Biomedical applications for the Grid.

J. Montagnat, V. Breton, P. Kunszt

1 Computer- and data-intensive biomedical applications

Biomedical applications, taken in its widest meaning, cover a large number of application domains. Indeed, biomedical applications cover all health-related applications and range from biomolecular chemistery at the lower microscopic scale to public health studies at the larger macroscopic scale. Events studied may be interactions between 10-10m wide molecules that take about 10-14s to execute while public health studies may involve thousands of individuals from several continents over decades. The following table gives examples of biomedical applications known today to be computationally challenging and/or data intensive for which grids may bring a real added value.

	Scale
	Applications

	Molecular level
	Biomolecular chemistery, post-genomics, proteomics, phylogenetics.

	Cellular level
	Cellular modeling, cellular interactions.

	Tissues
	Tissues modeling, biomecanics.

	Organs
	Medical image analysis, Image production simulators, Physiological modeling.

	Patient
	Computer assisted diagnosis tools, Statistical genetics, Therapy planning, Surgery simulation.

	Public health
	Epidemiology, Distributed databases.

Each of the above mentioned application domains by itself leads to challenging problems for which grid may provide some solutions. Bioinformatics for instance deals with increasingly growing gene databases and an exponential growth of the computations involved in genes comparisons. Medical imaging applications now deal with a tremendous amount of data widely distributed and costly image analysis algorithms. Modeling living phenomenon at any scale (atomic, cellular, tissue, patient) is challenging due to the number of actors and interactions. However, modeling one level from another (e.g. model a tissue taking into account each cell it is made of) or modeling in real time for simulation purposes (e.g. realistic surgery simulation) are certainly ultimate challenges for computing resources.

2 Grid added value for biomedical applications

Although involving specialists from very different disciplines, all these applications encounter some common requirements in terms of grid infrastructure. Obviously, grids provide a large computing power and data storage space for complex algorithms that require large amounts of disk, memory and processing resources, but there is more than that into grids that make them a potential tool to widen the actual limitations of biomedical applications. Indeed, grids are a vector for:

· allowing distribution of large datasets over different sites and avoiding single points of failure or bottlenecks;

· enforcing the use of common standards for data exchanges and making exchanges between sites easier;

· enlarging the datasets available for large scale studies by breaking the barriers between remote sites;

· allowing a distributed community to share its computational resources so that a small laboratory can proceed with large scale experiments if needed;

· opening new application fields that were not even thinkable without a common grid infrastructure (e.g. large scale epidemiology studies);

Grids are likely to have a deep impact on health related applications by playing a key federative role [2]. Despite some recent success stories, such as the international effort for the Human genome sequencing, biomedical laboratory are often small structures (at a national or lower scale) geographically spread. Grids are a vector to allow these small components to work altogether and share their resources by providing a collaborative framework for all applications.

The technical requirements for building a biomedical grid can be roughly split into two broad categories: data-related requirements and computation-related requirements. A successful biomedical grid will necessarily take into account these two complementary aspects. Biomedical data are in general distributed over different sites and represent tremendous amounts of data to be analyzed (today genomic databases size double every 8 months, each hospital in industrialized countries produces terabytes of digital images per year…). At the same time, applications become increasingly computer intensive (complex update over genomic databases, data mining, realistic simulations of life phenomenons...).

3 Data-related requirements

Medical data are very sensitive as they often carry information about individuals. Another particularity of medical data is their rich semantic content.

3.1 Biomedical data security

The primary concern when distributing biomedical data over a grid is privacy. Biomedical applications often deal with patient data that are private and should only be accessible to the patient himself, the medical team involved in his health care, and, under some restrictions, for research purposes. Biomedical data may also be private for commercial purposes. Therefore, a biomedical grid, opened to a wide community of users, should enforce strict access right checking. Privacy of biomedical data stored over a grid is particularly sensitive due to:

· The spread of data over many remote sites locally administrated.

· The replication mechanism triggering copies of data on any grid site without notification.

Biomedical data may be categorized in three subgroups: (i) private biomedical data that contain nominative information about a patient or that are kept private by their owners, (ii) personal data that do not allow the identification of their owner but which are not intended for every user anyway (such as medical images), and (iii) public data (e.g. public gene databases). Public data are easily exchanged and distributed so we will mainly consider private and personal data for which protection is important. Note that it may be difficult to determine whether some data is private (whether it carries nominative information or not). Indeed, a medical image is usually not sufficient to recognize its owner but in some extreme cases (e.g. high resolution image of the head) it might provide information that can indirectly be used to identify the owner.

We can consider four groups of users involved in biomedical data manipulation: (i) the patient from whom the data originates, (ii) the physicians or other specialists involved in health care, (iii) researchers needing an access to this biomedical data and (iv) any other grid users. In general, no private or personal data should ever be accessible to any grid user. This group includes system administrators of grid clusters who are not accredited to manipulate medical data. This makes security enforcement complex as they have full access to resources under their responsibility. Therefore, medical data should be encrypted when transferred onto the grid, and encryption key should only be stored on secured (trusted) sites with strict controls over who is allowed to retrieve them. Patients should always have full read access to their data. Physicians involved in the health care of a given patient need read/write access. However, any physician should not be able to access any patient data. Finally, researchers should be able to access personal data (not private ones) for research purposes if a physician with access to the data grants them this authorization.

Therefore, the grid authentication and authorization mechanism should allow individual authentication of people accessing the grid, and control individually the access right to the data. This individual authorization mechanism should be subtle enough to avoid that a system administrator can establish a connection between a personal data and the name of its owner. The content of private data should not be accessible to anybody but the authorized user and therefore kept secure on a limited number of trusted sites. The content of personal data may be distributed over the grid provided that is as been encrypted to make its content retrieval by unauthorized parties almost impossible.

3.2 Biomedical data semantic

Another particularity of biomedical data is their strong semantic content. A biomedical data itself (whether a gene sequence, a medical image) is often useless if it is not related to a context (other genes, patient medical files...). Therefore, grids should provide tools to organize, relate, and describe biomedical data. The biomedical information system should not only deal with data but also their semantic by providing standardized ways of describing their content. Tools to manipulate metadata attached to the data are a first step in this direction.

In general, biomedical applications do not manipulate files (low level data elements with semantic description limited to the file name) but datasets that are of interest to the user because of some property (e.g. medical files of a given patient, genes of a given family, cells with a given property…). Rich metadata are associated to files. Data identified by a query over metadata are selected for processing. Moreover, metadata are distributed over different sites just like data are. For exactly the same reasons of scalability and fault tolerance, they need to be replicated in multiple instances.

Therefore, the grid should provide a basic support for storing metadata (usually in relational databases) on different sites, make distributed queries over these data and trigger replicates when needed for efficiency or robustness reasons. Beyond the storage and retrieval of metadata, facilities are expected to make use of data easier from an application point of view. The middleware should allow description of datasets from queries on metadata and the definition of job inputs and/or outputs through metadata. A complete synchronization between the metadata management system and the data management system are needed to ensure coherence.

Another related requirement for a biomedical data management system is traceability. It should always be possible to know, for a given data, where it originates from (which algorithm and which input data were used) and, conversely, for each input data, which output has been processed using various algorithms (computation results cache). Extending this idea further, the grid middleware could use this facility for storing either an output data or the description of how it can be obtained from some input data (and make space optimization based on the relative cost of results recomputation compared to the needed storage space). This is achievable not only with a data management system that stores metadata describing computations done, but also with an algorithm management service that make algorithms known to the grid middleware and reprocessing possible by picking algorithms out of a database where they have been registered.

4 Computation-related requirements

Like any grid applications, biomedical applications first expect from a middleware a transparent access to distributed resources and data. It is extremely important in the biomedical domain since, as already stated in the introduction, the biomedical community is spread and it is not only a way to obtain an increase computing power but also to foster collaborations and promote standards [2].

However, biomedical applications usually require more than a grid-wide scheduler and a batch job submission system. A biomedical experiment often involves not a single algorithm but a (non-linear) sequence of proceedings. A support for the so called processing pipeline, described below, is expected from the grid middleware. Biomedical applications also sometimes require an interaction with the user. Medical applications in particular are often sensitive and need the interactive input from an expert both to tackle the lack of reliability of algorithms and for legal reasons. Therefore, the grid should allow user interaction with submitted processes, which implies that computations should be fast enough to allow a smooth interaction with a human being. The most demanding cases are simulation applications for which real time constraints have to be enforced. Finally, a biomedical grid should be able to take into account emergency situation by allowing some users (surgeons, emergency services…) to send high priority jobs, preempting running jobs when needed.
4.1 Pipelining computations

Processing pipelines are compound jobs composed of several elementary stages (each stage being an algorithm applied onto an input dataset and producing an output dataset). Several stages can be processed on different machines. Stages are chained (e.g. the output of stage A is used as input for stage B) but are not necessarily linear (e.g. both stages B and C can be processed in parallel). Therefore, the pipeline service should offer a pipeline description mechanism to draw the architecture of the pipeline and a smart scheduler able to exploit the pipeline intrinsic parallelism by distributing proceedings on various grid nodes (dataflow control, load balancing, synchronization...). Pipelines are of real interest when processing a large dataset rather than a single input data (e.g. a set of medical images). Through pipelines, the user can describe once for all the chain of transformations that each element of the input dataset should undergo. The pipeline scheduler can process several elements in parallel on grid nodes (thousands of concurrent input images are expected for some medical applications). Synchronization barriers may be needed to extract statistics from several processed data at some point in the process flow. Therefore, pipelines should provide additional services such as synchronization, logs of accomplished stages for a given input, restart from a failing job, automatic resubmission of failed stages, etc.

4.2 Parallel computations

Some data mining, image processing, simulation, and modeling algorithms are very computation intensive and need a parallel implementation in order to get executed in a reasonable amount of time (simulation of realistic Magnetic Resonance Images based on physical modeling of the MR phenomenon requires months on today’s workstations for instance). It is even more critical with applications that require interactivity for which the user can only remain a reasonably short amount of time in front of his computer screen, waiting for the algorithm to process data and return an output. Therefore, support for parallel computations is mandatory for these applications. If parallelism among homogeneous clusters of machines is usually available today, grid-wide parallelism involving heterogeneous machines and networks is not so well understood.

4.3 Interactive applications

Interaction with the user may be needed for guiding the algorithm, solve legal issues when dealing with biomedical data, or for the application itself (e.g. therapy simulator). Data compression and high-bandwidth network should insure a limited response time which is mandatory for interactive usage. Interactive feedback often involves 3D visualization of simulated scenes. This can become challenging due to the large size of 3D medical images and the complexity of meshes used for realistic 3D modeling. To achieve user interaction with grid jobs, a communication should be possible between the computing node(s) and the user workstation. Firewalls are often opposing resistance to these communications and computing cluster may be isolated from the external network.

4.4 Accessibility to grid resources

The biomedical community is very large and in general not very much aware of computers and grid technologies. Therefore, a tremendous effort is needed to interface today existing grid middlewares and make them usable by this community. High level services (as described in the above sections) are needed for biomedical applications but even higher level interfaces are needed to make grid completely transparent and efficient from the user point of view. Web portals proved to be an easy way to access remote services in the past. They combine several advantages such as secured communications, platform independence, and wide availability. They are certainly an interesting tool to access grid resources. However, proper services need to be developed in order to make portals interesting for the biomedical community. These services include data search engines, easy access to job submission, graphic pipeline construction tools, algorithms selection and execution from input data or metadata sets, etc.

Another key point in the deployment of grid technologies among the biomedical community is the trust the end users can have in the underlying architecture. A large fraction of biomedical data being confidential, the deployment of many grid applications will only be feasible if the middleware is recognized as secured and controlled. This prevents the use of middlewares with a lazy security infrastructure or not enforcing strict checking on data and computation resources usage. This also means that biomedical users often want a precise control over what the middleware can or cannot do with their data. For instance, some biology applications working on sensitive data require that the data owners have an explicit control over the allowed replication targets.

5 Medical application examples

Existing middlewares are far from responding to all the requirements described above. There is still a long way to go before grids can be widely used in the biomedical domain. However, in the context of the European DataGrid project (EDG [1]), we are developing prototypes and experimenting a basic middleware for biomedical applications. Two typical grid-aware medical applications are detailed below.

5.1 Simple combined search and execution application

The first application presented here is very generic and corresponds to the routine manipulation a medical user should be able to accomplish using grid services [8]. A user wants to select data corresponding to some criterion (e.g. all images from Mr. X, all Magnetic Resonance Images of the heart with a given pathology) and perform some computations on the resulting dataset to obtain quantitative results for guiding its diagnosis or assessing a work hypothesis. The following figure illustrates this application that is currently investigated on the European DataGrid testbed:

[image: image1.wmf]Titre:

application.eps

Auteur:

fig2dev Version 3.2.3 Patchlevel

Aperçu:

Cette image EPS n'a pas été enregistrée

avec un aperçu intégré.

Commentaires:

Cette image EPS peut être imprimée sur une

imprimante PostScript mais pas sur

un autre type d'imprimante.

1. The user queries the metadata tables to retrieve one, or a set of, medical images he is interested in.

2. The Logical File Names (LFN, grid-wide unique names for files) of the selected data are returned.

3. A Job is created for each input file and submitted to the grid resource broker.

4. The resource broker translates logical names to PFNs (Physical File Names including replica location information) and search for available resources to process the jobs.

5. The job is sent to a worker node where it is executed. Outputs are created.

6. The resulting files are returned to the user interface machine.

7. Interesting files are sent to a storage space and the associated metadata are sent to the SQL backend for future use.

We rely on the EDG job submission service for job execution [7]. Data are stored on a disk storage element. Metadata are store in an SQL database accessed through a secured interface (spitfire [5]). Note that using current middleware, many grid services are still lacking, increasing the burden of the application task and limiting the system capabilities. Indeed, the grid provides a secured interface to metadata but no real grid-wide metadata management service. Therefore, metadata are all stored on a central site that may become a bottleneck when considering a larger number of users. Moreover, the data/metadata association is handled at the user application level since no proper grid service is available. We expect several of these issues to be solved in the coming releases of the DataGrid middleware.

5.2 Images processing for multiple sclerosis treatment trial

Multiple sclerosis is a severe brain disease that affects about 0.001% of the population in industrialized countries and for which there exists no complete redemption treatment. Few drugs are available on the market today that slow down the brain impairment caused by the disease, although their efficiency is difficult to quantitatively assess and their real effect is rather controversial. Assessments of these therapies have been proposed through serial Magnetic Resonance (MR) images of the head by measuring the brain white and gray matter atrophy resulting from the disease [4]

 REF _Ref23239037 \r \h
‎[6]. However, this parameter extraction requires complex image analysis algorithms since very small volume variations are significant (the normal brain atrophy due to aging is in the order of 0.5% per year, while the disease may lead to an accelerated atrophy in the order of 1% per year). Therefore, only studies involving a large number of patients over a long period of time prove to have a statistical significance.

Such epidemiological study involves at least hundreds of patients (a group of placebo patients and several groups of treated patients following an experimental protocol) over years (an MR acquisition every few months is required to build time series). This kind of clinical protocol results in the acquisition of thousands of images, 10 to 20 Mbytes each, summing up to terabytes of data [3].

The processing of a single image implies a large number of basic image processing algorithms: each image is first registered in a common space frame (the Talairach frame) to compensate for head positioning differences in the scanner. Then, images are rescaled and resampled to compensate for different acquisitions resolution. These stages are preceded by various signal improvement and acquisition bias correction algorithm to improve the image quality and the subsequent processings reliability. Finally, classification of brain tissues and quantitative measurements of the brain volumes are extracted through anatomical modeling of the brain structures. From these volumes, atrophy measurements are estimated and the statistic study can begin. This complete processing chain involves 20 to 30 elementary processings on each image. The total computation time for one image is 30 to 60 minutes, leading to very long computations of the complete database except when considering a large number of processors to deal with all input images in parallel.

The gridification of this application over 30 processors on a custom middleware involving a single computation cluster allowed reducing the overall computation time to 10 days. This makes computations tractable but this is not sufficient for a real usage in clinical research. Many trial and error experiments are lead to optimize the image processing chain and discover the most discriminating algorithms from a statistical point of view. The overall computation time really needs to be reduced for a real extension of that kind of epidemiological study. Grids are a tool to achieve much more optimization and parallelization, opening new opportunities for automated medical images analysis.

6 Conclusions

Grids have known intensive developments over the past few years. Basic middlewares are today available and it is now time for grid developers to turn towards specific applications. There is a tremendous potential in grid technologies to face today’s biomedical application challenges. However, only secured and specialized infrastructures with high level services designed to meet the application requirements will really allow a large scale acceptation and deployment of grids.

7 References

[1] European DataGrid project (EDG). http://www.edg.org/.
[2] V. Breton, R. Medina, J. Montagnat, “Datagrid, prototype of a biomedical grid”, to appear in Medical Information in Medicine, 2002.

[3] D. L. Collins, J. Montagnat, A. P. Zijdenbos, A. C. Evans, “Automated estimation of brain volume in Multiple Sclerosis with BICCR”, Information Processing in Medical Imaging, june 2001, Davis, USA
[4] G .Comi, M. Philippi, V. Martinelli, G. Sirabian, A. Visciani, A. Campi, S. Mammi, M. Rovaris, and M. Canal, Brain Magnetic Resonance Imaging correlates of cognitive impairment in multiple sclerosis, Journal of the Neurological Science, 115, pp 66-73, 1993.

[5] W. Hoschek, G. McCance, “Grid Enabled Relational Database Middleware”, Global Grid Forum 3, Oct. 7-10, 2001, Frascati, Italy. http://spitfire.web.cern.ch/-Spitfire/.

[6] N.A. Losseff, L. Wang, H.M. Lai, D.S. Yoo, M.L. Gawne-Caine, W.I. McDonald, D.H. Miller, and A.J. Thomson, “Progressive cerebral atrophy in multiple sclerosis, a serial MRI study”, Brain, 119(Pt6), pp 2009-2019, 1996.

[7] M. Ruda, C. Anglano, S. Barale, L. Gaido, A.Guarise, S. Lusso, A. Werbrouck, S. Beco, F. Pacini, A. Terracina, A. Maraschini, S. Cavalieri, S. Monforte, F. Donno, A, Ghiselli, F. Giacomini, E. Ronchieri, D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Popisil, Z. Salvet, J. Sitera, J.Visek, M. Vocu, M. Mezzadri, F. Prelz, M. Sgaravatto, M. Verlato, “Integrating GRID tools to build a computing resource broker: activities of DataGrid WP1”, Computing in High Energy and Nuclear Physics, Sep. 2001, Beijing, http://server11.infn.it/workload-grid/.

[8] D. Sarrut and S. Miguet, “ARAMIS: A Remote Access Medical Imaging System”, International Symposium on Computing in Object-Oriented Parallel Environments, San Francisco, USA, Dec. 1999.
