroup.

As elsewhere in OGSI, the basic functionality provided here is limited, providing just a basic service grouping framework. The true power of this framework emerges when it is specialized in various ways, for example by extending ServiceGroupEntry to provide specialized entry management functions. (Example?)
EXAMPLE FROM BROKERING?
6 The OGSA Platform 

As discussed in Section 2, OGSI is the foundation on which the OGSA is built, providing mechanisms for creating, managing, and exchanging information among Grid services. This foundation is already useful in and of itself, but its true value to the programmer emerges when it is used to construct additional standard interfaces and associated behaviors that address various functions not supported directly within OGSI, such as service discovery, data access, data integration, messaging, and monitoring. This is the role of the OGSI Platform Interfaces.

A lack of space prevents us from describing OGSA Platform interfaces in the detail that we have provided for OGSI. However, we are able to outline the principal elements as defined or planned at the time of writing (mid 2003), and we also refer the reader to later chapters for some additional details. Not all of the services described below may eventually become part of the OGSA Platform, but all illustrate useful extensions to OGSI.

6.1 Service Groups and Discovery Interfaces 

Grid Service Handles (GSHs) and Grid Service References (GSRs) together realize a two-level naming scheme, with handle resolution services mapping from handles to references. However, GSHs are not intended to contain semantic information and indeed may be viewed for most purposes as opaque. Thus other entities (both humans and applications) need other means for discovering services with particular properties, whether relating to interface, function, availability, location, policy, or other criteria.

Traditionally in distributed systems this problem is addressed by creating a third-level “human-readable” or “semantic” name space that is then mapped (bound) to abstract names (in our case, GSHs) via registry, discovery, metadata catalog, or other similar services. The OGSA Platform must define standard functions for managing such name spaces, as otherwise services and clients developed by different groups cannot easily discover each other’s existence and properties. These functions must address the creation, maintenance, and querying of name mappings. Two types of such semantic name spaces are common: naming by attribute, and naming by path.

Attribute naming schemes associate various metadata with services and support retrieval via queries on attribute values. A registry implementing such a scheme allows service providers to publish the existence and properties of the services that they provide, so that service consumers can discover them. A variety of such registries can be built as specializations of the service group mechanisms described in Section 5.8. Recall that those mechanisms can be used to maintain groups of ServiceGroupEntry service instances, that themselves maintain references to member services plus, for each, arbitrary content advertising some information about the member service. The content model is the basis on which search predicates can be formed and executed against the service group with the findServiceData operation. Different application-specific and special-purpose registries can be constructed based on different content models. A registry may also implement the notificationSource interface so that clients can subscribe to be notified of changes to the registry’s state. Again, the specific state change subscriptions that are of interest will depend on the content model of the service group on which the registry is built.

Path naming or directory schemes (as used, for example, in file systems) represent an alternative approach to discovery, in which services are organized into a hierarchical name space that can be navigated. Directory path naming can be accomplished by defining an interface (e.g., “PathName”) that maps strings to GSHs, with operations for inserting, looking up, and deleting <string, GSH> pairs. For example, “/data/genomics_dbs/mouse” could map to a service instance that delivers portions of the mouse genome and/or performs BLAST searches against that genome. Similarly, “/applications/biology/genomics/BLAST” could map to a service instance with interfaces for executing BLAST.

6.2 Service Domain Interfaces

The value of Grid solutions will be realized through the formation of Grid service collections and the orchestration of automated interactions among services and across collections. In addition to identifying specific common services, the OGSA Platform must describe the common behaviors, attributes, operations and interfaces needed to allow services to interact with others in a fully distributed, heterogeneous, but Grid-enabled environment; and for a collection of underlying services to be composed (perhaps recursively) into high-order services as an integral unit to serve a domain-specific functional purpose—what we call here a Service Domain. The latter functionality introduces a need to support the registration, discovery, selection, filtering, routing, fail-over, creation, destroying, enumeration, iteration, and topological mapping of service instances represented by a service domain collection, as well as intra and inter collection interactions.

In addressing these requirements, we have as a building block the OGSI service group interfaces, which define the abilities to register (add) and unregister (remove) service instances from a set called a service group. The OGSA Platform should extend these interfaces to provide a rich set of behaviors (and associated operations and attributes) for service domain management. The following are candidates.


· Filter: Behavior that supports choosing/allowing a Grid service to be included as part of a service collection. 

· Selection: Behavior that supports choosing a particular instance or a subset of instances within the service collection. 

· Topology: Behavior that supports a topological sort of the services in a service collection to impose one or more orders on the services within a service collection

· Enumeration: Behavior that enumerates the services in a service domain. 

· Discovery: Behavior that allows a service domain to discover services from one or more registries to include as part of the service collection. 

· Policy:
 Behavior that allows policies to control the behavior of service domain operations as well as the constituent services within the service domains.

6.3 Security

(Need reference here to security chapter. Maybe can simply delete most of what follows.)

OGSA Platform security mechanism must support, integrate, and unify popular security models, mechanisms, protocols, platforms and technologies in a way that enables a variety of systems to interoperate securely. A preliminary OGSA Security Architecture document, developed within the Global Grid Forum’s OGSA-Sec working group, seeks to address these goals in a manner consistent with the security model that is currently being defined for the Web services framework used to realize OGSA’s service-oriented architecture.

The security of a Grid environment must take into account the security of various aspects involved in a Grid service invocation, as depicted in Figure 2 and discussed in the following.

As discussed in Section 2, a Grid service can be accessed over a variety of protocol bindings. Given that bindings deal with protocol and message formats, security functions as confidentiality, integrity, and authentication fall within the scope of bindings and thus are outside the scope of the OGSA Platform proper—but not specific OGSA Platform profiles. 

Each participating end point can express the policy it wishes to see applied when engaging in a secure conversation with another end point. Policies can specify supported authentication mechanisms, required integrity and confidentiality, trust policies, privacy policies, and other security constraints. When invoking Grid services dynamically, end points may need to discover the policies of a target service and establish trust relationships dynamically. (See Section 6.4 for more discussion of policy.)

Once a service requestor and a service provider have determined each other’s policies, they can establish a secure channel over which subsequent operations can be invoked. Such a channel should enforce various qualities of service including identification, confidentiality, and integrity. The security model must provide a mechanism by which authentication credentials from the service requestor’s domain can be translated into the service provider’s domain and vice versa. This translation is required in order for both ends to evaluate their mutual access policies based on the established credentials and the quality of the established channel. 

Thus the OGSA Platform’s security model must address the following security disciplines: authentication, confidentiality, message integrity, policy expression and exchange, authorization, delegation, single logon, credential lifespan and renewal, privacy, secure logging, assurance, manageability, firewall traversal, and security at the OGSI layer. We can expect that existing and evolving standards will be adopted or recognized in the Grid security model.

The relationship between a requestor, service provider and many of the security services is depicted in Error! Reference source not found. in a Virtual Organization setup. All security interfaces used by a service requestor and service provider need to be standardized within OGSA. Compliant implementations will be able to make use of existing services and defined policies through configuration. Compliant implementations of a particular security related interface would be able to provide the associated and possibly alternative security services.

6.4 Policy 

We can expect that many Grid services will use policies to direct their actions. Thus, Grids need to support the definition, discovery, communication, and enforcement of policies for such purposes as resource allocation, workload management, security, automation, and qualities of services. Some policies need to be expressed at the operational level, i.e., at the level of the devices and resources to be managed, while higher-level policies express business goals and service level agreements (SLA) within and across administrative domains. Higher-level policies are hard to enforce without a canonical representation for their meaning to lower-level resources. Thus, business polices probably need to be translated into a canonical form that can then be used to derive lower-level policies that resources can understand. Standard mechanisms are also needed for managing and distributing policies from producers (e.g., administrators, autonomic managers, SLAs, etc.) to end-points that consume and enforce them (i.e., devices and resources).

To meet these requirements, the OGSA Platform needs to define the representations and functions required to implement an end-to-end distributed policy management service. These representations and functions are likely to include the following.

· A canonical representation for expressing policies (Policy Information Model and Core XML Schema)

· A management control point for policy lifecycle (Policy Service Manager interface)

· An interface that policy consumers can use to retrieve required polices (Policy Service Agent interface)

· A way to express that a service is “policy aware” (Policy Enforcement Point interface)

· A way to effect change on a resource (e.g., using Common Resource Models: §Error! Reference source not found.) 

These interfaces provides a framework for creating, managing, validating, distributing, transforming, resolving, and enforcing policies within a distributed environment. The Policy Service Manager controls access to the policy repository. It also controls when notifications of policy changes are send out so that multiple updates can be made and notifications are only send after all updates are complete. The Policy Service Agent is the service that “policy aware” services go to for their policies. The agent can provide additional services like understanding time-period conditions so it can inform policy consumers of when policies become active or inactive. Services that consume policies will implement the Policy Enforcement Point interface to allow them to be registered with Policy Agents, participate in the subscription to and notification of policy changes, and to allow policies to be pushed down onto them when needed. These enforcement points will need to interpret the policies and make the necessary configurations changes in the resource they manage, by using the Common Resource Model mechanisms referred to in §Error! Reference source not found.. The OGSA Policy Service provides for a transformation service to fill this purpose and includes a canonical representation of policy in the form of an information model, grammar, and core XML schema. 

A set of secondary validation interfaces can allow automated managers and administrators to act on the same set of policies and validate consistency. An interface is also required for translating policies to and from the canonical form so that consumers that have their own policy formats can plug into the service. Finally there is a need for run-time resolution of policy conflicts, which may require specific application knowledge to determine the cost of violating an agreement and selecting the policy that that will have appropriate impact.

6.5 Data Management Services

(Modify to refer to Ann’s chapter.)
The scale, dynamism, autonomy, and distribution of data sources in Grid environments can lead to significant complexity in data access and management. A variety of interfaces need to be defined to aid developers and users in the management of this complexity. In addition to basic data access interfaces and common resource models for storage and data management systems, these interfaces need to address the need for various transparencies, including heterogeneity, location, naming, distribution, replicas, ownership, and data access costs. Data virtualization services aimed at providing these transparencies can include federated access to distributed data, dynamic discovery of data sources based on content, dynamic migration of data for workload balancing, and schema management. In implementing such services, we need to take into account the wide variety of different data types, such as flat file data, streaming media, and relational data that require different approaches to management. Further, different applications require different forms of support, e.g., some applications cannot be modified and require transparent access via file systems, while others need explicit management of data locality and replication.

These considerations suggest a role for wide variety of potential data management interfaces, including data caching (resolving a file handle to a flat file into a data stream); data replication; data access, via mechanisms for accessing wide range of data types, including flat files, RDBMS, and streaming media; file and DBMS services and possibly federated data management services that are used as part of a vertical utility Grid; data transformation and filtering; schema transformation (allowing different data, service and policy schema to be reconciled so that the services can interact correctly); and Grid storage services, which allow direct access to storage throughout the Grid.

We do not yet know which, if any, of these various interfaces should be viewed as sufficiently fundamental to justify inclusion in the OGSA Platform. However, we provide some material on requirements for data management in general.
Data access services. Basic data access interfaces allow clients to directly access and manipulate data. A number of such interfaces are required, corresponding to different data types, e.g., files, directories, file systems, RDBMS, XML data bases, object data bases, and streaming media. A “file access” service may export interfaces to read, write, truncate. GridFTP, an existing data access service, provides mechanism to get and put files, and supports third party transfers. 

Data replication. Data replication can be important as a means of meeting performance objectives by allowing local compute resources to have access to local data. While closely related to caching (indeed, a “replica store” and a “cache” may differ only in their policies), replicas may provide different interfaces. Services that may consume data replication are group services for clustering and fail-over, utility computing for dynamic resource provisioning, policy services ensuring various qualities of service, metering and monitoring services, and also higher level workload management and disaster recovery solutions. Each may need to migrate data for computation or to replicate state for a given service.

Work is required to define an OGSA-compliant set of data replication services that, through the use of “adapters,” can move data in and out of heterogeneous physical and logical environments without any changes needed to the underlying local data access subsystems. The adapters handle the native “reading” and “writing” of data and the replication software coordinates the runtime (recoverability, monitoring etc) associated with every data transfer. A central “monitor” sets up and handles communication with the calling service or program and sets up a “subscription-pair” relationship between capture and apply services on a per-replication-request basis to ensure reliability.

Data caching services. In order to improve performance of access to remote data items caching services will be employed. At the minimum caching services for traditional flat file data will be employed. Caching of other data types, such as views on RDBMS data, streaming data, and application binaries are also envisioned. Issues that arise include (but are not limited to):

· Consistency – Is the data in the cache the same as in the source? If not, what is the coherence window? Different applications have very different requirements.

· Cache invalidation protocols – How and when is cached data invalidated?

· Write through or write back? When are writes to the cache committed back to the original data source?

· Security – How will access control to cached items be handled? Will access control enforcement be delegated to the cache, or will access control be somehow enforced by the original data source?

· Integrity of cached data – Is the cached data kept in memory or on disk? How is it protected from un-authorized access? Is it encrypted?

How the cache service addresses these issues will need to available as service data.
Metadata catalog and service services. These services allow us to search for GSHs or data directory entries based on object metadata attributes. These are closely relate to the File/DBMS services and possible Federated Data Management services that are used as part of a vertical utility Grid. They are also closely related to registry services.

Schema transformation. Schema transformation interfaces support the transformation of data from one schema to another. For example, XML transformations as specified in XSLT. 
Storage. Storage can be modeled as a service just as any other resource. Grid storage interfaces can be represented as CRM services.

6.6 Service Level Agreements

Add something here???
6.7 Messaging and Queuing 

OGSA extends the scope of the base OGSI Notification interface to allow Grid services to produce a range of event messages – not just notifications that a serviceData element has changed.

Several terms related to this work are:

· Event - Some occurrence within the state of the Grid Service or its environment that may be of interest to third parties. This could be a state change or could be environmental, such as a timer event.

· Message - An artifact of an event, containing information about an event that some entity wishes to communicate to other entities

· Topic - A “logical” communications channel and matching mechanism to which a requestor may subscribe to receive asynchronous messages and publishers may publish messages.

A message is represented as an XML element with a namespace-qualified QName, and an XML Schema-defined complex type. A Topic will be modeled as an XML element, describing its internal details, including expected messages associated with the topic. TopicSpaces, or collections of Topics will also be modeled.

This work will also define:

· An interface to allow any Grid service to declare its ability to accept subscriptions to topics and the topics its supports.

· An interface to describe a messaging intermediary (a message broker) that supports anonymous publication and subscription on topics.

· An interface (or set of interfaces) that describe the interface to other messaging services such as a Queuing service.

Note that queuing and message qualities of service such as reliability can be considered both an explicit service within an OGSA hosting environment and a transport detail modeled by the wsdl:binding element in the service description.
6.8 Events

An event is a representation of an occurrence in a system or application component that may be of interest to other parties. Standard means of representing, communicating, transforming, reconciling, and recording events are important for interoperability. Thus the OGSA Core should define:

· Standard schema seem desirable for at least certain classes of OGSA events. Topics to be addressed include: Is there an “OGSA Event base class”? Is there standard content for events, such as source, name, and details? We note that there is an OASIS group working on standard schema for Web service events (the OASIS Management Protocol TC). Is this group addressing what we need, or are there unique OGSA requirements?

· Standard interface(s) for communicating events with specified QoS. These may be based directly on the Messaging interfaces.

· Standard interface(s) for transforming (mediating) events in a manner that is transparent to the endpoints.

· Standard interface(s) for reconciling events from multiple sources.

· Standard interface(s) for recording events. These may be based directly on the Message logging interface(s).

Note: Event services applied to fault tolerance.

6.9 Distributed Logging

Distributed logging can be viewed as a typical messaging application in which message producers generate log artifacts, i.e., atomic expressions of diagnostic information, that may or may not be used at a later time by other, independent, message consumers. OGSA-based logging can leverage the notification mechanism available in OGSI as the transport for messages. However, it is desirable to move logging-specific functionality to intermediaries, or logging services. Such logging services provide the extensions needed to deal with the following issues.

· Decoupling: The logical separation of logging artifact creation from logging artifact consumption. The ultimate usage of the data (e.g., logging, tracing, management) is determined by the message consumer; the message producer should not be concerned with this.
· Transformation and common representation: Logging packages commonly annotate the data that they generate with useful common information such as category, priority, timestamp, and location. An OGSA logging service should not only provide the capability of annotating data, but also the capability of converting data from a range of (legacy) log formats into a common standard canonical representation. Also, a general mechanism for transformation may be required (based on XSLT).
· Filtering and aggregation: The amount of logging data generated can be large, while the amount of data actually consumed can be small. Therefore, it can be desirable to have a mechanism for controlling the amount of data generated and for filtering out what is actually kept and where. Through the use of different filters, data coming from a single source can be easily separated into different repositories, and/or “similar” data coming from different sources can be aggregated into a single repository.

· Configurable persistency: Depending on consumer needs, data may have different durability characteristics. For example, in a real-time monitoring application, data may become irrelevant quickly, but is needed as soon as it is generated; data for an auditing program may be needed months or even years after it was generated. Hence, there is a need for a mechanism to create different data repositories, each with its own persistency characteristics. In addition, the artifact retention policy (e.g., determining which log artifacts to drop when a buffer reaches its size limit) should be configurable.

· Consumption patterns: Consumption patterns differ according to the needs of the consumer application, for example, a real time monitoring application needs to be notified whenever a particular event occurs, while a post-mortem problem determination program queries historical data trying to find known patterns. Thus, the logging repository should support both synchronous query- (pull-) based consumption and asynchronous push-based (event-driven) notifications. The system should be flexible enough that consumers can easily customize the event mechanism—for example, by sending digests of messages instead of each one—and maybe even provide some predicate logic on log artifacts to drive the notifications.

These considerations lead us to define an architecture for OGSA logging services (Figure XX) in which producers talk to filtering and transformation services either directly, or indirectly through adapters. Consumers also use this service to create custom message repositories (baskets) or look for existing producers and basket, i.e., this service should also function as a factory (of basket) and a registry (of producers and baskets). There is also a need for a configurable storage and delivery service, where data from different filtering services is collected, stored, and, if required, delivered to interested consumers.

6.10 Metering and Accounting

Different Grid deployments may integrate different services and resources and feature different underlying economic motivations and models. However, regardless of these differences, it is a quasi-universal requirement that resource utilization can be monitored, whether for purposes of cost allocation (i.e., charge-back), capacity and trend analysis, dynamic provisioning, grid-service pricing, fraud and intrusion detection, and/or billing. OGSA Platform metering and accounting interfaces address this requirement by defining standard monitoring, metering, rating, accounting, and billing interfaces.

We expect a close relationship between the interfaces discussed here and the proposed Common Resource Model (CRM). CRM can provide access to basic resource performance and utilization instrumentation, exposed as serviceData. For example, an operating system might publish counter values corresponding to the state of system activities such as CPU utilization, buffer usage, disk and tape I/O activity, TTY device activity, switching and system-call activity, file-access, queue activity, interprocess communications, and paging—all metrics that may be useful for purposes of metering and accounting.

6.10.1 Metering Interface

A Grid service may consume multiple resources and a resource may be shared by multiple service instances. Ultimately, the sharing of underlying resources is managed by middleware and operating systems. All modern operating systems and many middleware systems have metering sub-systems for measuring resource consumption (i.e., monitored data) and for aggregating the results of those measurements. For example, all commercial Unix systems have provisions for aggregating prime time and non-prime time resource consumption by user and command.

A metering interface provides access to a standard description of such aggregated data (metering serviceData). A key parameter is the time window over which measurements are aggregated. In commercial Unix systems, measurements are aggregated at administrator-defined intervals (cron entry), usually daily, primarily for the purpose of accounting. On the other hand, metering systems that drive active workload management systems might aggregate measurements using time windows measured in seconds. Dynamic provisioning systems use time windows somewhere between these two examples.

Several use cases require metering systems that support multi-tier, end-to-end flows involving multiple services. An OGSA metering service must be able to meter the resource consumption of configurable classes of these types of flows executing on widely distributed, loosely coupled server, storage, and network resources. Configurable classes should support, for example, a departmental charge back scenario where incoming requests and their subsequent flows are partitioned into account classes determined by the department providing the service. The metering of end-to-end flows in a grid environment is somewhat analogous to the metering of individual processes in a traditional OS. Since traditional middleware and operating systems do not support this type of metering, additional function must be accommodated by OGSA. In addition to traditional accounting applications, it is anticipated that end-to-end resource consumption measurements will play an important role in dynamic provisioning, and pricing grid services.

Finally, in addition to metering resource consumption, metering systems must also accommodate the measurement and aggregation of application-related (e.g., licensed) resources. For example, a grid service might charge consuming services a per-use fee. The metering service must be able to support the measurement of this class of service (resource) consumption.

6.10.2 Rating Interface

A rating interface needs to address two types of behaviors. First of all, once the metered information is available, it has to be translated into financial terms. That is, for each unit of usage, a price has to be associated with it. This step is accomplished by the rating interfaces, which provides operations that take the metered information and a rating package as input and output the usage in terms of chargeable amounts. For example, a commercial UNIX system indicates that 10 hours of prime-time resource and 10 hours on non-prime-time resource are consumed, and the rating package indicates that each hour of prime-time resource is priced at 2 dollars and each hour of non-prime-time resource is priced at 1 dollar, a rating service will apply the pricing indicated in the rating package and translate the usage information into financial information in the terms of 20 dollars of prime-time resource charge, and 10 dollars of non-prime time resource charge.

Secondly, when a business service is developed, a rating service is used to aggregate the costs of the components used to deliver the service, so that the service owner can determine the pricing, terms and conditions under which the service will be offered to subscribers.

6.10.3 Accounting Interface

Once the rated financial information is available, an accounting service can manage subscription users and accounts information, calculate the relevant monthly charges and maintain the invoice information. This service can also generate and present invoices to the user. Account-specific information is also applied at this time. For example, if a user has a special offer of 20% discount for his usage of the commercial UNIX system described above, this discount will be applied by the accounting service to indicate a final invoiced amount of 24 dollars.

6.10.4 Billing/Payment Interface

Billing/Payment service refers to the financial service that actually carries out the transfer of money. For example, a credit card authorization service. 

6.11 Administrative Services

Administrative services automate or otherwise assist with a variety of installation, maintenance, monitoring, and troubleshooting tasks within a Grid system. For example, system administrators today can face the task of installing hundreds of components within an operational data center. Complex and sometimes circular dependency relationships between different components can make this installation process tedious and time consuming. One approach to automating this installation process in a generic fashion would be to define standard data schema for describing installation dependencies (e.g., service A requires a particular quality of service from service B), standard data schema describing steps of installation, and data-driven services that trigger installation and configuration actions.

We are not ready to define requirements for OGSA Platform interfaces in this area, but anticipate defining them in the future.

6.12 Transactions

Transaction services are important in many Grid applications, particularly in industries such as financial services and in application domains such as supply chain management. However, transaction management in a widely distributed, high latency, heterogeneous RDBMS environment is more complicated than in a single machine room with a single vendor’s software. Traditional distributed transaction algorithms, such as two-phase distributed commit, may be too expensive in a wide area grid, and other techniques such as optimistic protocols may be more appropriate. At the same time, different applications often have different characteristics and requirements that can be exploited when selecting a transaction technique to use. Thus, it is unlikely that there will be a “one size fits all” solution to the transaction problem.

Transaction services are also being closely examined in the Web services community. For example, WS-Transactions has been recently “proposed.” This initiative should be closely tracked.

6.13 Grid Service Orchestration

Grid Service orchestration refers to the problem of describing and managing the choreography of a set of interacting services, perhaps on multiple distributed resources. This problem arises in many setting and it seems desirable to define standard Grid Service orchestration interfaces for such basic activities as defining a workflow, monitoring the execution of a workflow, and editing or otherwise managing the execution of the workflow. We do not yet know in detail what form these interfaces should take, so just make a few general comments here.

Rather than assuming a “workflow language standard” (a goal perhaps as unadvisable as specifying a “standard programming language”), GSO interfaces can provide a standard port type for launching an instance of an orchestration task. Different Grid workflow engine factories may implement or extend this interface. If each such service is registered as a member of a Grid Service orchestration service group, a client can select the appropriate service based on the specific orchestration task or language required. The orchestration service mediates interactions among sub-services and handles the exceptions and faults that may occur in the orchestration execution.

Additional Grid Service orchestration interfaces would be associated with, and implemented by, each instance of a orchestration task. Those interfaces allow clients to register for notification about the progress of orchestration or to directly request state information that is specific to that orchestration mechanism.
7 Storage Services Revisited

Having described OGSI and introduced other key elements of the OGSA Platform, we now return to our storage services example and present a more complete picture of its implementation, expanding in particular on aspects relating to service level agreement negotiation and enforcement.

As described in Section 3, the example involves a framework for managing the movement of files from one storage system to another, an operation that needs to be performed reliably and in a timely fashion. To minimize the potential for problems, the framework allows for the reservation of storage space on the destination storage system. Because a file transfer can be a long running operation, it addresses monitoring of transfer progress and notification in the event of problems.

Error! Reference source not found. illustrates the services from which file transfers are constructed. Factory services are shaded, while non-factory service instances are white. The basic framework comprises four different types of factory service, namely:

· a storage service providing interfaces for storage management (i.e., disk space reservation) and for the creation of file transfer services (e.g., GridFTP);

· a reliable transfer service that creates a file transfer session which in turn actually initiates and performs the file transfer;

· a storage broker for negotiating end-to-end quality of service guarantees; and

· a monitoring service for creating task-specific monitoring and notification.

In this simple example, we have five different services we need to keep track of. In a real Grid environment, we might reasonably expect to choose between hundreds or even thousands of services. This multiplicity of services necessitates the need for a means to discover what services are available to a VO for use. One simple way to enable service discovery is to collect up relevant service data elements from all the services that are available to a VO. This way, a single query can be used to identify which services can potentially address the requirements of an application. In our example, we have created a StorageVO service instance to fill this function. The StorageVO service uses OGSI’s ServiceGroup mechanism to keep track of the services that are considered to be available to the VO. In practice, an OGSA implementation such as GT3 will provide a sophisticated IndexService that augments the basic ServiceGroup with a variety of caching mechanisms, cache update policies, and rich mechanisms for sorting and indexing the resulting service data elements.

Prior to initiating a transfer, we may want to allocate storage space at the file destination, to ensure that we will not run out of disk space. Likewise for performance reasons, we may want to ensure that we will have a minimal amount of disk bandwidth at the source. Both objectives can be realized by negotiating an advance reservation with the storage systems in question. As we discuss in more detail in Chapter XX, it is advantageous for this agreement to take the form of a Service Level Agreement (SLA) between the storage system and the consumer of the service capability. One approach to obtaining the required SLAs would be for the application to negotiate directly with each underlying service. However, it is often advantageous for the negotiation process to be delegated to a third party called a broker. One advantage to this is that it provides a more modular application design. However, brokers could be required for reasons of policy, e.g. to ensure resource usage is consistent with community goals, a VO might require all resource negotiation to take place via a community broker. 

The result of the SLA negotiation is shown in Error! Reference source not found.. Each storage system now has a SLA instantiated on it which is represented by an instance of a StorageReservation service. To represent the SLA in its entirety, the StorageBrokerService creates a single virtual SLA, which responds to the same interface as the component SLAs, and uses the Index interface to create a unified view of the SLA state. We have in effect used a single collective layer OGSA service to virtualize a set of underlying resource layer service.

Once the resources for the transfer have been allocated, it is time to initiate the transfer. A single file transfer will require the interaction of two different types of services. The actual transfer is performed by a data movement service while a higher reliable data transfer service initiates the data connections, monitors its progress and keeps persistent data on the transfer to provide robust behavior across failure. 

With this model in mind, we can now go through the steps required to initiate the file transfer. The first step is to locate the ReliableTransferService and use its interface to create an instance of a DataTransfer service. This service is intended to be highly reliable, and may use methods such as checkpoint/restart to increase its robustness. It is interesting to note that the definition of service semantics and service naming in OGSI was crafted so as to allow a single service interface to be implemented via a replicated service implementation, so a replicated implementation is also possible.

(Need ref to Error! Reference source not found..)
Before it can initiate the transfer, the DataTransfer service must create the service endpoints for the data movement. It does this by envoking the appropriate factory methods in the storage service to create a GridFTP service instance that can access to data located on the storage service. These GridFTP servers provide a control interface that can be used to create a data-channel between two servers, and to cause a file to be transferred over this data-channel. The data transfer service uses the control interface to monitor the progress of the transfer. 

Once the GridFTP services have been created, we need to associate the previously negotiated SLA with the services. This information could be passed in as an argument to the factory method when the GridFTP servers are created. An alternative approach would be to go back to the storage system management interface, and present it with a handle to both the service and the SLA and have it bind the two together. The advantage of this approach is that is provides a means of rebinding the service to a different SLA should this become necessary at some point during the execution. The topic of SLA and binding is discussed in greater detail in Chapter XX.

At this point, we have initiated the desired file transfer between the two storage systems. The final step is to set up a monitoring infrastructure so that we are notified when something goes wrong. Each instance of a monitor behaves like an index service, allowing other services to register to it and collecting up service data. This structure is shown in Error! Reference source not found..

By collecting the service status data into a single location it allows us to synthesize complex conditions on which the end user wishes to be notified. The notification mechanism defined in the OGSI specification allows the user to subscribe to specific service data elements so as to be notified if the collection of services enters a state of interest. Of course it is important to realize that because there is no transactions or notion of atomic state in OGSI, that there are limits to the types of events that a user can be notified about.

A final observation is that we have now created a somewhat complex arrangement consisting of many distributed service instances. While the factory services are shared across the VO, and hence have long lifetimes, the dynamically created services are all of use only to this application. Hence, it is desirable to having a safe way of shutting down the entire assembly regardless of the state of any of its pieces. This is where OGSI’s soft-state lifetime management mechanisms come into play. With appropriate nesting of service lifetimes, the task of maintaining lifetimes can be distributed in a hierarchical fashion. For example, the lifetime of the GridFTP servers is scoped by the lifetime of the TransferService. Therefore a reasonable strategy would be for the TransferService to send lifetime extension requests to the GridFTP servers. A similar approach can be taken with the SLAService As for the TransferService, one approach would be to have it along with the SLAService to have their lifetimes extended by the MonitorService. Finally, updating the lifetime of the monitor service should be the responsibility of either the application or user that requested the transfer in the first place.
8 Implementing OGSA

Material on the GT3 implementation.

Notes on other possible implementations.

9 Future Directions
We review briefly some key areas in which further research and development is required to advance the development of range of applicability of the OGSA Platform. Further details are provided in later chapters.

Services.

Implementation.

Semantics.

Scalability in number of services, platform, footprint.

10 Summary

We have described in some detail the essential elements of the Open Grid Services Architecture (OGSA), which supports, via standard interfaces and conventions, the creation, termination, management, and invocation of stateful, transient services as named, managed entities with dynamic, managed lifetime. While the reader will need to turn to other sources to learn how to write OGSA services and applications, the level of detail provided here should have provided a good understanding of the purpose and structure of OGSA, and the techniques that can be used to apply OGSA to distributed computing problems.

Within OGSA, everything is represented as a Grid service, that is, a (potentially transient) service that conforms to a set of conventions (expressed using WSDL) for such purposes as lifetime management, discovery of characteristics, notification, and so on. Grid service implementations can target native platform facilities for integration with, and of, existing IT infrastructures. Standard interfaces for creating, registering, and discovering Grid services can be configured to create various forms of VO structure.

The merits of this service-oriented model are as follows. All components of the environment are virtualized. By providing a core set of consistent interfaces from which all Grid services are implemented, we facilitate the construction of hierarchal, higher-order services that can be treated in a uniform way across layers of abstraction. Virtualization also enables mapping of multiple logical resource instances onto the same physical resource, composition of services regardless of implementation, and management of resources within a VO based on composition from lower-level resources. It is virtualization of Grid services that underpins the ability for mapping common service semantic behavior seamlessly onto native platform facilities.

The development of OGSA represents a natural evolution of the Globus Toolkit 2.0, in which the key concepts of factory, registry, reliable and secure invocation, etc., exist, but in a less general and flexible form than here, and without the benefits of a uniform interface definition language. In effect, OGSA refactors key design elements so that, for example, common notification mechanisms are used for service registration and service state. OSGA also further abstracts these elements so that they can be applied at any level to virtualize VO resources. The Globus Toolkit provides the basis for an open source OGSA implementation, Globus Toolkit 3.0, that supports existing Globus APIs as well as WSDL interfaces. Other implementations are available from other sources.

The development of OGSA also represents a natural evolution of Web services. By integrating support for transient, stateful service instances with existing Web services technologies, OGSA extends significantly the power of the Web services framework, while requiring only minor extensions to existing technologies.

Acknowledgments


This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by IBM. We thank Ravi Madduri for his help with the program examples.

Further Reading

More information on OGSA and its implementations can be found at www.ggf.org/ogsa-wg and at www.globus.org/ogsa. In addition, the following articles are recommended.

· The article “The Physiology of the Grid” motivates and describes the Open Grid Services Architecture. 

· The Open Grid Services Infrastructure specification provides further technical details.

· The “OGSA Platform” specification provides further details on various aspects of the OGSA Platform.

· The book “…” provides a good introduction to Web services.

Bibliography
<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”>


 <message name="getFileRequest">


 <part name="term" type="xs:string"/>


 </message>





 <message name="getFileResponse">


 <part name="value" type="xs:string"/>


 </message>





 <portType name="StorageService">� <operation name="getFile">� <input message="getFileRequest"/>� <output message="getFileResponse"/>� </operation>� </portType>


</wsdl:definitions>





<binding type="glossaryTerms" name="b1">


<soap:binding style="document"


transport="http://schemas.xmlsoap.org/soap/http" />


 <operation>


 <soap:operation


 soapAction="http://example.com/getFile"/>


 <input>


 <soap:body use="literal"/>


 </input>


 <output>


 <soap:body use="literal"/>


 </output>


 </operation>


</binding>








<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”>


 <gwsdl:portType name="StorageService"> *


 <wsdl:operation name=getFile>


 ...


 <sd:serviceData name="capacity" type=”xsd:String” />


 <sd:serviceData name="location" type=”xsd:String” />


 <sd:serviceData name="speed" type=”xsd:String” />


 <sd:serviceData name="freeSpace" type=”xsd:String” />


 <sd:serviceData name="load" type=”xsd:String” />


 <sd:serviceData name="outOfSpaceError" type=”xsd:String” />


 <sd:serviceData name="accessControlPolicy" type=”tns:SomeComplexType”/>


 <sd:serviceData name="activeTransfer" type=”tns:SomeComplexType”/>


</wsdl:definitions>








Query:


<findServiceData xmlns="http://ogsa.ggf.org/service/grid_service">


 <ns1:any 


 xmlns:ns1="http://www.ggf.org/namespaces/2002/10/gridServices">


 <ns1:queryByServiceDataName


 xsi:type="ns1:ServiceDataNameQueryExpressionType"


 ns1:name="FileTransferProgress"


 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance


 />


 </ns1:any>


</findServiceData>





Response:


<ns1:serviceData ns1:availableUntil="2003-02-28T17:34:57.285Z"


 ns1:goodFrom="2003-02-27T17:34:57.287Z"


 ns1:goodUntil="2003-02-28T17:34:57.285Z"


 ns1:name="FileTransferProgress"


 xmlns:ns1="http://www.ggf.org/namespaces/2002/10/gridServices"


 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"


 xsi:type="ns1:ServiceDataType"


>


 <ns2:percentComplete xmlns:ns2="http://rft.base.ogsa.globus.org/rft_types"


 xsi:type="xsd:int">42</ns2:percentComplete


 >


</ns1:serviceData>












