10 Jan 03

(Marked as draft) ckmak


Chapter 26

Intelligent Grid Application Tuning and Adaptation

Daniel A. Reed, Celso L. Mendes, and Charng-da Lu

Grid applications access distributed, and often shared, resources. One consequence of resource sharing is that application performance can vary widely and in often-unexpected ways. Determining the causes of poor performance, either application behavior or shared resource use, and adapting to changing circumstances are critical to creation of robust applications. Performance contracts and real-time adaptive control are two promising mechanisms to realize soft performance guarantees for Grid applications. 


Performance contracts quantify expectations between application performance demands and resource service capabilities. During execution, contract monitors use performance data to verify that expectations are being met. When contracted specifications are not satisfied, the system can choose either to adapt the application to a new resource regime or to reschedule the application on a new set of resources that satisfy the contract specifications. The goal is ensuring that the application continue to make acceptable progress.


This chapter presents ideas and results relating to performance contracts and the use of automated performance diagnosis and tuning techniques for Grids. After a brief illustration of performance variability, we introduce the concept of performance contracts to handle the uncertainty in Grid application performance. We then describe performance instrumentation and contract components, followed by an overview of current challenges and likely next research steps.

26.1 The Challenge of Dynamic Behavior
Grid middleware and application software can provide access to distributed instruments, data archives, and computing facilities, enabling new modes of scientific collaboration and discovery. Managing access to these distributed resources, however, poses new challenges for software optimization and performance tuning. Grid applications must reliably acquire and use Grid resources, even when the performance or availability of those resources may change during application execution.  


Given an application and a set of Grid resources with nominal performance characteristics, one might derive models that predict performance under ideal conditions. Such models typically include computational speeds, network latency and bandwidth, and I/O speed, and they have been very useful when analyzing performance on parallel systems. Because of the dynamic nature of the Grid, however, observed performance may be quite different from model predictions. Similarly, measurements of application performance are rarely repeatable because, ipso facto, the execution environment is not repeatable. This innate variability exacerbates performance analysis, application tuning, and satisfaction of performance expectations. To deliver “reliable” performance, Grid systems and applications must adapt dynamically to changing conditions.  

26.2 Resource and Performance Variability


In addition to the complex interplay of distributed resources, libraries, and application components, Grid applications are necessarily subject to the performance vagaries of shared resource use. To illustrate how resource variability can affect application performance, we consider a computational astrophysics code taken from the Cactus package, an open source problem-solving environment for scientific applications on distributed Grids [1]. The Wavetoy configuration simulates the tridimensional scalar field produced by two orbiting sources. The solution is found by finite differencing a hyperbolic partial differential equation for the scalar field. This simple application is representative of a large class of more complex systems, including Einstein's equations for gravitational interaction, Maxwell’s equations for electrodynamics, and the Navier-Stokes equations for fluid flow.  


During execution, Wavetoy first reads a configuration file that defines various simulation parameters. Consider a simple Wavetoy execution with 500 iterations and a domain of size X=300, Y=150, Z=30 on a test Grid consisting of two Linux clusters, one at the University of Illinois and the other at the University of California, San Diego. These particular tests are based on an MPICH-G version of Cactus built atop the Globus Toolkit® version 2.0.


Table 26.1 shows the execution times of Wavetoy for three different Grid resource scenarios. The first row in the table corresponds to an execution where all the participating nodes were idle. The second row shows the execution time when an external job was concurrently executing on one of the Illinois nodes. The third row shows the time when an external load was induced at both sites. 
As the table shows, small variations in the environment can dramatically change the observed application performance. Sharing even one processor can significantly perturb the overall execution time. In addition, such variations are unpredictable: One may not know when the allocated resources used by the application will be shared. This situation is even more apparent when one considers necessarily shared resources, such as wide area networks and storage archives: Resource competition can drastically affect observed application performance. 
Hence, one cannot devise a scheme that could, a priori, select the ideal subset of Grid resources for application execution. The only way to pursue high performance is to adapt the execution, by either reallocating resources or changing the application behavior given changing resource availability.  

Need to move caption above and remove shading

26.3 Adaptive Control and Performance Contracts

To respond to changing execution conditions, applications and Grid systems must be adaptive.  Performance contracts provide one mechanism for adaptation. Intuitively, a performance contract specifies that, given a set of resources with certain characteristics and for particular problem parameters, an application will achieve a specified performance during its execution. To validate a contract, one must continually monitor both the allocated resources and the application behavior to verify that the contract specifications are met. Hence, the monitoring infrastructure must be capable of monitoring a large number of widely distributed system components without unduly perturbing behavior or performance.


The notion of a Grid performance contract is based on its analogue in civil law. Each party to a contract has certain obligations, which are described in the contract. Case law, together with the contract, also specify penalties and possible remediations if either or both parties fail to honor the contract terms. Witnesses and evidence provide mechanisms to assess contact validity. Finally, the law recognizes that small deviations from the contract terms are unlikely to trigger major penalties (i.e., the principle of proportional response).  


Grid performance contracts are similar. They specify that an application will behave in a specified way (i.e., consume resources in a certain manner) given the availability of the requested resources. Hence, a performance contract can fail to be satisfied because either the application did not behave in the expected way or the resources requested were not available. Equally important, Grid contracts embody the notion of flexible validation. For example, if a contract specifies that an application will deliver 3 gigaflops/processor for two hours and measurement shows that the application actually achieved 2.97 gigaflops/processor for 118 minutes, one would normally consider such behavior as satisfying the contract. Intuitively, small perturbations about expected norms, either in metric values or in their expected duration, should be acceptable. Mechanisms for quantifying such discretion are the subject of Section 26.6.


Implicit in performance contracts is the need for an infrastructure to instrument applications and capture performance data amenable to contract verification. This instrumentation must be as automated as possible, or it will not be used. Simply put, users should not incur costly procedures to adapt their Grid applications to a contract framework.  


In addition, instrumentation should not unduly alter the application’s behavior; otherwise, the observed behavior will not be consonant with the actual behavior. Hence, instrumentation must be inserted at the proper level, capturing only that data required to validate the contract. As an example, in a multiply nested loop, it may become too intrusive to collect performance data from the inner loops; data from the outer loop level may be sufficient to characterize the fragment’s behavior.


Moreover, one must select the appropriate metrics for contract validation. These metrics should be easy to collect, minimizing perturbation and intrusion, and should clearly characterize the behavior of the application on a given set of Grid resources. If one considers each of the selected metrics as one axis in a multidimensional space, then application execution can be viewed as a trajectory through that space. This trajectory is the execution signature of the application on a given set of Grid resources. During contract verification, one must verify that the observed trajectory follows the expected path.


Combining instrumentation and metrics, a contract is said to be violated if any of contract attributes do not hold during application execution (i.e., the application behaves in unexpected ways or the performance of one or more resources fails to match expectations). Any contract validation mechanism must manage both measurement uncertainty and temporal variability (i.e., determining whether the contract is satisfied a sufficiently large fraction of the time to be acceptable). Reported contract violations can trigger several possible actions, including identification of the cause (either application or resource) and possible remediation (e.g., application termination, application or library reconfiguration, or rescheduling on other resources).

Different solutions are potentially applicable, and the specific context will show which one is more appropriate. In some cases, migrating to another set of Grid resources is the right solution, whereas in other cases such migration might be too expensive, and a dynamic adjustment of contract parameters might be more convenient. Either way, one needs formal mechanisms to specify, implement, and validate performance contracts. In the remainder of this chapter, we use this notion of performance contract as a basis for discussion of instrumentation techniques, application behavioral characterization, behavioral validation, and performance assessment.

26.4 Automatic Performance Instrumentation

To validate a Grid performance contract, one must measure both application-intrinsic and system-specific performance metrics during application execution. Only with this data can one both validate a contract and identify the proximate causes for a contract violation. Specifically, one may need to collect performance data from multiple execution sites at differing granularities (e.g., from microseconds to hours) and from multiple system levels (e.g., from hardware performance counters, communication and I/O libraries, and application stimuli). Hence, the infrastructure for collecting performance data must be efficient, scalable, and adaptable. The Grid monitoring architecture described in Chapter 19 is one archetype of such a system. Our Autopilot toolkit [2] implements many of these components.


Autopilot is a toolkit for real-time application and resource monitoring and control built atop the Globus Toolkit Grid infrastructure. As Figure 26.1 shows, Autopilot includes distributed sensors for performance data acquisition, actuators for implementing performance optimization decisions, and a decision-making infrastructure for evaluating sensor inputs and controlling actuator outputs.


Autopilot sensors can be placed in either application or library code to capture software performance metrics. These sensors also support capture of hardware metrics via the PAPI toolkit [3]. When an application executes, the embedded sensors register with an Autopilot directory service for use by contract monitoring software. Sensor clients can then query the directory service to locate sensors with desired properties and attach to those sensors to receive data. Because Autopilot is built atop the Globus Toolkit, the sensors, sensor clients, and directory service can be located anywhere on the Grid.


Autopilot sensors, like all instrumentation, can be inserted in library, runtime system, or application code in a variety of ways. Traditionally, application developers have instrumented their source code by inserting calls to an instrumentation library. This process can be automated via parsers that locate instrumentable source code constructs and insert the requisite instrumentation calls. As an example, the SvPablo toolkit [4] contains Fortran and C instrumenting parsers that can automatically synthesize instrumentation for loops and procedure calls. The performance data produced during execution is then accessible via Autopilot sensors in real time.


Alternatively, one can use instrumented versions of Grid-aware libraries. For example, an instrumented version of MPICH-G [5] can record wide-area communications among Grid application components.  Similarly, instrumented I/O libraries (e.g., PVFS [6]) can provide details on application and file system I/O behavior. Through such library instrumentation, one can identify application performance bottlenecks and implement more intelligent, adaptive libraries. 


Consider a set of routines that implements collective MPI operations. Based on observed communication latencies and bandwidths, the library might implement multiple versions of the same operations (e.g., for use across local or distributed resources). During execution, the first call to this library routine would capture current Grid conditions and choose an appropriate implementation for this and for subsequent calls. 


One can also directly instrument application executables or compiled libraries. The Wisconsin Dyninst toolkit [7] enables modification of an executable either before or during its execution. By means of Dyninst, one can insert or remove instrumentation throughout application execution, selectively collecting performance data. Similarly, instrumentation can be inserted at specific execution phases, where the behavior is unknown, and removed after some the requisite data for intelligent optimization has been obtained.


As an example of these techniques, consider a linear solver based on routines from the ScaLAPACK package, adapted for Grid use [8]. All of the instrumentation techniques described above could be applied to generate performance data during the solver’s execution. One such implementation, which will be explored below, relies on instrumenting the application’s binary code. Just before the application is launched, Autopilot sensors are inserted into the executable, and the code is staged for execution across the Grid. 


Once execution begins, Autopilot sensors periodically collect performance data and report to attached clients. Hardware performance metrics are measured by using PAPI hardware performance counters, counts and durations of communication calls are obtained via the MPI profiling interface, and application behavior is monitored by using application-level instrumentation. The resulting data is used to compute execution signatures and to evaluate performance contracts describing expected behavior during execution.



Despite their effectiveness, however, the instrumentation techniques mentioned above might produce a huge amount of performance data when applied to large-scale systems. In such cases, some form of data reduction is highly desirable. Statistical sampling may provide a cost-effective solution. Instead of monitoring each system component, we select a statistically valid subset of components, monitor this subset in full detail, and derive estimates for the whole system based on properties of the subset. Statistical sampling provides a formal basis for quantifying the resulting accuracy of the estimation and guides the selection of a subset that meets certain accuracy and confidence specifications.


As an example of this technique, we analyzed the utilization of NCSA’s IA-32 cluster, in which application programs can run on up to 480 compute nodes. Each node is a dual Pentium III box and is allocated exclusively for a job from one of the submission queues. We collected periodic snapshots of node status information during the first ten days of February 2002. For each snapshot, we conducted a sampling experiment to estimate the number of cluster nodes having a status of “Available.” Figures 26.2 and 26.3 show, respectively, the observed and estimated utilizations. Using as specifications a confidence of 90% and an accuracy of  8%, we obtain a sample size of 87 nodes (for details, see [9]). As one can see from the figures, this sample size, representing less than 20% of the cluster size, is enough to track cluster utilization behavior quite well.


Observed utilization of NCSA’s IA-32 cluster across periodic measurements.


Figure and captions disappear - careful

In another example, we simulated a much larger system, comprising 50,000 processors, executing a mix of randomly created jobs. Using the simulation data, we conducted several sampling experiments where we varied the sampling specifications. For a given confidence/accuracy combination, we sampled the processors on each cycle to estimate the fraction of free processors. Table 26.2 shows the underlying sample sizes required. In all cases, the estimation fell within the specified range of accuracy. The table indicates that using a sample size as small as 106 processors (0.2% of the system size) one can still achieve an effective estimation.

Table 26.2: Sample sizes, in number of processors, for simulated system comprising 50,000 processors
Need to have heading spanning the 90-99 and saying Confidence. Accuracy reads down.

Accuracy
Confidence





90%
95%
98%
99%

8%
106
150
211
258

5%
270
382
536
655

3%
741
1045
1460
1778



26.5 Execution Signatures

Event tracing is the standard measurement approach for obtaining detailed data on the execution dynamics of sequential, parallel, and distributed applications [10]. Obtaining detailed data on long-running distributed applications, however, poses many challenges. First, the volume of captured performance data may exorbitant, particularly if one measures fine-grained activities (e.g., procedure calls or intertask communications). Second, causal correlation across distributed resources requires a global time base whose accuracy is commensurate with the granularity of measured events. Conversely, statistical summaries are compact, even for long-running applications; however, such summaries sacrifice insights into temporal variability and causal interactions.

Execution signatures [11] are a lossy compression of trace data that captures performance metric dynamics while minimizing loss of temporal detail. The motivation for performance signatures is quantitative comparison and validation of application execution dynamics across platforms, input data sets, and configurations. In this model, each application has a performance contract that may specify performance expectations, scheduling constraints, and other requirements. When the Grid runtime system loads an application, the corresponding contract can be used by resource brokers to enable dynamic reconfiguration and negotiation between resource providers and the application throughout application execution.

Instrumentation that captures n metrics defines a time-varying trajectory m(t) in an n-dimensional metric space. For each metric, an execution signature is a polyline fit of the trajectory, as shown in Figure 26.4(a). The online polyline generation algorithm initially uses one line segment to fit the entire metric trajectory. It attempts to stretch the line segment by fitting as many metric points as possible until the measure of error, a least-squares goodness of fit, exceeds a user-specified error threshold. At this point, the algorithm terminates the current line segment, starts a new line segment, and repeats the previous step until the signature is generated.

Multiple executions of the same application, whether on similar or different platforms, usually result in different trajectories (e.g., because of shared resource use or different hardware capabilities). These perturbations result in nonlinear scaling of the trajectories (i.e., dilation or compression,) similarly affecting the polylines fitted to them. Despite the distortion, it is often reasonable to view two polylines as similar even if one is a scaling of the other. Hence, removing the effects of scaling is critical to accurate signature comparison. 


One of the simplest approaches to trajectory correlation relies on the insertion of special instrumentation at selected points (e.g., application phase transitions, key procedure invocations, or data movements). This instrumentation emits a “marker” with a unique identifier that the runtime system can use to correlate and compare two signatures, as shown in Figure 26.4 (b).


One can compare two curves in many possible ways. For computational efficiency, we have used a template metric T(p,q) for on-line, quantitative similarity comparison of two signatures p(t) and q(t). The template metric T(p,q) is defined as follows.


[image: image1.wmf]|()()|

-

ò

ptqtdt


Geometrically, the template metric is the area difference between p and q, as illustrated in Figure 26.4(c). Hence, the smaller the value of T(p,q), the higher the similarity. Using the template metric, we can define the degree of similarity (DoS)of a signature q with respect to a baseline signature p 

DoS (p,q) = 
[image: image2.wmf]max(0,1(,)())

Tpqptdt

-

ò

. 

The DoS, which ranges between 0 and 1, is a measure of how close the application behaves in regard to the expected performance. Figure 26.5 illustrates signatures obtained from the Cactus Wavetoy code, using the number of bytes in an I/O request as the time-varying metric. Notice that the time dilation across hardware configurations is captured by the markers, enabling signature comparison and correlation across execution contexts. This ability to quantify execution behavior across executions is central to on-line, adaptive performance monitoring and control, as implemented by using fuzzy logic control for contract validation.

26.6 Fuzzy Logic Control

Even on dedicated parallel systems, application performance variations can be caused by interactions with operating system services and other applications. Hence, one cannot expect exact matches between observed and predicted performance; some variation is inevitable. As we have seen, the shared resources of the Grid create an even more dynamic environment, necessitating some mechanisms for reasoning about performance variability.


Classical control techniques and decision tables or trees require in-depth knowledge of the control domain and handle uncertainty awkwardly. In contrast, fuzzy logic provides robust mechanisms for treating uncertainty. Fuzzy logic allows one to specify behavioral rules qualitatively, rather than with hard quantitative limits (e.g., one should drive approximately 30 mph in a construction area rather than exactly 30 mph). Hence, the appeal of fuzzy logic for contract specification and validation is that violation transitions are smooth, rather than discrete. By analogy, breaking the speed limit is not a binary event, but rather a continuum that acknowledges measurement variability, environmental conditions, and context in determining violation severity.


Formally, fuzzy logic allows one to linguistically state violation conditions that should be represented in a Grid performance contract by means of a set of rules associated with fuzzy truth variables. Unlike Boolean logic values that are either true or false, fuzzy variables can assume a range of values, allowing smooth transitions between areas of acceptance and rejection. Using decision procedures based on fuzzy logic, one can quickly and easily change the rule set describing contract violation conditions to accommodate different modes of operation and levels of tolerance.


To illustrate use of fuzzy logic for Grid performance monitoring, consider a rule base defining two simple fuzzy variables, metricDistance and contractViolation, and linguistic rules for specifying the value of contractViolation based on the value of metricDistance, as follows. Here, the truth value of metricDistance is a function of its crisp input value, which can vary between 0 and 2. 


var metricDistance (0, 2) {



set trapez LOW (0, 0.5, 0, 0.5);



set trapez HIGH (1, 2, 0.5, 0);


}


var contractViolation (0, 2) {



set triangle NONE (1, 1, 1);



set triangle TOTAL (0, 1, 1);


}


if (metricDistance == LOW)



 


if (metricDistance == HIGH)





These sets and rules could form the knowledge repository for a simple Grid control system, as shown in Figure 26.6. Performance sensors provide measured performance data that can be compared with expected behavior via the knowledge repository, realizing possible behavioral remediations via actuators.


The crisp values for metricDistance result from comparing observed and expected values for a given performance metric with the observed values obtained by means of a measurement sensor. Suppose the expected floating-point performance for an application when executing on a given processor is 5 megaflops. The crisp value of metricDistance would be the absolute difference between the measured performance and the expected value of 5 megaflops. 


Depending on such crisp values for metricDistance, the truth values for the fuzzy variables LOW and HIGH are computed and combined to produce the fuzzy truth value of metricDistance. In turn, the rule base enables derivation of a truth value for contractViolation, based on the truth value assumed by metricDistance. 


Intuitively, each fuzzy variable has an associated transition function that maps crisp values to a degree of truth for the corresponding fuzzy members. The range of crisp values and the shape of the transition functions are controlled by the numeric values in the rule base. Thus, for each application and metric, one can create an appropriate rule base reflecting the expected execution behavior. 


Figure 26.6 illustrates the transition function for the metricDistance variable defined above. Consider a measured (crisp) value of 0.8; both the LOW and HIGH fuzzy variables have some degree of truth. Hence, both linguistic rules mapping metricDistance to contractViolation would be applied, both NONE and TOTAL would each have a degree of truth, and the final violation output would indicate that a partial contract violation had occurred. By adjusting the numeric values in the rule base, one can tune the desired degrees of tolerance. Assuming an expected performance of 5 megaflops, as before, the fuzzy function in Figure 26.6 indicates that there are three possible cases to consider. First, metricDistance values between 0.0 and 0.5 (hence an observed performance between 4.5 and 5 megaflops) imply no violation, because LOW is 1.0 and HIGH is 0.0. Second, a metricDistance value between 0.5 and 1.0, corresponding to an observed performance between 4.5 and 4.0 megaflops, corresponds to partial violation. Third, metricDistance values of 1.0 or more, corresponding to observed performance levels of 4 megaflops or less, result in total violation, because LOW is 0.0 and HIGH is 1.0.  

26.7 Adaptive Control Examples

To illustrate the effectiveness of fuzzy logic adaptive control for Grid performance monitoring, we present an example showing end-to-end behavior, from application instrumentation, through monitoring and contract evaluation, to final analysis and ideas for remediation. As a test application, we use the Cactus Wavetoy code described in Section 26.3. The integrated example also relies on the GrADs software infrastructure [12], described in Chapter 25.


Under the GrADS software framework, an application manager performs the Grid equivalent of functions typically done by a linker or a loader on a sequential system. It acts on behalf of the user to prepare the application executable, selects and allocates appropriate Grid resources for application execution, creates and maintains a set of performance contracts, and launches both the application and a contract monitor. 

Just before an application is launched, the application manager instruments the application code to capture performance data by inserting Autopilot sensors into the binary code. During execution, the sensors periodically send performance data to any connected clients. In this case, the client is a contract monitor task, which accepts sensor inputs, evaluates the rule base using those inputs and determines whether contract violations exist. These contract outputs are distributed via sensors. A Java interface accepts metric data and contract outputs for real-time visualization.


As an example, Figure 26.7 shows the contract monitor display for the Wavetoy code’s execution on two distributed clusters, one at the University of Illinois and another at the University of California, San Diego. Each bar in the figure corresponds to the contract evaluation for a given node, and the envelope over a bar indicates the high water mark for that contract. Because contract outputs are fuzzy variables, they can assume any value between 0.0 and 1.0. Values near 0.0 represent no contract violation, whereas values close to 1.0 represent large violations. 
In the figure, a load has been imposed on one of the distributed computing resources that host the code. This load skews the observed performance, and this delay is propagated across all tasks, resulting in some degree of violation on all processors. Note that Fig. 26.8 disappears

The contract outputs in Figure 26.7 are computed as a fuzzy combination of individual contract outputs for each monitored performance metric. Thus, one can also analyze individual metrics to understand the causes of contract violations. Figure 26.8 shows the individual contract outputs for one processor. Figure 26.9 shows a combined view of the two most affected metrics for the same processor, in a scatterplot form. The bounded regions in the metric space corresponding to the borders of the contract are codified in the rule base. Points inside the inner rectangle correspond to no contract violation, and points outside the outer rectangle correspond to a total violation. Points that lie between the two rectangles represent partial contract violations for those metrics. 


Given this type of real-time contract monitoring, it is possible to redress contract violations, depending on their severity and duration. For example, one might choose to halt the execution.  Alternatively, one might choose to migrate and reschedule a portion of the computation on resources not affected by external loads. The ability to stop, migrate, and restart an application requires some degree of application support, typically in the form of checkpointing.


This integrated example highlights both the power of real-time adaptive monitoring and control and the remaining challenges necessary to make it a practical reality. Most notably, current contract monitoring schemes have no mechanism to assess temporal variability and contract violations. Intuitively, a contract remains valid if the performance of most tasks is at or near expected levels most of the time. Formalizing the meaning of “most of the time” and “most tasks” are critical areas of research, as is assessment of control stability and rescheduling mechanisms.

26.8 Conclusions and Future Directions

Grids represent a new and promising environment for accessing distributed resources, and the field of performance analysis and optimization for Grid applications is still in its infancy. Grids, like networks, are shared resources, and this sharing requires nimble, adaptive applications and middleware if one is to achieve high performance. Moreover, if Grids are to be widely deployed and embraced by users, these adaptive optimization mechanisms must be automated and largely invisible to application developers. 


Performance contracts must be extended spatially and temporally. Spatial extension must support analysis and optimization across applications and Grids with thousands of cooperating sites. This capability requires distributed contract validation to ensure contract validation scalability. A monitor corresponding to the entire resource set could combine outputs from distributed contract monitors. Similarly, one must assess the relative importance of violations associated with different resources (e.g., Is poor computation performance more, or less, important than poor network performance for this current application?). Moreover, global contract optimization across multiple application with conflicting resource needs will require new ways of reasoning about system balance and resource availability.


Temporally, several issues must also be explored. In the examples presented in this chapter, contract outputs were valid at a given instant without regard to previous application or system status. A more intelligent validation scheme should incorporate previous validations and make decisions based on both current and past states. Temporal logic could provide one formalism, where contract violations are characterized as a pattern of consecutive “instantaneous” violations. Such a mechanism would be much more resilient to dynamic variations typically found on the Grid.


As Grids expand and become mode widely adopted, one can expect that resources will be apportioned subject to cost constraints. The main concepts guiding other types of economies should also be applicable to Grids, forcing resource specification and access negotiation agreements between Grid resource providers and users.


Finally, as Grids expand, fault tolerance will become increasingly critical, just as it is in wide area networks. Under these conditions, fault tolerance and checkpointing/restarting schemes will become particularly important for effective Grid usage.

Acknowledgments

The work on Autopilot and SvPablo described in this chapter is based on the research and software development by a host of graduate students, postdoctoral associates, and research staff, notably Ruth Aydt, Luiz DeRose, Pedro DeRose, Randy Ribler, Fredrick Vraalsen, Dan Wells, Shannon Whitmore, and Ying Zhang,


This work was supported in part by the National Science Foundation under grants NSF EIA-99-72884 and ASC 97-20202; by the Department of Energy under contracts DOE W-7405-ENG-36, LLNL B341494, DOE SciDAC DEFC02-01ER41205, and LLNL B505214; and by the NSF Alliance PACI Cooperative Agreement.

 












Further Reading

For more information on the topics covered in this chapter, see www.mkp.com/grids and the following references:

· An overview of real-time performance monitoring and examples of adaptive control systems

· Vetter, J. S. and Reed, D. A.,  “Real-time Performance Monitoring, Adaptive Control, and Interactive Steering of Computational Grids,” The International Journal of High Performance Computing Applications, Winter 2000, Volume 14, No. 4, pp. 357-366. 

· A description of the GrADS project, focusing on application adaptation for Grid execution
· Kennedy, K., Mazina, M., Mellor-Crummey, J., Cooper, K., Torczon, L., Berman, F., Chien, A., Dail, H., Sievert, O., Angulo, D., Foster, I., Gannon, D., Johnsson, L., Kesselman, C., Dongarra, J., Vadhiyar, S., Wolski, R., Aydt, R. and Reed, D. A., “Toward a Framework for Preparing and Executing Adaptive Grid Programs,” International Parallel and Distributed Processing Symposium (IPDPS NGS), Fort Lauderdale, April 2002.
· An overview of the Autopilot performance monitoring toolkit.
· Ribler, R. L., Vetter, J. S., Simitci, H., and Reed, D. A., “Autopilot Adaptive Control of Distributed Applications,” 7th IEEE Symposium on High-Perormance Distributed Computing, July 1998.

· 1.
· 1.
Allen, G., et al. The (Cactus) Code: A Problem Solving Environment for the Grid. in Proceedings of the 9th IEEE International Symposium on High Performance Distributed Computing - HPDC'00. 2000. Pittsburgh.

· 2.
Ribler, R., H. Simitci, and D. Reed, The Autopilot Performance-Directed Adaptive Control System. Future Generation Computer Systems, 2001. 18(1): p. 175-187.

· 3.
Browne, S., et al. A Scalable Cross-Platform Infrastructure for Application Performance Tuning Using Hardware Counters. in Proceedings of Supercomputing'2000. 2000. Dallas.

· 4.
DeRose, L., Y. Zhang, and D. Reed. SvPablo: A Multi-Language Performance Analysis System. in Proceedings of the 10th International Conference on Computer Performance Evaluation - Modeling Techniques and Tools - Performance Tools'98. 1998. Palma de Mallorca, Spain.

· 5.
Foster, I. and N. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. in Proceedings of Supercomputing'98. 1998. Orlando.

· 6.
Ligon, I.W. and R. R. An Overview of the Parallel Virtual File System. in Proceedings of Extreme Linux Workshop. 1999. Monterey.

· 7.
Buck, B. and J. Hollingsworth, An API for Runtime Code Patching. Journal of High Performance Computing Applications, 2000. 14(4): p. 317--329.

· 8.
Petitet, A., et al., Numerical Libraries and the (Grid): The (GrADS) Experiments with (ScaLAPACK). 2001.

· 9.
Mendes, C. and D. Reed. Monitoring Large Systems via Statistical Sampling. in Proceedings of the LACSI Symposium. 2002. Santa Fe.

· 10.
Reed, D., et al. Performance Analysis of Parallel Systems: Approaches and Open Problems. in Joint Symposium on Parallel Processing (JSPP). 1998. Nagoya, Japan.

· 11.
Lu, C. and D. Reed. Compact Application Signatures for Parallel and Distributed Scientific Codes. in Proceedings of Supercomputing'2002. 2002. Baltimore.

· 12.
Berman, F., et al., The GrADS Project: Software Support for High-Level Grid Application Development. International Journal of High Performance Computing Applications, 2001. 15(4): p. 327-344.









Grid Scenario �
Execution Time (seconds)�
�
Nodes exclusively used by Wavetoy�
138�
�
One Illinois node shared�
245�
�
One Illinois node and one California node shared�
446�
�
Table 26.1: 


Wavetoy execution times on eight Grid processors under different scenarios.


























_1097508362.unknown

_1097509128.unknown

