25 Feb 03

(Marked as draft, clarification needed as to chapter placement, Figure Nos. start w/3)

Chapter 13
Video Games on the Grid

David Levine and Mark Wirt

[image: image1.png]
Planet Earth has appoximately 430 million gamers. Some of them like to walk into arcades, plop quarters into the machine, and rack up the highest score on the boardwalk. Others prefer to quaff Bawls, the high-caffeine guarana drink, and frag their opponents at LAN parties. Then there are the console gamers who sit shoulder to shoulder in the den, shucking and jiving down the court or across the field, defying gravity, living like Mike for a few short hours. And finally there are the handhelds gamers sitting on the airplane desperately trying to get to the next level before the captain asks that all electronic devices be turned off for landing.

Back in August 2000 when we started building the Butterfly Grid, we assumed that someday all those gamers in arcades, on PCs and consoles, or twiddling at handhelds would want to find each other online to match wits and reflexes in thousands of simultaneous session. We also assumed that millions of those gamers would want to play the same game, with each other, at the same time. And we assumed that what game one was in, at any given moment, might someday be more important that what job one held, what TV show one watched, what sports team one followed, or what country one hailed from.

Being a startup with grand visions of serving millions of gamers in high-performance, low-latency tournaments, we had to be exceptionally practical. We couldn’t afford enterprise systems or a whole lot of bandwidth. So we designed an infrastructure that runs on commodity hardware that can be racked and stacked, with as many free open-source components as possible. We are building our video game grid, now known as the “Butterfly Grid,” as an on-demand service as the market for on-line gaming grows.

X.1 Design of the Butterfly Grid

The requirements for our video game infrastructure were rigorous. Gamers won’t tolerate downtime, lag, cheating, or anything else that could get in the way of the ongoing illusion of an immersive game world. To provide high performance, scalability and reliability, we designed the Butterfly Grid as a fully-distributed, multitiered system. But most important, we made the Butterfly Grid standards-based, and we augmented our own innovations with the best thinking that the academic, research, and commercial computing communities had to offer.

In formulating the requirements for the Grid, we considered not just the gamers who would populate it but also the needs of the game development studios that would create the games, the publishers who would fund the development effort and market the games, and the service providers who would operate the Grid.

X.1.1 Developer Requirements

Developers, we knew, would be focused on performance as well as flexibility. They would need to be able to use the familiar tools and programming, such as C and C++ for high-performance compiled code and Python for scripting game-play. Game developers are comfortable with Linux for the server operating system, but they would want to be able to use their favorite 3D rendering engines, such as NDL’s NetImmerse, Criterion’s Renderware, or Intrinsic Alchemy, on the front ends. They would also want to write games for dedicated video game consoles like the PlayStation2®, for Windows PCs, and for mobile devices like the PocketPC, reusing as much of their same code as possible.

Successful developers of single-player, shrink-wrapped games use every available computing resource to optimize game performance by juggling such subsystems as the graphics engine, artificial intelligence routines, and the reading and writing of data to create the illusion of an ongoing, interactive experience without the kind of glitches and lag that would momentarily interrupt the illusion. We wanted to give the developer the ability, in and creating a game for the Grid, to determine how best to allocate the resources that make up the Grid to serve their particular game. Some games would require powerful artificial intelligence driving Non-Player Characters, while others would focus on player versus player action. Some would want enormous, boundless worlds and vistas with many players in the same scene, while others would want compartmentalized game-play with only a few players in each scene.

The architecture of the Butterfly Grid gives the developer the means of writing high-performance, efficient games of any genre, as well as the ability to allocate dedicated resources to the most important facets of the game.

X.1.2 Publisher Requirements

Publishers are the financiers of the game world. Their primary talent is to cultivate studios, game designers, and franchises that will earn money in the marketplace. If it doesn’t fit on a spreadsheet, the publisher is generally not interested.
Therefore, we designed the Grid to handle multiple games on one resource base, so that publishers can dial up or dial down the infrastructure to support particular games, based on their relative success at generating revenue.

X.1.3 Service Provider Requirements

Internet service providers are pushing broadband connections through DSL and cable modems, and gamers are gobbling them up. An interesting phenomenon happens, though, when thousands of gamers on broadband connections are all playing a game hosted on a centralized server farm. The provider hosting the game has to handle enormous amounts of data. It was actually better for game hosting providers when the gamers were connecting over modems.

To solve this problem, we designed the Butterfly Grid to be installed anywhere and everywhere. Service providers can host games close to the place where the DSL or cable connections come together, and not route the traffic all over the Internet. We also designed the game servers to run on inexpensive commodity hardware, such as blade servers, so that service providers can easily manage the games, add more computing resources as they grow, and not take up a lot of power and floor space.

X.1.4 The Architecture in Practice

To meet all these requirements, we developed the Butterfly Grid as a multitiered system that specializes in-game components all joined together by the Globus Toolkit™ software. We view this software as the foundational instrumentation, or utility layer, that enables real-time game-play by matching computational resources to the demands of the gamers at any given times. The major tiers, from front to back, are the following:

· Object management system
· Network protocol stack
· Gateways

· Daemon controllers
· Game servers
· Datastores

· Utility and instrumentation (Globus Toolkit)

In May 2002, we introduced the Butterfly Grid to the video game industry at the Electronic Entertainment Expo in Los Angeles. We have game development studios from around the world building and testing new titles on our Grid, and we have been working with service providers to implement Grid nodes for their subscribers. We are committed to maintaining one Grid, so that every gamer can play with any other, regardless of physical location, access network or access device. A deeper look at the Butterfly Grid is available in our book, Practical Grid Computing for Massively Multiplayer Games.

X.2 The Globus Toolkit and the Butterfly Grid

As we have mentioned, the Butterfly Grid was designed specifically to meet the requirements of the on-line video game industry’s value chain, from developer, through publisher and service provider, to the gamer. Where we could use generalized frameworks as tools, we did so. One place that open-source, publicly available software helped our effort was in the lower-level instrumentation of our Grid, for which we used the Globus Toolkit.

As Butterfly.net developed its distributed, scalable Game Grid, the questions of resource and environment management came to the forefront. It is easy to maintain an instance of a running executable, but when the application becomes the network in some sense, these management functions become harder and more pressing. At Butterfly.net we were interested in solving the hard questions of creating a Grid operating system for games, so we decided to examine third party tools for the management and hosting of our application. As many of the problems associated with this management had already been solved, and as these problems were not our focus, it became clear that a custom-crafted solution was unjustifiable.

Our search quickly settled on the Globus Toolkit. The Globus Toolkit provides a well-integrated set of tools for job and resource management, instrumentation and measurement, and data management. It was relatively mature, and its modular structure made it well suited for integration with our existing framework.

X.2.1 Globus Services

We identified three functions that the Globus Toolkit could easily provide to out application environment:

· Staging and maintenance of code base in a distributed environment
· Scheduling, monitoring, and termination of application process instances in a distributed environment

· AMonitoring framework for real-time instrumentation

The staging and maintenance of code are functions well performed by the Globus Toolkit. Many of the tools (globus-job-submit, globus-job-run, and globus-run) transfer files as part of resource management. Moreover, the files can be staged to cache data and executables in an intelligent way. At the user’s discretion, the Globus Access to Secondary Storage (GASS) system can be employed to cache the data. Secure checksums are used to compare cached and requested versions of files, which are in turn transferred only when necessary. This caching function can be important in highly replicated environments with large sets of game data.

The scheduling, monitoring, and termination of processes is part and parcel of distributed resource management, and the Globus Toolkit performs these functions quite well. Of particular interest to us was the Globus Security Infrastructure (GSI), which vastly eased authentication is the distributed environment. Security is important, and it was useful to employ a system in which one authorized credential can function at the authorizing document in many functions on many machines.

Instrumentation is important in both development and deployment environments, but such instrumentation is complex in a highly distributed environment. The Globus Toolkit provides the Monitoring and Discovery Service (MDS) to provide an extensible and scalable framework for monitoring. MDS is a hierarchical, LDAP-based service that collects and distributes a plethora of OS-level monitor data (of the type of data normally provided by the Simple Network Management Protocol), and can be easily extended to provide application-level data.

X.2.2 Integration with the Higher Tiers of Service
Having decided upon the Globus Toolkit, we needed to identify the best place to perform the integration. We found the answer in our Game Configuration Specification (CGS).

Butterfly.net’s CGS is an XML-based specification structure for the description of games. All data elements for a game are specified within a this language: what objects exist in the game, the properties those objects have or can have, how the game-space is partitioned—all the essential properties of a game are distilled and captured within the GCS. Internally, a game’s GCS is used to generate and initialize a game’s datastore; scripts have been written to parse the XML document and produce valid SQL for the back-end database of our running software.

As we had this structure in place, we decided to extend the specification to include all data needed to physically instantiate a game instance on a physical Grid. While a tutorial or detailed explication of the GCS is beyond the scope of this chapter, a few of the document elements are in order.

<GRID>: The Grid is the base (root) node of a CGS document. Everything within a Grid (physical and logical) is contained within a Grid element

<MACHINE>: The Machine element gives names and addresses to physical machines on a game Grid. Multiple addresses are allowed as these machines can be multihomed.

<ACCOUNT>: An Account authentication record for players of games, as well as authentication records for daemon processes (NPC controllers). These are defined outside the scope of a game because one account could have permissions to participate in more than one games. The Account is related to games via a system of <PERMISSION> records (which will not be discussed here).

<SOFTWARE>: The Software Element defines a version of the Game Grid application, and relates that version of the software package to physical files within physical storage. Datafiles, shared libraries, executables, and scripts may all be specified as elements within the <SOFTWARE> tag.

<WORLD>: A World is a game. The objects, properties, and game-specific datum of a game are all defined within the <WORLD>. Game designers, for example, would do most of their work within the <WORLD> element.

We extended the <WORLD> tag to allow actual, physical instantiation of a game. We did this be defining an <INSTANCE> tag which relates the game with user-defined content, physical machines, and specific server and gateway processes. Some of the more important elements which the <INSTANCE> can contain:

<NETWORK>: Specifies multicast information (group and port) so that Butterfly.net Game Grid discovery protocols can be used.

<SERVER>: Specifies a running server process. The element relates the server with the locales it will service, and specifies the machine the instance is to run on.

<CONTENT>: Defines the nondata-driven elements of a game: scripts, datafiles, executables, and shared libraries.

<GATEWAY>: Instantiates a gateway process on a physical machine.

<DATASTORE>: Specifies how an instantiated game will connect to a datastore, and contains identifies, user names, and passwords.

Figure X.1 is a small example GSC that would instantiate a game on a small Grid of two machines. It is included not to be exhaustive but to give the reader a flavor of what GCS files are like.

Since the CGS <INSTANCE> relates to actual, physical program files, certain information concerning directory structure is included. While inelegant, it is also unavoidable: If directory structure was not specified, the process of running multiple instances of a game (or different games) on one physical machine would be much more difficult.

X.2.3 Deploying the Game

While the CGS represents an instantiated game on the Grid, it is not an executable in and of itself. It must still be mapped to the Globus Toolkit services.
We do this mapping by parsing the CGS and producing three types on output. The first type of output is game configuration files. Butterfly.net’s Game Grid is largely data-driven, but a little configuration information is needed to bootstrap the process. Figure X.2, for example, shows the configuration file for the gateway in the above instance example. The configuration allows the networking portion of the Grid to be initialized, and provides information to connecting to the datastore.

The second type of information produced are RSL files. RSL is the runtime specification language used by the Globus Toolkit to specify an application environment, and it is the main interface into the intricacies of Globus resource management. Files can be staged, environment variables can be set, and code can be executed.

In general, our parsers produces three distinct types of RSL. The first type prepares a remote machine, creating any directories necessary to implement the CGS. This is done by transferring a small Unix shell script to the remote machine and calling it with arguments describing the directories to create. Figure X.3 is an example of one such file.

The second type of RSL stages the necessary files and changes the execution bits on any executable. The Globus Toolkit assumes that datafiles are nonexecutable, so a shell script is called to give files executable permission when needed.

The last type of RSL actually executes the code on the remote machine. Of the RSL files, this is the only type that needs to be called in batch submission mode.

In addition to the RSL, the parser produces glue scripts that execute the RSL on the appropriate machines and capture the Job Submission ID for subsequent status monitoring and termination.

Application-specific information is coded into these processes, parsers, and scripts. Because we have kept them small and modular, however, they have proved to be flexible and maintainable. We’ve taken the toolkit approach, and we have been very happy with the results.

X.2.4 Future Work

The integration of our CGS, application software, and the Globus Toolkit’s resource management functions works well, and we will continue to use it in the way it was designed. Looking forward, we see two thrusts we will be pursuing.

First, we will be increasing instrumentation of our software and integrating it into MDS. As mentioned, the MDS can be easily extended. The approach that we are taking is to produce small, lightweight instrumentation probes for the metrics that we are interested in. By formatting the output of these probes into well-formatted LDAP information objects, we can easily extend MDS to include game-specific instrumentation. We have only begun to explore this.
As our instrumentation is extended, dynamic reallocation services will be written. What we described above prebuilds the execution environment, but dynamic reapportionment of resources in a running game is interesting and useful, and as such we are currently devoting much time and effort to their implementation.

Second, as Open Grid Service Architecture services become better defined, we will cast our services into OGSA-compliant forms. Initially, this effort will take the form of thin, lightweight OGSA wrappers to our existing services, but as the architecture becomes better defined and more widely deployed, OGSA functionality will probably be more tightly integrated into our offering. To this end, we have begun a pilot project to provide our services within their –e-utility infrastructure. The Web service wrappers developed in this pilot project will be OGSA compliant when the specification becomes sufficiently rich that compliance becomes possible.

References
David Levine, Mark Wirt, and Barry Whitebook, Practical Grid Computing for Massively Multiplayer Games, Charles River Media, March 2003

