[image: image1.wmf]
Figure 1 – The Condor Kernel. This figure shows the seven steps necessary to run a job in Condor. 1 - The user submits the job to a schedd. 2 - The schedd and the startd advertise themselves to a matchmaker. 3 - The matchmaker notifies two compatible parties. 4 - Both parties verify that they match each other. 5 - The shadow and starter are created, and communicates the details of the job to be run. 6 - The starter executes the user's job. 7 - If needed, the job performs I/O by communicating with the shadow directly or through a proxy in the starter.

Figure 2 – Condor-G Architecture – This figure shows the seven steps to executing a job in Condor-G. 1 – The user submits a job to the schedd, which creates a gridmanager for the job. 2 – The Gridmanager authenticates the user to the gatekeeper, which creates a jobmanager 3 – The Gridmanager transmits the job details to the jobmanager. 4 – The jobmanager stores the details. 5 – The jobmanager transfers the executables and input data from the home site. 6 – The jobmanager submits the job to the remote batch queue. 7 – The job executes.

[image: image2.wmf]
[image: image3.wmf]
Figure 3 -Original Condor-G Protocol. This is the original protocol used between the Gridmanager and jobmanager. It consisted of two atomic interactions: one to submit a job and one to indicate job completion. This protocol can lead to orphaned or wasted jobs as described in the text. A standard solution to this problem is shown in Figure 4.

[image: image4.wmf]
Figure 4 – Standard Two-Phase Commit. This is a standard two-phase commit protocol between a generic client and server. The first phase consists of a begin message to create a transaction, one or more data messages to provide the transaction details, and a prepare message to fix the transaction in persistent storage. The second phase is consummated with a commit message. Condor-G uses a variation of this protocol shown in Figure 5.
[image: image5.wmf]
Figure 5 - Improved Condor-G Protocol. This is the improved Condor-G protocol which uses a limited form of the two-phase commit protocol given in Figure 4. In the first phase, the Gridmanager submits the job details to the jobmanager. In the second phase, the Gridmanager issues a commit to complete the transaction. A similar technique is used to indicate job completion.
[image: image6.wmf]
Figure 6 - Gliding in Condor via Condor-G. This figure shows how the traditional Condor system can be glided into an existing grid using Condor-G. 1a - A user submits a glide-in job to a Condor-G schedd. They are transferred to a remote batch queue as described in Figure 2. 1b - A user submits a normal job to the same schedd. 2—7 Jobs execute on the glided-in Condor system as in Figure 1.
[image: image7.wmf]
Figure 7 shows a directed acyclic graph, or dag for short. A dag consists of several nodes, each representing a complete job suitable for submitting to an execution system such as Condor or Condor-G. The nodes are connected by directed edges, indicating a dependency in the graph. For example, in Figure 7, job A must run to completion before either job B or C may start. After A completes, jobs B and C may run in any order, perhaps simultaneously

Figure 7 – A Directed Acyclic Graph of Jobs

The planned architecture of the EDG, shown Figure 8, combines elements of both traditional Condor and Condor-G. Like Condor, it accepts work in an abstract form. In this case, it accepts an entire abstract dag consisting of jobs with requirements on the site of execution. They have the usual requirements such as the necessary CPU, amount of memory, and so forth, but they may also have requirements on relationships between elements. For example, one job may need to execute on a machine with a certain dataset in local storage, while another job may simply need to run at the same site as its predecessor in the dag. Armed with this information, the schedd evaluates the dag piece by piece. For each job, it employs the traditional model of consulting with a matchmaker to find an appropriate match for the job. However, instead of matching with a single machine, it matches with an entire batch queue. It then uses the Condor-G mechanisms for executing the job through that queue. This process continues until the entire dag has been evaluated and executed.

[image: image8.wmf]

The architecture of the Globus Chimera system is shown in Figure 9. When it finds it necessary to execute jobs, it employs many of the Condor-G components that we have already seen. The user begins by submitting a request for virtual data to the planner. This process may consult a variety of databases and resources to determine if the data has already been created, and may potentially respond immediately with the result if it is available. If not, it produces a dag designed to compute the necessary data. This is a physical dag; it is composed of jobs whose location is already specified in the form of a gatekeeper name. This whole dag is passed to a schedd which then executes each component via Condor-G as in Figure 2.

[image: image9.wmf]
[image: image10.wmf]
Figure 10 – The Master-Worker Framework

[image: image11.wmf]
Figure 12 - Direct Output via Remote System Calls This figure shows direct output coupling between a job and its storage. When the job is ready to exit, it issues commit to the shadow. The shadow forces all output to the disk, and sends an acknowledgement back to the job. Now satisfied, the job informs the shadow that it is complete

[image: image12.wmf]
Figure 12 - Interactive when Possible I/O via the Grid Console - This figure shows the flexible I/O coupling permitted by the Grid Console. As the job runs, it writes output data to the agent, which stores it on the temporary disk or forwards it to the server. When the job wishes to exit, it informs the agent, which must then force all output to the server. If successful, the job is informed and may indicate completion to the shadow.

[image: image13.wmf]
Figure 13 - Decoupled Output via Kangaroo. This figure shows the even more flexible coupling permitted by Kangaroo. The job writes its output data to the nearest Kangaroo server as it runs. When it wishes to exit, it issues a commit to the nearest server. If successful, it indicates completion to the shadow. The shadow must then issue a push in order to ensure that all output have successfully been delivered

JOB A a.job

JOB B b.job

JOB C c.job

JOB D d.job

JOB E e.job

PARENT A CHILD B C

PARENT C CHILD D E

Figure 8 – Planned European Data Grid Architecture. This is the planned architecture for executing dags in the European Data Grid. 1: The user submits a dag composed of jobs with abstract requirements. 2: The schedd advertises the requirements of the first job. 3: The matchmaker notifies the schedd of a compatible gatekeeper. 4: The schedd executes the first job via Condor-G as in Figure 2. 5: The schedd advertises the second job. 6: The matchmaker notifies the schedd. 7: The schedd executes the second job. This pattern continues until the dag is complete.

Figure 9 – Globus Chimera Architecture. This is the architecture of the Globus Chimera virtual data system. 1: The user submits an abstract job that describes a data object to be realized. 2: The planner creates a dag that will realize the data. Each job in the dag is bound to a physical location. 3: The dag is submitted to a schedd. 4: Each job in the dag is executed via Condor-G as in Figure 2.

Master Process�
�
Worker Process�
�
Gridmanager�
Inter-Grid Layer�
Jobmanager�
�
Schedd�
Inter-Customer-Layer�
Startd�
�
MW-Master

XW-Master�
Inter-Task Layer�
MW-Worker

XW-Worker�
�

Figure 11 – The Layers of Grid Computing

