17 CHAPTER Grand Challenges in Computational Astrophysics
Gabrielle Allen, Edward Seidel

MPI for Gravitational Physics - Albert Einstein Institute, Am Mühlenberg 1, 14476 Golm, Germany

{allen,eseidel}@aei.mpg.de
Astrophysics is a natural driver for extreme computing technology. From simulations of the Universe and its constituents, to analysis of vast amounts of data collected by observatories of various kinds, astrophysics has always been at the forefront of computation. Calculus itself was developed by Newton as a “computational technology” to understand the dynamics of the Solar System, and the needs of astrophysicists led to the creation of the US supercomputing centers program in the early 1980s. In a similar fashion, the latest generation of astrophysicists have become a driving force behind the development of the Grid. Our goal in this chapter is to communicate how this symbiosis between astrophysicists and Grid technologists is contributing to the development of both disciplines.

Our target community is astrophysicists using computational tools to understand exotic processes in the Universe, from localized processes (star formation, solar physics, supernovae, collisions of, or accretion around, neutron stars and black holes, gravitational waves, and -ray bursts), to collections of all these (the formation and interactions of galaxies), to dynamics of and structure formation in the Universe itself. Each individual process is extremely complex, drawing simultaneously from a vast fundamental knowledge base that includes nuclear, atomic, and particle physics, astrochemistry, relativistic magneto-hydrodynamics, radiation transport, and general relativity. In some problems, e.g., -ray bursts, all of these elements may be needed to describe the real-universe processes. Modeling these different processes requires a wide range of both physical theory and algorithmic techniques (e.g., finite differences, finite elements, spectral methods, N-body approaches, smooth-particle hydrodynamics). Processes may occur on multiple and dynamically changing time and length scales that are intricately intertwined, leading to vastly changing computational requirements over the life of a single computation. These qualities translate into important requirements and scenarios for Grid use.

For these reasons, the computational problems are immense; a realistic calculation of most of these processes, one that is capable of predicting the details of what actually happens in Nature, simply dwarfs the capacity of existing supercomputers (one needs a pretty large computer to simulate the Universe). Most of these problems are intrinsically large-scale and three dimensional (3D) in nature, and thus require highly parallel codes to run efficiently on advanced HPC architectures, and lead to large resource allocations at multiple national computer centers. Far more CPU time is requested than is available to users for development, testing, and production. Additionally, the issues involved with working in such a complex computational environment are a big distraction and inconvenience for researchers trying to focus on physics.

When 3D astrophysical processes are modeled on large-scale computers, they usually generate huge amounts of output data. The amount of output is generally constrained by the available space, by the ability of visualization tools to handle the data, or by the capacity of the network connecting the scientists, who are usually remotely located, to the computing facilities. Storing, managing, visualizing, analyzing, and ultimately understanding these output data, and their relevance to any observational data, can be an overwhelming problem.

For many of these problems the physics needed is so rich and varied that no single group or community has enough expertise to tackle every part of them. Larger and larger collaborations between groups with different expertise areas are required to give a realistic description of these processes. These groups are geographically distributed around the world. As these international collaborations develop and grow, they recognize the need to share code, tools, data and results, and to move towards standards that facilitate this. Standard interfaces between tools lead to better interoperability between groups, while also lowering the barrier to entry into a project by smaller groups or individuals, who can more easily leverage the work of others.

In response to these daunting computational, intellectual, and sociological challenges, typically only simplified, scaled-down models are studied, simply because they can be studied within the limits of existing machines, and drawing from the limited knowledge base of an existing community. In other words, the problems one needs to solve are often scaled back or simplified to problems that can be made to fit on presently available resources. As codes and methods mature, and as resources grow and their use simplifies, the ability to better model Nature will improve.

So far, we have characterized the complexities only of the computational problems of numerically simulating astrophysical processes. But astrophysics is also an observational science, as discussed in Chapter NVO. An increasingly large and varied array of detectors, satellites, and observatories is creating a vast amount of data to be studied, from many locations on earth (and nearby). These data sources need to be linked together, and ultimately connected to simulations of the sources from which they collect data. This interplay and coordination between a multitude of prodigious data sources on the one hand (both archived and live from different experiments around the globe), and both simulation and analysis processes (that themselves may require computational power that dwarfs what is available on today’s largest systems) on the other, are among the reasons why Grids are becoming so important to the astrophysics communities. The available computing power of any single site is too limited, and the communities and data are widely distributed. An environment of seamlessly integrated computational resources, continuously updated data archives, and communities of scientists and engineers is exactly what is required for the astrophysics and many other disciplines, and is exactly what is promised by the Grid.

17.1 Numerical Relativity and Astrophysics

To provide a definite focus (and to draw upon our own expertise), we concentrate on Grid approaches being used and developed now in the numerical relativity community. The approaches and tools we describe are however applicable across a wide range of applications in computational astrophysics and beyond.

Numerical relativity, the numerical solution of Einstein’s Equations for General Relativity, is demanding computationally and requires a broad expertise base drawing from large, dispersed collaborations of both physics and computer scientists [1]. Interest in the field is currently high, since we will soon be observing gravitational waves with large-scale laser interferometric detectors [2].

Today, crude simulations of sources of gravitational waves, such as colliding black holes and/or neutron stars, supernova explosions, and other phenomena, are barely within reach of available computational resources and the communities that use them. Large groups and collaborations, such as those clustered around the European Astrophysics Network, run simulations on a daily basis on both workstations and supercomputing resources scattered across the world. Sharing a common code base (based on the Cactus Framework: see below), groups of researchers create simulation codes by assembling modules, e.g., for evolving the gravitational field, hydrodynamics, analysis of gravitational waveforms, parallel I/O and communication, and remote control and visualization. Because the groups share their inhomogeneous computing resources, these codes must be extremely portable so that the same code can run equally well on an un-networked laptop at home in Greece, for development and testing; a workstation in Germany; or on any subset of a dozen large (1000+ processor) supercomputers or clusters across Europe and the USA. Such needs motivate interdisciplinary and international common formats, protocols and access, especially for data and information (IAN: tie-in to data chapter Data Grids and semantic Grid chapter Knowledge on the Grid).

We anticipate an imminent explosion of computational resource needs, far beyond those just described, as projects move from development to real production, for example, for numerical relativity to be able calculate accurate waveforms for gravitational wave observatories. These projects will also require even larger collaborations, because the mathematical, physical, and computational knowledge needed to perform a single simulation, with as much realistic physics as is required to model a real astrophysics event, is so vast. The difficulties just described all then increase dramatically, and functioning Grid technologies and tools will be crucial for success.

Consider a simulation of some exotic astrophysical process, either to satisfy the curiosity of group of scientists, or needed immediately to analyze live data from an observatory. This job, big or small, now or in the future, must be submitted to a queue somewhere. Care must be taken in choosing the appropriate resource; when the jobs actually starts, it must be able to notify interested users distributed across the world; while it runs, any number of users may need to monitor its status, visualize the results, and if necessary, make changes to parameters; and finally, after it has completed, the potentially huge amounts of data generated must be archived, visualized, and analyzed. Information about the results may need to be accessible to many scientists. Existing components to achieve all of these goals, described below, were used in one of the largest simulations to date of two orbiting, coalescing black holes, carried out on some of the largest academic machines at NERSC and NCSA by a collaboration of researchers across several countries in Europe and the Americas. A visualization from this simulation is shown in Fig. 1.

Technologies to provide for some of the needs of such collaborations are already available at present, these are now being expanded and adapted to make use of emerging Grid standards, and are also being used as prototypes for Grid technologies that are clearly needed (since in prototype form they are being used on a regular basis today). In the next sections, the technologies we discuss are both actually in regular use, and are being used to guide the next generation of application-oriented Grid technologies.
[image: image1.jpg]

Figure 1: Two orbiting black holes, at center, are about to collide in this visualization of one the largest simulations to date of this process. The emitted gravitational waves, hoped to be detected this decade, are shown as swirls of color. This simulation required well over 100GB of memory, generated a TByte of output data, and required more than a day on thousand processor machines at NERSC/NCSA. Grid technologies were used to remotely monitor and visualize this production simulation, while it was running, by a collaboration of astrophysicists in different countries.

17.2 Requirements for Grid Technologies and Tools

In this Section we list some of the driving requirements that computational astrophysicists, as “End Users” have for the Grid. End users can be of different types with different needs. Some develop simulation codes, while some run codes and analyze or interpret their resulting output data to learn new physics. Whereas developers may be primarily interested in Grid-enabled frameworks, debuggers and profilers, those charged with running codes to obtain results are more interested in improved access to resources, reliability, ease-of-use, and new functionality such as remote techniques for visualization, interaction and collaboration.

Section 17.4 describes Grid-oriented and collaborative use case scenarios being prototyped, developed and used today in numerical relativity. The associated collaborations already form Virtual Organizations (VOs), with distributed colleagues sharing (usually in ad hoc ways) resources, data, codes, knowledge and expertise. These VOs, based around intellectual and research considerations, span many different countries, funding agencies and resources. Any Grid solutions must provide for the entire collaboration: infrastructure that leaves just one collaborator isolated (e.g., because his country does not issue a trusted Grid certificate) will face barriers to acceptance.

To support code development and production jobs, Grid technologies must be correctly and reliably deployed and supported on all the resources used by the collaboration, including those that are not early Grid adopters. All this must be achieved in a stable and usable manner—Grid technologies should be as reliable and failsafe to use as compilers or message passing libraries.

Scientists need to remain in control of their simulations and understand how and where they are being run to be able to develop, test and debug their codes. Developing large codes even on today’s independent resources provides challenges in understanding potential different problems arising on different architectures or different numbers of processors. This requires clear and complete logging information, and the ability to recreate a specific environment, in order to reproduce specific results, and the need for validity tests on codes. For those developing applications to make enhanced use of the Grid, problems are exacerbated. It is important to have appropriate tools and procedures for diagnosing and solving problems that arise in this more complex environment, and to contribute extensions to them. This requires the use of open technologies, good documentation and communications between application and Grid communities.

Developers of Grid-aware codes and tools require the same kind of tools they have at hand for developing applications on today’s supercomputers. Grid-enabled frameworks and toolkits should be constructed to hide the complexity of the Grid and provide application-orientated APIs for providing functionality. Our particular community is so aware of this need that we were among the founders of the European GridLab project [3, 4] which is developing a “Grid Application Toolkit” (GAT) that will provide abstract APIs for common Grid operations, such as moving and archiving files, searching for suitable machines, and migrating running codes. Even with such a toolkit, other standard tools are crucially needed, such as Grid-debuggers, Grid-profilers, mathematical and I/O libraries. Ultimately Grid-aware compilers and operating systems should work at a low level to provide additional functionality.

Section 17.4 describes Grid usage scenarios envisioned by computational astrophysicists, and the Grid services that they require. Core services, which could be used straight away through toolkits such as the GAT, include resource and application information, resource discovery, network information, data archiving and replication, reliable file transfer, job staging and migration, and community authorization.
17.3 Cactus: An Application Framework for the Grid

While Grid technologies should work with legacy codes and current working practices, ultimately applications need to be written and developed in new ways if they are to fully leverage the potential of the Grid. Further, the way that we as scientists use our codes, utilize our resources, and conduct our collaborations, also needs to be rethought. We describe a specific application framework, Cactus [5], that includes features suitable both for prototyping Grid use and for exploiting the Grid as technologies mature. We find that many capabilities needed for Grid execution coincide with those required for running and working successfully in today’s computing collaborative environments, embracing such things as abstraction, portability, modularity, checkpointing/restart, flexible I/O, information interfaces, and parameter steering.

Cactus is an open source, generic problem solving environment designed to provide scientists and engineers with a portable and collaborative framework for high performance computing. Although Cactus has emerged from the numerical relativity community, it is now used by a growing number of applications in science and engineering. The simulations of black hole collisions described in the previous section, and visualized in Figure 1, were performed using a code developed in the Cactus framework.

The Cactus design has been motivated primarily by computational issues facing researchers needing large-scale resources, and involving sizable development and user teams. Its resulting modular structure easily enables parallel computation across different architectures and collaborative code development between different groups. Modules (“thorns” in Cactus nomenclature) can implement different parts of custom developed scientific or engineering applications, such as numerical relativity. Other thorns from standard computational toolkits provide a range of computational capabilities, such as parallel I/O, data distribution, or checkpointing.

Although Cactus is mainly used today in traditional supercomputing environments, many of its design features enable it to make good use of Grid technologies, and to prototype new Grid scenarios. In particular, Cactus is highly portable across architectures (for example, it runs on iPAQs and Playstations) and has a configurable and scriptable build system, a built-in information web server and steering API, and robust platform-independent checkpointing and restart capabilities.

The Cactus I/O layer maps parallel I/O to different libraries and new file formats. HDF-5 support for platform-independent hyperslabbing and downsampling have proved particularly useful for Grid work. (We describe Grid usage scenarios requiring these capabilities in Section 17.4). The parallel driver layer is implemented by a thorn, and the default MPI-based PUGH driver can be replaced by drivers based on other paradigms. PUGH can be linked with MPICH-G2 [6] for distributed computing (see Section 17.4.3).

The key lesson learned from Cactus is that end users must be provided with abstracted interfaces that protect them from the details of lower-level Grid services, just as on a single machine, abstractions protect users from the details of the message passing or I/O system that exist on a given machine of today.
17.4 Grid Usage in Computational Astrophysics

We describe a series of usage scenarios, motivated by computational astrophysics but generally applicable across many disciplines. In each scenario, we describe both how today’s technologies are used to enable these activities now, as well as our vision of how they will be used as Grid technologies are fully deployed in the future. Based on what is possible now, sometimes even in prototype form, we hope to show how even the most futuristic scenarios are not only possible, but not far from reality.

17.4.1 Organizing and Using Resources: Virtual Organizations

The virtual organization (VO) concept introduced in Chapter INTRO is central to our work. Here we consider a VO as simply a collection of resources, managed independently but cooperatively and available to some user community. Effective use and management of these resources is of prime importance to this community.

The simplest and presently most important usage scenario for computational astrophysics on the Grid is probably that of resource discovery and job submission. A scientist in the EU Astrophysics Network has prepared an executable and input parameter file, used to simulate the two black hole merger depicted in Figure 1. With access to many large-scale computing facilities around the world, typically all with different userids, passwords, operating, queuing, and file systems, simply choosing where to run this simulation is complicated. Often researchers will use the resource they used the day before, regardless of whether it is the best of those available now (e.g., least loaded, most appropriate for current job, etc.), simply because they still remember how to use it.

Grid technologies simplify the process of accessing these resources. Certificate-based authentication allows users to use all systems in their VO with a single login, which is then mapped to their local account. Similarly, other local idiosyncrasies can be removed: common Grid-enabled interfaces to local batch systems, file systems, data archiving, etc., create the notion of unified user commands for all resources. At present the basic Grid technologies to support this are well developed and robust, and are being rapidly deployed across many local and national sites.

Going one step further, it is natural to provide access to, and interaction with, all the resources in one’s VO through a web-based portal, IAN: tie-in here to a description of portals in another chapter? ? Once authenticated with the portal, in principle the user can see all available resources, check their status, and submit pre-configured jobs to a given machine. We use a portal developed within the NSF Astrophysics Simulation Collaboratory project [7] to perform all these functions, and others described below.

[image: image2.jpg]Welcorne

EXE

[Last step: verity 30b

‘ << Back | _submit Job | cancel Edit |

[Executable: [Melinda
| Stdout: I
|Stderr: |
|Arguments: |
Environment: [
| Host Name: I
|
I
[

|ob Scheduler:
[Minimum Memory:
[Number of Processors:

1000

Figure 2: A web-based Grid portal, built using the GridSphere framework under development by the GridLab project. The portal provides convenient information about and access to resources, running jobs, and archived files.

We just described the major step forward provided by Grid technology in its simplest form, going from widely disparate, networked resources scattered across the globe, to a unified, single Grid login system, with all relevant information and job submission mechanisms collected in a point and click web interface. But soon a much more advanced paradigm will be available. Rather than manually selecting a resource based on information shown in a portal, it will be possible to formulate a request of resource needs (which could be manually or automatically generated based, for example, on statistics of the last similar job). The user’s portal forwards this request to a resource broker service (Chapter RM) that knows about the user’s VO and can automatically route the job to the most appropriate resource, given the user request. The user does not usually care where the job is run, only that it is run as quickly as possible. These technologies are all developed in varying stages from prototype to production, and will be widely deployed and used over the next couple of years. This constitutes another large step forward for numerical relativity and other communities.

But think just a bit further: imagine resource brokering services that can be accessed from anywhere, including from the applications themselves. Changing application needs or machine loads could trigger requests for other resources, to be found and used on demand, as we describe below. There are many innovative Grid usage scenarios that are just around the corner once these technologies are deployed and applications are retooled to make use of them.
17.4.2 Interacting with Grid Jobs

Traditionally, the computational scientist running a large simulation first submits a job to the batch system on a remote machine and the periodically re-logs onto that machine to check status. Maybe the job is still waiting in the queue, maybe it is actually running, or as frequently occurs maybe it has been terminated for an unexpected reason. Such working practices are frustrating for users: a job sits in a queue for days, and fails upon execution because of a simple error in initialization; or perhaps it runs for 72 hours, and then aborts because it had been preset to output too much data and a disk quota was exceeded. Worst of all, it may have successfully burned 100,000 CPU hours, but produced nonsensical results because of an incorrect parameter setting. These considerations motivate the development of more sophisticated interactive job monitoring and steering that will soon enable much more innovative Grid applications, such as those described below.

An information and steering interface has been developed for Cactus that allows any user with a web browser to interact with a running job. (A live example can usually be found at http://www.cactuscode.org.) The HTTPD Cactus thorn is a web server that can display all current information about the running job, including active routines, their version numbers, time step, estimated time to completion, written data files, and can even include visualizations embedded in the web pages. Any parameters declared steerable can be changed on the fly through a web form interface; I/O frequency, variables output, downsampling, and any other such parameter can be changed at will, allowing the user to correct many problems described above, without having to restart. When a job starts, its URL is broadcast to a portal, which then notifies a user-defined group of collaborators via email or SMS message with contact information that they can then use to access the simulation from a browser. Significant simulation events such as the merging of two black holes can be programmed to trigger notification of a user or group of collaborators.

A portal thus becomes the organizing instrument for collaborative computational science. Jobs can be grouped by collaboration, by topic, by status (currently running or archived output data), etc. Hyperlinks to data produced by the simulation provide instant access for visualization. When clicked, if data reside in a file they are downloaded from the remote site to the local user machine and the appropriate visualization client is automatically launched. If they reside in memory allocated to a running simulation, they will be streamed over a socket directly to the local visualization client. The overall picture of interactions with remote data or running jobs is shown in Figure 3.
[image: image3.png]Web Interface fo to

Monitor/Steer Code Remote/Streamed

| Data to Any Viz Client

Live Simulation
or Data Archive Event Notification

Figure 3: We show various ways of starting, monitoring, and steering computations in active use today. Users can submit jobs from a portal, and when they start they register themselves with it, providing links to the job for all participating collaborators. Jobs can be monitored, steered, or their output data visualized, either live or from data archives. Important events in the life of a job trigger notification to various types of devices.

These technologies are working now, and see growing use in numerical relativity projects. However, several problems must be addressed before such interaction mechanisms are fully embraced. First, firewall issues often conflict with the user’s need to interact directly with remote data or simulations from any location. Second, such tools were developed before the Web service model for the Grid was introduced, and need to be retooled to take advantage of them. As discussed in Chapter OGSA, Web services mechanisms will allow applications to announce themselves not just to a portal, but to any other compliant information servers or applications, exchanging data, contacting resource brokers to find new resources, starting up other applications, notifying users or other applications when certain events take place, etc.
17.4.3 Distributed Computing

There are various motivations and methods for distributing applications across resources. First we describe two scenarios which are already being implemented to find the resources necessary for compute intensive astrophysics applications, task farming and metacomputing. Task farming involves farming out (a great many) independent or loosely coupled tasks, to resources scattered across a VO (see Chapters I:MIRON and MIRON). Typically tasks little or no communication between tasks is required, and often little data needs to be returned by a task. Metacomputing, in our definition, involves the distribution of a small number (usually, just one) of large, tightly coupled tasks across a small number of large machines.

Task farming has two primary uses in our community. First, the algorithms for numerical relativity are still being developed and understood, and simulations typically require careful tuning of theoretical and computational parameters for success. Task farming is being used for performing such parameter surveys to improve the simulation quality of a given physical system. Second, physical parameters may be varied over a large range of possibilities to search for the most interesting regime to be studied in depth. For example, the investigation of critical phenomena for a pure gravitational wave collapsing to form a black hole requires knowledge of the precise critical value for the amplitude of the initial wave. Slightly above this amplitude, the wave will collapse to a black hole, while slightly below, it will disperse. Dozens or hundreds of jobs may be needed to find the critical value to sufficient accuracy. In both cases, Grid task farming makes use of underlying Grid technologies to discover appropriate resources in a VO, to handle the staging and starting a set of tasks (and to archive task results), and to complete them in as short a time as possible. In our community, such Grid task farming is now being introduced and although it has not yet been widely adopted, it is highly desired.

Metacomputing in numerical relativity goes back a decade, and has been brought to a rather advanced state in the last few years [8, 9]. There are two primary reasons for needing metacomputing. First, the fidelity of simulations in relativity, as in many disciplines, are limited by available computing resources. By harnessing multiple machines simultaneously, much larger—and hence more realistic—simulations can be run. Second, if, say, 1024 processors are needed for a job, but no single machine can provide them right away, four machines might be able to provide 256 processors each. In this way, throughput can be dramatically increased.

As an example, in 1998 we were able to distribute a single simulation of two colliding neutron stars across three Cray T3Es located in Germany and California, while performing a live visualization from Florida. By 2001, we could run a similar simulation across multiple remote machines, running on different operating systems, using adaptive techniques that automatically adjust messages sent across the network between machines to increase the efficiency, from 15% to over 70% as the simulation ran [8]. These results were achieved with actual—and complex—production applications, on production machines and networks, and with no special conditions being created to enhance performance. Such experiments show that not only are such Grid-based metacomputing scenarios possible, they can be run with a high degree of efficiency even for tightly coupled simulations such as Einstein’s equations requiring many communications. Using the ASC portal [7] and Globus Toolkit DUROC [10] and MPICH-G2 [6] functionality (Chapter RM), such complex jobs can be launched via a simple point and click interface. Further, the Cactus-based application code could use a Grid-enabled version of the message passing layer without modifying a single line of the application itself. Any code making use of these abstractions in Cactus can run in this distributed Grid environment. Although these technologies are quite advanced and robust, they are still used primarily for development and not production only because of infrastructure deployment and scheduling issues. As Grid technologies are progressively being deployed across all production sites, these capabilities can become a regular production mode of operation for some communities.

More complex distributed computing scenarios build on the technologies described so far. Migration involves moving a simulation from one site to another to satisfy some criterion [11]. A simulation may determine that it is running more slowly that expected, due to some extra load applied to the system, or that it needs more memory, due to adaptive meshes being used to resolve a developing black hole. The simulation can then notify a resource brokering service that it wants to move to a more appropriate resource. If a new resource is found, a checkpoint file is written and transferred, a new executable is started, and the portal is notified of the new location. Robust prototypes of migration are running [12] using unmodified Cactus-based relativity applications. Abstractions allow the application to work in the Grid environment without change; the framework does the rest.

A variation on migration is spawning. Spawning involves moving a part of an application to an appropriate remote resource, while the rest continues untouched. For example, at frequent times in a simulation of colliding black holes, analysis tasks must be carried out to locate the black hole horizons or compute the gravitational waves emitted. These time-consuming tasks may not feed back to the main simulation, or may not be easily parallelized, and hence can be spawned to a more appropriate resource, allowing the primary resource to fully concentrate on its task of advancing the main simulation, improving efficiency and throughout. Again, spawning scenarios were demonstrated at SC01, where a black hole simulation running in Germany was able to automatically spawn analysis tasks to resources in Europe, Asia, and North America. A complete set of tools to allow any application, independent of Cactus, to automatically migrate or spawn to accessible resources, is under development in the GridLab project and elsewhere.
17.4.4 Data Management

The large 3D simulations which we have been considering here generate correspondingly large amounts of output data, which must be analyzed and visualized (often by several different members of a VO) for physical results, and archived for later use. Each simulation can generate hundreds of files of with different file formats, and the discovery and manipulation of these files is complicated by the fact that users are running on different machines, with different filesystems, quotas, and archiving possibilities. For Grid applications, the data management problem is exacerbated —in the scenarios described above users will not necessarily even know on which machine there simulation is running, or the simulation could even be moving between resources leaving data in multiple locations.

Even when the location of a particular file is known, the physical size of it may be so large that it is inconvenient or impossible to move it to a local machine for analysis. This was precisely the case for the huge black hole collision simulations described above (see Figure 1). Although Grid technologies were important for the international group of astrophysicists to remotely and collaboratively run, monitor, and adjust those simulations while they were running, the huge output generated could not be transported to local sites in other countries for analysis; instead, a team of scientists flew from Berlin to the USA to visualize and retrieve the data!

This problem is rapidly being solved. Tools for manipulating remote data are already being used by astrophysicists. One example is the use of GridFTP servers [13] (Chapter DATA), containing extensions from the German GriKSL project, which when run on the filesystems of the machines holding the data, allow remote HDF5 data files to be analyzed with local visualization systems. Downsampling or zooming of the HDF5 data can be used to match the amount of transported data to the available bandwidth. Any visualization systems incorporating a GridFTP client along with the usual HDF5 reader can display this remote data, and such readers already exist for OpenDX and Amira software. These tools exactly address the remote data problem described above, and could now be now used to create, remotely from thousands of miles away, the visualization shown in Figure 1. This capability is so highly desired that even “technology averse” astrophysicists in the EU Astrophysics Network have asked for Alliance certificates so they can take advantage of these technologies.
17.5 Future Plans

We have outlined how Grid technologies are being used in computational astrophysics today and how we expect these technologies to be used in the future. We have focused specifically on the needs and applications of the numerical relativity community. However, the tools and experiences that we have described are quite general in nature, and apply not only to a large segment of the computational astrophysics community but also to many other computational science disciplines.

While some of our usage scenarios may sound futuristic, all are motivated by the needs of present-day astrophysicists, are working now in prototype form, and have been tested on real codes and in real production environments using the Grid technologies of today. It is now the task of the Grid community to deploy the services needed to support these operations, and to develop a complete set of programming tools such as the GridLab GAT that provide necessary abstractions for application programmers to easily and portably develop their applications to advantage of these services.

We believe that the best way to bring these scenarios into everyday production use is by developing Grid applications in close collaboration with Grid infrastructure developers. Such a partnership ensures that application requirements found by prototyping and testing scenarios are addressed and solved, and that our applications are ready to exploit the Grid as soon as possible. This process should not take long; we envision scenarios like those described here to be running in production for numerical relativity and many communities within a few years at most.

Once these building blocks of advanced distributed computations are all conveniently and robustly available to the computational scientist, imagine a future where complex combinations of distributed computing tasks take place, responding to their needs and to their environment. Jobs will grow, shrink, migrate, distribute, and spawn tasks. The spawned tasks may themselves carry out these operations, leading to complex, organized hierarchies of computations interacting with each other and with a set of collaborative users in their VO.

But there are still more advanced scenarios that we envision becoming reality when applications take full advantage of a more mature Grid. Dynamic applications will themselves become Grid services, interacting with other services, moving about, expanding and contracting, adapting to their needs and to local resource and Grid conditions. Huge amounts of data will be collected from experiments and sensors around the world. In gravitational wave astronomy, grid applications may process these data as they are collected using Grid-enabled data analysis applications like Triana [Error! Reference source not found.], simulate the astrophysical sources of the data using Cactus-based applications, which then steer astronomical observatories generating the data, tuning their frequency characteristics to be more sensitive to a signal expected in a few hours. Likewise, other Grid-enabled applications will warn forecasters of impending earthquakes based on recent data acquired from satellites and ground based geodetic data collected just hours before. Some scenarios like these are described in more detail elsewhere [4]. The Grid world is here today, and promises an exciting future for applications of tomorrow. Indeed, this future is not far off.
17.6 Acknowledgements

Many colleagues have contributed to the work and ideas presented here, in particular Werner Benger, Thomas Dramlitsch, Tom Goodale, Gerd Lanfermann, Andre Merzky, Thomas Radke, Michael Russell, and John Shalf, as well as our friends in the ASC, GriKSL, and GridLab projects. We are pleased to acknowledge support from research grants NSF PHY-9979985 (ASC), DFN-Verein TK 6-2 - AN 200 (GriKSL) and EU IST-2001-32133 (GridLab). The images of black hole simulations resulted from research supported by the National Computational Science Alliance (NCSA) and the National Energy Research Scientific Computing Center (NERSC).
17.7 Further Reading

TBD

Scientific American article on LIGO??

· 1.
Allen, G., et al., Solving Einstein's Equation on Supercomputers. IEEE Computer, 1999(December): p. 52-59.

· 2.
Barish, B.C. and R. Weiss, LIGO and the Detection of Gravitational Waves. Physics Today, 1999. 52(10): p. 44.

· 3.
Allen, G., et al., Enabling Applications on the Grid: A GridLab Overview. International Journal of High Performance Computing Applications, 2003.

· 4.
Seidel, E., et al., Gridlab: A Grid Application Toolkit and Testbed. Future Generation Computer Systems, 2002. 18: p. 1143-1153.

· 5.
Goodale, T., et al. The Cactus Framework and Toolkit: Design and Applications. in Vector and Parallel Processing: VECPAR'2002, 5th International Conference. 2003: Springer.

· 6.
Karonis, N., B. Toonen, and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface. Journal of Parallel and Distributed Computing, 2003.

· 7.
Russell, M., et al., The Astrophysics Simulation Collaboratory: A Science Portal Enabling Community Software Development. Cluster Computing, 2002. 5(3): p. 297-304.

· 8.
Allen, G., et al. Supporting Efficient Execution in Heterogeneous Distributed Computing Environments with Cactus and Globus. in SC'2001. 2001: ACM Press.

· 9.
Benger, W., et al. Numerical Relativity in a Distributed Environment. in Proc. 9th SIAM Conference on Parallel Processing for Scientific Computing. 1999.

· 10.
Czajkowski, K., I. Foster, and C. Kesselman. Co-allocation Services for Computational Grids. in Proc. 8th IEEE Symposium on High Performance Distributed Computing. 1999: IEEE Press.

· 11.
Douglis, F. and J. Ousterhout, Transparent Process Migration: Design Alternatives and the Sprite Implementation. Software Practice and Experience, 1991. 21(8): p. 757-785.

· 12.
Allen, G., et al., The Cactus Worm: Experiments with Dynamic Resource Selection and Allocation in a Grid Environment. International Journal of High Performance Computing Applications, 2001. 15(4).

· 13.
Allcock, W., et al., Data Management and Transfer in High-Performance Computational Grid Environments. Parallel Computing, 2002. 28(5): p. 749-771.

