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Chapter 25

Languages, Compilers, and Runtime Systems for Computational Grids

Ken Kennedy

Computational Grids pose many new challenges for application developers—challenges that go far beyond those for scalable parallelism. These challenges present so significant a burden for application developers that many are discouraged from even considering the Grid as a computational platform. As a result, programming for computational Grids has become exclusively a domain for experts. If the Grid is to realize its potential as a broadly accessible problem -solving system for scientists and engineers, application development must be made dramatically easier. To achieve this goal, we will need powerful new application development support tools that can facilitate the programming process without degrading performance to unacceptable levels. 


In this chapter we consider the prospects for the development of the needed application development tools. We begin by reviewing technologies developed for support of application development for scalable parallel computers and discusses how these might be extended to support development for heterogeneous distributed systems. We also review exiting software support for Grid application development. It then describes a new approach pioneered by the Grid Application Development Software (GrADS) project and concludes the component technologies that are needed to support this strategy.

25.1 Introduction

High-performance distributed computing presents significant new problems and opportunities for programming language designers, compiler implementers, and runtime system developers. These problems go well beyond those of homogeneous parallel computing because distributed systems exhibit a number of additional qualities:

· Distributed systems are heterogeneous—that is, the components vary in both power and architecture. Differences may also include data formats.

· Distributed systems exhibit long and variable latencies. Latencies are significantly longer than those of scalable parallel systems, and they are variable: Different nodes exhibit different latencies, and latencies may vary with underlying network traffic. 

· Distributed systems have limited and varying bandwidths among components. This is due to the nature of the networks and variations on the loads that those networks must support.

These differences make the programming problems orders of magnitude more complex. Therefore, because application developers remain limited in their ability to deal with complexity, we will need new and dramatically more powerful ways of supporting the development of high-performance distributed applications. Such support should be based on the principle that each component should do what it does best. 

· The application developer should be free to concentrate on problem analysis and decomposition at a fairly high level of abstraction.

· The system, including the programming language and compiler, should handle the details of mapping the abstract decomposition onto the computing configuration available at any given moment.

· The application developer and the system should work together to produce a correct and efficient program through the use of execution monitoring, debugging, and tuning tools.


Throughout this chapter we concentrate on supporting the development of applications on geographically distributed computing configurations in which each node is a parallel supercomputer and the interconnection network is the global information infrastructure, upgraded to bandwidths that are hundreds or even thousands of times greater than those available today. The 1995 I-WAY demonstration [19], the NASA Information Power Grid [29] and the NSF-funded TeraGrid [13] are models for this kind of distributed configuration. In spite of the high bandwidths, the Grid network will be slowed in an unpredictable way, from the perspective of any single application, by the existence of background traffic. This accounts for part of the variability in bandwidth and latency that must be dealt with in matching an application to a computing configuration. In order to be truly efficient on the envisioned target configurations, applications will need to employ parallelism in several dimensions:

· Parallelism among the nodes of the computing configuration, which will typically be task or object parallelism.

· Parallelism within a parallel computer that forms a single node, which corresponds to the parallel computing problem of today. 

· Parallelism within a single processor of a node, used to overlap computing with data access or instructions with one another.


The goal of for application development support software is threefold: (1) applications should be easy for the average scientific programmer to develop, (2) applications should be portable to different computing configurations, and (3) applications should achieve high performance—performance close to what is possible by an expert programmer using the underlying features of the network and computers forming the configuration. In this chapter, we explore technologies that might be able to meet these goals in the not-too-distant future. Many of these technologies are extensions of those developed for parallel computing, but new ideas that may bridge the gaps between parallel and distributed computing are beginning to emerge.


The principal problems that a Grid application developer needs to address are (1) balancing the load across a heterogeneous configuration in a way that minimizes running time, matching the communication to the underlying network bandwidths and latencies, and (2) dealing with the facilities in the system and network to ensure that performance variability remains within certain bounds. Here we concentrate on the role of the language, compiler, and run-time library in this process, building on the efforts of the system and network designers and implementers.

25.2 The Lessons from Parallel Computation

A number of technologies that have been developed for parallel computing need to be explored for potential use in high-performance distributed computing configurations. These include fully automatic schemes, language extensions for data and task parallelism, libraries encapsulating distributed computations and data structures, compiler techniques for latency tolerance and management, and load-balancing schemes.

25.2.1 Automatic Parallelization

One of the most appealing approaches to program decomposition from the users point of view is automatic parallelization. If a fully automatic system could efficiently parallelize applications for distributed heterogeneous networks, the user would be free to concentrate on the application, focusing on what is being computed rather than how it is being computed. In order to be successful, a fully automatic scheme would need to generate code that would achieve performance competitive with programs hand-coded by experts.


Automatic parallelization was reasonably effective for vector computers because the required parallelism was reasonably fine grained [7]. However, it has been less successful for asynchronous parallelization, for both shared- and distributed-memory machines. Through the use of increasingly complex analysis and optimization technologies, research compilers have been able to parallelize a number of interesting programs [4, 7, 26, 34, 44]. However, because of the complexity of the techniques, the long compiler running times, and the small number of successful demonstrations, few commercial compilers attempt to parallelize whole applications on scalable parallel machines. Although this research has yielded many important new compilation techniques, it is now widely believed that automatic parallelization, by itself, is not enough to solve the parallel programming problem. 


Since distributed systems, with both heterogeneity and variable latencies, are even more difficult to program, there is little hope that fully automatic techniques will suffice. Mechanisms will be required that involve the programmer in design of the parallelization as well as the problem solution, just as they have been for parallelization on scalable systems.

25.2.2 Explicit Communication

Given that most scalable parallel machines offer some form of distributed memory and many require explicit communication through message passing to get data from remote memories, the use of message-passing libraries has emerged as an important programming strategy. 


To use such a library, the programmer typically produces a version of the program that runs on each processor, with the code being specialized to the specific processor through the use of environmental inquiry functions. This style of programming, called the single-program multiple data (SPMD) model [18, 30], could be used in a shared-memory environment, but it more commonly requires explicit communication to access data residing in remote memories. In the send-receive model, therefore, the program for each processor must not only determine and receive the data it needs to access on other processors, but it must also determine the data it owns that other processors need and must communicate that data through sends. 


The send-receive style of programming, which was supported on many early parallel systems [23] proved inadequate for architecture-independent parallel programming because each different machine offered a machine-specific communication interface. With the advent of Parallel Virtual Machine (PVM) [9], a widely supported de facto standard, and Message-Passing Interface (MPI) [2, 43], a community-generated standard for message passing on homogeneous machines, it became possible to write send-receive programs in an architecture-independent form.


Some communication systems support a get-put model in which the processor that needs data from a remote memory is able to explicitly get it without requiring explicit action by the remote processor. Active messages [21] is an example of such a system.


In either the send-receive or get-put model, the programmer is responsible for decomposition of the computation and load balancing, layout of the data and management of latency, and organization and optimization of communication. These requirements make it particularly burdensome even for homogeneous machines. For heterogeneous computational Grids, the programmer would be required to decompose the program to match the explicit power of the individual processors of the Grid, losing some of the architecture-independence and making the problem more difficult. Nevertheless, a version of MPI, called MPICH-G (see Chapter ??), has been made available for Grid programming. We will discuss MPICH-G further in Section 25.3.


Although explicit communication is an important tool for application development on computational Grids, the complexity of using it leads us to consider approaches that will be accessible to a larger community of users. In that sense, explicit communication can be thought of as an assembly language for Grids.

25.2.3 Data-Parallel Languages

Early in the research efforts on parallel computing, Fox and others observed that the key to achieving high performance on distributed-memory machines was to allocate data to the various processor memories to maximize locality and minimize communication. Once this procedure is done, if each computation in a program is performed on the processor where most of the data involved in that computation resides, the program can be executed with high efficiency. 


A second important observation was that if parallelism is to scale to hundreds or thousands of processors, data parallelism must be effectively exploited. Data parallelism is parallelism that derives from subdividing the data domain in some manner and assigning the subdomains to different processors. This strategy provides a natural fit with data layout, because the data layout falls naturally out of the division into subdomains.


These observations are the foundation for data-parallel languages, which provide mechanisms for supporting data parallelism, particularly through data layout. A number of such languages were developed by researchers and companies, including Fortran D [22, 27], Vienna Fortran [16], CM Fortran, C*, and PC++ [15]. These research efforts were the precursors of two informal standardization activities leading to High Performance Fortran (HPF) [1] and High Performance C++ (HPC++) [28]. Most of these languages provided directives for data layout. These directives have no effect on the meaning of the program. Instead, they merely serve as advice to the compiler out how to assign elements of the program arrays and other data structures to different processors for high performance. This specification is done in a relatively machine-independent fashion, so once the specifications exist, the program can be tailored to run on any of a variety of distributed-memory machines. 


The major drawback to the use of existing data-parallel languages for Grid computing is the same as that for message-passing programs: there is no easy way to specify dynamic load balancing of the form that is needed to adapt to the available compute and communication resources at program launch and execution time.

25.2.4 Task-Parallel Language and System Support

An alternative to data parallelism is task parallelism, in which the components to be run in parallel represent different computations or different functions. The client-server model is an example of task parallelism, as is a multidisciplinary simulation where each discipline simulator runs in parallel with synchronizations to exchange data. Task parallelism is extremely well suited to computational Grids because different tasks can be allocated to different nodes of the Grid.


Many variants of Fortran have support for task parallelism, especially those designed for operation in conjunction with threads packages on shared-memory computers. Task parallelism need not be restricted to such computers, however. It can certainly be defined in terms of any communications library, for example. The OpenMP standard [14] specifies extensions to both Fortran and C that support task parallelism in a manner consistent with the directive-based philosophy of HPF: If the task parallel directives are ignored, the program has the same meaning as it does with the directives taken into account. OpenMP makes it possible to specify a set of cases to be run in parallel with no (or only minor) synchronization until the computation’s end. Clearly, such task-parallel extensions to Fortran could serve as a basis for decomposition of tasks for execution on a computational Grid. Many of the problems still remain, however, including load matching and communication optimization.


Another interesting source of task parallelism is coarse-grained software integration. One specialized application of this is object parallelism, in which different tasks may be methods associated with objects of different classes [35]. Another case is the complete application that is not a simple program, but rather a collection of programs that must all run, passing data to one another, before the problem is solved. Typically these programs are integrated through the use of a system-level scripting language, but other approaches may also be used. The main technical challenge of the integration is how to prevent performance degradation caused by sequential processing of the various programs or tasks in the collection. For distributed heterogeneous processor collections, methods similar to those used for task parallelism could be employed to introduce parallelism into the collection of programs. Each program could be viewed as a task, and tasks collected and matched to the powers of the various nodes in the Grid.

25.2.5 Load Balancing

On current scalable parallel machines, load balancing means spreading the calculations evenly across processors while minimizing communications. A number of useful strategies have been defined, most of which are based on standard numerical optimization procedures including simulated annealing and neural nets [23]. Another useful approach is recursive bisection, where at each stage of the load-balancing computation, the work is divided into two equal parts.


On distributed heterogeneous collections, load balancing becomes more difficult because the power of each node in the Grid must be taken into account. 
Nevertheless, load balancing—, o, more precisely, load matching—is a critical problem that must be solved before we can reasonably attack the problem of compiling for computational Grids. 

25.2.6 Latency Tolerance and Management

Compiler research has produced two general techniques for dealing with long memory or communication latencies on parallel computers: latency hiding, in which data communication is overlapped with computation, and latency reduction, in which programs are reorganized to effect better reuse of data in local memories. An extensive literature has been developed on these techniques, which have proven to be very effective in practice [7]. 


Both of these techniques will be much more complex to implement in compilers for the Grid, but latency hiding will be especially problematic because Grid latencies will be large and variable. This will require that more time be spent on estimating running time and communication delays if we are to be able to determine how far ahead to prefetch variables values. It also means that latency-tolerant algorithms will assume increased importance for Grids.

25.2.7 Runtime Compilation

A significant problem with automatic load-balancing schemes is that some of the information needed to do a good job, such as loop upper bounds and array sizes, is not known until run time in many applications. This is also an issue for problems defined on irregular grids, which are difficult to parallelize even on homogeneous parallel machines. 


To deal with these problems, Saltz and his colleagues have devised a general strategy for run-time compilation [38, 45]. In this approach, which is sometimes called the inspector/executor method, the compiler subdivides key computations within the program into two parts: an inspector, which is executed only a single time once the run-time data is available to establish a plan for efficient execution on a parallel machine, and an executor, which is invoked on each iteration of the computation and carries out the plan defined by the inspector.


The idea behind this scheme is to amortize the cost of runtime compilation over many time-steps of a complex computation. In the simple case of unknown loop upper bounds, the inspector would strip mine loop nests into subloops that matched the powers of the target machines once the values of the upper bounds were known, while the executor would simply carry out the computation in the correct subloop for each machine. For irregular problems, where the inspector must follow a complicated load-balancing step, both the inspector and executor are more complicated.


Runtime compilation can be a powerful tool for tailoring a program for execution on any parallel machine. For heterogeneous distributed computing, it will be critical.

25.2.8 Library Encapsulation

An increasingly important strategy is to encapsulate parallelism in libraries. Two distinct variants of this strategy are in use for scalable parallel machines:

· The functional library, in which parallelized versions of standard functions are applied to user-defined data structures. Examples of this are ScaLAPACK for dense linear algebra [11], FFTW for fast Fourier transforms [24], and aggregate communication libraries with functions such as shift, global sum, and segmented scan.

· The data structure library, in which a parallel data structure is maintained within the library whose representation is hidden from the users. This approach, which is well suited to object-oriented languages, has been used in the DAGH library [39], which provides a distributed, adaptive grid data structure that is callable from Fortran, along with a number of parallel template libraries usable from C++, including P++. Another example would be a library to build and operate on quad trees for Fortran N-body simulations.


Although functional libraries provide much more control to the user program, data structure libraries can encapsulate algorithms that work only on very specialized data structures. By combining parallelism in the algorithm with parallelism in the data structure, the data-structure approach provides maximum flexibility to the library builder to manage run-time challenges such as heterogeneous networks, adaptive meshes, and variable latencies.


One drawback of the use of all libraries is that current compilers treat them like black boxes. Therefore, with library-defined data structures one cannot take advantage of opportunities to simplify compound calculations. For example, if the program suggests that the transpose of a matrix be multiplied by another matrix, it might be possible to do so without moving data if the underlying implementation can be opened up for examination. This suggests that collaboration between compiler and library might be useful, particularly in an interprocedural compilation environment.

25.2.9 Programming Tools

Both hand programming and compiler- or library-based approaches suffer from significant deficiencies from the viewpoint of the user. Hand programming provides great flexibility but is particularly burdensome on the programmer. Approaches based on powerful compilers and libraries, on the other hand, often do not offer the programmer enough flexibility to identify performance bottlenecks and overcome them. As a result, both approaches benefit from a significant investment in programming support tools. Tools such as Jumpshot [46] and Pablo [41] can show where performance bottlenecks exist in both kinds of programs. Low-level programs can then be corrected by hand, while more abstract programs will need some additional tools to help restructure programs to improve performance, such as the Parascope Editor [33], a tool that implements “safe” source-to-source transformations, guaranteed to maintain the meaning of the original program.


A particularly promising approach is to employ tight collaboration between tools and compilers. A specific example can be provided in the context of the HPF language described earlier. A joint project between Rice and Illinois built a tool for performance tuning of HPF that used an HPF compiler to provide information about program transformations and the relationship of program source to the eventual object program [3]. After the performance data was collected by Pablo instrumentation, the compiler information was used to map any discovered performance problems back to the original source. Nevertheless, even though this made it much easier to identify performance problems, programmers still needed some way to revise the program to eliminate these problems. In HPF, this typically meant restructuring the program. As a result, the project developed tools to effect advanced source-level transformations that could help overcome performance bottlenecks.


In general, programming tools can be useful in a variety of contexts, helping the user construct correct and efficient programs with less effort. These tools will be even more important for computational Grids, where flexible parallelism and latency tolerance can have huge effects on the performance of applications.

25.3 Programming Tools for the Grid Today

The principal strategy for implementing Grid applications today is to write message-passing applications on top of the Globus Toolkit® infrastructure using MPICH-G, a Grid-compatible version of the MPI message-passing standard [2]. The Globus Toolkit provides a number of useful features, including resource discovery and information services, user authentication and access control, job initiation, and communications services. MPICH-G is constructed as a layer on top of these communications services.


Although these software systems, which are amply treated elsewhere in this volume (see Chapter {MPICH G and Globus} ??), make it possible to write Grid programs, they do not make it easy. Most of the hard work of application development—resource selection and mapping, communication management, and adapting to varying loads on Grid resources—is left to the developer. If the Grid is to become broadly accessible to the technical user community, programming support systems must take a much larger portion of the load from the shoulders of the application developer.


One currently available programming tool is Condor [36], which was originally developed to scavenge free computational cycles from networks of workstations (See Chapter ?? for a more complete treatment of Condor.). The Condor-G system, which has been extended to run on the Globus Toolkit infrastructure, provides a mechanism for mapping application needs to available compute resources. The specifications for application resource requirements must be written in a simple form referred to as a ClassAD. Symmetrically the properties provided by a particular compute resource are also specified as a ClassAD. The Condor Matchmaker algorithm then selects resources by finding the best match between application needs and provider properties, ranking according to a formula encoded in the application ClassAD.


Although Condor is extremely useful, it has several shortcomings. First, it permits specifications that refer only to individual compute resources. For the Grid, a more sophisticated strategy that would extend specifications to sets of resources is needed. This would permit a heterogeneous collection of requirements to be addressed in a more integrated way. In addition, Condor provides no help in mapping of applications to resources, nor does it provide ways to do dynamic resource selection. Finally, a more sophisticated, possibly executable, method for ranking matches is needed to handle resource selection for an environment as dynamic as the Grid.


These considerations lead us to a discussion of the GrADS project, which is attempting to provide a powerful, integrated approach to building and executing applications on the Grid.

25.4 The GrADS Approach

To address the fundamental challenge of program development for Grid environments, the Grid Application Development Software (GrADS) Project [10] has initiated a coordinated and far-reaching program of research, prototyping, and technology transfer aimed at the central problems of programming models, algorithms, programming systems, and applications.


Underlying and unifying this effort’s diverse investigations is a basic assumption: that effective application development for Grid environments requires a new approach to the design, implementation, execution, and optimization of applications. A new strategy is needed because the traditional development cycle of separate code, compile, link, and execute stages assumes that the properties of underlying resources are static and relatively simple. In the Grid, this assumption is not valid. (Needless to say, the alternative approach, frequently adopted in distributed computing, of hand coding applications with socket calls or remote procedure calls, is not viable either.) Instead, the Grid requires a software development environment that enables the effects of dynamism to be mitigated and controlled.


In addition, the usefulness of the Grid will be severely limited if application development continues to be as complex and labor intensive as it is today. If the Grid is to become a broadly accessible problem solving resource, we must raise significantly the level of abstraction at which programs are developed. One long-term vision is to make it possible for scientists and engineers to develop applications in easy to use languages such as Matlab [25]. To achieve this goal, we need to provide tools, compilers, and libraries that will help automate the construction of acceptably efficient Grid applications from high-level inputs.


Addressing these two issues is the goal of the GrADS project. In pursuit of this goal, GrADS has developed a new program development and execution structure, called GrADSoft, which is depicted in Figure 25.1. In the GrADSoft system, the discrete steps of application creation, compilation, execution, and postmortem analysis are replaced with a continuous process of adapting applications to a changing Grid and to a specific problem instance. Two concepts are critical to the working of this system. First, an application must be encapsulated as a configurable object program, which can be dynamically mapped for execution on a specific collection of Grid resources that are not known until launch time. Second, the system relies upon performance contracts that specify the expected performance of the application on the available resources. Contracts are used to determine when the performance of an application is enough below expectation to merit a rescheduling step. 


The remainder of this section summarizes the key ideas underlying the GrADS effort and explains in detail the technical challenges being addressed and the approach being followed in each area. If the GrADS project succeeds in achieving its long-term goals, it should dramatically reduce the effort required to develop Grid applications and should dramatically broaden the community of users of the Grid itself.
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Fig. 25.1: GrADS program preparation and execution architecture
25.4.1 Configurable Object Program

At the heart of the GrADS system depicted in Figure 25.1 is the configurable object program (COP), which serves as the standard application format required for execution within GrADS. The configurable object program is intended to be a portable program representation that can be executed on many different collections of Grid resources. To make this possible, a COP must contain, in addition to code, components that can be used to help automate mapping and load balancing on collections of resources.


To this end, a configurable object program in the current GrADS framework is based on a parallel application in the form of an MPI program, but also includes two specialized call-back routines: a mapper, which determines how to map the computation and communication in the application onto a given set of resources (provided as a parameter); and a performance estimator, which approximates the performance that the application will achieve on a given set of resources. Note that the performance estimator may invoke the mapper as a preliminary step.

The role of the performance estimator is to serve as an objective function for the scheduler/resource negotiator depicted in Figure 25.1, while the mapper determines how to handle load matching for the best performance.


In a sense, one can view a configurable object program as an application on an abstract parallel machine. This machine takes collections of parallel tasks and automatically handles all the details of matching the loads from the component tasks to the computation and communication resources available at program launch time. The implementation of this abstract parallel machine is within the GrADS execution environment, described in the next section.

25.4.2 GrADS Execution Environment 

The principal task of the GrADS execution environment is to automate the process of mapping and executing a configurable object program on an arbitrary collection of Grid resources that fall within the space of resources acceptable to the application. To do this, it must use the callback mapping and performance estimation functions to handle resource allocation and load balancing. In addition it must manage the complex task of adapting the application to the dynamically changing nature of Grid resources.


To this end, when a configurable object program is presented to the execution system, 

the GrADSoft infrastructure carries out the following steps (depicted in Figure 25.2):

1. The execution system instantiates an application manager to oversee the process of launching and running the application.

2. The application manager, by consulting the program’s mapper, provides an initial feasible space of resources to the scheduler/resource negotiator.

3. The scheduler/resource negotiator contacts the GrADS information system to request sets of feasible resources—that is, resources that meet the requirements of the application. The information provided also includes the performance of individual compute resources and the communication links interconnecting those compute resources.

4. The scheduler/resource negotiator then solves an optimization problem using the application’s performance estimator as an objective function to find the best match of the application to the available resources.

5. Once the best set of resources is determined, the resources are reserved and the program launch begins.

6. The dynamic optimizer/binder is invoked to instantiate the mapping and to provide launch-time tailoring of the application to the resources on which it will run. In addition, the binder inserts the sensors and actuators required for the performance monitor, also called the contract monitor.

7. The contract monitor process is launched on the Grid.

8. The application itself is launched on the Grid.

9. During execution the application continuously communicates with the contract monitor via the inserted sensors. If the contract monitor determines that performance is falling sufficiently below estimates that a contract violation has occurred, it can decide to reschedule or migrate the application onto a different set of resources.

The steps of this process are depicted in Figure 25.2.
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Fig. 25.2: Program launch in the GrADS execution system.

25.4.3 GrADS Program Preparation System 

The left side of Figure 25.1 depicts the tools used to construct configurable object programs. The goal is to build tools that free the user from many of the low-level concerns that arise in programming for the Grid today and to permit the user to focus on high-level design and performance tuning for the heterogeneous distributed computing environment.


We expect that most application developers will eventually use high-level problem solving environments (PSEs) to assemble Grid applications from toolkits of domain-specific components (e.g., Matlab enhanced with additional domain-specific libraries). Another path will allow developers to build the specialized components that form these PSE toolkits (e.g., a library for solving PDEs on computational Grids) or to create new modules for their specific problem domain. In either scenario, modules are written in derivatives of standard languages with Grid-specific extensions (e.g., data or task distribution primitives). They are bound together into larger components, libraries, and applications with a coordination language. This process creates malleable modules, annotated with information about their resource needs and predicted performance for a wide variety of resource configurations.


Although the long term focus of the GrADS project is to achieve this vision of high-level programming, the effort to date has focused on tools that assist the programmer in constructing the performance estimators and mappers that are required components of configurable object programs. This effort is pursuing four general directions.

1. ClassAD Import. Because Condor ClassAD specifications are so widely used, it should be possible to import mappers and resource selection strategies implemented as ClassADs into the GrADS infrastructure. To accomplish this, the GrADS project has done two things. It has extended the ClassAD language so that it can be used to specify requirements for sets of resources, a critical capability for Grid scheduling. In addition, the GrADS project has implemented an importer tool that translates a performance model and mapper written in the extended ClassAD interface into a GrADS performance estimator and mapper.

2. Automatic Construction of Mappers. A common representation for parallel programs is the task graph, in which vertices represent computational tasks and edges represent communication dependences. Task graphs can be used to represent SPMD programs by annotating each task with the set of (virtual) processors that participates in its execution. The GrADS research has been exploring task graph mapping strategies as a way of automatically constructing mappers. The current approach is to use graph-clustering algorithms to eliminate expensive communications or to map them to fast communication links. 

3. Automatic Construction of Performance Estimators. The GrADS strategy for automating the construction of performance estimators is to use analysis and editing of application binary codes to instrument a program, multiple trial executions to determine the impact of various parameters on performance and the way that performance scales, and curve fitting to produce a final model. In preliminary experiments, this approach has proved extremely successful, with the constructed models often outperforming models hand coded by experts.

4. Component Integration. If we are to support the development of high-level programming interfaces described above, it must be possible to integrate performance estimators and mappers from components written by experts into effective estimators and mappers for whole programs. Although it is too soon to tell how well this will work, evidence suggests that such an approach could be quite effective. If component integration can be carried out successfully in the GrADS framework, it should pave the way for more sophisticated domain-specific problem solving environments.

25.4.4 GrADS Accomplishments

The GrADS project has succeeded in constructing a prototype execution system that includes all the critical components except rescheduling and migration. This framework was demonstrated at the national high performance computing conference SC2002. Within that execution framework, GrADS has successfully run six applications: 

· A version of the ScaLAPACK parallel LU decomposition benchmark [11] 

· The Cactus numerical relativity toolkit [5, 6]
· The sequence matching application FastA [40]
· A second sequence matching application that uses the Smith-Waterman algorithm [42]
· GrADSAT, a satisfiability application used in circuit design 
· An HPF version of the SPEC95 benchmark mesh generation program Tomcatv, for which the mapper and performance estimator were automatically constructed 


To support evaluation of the application efforts, GrADS researchers have constructed two research testbeds: the MacroGrid, which consists of Linux clusters with GrADS software installed, and the MicroGrid, a software testbed that permits modifying Grid performance parameters on demand.


The GrADS infrastruture is currently only a prototype, but over the next several years the developers hope to make the system more complete and robust and to spin the key software systems off into Grid middleware to exist on top of the Globus Toolkit.

25.5 Component Technologies

In order to support the GrADS application development and execution framework, a number of supporting technologies are essential. This section discusses some of the research issues that must be dealt with if the component technologies are to suffice for the task.

25.5.1 Performance Estimation
Performance estimation is difficult because it attempts to reason about complex architectures with incomplete information about the program and its data structures. The target architectures have extremely complicated memory hierarchies with differing cache structures, latencies, bandwidths, and interprocessor communication costs. Furthermore, the target may be executing in a multiprocessing environment in which many applications share the underlying hardware. The problem is made worse by the complexity of the program and the dependence of the performance on various data values that may not be known until run time [31].


These complications lead us to three conclusions. First, the performance estimation will need to be done interprocedurally, so that the entire program can be taken into account. Second, some of the performance estimation will need to be done at launch time, when the resources on which the program will run become known, and some will need to be done at run time, even if this means only that assumptions made by the performance estimator about data values must be reconsidered if they are grossly wrong. Finally, the performance estimation may still be inaccurate enough to require that it be modified after the program runs for some period of time. That means that, if the performance estimation was so far off that it is seriously affecting the actual performance, work may need to be migrated from one node in the distributed system to another. Furthermore, the performance of one run may need to be saved to affect the configuration for the next run.


All of these suggest a level of complication that is far beyond what compilers and systems are able to deal with today. If scheduling is to be done on demand for the Grid, however, it will be critical to have performance estimators that are up to the task. Thus, automatic construction of performance estimators seems essential to making Grid application development accessible to a broad community of users.

25.5.2 Mapping
Mapping, or more precisely the automatic construction of mappers, is a critical component of the GrADS strategy. The goal of this process is to produce a good match between the computational requirements of the tasks within a computation and the computational power of the underlying compute resources. This matching must also address the issues of communication, which can be critical to the performance of the overall application. In other words, the mapper is responsible for the complex task of load matching to Grid resources.


The overall goal is to produce mappers that assign computation and communication in such a way that the entire computation finishes as early as possible. One approach to this is to employ classical scheduling techniques. For a task graph, this means using some form of list scheduling, in which the tasks that are on the critical path to completion are scheduled to start at the earliest possible time [8]. Although this approach leads to some important insights, list scheduling is not ideal for Grid scheduling for two reasons. First, list scheduling maximizes parallelism, which is not always the best way to handle scheduling on the Grid. Second, it fails to handle communication effectively because it tends to assign a fixed delay to each communication, determined by the aggregate data volume to be communicated. Thus, it fails to take into account the possibility that no communication is required if the computations at the source and sink of the communication are scheduled onto the same resource. In other words, it may be useful to sacrifice parallelism in order to minimize communication.


These considerations have led the GrADS effort to look at different strategies, based on graph clustering, to build task-graph mappers. The basic idea behind these mappers is to assign the computations at the endpoints of very expensive communication edges to the same processor, even if it means sacrificing some parallelism. This suggests a node fusion process that attempts to collapse along the heaviest edges [32]. Additional research is needed to determine the effectiveness of such approaches; however, preliminary experiments in the GrADS project have confirmed the promise of the idea.

25.5.3 Whole-Program Compilation and Integration
Although a great deal of research has been done on whole-program compilation, few commercial compilers actually do it systematically, particularly across files. The reason is that whole-program compilation significantly complicates the compilation environment. Although its benefits to program correctness and performance have been well documented [37], most users are unwilling to suffer the increases in compile time that it implies. In the future, however, the penalties for inefficient compilations will be so great and the compilation problems will be so great that interprocedural compilation will become a necessity rather than a luxury. This will be particularly true in compiling for distributed heterogeneous computational Grids.


Although a great deal of research on interprocedural compilation has been published [7, 12, 17], a number of problems remain to be resolved:

· In order to support the GrADS framework, an interprocedural compilation system will need to be able to integrate performance estimators and mappers for the entire application from those same functions for individual components. Thus, interprocedural compilation will be needed because an execution model for the entire program will have to be constructed.

· Management of the location of binaries will be an essential function at program launch time. In order to avoid expensive staging of component binaries, it will be important to link program parts against shared component libraries that have been stored in advance on the remote compute resources on which a program will run. Optimizing for this contingency will be a key capability of the interprocedural compilation system.

· Management of the recompilation of files in a program will be essential if compile times are not to be unacceptably long. Although some research exists on the problem of recompilation analysis, no commercial compiler yet incorporates it.

· Recompilation management is even more complicated if runtime information from previous runs is incorporated into the compilation decisions of the current run. The compilation environment will need to be sophisticated enough to manage this process.

· Some interprocedural analysis will need to be done at link and run times. Managing this process is an open problem.

25.5.4 Runtime Compilation

Runtime compilation comes in many forms. It may be as simple as reconsidering decisions after some scalar data is read into memory or as complicated as planning communication in an irregular computation whose underlying Grid and location are not known until the key data structures are defined.


For computational Grids, it may be necessary to reconfigure and load balance an entire program at run time, a process that is likely to be time consuming, so strategies for minimizing the cost of such steps will be needed. In general, research will be needed on how to minimize the cost of making important, complex decisions at run time, as there are going to be more and more situations in which they will be required.

25.5.5 Libraries
The high-level language strategy that GrADS is pursuing will require extensive libraries of component software to be used by the system to optimize performance. As the HPF experience has demonstrated, all of the standard libraries must be capable of accepting the data types provided in the language—scientific programmers expect no less. 


Furthermore, some of the high-level programming support strategies being considered by the GrADS project depend on preprogrammed components for handling computations and managing the data structures. Thus, extensive work will be needed to understand the nature of these libraries and ways to implement them so they can be effectively integrated and optimized by the interprocedural compiler into a correct and effective configurable object program.

25.5.6 Programming Support Tools

All of the strategies envisioned for application development establish a complex relationship between the source version of the program and the version that runs on the computational Grid. Science and engineering users need to have ways to understand performance of a given program and to tune it when the performance is unacceptable. Furthermore, the explanation of program behavior must be presented in terms of the source rather than the object version [3]. Otherwise, the advantages provided by language abstraction will be lost. This task becomes particularly challenging when some of the compilation process is done at run time.


In addition to these, the compiler and language must provide mechanisms that permit the program performance to be improved once the bottlenecks have been identified. Thus, performance-improving changes must typically be made in terms of the program source, lest they be lost before the next run. Thus the tools must understand the relationship between the structure of the program and typical performance problems and they must be able to make transformations based on that understanding. Performance-tuning tools are treated in more detail in Chapter 26(?).
25.6 Summary and Conclusions

Support for application development on computational Grids is likely to present a number of new challenges to the compiler and run-time system, including load balancing, latency and bandwidth management, and problem decomposition. Although many of the key technologies developed for scalable parallel computation can be used here, they will need to be extended and augmented to handle the new challenges presented by heterogeneous distributed computing configurations. 


The Grid Application Development Software project is pioneering the development of technologies that will make it easier to develop applications for the Grid without sacrificing acceptable performance. At the heart of the GrADS system is the configurable object program, which includes a mapper and performance estimator in addition to a standard MPI program. The mapper and performance estimator are used by the GrADS execution system to handle resource scheduling and load balancing, two tasks that must be carried out by the application developer today.


In addition to the execution environment, the GrADS effort is developing tools to help automate the construction of configurable object programs. These tools, which include automatic constructors for performance estimators and mappers, draw on a variety of traditional technologies from parallel computing, including global performance estimation, interprocedural compilation and program management, runtime compilation, libraries, and sophisticated program development tools.
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25.8 Further Reading
For more information on the topics covered in this chapter, see www.mkp.com/grids and also the following references: 

· The Sourcebook of Parallel Computing [20] is an excellent source of information about parallel computing technologies and strategies. In particular, it includes chapters covering HPF, OpenMP, and Co-Array Fortran.

· Optimizing Compilers for Modern Architectures [7] is a comprehensive treatment of compiler technologies for parallel computation, including dependence analysis, vectorization, parallelization, and memory hierarchy management. It includes chapters on interprocedural analysis and compilation of Fortran 90 and HPF.

· Parallel Computing Works! by Fox, Williams, and Messina [23] compiles an enormous amount of information about parallel computation, particularly in the early days of distributed-memory machines.
· An article by Berman et al. [10] provides a complete overview of the GrADS project.
· An article by Adve et al. [3] gives an overview of considerations in designing programming tools that are integrated with the language compiler system. 
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