
Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-95/11 - Revision 2.1.0

PETSc Users Manual

by

Satish Balay
William Gropp

Lois Curfman McInnes
Barry Smith

Mathematics and Computer Science Division
http://www.mcs.anl.gov/petsc

This manual is intended for use with PETSc 2.1.0

April 11, 2001

This work was supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

Abstract:

This manual describes the use of PETSc for the numerical solution of partial differential equations and
related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) is a suite of data structures and routines that provide the building blocks for the implemen-
tation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for
all message-passing communication.

PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that
may be used in application codes written in Fortran, C, and C++. PETSc provides many of the mechanisms
needed within parallel application codes, such as parallel matrix and vector assembly routines. The library
is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for
a particular problem. By using techniques of object-oriented programming, PETSc provides enormous
flexibility for users.

PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper
learning curve than a simple subroutine library. In particular, for individuals without some computer science
background or experience programming in C or C++, it may require a significant amount of time to take
full advantage of the features that enable efficient software use. However, the power of the PETSc design
and the algorithms it incorporates may make the efficient implementation of many application codes simpler
than “rolling them” yourself.

• For many simple (or even relatively complicated) tasks a package such as Matlab is often the best tool;
PETSc is not intended for the classes of problems for which effective Matlab code can be written.

• PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential
code. Certainly all parts of a previously sequential code need not be parallelized but the matrix
generation portion must be to expect any kind of reasonable performance. Do not expect to generate
your matrix sequentially and then “use PETSc” to solve the linear system in parallel.

Since PETSc is under continued development, small changes in usage and calling sequences of routines
may occur. PETSc is supported; see the web sitehttp://www.mcs.anl.gov/petsc for information
on contacting support.

A list of publications and web sites that feature work involving PETSc may be found athttp://www.
mcs.anl.gov/petsc/publications . We welcome any additions to these pages.

Getting Information on PETSc:

On-line:
• Manual pages for all routines, including example usagedocs/index.html in the distribution or

http://www.mcs.anl.gov/petsc/docs/

• Troubleshootingdocs/troubleshooting.html in the distribution orhttp://www.mcs.
anl.gov/petsc/docs/

In this manual:
• Basic introduction, page3

1

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/publications
http://www.mcs.anl.gov/petsc/publications
index.html
http://www.mcs.anl.gov/petsc/docs/
troubleshooting.html
http://www.mcs.anl.gov/petsc/docs/
http://www.mcs.anl.gov/petsc/docs/

• Assembling vectors, page26; and matrices,39

• Linear solvers, page50

• Nonlinear solvers:64

• Timestepping (ODE) solvers:85

• Index, page153

2

3

Acknowledgments:

We thank all PETSc users for their many suggestions, bug reports, and encouragement. We especially
thank Victor Eijkhout, David Keyes, and Matthew Knepley for their valuable comments on the source code,
functionality, and documentation for PETSc.

Some of the source code and utilities in PETSc (or software used by PETSc) have been written by

• Mark Adams, scalability features of MPIBAIJ matrices,

• Allison Baker, the flexible GMRES code,

• Tony Caola, the SPARSEKIT2 ilutp() interface,

• Chad Carroll, Win32 graphics,

• Cameron Cooper, portions of the VecScatter routines,

• Victor Eijkhout, KSP type BICG, VecPipeline() and VecXXXBegin()/End() routines,

• Paulo Goldfeld, balancing Neumann-Neumann preconditioner,

• Matt Hille,

• Matthew Knepley,

• Domenico Lahaye, the interface to John Ruge and Klaus Stueben’s AMG,

• Peter Mell, portions of the DA routines,

• Todd Munson, the LUSOL (sparse solver in MINOS) interface,

• Wing-Lok Wan, the ILU portion of BlockSolve95,

• Liyang Xu, the interface to PVODE.

PETSc uses routines from

• BLAS

• LAPACK

• LINPACK matrix factorization and solve; converted to C usingf2c and then hand-optimized for
small matrix sizes, for block matrix data structures,

• MINPACK sequential matrix coloring routines for finite difference Jacobian evaluations; converted to
C usingf2c ,

• SPARSPAK matrix reordering routines, converted to C usingf2c ,

• SPARSEKIT2 written by Yousef Saad, iludtp(), converted to C usingf2c . These routines are copy-
righted by Saad under the GNU copyright, see${PETSC_DIR}/src/mat/impls/aij/seq/
ilut.c .

• libtfs the efficient, parallel direct solver developed by Henry Tufo and Paul Fischer.

4

PETSc interfaces to the following external software:

• AMG the algebraic multigrid code of John Ruge and Klaus Stueben,http://www.mgnet.org/
mgnet-codes-gmd.html

• BlockSolve95 for parallel ICC(0) and ILU(0) preconditioning,http://www.mcs.anl.gov/
blocksolve ,

• ESSL IBM’s math library for fast sparse direct LU factorization,

• LUSOL sparse LU factorization code (part of MINOS) developed by Michael Saunders, Systems
Optimization Laboratory, Stanford University,http://www.sbsi-sol-optimize.com/ ,

• Matlab

• ParMeTiS parallel graph partitioner,http://www-users.cs.umn.edu/˜karypis/metis/
,

• PVODE parallel ODE integrator,http://www.llnl.gov/CASC/PVODE ,

• SPAI for parallel sparse approximate inverse preconditiong,http://www.sam.math.ethz.
ch/˜grote/spai/ .

These are all optional packages and do not need to be installed to use PETSc.

iii

http://www.mgnet.org/mgnet-codes-gmd.html
http://www.mgnet.org/mgnet-codes-gmd.html
http://www.mcs.anl.gov/blocksolve
http://www.mcs.anl.gov/blocksolve
http://www.sbsi-sol-optimize.com/
http://www-users.cs.umn.edu/protect unhbox voidb@x penalty @M {}karypis/metis/
http://www-users.cs.umn.edu/protect unhbox voidb@x penalty @M {}karypis/metis/
http://www.llnl.gov/CASC/PVODE
http://www.sam.math.ethz.ch/protect unhbox voidb@x penalty @M {}grote/spai/
http://www.sam.math.ethz.ch/protect unhbox voidb@x penalty @M {}grote/spai/

Contents

Abstract 1

I Introduction to PETSc 1

1 Getting Started 3
1.1 Suggested Reading. 4
1.2 Running PETSc Programs. 5
1.3 Writing PETSc Programs. 6
1.4 Simple PETSc Examples. 7
1.5 Referencing PETSc. .19
1.6 Directory Structure. .20

II Programming with PETSc 22

2 Vectors and Distributing Parallel Data 24
2.1 Creating and Assembling Vectors. .24
2.2 Basic Vector Operations. .26
2.3 Indexing and Ordering. .27

2.3.1 Application Orderings. .28
2.3.2 Local to Global Mappings. .29

2.4 Structured Grids Using Distributed Arrays. 30
2.4.1 Creating Distributed Arrays. .30
2.4.2 Local/Global Vectors and Scatters. 31
2.4.3 Local (Ghosted) Work Vectors. .32
2.4.4 Accessing the Vector Entries for DA Vectors. 32
2.4.5 Grid Information .33

2.5 Software for Managing Vectors Related to Unstructured Grids. 33
2.5.1 Index Sets. .33
2.5.2 Scatters and Gathers. .35
2.5.3 Scattering Ghost Values. .36
2.5.4 Vectors with Locations for Ghost Values. 37

3 Matrices 39
3.1 Creating and Assembling Matrices. .39

3.1.1 Sparse Matrices. .41
3.1.2 Dense Matrices. .44

3.2 Basic Matrix Operations. .45

iv

3.3 Matrix-Free Matrices. .46
3.4 Other Matrix Operations. .46
3.5 Partitioning .47

4 SLES: Linear Equations Solvers 50
4.1 Using SLES. .50
4.2 Solving Successive Linear Systems. .51
4.3 Krylov Methods. .52

4.3.1 Preconditioning within KSP. .53
4.3.2 Convergence Tests. .53
4.3.3 Convergence Monitoring. .54
4.3.4 Understanding the Operator’s Spectrum. 55
4.3.5 Other KSP Options. .56

4.4 Preconditioners. .56
4.4.1 ILU and ICC Preconditioners. .56
4.4.2 SOR and SSOR Preconditioners. .58
4.4.3 LU Factorization. .59
4.4.4 Block Jacobi and Overlapping Additive Schwarz Preconditioners. 59
4.4.5 Shell Preconditioners. .61
4.4.6 Combining Preconditioners. .61
4.4.7 Multigrid Preconditioners. .62

5 SNES: Nonlinear Solvers 64
5.1 Basic Usage. .64

5.1.1 Solving Systems of Nonlinear Equations. 71
5.2 The Nonlinear Solvers. .72

5.2.1 Line Search Techniques. .72
5.2.2 Trust Region Methods. .72

5.3 General Options. .73
5.3.1 Convergence Tests. .73
5.3.2 Convergence Monitoring. .74
5.3.3 Checking Accuracy of Derivatives. 74

5.4 Inexact Newton-like Methods. .75
5.5 Matrix-Free Methods. .75
5.6 Finite Difference Jacobian Approximations. 82

6 TS: Scalable ODE Solvers 85
6.1 Basic Usage. .86

6.1.1 Solving Time-dependent Problems. 86
6.1.2 Using PVODE from PETSc. .87
6.1.3 Solving Steady-State Problems with Pseudo-Timestepping. 88

7 Using Matlab with PETSc 89
7.1 Dumping Data for Matlab. .89
7.2 Sending Data to Running Matlab. .89
7.3 Using the Matlab Compute Engine. .90

v

8 PETSc Fortran Users 91
8.1 Differences between PETSc Interfaces for C and Fortran. 91

8.1.1 Include Files .91
8.1.2 Error Checking. .92
8.1.3 Array Arguments. .93
8.1.4 Calling Fortran Routines from C (and C Routines from Fortran). 93
8.1.5 Passing Null Pointers. .94
8.1.6 Duplicating Multiple Vectors. .94
8.1.7 Matrix and Vector Indices. .95
8.1.8 Setting Routines. .95
8.1.9 Compiling and Linking Fortran Programs. 95
8.1.10 Routines with Different Fortran Interfaces. 95
8.1.11 Fortran90. .96

8.2 Sample Fortran77 Programs. .96

III Additional Information 109

9 Profiling 111
9.1 Basic Profiling Information. .111

9.1.1 Interpreting-log summary Output: The Basics.111
9.1.2 Interpreting-log summary Output: Parallel Performance.113
9.1.3 Using-log mpewith Upshot/Nupshot. .114

9.2 Profiling Application Codes .115
9.3 Profiling Multiple Sections of Code. .116
9.4 Restricting Event Logging. .117
9.5 Interpreting-log info Output: Informative Messages.117
9.6 Time. .118
9.7 Saving Output to a File. .118
9.8 Accurate Profiling: Overcoming the Overhead of Paging.118

10 Hints for Performance Tuning 119
10.1 Compiler Options. .119
10.2 Profiling .119
10.3 Aggregation. .119
10.4 Efficient Memory Allocation. .120

10.4.1 Sparse Matrix Assembly. .120
10.4.2 Sparse Matrix Factorization. .120
10.4.3 PetscMalloc() Calls. .120

10.5 Data Structure Reuse. .120
10.6 Numerical Experiments. .121
10.7 Tips for Efficient Use of Linear Solvers. .121
10.8 Detecting Memory Allocation Problems. .121
10.9 Machine-Specific Optimizations. .122
10.10System-Related Problems. .122

vi

11 Other PETSc Features 124
11.1 Runtime Options. .124

11.1.1 The Options Database. .124
11.1.2 User-Defined Options. .125
11.1.3 Keeping Track of Options. .125

11.2 Viewers: Looking at PETSc Objects. .126
11.3 Debugging. .127
11.4 Error Handling .128
11.5 Incremental Debugging. .129
11.6 Complex Numbers. .129
11.7 Emacs Users. .130
11.8 Parallel Communication. .130
11.9 Graphics. .130

11.9.1 Windows as PetscViewers. .131
11.9.2 Simple PetscDrawing. .131
11.9.3 Line Graphs. .132
11.9.4 Graphical Convergence Monitor. .134
11.9.5 Disabling Graphics at Compile Time. .134

12 Makefiles 135
12.1 Our Makefile System. .135

12.1.1 Makefile Commands. .135
12.1.2 Customized Makefiles. .136

12.2 PETSc Flags. .136
12.2.1 Sample Makefiles. .136

12.3 Limitations .139

13 Unimportant and Advanced Features of Matrices and Solvers 140
13.1 Extracting Submatrices. .140
13.2 Matrix Factorization .140
13.3 Unimportant Details of KSP. .142
13.4 Unimportant Details of PC. .143

Index 144

Index 153

Bibliography 154

vii

Part I

Introduction to PETSc

1

Chapter 1

Getting Started

The Portable, Extensible Toolkit for Scientific Computation (PETSc) has successfully demonstrated that the
use of modern programming paradigms can ease the development of large-scale scientific application codes
in Fortran, C, and C++. Begun several years ago, the software has evolved into a powerful set of tools for the
numerical solution of partial differential equations and related problems on high-performance computers.

PETSc consists of a variety of components (similar to classes in C++), which are discussed in detail in
Parts II and III of the users manual. Each component manipulates a particular family of objects (for instance,
vectors) and the operations one would like to perform on the objects. The objects and operations in PETSc
are derived from our long experiences with scientific computation. Some of the PETSc modules deal with

• index sets, including permutations, for indexing into vectors, renumbering, etc;

• vectors;

• matrices (generally sparse);

• distributed arrays (useful for parallelizing regular grid-based problems);

• Krylov subspace methods;

• preconditioners, including multigrid and sparse direct solvers;

• nonlinear solvers; and

• timesteppers for solving time-dependent (nonlinear) PDEs.

Each of these components consists of an abstract interface (simply a set of calling sequences) and one or
more implementations using particular data structures. Thus, PETSc provides clean and effective codes for
the various phases of solving PDEs, with a uniform approach for each class of problems. This design enables
easy comparison and use of different algorithms (for example, to experiment with different Krylov subspace
methods, preconditioners, or truncated Newton methods). Hence, PETSc provides a rich environment for
modeling scientific applications as well as for rapid algorithm design and prototyping.

The components enable easy customization and extension of both algorithms and implementations. This
approach promotes code reuse and flexibility, and separates the issues of parallelism from the choice of
algorithms. The PETSc infrastructure creates a foundation for building large-scale applications.

It is useful to consider the interrelationships among different pieces of PETSc. Figure1 is a diagram of
some of the components of PETSc; Figure2 presents several of the individual components in more detail.
These figures illustrate the library’s hierarchical organization, which enables users to employ the level of
abstraction that is most appropriate for a particular problem.

3

Matrices

PC
(Preconditioners)

Vectors Index Sets

(Linear Equations Solvers)
SLES

LAPACKBLAS

Level of
bstraction Application Codes

(Time Stepping)
TS

(Nonlinear Equations Solvers)
SNES

PDE Solvers

MPI

Draw
KSP

(Krylov Subspace Methods)

Figure 1: Organization of the PETSc Library

1.1 Suggested Reading

The manual is divided into three parts:

• Part I - Introduction to PETSc

• Part II - Programming with PETSc

• Part III - Additional Information

Part I describes the basic procedure for using the PETSc library and presents two simple examples of
solving linear systems with PETSc. This section conveys the typical style used throughout the library and
enables the application programmer to begin using the software immediately. Part I is also distributed sep-
arately for individuals interested in an overview of the PETSc software, excluding the details of library
usage. Readers of this separate distribution of Part I should note that all references within the text to partic-
ular chapters and sections indicate locations in the complete users manual.

Part II explains in detail the use of the various PETSc components, such as vectors, matrices, index
sets, linear and nonlinear solvers, and graphics. Part III describes a variety of useful information, including
profiling, the options database, viewers, error handling, makefiles, and some details of PETSc design.

The PETSc Users Manualdocumentsall of PETSc; thus, it can be rather intimidating for new users.
We recommend that one initially read the entire document before proceeding with serious use of PETSc, but
bear in mind that PETSc can be used efficiently before one understands all of the material presented here.

Within the PETSc distribution, the directory${PETSC_DIR}/docs contains all documentation. Man-
ual pages for all PETSc functions can be accessed on line at

http://www.mcs.anl.gov/petsc/docs/

The manual pages provide hyperlinked indices (organized by both concepts and routine names) to the tutorial
examples and enable easy movement among related topics.

4

Krylov Subspace Methods

CG CGS OtherChebychevRichardsonTFQMRBi-CG-StabGMRES

Vectors
OtherStrideBlock Indices

Index Sets

Indices

Block Compressed

Sparse Row

(BAIJ)

Block

Diagonal

(BDiag)

Compressed

Sparse Row

(AIJ)

OtherDense

Matrices

Backward

Euler

Pseudo-Time

Stepping

Time Steppers

Euler Other

Block

Jacobi

Additive

Schwarz (sequential only)
LU

Parallel Numerical Components of PETSc

Jacobi ILU ICC Other

Preconditioners

Newton-based Methods

Trust RegionLine Search

Other

Nonlinear Solvers

Figure 2: Numerical Components of PETSc

Emacs users may find theetagsoption to be extremely useful for exploring the PETSc source code.
Details of this feature are provided in Section11.7.

The file manual.ps contains the PostScript form of thePETSc Users Manualin its entirety, while
intro.ps includes only the introductory segment, Part I. The complete PETSc distribution, users manual,
manual pages, and additional information are also available via the PETSc home page athttp://www.
mcs.anl.gov/petsc . The PETSc home page also contains details regarding installation, new features
and changes in recent versions of PETSc, machines that we currently support, a troubleshooting guide, and
a FAQ list for frequently asked questions.

Note to Fortran Programmers: In most of the manual, the examples and calling sequences are given
for the C/C++ family of programming languages. We follow this convention because we recommend that
PETSc applications be coded in C or C++. However, pure Fortran programmers can use most of the func-
tionality of PETSc from Fortran, with only minor differences in the user interface. Chapter8 provides a
discussion of the differences between using PETSc from Fortran and C, as well as several complete Fortran
examples. This chapter also introduces some routines that support direct use of Fortran90 pointers.

1.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variablePETSC_DIR, indicating the full path
of the PETSc home directory. For example, under the UNIX C shell a command of the form

setenv PETSC_DIR $HOME/petsc

can be placed in the user’s.cshrc file. In addition, the user must set the environmental variablePETS
C_ARCHto specify the architecture (e.g., rs6000, solaris, IRIX, etc.) on which PETSc is being used. The
utility ${PETSC_DIR}/bin/petscarch can be used for this purpose. For example,

setenv PETSC_ARCH ‘$PETSC_DIR/bin/petscarch‘

can be placed in a.cshrc file. Thus, even if several machines of different types share the same filesystem,
PETSC_ARCHwill be set correctly when logging into any of them.

5

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing commu-
nication [14]. Thus, to execute PETSc programs, users must know the procedure for beginning MPI jobs
on their selected computer system(s). For instance, when using the MPICH implementation of MPI [8] and
many others, the following command initiates a program that uses eight processors:

mpirun -np 8 petsc_program_name petsc_options

PETSc also comes with a script

${PETSC_DIR}bin/petscmpirun -np 8 petsc_program_name petsc_options

that uses the information set in${PETSC_DIR}/bmake/${PETSC_ARCH}/base.site to automati-
cally use the correct trlmpirun for your configuration.

All PETSc-compliant programs support the use of the-h or -help option as well as the-v or
-version option.

Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option-help .

• -log_summary - summarize the program’s performance

• -fp_trap - stop on floating-point exceptions; for example divide by zero

• -trdump - enable memory tracing; dump list of unfreed memory at conclusion of the run

• -trmalloc - enable memory tracing (by default this is activated for the debugging versions of
PETSc)

• -start_in_debugger [noxterm,gdb,dbx,xxgdb] [-displayname] - start all pro-
cesses in debugger

• -on_error_attach_debugger [noxterm,gdb,dbx,xxgdb] [-displayname] - start
debugger only on encountering an error

See Section11.3for more information on debugging PETSc programs.

1.3 Writing PETSc Programs

Most PETSc programs begin with a call to

PetscInitialize(int *argc,char ***argv,char *file,char *help);

which initializes PETSc and MPI. The argumentsargc andargv are the command line arguments deliv-
ered in all C and C++ programs. The argumentfile optionally indicates an alternative name for the PETSc
options file,.petscrc , which resides by default in the user’s home directory. Section11.1provides details
regarding this file and the PETSc options database, which can be used for runtime customization. The final
argument,help , is an optional character string that will be printed if the program is run with the-help
option. In Fortran the initialization command has the form

call PetscInitialize(character file,integer ierr)

PetscInitialize() automatically callsMPI_Init() if MPI has not been not previously initialized.
In certain circumstances in which MPI needs to be initialized directly (or is initialized by some other library),
the user can first callMPI_Init() (or have the other library do it), and then callPetscInitialize() .
By default,PetscInitialize() sets the PETSc “world” communicator, given byPETSC_COMM_WOR
LD, to MPI_COMM_WORLD.

For those not familar with MPI, acommunicatoris a way of indicating a collection of processors that will
be involved together in a calculation or communication. Communicators have the variable typeMPI_Comm.

6

In most cases users can employ the communicatorPETSC_COMM_WORLDto indicate all processes in a
given run andPETSC_COMM_SELFto indicate a single process. MPI provides routines for generating new
communicators consisting of subsets of processors, though most users rarely need to use these. The book
Using MPI, by Lusk, Gropp, and Skjellum [9] provides an excellent introduction to the concepts in MPI, see
also the MPI homepagehttp://www.mcs.anl.gov/mpi/ . Note that PETSc users need not program
much message passing directly with MPI, but they must be familar with the basic concepts of message
passing and distributed memory computing.

Users who wish to employ PETSc routines on only a subset of processors within a larger parallel job, or
who wish to use a “master” process to coordinate the work of “slave” PETSc processes, should specify an
alternative communicator forPETSC_COMM_WORLDby calling

PetscSetCommWorld(MPI_Comm comm);

beforecalling PetscInitialize() , but, obviously, after callingMPI_Init() . PetscSetCommW
orld() can be called at most once per process. Most users will never need to use the routinePetscSetC
ommWorld() .

All PETSc routines return an integer indicating whether an error has occurred during the call. The error
code is set to be nonzero if an error has been detected; otherwise, it is zero. For the C/C++ interface, the
error variable is the routine’s return value, while for the Fortran version, each PETSc routine has as its final
argument an integer error variable. Error tracebacks are discussed in the following section.

All PETSc programs should callPetscFinalize() as their final (or nearly final) statement, as given
below in the C/C++ and Fortran formats, respectively:

PetscFinalize();
call PetscFinalize(ierr)

This routine handles options to be called at the conclusion of the program, and callsMPI_Finalize()
if PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or
another software package), the user is responsible for callingMPI_Finalize() .

1.4 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example in Figure3
that solves the one-dimensional Laplacian problem with finite differences. This sequential code, which can
be found in${PETSC_DIR}/src/sles/examples/tutorials/ex1.c , illustrates the solution of
a linear system with SLES, the interface to the preconditioners, Krylov subspace methods, and direct linear
solvers of PETSc. Following the code we highlight a few of the most important parts of this example.

/*$Id: ex1.c,v 1.88 2001/03/23 23:23:55 balay Exp $*/

/* Program usage: mpirun ex1 [-help] [all PETSc options] */

static char help[] = "Solves a tridiagonal linear system with SLES.\n\n";

/*T
Concepts: SLESˆsolving a system of linear equations
Processors: 1

T*/

/*
Include "petscsles.h" so that we can use SLES solvers. Note that this file
automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace methods

7

http://www.mcs.anl.gov/mpi/

petscviewer.h - viewers petscpc.h - preconditioners

Note: The corresponding parallel example is ex23.c
*/
#include "petscsles.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **args)
{

Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */
PC pc; /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
double norm; /* norm of solution error */
int ierr,i,n = 10,col[3],its,size;
Scalar neg_one = -1.0,one = 1.0,value[3];

PetscInitialize(&argc,&args,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);

/* -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- */

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/
ierr = VecCreate(PETSC_COMM_WORLD,PETSC_DECIDE,n,&x);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. Since preallocation is not possible via the generic
matrix creation routine MatCreate(), we recommend for practical
problems instead to use the creation routine for a particular matrix
format, e.g.,

MatCreateSeqAIJ() - sequential AIJ (compressed sparse row)
MatCreateSeqBAIJ() - block AIJ

See the matrix chapter of the users manual for details.
*/
ierr = MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

/*
Assemble matrix

*/
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=1; i<n-1; i++) {

8

col[0] = i-1; col[1] = i; col[2] = i+1;
ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

}
i = n - 1; col[0] = n - 2; col[1] = n - 1;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.

*/
ierr = VecSet(&one,u);CHKERRQ(ierr);
ierr = MatMult(A,u,b);CHKERRQ(ierr);

/* -
Create the linear solver and set various options

- */
/*

Create linear solver context
*/
ierr = SLESCreate(PETSC_COMM_WORLD,&sles);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/
ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the SLES context,

we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions();

*/
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SLESSetFromOptions(sles);CHKERRQ(ierr);

/* -
Solve the linear system

- */
/*

Solve linear system
*/
ierr = SLESSolve(sles,b,x,&its);CHKERRQ(ierr);

9

/*
View solver info; we could instead use the option -sles_view to
print this info to the screen at the conclusion of SLESSolve().

*/
ierr = SLESView(sles,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

/* -
Check solution and clean up

- */
/*

Check the error
*/
ierr = VecAXPY(&neg_one,u,x);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A, Iterations %d\n",norm,its);CHKERRQ(ierr);
/*

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(u);CHKERRQ(ierr);
ierr = VecDestroy(b);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr);
ierr = SLESDestroy(sles);CHKERRQ(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_summary).
*/
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 3: Example of Uniprocessor PETSc Code

Include Files

The C/C++ include files for PETSc should be used via statements such as

#include "petscsles.h"

wherepetscsles.h is the include file for the SLES component. Each PETSc program must specify
an include file that corresponds to the highest level PETSc objects needed within the program; all of the
required lower level include files are automatically included within the higher level files. For example,
petscsles.h includespetscmat.h (matrices),petscvec.h (vectors), andpetsc.h (base PETSc
file). The PETSc include files are located in the directory${PETSC_DIR}/include . See Section8.1.1
for a discussion of PETSc include files in Fortran programs.

The Options Database

As shown in Figure3, the user can input control data at run time using the options database. In this exam-
ple the commandOptionsGetInt(PETSC_NULL,"-n",&n,&flg); checks whether the user has
provided a command line option to set the value ofn, the problem dimension. If so, the variablen is set
accordingly; otherwise,n remains unchanged. A complete description of the options database may be found
in Section11.1.

10

Vectors

One creates a new parallel or sequential vector,x , of global dimensionMwith the command

VecCreate(MPI_Comm comm,int m,int M,Vec *x);

wherecommdenotes the MPI communicator. The type of storage for the vector may be set with either calls
to VecSetType() or VecSetFromOptions() . Additional vectors of the same type can be formed
with

VecDuplicate(Vec old,Vec *new);

The commands

VecSet(Scalar *value,Vec x);
VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value to
each component. More detailed information about PETSc vectors, including their basic operations, scatter-
ing/gathering, index sets, and distributed arrays, is discussed in Chapter2.

Note the use of the PETSc variable typeScalar in this example. TheScalar is simply defined to be
double in C/C++ (or correspondinglydouble precision in Fortran) for versions of PETSc that have
notbeen compiled for use with complex numbers. TheScalar data type enables identical code to be used
when the PETSc libraries have been compiled for use with complex numbers. Section11.6discusses the
use of complex numbers in PETSc programs.

Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix,A,
which hasMglobal rows andNglobal columns, with the routine

MatCreate(MPI_Comm comm,int m,int n,int M,int N,Mat *A);

where the matrix format can be specified at runtime. The user could alternatively specify each processes’
number of local rows and columns usingmandn. Values can then be set with the command

MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,
INSERT_VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);

Chapter3 discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system,Ax=b , the user can then use SLES to solve
the system with the following sequence of commands:

SLESCreate(MPI_Comm comm,SLES *sles);
SLESSetOperators(SLES sles,Mat A,Mat PrecA,MatStructure flag);
SLESSetFromOptions(SLES sles);
SLESSolve(SLES sles,Vec b,Vec x,int *its);
SLESDestroy(SLES sles);

11

The user first creates the SLES context and sets the operators associated with the system (linear system
matrix and optionally different preconditioning matrix). The user then sets various options for customized
solution, solves the linear system, and finally destroys the SLES context. We emphasize the command
SLESSetFromOptions() , which enables the user to customize the linear solution method at runtime by
using the options database, which is discussed in Section11.1. Through this database, the user not only can
select an iterative method and preconditioner, but also can prescribe the convergence tolerance, set various
monitoring routines, etc. (see, e.g., Figure7).

Chapter4 describes in detail the SLES package, including the PC and KSP components for precondi-
tioners and Krylov subspace methods.

Nonlinear Solvers

Most PDE problems of interest are inherently nonlinear. PETSc provides an interface to tackle the nonlinear
problems directly called SNES. Chapter5 describes the nonlinear solvers in detail. We recommend most
PETSc users work directly with SNES.

Error Checking

All PETSc routines return an integer indicating whether an error has occurred during the call. The PETSc
macroCHKERRQ(ierr) checks the value ofierr and calls the PETSc error handler upon error detection.
CHKERRQ(ierr) should be used in all subroutines to enable a complete error traceback. In Figure4 we
indicate a traceback generated by error detection within a sample PETSc program. The error occurred on
line 858 of the file${PETSC_DIR}/src/mat/impls/aij/seq/aij.c and was caused by trying to
allocate too large an array in memory. The routine was called in the programex3.c on line 49. See Section
8.1.2for details regarding error checking when using the PETSc Fortran interface.

eagle>mpirun -np 1 ex3 -m 10000
[0]PETSC ERROR: MatCreateSeqAIJ() line 1673 in src/mat/impls/aij/seq/aij.c
[0]PETSC ERROR: Out of memory. This could be due to allocating
[0]PETSC ERROR: too large an object or bleeding by not properly
[0]PETSC ERROR: destroying unneeded objects.
[0]PETSC ERROR: Try running with -trdump for more information.
[0]PETSC ERROR: MatCreate() line 99 in src/mat/utils/gcreate.c
[0]PETSC ERROR: main() line 71 in src/sles/examples/tutorials/ex3.c
[0] MPI Abort by user Aborting program !
[0] Aborting program!
p0_28969: p4_error: : 1

Figure 4: Example of Error Traceback

When running the debug (BOPT=g compiled) version of the PETSc libraries, it does a great deal of
checking for memory corruption (writing outside of array bounds etc). The macrosCHKMEMQcan be called
anywhere in the code to check the current status of the memory for corruption. By putting several (or many)
of these macros into your code you can usually easily track down in what small segment of your code the
corruption has occured.

Parallel Programming

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interpro-
cessor communication, the user is free to employ MPI routines as needed throughout an application code.
However, by default the user is shielded from many of the details of message passing within PETSc, since

12

these are hidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc pro-
vides tools such as generalized vector scatters/gathers and distributed arrays to assist in the management of
parallel data.

Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,
matrix, or solver) to indicate the processors over which the object is to be distributed. For example, as
mentioned above, some commands for matrix, vector, and linear solver creation are:

MatCreate(MPI_Comm comm,int M,int N,Mat *A);
VecCreate(MPI_Comm comm,int m,int M,Vec *x);
SLESCreate(MPI_Comm comm,SLES *sles);

The creation routines are collective over all processors in the communicator; thus, all processors in the
communicatormustcall the creation routine. In addition, if a sequence of collective routines is being used,
theymustbe called in the same order on each processor.

The next example, given in Figure5, illustrates the solution of a linear system in parallel. This code, cor-
responding to${PETSC_DIR}/src/sles/examples/tutorials/ex2.c , handles the two-dimensional
Laplacian discretized with finite differences, where the linear system is again solved with SLES. The code
performs the same tasks as the sequential version within Figure3. Note that the user interface for initiating
the program, creating vectors and matrices, and solving the linear system isexactlythe same for the unipro-
cessor and multiprocessor examples. The primary difference between the examples in Figures3 and5 is
that each processor forms only its local part of the matrix and vectors in the parallel case.

/*$Id: ex2.c,v 1.92 2001/03/23 23:23:55 balay Exp $*/

/* Program usage: mpirun -np <procs> ex2 [-help] [all PETSc options] */

static char help[] = "Solves a linear system in parallel with SLES.\n\
Input parameters include:\n\

-random_exact_sol : use a random exact solution vector\n\
-view_exact_sol : write exact solution vector to stdout\n\
-m <mesh_x> : number of mesh points in x-direction\n\
-n <mesh_n> : number of mesh points in y-direction\n\n";

/*T
Concepts: SLESˆbasic parallel example;
Concepts: SLESˆLaplacian, 2d
Concepts: Laplacian, 2d
Processors: n

T*/

/*
Include "petscsles.h" so that we can use SLES solvers. Note that this file
automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace methods
petscviewer.h - viewers petscpc.h - preconditioners

*/
#include "petscsles.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **args)
{

Vec x,b,u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */

13

PetscRandom rctx; /* random number generator context */
double norm; /* norm of solution error */
int i,j,I,J,Istart,Iend,ierr,m = 8,n = 7,its;
PetscTruth flg;
Scalar v,one = 1.0,neg_one = -1.0;
KSP ksp;

PetscInitialize(&argc,&args,(char *)0,help);
ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);

/* -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- */
/*

Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. Since preallocation is not possible via the generic
matrix creation routine MatCreate(), we recommend for practical
problems instead to use the creation routine for a particular matrix
format, e.g.,

MatCreateMPIAIJ() - parallel AIJ (compressed sparse row)
MatCreateMPIBAIJ() - parallel block AIJ

See the matrix chapter of the users manual for details.
*/
ierr = MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,&A);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/
ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

/*
Set matrix elements for the 2-D, five-point stencil in parallel.

- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).

- Always specify global rows and columns of matrix entries.

Note: this uses the less common natural ordering that orders first
all the unknowns for x = h then for x = 2h etc; Hence you see J = I +- n
instead of J = I +- m as you might expect. The more standard ordering
would first do all variables for y = h, then y = 2h etc.

*/
for (I=Istart; I<Iend; I++) {

v = -1.0; i = I/n; j = I - i*n;
if (i>0) {J = I - n; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (i<m-1) {J = I + n; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (j>0) {J = I - 1; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (j<n-1) {J = I + 1; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}

14

v = 4.0; ierr = MatSetValues(A,1,&I,1,&I,&v,INSERT_VALUES);CHKERRQ(ierr);
}

/*
Assemble matrix, using the 2-step process:

MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.

*/
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/*
Create parallel vectors.

- We form 1 vector from scratch and then duplicate as needed.
- When using VecCreate() and VecSetFromOptions() in this example, we specify

only the
vector’s global dimension; the parallel partitioning is determined
at runtime.

- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.

- The user can alternatively specify the local vector and matrix
dimensions when more sophisticated partitioning is needed
(replacing the PETSC_DECIDE argument in the VecCreate() statement
below).

*/
ierr = VecCreate(PETSC_COMM_WORLD,PETSC_DECIDE,m*n,&u);CHKERRQ(ierr);
ierr = VecSetFromOptions(u);CHKERRQ(ierr);
ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0; Alternatively, using the runtime option
-random_sol forms a solution vector with random components.

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-random_exact_sol",&flg);CHKERRQ(ierr);
if (flg) {

ierr = PetscRandomCreate(PETSC_COMM_WORLD,RANDOM_DEFAULT,&rctx);CHKERRQ(ierr);
ierr = VecSetRandom(rctx,u);CHKERRQ(ierr);
ierr = PetscRandomDestroy(rctx);CHKERRQ(ierr);

} else {
ierr = VecSet(&one,u);CHKERRQ(ierr);

}
ierr = MatMult(A,u,b);CHKERRQ(ierr);

/*
View the exact solution vector if desired

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-view_exact_sol",&flg);CHKERRQ(ierr);
if (flg) {ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

/* -
Create the linear solver and set various options

- */

/*

15

Create linear solver context
*/
ierr = SLESCreate(PETSC_COMM_WORLD,&sles);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/
ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the SLES context,

we can then directly call any KSP and PC routines to set
various options.

- The following two statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/

ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-2/((m+1)*(n+1)),1.e-50,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SLESSetFromOptions(sles);CHKERRQ(ierr);

/* -
Solve the linear system

- */

ierr = SLESSolve(sles,b,x,&its);CHKERRQ(ierr);

/* -
Check solution and clean up

- */

/*
Check the error

*/
ierr = VecAXPY(&neg_one,u,x);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);

/* Scale the norm */
/* norm *= sqrt(1.0/((m+1)*(n+1))); */

/*
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
An alternative is PetscFPrintf(), which prints to a file.

*/
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A iterations %d\n",norm,its);CHKERRQ(ierr);

/*

16

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = SLESDestroy(sles);CHKERRQ(ierr);
ierr = VecDestroy(u);CHKERRQ(ierr); ierr = VecDestroy(x);CHKERRQ(ierr);
ierr = VecDestroy(b);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_summary).
*/
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 5: Example of Multiprocessor PETSc Code

Compiling and Running Programs

Figure6 illustrates compiling and running a PETSc program using MPICH. Note that different sites may
have slightly different library and compiler names. See Chapter12 for a discussion about compiling PETSc
programs. Users who are experiencing difficulties linking PETSc programs should refer to the troubleshoot-
ing guide via the PETSc WWW home pagehttp://www.mcs.anl.gov/petsc or given in the file
${PETSC_DIR}/docs/troubleshooting.html .

eagle> make BOPT=g ex2
gcc -DPETSC_ARCH_sun4 -pipe -c -I../../../ -I../../..//include

-I/usr/local/mpi/include -I../../..//src -g
-DPETSC_USE_DEBUG -DPETSC_MALLOC -DPETSC_USE_LOG ex1.c

gcc -g -DPETSC_USE_DEBUG -DPETSC_MALLOC -DPETSC_USE_LOG -o ex1 ex1.o
/home/bsmith/petsc/lib/libg/sun4/libpetscsles.a
-L/home/bsmith/petsc/lib/libg/sun4 -lpetscstencil -lpetscgrid -lpetscsles
-lpetscmat -lpetscvec -lpetscsys -lpetscdraw
/usr/local/lapack/lib/lapack.a /usr/local/lapack/lib/blas.a
/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lX11
/usr/local/mpi/lib/sun4/ch_p4/libmpi.a
/usr/lib/debug/malloc.o /usr/lib/debug/mallocmap.o
/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lm

rm -f ex1.o
eagle> mpirun -np 1 ex2
Norm of error 3.6618e-05 iterations 7
eagle>
eagle> mpirun -np 2 ex2
Norm of error 5.34462e-05 iterations 9

Figure 6: Running a PETSc Program

As shown in Figure7, the option-log_summary activates printing of a performance summary, in-
cluding times, floating point operation (flop) rates, and message-passing activity. Chapter9 provides details
about profiling, including interpretation of the output data within Figure7. This particular example involves
the solution of a linear system on one processor using GMRES and ILU. The low floating point operation
(flop) rates in this example are due to the fact that the code solved a tiny system. We include this example
merely to demonstrate the ease of extracting performance information.

17

http://www.mcs.anl.gov/petsc
troubleshooting.html

eagle> mpirun -np 1 ex1 -n 1000 -pc_type ilu -ksp_type gmres -ksp_rtol 1.e-7 -log_summary
-------------------------------- PETSc Performance Summary: ---------------------------

ex1 on a sun4 named merlin.mcs.anl.gov with 1 processor, by curfman Wed Aug 7 17:24:27 1996

Max Min Avg Total
Time (sec): 1.150e-01 1.0 1.150e-01
Objects: 1.900e+01 1.0 1.900e+01
Flops: 3.998e+04 1.0 3.998e+04 3.998e+04
Flops/sec: 3.475e+05 1.0 3.475e+05
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00 (lengths)
MPI Reductions: 0.000e+00 0.0

Phase Count Time (sec) Flops/sec -- Global -
-

Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R

MatMult 2 2.553e-03 1.0 3.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 2 25 0 0 0
MatAssemblyBegin 1 2.193e-05 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
MatAssemblyEnd 1 5.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 4 0 0 0 0
MatGetReordering 1 3.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 0 0 0 0
MatILUFctrSymbol 1 5.719e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 0 0 0
MatLUFactorNumer 1 1.092e-02 1.0 2.7e+05 1.0 0.0e+00 0.0e+00 0.0e+00 9 7 0 0 0
MatSolve 2 4.193e-03 1.0 2.4e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0
MatSetValues 1000 2.461e-02 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 21 0 0 0 0
VecDot 1 60e-04 1.0 9.7e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0
VecNorm 3 5.870e-04 1.0 1.0e+07 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0
VecScale 1 1.640e-04 1.0 6.1e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 3 0 0 0
VecCopy 1 3.101e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
VecSet 3 5.029e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
VecAXPY 3 8.690e-04 1.0 6.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0
VecMAXPY 1 2.550e-04 1.0 7.8e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0
SLESSolve 1 1.288e-02 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 11 70 0 0 0
SLESSetUp 1 2.669e-02 1.0 1.1e+05 1.0 0.0e+00 0.0e+00 0.0e+00 23 7 0 0 0
KSPGMRESOrthog 1 1.151e-03 1.0 3.5e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 10 0 0 0
PCSetUp 1 24e-02 1.0 1.5e+05 1.0 0.0e+00 0.0e+00 0.0e+00 18 7 0 0 0
PCApply 2 4.474e-03 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants’ Mem.
Index set 3 3 12420 0
Vector 8 8 65728 0
Matrix 2 2 184924 4140
Krylov Solver 1 1 16892 41080
Preconditioner 1 1 0 64872
SLES 1 1 0 122844

Figure 7: Running a PETSc Program with Profiling

18

Writing Application Codes with PETSc

The examples throughout the library demonstrate the software usage and can serve as templates for devel-
oping custom applications. We suggest that new PETSc users examine programs in the directories

${PETSC_DIR}/src/<component>/examples/tutorials,

where<component> denotes any of the PETSc components (listed in the following section), such as
snes or sles . The manual pages located at

${PETSC_DIR}/docs/index.html or
http://www.mcs.anl.gov/petsc/docs/

provide indices (organized by both routine names and concepts) to the tutorial examples.
To write a new application program using PETSc, we suggest the following procedure:

1. Install and test PETSc according to the instructions at the PETSc web site.

2. Copy one of the many PETSc examples in the component directory that corresponds to the class
of problem of interest (e.g., for linear solvers, see${PETSC_DIR}/src/sles/examples/
tutorials).

3. Copy the corresponding makefile within the example directory; compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

1.5 Referencing PETSc

When referencing PETSc in a publication please cite the following:
@Unpublished{petsc-home-page,

Author = "Satish Balay and William D. Gropp and Lois C. McInnes and
Barry F. Smith",

Title = "{PETSc} home page",
Note = "http://www.mcs.anl.gov/petsc",
Year = "1998"}

@TechReport{petsc-manual,
Author = "Satish Balay and William D. Gropp and Lois C. McInnes

and Barry F. Smith",
Title = "{PETSc} Users Manual",
Number = "ANL-95/11 - Revision 2.1.0",
Institution = "Argonne National Laboratory",
Year = "2000"}

@InProceedings{petsc-efficient,
Author = "Satish Balay and William D. Gropp and Lois C. McInnes

and Barry F. Smith",
Title = "Efficienct Management of Parallelism in Object Oriented

Numerical Software Libraries",
Booktitle = "Modern Software Tools in Scientific Computing",
Editor = "E. Arge and A. M. Bruaset and H. P. Langtangen",
Pages = "163--202",
Publisher = "Birkhauser Press",
Year = "1997"}

19

1.6 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. The root direc-
tory of PETSc contains the following directories:

• docs - All documentation for PETSc. The filesmanual.pdf contains the hyperlinked users man-
ual, suitable for printing or on-screen viewering. Includes the subdirectory

- manualpages (on-line manual pages).

• bin - Utilities and short scripts for use with PETSc, including

– petsarch (utility for settingPETSC_ARCHenvironmental variable),

• bmake - Base PETSc makefile directory. Includes subdirectories for various architectures.

• include - All include files for PETSc that are visible to the user.

• include/finclude - PETSc include files for Fortran programmers using the .F suffix (recom-
mended).

• include/foldinclude - PETSc include files for Fortran programmers using the .f suffix.

• include/pinclude - Private PETSc include files that shouldnotbe used by application program-
mers.

• src - The source code for all PETSc components, which currently includes

– vec - vectors,

∗ is - index sets,

– mat - matrices,

– dm

∗ da - distributed arrays,

∗ ao - application orderings,

– sles - complete linear equations solvers,

∗ ksp - Krylov subspace accelerators,

∗ pc - preconditioners,

– snes - nonlinear solvers

– ts - ODE solvers and timestepping,

– sys - general system-related routines,

∗ plog - PETSc logging and profiling routines,

∗ draw - simple graphics,

– fortran - Fortran interface stubs,

– contrib - contributed modules that use PETSc but are not part of the official PETSc package.
We encourage users who have developed such code that they wish to share with others to let us
know by writing to petsc-maint@mcs.anl.gov.

Each PETSc source code component directory has the following subdirectories:

• examples - Example programs for the component, including

20

– tutorials - Programs designed to teach users about PETSc. These codes can serve as tem-
plates for the design of custom applicatinos.

– tests - Programs designed for thorough testing of PETSc. As such, these codes are not in-
tended for examination by users.

• interface - The calling sequences for the abstract interface to the component. Code here does not
know about particular implementations.

• impls - Source code for one or more implementations.

• utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.

21

Part II

Programming with PETSc

22

Chapter 2

Vectors and Distributing Parallel Data

The vector (denoted byVec) is one of the simplest PETSc objects. Vectors are used to store discrete PDE
solutions, right-hand sides for linear systems, etc. This chapter is organized as follows:

• (Vec) Sections2.1and2.2- basic usage of vectors

• Section2.3- management of the various numberings of degrees of freedom, vertices, cells, etc.

– (AO) Mapping between different global numberings

– (ISLocalToGlobalMapping) Mapping between local and global numberings

• (DA) Section2.4- management of structured grids

• (IS, VecScatter) Section2.5- management of vectors related to unstructured grids

2.1 Creating and Assembling Vectors

PETSc currently provides two basic vector types: sequential and parallel (MPI based). To create a sequential
vector withmcomponents, one can use the command

VecCreateSeq(PETSC_COMM_SELF,int m,Vec *x);

To create a parallel vector one can either specify the number of components that will be stored on each
processor or let PETSc decide. The command

VecCreateMPI(MPI_Comm comm,int m,int M,Vec *x);

creates a vector that is distributed over all processors in the communicator,comm, wherem indicates the
number of components to store on the local processor, andM is the total number of vector components.
Either the local or global dimension, but not both, can be set toPETSC_DECIDEto indicate that PETSc
should determine it. More generally, one can use the routines

VecCreate(MPI_Comm comm,int m,int M,Vec *v);
VecSetFromOptions(v);

which automatically generates the appropriate vector type (sequential or parallel) over all processors in
comm. The option-vec_type mpi can be used in conjunction withVecCreate() and VecSetF
romOptions() to specify the use of MPI vectors even for the uniprocessor case.

We emphasize that all processors incommmustcall the vector creation routines, since these routines are
collective over all processors in the communicator. If you are not familar with MPI communicators, see the
discussion in Section1.3on page6. In addition, if a sequence ofVecCreateXXX() routines is used, they
must be called in the same order on each processor in the communicator.

One can assign a single value to all components of a vector with the command

24

VecSet(Scalar *value,Vec x);

Assigning values to individual components of the vector is more complicated, in order to make it possible
to write efficient parallel code. Assigning a set of components is a two-step process: one first calls

VecSetValues(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);

any number of times on any or all of the processors. The argumentn gives the number of components being
set in this insertion. The integer arrayindices contains theglobal component indices, andvalues is
the array of values to be inserted. Any processor can set any components of the vector; PETSc insures
that they are automatically stored in the correct location. Once all of the values have been inserted with
VecSetValues() , one must call

VecAssemblyBegin(Vec x);

followed by

VecAssemblyEnd(Vec x);

to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.

Example usage ofVecSetValues() may be found in${PETSC_DIR}/src/vec/examples/
tutorials/ex2.corex2f.F

Often, rather than inserting elements in a vector, one may wish to add values. This process is also done
with the command

VecSetValues(Vec x,int n,int *indices, Scalar *values,ADD_VALUES);

Again one must call the assembly routinesVecAssemblyBegin() andVecAssemblyEnd() after all
of the values have been added. Note that addition and insertion calls toVecSetValues() cannotbe
mixed. Instead, one must add and insert vector elements in phases, with intervening calls to the assembly
routines. This phased assembly procedure overcomes the nondeterministic behavior that would occur if two
different processors generated values for the same location, with one processor adding while the other is
inserting its value. (In this case the addition and insertion actions could be performed in either order, thus
resulting in different values at the particular location. Since PETSc does not allow the simultaneous use of
INSERT_VALUESandADD_VALUESthis nondeterministic behavior will not occur in PETSc.)

There is no routine calledVecGetValues() , since we provide an alternative method for extracting
some components of a vector using the vector scatter routines. See Section2.5.2for details; see also below
for VecGetArray() .

One can examine a vector with the command

VecView(Vec x,PetscViewer v);

To print the vector to the screen, one can use the viewerVIEWER_STDOUT_WORLD, which ensures that
parallel vectors are printed correctly tostdout . To display the vector in an X-window, one can use the
default X-windows viewerVIEWER_DRAW_WORLD, or one can create a viewer with the routineViewerD
rawOpenX() . A variety of viewers are discussed further in Section11.2.

To create a new vector of the same format as an existing vector, one uses the command

VecDuplicate(Vec old,Vec *new);

To create several new vectors of the same format as an existing vector, one uses the command

VecDuplicateVecs(Vec old,int n,Vec **new);

This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Section8.1.6, the Fortran interface forVecDuplicateVecs() differs slightly.

When a vector is no longer needed, it should be destroyed with the command

25

Function Name Operation
VecAXPY(Scalar *a,Vec x, Vec y); y = y + a ∗ x
VecAYPX(Scalar *a,Vec x, Vec y); y = x + a ∗ y
VecWAXPY(Scalar *a,Vec x,Vec y, Vec w); w = a ∗ x + y
VecAXPBY(Scalar *a,Scalar *,Vec x,Vec y); y = a ∗ x + b ∗ y
VecScale(Scalar *a, Vec x); x = a ∗ x
VecDot(Vec x, Vec y, Scalar *r); r = x̄′ ∗ y
VecTDot(Vec x, Vec y, Scalar *r); r = x′ ∗ y
VecNorm(Vec x,NormType type, double *r); r = ||x||type

VecSum(Vec x, Scalar *r); r =
∑

xi

VecCopy(Vec x, Vec y); y = x
VecSwap(Vec x, Vec y); y = x while x = y
VecPointwiseMult(Vec x,Vec y, Vec w); wi = xi ∗ yi

VecPointwiseDivide(Vec x,Vec y, Vec w); wi = xi/yi

VecMDot(int n,Vec x, Vec *y,Scalar *r); r[i] = x̄′ ∗ y[i]
VecMTDot(int n,Vec x, Vec *y,Scalar *r); r[i] = x′ ∗ y[i]
VecMAXPY(int n, Scalar *a,Vec y, Vec *x); y = y +

∑
i ai ∗ x[i]

VecMax(Vec x, int *idx, double *r); r = maxxi

VecMin(Vec x, int *idx, double *r); r = minxi

VecAbs(Vec x); xi = |xi|
VecReciprocal(Vec x); xi = 1/xi

VecShift(Scalar *s,Vec x); xi = s + xi

Table 1: PETSc Vector Operations

VecDestroy(Vec x);

To destroy an array of vectors, one should use the command

VecDestroyVecs(Vec *vecs,int n);

Note that the Fortran interface forVecDestroyVecs() differs slightly, as described in Section8.1.6.
It is also possible to create vectors that use an array provided by the user, rather than having PETSc

internally allocate the array space. Such vectors can be created with the routines

VecCreateSeqWithArray(PETSC_COMM_SELF,int m,Scalar *array,Vec *x);

and

VecCreateMPIWithArray(MPI_Comm comm,int m,int M,,Scalar *array,Vec *x);

Note that here one must provide the valuem, it cannot bePETSC_DECIDEand the user is responsible for
providing enough space in the array;m*sizeof(Scalar) .

2.2 Basic Vector Operations

As listed in Table1, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes. TheNormType
argument toVecNorm() is one of NORM_1, NORM_2, or NORM_INFINITY. The 1-norm is

∑
i |xi|,

the 2-norm is(
∑

i x
2
i)

1/2 and the infinity norm ismaxi |xi|.
For parallel vectors that are distributed across the processors by ranges, it is possible to determine a

processor’s local range with the routine

VecGetOwnershipRange(Vec vec,int *low,int *high);

26

The argumentlow indicates the first component owned by the local processor, whilehigh specifiesone
more thanthe last owned by the local processor. This command is useful, for instance, in assembling parallel
vectors.

On occasion, the user needs to access the actual elements of the vector. The routineVecGetArray()
returns a pointer to the elements local to the processor:

VecGetArray(Vec v,Scalar **array);
When access to the array is no longer needed, the user should call

VecRestoreArray(Vec v, Scalar **array);
Minor differences exist in the Fortran interface forVecGetArray() andVecRestoreArray() , as
discussed in Section8.1.3. It is important to note thatVecGetArray() andVecRestoreArray()
do not copy the vector elements; they merely give users direct access to the vector elements. Thus, these
routines require essentially no time to call and can be used efficiently.

The number of elements stored locally can be accessed with
VecGetLocalSize(Vec v,int *size);

The global vector length can be determined by
VecGetSize(Vec v,int *size);
In addition toVecDot() andVecMDot() andVecNorm() PETSc provides split phase versions of

these that allow several independent inner products and/or norms to share the same communication (thus
improving parallel efficiency). For example, one may have code such as

VecDot(Vec x,Vec y,Scalar *dot);
VecNorm(Vec x,NormType NORM_2,double *norm2);
VecNorm(Vec x,NormType NORM_1,double *norm1);

This code works fine, the problem is that it performs three seperate parallel communication operations.
Instead one can write

VecDotBegin(Vec x,Vec y,Scalar *dot);
VecNormBegin(Vec x,NormType NORM_2,double *norm2);
VecNormBegin(Vec x,NormType NORM_1,double *norm1);
VecDotEnd(Vec x,Vec y,Scalar *dot);
VecNormEnd(Vec x,NormType NORM_2,double *norm2);
VecNormEnd(Vec x,NormType NORM_1,double *norm1);

With this code, the communication is delayed until the first call toVecxxxEnd() at which a single MPI
reduction is used to communicate all the required values. It is required that the calls to theVecxxxEnd()
are performed in the same order as the calls to theVecxxxBegin() ; however if you mistakenly make
the calls in the wrong order PETSc will generate an error, informing you of this. There are two additional
routinesVecTDotBegin() andVecTDotEnd() . These routines where suggested by Victor Eijkhout.

Note: these routines use only MPI 1 functionality; so they do not allow you to overlap computation
and communication. Once MPI 2 implementations are more common we’ll improve these routines to allow
overlap of inner product and norm calculations with other calculations. Also currently these routines only
work for the PETSc built in vector types.

2.3 Indexing and Ordering

When writing parallel PDE codes there is extra complexity caused by having multiple ways of indexing
(numbering) and ordering objects such as vertices and degrees of freedom. For example, a grid generator
or partitioner may renumber the nodes, requiring adjustment of the other data structures that refer to these
objects; see Figure9. In addition, local numbering (on a single processor) of objects may be different than
the global (cross-processor) numbering. PETSc provides a variety of tools that help to manage the mapping
among the various numbering systems. The two most basic are theAO(application ordering), which enables
mapping between different global (cross-processor) numbering schemes and theISLocalToGlobalM
apping , which allows mapping between local (on-processor) and global (cross-processor) numbering.

27

2.3.1 Application Orderings

In many applications it is desirable to work with one or more “orderings” (or numberings) of degrees of
freedom, cells, nodes, etc. Doing so in a parallel environment is complicated by the fact that each processor
cannot keep complete lists of the mappings between different orderings. In addition, the orderings used in
the PETSc linear algebra routines (often contiguous ranges) may not correspond to the “natural” orderings
for the application.

PETSc provides certain utility routines that allow one to deal cleanly and efficiently with the various
orderings. To define a new application ordering (called anAOin PETSc), one can call the routine

AOCreateBasic(MPI_Comm comm,int n,int *apordering,int *petscordering,
AO *ao);

The arraysapordering andpetscordering , respectively, contain a list of integers in the application
ordering and their corresponding mapped values in the PETSc ordering. Each processor can provide what-
ever subset of the ordering it chooses, but multiple processors should never contribute duplicate values. The
argumentn indicates the number of local contributed values.

For example, consider a vector of length five, where node 0 in the application ordering corresponds to
node 3 in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond,
respectively, to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as

0, 1, 2, 3, 4 → 3, 2, 1, 4, 0.

The user can create the PETSc-AO mappings in a number of ways. For example, if using two processors,
one could call

AOCreateBasic(PETSC_COMM_WORLD,2,{0,3},{3,4},&ao);
on the first processor and

AOCreateBasic(PETSC_COMM_WORLD,3,{1,2,4},{2,1,0},&ao);
on the other processor.

Once the application ordering has been created, it can be used with either of the commands
AOPetscToApplication(AO ao,int n,int *indices);
AOApplicationToPetsc(AO ao,int n,int *indices);

Upon input, then-dimensional arrayindices specifies the indices to be mapped, while upon output,
indices contains the mapped values. Since we, in general, employ a parallel database for theAO
mappings, it is crucial that all processors that calledAOCreateBasic() also call these routines; these
routinescannotbe called by just a subset of processors in the MPI communicator that was used in the call
to AOCreateBasic() .

An alternative routine to create the application ordering,AO, is
AOCreateBasicIS(IS apordering,IS petscordering,AO *ao);

where index sets are used instead of integer arrays.
The mapping routines

AOPetscToApplicationIS(AO ao,IS indices);
AOApplicationToPetscIS(AO ao,IS indices);

will map index sets (IS objects) between orderings. Both theAOXxxToYyy() andAOXxxToYyyIS()
routines can be used regardless of whether theAOwas created with aAOCreateBasic() or AOCreateB
asicIS() .

The AOcontext should be destroyed withAODestroy(AOao) and viewed withAOView(AOao,
PetscViewerviewer) .

Although we refer to the two orderings as “PETSc” and “application” orderings, the user is free to use
them both for application orderings and to maintain relationships among a variety of orderings by employing
severalAOcontexts.

The AOxxToxx() routines allow negative entries in the input integer array. These entries are not
mapped; they simply remain unchanged. This functionality enables, for example, mapping neighbor lists
that use negative numbers to indicate nonexistent neighbors due to boundary conditions, etc.

28

2.3.2 Local to Global Mappings

In many applications one works with a global representation of a vector (usually on a vector obtained with
VecCreateMPI()) and a local representation of the same vector that includes ghost points required for
local computation. PETSc provides routines to help map indices from a local numbering scheme to the
PETSc global numbering scheme. This is done via the following routines

ISLocalToGlobalMappingCreate(int N,int* globalnum,
ISLocalToGlobalMapping* ctx);

ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,int n,int *in,
int *out);

ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,
IS* isout);

ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping ctx);

HereNdenotes the number of local indices,globalnum contains the global number of each local number,
and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed
to apply the mapping with eitherISLocalToGlobalMappingApply() or ISLocalToGlobalM
appingApplyIS() .

Note that theISLocalToGlobalMapping routines serve a different purpose than theAOroutines. In
the former case they provide a mapping from a local numbering scheme (including ghost points) to a global
numbering scheme, while in the latter they provide a mapping between two global numbering schemes. In
fact, many applications may use bothAOand ISLocalToGlobalMapping routines. TheAOroutines
are first used to map from an application global ordering (that has no relationship to parallel processing etc.)
to the PETSc ordering scheme (where each processor has a contiguous set of indices in the numbering).
Then in order to perform function or Jacobian evaluations locally on each processor, one works with a local
numbering scheme that includes ghost points. The mapping from this local numbering scheme back to the
global PETSc numbering can be handled with theISLocalToGlobalMapping routines.

If one is given a list of indices in a global numbering, the routine

ISGlobalToLocalMappingApply(ISLocalToGlobalMapping ctx,
ISGlobalToLocalMappingType type,int nin,
int *idxin,int *nout,int *idxout);

will provide a new list of indices in the local numbering. Again, negative values inidxin are left un-
mapped. But, in addition, iftype is set toIS_GTOLM_MASK, , thennout is set tonin and all global
values inidxin that are not represented in the local to global mapping are replaced by -1. Whentype
is set toIS_GTOLM_DROP, the values inidxin that are not represented locally in the mapping are not
included inidxout , so that potentiallynout is smaller thannin . One must pass in an array long enough
to hold all the indices. One can callISGlobalToLocalMappingApply() with idxout equal to
PETSC_NULLto determine the required length (returned innout) and then allocate the required space and
call ISGlobalToLocalMappingApply() a second time to set the values.

Often it is convenient to set elements into a vector using the local node numbering rather than the global
node numbering (e.g., each processor may maintain its own sublist of vertices and elements and number
them locally). To set values into a vector with the local numbering, one must first call

VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping ctx);

and then call

VecSetValuesLocal(Vec x,int n,int *indices,Scalar *values,INSERT_VALUES);

Now theindices use the local numbering, rather than the global.

29

Box-type stencil Star-type stencil

Proc 6

Proc 0 Proc 0Proc 1 Proc 1

Proc 6

Figure 8: Ghost Points for Two Stencil Types on the Seventh Processor

2.4 Structured Grids Using Distributed Arrays

Distributed arrays (DAs), which are used in conjunction with PETSc vectors, are intended for use with
logically regular rectangular gridswhen communication of nonlocal data is needed before certain local
computations can occur. PETSc distributed arrays are designed only for the case in which data can be
thought of as being stored in a standard multidimensional array; thus,DAs arenot intended for parallelizing
unstructured grid problems, etc.DAs are intended for communicating vector (field) information; they are
not intended for storing matrices.

For example, a typical situation one encounters in solving PDEs in parallel is that, to evaluate a local
function, f(x) , each processor requires its local portion of the vectorx as well as its ghost points (the
bordering portions of the vector that are owned by neighboring processors). Figure8 illustrates the ghost
points for the seventh processor of a two-dimensional, regular parallel grid. Each box represents a processor;
the ghost points for the seventh processor’s local part of a parallel array are shown in gray.

2.4.1 Creating Distributed Arrays

The PETScDA object manages the parallel communication required while working with data stored in
regular arrays. The actual data is stored in approriately sized vector objects; theDAobject only contains the
parallel data layout information and communication information.

One creates a distributed array communication data structure in two dimensions with the command

DACreate2d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType st,int M,
int N,int m,int n,int dof,int s,int *lx,int *ly,DA *da);

The argumentsMandN indicate the global numbers of grid points in each direction, whilemandn denote the
processor partition in each direction;m*n must equal the number of processors in the MPI communicator,
comm. Instead of specifying the processor layout, one may usePETSC_DECIDEfor mandn so that PETSc
will determine the partition using MPI. The type of periodicity of the array is specified bywrap , which
can beDA_NONPERIODIC(no periodicity),DA_XYPERIODIC(periodic in both x- and y-directions),
DA_XPERIODIC, or DA_YPERIODIC. The argumentdof indicates the number of degrees of freedom at
each array point, ands is the stencil width (i.e., the width of the ghost point region). The optional arrayslx
andly may contain the number of nodes along the x and y axis for each cell, i.e. the dimension oflx is m
and the dimension ofly is n; or PETSC_NULLmay be passed in.

Two types of distributed array communication data structures can be created, as specified byst . Star-
type stencils that radiate outward only in the coordinate directions are indicated byDA_STENCIL_STAR,
while box-type stencils are specified byDA_STENCIL_BOX. For example, for the two-dimensional case,

30

DA_STENCIL_STARwith width 1 corresponds to the standard 5-point stencil, whileDA_STENCIL_BOX
with width 1 denotes the standard 9-point stencil. In both instances the ghost points are identical, the only
difference being that with star-type stencils certain ghost points are ignored, potentially decreasing substan-
tially the number of messages sent. Note that theDA_STENCIL_STARstencils can save interprocessor
communication in two and three dimensions.

TheseDAstencils have nothing directly to do with any finite difference stencils one might chose to use
for a discretization; they only ensure that the correct values are in place for application of a user-defined
finite difference stencil (or any other discretization technique).

The commands for creating distributed array communication data structures in one and three dimensions
are analogous:

DACreate1d(MPI_Comm comm,DAPeriodicType wrap,int M,int w,int s,int *lc,
DA *inra);

DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,
int M,int N,int P,int m,int n,int p,int w,int s,int *lx,
int *ly,int *lz,DA *inra);

DA_ZPERIODIC, DA_XZPERIODIC, DA_YZPERIODIC, and DA_XYZPERIODICare additional op-
tions in three dimensions forDAPeriodicType . The routines to create distributed arrays are collective,
so that all processors in the communicatorcommmust callDACreateXXX() .

2.4.2 Local/Global Vectors and Scatters

EachDAobject defines the layout of two vectors: a distributed global vector and a local vector that includes
room for the appropriate ghost points. TheDAobject provides information about the size and layout of these
vectors, but does not internally allocate any associated storage space for field values. Instead, the user can
create vector objects that use theDAlayout information with the routines

DACreateGlobalVector(DA da,Vec *g);
DACreateLocalVector(DA da,Vec *l);

These vectors will generally serve as the building blocks for local and global PDE solutions, etc. If additional
vectors with such layout information are needed in a code, they can be obtained by duplicatingl or g via
VecDuplicate() or VecDuplicateVecs() .

We emphasize that a distributed array provides the information needed to communicate the ghost value
information between processes. In most cases, several different vectors can share the same communication
information (or, in other words, can share a givenDA). The design of theDA object makes this easy, as
eachDA operation may operate on vectors of the appropriate size, as obtained viaDACreateLocalV
ector() andDACreateGlobalVector() or as produced byVecDuplicate() . As such, theDA
scatter/gather operations (e.g.,DAGlobalToLocalBegin()) require vector input/output arguments, as
discussed below.

PETSc currently provides no container for multiple arrays sharing the same distributed array communi-
cation; note, however, that thedof parameter handles many cases of interest.

At certain stages of many applications, there is a need to work on a local portion of the vector, including
the ghost points. This may be done by scattering a global vector into its local parts by using the two-stage
commands

DAGlobalToLocalBegin(DA da,Vec g,InsertMode iora,Vec l);
DAGlobalToLocalEnd(DA da,Vec g,InsertMode iora,Vec l);

which allow the overlap of communication and computation. Since the global and local vectors, given
by g and l , respectively, must be compatible with the distributed array,da , they should be generated
by DACreateGlobalVector() andDACreateLocalVector() (or be duplicates of such a vector
obtained viaVecDuplicate()). TheInsertMode can be eitherADD_VALUESor INSERT_VALUES.

One can scatter the local patches into the distributed vector with the command

31

DALocalToGlobal(DA da,Vec l,InsertMode mode,Vec g);

Note that this function is not subdivided into beginning and ending phases, since it is purely local.
A third type of distributed array scatter is from a local vector (including ghost points that contain ir-

relevant values) to a local vector with correct ghost point values. This scatter may be done by commands

DALocalToLocalBegin(DA da,Vec l1,InsertMode iora,Vec l2);
DALocalToLocalEnd(DA da,Vec l1,InsertMode iora,Vec l2);

Since both local vectors,l1 andl2 , must be compatible with the distributed array,da , they should be gener-
ated byDACreateLocalVector() (or be duplicates of such vectors obtained viaVecDuplicate()).
TheInsertMode can be eitherADD_VALUESor INSERT_VALUES.

It is possible to directly access the vector scatter contexts (see below) used in the local-to-global (ltog),
global-to-local (gtol), and local-to-local (ltol) scatters with the command

DAGetScatter(DA da,VecScatter *ltog,VecScatter *gtol,VecScatter *ltol);

Most users should not need to use these contexts.

2.4.3 Local (Ghosted) Work Vectors

In most applications the local ghosted vectors are only needed during user “function evaluations”. PETSc
provides an easy light-weight (requiring essentially no CPU time) way to obtain these work vectors and
return them when they are no longer needed. This is done with the routines

DAGetLocalVector(DA da,Vec *l);
.... use the local vector l

DARestoreLocalVector(DA da,Vec *l);

2.4.4 Accessing the Vector Entries for DA Vectors

PETSc provides an easy way to set values into the DA Vectors and access them using the natural grid
indexing. This is done with the routines

DAVecGetArray(DA da,Vec l,(void**)array);
.... use the array indexing it with 1 or 2 or 3 dimensions
.... depending on the dimension of the DA

DAVecRestoreArray(DA da,Vec l,(void**)array);

The vector l can be either a global vector or a local vector. Thearray is accessed using the usualglobal
indexing on the entire grid. For example for a scalar problem in two dimensions one could do

Scalar **f,**u;
...

DAVecGetArray(DA da,Vec local,(void**)u);
DAVecGetArray(DA da,Vec global,(void**)f);

...
f[i][j] = u[i][j] - ...

...
DAVecRestoreArray(DA da,Vec local,(void**)u);
DAVecRestoreArray(DA da,Vec global,(void**)f);

See${PETSC_DIR}/src/snes/examples/tutorials/ex5.c for a complete example and See
${PETSC_DIR}/src/snes/examples/tutorials/ex19.c for an example for a multi-component
PDE.

32

2.4.5 Grid Information

The global indices of the lower left corner of the local portion of the array as well as the local array size can
be obtained with the commands

DAGetCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);
DAGetGhostCorners(DA da,int *x,int *y,int *z,int *m,int *n,int *p);

The first version excludes any ghost points, while the second version includes them. The routineDAGetG
hostCorners() deals with the fact that subarrays along boundaries of the problem domain have ghost
points only on their interior edges, but not on their boundary edges.

When either type of stencil is used,DA_STENCIL_STARor DA_STENCIL_BOX, the local vectors
(with the ghost points) represent rectangular arrays, including the extra corner elements in theDA_STENC
IL_STAR case. This configuration provides simple access to the elements by employing two- (or three-
) dimensional indexing. The only difference between the two cases is that whenDA_STENCIL_STAR
is used, the extra corner components arenot scattered between the processors and thus contain undefined
values that shouldnotbe used.

To assemble global stiffness matrices, one needs either
1) to be able to determine the global node number of each local node including the ghost nodes. The

number may be determined by using the command
DAGetGlobalIndices(DA da,int *n,int **idx);

The output argumentn contains the number of local nodes, including ghost nodes, whileidx contains a list
of the global indices that correspond to the local nodes. Note that the Fortran interface differs slightly; see
Section8.1.3for details.

2) or to set up the vectors and matrices so that their entries may be added using the local numbering.
This is done by first calling

DAGetISLocalToGlobalMapping(DA da,ISLocalToGlobalMapping *map);
followed by

VecSetLocalToGlobalMapping(Vec x,ISLocalToGlobalMapping map);
MatSetLocalToGlobalMapping(Vec x,ISLocalToGlobalMapping map);

Now entries may be added to the vector and matrix using the local numbering andVecSetValuesL
ocal() andMatSetValuesLocal() .

Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, theDA structure provides an
application orderingAO(see Section2.3.1) that maps between the natural ordering on a rectangular grid and
the ordering PETSc uses to parallize. This ordering context can be obtained with the command

DAGetAO(DA da,AO *ao);
In Figure9 we indicate the orderings for a two-dimensional distributed array, divided among four processors.

The example${PETSC_DIR}/src/snes/examples/tutorials/ex5.c , illustrates the use of
a distributed array in the solution of a nonlinear problem. The analogous Fortran program is
${PETSC_DIR}/src/snes/examples/tutorials/ex5f.F ; See Chapter5 for a discussion of
the nonlinear solvers.

2.5 Software for Managing Vectors Related to Unstructured Grids

2.5.1 Index Sets

To facilitate general vector scatters and gathers used, for example, in updating ghost points for problems
defined on unstructured grids, PETSc employs the concept of an index set. An index set, which is a gener-
alization of a set of integer indices, is used to define scatters, gathers, and similar operations on vectors and
matrices.

The following command creates a index set based on a list of integers:

33

Processor 2 Processor 3

22 23 24 29 3026 27 28 29 30

Processor 2 Processor 3

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

 6 7 8 9 10

 1 2 3 4 5

19 20 21 27 28

16 17 18 25 26

Natural Ordering PETSc Ordering

Processor 1Processor 0Processor 1Processor 0

 7 8 9 14 15

 4 5 6 12 13

 1 2 3 10 11

Figure 9: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processors)

ISCreateGeneral(MPI_Comm comm,int n,int *indices, IS *is);

This routine essentially copies then indices passed to it by the integer arrayindices . Thus, the user
should be sure to free the integer arrayindices when it is no longer needed, perhaps directly after the call
to ISCreateGeneral() . The communicator,comm, should consist of all processors that will be using
theIS .

Another standard index set is defined by a starting point (first) and a stride (step), and can be
created with the command

ISCreateStride(MPI_Comm comm,int n,int first,int step,IS *is);

Index sets can be destroyed with the command

ISDestroy(IS is);

On rare occasions the user may have to access information directly from an index set. Several commands
assist in this process:

ISGetSize(IS is,int *size);
ISStrideGetInfo(IS is,int *first,int *stride);
ISGetIndices(IS is,int **indices);

The functionISGetIndices() returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ISRestoreIndices(IS is, int **indices);

34

should be called to ensure that the system can free the space it may have used to generate the list of indices.
A blocked version of the index sets can be created with the command

ISCreateBlock(MPI_Comm comm,int bs,int n,int *indices, IS *is);

This version is used for defining operations in which each element of the index set refers to a block ofbs
vector entries. Related routines analogous to those described above exist as well, includingISBlockG
etIndices() , ISBlockGetSize() , ISBlockGetBlockSize() , andISBlock() . See the man
pages for details.

2.5.2 Scatters and Gathers

PETSc vectors have full support for general scatters and gathers. One can select any subset of the com-
ponents of a vector to insert or add to any subset of the components of another vector. We refer to these
operations as generalized scatters, though they are actually a combination of scatters and gathers.

To copy selected components from one vector to another, one uses the following set of commands:

VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);
VecScatterBegin(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);
VecScatterEnd(Vec x,Vec y,INSERT_VALUES,SCATTER_FORWARD,VecScatter ctx);
VecScatterDestroy(VecScatter ctx);

Hereix denotes the index set of the first vector, whileiy indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the index
set of the first vector,ix , equal the number in the destination index set,iy , and that the vectors be long
enough to contain all the indices referred to in the index sets. The argumentINSERT_VALUESspecifies
that the vector elements will be inserted into the specified locations of the destination vector, overwriting
any existing values. To add the components, rather than insert them, the user should select the option
ADD_VALUESinstead ofINSERT_VALUES.

To perform a conventional gather operation, the user simply makes the destination index set,iy , be a
stride index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending)
index set consisting of a stride. For parallel vectors, all processors that own the vectormustcall the scatter
routines. When scattering from a parallel vector to sequential vectors, each processor has its own sequential
vector that receives values from locations as indicated in its own index set. Similarly, in scattering from
sequential vectors to a parallel vector, each processor has its own sequential vector that makes contributions
to the parallel vector.

Caution: WhenINSERT_VALUESis used, if two different processors contribute different values to the
same component in a parallel vector, either value may end up being inserted. WhenADD_VALUESis used,
the correct sum is added to the correct location.

In some cases one may wish to “undo” a scatter, that is perform the scatter backwards switching the
roles of the sender and receiver. This is done by using

VecScatterBegin(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);
VecScatterEnd(Vec y,Vec x,INSERT_VALUES,SCATTER_REVERSE,VecScatter ctx);

Note that the roles of the first two arguments to these routines must be swapped whenever theSCATTER_
REVERSEoption is used.

Once aVecScatter object has been created it may be used with any vectors that have the appropriate
parallel data layout. That is, one can callVecScatterBegin() andVecScatterEnd() with different
vectors than used in the call toVecScatterCreate() so long as they have the same parallel layout
(number of elements on each processor are the same). Usually, these “different” vectors would ahve been
obtained vai calls toVecDuplicate() from the original vectors used in the call toVecScatterC
reate() .

35

Vec p, x; /* initial vector, destination vector */
VecScatter scatter; /* scatter context */
IS from, to; /* index sets that define the scatter */
Scalar *values;
int idx_from[] = {100,200}, idx_to[] = {0,1};

VecCreateSeq(PETSC_COMM_SELF,2,&x);
ISCreateGeneral(PETSC_COMM_SELF,2,idx_from,&from);
ISCreateGeneral(PETSC_COMM_SELF,2,idx_to,&to);
VecScatterCreate(p,from,x,to,&scatter);
VecScatterBegin(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter);
VecScatterEnd(p,x,INSERT_VALUES,SCATTER_FORWARD,scatter);
VecGetArray(x,&values);
ISDestroy(from);
ISDestroy(to);
VecScatterDestroy(scatter);

Figure 10: Example Code for Vector Scatters

There is no PETSc routine that is the opposite ofVecSetValues() , that is,VecGetValues() .
Instead, the user should create a new vector where the components are to be stored and perform the appro-
priate vector scatter. For example, if one desires to obtain the values of the 100th and 200th entries of a
parallel vector,p, one could use a code such as that within Figure10. In this example, the values of the
100th and 200th components are placed in the arrayvalues . In this example each processor now has the
100th and 200th component, but obviously each processor could gather any elements it needed, or none by
creating an index set with no entries.

The scatter comprises two stages, in order to allow overlap of communication and computation. The
introduction of theVecScatter context allows the communication patterns for the scatter to be com-
puted once and then reused repeatedly. Generally, even setting up the communication for a scatter requires
communication; hence, it is best to reuse such information when possible.

2.5.3 Scattering Ghost Values

The scatters provide a very general method for managing the communication of required ghost values for
unstructured grid computations. One scatters the global vector into a local “ghosted” work vector, performs
the computation on the local work vectors, and then scatters back into the global solution vector. In the
simplest case this may be written as

Function: (Input Vec globalin, Output Vec globalout)

VecScatterBegin(Vec globalin,Vec localin,InsertMode INSERT_VALUES,
ScatterMode SCATTER_FORWARD,VecScatter scatter);

VecScatterEnd(Vec globalin,Vec localin,InsertMode INSERT_VALUES,
ScatterMode SCATTER_FORWARD,VecScatter scatter);

/*
For example, do local calculations from localin to localout

*/
VecScatterBegin(Vec localout,Vec globalout,InsertMode ADD_VALUES,

ScatterMode SCATTER_REVERSE,VecScatter scatter);
VecScatterEnd(Vec localout,Vec globalout,InsertMode ADD_VALUES,

36

ScatterMode SCATTER_REVERSE,VecScatter scatter);

2.5.4 Vectors with Locations for Ghost Values

We recommend that application developers skip this section on a first reading. It contains information
about more advanced use of PETSc vectors to improve efficiency slightly. Once an application code is
fully debugged and optimized these techniques can be tried to slightly decrease memory use and improve
computation speed.

There are two minor drawbacks to the basic approach described above:

• the extra memory requirement for the local work vector,localin that duplicates the memory in
globalin , and

• the extra time required to copy the local values fromlocalin to globalin .

An alternative approach is to allocate global vectors with space preallocated for the ghost values; this
may be done with either

VecCreateGhost(MPI_Comm comm,int n,int N,int nghost,int *ghosts,Vec *vv)

or

VecCreateGhostWithArray(MPI_Comm comm,int n,int N,int nghost,int *ghosts,
Scalar *array,Vec *vv)

Here n is the number of local vector entries,N is the number of global entries (orPETSC_NULL) and
nghost is the number of ghost entries. The arrayghosts is of sizenghost and contains the global
vector location for each local ghost location. UsingVecDuplicate() or VecDuplicateVecs() on
a ghosted vector will generate additional ghosted vectors.

In many ways a ghosted vector behaves just like any otherMPI vector created byVecCreateMPI() ,
the difference is that the ghosted vector has an additional “local” representation that allows one to access the
ghost locations. This is done through the call to

VecGhostGetLocalForm(Vec g,Vec *l);

The vectorl is a sequential representation of the parallel vectorg that shares the same array space (and
hence numerical values); but allows one to access the “ghost” values past “the end of the” array. Note that
one access the entries inl using the local numbering of elements and ghosts, while they are accessed ing
using the global numbering.

A common usage of a ghosted vector is given by

VecGhostUpdateBegin(Vec globalin,InsertMode INSERT_VALUES,ScatterMode
SCATTER_FORWARD);

VecGhostUpdateEnd(Vec globalin,InsertMode INSERT_VALUES,ScatterMode
SCATTER_FORWARD);

VecGhostGetLocalForm(Vec globalin,Vec *localin);
VecGhostGetLocalForm(Vec globalout,Vec *localout);

/*
Do local calculations from localin to localout

*/
VecGhostRestoreLocalForm(Vec globalin,Vec *localin);
VecGhostRestoreLocalForm(Vec globalout,Vec *localout);
VecGhostUpdateBegin(Vec globalout,InsertMode ADD_VALUES,ScatterMode

SCATTER_REVERSE);
VecGhostUpdateEnd(Vec globalout,InsertMode ADD_VALUES,ScatterMode

SCATTER_REVERSE);

37

The routinesVecGhostUpdateBegin/End() are equivalent to the routinesVecScatterBegin/
End() above except that since they are scattering into the ghost locations, they do not need to copy the lo-
cal vector values, which are already in place. In addition, the user does not have to allocate the local work
vector, since the ghosted vector already has allocated slots to contain the ghost values.

The input argumentsINSERT_VALUESandSCATTER_FORWARDcause the ghost values to be cor-
rectly updated from the appropriate processor. The argumentsADD_VALUESandSCATTER_REVERSE
update the “local” portions of the vector from all the other processors’ ghost values. This would be appro-
priate, for example, when performing a finite element assembly of a load vector.

Section3.5discusses the important topic of partitioning an unstructured grid.

38

Chapter 3

Matrices

PETSc provides a variety of matrix implementations because no single matrix format is appropriate for all
problems. Currently we support dense storage and compressed sparse row storage (both sequential and
parallel versions), as well as several specialized formats. Additional formats can be added.

This chapter describes the basics of using PETSc matrices in general (regardless of the particular format
chosen) and discusses tips for efficient use of the several simple uniprocessor and parallel matrix types. The
use of PETSc matrices involves the following actions: create a particular type of matrix, insert values into it,
process the matrix, use the matrix for various computations, and finally destroy the matrix. The application
code does not need to know or care about the particular storage formats of the matrices.

3.1 Creating and Assembling Matrices

The simplest routine for forming a PETSc matrix,A, is

MatCreate(MPI_Comm comm,int m,int n,int M,int N,Mat *A)

This routine generates a sequential matrix when running on one processor and a parallel matrix for two or
more processors; the particular matrix format is set by the user via options database commands. The user
specifies either or the global matrix dimensions, given byMandNand the local dimensions, given bymand
n while PETSc completely controls memory allocation. This routine facilitates switching among various
matrix types, for example, to determine the format that is most efficient for a certain application. By default,
MatCreate() employs the sparse AIJ format, which is discussed in detail Section3.1.1. See the manual
pages for further information about available matrix formats.

To insert or add entries to a matrix, one can call a variant ofMatSetValues , either

MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,
INSERT_VALUES);

or

MatSetValues(Mat A,int m,int *im,int n,int *in,Scalar *values,
ADD_VALUES);

This routine inserts or adds a logically dense subblock of dimensionm*n into the matrix. The integer indices
im andin , respectively, indicate the global row and column numbers to be inserted.MatSetValues()
uses the standard C convention, where the row and column matrix indices begin with zeroregardless of
the storage format employed. The arrayvalues is logically two-dimensional, containing the values that
are to be inserted. By default the values are given in row major order, which is the opposite of the Fortran
convention. To allow the insertion of values in column major order, one can call the command

MatSetOption(Mat A,MAT_COLUMN_ORIENTED);

39

Warning : Several of the sparse implementations donotcurrently support the column-oriented option!
This notation should not be a mystery to anyone. For example, to insert one matrix into another when

using Matlab, one uses the commandA(im,in)=B; whereim and in contain the indices for the rows
and columns. This action is identical to the calls above toMatSetValues() .

When using the block compressed sparse row matrix format (MATSEQBAIJor MATMPIBAIJ), one
can insert elements more efficiently using the block variant,MatSetValuesBlocked() .

The functionMatSetOption() accepts several other inputs; see the manual page for details. We
discuss two of these options, which are related to the efficiency of the assembly process. To indicate to
PETSc that the row (im) or column (in) indices set withMatSetValues() are sorted, one uses the
command

MatSetOption(Mat A,MAT_ROWS_SORTED);

or

MatSetOption(Mat A,MAT_COLUMNS_SORTED);

Note that these flags indicate the format of the data passed in withMatSetValues() ; they do not have
anything to do with how the sparse matrix data is stored internally in PETSc.

After the matrix elements have been inserted or added into the matrix, they must be processed before
they can be used. The routines for matrix processing are

MatAssemblyBegin(Mat A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(Mat A,MAT_FINAL_ASSEMBLY);

By placing other code between these two calls, the user can perform computations while messages are in
transition. Calls toMatSetValues() with theINSERT_VALUESandADD_VALUESoptionscannotbe
mixed without intervening calls to the assembly routines. For such intermediate assembly calls the second
routine argument typically should beMAT_FLUSH_ASSEMBLY, which omits some of the work of the full
assembly process.MAT_FINAL_ASSEMBLYis required only in the last matrix assembly before a matrix is
used.

Even though one may insert values into PETSc matrices without regard to which processor eventually
stores them, for efficiency reasons we usually recommend generating most entries on the processor where
they are destined to be stored. To help the application programmer with this task for matrices that are
distributed across the processors by ranges, the routine

MatGetOwnershipRange(Mat A,int *first_row,int *last_row);

informs the user that all rows fromfirst_row to last_row-1 will be stored on the local processor.
In the sparse matrix implementations, once the assembly routines have been called, the matrices are

compressed and can be used for matrix-vector multiplication, etc. Inserting new values into the matrix
at this point will be expensive, since it requires copies and possible memory allocation. Thus, whenever
possible one should completely set the values in the matrices before calling the final assembly routines.

If one wishes to repeatedly assemble matrices that retain the same nonzero pattern (such as within a
nonlinear or time-dependent problem), the option

MatSetOption(Mat mat,MAT_NO_NEW_NONZERO_LOCATIONS);

should be specified after the first matrix has been fully assembled. This option ensures that certain data
structures and communication information will be reused (instead of regenerated) during successive steps,
thereby increasing efficiency. See${PETSC_DIR}/src/sles/examples/tutorials/ex5.c for
a simple example of solving two linear systems that use the same matrix data structure.

40

3.1.1 Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparse
matrix format or compressed sparse row format, CSR). This section discusses tips forefficientlyusing this
matrix format for large-scale applications. Additional formats (such as block compressed row and block
diagonal storage, which are generally much more efficient for problems with multiple degrees of freedom
per node) are discussed below. Beginning users need not concern themselves initially with such details and
may wish to proceed directly to Section3.2. However, when an application code progresses to the point of
tuning for efficiency and/or generating timing results, it iscrucial to read this information.

Sequential AIJ Sparse Matrices

In the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of correspond-
ing column numbers and an array of pointers to the beginning of each row. Note that the diagonal matrix
entries are stored with the rest of the nonzeros (not separately).

To create a sequential AIJ sparse matrix,A, with mrows andn columns, one uses the command

MatCreateSeqAIJ(PETSC_COMM_SELF,int m,int n,int nz,int *nnz,Mat *A);

wherenz or nnz can be used to preallocate matrix memory, as discussed below. The user can setnz=0
andnnz=PETSC_NULLfor PETSc to control all matrix memory allocation.

The sequential and parallel AIJ matrix storage formats by default employi-nodes(identical nodes)
when possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrix
information for increased efficiency. Related options database keys are-mat_aij_no_inode (do not
use inodes) and-mat_aij_inode_limit<limit> (set inode limit (max limit=5)). Note that problems
with a single degree of freedom per grid node will automatically not use I-nodes.

By default the internal data representation for the AIJ formats employs zero-based indexing. For com-
patibility with standard Fortran storage, thus enabling use of external Fortran software packages such as
SPARSKIT, the option-mat_aij_oneindex enables one-based indexing, where the stored row and
column indices begin at one, not zero. All user calls to PETSc routines, regardless of this option, use
zero-based indexing.

Preallocation of Memory for Sequential AIJ Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new isintrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate
the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via
MatCreateSeqAIJ() .

One can use the scalarnz to specify the expected number of nonzeros for each row. This is generally
fine if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation,

If different rows have very different numbers of nonzeros, one should attempt to indicate (nearly) the
exact number of elements intended for the various rows with the optional array,nnz of lengthm, wheremis
the number of rows, for example

int nnz[m];
nnz[0] = <nonzeros in row 0>
nnz[1] = <nonzeros in row 1>
....
nnz[m-1] = <nonzeros in row m-1>

41

In this case, the assembly process will require no additional memory allocations if thennz estimates are
correct. If, however, thennz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency.

Using the arraynnz to preallocate memory is especially important for efficient matrix assembly if the
number of nonzeros varies considerably among the rows. One can generally setnnz either by knowing
in advance the problem structure (e.g., the stencil for finite difference problems on a structured grid) or by
precomputing the information by using a segment of code similar to that for the regular matrix assembly.
The overhead of determining thennz array will be quite small compared with the overhead of the inherently
expensive mallocs and moves of data that are needed for dynamic allocation during matrix assembly.

Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows, one
could proceed as follows for finite difference methods:

- Allocate integer arraynnz .
- Loop over grid, counting the expected number of nonzeros for the row(s)

associated with the various grid points.
- Create the sparse matrix viaMatCreateSeqAIJ() or alternative.
- Loop over the grid, generating matrix entries and inserting in matrix viaMatSetValues() .

For (vertex-based) finite element type calculations, an analogous procedure is as follows:

- Allocate integer arraynnz .
- Loop over vertices, computing the number of neighbor vertices, which determines the

number of nonzeros for the corresponding matrix row(s).
- Create the sparse matrix viaMatCreateSeqAIJ() or alternative.
- Loop over elements, generating matrix entries and inserting in matrix viaMatSetValues() .

The-log_info option causes the routinesMatAssemblyBegin() andMatAssemblyEnd() to
print information about the success of the preallocation. Consider the following example for theMATSEQ
AIJ matrix format:

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:20 unneeded, 100 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 0

The first line indicates that the user preallocated 3000 spaces but only 1000 were used. The second line
indicates that the user preallocated enough space so that PETSc did not have to internally allocate additional
space (an expensive operation). In the next example the user did not preallocate sufficient space, as indicated
by the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:47 unneeded, 1000 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem
unusual, they are actually very efficient because they alleviate the need for dynamic construction of the
matrix data structure, which can be very expensive.

Parallel AIJ Sparse Matrices

Parallel sparse matrices with the AIJ format can be created with the command

MatCreateMPIAIJ(MPI_Comm comm,int m,int n,int M,int N,int d_nz,
int *d_nnz, int o_nz,int *o_nnz,Mat *A);

42

A is the newly created matrix, while the argumentsm, n, M, andN, indicate the number of local rows and
columns and the number of global rows and columns, respectively. Either the local or global parameters can
be replaced withPETSC_DECIDE, so that PETSc will determine them. The matrix is stored with a fixed
number of rows on each processor, given bym, or determined by PETSc ifmis PETSC_DECIDE.

If PETSC_DECIDEis not used for the argumentsmandn, then the user must ensure that they are chosen
to be compatible with the vectors. To do this, one first considers the matrix-vector producty = Ax. The
mthat is used in the matrix creation routineMatCreateMPIAIJ() must match the local size used in the
vector creation routineVecCreateMPI() for y . Likewise, then used must match that used as the local
size inVecCreateMPI() for x .

The user must setd_nz=0 , o_nz=0 , d_nnz=PETSC_NULL, ando_nnz=PETSC_NULL for PETSc
to control dynamic allocation of matrix memory space. Analogous tonz andnnz for the routineMatC
reateSeqAIJ() , these arguments optionally specify nonzero information for the diagonal (d_nz and
d_nnz) and off-diagonal (o_nz ando_nnz) parts of the matrix. For a square global matrix, we define each
processor’s diagonal portion to be its local rows and the corresponding columns (a square submatrix); each
processor’s off-diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix).
The rank in the MPI communicator determines the absolute ordering of the blocks. That is, the process
with rank 0 in the communicator given toMatCreateMPIAIJ contains the top rows of the matrix; the ith

process in that communicator contains the ith block of the matrix.

Preallocation of Memory for Parallel AIJ Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix
assembly, as this reduces the number of allocations and copies required. We present an example for three
processors to indicate how this may be done for theMATMPIAIJ matrix format. Consider the 8 by 8 matrix,
which is partitioned by default with three rows on the first processor, three on the second and two on the
third. 

1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34


The “diagonal” submatrix,d, on the first processor is given by 1 2 0

0 5 6
9 0 10

 ,

while the “off-diagonal” submatrix,o, matrix is given by 0 3 0 0 4
7 0 0 8 0
11 0 0 12 0

 .

For the first processor one could setd_nz to 2 (since each row has 2 nonzeros) or, alternatively, setd_nnz
to {2,2,2}. Theo_nz could be set to 2 since each row of theo matrix has 2 nonzeros, oro_nnz could be
set to{2,2,2}.

43

For the second processor thed submatrix is given by 15 16 17
19 20 21
22 23 0

 .

Thus, one could setd_nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively
one could setd_nnz to {3,3,2}, thereby indicating that the first two rows will have 3 nonzeros while the
third has 2. The correspondingo submatrix for the second processor is 13 0 14 0 0

0 18 0 0 0
0 0 0 24 0


so that one could seto_nz to 2 oro_nnz to {2,1,1}.

Note that the user never directly works with thed ando submatrices, except when preallocating storage
space as indicated above. Also, the user need not preallocate exactly the correct amount of space; as long as
a sufficiently close estimate is given, the high efficiency for matrix assembly will remain.

As described above, the option-log_info will print information about the success of preallocation
during matrix assembly. For theMATMPIAIJ format, PETSc will also list the number of elements owned
by on each processor that were generated on a different processor. For example, the statements

[0]MatAssemblyBegin_MPIAIJ:Number of off processor values 10
[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 7
[2]MatAssemblyBegin_MPIAIJ:Number of off processor values 5

indicate that very few values have been generated on different processors. On the other hand, the statements
[0]MatAssemblyBegin_MPIAIJ:Number of off processor values 100000
[1]MatAssemblyBegin_MPIAIJ:Number of off processor values 77777

indicate that many values have been generated on the “wrong” processors. This situation can be very ineffi-
cient, since the transfer of values to the “correct” processor is generally expensive. By using the command
MatGetOwnershipRange() in application codes, the user should be able to generate most entries on
the owning processor.

Note: It is fine to generate some entries on the “wrong” processor. Often this can lead to cleaner, simpler,
less buggy codes. One should never make code overly complicated in order to generate all values locally.
Rather, one should organize the code in such a way thatmostvalues are generated locally.

3.1.2 Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each processor stores its entries in
a column-major array in the usual Fortran style. To create a sequential, dense PETSc matrix,Aof dimensions
mby n, the user should call

MatCreateSeqDense(PETSC_COMM_SELF,int m,int n,Scalar *data,Mat *A);
The variabledata enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely setdata to
PETSC_NULLfor PETSc to control matrix memory allocation. To create a parallel, dense matrix,A, the
user should call

MatCreateMPIDense(MPI_Comm comm,int m,int n,int M,int N,Scalar *data,
Mat *A)

The argumentsm, n, M, andN, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Either the local or global parameters can be replaced withPETSC_DECIDE, so
that PETSc will determine them. The matrix is stored with a fixed number of rows on each processor, given
by m, or determined by PETSc ifmis PETSC_DECIDE.

PETSc does not currently provide parallel dense direct solvers. Our focus is on sparse iterative solvers.

44

3.2 Basic Matrix Operations

Table2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more detail
below.

The parallel matrix can multiply a vector withn local entries, returning a vector withm local entries.
That is, to form the product

MatMult(Mat A,Vec x,Vec y);
the vectorsx andy should be generated with

VecCreateMPI(MPI_Comm comm,n,N,&x);
VecCreateMPI(MPI_Comm comm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSC_DECIDEas the second argument toVecCreateMPI() or usingVecCreate()), vectors and
matrices of the same dimension are automatically compatible for parallel matrix-vector operations.

Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,
MatMultTrans(Mat A,Vec x,Vec y);

There are also versions that add the result to another vector:
MatMultAdd(Mat A,Vec x,Vec y,Vec w);
MatMultTransAdd(Mat A,Vec x,Vec y,Vec w);

These routines, respectively, producew = A ∗ x + y andw = AT ∗ x + y . In C it is legal for the vectors
y andw to be identical. In Fortran, this situation is forbidden by the language standard, but we allow it
anyway.

One can print a matrix (sequential or parallel) to the screen with the command
MatView(Mat mat,PETSC_VIEWER_STDOUT_WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero stucture of the matrix into the
default X-window with the command

MatView(Mat mat,PETSC_VIEWER_DRAW_WORLD);
Use

MatView(Mat mat,PetscViewer viewer);
whereviewer was obtained withViewerDrawOpenX() . Additional viewers and options are given in
theMatView() man page and Section11.2.

Function Name Operation
MatAXPY(Scalar *a,Mat X, Mat Y); Y = Y + a ∗X
MatMult(Mat A,Vec x, Vec y); y = A ∗ x
MatMultAdd(Mat A,Vec x, Vec y,Vec z); z = y + A ∗ x
MatMultTrans(Mat A,Vec x, Vec y); y = AT ∗ x
MatMultTransAdd(Mat A,Vec x, Vec y,Vec z); z = y + AT ∗ x
MatNorm(Mat A,NormType type, double *r); r = ||A||type

MatDiagonalScale(Mat A,Vec l,Vec r); A = diag(l) ∗A ∗ diag(r)
MatScale(Scalar *a,Mat A); A = a ∗A
MatConvert(Mat A,MatType type,Mat *B); B = A
MatCopy(Mat A,Mat B,MatStructure); B = A
MatGetDiagonal(Mat A,Vec x); x = diag(A)
MatTranspose(Mat A,Mat* B); B = AT

MatZeroEntries(Mat A); A = 0
MatShift(Scalar *a,Mat Y); Y = Y + a ∗ I

Table 2: PETSc Matrix Operations

TheNormType argument toMatNorm() is one of NORM_1or NORM_INFINITY.

45

3.3 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create aMat structure without ever actually generating the matrix:

MatCreateShell(MPI_Comm comm,int m,int n,int M,int N,void *ctx,Mat *mat);

HereMandNare the global matrix dimensions (rows and columns),mandn are the local matrix dimensions,
and ctx is a pointer to data needed by any user-defined shell matrix operations; the manual page has
additional details about these parameters. Most matrix-free algorithms require only the application of the
linear operator to a vector. To provide this action, the user must write a routine with the calling sequence

UserMult(Mat mat,Vec x,Vec y);

and then associate it with the matrix,mat , by using the command

MatShellSetOperation(Mat mat,MatOperation MATOP_MULT,
(void(*)()) int (*UserMult)(Mat,Vec,Vec));

HereMATOP_MULTis the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such asUserMult()), the user should callMatShellGetContext() to obtain the user-
defined context,ctx , that was set byMatCreateShell() . This shell matrix can be used with the
iterative linear equation solvers discussed in the following chapters.

The routineMatShellSetOperation() can be used to set any other matrix operations as well.
The file${PETSC_DIR}/include/petscmat.h provides a complete list of matrix operations, which
have the formMATOP_<OPERATION>, where<OPERATION>is the name (in all capital letters) of the
user interface routine (for example,MatMult() → MATOP_MULT). All user-provided functions have the
same calling sequence as the usual matrix interface routines, since the user-defined functions are intended to
be accessed through interface, e.g.,MatMult(Mat,Vec,Vec) → UserMult(Mat,Vec,Vec) . The
final argument forMatShellSetOperation() needs to be cast to avoid* , since the final argument
could (depending on theMatOperation be a variety of different functions.

Note thatMatShellSetOperation() can also be used as a “backdoor” means of introducing user-
defined changes in matrix operations for other storage formats (for example, to override the default LU
factorization routine supplied within PETSc for theMATSEQAIJformat). However, we urge anyone who
introduces such changes to use caution, since it would be very easy to accidentally create a bug in the new
routine that could affect other routines as well.

See also Section5.5 for details on one set of helpful utilities for using the matrix-free approach for
nonlinear solvers.

3.4 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix is
generated. To retain a given matrix but reinitialize its contents, one can employ

MatZeroEntries(Mat A);

This routine will zero the matrix entries in the data structure but keep all the data that indicates where the
nonzeros are located. In this way a new matrix assembly will be much less expensive, since no memory
allocations or copies will be needed. Of course, one can also explicitly set selected matrix elements to zero
by callingMatSetValues() .

In the numerical solution of elliptic partial differential equations, it can be cumbersome to deal with
Dirichlet boundary conditions. In particular, one would like to assemble the matrix without regard to bound-
ary conditions and then at the end apply the Dirichlet boundary conditions. In numerical analysis classes this

46

process is usually presented as moving the known boundary conditions to the right-hand side and then solv-
ing a smaller linear system for the interior unknowns. Unfortunately, implementing this requires extracting
a large submatrix from the original matrix and creating its corresponding data structures. This process can
be expensive in terms of both time and memory.

One simple way to deal with this difficulty is to replace those rows in the matrix associated with known
boundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done with the
command

MatZeroRows(Mat A,IS rows,Scalar *diag_value);

For sparse matrices this removes the data structures for certain rows of the matrix. If the pointerdiag_
value is PETSC_NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given
value at the pointer location in the diagonal entry of the eliminated rows.

Another matrix routine of interest is

MatConvert(Mat mat,MatType newtype,Mat *M)

which converts the matrixmat to new matrix,M, that has either the same or different format. Setnewtype
to MATSAMEto copy the matrix, keeping the same matrix format. See${PETSC_DIR}/include/
petscmat.h for other available matrix types; standard ones areMATSEQDENSE, MATSEQAIJ, MATMPI
AIJ , MATMPIROWBS, MATSEQBDIAG, MATMPIBDIAG, MATSEQBAIJ, andMATMPIBAIJ.

In certain applications it may be necessary for application codes to directly access elements of a matrix.
This may be done by using the the command

MatGetRow(Mat A,int row, int *ncols,int **cols,Scalar **vals);

The argumentncols returns the number of nonzeros in that row, whilecols andvals returns the column
indices (with indices starting at zero) and values in the row. If only the column indices are needed (and not
the corresponding matrix elements), one can usePETSC_NULLfor thevals argument. Similarly, one can
usePETSC_NULLfor thecols argument. The user can only examine the values extracted withMatGetR
ow() ; the valuescannotbe altered. To change the matrix entries, one must useMatSetValues() .

Once the user has finished using a row, he or shemustcall

MatRestoreRow(Mat A,int row,int *ncols,int **cols,Scalar **vals);

to free any space that was allocated during the call toMatGetRow() .

3.5 Partitioning

For almost all unstructured grid computation, the distribution of portions of the grid across the processor’s
work load and memory can have a very large impact on performance. In most PDE calculations the grid par-
titioning and distribution across the processors can (and should) be done in a “pre-processing” step before
the numerical computations. However, this does not mean it need be done in a separate, sequential program,
rather it should be done before one sets up the parallel grid data structures in the actual program. PETSc
provides an interface to the ParMETIS (developed by George Karypis; see the docs/installation/index.htm
file for directions on installing PETSc to use ParMETIS), to allow the partitioning to be done in parallel.
PETSc does not currently provide directly support for dynamic repartitioning, load balancing by migrating
matrix entries between processors, etc. For problems that require mesh refinement, PETSc uses the “re-
build the data structure” approach, as opposed to the “maintain dynamic data structures that support the
insertion/deletion of additional vector and matrix rows and columns entries” approach.

Partitioning in PETSc is organized around theMatPartitioning object. One first creates a parallel
matrix that contains the connectivity information about the grid (or other graph-type object) that is to be
partitioned. This is done with the command

MatCreateMPIAdj(MPI_Comm comm,int mlocal,int n,int *ia,int *ja,
int *weights,Mat *Adj);

47

The argumentmlocal indicates the number of rows of the graph being provided by the given processor,n
is the total number of columns; equal to the sum of all themlocal . The argumentsia andja are the row
pointers and column pointers for the given rows, these are the usual format for parallel compressed sparse
row storage, using indices starting at 0,not 1.

1

2 3

4

5

0

0

12

3

Figure 11: Numbering on Simple Unstructured Grid

This, of course, assumes that one has already distributed the grid (graph) information among the proces-
sors. The details of this initial distribution is not important; it could be simply determined by assigning to
the first processor the firstn0 nodes from a file, the second processor the nextn1 nodes, etc.

For example, we demonstrate the form of theia andja for a triangular grid where we
(1) partition by element (triangle)

• Processor 0,mlocal = 2, n = 4, ja = {2, 3, |3}, ia = {0, 2, 3}

• Processor 1,mlocal = 2, n = 4, ja = {0, |0, 1}, ia = {0, 1, 3}

Note that elements are not connected to themselves and we only indicate edge connections (in some contexts
single vertex connections between elements may also be included). We use a| above to denote the transition
between rows in the matrix.

and (2) partition by vertex.

• Processor 0,mlocal = 3, n = 6, ja = {3, 4, |4, 5, |3, 4, 5}, ia = {0, 2, 4, 7}

• Processor 1,mlocal = 3, n = 6, ja = {0, 2, 4, |0, 1, 2, 3, 5, |1, 2, 4}, ia = {0, 3, 8, 11}.

Once the connectivity matrix has been created the following code will generate the renumbering required
for the new partition

MatPartitioningCreate(MPI_Comm comm,MatPartitioning *part);
MatPartitioningSetAdjacency(MatPartitioning part,Mat Adj);
MatPartitioningSetFromOptions(MatPartitioning part);
MatPartitioningApply(MatPartitioning part,IS *is);
MatPartitioningDestroy(MatPartitioning part);
MatDestroy(Mat Adj);
ISPartitioningToNumbering(IS is,IS *isg);

48

The resultingisg contains for each local node the new global number of that node. The resultingis
contains the new processor number that each local node has been assigned to.

Now that a new numbering of the nodes has been determined one must renumber all the nodes and
migrate the grid information to the correct processor. The command

AOCreateBasicIS(isg,PETSC_NULL,&ao);

generates, see Section2.3.1, an AO object that can be used in conjunction with theis andgis to move the
relevant grid information to the correct processor and renumber the nodes etc.

PETSc does not currently provide tools that completely manage the migration and node renumbering,
since it will be dependent on the particular data structure you use to store the grid information and the type
of grid information that you need for your application. We do plan to include more support for this in the
future, but designing the appropriate user interface and providing a scalable implementation that can be
used for a wide variety of different grids requires a great deal of time. Thus we demonstrate how this may
be managed for the model grid depicted above using (1) element based partitioning and (2) a vertex based
partitioning.

49

Chapter 4

SLES: Linear Equations Solvers

SLES is the heart of PETSc, because it provides uniform and efficient access to all of the package’s lin-
ear system solvers, including parallel and sequential, direct and iterative. SLES is intended for solving
nonsingular systems of the form

Ax = b, (4.1)

whereA denotes the matrix representation of a linear operator,b is the right-hand-side vector, andx is the
solution vector. SLES uses the same calling sequence for both direct and iterative solution of a linear system.
In addition, particular solution techniques and their associated options can be selected at runtime.

The combination of a Krylov subspace method and a preconditioner is at the center of most modern
numerical codes for the iterative solution of linear systems. See, for example, [6] for an overview of the
theory of such methods. SLES creates a simplified interface to the lower-level KSP and PC modules within
the PETSc package. The KSP component, discussed in Section4.3, provides many popular Krylov subspace
iterative methods; the PC module, described in Section4.4, includes a variety of preconditioners. Although
both KSP and PC can be used directly, users should employ the interface of SLES.

4.1 Using SLES

To solve a linear system with SLES, one must first create a solver context with the command

SLESCreate(MPI_Comm comm,SLES *sles);

Herecommis the MPI communicator, andsles is the newly formed solver context. Before actually solving
a linear system with SLES, the user must call the following routine to set the matrices associated with the
linear system:

SLESSetOperators(SLES sles,Mat Amat,Mat Pmat,MatStructure flag);

The argumentAmat, representing the matrix that defines the linear system, is a symbolic place holder for any
kind of matrix. In particular, SLESdoessupport matrix-free methods. The routineMatCreateShell()
in Section3.3 provides further information regarding matrix-free methods. Typically thepreconditioning
matrix (i.e., the matrix from which the preconditioner is to be constructed),Pmat, is the same as the matrix
that defines the linear system,Amat; however, occasionally these matrices differ (for instance, when a pre-
conditioning matrix obtained from a high order method with that from a low order method). The argument
flag can be used to eliminate unnecessary work when repeatedly solving linear systems of the same size
with the same preconditioning method; when solving just one linear system, this flag is ignored. The user
can setflag as follows:

• SAME_NONZERO_PATTERN- the preconditioning matrix has the same nonzero structure during
successive linear solves,

50

• DIFFERENT_NONZERO_PATTERN- the preconditioning matrix does not have the same nonzero
structure during successive linear solves,

• SAME_PRECONDITIONER- the preconditioner matrix is identical to that of the previous linear solve.

If in doubt about the structure of a matrix, one should use the flagDIFFERENT_NONZERO_PATTERN.
Much of the power of SLES can be accessed through the single routine

SLESSetFromOptions(SLES sles);

This routine accepts the options-h and-help as well as any of the KSP and PC options discussed below.
To solve a linear system, one merely executes the command

SLESSolve(SLES sles,Vec b,Vec x,int *its);

whereb andx respectively denote the right-hand-side and solution vectors. On return, the parameterits
contains either the iteration number at which convergence was successfully reached, or thenegativeof
the iteration at which divergence or breakdown was detected. Section4.3.2gives more details regarding
convergence testing. Note that multiple linear solves can be performed by the same SLES context. Once the
SLES context is no longer needed, it should be destroyed with the command

SLESDestroy(SLES sles);

The above procedure is sufficient for general use of the SLES package. One additional step is required
for users who wish to customize certain preconditioners (e.g., see Section4.4.4) or to log certain perfor-
mance data using the PETSc profiling facilities (as discussed in Chapter9). In this case, the user can
optionally explicitly call

SLESSetUp(SLES sles,Vec b,Vec x);

before callingSLESSolve() to perform any setup required for the linear solvers. The explicit call of this
routine enables the separate monitoring of any computations performed during the set up phase, such as
incomplete factorization for the ILU preconditioner.

The default solver within SLES is restarted GMRES, preconditioned for the uniprocessor case with
ILU(0), and for the multiprocessor case with the block Jacobi method (with one block per processor, each of
which is solved with ILU(0)). A variety of other solvers and options are also available. To allow application
programmers to set any of the preconditioner or Krylov subspace options directly within the code, we
provide routines that extract the PC and KSP contexts,

SLESGetPC(SLES sles,PC *pc);
SLESGetKSP(SLES sles,KSP *ksp);

The application programmer can then directly call any of the PC or KSP routines to modify the correspond-
ing default options.

To solve a linear system with a direct solver (currently supported only for sequential matrices) one may
use the options-pc_type lu -ksp_type preonly (see below).

By default, if a direct solver is used, the factorization isnot done in-place. This approach is to prevent
the user from the unexpected surprise of having a corrupted matrix after a linear solve. The routinePCLU
SetUseInPlace() , discussed below, causes factorization to be done in-place.

4.2 Solving Successive Linear Systems

When solving multiple linear systems of the same size with the same method, several options are available.
To solve successive linear systems having thesamepreconditioner matrix (i.e., the same data structure
with exactly the same matrix elements) but different right-hand-side vectors, the user should simply call

51

SLESSolve() multiple times. The preconditioner setup operations (e.g., factorization for ILU) will be
done during the first call toSLESSolve() only; such operations willnotbe repeated for successive solves.

To solve successive linear systems that havedifferentpreconditioner matrices (i.e., the matrix elements
and/or the matrix data structure change), the usermustcall SLESSetOperators() andSLESSolve()
for each solve. See Section4.1for a description of various flags forSLESSetOperators() that can save
work for such cases.

4.3 Krylov Methods

The Krylov subspace methods accept a number of options, many of which are discussed below. First, to set
the Krylov subspace method that is to be used, one calls the command

KSPSetType(KSP ksp,KSPType method);

The type can be one ofKSPRICHARDSON, KSPCHEBYCHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCG
S, KSPCGS, KSPTFQMR, KSPCR, KSPLSQR, KSPBICG, or KSPPREONLY. The KSP method can also
be set with the options database command-ksp_type , followed by one of the optionsrichardson ,
chebychev , cg , gmres , tcqmr , bcgs , cgs , tfqmr , cr , lsqr , bicg , or preonly. There are
method-specific options for the Richardson, Chebychev, and GMRES methods.

KSPRichardsonSetScale(KSP ksp,double damping_factor);
KSPChebychevSetEigenvalues(KSP ksp,double emax,double emin);
KSPGMRESSetRestart(KSP ksp,int max_steps);

The default parameter values aredamping_factor=1.0,emax=0.01,emin=100.0 , andmax_steps=
30 . The GMRES restart and Richardson damping factor can also be set with the options-ksp_gmres_
restart<n> and-ksp_richardson_scale<factor> .

The default technique for orthogonalization of the Hessenberg matrix in GMRES is the iterative re-
finement Gram-Schmidt method. This can be set by using the command line option-ksp_gmres_
irorthog . Or via

KSPGMRESSetOrthogonalization(KSP ksp,
KSPGMRESModifiedGramSchmidtOrthogonalization);

A slightly faster approachis to use the unmodified (classical) Gram-Schmidt method, which can be set with

KSPGMRESSetOrthogonalization(KSP ksp,
KSPGMRESUnmodifiedGramSchmidtOrthogonalization);

or the options database command-ksp_gmres_unmodifiedgramschmidt . Note that this algorithm
is numerically unstable, but may deliver slightly better speed performance. One can also use modifed Gram-
Schmidt, by setting the orthogonalization routine,KSPGMRESModifiedGramSchmidtOrthogonalization() ,
by using the command line option-ksp_gmres_modifiedgramschmidt .

For the conjugate gradient method with complex numbers, there are two slightly different algorithms
depending on whether the matrix is Hermitian symmetric or truly symmetric (the default is to assume that it
is Hermitian symmetric). To indicate that it is symmetric, one uses the command

KSPCGSetType(KSP ksp,KSPCGType KSP_CG_SYMMETRIC);

Note that this option is not valid for all matrices.
The LSQR algorithm does not involve a preconditioner, any preconditioner set to work with the KSP

object is ignored if LSQR was selected.
By default, KSP assumes an initial guess of zero by zeroing the initial value for the solution vector that

is given; this zeroing is done at the call toSLESSolve() (or KSPSolve()). To use a nonzero initial
guess, the usermustcall

KSPSetInitialGuessNonzero(KSP ksp);

52

4.3.1 Preconditioning within KSP

Since the rate of convergence of Krylov projection methods for a particular linear system is strongly de-
pendent on its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the
convergence rate of iterative techniques. Preconditioning can be applied to the system (4.1) by

(M−1
L AM−1

R) (MRx) = M−1
L b, (4.2)

whereML andMR indicate preconditioning matrices (or, matrices from which the preconditioner is to be
constructed). IfML = I in (4.2), right preconditioning results, and the residual of (4.1),

r ≡ b−Ax = b−AM−1
R MRx,

is preserved. In contrast, the residual is altered for left (MR = I) and symmetric preconditioning, as given
by

rL ≡ M−1
L b−M−1

L Ax = M−1
L r.

By default, all KSP implementations use left preconditioning. Right preconditioning can be activated for
some methods by using the options database command-ksp_right_pc or calling the routine

KSPSetPreconditionerSide(KSP ksp,PCSide PC_RIGHT);

Attempting to use right preconditioning for a method that does not currently support it results in an error
message of the form

KSPSetUp_Richardson:No right preconditioning for KSPRICHARDSON

We summarize the defaults for the residuals used in KSP convergence monitoring within Table3. Details
regarding specific convergence tests and monitoring routines are presented in the following sections. The
preconditioned residual is used by default for convergence testing of all left-preconditioned KSP methods
exceptfor the conjugate gradient, Richardson, and Chebyshev methods. For these three cases the true
residual is used by default, but the preconditioned residual can be employed instead with the options database
commandksp_preres or by calling the routine

KSPSetUsePreconditionedResidual(KSP ksp);

Note: the bi-conjugate gradient method requires application of both the matrix and its transpose plus
the preconditioner and its transpose. Currently no all matrices and preconditioners provide this support and
thus theKSPBICGcannot always be used.

4.3.2 Convergence Tests

The default convergence test,KSPDefaultConverged() , is based on thel2-norm of the residual. Con-
vergence (or divergence) is decided by three quantities: the relative decrease of the residual norm,rtol ,
the absolute size of the residual norm,atol , and the relative increase in the residual,dtol . Convergence
is detected at iterationk if

‖rk‖2 < max(rtol ∗ ‖r0‖2, atol),

whererk = b−Axk. Divergence is detected if

‖rk‖2 > dtol ∗ ‖r0‖2.

These parameters, as well as the maximum number of allowable iterations, can be set with the routine

KSPSetTolerances(KSP ksp,double rtol,double atol,double dtol,int maxits);

53

Options Default
Database Convergence

Method KSPType Name Monitor †
Richardson KSPRICHARDSON richardson true
Chebychev KSPCHEBYCHEV chebychev true
Conjugate Gradient [11] KSPCG cg true
BiConjugate Gradient KSPBICG bicg true
Generalized Minimal Residual [16] KSPGMRES gmres precond
BiCGSTAB [19] KSPBCGS bcgs precond
Conjugate Gradient Squared [17] KSPCGS cgs precond
Transpose-Free Quasi-Minimal Residual (1) [7] KSPTFQMR tfqmr precond
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tcqmr precond
Conjugate Residual KSPCR cr precond
Least Squares Method KSPLSQR lsqr precond
Shell for no KSP method KSPPREONLY preonly precond

†

true - denotes true residual norm, precond - denotes preconditioned residual norm

Table 3: KSP Defaults. All methods use left preconditioning by default.

The user can retain the default value of any of these parameters by specifyingPETSC_DEFAULTas the
corresponding tolerance; the defaults arertol =10−5, atol =10−50, dtol =105, andmaxits =105. These
parameters can also be set from the options database with the commands-ksp_rtol <rtol> , -ksp_
atol <atol> , -ksp_divtol <dtol> , and-ksp_max_it <its> .

In addition to providing an interface to a simple convergence test, KSP allows the application program-
mer the flexibility to provide customized convergence-testing routines. The user can specify a customized
routine with the command

KSPSetConvergenceTest(KSP ksp,
int (*test)(KSP ksp,int it,double rnorm,

KSPConvergedReason *reason,void *ctx),
void *ctx);

The final routine argument,ctx , is an optional context for private data for the user-defined convergence
routine, test . Other test routine arguments are the iteration number,it , and the residual’sl2 norm,
rnorm . The routine for detecting convergence,test , should set reason to positive for convergence, 0 for
no convergence, and negative for failure to converge. A list of possibleKSPConvergedReason is given
in include/petscksp.h .

4.3.3 Convergence Monitoring

By default, the Krylov solvers run silently without displaying information about the iterations. The user can
indicate that the norms of the residuals should be displayed by using-ksp_monitor within the options
database. To display the residual norms in a graphical window (running under X Windows), one should use
-ksp_xmonitor [x,y,w,h] , where either all or none of the options must be specified. Application
programmers can also provide their own routines to perform the monitoring by using the command

KSPSetMonitor(KSP ksp,int (*mon)(KSP ksp,int it,double rnorm,void *ctx),
void *ctx,int (*mondestroy)(void *));

The final routine argument,ctx , is an optional context for private data for the user-defined monitoring rou-
tine,mon. Othermon routine arguments are the iteration number (it) and the residual’sl2 norm (rnorm).

54

A helpful routine within user-defined monitors isPetscObjectGetComm((PetscObject)ksp,MP
I_Comm*comm), which returns incomm the MPI communicator for theKSPcontext. See section1.3for
more discussion of the use of MPI communicators within PETSc.

Several monitoring routines are supplied with PETSc, including

KSPDefaultMonitor(KSP,int,double, void *);
KSPSingularValueMonitor(KSP,int,double, void *);
KSPTrueMonitor(KSP,int,double, void *);

The default monitor simply prints an estimate of thel2-norm of the residual at each iteration. The rou-
tine KSPSingularValueMonitor() is appropriate only for use with the conjugate gradient method
or GMRES, since it prints estimates of the extreme singular values of the preconditioned operator at each
iteration. SinceKSPTrueMonitor() prints the true residual at each iteration by actually computing the
residual using the formular = b−Ax, the routine is slow and should be used only for testing or convergence
studies, not for timing. These monitors may be accessed with the command line options-ksp_monitor ,
-ksp_singmonitor , and-ksp_truemonitor . .

To employ the default graphical monitor, one should use the commands

PetscDrawLG lg;
KSPLGMonitorCreate(char *display,char *title,int x,int y,int w,int h,

PetscDrawLG *lg);
KSPSetMonitor(KSP ksp,KSPLGMonitor,lg,0);

When no longer needed, the line graph should be destroyed with the command

KSPLGMonitorDestroy(PetscDrawLG lg);

The user can change aspects of the graphs with theDrawLG*() andDrawAxis*() routines. One can
also access this functionality from the options database with the command-ksp_xmonitor [x,y,w,
h] . Wherex,y,w,h are the optional location and size of the window.

Once can cancel hardwired monitoring routines for KSP at runtime with-ksp_cancelmonitors .
As the Krylov method converges so that the residual norm is small, say10−10 many of the final digits

printed with the-ksp_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun Sparc. This makes testing
between different machines difficult. The option-ksp_smonitor causes PETSc to print fewer of the
digits of the residual norm as it gets smaller; thus on most of the machines it will always print the same
numbers making cross processor testing easier.

4.3.4 Understanding the Operator’s Spectrum

Since the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the
preconditioned operator, PETSc has specific routines for eigenvalue approximation via the Arnoldi or Lanc-
zos iteration. First, before the linear solve one must call

KSPSetComputeEigenvalues(KSP ksp);

Then after the SLES solve one calls

KSPComputeEigenvalues(KSP ksp, int n,double *realpart,double *complexpart,
int *neig);

Here,n is the size of the two arrays and the eigenvalues are inserted into those two arrays.Neig is the
number of eigenvalues computed; this number depend depends on the size of the Krylov space generated
during the linear system solution, for GMRES it is never larger than the restart parameter. There is an
additional routine

KSPComputeEigenvaluesExplicitly(KSP ksp, int n,double *realpart,
double *complexpart);

55

that is useful only for very small problems. It explicitly computes the full representation of the precon-
ditioned operator and calles LAPACK to compute its eigenvalues. It should be only used for matrices of
size up to a couple hundred. TheDrawSP*() routines are very useful for drawing scatter plots of the
eigenvalues.

The eigenvalues may also be computed and displayed graphically with the options data base com-
mands-ksp_plot_eigenvalues and-ksp_plot_eigenvalues_explicitly . Or they can
be dumped to the screen in ASCII text via-ksp_compute_eigenvalues and -ksp_compute_
eigenvalues_explicitly .

4.3.5 Other KSP Options

To obtain the solution vector and right hand side from a KSP context, one uses

KSPGetSolution(KSP ksp,Vec *x);
KSPGetRhs(KSP ksp,Vec *rhs);

During the iterative process the solution may not yet have been calculated or it may be stored in a different
location. To access the approximate solution during the iterative process, one uses the command

KSPBuildSolution(KSP ksp,Vec w,Vec *v);

where the solution is returned inv . The user can optionally provide a vector inw as the location to store
the vector; however, ifw is PETSC_NULL, space allocated by PETSc in the KSP context is used. One
should not destroy this vector. For certain KSP methods, (e.g., GMRES), the construction of the solution is
expensive, while for many others it requires not even a vector copy.

Access to the residual is done in a similar way with the command

KSPBuildResidual(KSP ksp,Vec t,Vec w,Vec *v);

Again, for GMRES and certain other methods this is an expensive operation.

4.4 Preconditioners

As discussed in Section4.3.1, the Krylov space methods are typically used in conjunction with a precondi-
tioner. To employ a particular preconditioning method, the user can either select it from the options database
using input of the form-pc_type<methodname> or set the method with the command

PCSetType(PC pc,PCType method);

In Table4 we summarize the basic preconditioning methods supported in PETSc. ThePCSHELL
preconditioner uses a specific, application-provided preconditioner. The direct preconditioner,PCLU, is, in
fact, a direct solver for the linear system that uses LU factorization.PCLUis included as a preconditioner
so that PETSc has a consistent interface among direct and iterative linear solvers.

Each preconditioner may have associated with it a set of options, which can be set with routines and
options database commands provided for this purpose. Such routine names and commands are all of the form
PC<TYPE>Option and-pc_<type>_option[value] . A complete list can be found by consulting
the manual pages; we discuss just a few in the sections below.

4.4.1 ILU and ICC Preconditioners

Some of the options for ILU preconditioner are

PCILUSetLevels(PC pc,int levels);
PCILCCSetLevels(PC pc,int levels);
PCILUSetReuseOrdering(PC pc,PetscTruth flag);
PCILUSetUseDropTolerance(PC pc,double dt,int dtcount);

56

Method PCType Options Database Name
Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor
SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Linear solver PCSLES sles
Combination of preconditioners PCCOMPOSITE composite
LU PCLU lu
Cholesky PCCholesky cholesky
No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

Table 4: PETSc Preconditioners

PCILUDTSetReuseFill(PC pc,PetscTruth flag);
PCILUSetUseInPlace(PC pc);
PCILUSetAllowDiagonalFill(PC pc);

When repeatedly solving linear systems with the same SLES context, one can reuse some information
computed during the first linear solve. In particular,PCILUSetReuseOrdering() causes the order-
ing (for example, set with-pc_ilu_ordering_typeorder) computed in the first factorization to be
reused for later factorizations. ThePCILUDTSetReuseFill() causes the fill computed during the first
drop tolerance factorization to be reused in later factorizations.PCILUSetUseInPlace() is often used
with PCASMor PCBJACOBIwhen zero fill is used, since it reuses the matrix space to store the incomplete
factorization it saves memory and copying time. Note that in-place factorization is not appropriate with any
ordering besides natural and cannot be used with the drop tolerance factorization. These options may be set
in the database with

-pc_ilu_levels <levels>
-pc_ilu_reuse_ordering
-pc_ilu_use_drop_tolerance <dt>,<dtcount>
-pc_ilu_reuse_fill
-pc_ilu_in_place
-pc_ilu_nonzeros_along_diagonal
-pc_ilu_diagonal_fill

See Section10.4.2for information on preallocation of memory for anticipated fill during factorization.
By alleviating the considerable overhead for dynamic memory allocation, such tuning can significantly
enhance performance.

PETSc supports incomplete factorization preconditioners for several matrix types for the uniprocessor
case. In addition, for the parallel case we provide an interface to the ILU and ICC preconditioners of
BlockSolve95 [12]. PETSc enables users to employ the preconditioners within BlockSolve95 by using the
BlockSolve95 matrix formatMATMPIROWBSand invoking either thePCILU or PCICC method within
the linear solvers. Since PETSc automatically handles matrix assembly, preconditioner setup, profiling,
etc., users who employ BlockSolve95 through the PETSc interface need not concern themselves with many
details provided within the BlockSolve95 users manual. Consult the filedocs/installation/index.
htm for details on installing PETSc to allow the use of BlockSolve95.

57

One can create a matrix that is compatible with BlockSolve95 by usingMatCreate() with the option
-mat_mpirowbs , or by directly calling

MatCreateMPIRowbs(MPI_Comm comm,int m,int M,int nz,int *nnz,Mat *A)

A is the newly created matrix, while the argumentsmandMindicate the number of local and global rows,
respectively. Either the local or global parameter can be replaced withPETSC_DECIDE, so that PETSc
will determine it. The matrix is stored with a fixed number of rows on each processor, given bym, or
determined by PETSc ifm is PETSC_DECIDE. The argumentsnz andnnz can be used to preallocate
storage space, as discussed in Section3.1 for increasing the efficiency of matrix assembly; one setsnz=0
andnnz=PETSC_NULLfor PETSc to control all matrix memory allocation. The argumentproci is an
optional BlockSolve95BSprocinfo context; most users should set this parameter toPETSC_NULL, so
that PETSc will create and initialize this context.

If the matrix is symmetric, onemaycall

MatSetOption(Mat mat,MAT_SYMMETRIC);

to improve efficiency, but in this case one cannot use the ILU preconditioner, only ICC.
Internally, PETSc inserts zero elements into matrices of theMATMPIROWBSformat if necessary, so that

nonsymmetric matrices are considered to be symmetric in terms of their sparsity structure; this format is
required for use of the parallel communication routines within BlockSolve95. In particular, if the matrix
elementA[i, j] exists, then PETSc will internally allocate a 0 value for the elementA[j, i] during MatA
ssemblyEnd() if the user has not already set a value for the matrix elementA[j, i] .

When manipulating a preconditioning matrix,A, BlockSolve95 internally works with a scaled and per-
muted matrix,Â = PD−1/2AD−1/2, whereD is the diagonal ofA, andP is a permutation matrix deter-
mined by a graph coloring for efficient parallel computation. Thus, when solving a linear system,Ax = b,
using ILU/ICC preconditioning and the matrix formatMATMPIROWBSfor boththe linear system matrix and
the preconditioning matrix, one actually solves the scaled and permuted systemÂx̂ = b̂, wherex̂ = PD1/2x
andb̂ = PD−1/2b . PETSc handles the internal scaling and permutation ofx andb, so the user doesnotdeal
with these conversions, but instead always works with the original linear system. In this case, by default the
scaled residual norm is monitored; one must use the option-ksp_truemonitor to print both the scaled
and unscaled residual norms.Note: If one is using ILU/ICC via BlockSolve95 and theMATMPIROWBS
matrix format for the preconditioner matrix, but using a different format for a different linear system matrix,
then this scaling and permuting is done only internally during the application of the preconditioner.

4.4.2 SOR and SSOR Preconditioners

PETSc does not provide a parallel SOR, it can only be used on sequential matrices or as the subblock
preconditioner when using block Jacobi or ASM preconditioning, see below.

The options for SOR preconditioning are

PCSORSetOmega(PC pc,double omega);
PCSORSetIterations(PC pc,int its);
PCSORSetSymmetric(PC pc,MatSORType type);

The first of these commands sets the relaxation factor for successive over (under) relaxation. The second
command sets the number of inner iterations of SOR, given byits , to use between steps of the Krylov space
method. The third command sets the kind of SOR sweep, where the argumenttype can be one ofSOR_FO
RWARD_SWEEP,SOR_BACKWARD_SWEEPor SOR_SYMMETRIC_SWEEP, the default beingSOR_FORW
ARD_SWEEP. Setting the type to beSOR_SYMMETRIC_SWEEPproduces the SSOR method. In addition,
each processor can locally and independently perform the specified variant of SOR with the typesSOR_LO
CAL_FORWARD_SWEEP,SOR_LOCAL_BACKWARD_SWEEP, andSOR_LOCAL_SYMMETRIC_SWEEP.
These variants can also be set with the options-pc_sor_omega<omega> , -pc_sor_its<its> ,
-pc_sor_backward , -pc_sor_symmetric ,

58

-pc_sor_local_forward , -pc_sor_local_backward , and-pc_sor_local_symmetric .

The Eisenstat trick [4] for SSOR preconditioning can be employed with the method PCEISENSTAT
(-pc_typeeisenstat). By using both left and right preconditioning of the linear system, this vari-
ant of SSOR requires about half of the floating-point operations for conventional SSOR. The option
-pc_eisenstat_no_diagonal_scaling) (or the routinePCEisenstatNoDiagonalScaling())
turns off diagonal scaling in conjunction with Eisenstat SSOR method, while the option-pc_eisenstat_
omega<omega> (or the routinePCEisenstatSetOmega(PCpc,doubleomega)) sets the SSOR
relaxation coefficient,omega, as discussed above.

4.4.3 LU Factorization

The LU preconditioner provides several options. The first, given by the command
PCLUSetUseInPlace(PC pc);

causes the factorization to be performed in-place and hence destroys the original matrix. The options
database variant of this command is-pc_lu_in_place . Another direct preconditioner option is se-
lecting the ordering of equations with the command

-pc_lu_ordering_type <ordering>
The possible orderings are

• MATORDERING_NATURAL- Natural

• MATORDERING_ND- Nested Dissection

• MATORDERING_1WD- One-way Dissection

• MATORDERING_RCM- Reverse Cuthill-McKee

• MATORDERING_QMD- Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following:-pc_
lu_ordering_type natural , -pc_lu_ordering_type nd , -pc_lu_ordering_type 1wd ,
-pc_lu_ordering_type rcm , -pc_lu_ordering_type qmd . In addition, see
MatGetOrdering() , discussed in Section13.2.

The sparse LU factorization provided in PETSc does not perform pivoting for numerical stability (since
they are designed to preserve nonzero structure), thus occasionally a LU factorization will fail with a zero
pivot when, in fact, the matrix is non-singular. The option-pc_lu_nonzeros_along_diagonal<tol>
will often help eliminate the zero pivot, by preprocessing the the column ordering to remove small values
from the diagonal. Here,tol is an optional tolerance to decide if a value is nonzero; by default it is1.e−10.

In addition, Section10.4.2provides information on preallocation of memory for anticipated fill dur-
ing factorization. Such tuning can significantly enhance performance, since it eliminates the considerable
overhead for dynamic memory allocation.

4.4.4 Block Jacobi and Overlapping Additive Schwarz Preconditioners

The block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; however,
only the uniprocessor version of the block Gauss-Seidel method is currently in place. By default, the PETSc
implentations of these methods employ ILU(0) factorization on each individual block (that is, the default
solver on each subblock isPCType=PCILU,KSPType=KSPPREONLY); the user can set alternative linear
solvers via the options-sub_ksp_type and-sub_pc_type . In fact, all of the KSP and PC options
can be applied to the subproblems by inserting the prefix-sub_ at the beginning of the option name. These
options database commands set the particular options forall of the blocks within the global problem. In
addition, the routines

59

PCBJacobiGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);
PCASMGetSubSLES(PC pc,int *n_local,int *first_local,SLES **subsles);

extract the SLES context for each local block. The argumentn_local is the number of blocks on the
calling processor, andfirst_local indicates the global number of the first block on the processor. The
blocks are numbered successively by processors from zero throughgb−1, wheregb is the number of global
blocks. The array of SLES contexts for the local blocks is given bysubsles . This mechanism enables
the user to set different solvers for the various blocks. To set the appropriate data structures, the usermust
explicitly call SLESSetUp() before callingPCBJacobiGetSubSLES() or PCASMGetSubSLES().
For further details, see the example${PETSC_DIR}/src/sles/examples/tutorials/ex7.c .

The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set the
number of blocks into which the problem is divided. The options database commands to set this value are
-pc_bjacobi_blocksn and-pc_bgs_blocksn , and, within a program, the corresponding routines
are

PCBJacobiSetTotalBlocks(PC pc,int blocks,int *size);
PCASMSetTotalSubdomains(PC pc,int n,IS *is);
PCASMSetType(PC pc,PCASMType type);

The optional argumentsize , is an array indicating the size of each block. Currently, for certain parallel
matrix formats, only a single block per processor is supported. However, theMATMPIAIJ andMATMPIBA
IJ formats support the use of general blocks as long as no blocks are shared among processors. Theis
argument contains the index sets that define the subdomains.

PCASMTypeis one ofPC_ASM_BASIC, PC_ASM_INTERPOLATE, PC_ASM_RESTRICT, PC_A
SM_NONEand may also be set with the options database-pc_asm_type[basic,interpolate,
restrict,none] . The typePC_ASM_BASIC(or -pc_asm_typebasic) corresponds to the
standard additive Schwarz method that uses the full restriction and interpolation operators. The typePC
_ASM_RESTRICT(or -pc_asm_typerestrict) uses a full restriction operator, but during the inter-
polation process ignores the off-processor values. Similarly,PC_ASM_INTERPOLATE(or -pc_asm_
typeinterpolate) uses a limited restriction process in conjunction with a full interpolation, while
PC_ASM_NONE(or -pc_asm_typenone) ignores off-processor valies for both restriction and interpo-
lation. The ASM types with limited restriction or interpolation were suggested by Xiao-Chuan Cai and
Marcus Sarkis [2]. PC_ASM_RESTRICTis the PETSc default, as it saves substantial communication and
for many problems has the added benefit of requiring fewer iterations for convergence than the standard
additive Schwarz method.

The user can also set the number of blocks and sizes on a per-processor basis with the commands

PCBJacobiSetLocalBlocks(PC pc,int blocks,int *size);
PCASMSetLocalSubdomains(PC pc,int N,IS *is);

For the ASM preconditioner one can use the following command to set the overlap to compute in con-
structing the subdomains.

PCASMSetOverlap(PC pc,int overlap);

The overlap defaults to 1, so if one desires that no additional overlap be computed beyond what may have
been set with a call toPCASMSetTotalSubdomains() or PCASMSetLocalSubdomains() , then
overlap must be set to be 0. In particular, if one doesnot explicitly set the subdomains in an application
code, then all overlap would be computed internally by PETSc, and using an overlap of 0 would result in an
ASM variant that is equivalent to the block Jacobi preconditioner. Note that one can define initial index sets
is with anyoverlap viaPCASMSetTotalSubdomains() or PCASMSetLocalSubdomains() ; the
routinePCASMSetOverlap() merely allows PETSc to extend that overlap further if desired.

60

4.4.5 Shell Preconditioners

The shell preconditioner simply uses an application-provided routine to implement the preconditioner. To
set this routine, one uses the command

PCShellSetApply(PC pc,int (*apply)(void *ctx,Vec,Vec),void *ctx);

The final argumentctx is a pointer to the application-provided data structure needed by the preconditioner
routine. The three routine arguments ofapply() are this context, the input vector, and the output vector,
respectively.

For a preconditioner that requires some sort of “setup” before being used, that requires a new setup
everytime the operator is changed, one can provide a “setup” routine that is called everytime the operator is
changed (usually viaSLESSetOperators()).

PCShellSetSetUp(PC pc,int (*setup)(void *ctx));

The argument to the “setup” routine is the same application-provided data structure passed in with the
PCShellSetApply() routine.

4.4.6 Combining Preconditioners

The PC typePCCOMPOSITEallows one to form new preconditioners by combining already defined pre-
conditioners and solvers. Combining preconditioners usually requires some experimentation to find a com-
bination of preconditioners that works better than any single method. It is a tricky business and is not
recommended until your application code is complete and running and you are trying to improve per-
formance. In many cases using a single preconditioner is better than a combination; an exception is the
multigrid/multilevel preconditioners (solvers) that are always combinations of some sort, see Section4.4.7.

Let B1 andB2 represent the application of two preconditioners of typetype1 andtype2 . The pre-
conditionerB = B1 + B2 can be obtained with

PCSetType(pc,PCCOMPOSITE);
PCCompositeAddPC(pc,type1);
PCCompositeAddPC(pc,type2);

Any number of preconditioners may added in this way.
This way of combining preconditioners is called additive, since the actions of the preconditioners are

added together. This is the default behavior. An alternative can be set with the option

PCCompositeSetType(PC pc,PCCompositeType PC_COMPOSITE_MULTIPLICATIVE);

In this form the new residual is updated after the application of each preconditioner and the next precondi-
tioner applied to the next residual. For example, with two composed preconditioners:B1 andB2; y = Bx
is obtained from

y = B1x

w1 = x−Ay

y = y + B2w1

Loosely, this corresponds to a Gauss-Siedel iteration, while additive corresponds to a Jacobi like.
Under most circumstances the multiplicative form requires one-half the number of iterations as the

additive form; but the multiplicative form does require the application ofA inside the preconditioner.
In the multiplicative version, the calculation of the residual inside the preconditioner can be done in two

ways: using the original linear system matrix or using the matrix used to build the preconditionersB1, B2,
etc. By default it uses the “preconditioner matrix”, to use the true matrix use the option

PCCompositeSetUseTrue(PC pc);

The individual preconditioners can be accessed (in order to set options) via

61

PCCompositeGetPC(PC pc,int count,PC *subpc);
For example, to set the first sub preconditioners to use ILU(1)

PC subpc;
PCCompositeGetPC(pc,0,&subpc);
PCILUSetFill(subpc,1);
These various options can also be set via the options database. For example,-pc_typecomposite

-pc_composite_pcsjacobi,ilu causes the composite preconditioner to be used with two precon-
ditioners: Jacobi and ILU. The option-pc_composite_typemultiplicative initiates the multi-
plicative version of the algorithm, while-pc_composite_typeadditive the additive version. Using
the true preconditioner is obtained with the option-pc_composite_true . One sets options for the
subpreconditioners with the extra prefix-sub_N_ whereN is the number of the subpreconditioner. For
example,-sub_0_pc_ilu_fill0 .

PETSc also allows a preconditioner to be a complete linear solver. This is achieved with thePCSLES
type.

PCSetType(PC pc,PCSLES PCSLES);
PCSLESGetSLES(pc,&sles);

/* set any SLES/KSP/PC options */
From the command line one can use 5 iterations of bi-CG-stab with ILU(0) preconditioning as the precondi-
tioner with-pc_typesles-sles_pc_typeilu-sles_ksp_max_it5-sles_ksp_typebcgs .

By default the inner SLES preconditioner uses the outter “preconditioner matrix”, as the matrix to be
solved in the linear system, to use the true matrix use the option

PCSLESSetUseTrue(PC pc);
at the command line with-pc_sles_true .

Naturally one can use a SLES preconditioner inside a composite preconditioner. For example,-pc_
typecomposite-pc_composite_pcsilu,sles-sub_1_pc_typejacobi-sub_1_ksp_max_
it10 uses two preconditioners: ILU(0) and 10 iterations of GMRES with Jacobi preconditioning. Though
it is not clear whether one would ever wish to do such a thing.

4.4.7 Multigrid Preconditioners

See also${PETSC_DIR}/src/snes/examples/tutorials/ex19.c for a higher level interface
to the multigrid solvers using theDMMGobject.

A large suite of routines is available for using multigrid as a preconditioner. In thePC framework the
user is required to provide the coarse grid solver, smoothers, restriction, and interpolation, as well as the
code to calculate residuals. ThePCcomponent allows all of that to be wrapped up into a PETSc compliant
preconditioner. We fully support both matrix-free and matrix-based multigrid solvers.

A multigrid preconditioner is created with the four commands
SLESCreate(MPI_Comm comm,SLES *sles);
SLESGetPC(SLES sles,PC *pc);
PCSetType(PC pc,PCMG);
MGSetLevels(pc,int levels,MPI_Comm *comms);

A large number of parameters affect the multigrid behavior. The command
MGSetType(PC pc,MGType mode);

indicates which form of multigrid to apply [?].
For standard V or W-cycle multigrids, one sets themode to beMGMULTIPLICATIVE; for the additive

form (which in certain cases reduces to the BPX method, or additive multilevel Schwarz, or multilevel
diagonal scaling), one usesMGADDITIVEas themode. For a variant of full multigrid, one can useMGFULL,
and for the Kaskade algorithmMGKASKADE. For the multiplicative and full multigrid options, one can use
a W-cycle by calling

62

MGSetCycles(PC pc,int cycles);
with a value ofMG_W_CYCLEfor cycles . The commands above can also be set from the options database.
The option names are-pc_mg_type[multiplicative,additive,full,kaskade] , and-pc_
mg_cycles <cycles> .

The user can control the amount of pre- and postsmoothing by using either the options-pc_mg_
smoothup m and-pc_mg_smoothdown n or the routines

MGSetNumberSmoothUp(PC pc,int m);
MGSetNumberSmoothDown(PC pc,int n);

Note that if the commandMGSetSmoother() (discussed below) has been employed, the same amounts
of pre- and postsmoothing will be used.

The remainder of the multigrid routines, which determine the solvers and interpolation/restriction oper-
ators that are used, are mandatory. To set the coarse grid solver, one must call

MGGetCoarseSolve(PC pc,SLES *sles);
and set the appropriate options insles . Similarly, the smoothers are set by calling

MGGetSmoother(PC pc,int level,SLES *sles);
and setting the various options insles. To use a different pre- and postsmoother, one should call the
following routines instead.

MGGetSmootherUp(PC pc,int level,SLES *upsles);
and

MGGetSmootherDown(PC pc,int level,SLES *downsles);
Use

MGSetInterpolate(PC pc,int level,Mat P);
and

MGSetRestriction(PC pc,int level,Mat R);
to define the intergrid transfer operations.

It is possible for these interpolation operations to be matrix free (see Section3.3), he or she should
make sure that these operations are defined for the (matrix-free) matrices passed in. Note that this system is
arranged so that if the interpolation is the transpose of the restriction, the samemat argument can be passed
to bothMGSetRestriction() andMGSetInterpolation() .

On each level except the coarsest, one must also set the routine to compute the residual. The following
command suffices:

MGSetResidual(PC pc,int level,int (*residual)(Mat,Vec,Vec,Vec),Mat mat);
The residual() function can be set to beMGDefaultResidual() if one’s operator is stored in a
Mat format. In certain circumstances, where it is much cheaper to calculate the residual directly, rather than
through the usual formulab−Ax, the user may wish to provide an alternative.

Finally, the user must provide three work vectors for each level (except on the finest, where only the
residual work vector is required). The work vectors are set with the commands

MGSetRhs(PC pc,int level,Vec b);
MGSetX(PC pc,int level,Vec x);
MGSetR(PC pc,int level,Vec r);

The user is responsible for freeing these vectors once the iteration is complete.
One can control the KSP and PC options used on the various levels (as well as the coarse grid) using the

prefixmg_levels_ (mg_coarse_ for the coarse grid). For example,
-mg_levels_ksp_type cg

will cause the CG method to be used as the Krylov method for each level. Or
-mg_levels_pc_type ilu -mg_levels_pc_ilu_levels 2

will cause the the ILU preconditioner to be used on each level with two levels of fill in the incomplete
factorization.

63

Chapter 5

SNES: Nonlinear Solvers

The solution of large-scale nonlinear problems pervades many facets of computational science and demands
robust and flexible solution strategies. The SNES component of PETSc provides a powerful suite of data-
structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structures
discussed in preceding chapters, SNES enables the user to easily customize the nonlinear solvers according
to the application at hand. Also, the SNES interface isidentical for the uniprocessor and parallel cases; the
only difference in the parallel version is that each processor typically forms only its local contribution to
various matrices and vectors.

SNES includes methods for solving systems of nonlinear equations of the form

F (x) = 0, (5.1)

whereF : <n → <n. Newton-like methods provide the core of the package, including both line search and
trust region techniques, which are discussed further in Section5.2. Following the PETSc design philosophy,
the interfaces to the various solvers are all virtually identical. In addition, the SNES software is completely
flexible, so that the user can at runtime change any facet of the solution process.

The general form of then-dimensional Newton’s method for solving (5.1) is

xk+1 = xk − [F ′(xk)]−1F (xk), k = 0, 1, . . . , (5.2)

wherex0 is an initial approximation to the solution andF ′(xk) is nonsingular. In practice, the Newton
iteration (5.2) is implemented by the following two steps:

1. (Approximately) solve F ′(xk)∆xk = −F (xk). (5.3)

2. Update xk+1 = xk + ∆xk. (5.4)

5.1 Basic Usage

In the simplest usage of the nonlinear solvers, the user must merely provide a C, C++, or Fortran routine to
evaluate the nonlinear function of Equation (5.1) or (??). The corresponding Jacobian matrix can be approx-
imated with finite differences. For codes that are typically more efficient and accurate, the user can provide a
routine to compute the Jacobian; details regarding these application-provided routines are discussed below.
To provide an overview of the use of the nonlinear solvers, we first introduce a complete and simple example
in Figure12, corresponding to${PETSC_DIR}/src/snes/examples/tutorials/ex1.c .

/*$Id: ex1.c,v 1.25 2001/03/23 23:24:25 balay Exp $*/

64

static char help[] = "Newton’s method to solve a two-variable system, se-
quentially.\n\n";

/*T
Concepts: SNESˆbasic uniprocessor example
Processors: 1

T*/

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace meth-

ods
petscviewer.h - viewers petscpc.h - preconditioners
petscsles.h - linear solvers

*/
#include "petscsnes.h"

/*
User-defined routines

*/
extern int FormJacobian1(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
extern int FormFunction1(SNES,Vec,Vec,void*);
extern int FormJacobian2(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
extern int FormFunction2(SNES,Vec,Vec,void*);

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

SNES snes; /* nonlinear solver context */
SLES sles; /* linear solver context */
PC pc; /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
Vec x,r; /* solution, residual vectors */
Mat J; /* Jacobian matrix */
int ierr,its,size;
Scalar pfive = .5,*xx;
PetscTruth flg;

PetscInitialize(&argc,&argv,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");

/* -
Create nonlinear solver context
- */

ierr = SNESCreate(PETSC_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes);CHKERRQ(ierr);

/* -

Create matrix and vector data structures; set corresponding routines

65

- -
*/

/*
Create vectors for solution and nonlinear function

*/
ierr = VecCreateSeq(PETSC_COMM_SELF,2,&x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);

/*
Create Jacobian matrix data structure

*/
ierr = MatCreate(PETSC_COMM_SELF,PETSC_DECIDE,PETSC_DECIDE,2,2,&J);CHKERRQ(ierr);
ierr = MatSetFromOptions(J);CHKERRQ(ierr);

ierr = PetscOptionsHasName(PETSC_NULL,"-hard",&flg);CHKERRQ(ierr);
if (!flg) {

/*
Set function evaluation routine and vector.

*/
ierr = SNESSetFunction(snes,r,FormFunction1,PETSC_NULL);CHKERRQ(ierr);

/*
Set Jacobian matrix data structure and Jacobian evaluation routine

*/
ierr = SNESSetJacobian(snes,J,J,FormJacobian1,PETSC_NULL);CHKERRQ(ierr);

} else {
ierr = SNESSetFunction(snes,r,FormFunction2,PETSC_NULL);CHKERRQ(ierr);
ierr = SNESSetJacobian(snes,J,J,FormJacobian2,PETSC_NULL);CHKERRQ(ierr);

}

/* -
Customize nonlinear solver; set runtime options

- */

/*
Set linear solver defaults for this problem. By extracting the
SLES, KSP, and PC contexts from the SNES context, we can then
directly call any SLES, KSP, and PC routines to set various options.

*/
ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCNONE);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20);CHKERRQ(ierr);

/*
Set SNES/SLES/KSP/PC runtime options, e.g.,

-snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
These options will override those specified above as long as
SNESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

66

/* -
Evaluate initial guess; then solve nonlinear system

- */
if (!flg) {

ierr = VecSet(&pfive,x);CHKERRQ(ierr);
} else {

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
xx[0] = 2.0; xx[1] = 3.0;
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

}
/*

Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/

ierr = SNESSolve(snes,x,&its);CHKERRQ(ierr);
if (flg) {

Vec f;
ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
ierr = SNESGetFunction(snes,&f,0,0);CHKERRQ(ierr);
ierr = VecView(r,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

}

ierr = PetscPrintf(PETSC_COMM_SELF,"number of Newton iterations = %d\n\n",its);CHKERRQ(ierr);

/* -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

- */

ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(r);CHKERRQ(ierr);
ierr = MatDestroy(J);CHKERRQ(ierr); ierr = SNESDestroy(snes);CHKERRQ(ierr);

ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}
/* --- */
#undef __FUNCT__
#define __FUNCT__ "FormFunction1"
/*

FormFunction1 - Evaluates nonlinear function, F(x).

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameter:
. f - function vector

*/
int FormFunction1(SNES snes,Vec x,Vec f,void *dummy)
{

int ierr;

67

Scalar *xx,*ff;

/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation depen-

dent.
- You MUST call VecRestoreArray() when you no longer need access to

the array.
*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/*
Compute function

*/
ff[0] = xx[0]*xx[0] + xx[0]*xx[1] - 3.0;
ff[1] = xx[0]*xx[1] + xx[1]*xx[1] - 6.0;

/*
Restore vectors

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);

return 0;
}
/* --- */
#undef __FUNCT__
#define __FUNCT__ "FormJacobian1"
/*

FormJacobian1 - Evaluates Jacobian matrix.

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameters:
. jac - Jacobian matrix
. B - optionally different preconditioning matrix
. flag - flag indicating matrix structure
*/
int FormJacobian1(SNES snes,Vec x,Mat *jac,Mat *B,MatStructure *flag,void
*dummy)
{

Scalar *xx,A[4];
int ierr,idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);

/*

68

Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for

the matrix at once.
*/
A[0] = 2.0*xx[0] + xx[1]; A[1] = xx[0];
A[2] = xx[1]; A[3] = xx[0] + 2.0*xx[1];
ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

/*
Restore vector

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

return 0;
}

/* --- */
#undef __FUNCT__
#define __FUNCT__ "FormFunction2"
int FormFunction2(SNES snes,Vec x,Vec f,void *dummy)
{

int ierr;
Scalar *xx,*ff;

/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation depen-

dent.
- You MUST call VecRestoreArray() when you no longer need access to

the array.
*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/*
Compute function

*/
ff[0] = PetscSinScalar(3.0*xx[0]) + xx[0];
ff[1] = xx[1];

/*
Restore vectors

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);

69

return 0;
}
/* --- */
#undef __FUNCT__
#define __FUNCT__ "FormJacobian2"
int FormJacobian2(SNES snes,Vec x,Mat *jac,Mat *B,MatStructure *flag,void
*dummy)
{

Scalar *xx,A[4];
int ierr,idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.

- Since this is such a small problem, we set all entries for
the matrix at once.

*/
A[0] = 3.0*PetscCosScalar(3.0*xx[0]) + 1.0; A[1] = 0.0;
A[2] = 0.0; A[3] = 1.0;
ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

/*
Restore vector

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

return 0;
}

Figure 12: Example of Uniprocessor SNES Code

To create a SNES solver, one must first callSNESCreate() and indicate the class of problem being
solved, using one of the following:

SNESCreate(MPI_Comm comm,SNES_NONLINEAR_EQUATIONS,SNES *snes);
SNESCreate(MPI_Comm comm,SNES_UNCONSTRAINED_MINIMIZATION,SNES *snes);

When solving a system of nonlinear equations, the user must then set routines for evaluating the function of
equation (5.1) and its associated Jacobian matrix.

To choose a nonlinear solution method, the user can either call

SNESSetType(SNES snes,SNESType method);

70

or use the the option-snes_type<method> , where details regarding the available methods are pre-
sented in Section5.2. The application code can take complete control of the linear and nonlinear techniques
used in the Newton-like method by calling

SNESSetFromOptions(snes);

This routine provides an interface to the PETSc options database, so that at runtime the user can select
a particular nonlinear solver, set various parameters and customized routines (e.g., specialized line search
variants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user can
also control all linear solver options in the SLES, KSP, and PC modules, as discussed in Chapter4.

After having set these routines and options, the user solves the problem by calling

SNESSolve(SNES snes,Vec x,int *iters);

whereiters is the number of nonlinear iterations required for convergence andx indicates the solution
vector. The user should initialize this vector to the initial guess for the nonlinear solver prior to calling
SNESSolve() . In particular, to employ an initial guess of zero, the user should explicitly set this vector to
zero by callingVecSet() . Finally, after solving the nonlinear system (or several systems), the user should
destroy the SNES context with

SNESDestroy(SNES snes);

5.1.1 Solving Systems of Nonlinear Equations

When solving a system of nonlinear equations, the user must provide a vector,f , for storing the function of
Equation (5.1), as well as a routine that evaluates this function at the vectorx . This information should be
set with the command

SNESSetFunction(SNES snes,Vec f,
int (*FormFunction)(SNES snes,Vec x,Vec f,void *ctx),void *ctx);

The argumentctx is an optional user-defined context, which can store any private, application-specific
data required by the function evaluation routine;PETSC_NULLshould be used if such information is not
needed. In C and C++, a user-defined context is merely a structure in which various objects can be stashed; in
Fortran a user context can be an integer array that contains both parameters and pointers to PETSc objects.
${PETSC_DIR}/src/snes/examples/tutorials/ex5.c and${PETSC_DIR}/src/snes/
examples/tutorials/ex5f.F give examples of user-defined application contexts in C and Fortran,
respectively.

The user must also specify a routine to form some approximation of the Jacobian matrix,A, at the current
iterate,x , as is typically done with

SNESSetJacobian(SNES snes,Mat A,Mat B,int (*FormJacobian)(SNES snes,
Vec x,Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);

The arguments of the routineFormJacobian() are the current iterate,x ; the Jacobian matrix,A; the
preconditioner matrix,B (which is usually the same asA); a flag indicating information about the pre-
conditioner matrix structure; and an optional user-defined Jacobian context,ctx , for application-specific
data. The options forflag are identical to those for the flag ofSLESSetOperators() , discussed in
Section4.1. Note that the SNES solvers are all data-structure neutral, so the full range of PETSc matrix
formats (including “matrix-free” methods) can be used. Chapter3 discusses information regarding available
matrix formats and options, while Section5.5focuses on matrix-free methods in SNES. We briefly touch on
a few details of matrix usage that are particularly important for efficient use of the nonlinear solvers.

During successive calls toFormJacobian() , the user can either insert new matrix contexts or reuse
old ones, depending on the application requirements. For many sparse matrix formats, reusing the old space
(and merely changing the matrix elements) is more efficient; however, if the matrix structure completely
changes, creating an entirely new matrix context may be preferable. Upon subsequent calls to theFormJ

71

Method SNES Type Options Name Default Convergence Test
Line search SNESEQ LS ls SNESConvergedEQ LS()
Trust region SNESEQ TR tr SNESConvergedEQ TR()
Test Jacobian SNESEQ TEST test

Table 5: PETSc Nonlinear Solvers

acobian() routine, the user may wish to reinitialize the matrix entries to zero by callingMatZeroE
ntries() . See Section3.4for details on the reuse of the matrix context.

If the preconditioning matrix retains identical nonzero structure during successive nonlinear iterations,
setting the parameter,flag , in the FormJacobian() routine to beSAME_NONZERO_PATTERNand
reusing the matrix context can save considerable overhead. For example, when one is using a parallel
preconditioner such as incomplete factorization in solving the linearized Newton systems for such problems,
matrix colorings and communication patterns can be determined a single time and then reused repeatedly
throughout the solution process. In addition, if using different matrices for the actual Jacobian and the
preconditioner, the user can hold the preconditioner matrix fixed for multiple iterations by settingflag to
SAME_PRECONDITIONER. See the discussion ofSLESSetOperators() in Section4.1for details.

The directory${PETSC_DIR}/src/snes/examples/tutorials provides a variety of exam-
ples.

5.2 The Nonlinear Solvers

As summarized in Table5.2, SNES includes several Newton-like nonlinear solvers based on line search
techniques and trust region methods. The methods for solving systems of nonlinear equations employ the
prefixesSNES_EQ.

Each solver may have associated with it a set of options, which can be set with routines and options
database commands provided for this purpose. A complete list can be found by consulting the manual pages
or by running a program with the-help option; we discuss just a few in the sections below.

5.2.1 Line Search Techniques

The methodSNES_EQ_NLS(-snes_typels) provides a line search Newton method for solving systems
of nonlinear equations. By default, this technique employs cubic backtracking [3]. An alternative line search
routine can be set with the command

SNESSetLineSearch(SNES snes,
int (*ls)(SNES,Vec,Vec,Vec,Vec,double,double*,double*),void *lsctx);

Other line search methods provided by PETSc areSNESQuadraticLineSearch() , SNESNoLineS
earch() , and SNESNoLineSearchNoNorms() , which can be set with the option-snes_eq_
ls[cubic,quadratic,basic,basicnonorms] . The line search routines involve several param-
eters, which are set to defaults that are reasonable for many applications. The user can override the de-
faults by using the options-snes_eq_ls_alpha<alpha> , -snes_eq_ls_maxstep<max> , and
-snes_eq_ls_steptol<tol> .

5.2.2 Trust Region Methods

The most basic trust region method in SNES for solving systems of nonlinear equations,SNES_EQ_NTR
(-snes_typetr), is taken from the MINPACK project [13]. Several parameters can be set to control the

72

variation of the trust region size during the solution process. In particular, the user can control the initial
trust region radius, computed by

∆ = ∆0‖F0‖2,

by setting∆0 via the option-snes_eq_tr_delta0<delta0> .
The default trust region method for unconstrained minimization,SNES_UM_NTR(-snes_typeumtr),

is based on the work of Steihaug [18]. This method uses the preconditioned conjugate gradient method via
the KSP solverKSPQCGto determine the approximate minimizer of the resulting quadratic at each nonlin-
ear iteration. This formulation requires the use of a symmetric preconditioner, where the currently available
options are Jacobi, incomplete Cholesky, and the null preconditioners, which can be set with the options
-pc_typejacobi , -pc_typeicc , and-pc_typenone , respectively.

5.3 General Options

This section discusses options and routines that apply to all SNES solvers and problem classes. In particular,
we focus on convergence tests, monitoring routines, and tools for checking derivative computations.

5.3.1 Convergence Tests

Convergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify a
customized test, as discussed below. The default convergence routines for the various nonlinear solvers
within SNES are listed in Table5.2; see the corresponding manual pages for detailed descriptions. Each
of these convergence tests involves several parameters, which are set by default to values that should be
reasonable for a wide range of problems. The user can customize the parameters to the problem at hand by
using some of the following routines and options.

One method of convergence testing is to declare convergence when the norm of the change in the solution
between successive iterations is less than some tolerance,stol . Convergence can also be determined based
on the norm of the function (or gradient for a minimization problem). Such a test can use either the absolute
size of the norm,atol , or its relative decrease,rtol , from an initial guess. The following routine sets
these parameters, which are used in many of the default SNES convergence tests:

SNESSetTolerances(SNES snes,double atol,double rtol,double stol,
int its,int fcts);

This routine also sets the maximum numbers of allowable nonlinear iterations,its , and function eval-
uations,fcts . The corresponding options database commands for setting these parameters are-snes_
atol<atol> , -snes_rtol<rtol> , -snes_stol<stol> , -snes_max_it<its> , and-snes_
max_funcs<fcts> . A related routine isSNESGetTolerances() .

Convergence tests for trust regions methods often use an additional parameter that indicates the minim-
ium allowable trust region radius. The user can set this parameter with the option-snes_trtol<trtol>
or with the routine

SNESSetTrustRegionTolerance(SNES snes,double trtol);

An additional parameter is sometimes used for unconstrained minimization problems, namely the minimum
function tolerance,ftol , which can be set with the option-snes_fmin<ftol> or with the routine

SNESSetMinimizationFunctionTolerance(SNES snes,double ftol);

Users can set their own customized convergence tests in SNES by using the command

SNESSetConvergenceTest(SNES snes,int (*test)(SNES snes,double xnorm,
double gnorm,double f,SNESConvergedReason reason,
void *cctx),void *cctx);

73

The final argument of the convergence test routine,cctx , denotes an optional user-defined context for pri-
vate data. When solving systems of nonlinear equations, the argumentsxnorm , gnorm , and f are the
current iterate norm, current step norm, and function norm, respectively. Likewise, when solving uncon-
strained minimization problems, the argumentsxnorm , gnorm , andf are the current iterate norm, current
gradient norm, and the function value.SNESConvergedReason should be set positive for convergence
and negative for divergence. Seeinclude/petscsnes.h for a list ofSNESConvergedReason .

5.3.2 Convergence Monitoring

By default the SNES solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

SNESSetMonitor(SNES snes,int (*mon)(SNES,int its,double norm,void* mctx),
void *mctx,int (*monitordestroy)(void *));

The routine,mon, indicates a user-defined monitoring routine, whereits andmctx respectively denote the
iteration number and an optional user-defined context for private data for the monitor routine. The argument
norm is the function norm (or gradient norm for unconstrained minimization problems).

The routine set bySNESSetMonitor() is called once after every successful step computation within
the nonlinear solver. Hence, the user can employ this routine for any application-specific computations that
should be done after the solution update. The option-snes_monitor activates the default SNES monitor
routine,SNESDefaultMonitor() , while -snes_xmonitor draws a simple line graph of the residual
norm’s convergence.

Once can cancel hardwired monitoring routines for SNES at runtime with-snes_cancelmonitors .

As the Newton method converges so that the residual norm is small, say10−10, many of the final
digits printed with the-snes_monitor option are meaningless. Worse, they are different on different
machines; due to different round-off rules used by, say, the IBM RS6000 and the Sun Sparc. This makes
testing between different machines difficult. The option-snes_smonitor causes PETSc to print fewer
of the digits of the residual norm as it gets smaller; thus on most of the machines it will always print the
same numbers making cross processor testing easier.

The routines

SNESGetSolution(SNES snes,Vec *x);
SNESGetFunction(SNES snes,Vec *r,void *ctx,

int(**func)(SNES,Vec,Vec,void*));

return the solution vector and function vector from a SNES context. These routines are useful, for instance,
if the convergence test requires some property of the solution or function other than those passed with routine
arguments.

5.3.3 Checking Accuracy of Derivatives

Since hand-coding routines for Jacobian and Hessian matrix evaluation can be error prone, SNES provides
easy-to-use support for checking these matrices against finite difference versions. In the simplest form of
comparison, users can employ the option-snes_typetest to compare the matrices at several points.
Although not exhaustive, this test will generally catch obvious problems. One can compare the elements
of the two matrices by using the option-snes_test_display , which causes the two matrices to be
printed to the screen.

Another means for verifying the correctness of a code for Jacobian or Hessian computation is running the
problem with either the finite difference or matrix-free variant,-snes_fd or -snes_mf . see Section5.6
or Section5.5). If a problem converges well with these matrix approximations but not with a user-provided
routine, the problem probably lies with the hand-coded matrix.

74

5.4 Inexact Newton-like Methods

Since exact solution of the linear Newton systems within (5.2) and (??) at each iteration can be costly,
modifications are often introduced that significantly reduce these expenses and yet retain the rapid conver-
gence of Newton’s method. Inexact or truncated Newton techniques approximately solve the linear systems
using an iterative scheme. In comparison with using direct methods for solving the Newton systems, iter-
ative methods have the virtue of requiring little space for matrix storage and potentially saving significant
computational work. Within the class of inexact Newton methods, of particular interest are Newton-Krylov
methods, where the subsidiary iterative technique for solving the Newton system is chosen from the class of
Krylov subspace projection methods. Note that at runtime the user can set any of the linear solver options
discussed in Chapter4, such as-ksp_type<ksp_method> and-pc_type<pc_method> , to set the
Krylov subspace and preconditioner methods.

Two levels of iterations occur for the inexact techniques, where during each global or outer Newton
iteration a sequence of subsidiary inner iterations of a linear solver is performed. Appropriate control of the
accuracy to which the subsidiary iterative method solves the Newton system at each global iteration is crit-
ical, since these inner iterations determine the asymptotic convergence rate for inexact Newton techniques.
While the Newton systems must be solved well enough to retain fast local convergence of the Newton’s
iterates, use of excessive inner iterations, particularly when‖xk−x∗‖ is large, is neither necessary nor eco-
nomical. Thus, the number of required inner iterations typically increases as the Newton process progresses,
so that the truncated iterates approach the true Newton iterates.

A sequence of nonnegative numbers{ηk} can be used to indicate the variable convergence criterion.
In this case, when solving a system of nonlinear equations, the update step of the Newton process remains
unchanged, and direct solution of the linear system is replaced by iteration on the system until the residuals

r
(i)
k = F ′(xk)∆xk + F (xk)

satisfy
‖r(i)

k ‖
‖F (xk)‖

≤ ηk ≤ η < 1.

Herex0 is an initial approximation of the solution, and‖ · ‖ denotes an arbitrary norm in<n .
By default a constant relative convergence tolerance is used for solving the subsidiary linear systems

within the Newton-like methods of SNES. When solving a system of nonlinear equations, one can instead
employ the techniques of Eisenstat and Walker [5] to computeηk at each step of the nonlinear solver by
using the option-snes_ksp_ew_conv . In addition, by adding one’s own KSP convergence test (see
Section4.3.2), one can easily create one’s own, problem-dependent, inner convergence tests.

5.5 Matrix-Free Methods

SNES fully supports matrix-free methods. The matrices specified in the Jacobian evaluation routine need not
be conventional matrices; instead, they can point to the data required to implement a particular matrix-free
method. The matrix-free variant is allowedonly when the linear systems are solved by an iterative method
in combination with no preconditioning (PCNONEor -pc_typenone), a user-provided preconditioner
matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Section4.4); that is, obviously
matrix-free methods cannot be used if a direct solver is to be employed.

The user can create a matrix-free context for use within SNES with the routine

MatCreateSNESMF(SNES snes,Vec x, Mat *mat);

This routine creates the data structures needed for the matrix-vector products that arise within Krylov space
iterative methods [1] by employing the matrix typeMATSHELL, discussed in Section3.3. The default SNES

75

matrix-free approximations can also be invoked with the command-snes_mf . Or, one can retain the user-
provided Jacobian preconditioner, but replace the user-provided Jacobian matrix with the default matrix free
variant with the option-snes_mf_operator .

See also

MatCreateMF(Vec x, Mat *mat);

for users who need a matrix-free matrix but are not using SNES.
The user can set one parameter to control the Jacobian-vector product approximation with the command

MatSNESMFSetFunctionError(Mat mat,double rerror);

The parameterrerror should be set to the square root of the relative error in the function evaluations,erel;
the default is10−8, which assumes that the functions are evaluated to full double precision accuracy. This
parameter can also be set from the options database with

-snes_mf_err <err>

SNES provides a way to register new routines to compute the h-differencing parameter; see the manual
page for MatSNESMFSetType() and MatSNESMFRegisterDynamic). . We currently provide two default
routines accessible via

-snes_mf_type <default or wp>

For the default approach there is one “tuning” parameter, set with

MatSNESMFDefaultSetUmin(Mat mat,double);

This parameter,umin (or umin), is a bit involved; its default is10−6 . The Jacobian-vector product is
approximated via the formula

F ′(u)a ≈ F (u + h ∗ a)− F (u)
h

whereh is computed via

h = erel ∗ uT a/||a||22 if |u′a| > umin ∗ ||a||1
= erel ∗ umin ∗ sign(uT a) ∗ ||a||1/||a||22 otherwise.

This approach is taken from Brown and Saad [1]. The parameter can also be set from the options database
with

-snes_mf_umin <umin>

The second approach, taken from Walker and Pernice, [15], computesh via

h =
√

1 + ||u||erel

||a||

This has no tunable parameters, but note that (a) for GMRES with left preconditioning||a|| = 1 and (b) for
the entirelinear iterative processu does not change hence

√
1 + ||u|| need be computed only once. This

information may be set with the options

MatSNESMFWPSetComputeNormA(Mat mat,PetscTruth);
MatSNESMFWPSetComputeNormU(Mat mat,PetscTruth);

or

-snes_mf_compute_norma <true or false>
-snes_mf_compute_normu <true or false>

This information is used to eliminate the redundant computation of these parameters, therefor reducing the
number of collective operations and improving the efficiency of the application code.

It is also possible to monitor the differencing parameters h that are computed via the routines

76

MatSNESMFSetHHistory(Mat,Scalar *,int);
MatSNESMFResetHHistory(Mat,Scalar *,int);
MatSNESMFGetH(Mat,Scalar *);
MatSNESMFKSPMonitor(KSP,int,double,void *);

and the runtime option-snes_mf_ksp_monitor
We include an example in Figure13 that explicitly uses a matrix-free approach. Note that by using

the option-snes_mf one can easily convert any SNES code to use a matrix-free Newton-Krylov method
without a preconditioner. As shown in this example,SNESSetFromOptions() must be calledafter
SNESSetJacobian() to enable runtime switching between the user-specified Jacobian and the default
SNES matrix-free form.

Table 6 summarizes the various matrix situations that SNES supports. In particular, different linear
system matrices and preconditioning matrices are allowed, as well as both matrix-free and application-
provided preconditioners. All combinations are possible, as demonstrated by the example,${PETSC_DI
R}/src/snes/examples/tutorials/ex5.c , in Figure13.

Matrix Use Conventional Matrix Formats Matrix-Free Versions

Jacobian Create matrix with MatCreate().∗ Create matrix with MatCreateShell().
(or Hessian) Assemble matrix with user-definedUse MatShellSetOperation() to set

Matrix routine.† various matrix actions.
Or use MatCreateSNESMF().

Preconditioning Create matrix with MatCreate().∗ Use SNESGetSLES() and SLESGetPC()
Matrix Assemble matrix with user-definedto access the PC, then use

routine.† PCSetType(pc,PCSHELL);
followed by PCSetApply().

∗ Use either the genericMatCreate() or a format-specific variant such asMatCreateMPIAIJ() .
† Set user-defined matrix formation routine withSNESSetJacobian() or SNESSetHessian() .

Table 6: Jacobian Options

/*$Id: ex6.c,v 1.69 2001/03/22 20:32:01 bsmith Exp $*/

static char help[] = "u‘‘ + uˆ{2} = f. Different matrices for the Jacobian
and the preconditioner.\n\
Demonstrates the use of matrix-free Newton-Krylov methods in conjunction\n\
with a user-provided preconditioner. Input arguments are:\n\

-snes_mf : Use matrix-free Newton methods\n\
-user_precond : Employ a user-defined preconditioner. Used only with\n\

matrix-free methods in this example.\n\n";

/*T
Concepts: SNESˆdifferent matrices for the Jacobian and preconditioner;
Concepts: SNESˆmatrix-free methods

77

Concepts: SNESˆuser-provided preconditioner;
Concepts: matrix-free methods
Concepts: user-provided preconditioner;
Processors: 1

T*/

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace meth-

ods
petscviewer.h - viewers petscpc.h - preconditioners
petscsles.h - linear solvers

*/
#include "petscsnes.h"

/*
User-defined routines

*/
int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
int FormFunction(SNES,Vec,Vec,void*);
int MatrixFreePreconditioner(void*,Vec,Vec);

int main(int argc,char **argv)
{

SNES snes; /* SNES context */
SLES sles; /* SLES context */
PC pc; /* PC context */
KSP ksp; /* KSP context */
Vec x,r,F; /* vectors */
Mat J,JPrec; /* Jacobian,preconditioner matrices */
int ierr,it,n = 5,i,size;
int *Shistit = 0,Khistl = 200,Shistl = 10;
double h,xp = 0.0,*Khist = 0,*Shist = 0;
Scalar v,pfive = .5;
PetscTruth flg;

PetscInitialize(&argc,&argv,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
h = 1.0/(n-1);

/* -
Create nonlinear solver context
- */

ierr = SNESCreate(PETSC_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes);CHKERRQ(ierr);

/* -

Create vector data structures; set function evaluation routine
- -

78

*/

ierr = VecCreate(PETSC_COMM_SELF,PETSC_DECIDE,n,&x);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);
ierr = VecDuplicate(x,&F);CHKERRQ(ierr);

ierr = SNESSetFunction(snes,r,FormFunction,(void*)F);CHKERRQ(ierr);

/* -

Create matrix data structures; set Jacobian evaluation routine
- -

*/

ierr = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,3,PETSC_NULL,&J);CHKERRQ(ierr);
ierr = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,1,PETSC_NULL,&JPrec);CHKERRQ(ierr);

/*
Note that in this case we create separate matrices for the Jacobian
and preconditioner matrix. Both of these are computed in the
routine FormJacobian()

*/
ierr = SNESSetJacobian(snes,J,JPrec,FormJacobian,0);CHKERRQ(ierr);

/* -
Customize nonlinear solver; set runtime options

- */

/* Set preconditioner for matrix-free method */
ierr = PetscOptionsHasName(PETSC_NULL,"-snes_mf",&flg);CHKERRQ(ierr);
if (flg) {

ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PetscOptionsHasName(PETSC_NULL,"-user_precond",&flg);CHKERRQ(ierr);
if (flg) { /* user-defined precond */

ierr = PCSetType(pc,PCSHELL);CHKERRQ(ierr);
ierr = PCShellSetApply(pc,MatrixFreePreconditioner,PETSC_NULL);CHKERRQ(ierr);

} else {ierr = PCSetType(pc,PCNONE);CHKERRQ(ierr);}
}

ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

/*
Save all the linear residuals for all the Newton steps; this enables

us
to retain complete convergence history for printing after the conclu-

sion
of SNESSolve(). Alternatively, one could use the monitoring options

-snes_monitor -ksp_monitor
to see this information during the solver’s execution; however, such
output during the run distorts performance evaluation data. So, the
following is a good option when monitoring code performance, for ex-

ample
when using -log_summary.

79

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-rhistory",&flg);CHKERRQ(ierr);
if (flg) {

ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = PetscMalloc(Khistl*sizeof(double),&Khist);CHKERRQ(ierr);
ierr = KSPSetResidualHistory(ksp,Khist,Khistl,PETSC_FALSE);CHKERRQ(ierr);
ierr = PetscMalloc(Shistl*sizeof(double),&Shist);CHKERRQ(ierr);
ierr = PetscMalloc(Shistl*sizeof(int),&Shistit);CHKERRQ(ierr);
ierr = SNESSetConvergenceHistory(snes,Shist,Shistit,Shistl,PETSC_FALSE);CHKERRQ(ierr);

}

/* -
Initialize application:
Store right-hand-side of PDE and exact solution

- */

xp = 0.0;
for (i=0; i<n; i++) {

v = 6.0*xp + pow(xp+1.e-12,6.0); /* +1.e-12 is to prevent 0ˆ6 */
ierr = VecSetValues(F,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
xp += h;

}

/* -
Evaluate initial guess; then solve nonlinear system

- */

ierr = VecSet(&pfive,x);CHKERRQ(ierr);
ierr = SNESSolve(snes,x,&it);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_SELF,"Newton iterations = %d\n\n",it);CHKERRQ(ierr);

ierr = PetscOptionsHasName(PETSC_NULL,"-rhistory",&flg);CHKERRQ(ierr);
if (flg) {

ierr = KSPGetResidualHistory(ksp,PETSC_NULL,&Khistl);CHKERRQ(ierr);
PetscDoubleView(Khistl,Khist,PETSC_VIEWER_STDOUT_SELF);
ierr = PetscFree(Khist);CHKERRQ(ierr);
ierr = SNESGetConvergenceHistory(snes,PETSC_NULL,PETSC_NULL,&Shistl);CHKERRQ(ierr);
PetscDoubleView(Shistl,Shist,PETSC_VIEWER_STDOUT_SELF);
PetscIntView(Shistl,Shistit,PETSC_VIEWER_STDOUT_SELF);
ierr = PetscFree(Shist);CHKERRQ(ierr);
ierr = PetscFree(Shistit);CHKERRQ(ierr);

}

/* -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

- */

ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(r);CHKERRQ(ierr);
ierr = VecDestroy(F);CHKERRQ(ierr); ierr = MatDestroy(J);CHKERRQ(ierr);
ierr = MatDestroy(JPrec);CHKERRQ(ierr); ierr = SNESDestroy(snes);CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);

return 0;

80

}
/* --- */
/*

FormInitialGuess - Forms initial approximation.

Input Parameters:
user - user-defined application context
X - vector

Output Parameter:
X - vector

*/
int FormFunction(SNES snes,Vec x,Vec f,void *dummy)
{

Scalar *xx,*ff,*FF,d;
int i,ierr,n;

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);
ierr = VecGetArray((Vec)dummy,&FF);CHKERRQ(ierr);
ierr = VecGetSize(x,&n);CHKERRQ(ierr);
d = (double)(n - 1); d = d*d;
ff[0] = xx[0];
for (i=1; i<n-1; i++) {

ff[i] = d*(xx[i-1] - 2.0*xx[i] + xx[i+1]) + xx[i]*xx[i] - FF[i];
}
ff[n-1] = xx[n-1] - 1.0;
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);
ierr = VecRestoreArray((Vec)dummy,&FF);CHKERRQ(ierr);
return 0;

}
/* --- */
/*

FormJacobian - This routine demonstrates the use of different
matrices for the Jacobian and preconditioner

Input Parameters:
. snes - the SNES context
. x - input vector
. ptr - optional user-defined context, as set by SNESSetJacobian()

Output Parameters:
. A - Jacobian matrix
. B - different preconditioning matrix
. flag - flag indicating matrix structure
*/
int FormJacobian(SNES snes,Vec x,Mat *jac,Mat *prejac,MatStructure *flag,void
*dummy)
{

Scalar *xx,A[3],d;
int i,n,j[3],ierr;

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetSize(x,&n);CHKERRQ(ierr);

81

d = (double)(n - 1); d = d*d;

/* Form Jacobian. Also form a different preconditioning matrix that
has only the diagonal elements. */

i = 0; A[0] = 1.0;
ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
for (i=1; i<n-1; i++) {

j[0] = i - 1; j[1] = i; j[2] = i + 1;
A[0] = d; A[1] = -2.0*d + 2.0*xx[i]; A[2] = d;
ierr = MatSetValues(*jac,1,&i,3,j,A,INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[1],INSERT_VALUES);CHKERRQ(ierr);

}
i = n-1; A[0] = 1.0;
ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);

ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyBegin(*prejac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*prejac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;
return 0;

}
/* --- */
/*

MatrixFreePreconditioner - This routine demonstrates the use of a
user-provided preconditioner. This code implements just the null
preconditioner, which of course is not recommended for general use.

Input Parameters:
. ctx - optional user-defined context, as set by PCShellSetApply()
. x - input vector

Output Parameter:
. y - preconditioned vector
*/
int MatrixFreePreconditioner(void *ctx,Vec x,Vec y)
{

int ierr;
ierr = VecCopy(x,y);CHKERRQ(ierr);
return 0;

}

Figure 13: Example of Uniprocessor SNES Code - Both Conventional and Matrix-Free Jacobians

5.6 Finite Difference Jacobian Approximations

PETSc provides some tools to help approximate the Jacobian matrices efficiently via finite differences.
These tools are intended for use in certain situations where one is unable to compute Jacobian matrices ana-
lytically, and matrix-free methods do not work well without a preconditioner, due to very poor conditioning.
The approximation requires several steps:

82

• First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same color
do not share any common rows.

• Next, one creates aMatFDColoring data structure that will be used later in actually computing the
Jacobian.

• Finally, one tells the nonlinear solvers of SNES to use theSNESDefaultComputeJacobianC
olor() routine to compute the Jacobians.

A code fragment that demonstrates this process is given below.

ISColoring iscoloring;
MatFDColoring fdcoloring;
MatStructure str;

/*
This initializes the nonzero structure of the Jacobian. This is artificial
because clearly if we had a routine to compute the Jacobian we wouldn’t
need to use finite differences.

*/
FormJacobian(snes,x,&J,&J,&str,&user);

/*
Color the matrix, i.e. determine groups of columns that share no common

rows. These columns in the Jacobian can all be computed simulataneously.
*/
MatGetColoring(J,MATCOLORING_SL,&iscoloring);

/*
Create the data structure that SNESDefaultComputeJacobianColor() uses
to compute the actual Jacobians via finite differences.

*/
MatFDColoringCreate(J,iscoloring,&fdcoloring);
ISColoringDestroy(iscoloring);
MatFDColoringSetFromOptions(fdcoloring);

/*
Tell SNES to use the routine SNESDefaultComputeJacobianColor()
to compute Jacobians.

*/
SNESSetJacobian(snes,J,J,SNESDefaultComputeJacobianColor,fdcoloring);

Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian,
then how do we know what its nonzero structure is so that it may be colored? Determining the structure is
problem dependent, but fortunately, for most grid-based problems (the class of problems for which PETSc
is designed) if one knows the stencil used for the nonlinear function one can usually fairly easily obtain an
estimate of the location of nonzeros in the matrix.

One need not necessarily use the routineMatGetColoring() to determine a coloring. For example,
if a grid can be colored directly (without using the associated matrix), then that coloring can be provided to
MatFDColoringCreate() . Note that the user must always preset the nonzero structure in the matrix
regardless of which coloring routine is used.

83

For sequential matrices PETSc provides three matrix coloring routines from the MINPACK package
[13]: smallest-last (sl), largest-first (lf), and incidence-degree (id). These colorings, as well as the
“natural” coloring for which each column has its own unique color, may be accessed with the command line
options

-mat_coloring [sl,id,lf,natural]

Alternatively, one can set a coloring type ofCOLORING_SL, COLORING_ID, COLORING_LF, or COLO
RING_NATURALwhen callingMatGetColoring() .

As for the matrix-free computation of Jacobians (see Section5.5), two parameters affect the accuracy of
the finite difference Jacobian approximation. These are set with the command

MatFDColoringSetParameters(MatFDColoring fdcoloring,double rerror,
double umin);

The parameterrerror is the square root of the relative error in the function evaluations,erel; the default
is 10−8, which assumes that the functions are evaluated to full double-precision accuracy. The second
parameter,umin , is a bit more involved; its default is10e−8 . Columni of the Jacobian matrix (denoted by
F:i) is approximated by the formula

F ′
:i ≈

F (u + h ∗ dxi)− F (u)
h

whereh is computed via

h = erel ∗ ui if |ui| > umin

h = erel ∗ umin ∗ sign(ui) otherwise.

These parameters may be set from the options database with

-mat_fd_coloring_err <err>
-mat_fd_coloring_umin <umin>

Note that theMatGetColoring() routine currently works only on sequential routines. Extensions
may be forthcoming. However, if one can compute the coloringiscoloring some other way, the routine
MatFDColoringCreate() does work in parallel. An example of this for 2D distributed arrays is given
below that uses the utility routineDAGetColoring() .

DAGetColoring(da,IS_COLORING_GLOBAL,MATMPIAIJ,&iscoloring,&J);
MatFDColoringCreate(J,iscoloring,&fdcoloring);
MatFDColoringSetFromOptions(fdcoloring);
ISColoringDestroy(iscoloring);

Note that the routineMatFDColoringCreate() currently is only supported for the AIJ matrix for-
mat.

84

Chapter 6

TS: Scalable ODE Solvers

The TS component provides a framework for the scalable solution of ODEs arising from the discretization
of time-dependent PDEs, and of steady-state problems using pseudo-timestepping.

Time-Dependent Problems:Consider the ODE

ut = F (u, t),

whereu is a finite-dimensional vector, usually obtained from discretizing a PDE with finite differences,
finite elements, etc. For example, discretizing the heat equation

ut = uxx

with centered finite differences results in

(ui)t =
ui+1 − 2ui + ui−1

h2
.

The TS component provides code to solve these equations (currently using the forward or backward Euler
method) as well as an interface to other sophisticated ODE solvers, in a clean and easy manner, where the
user need only provide code for the evaluation ofF (u, t) and (optionally) its associated Jacobian matrix.

Steady-State Problems:In addition, TS provides a general code for performing pseudo timestepping with
a variable timestep at each physical node point. For example, instead of directly attacking the steady-state
problem

F (u) = 0,

we can use pseudo-transient continuation by solving

ut = F (u).

By using time differencing with the backward Euler method, we obtain

un+1 − un

dtn
= F (un+1).

More generally we can consider a diagonal matrixDtn that has a pseudo-timestep for each node point to
obtain the series of nonlinear equations

Dtn
−1

(un+1 − un) = F (un+1).

For this problem the user must provideF (u) and the diagonal matrixDtn, (or optionally, if the timestep is
position independent, a scalar timestep) as well as optionally the Jacobian ofF (u).

85

6.1 Basic Usage

The user first creates a TS object with the command

int TSCreate(MPI_Comm comm,TSProblemType problemtype,TS *ts);

TheTSProblemType is one ofTS_LINEAR or TS_NONLINEAR, to indicate whetherF (u, t) is given
by a matrixA, or A(t), or a functionF (u, t).

One can set the solution method with the routine

TSSetType(TS ts,TSType type);

Currently supported types areTS_EULER, TS_BEULER, andTS_PSEUDOor the command line option
-ts_typeeuler,beuler,pseudo .

Set the initial time and timestep with the command

TSSetInitialTimeStep(TS ts,double time,double dt);

One can change the timestep with the command

TSSetTimeStep(TS ts,double dt);

One can determine the current timestep with the routine

TSGetTimeStep(TS ts,double* dt);

Here, “current” refers to the timestep being used to attempt to promote the solution formun to un+1.

One sets the total number of timesteps to run or the total time to run (whatever is first) with the command

TSSetDuration(TS ts,int maxsteps,double maxtime);

One sets up the timestep context with

TSSetUp(TS ts);

destroys it with

TSDestroy(TS ts);

and views it with

TSView(TS ts,PetscViewer viewer);

6.1.1 Solving Time-dependent Problems

To set up TS for solving an ODE, one must set the following:

• Solution:

TSSetSolution(TS ts, Vec initialsolution);

The vectorinitialsolution should contain the “initial conditions” for the ODE.

• Function:

• For linear functions (solved with implicit timestepping), the user must call

TSSetRHSMatrix(TS ts,Mat A, Mat B,int (*f)(TS,double,Mat*,Mat*,
MatStructure*,void*),void *fP);

86

The matrixB (although usually the same asA) allows one to provide a different matrix to be used in
the construction of the preconditioner. The functionf is used to form the matricesA andB at each
timestep if the matrices are time dependent. If the matrix does not depend on time, the user should
pass inPETSC_NULLfor f . The variablefP allows users to pass in an application context that is
passed to thef() function whenever it is called, as the final argument. The user must provide the
matricesA andB; if they have the right-hand side only as a linear function, they must construct a
MatShell matrix. Note that this is the same interface as that forSNESSetJacobian() .

• For nonlinear problems (or linear problems solved using explicit timestepping methods) the
user passes the function with the routine

TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);

The arguments to the functionf() are the timestep context, the current time, the input for the func-
tion, the output for the function, and the (optional) user-provided context variablefP .

• Jacobian: For nonlinear problems the user must also provide the (approximate) Jacobian matrix of
F(u,t) and a function to compute it at each Newton iteration. This is done with the command

TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,
MatStructure*,void*),void *fP);

The arguments for the functionf() are the timestep context, the current time, the location where the
Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used as
a preconditioner, and the optional user-provided context, passed in asfP . The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach is used, the user must create aMatShell
matrix. Again, note the similarity toSNESSetJacobian() .

Similar toSNESDefaultComputeJacobianColor() is the routineTSDefaultComputeJacobianC
olor() andTSDefaultComputeJacobian() that corresponds toSNESDefaultComputeJacobian() .

6.1.2 Using PVODE from PETSc

PVODE is a parallel ODE solver developed by Hindmarsh et al. at LLNL. The TS component provides an
interface to use PVODE directly from PETSc. (To install PETSc to use PVODE, see the installation guide,
docs/installation/index.htm .)

To use the PVODE integrators, call

TSSetType(TS ts,TSType TS_PVODE);

or use the command line option-ts_typepvode .
PVODE comes with to main integrator families, Adams and BDF (backward differentiation formula).

One can select these with

TSPVodeSetType(TS ts,TSPVodeType [PVODE_ADAMS,PVODE_BDF]);

or the command line option-ts_pvode_type<adams,bdf> . BDF is the default.
PVODE does not use the SNES component of PETSc for its nonlinear solvers, so one cannot change the

nonlinear solver options via SNES. Rather, PVODE uses the preconditioners within the PC component of
PETSc, which can be accessed via

TSPVodeGetPC(TS ts,PC *pc);

The user can then directly set preconditioner options; alternatively, the usual runtime options can be em-
ployed via-pc_xxx .

Finally, one can set the PVODE tolerances via

87

TSPVodeSetTolerance(TS ts,double abs,double rel);
whereabs denotes the absolute tolerance andrel the relative tolerance.

Other PETSc-PVode options include
TSPVodeSetGramSchmidtType(TS ts,TSPVodeGramSchmidtType type);

wheretype is eitherPVODE_MODIFIED_GSor PVODE_UNMODIFIED_GS. This may be set via the
options data base with-ts_pvode_gramschmidt_type<modifed,unmodified> .

The routine
TSPVodeSetGMRESRestart(TS ts,int restart);

sets the number of vectors in the Krylov subpspace used by GMRES. This may be set in the options database
with -ts_pvode_gmres_restartrestart .

6.1.3 Solving Steady-State Problems with Pseudo-Timestepping

For solving steady-state problems with pseudo-timestepping one proceeds as follows.

• Provide the functionF(u) with the routine
TSSetRHSFunction(TS ts,int (*f)(TS,double,Vec,Vec,void*),void *fP);

The arguments to the functionf() are the timestep context, the current time, the input for the func-
tion, the output for the function and the (optional) user-provided context variablefP .

• Provide the (approximate) Jacobian matrix ofF(u,t) and a function to compute it at each Newton
iteration. This is done with the command

TSSetRHSJacobian(TS ts,Mat A, Mat B,int (*f)(TS,double,Vec,Mat*,Mat*,
MatStructure*,void*),void *fP);

The arguments for the functionf() are the timestep context, the current time, the location where the
Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used as
a preconditioner, and the optional user-provided context, passed in asfP . The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach, one must create aMatShell matrix.

In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly different
depending on if one is using a constant timestep over the entire grid, or it varies with location.

• For location-independent pseudo-timestepping, one uses the routine
TSPseudoSetTimeStep(TS ts,int(*dt)(TS,double*,void*),void* dtctx);

The functiondt is a user-provided function that computes the next pseudo-timestep. As a default one
can useTSPseudoDefaultTimeStep(TS,double*,void*) for dt . This routine updates
the pseudo-timestep with one of two strategies: the default

dtn = dtincrement ∗ dtn−1 ∗ ||F (un−1)||
||F (un)||

or, the alternative,

dtn = dtincrement ∗ dt0 ∗ ||F (u0)||
||F (un)||

which can be set with the call
TSPseudoIncrementDtFromInitialDt(TS ts);

or the option-ts_pseudo_increment_dt_from_initial_dt . The valuedtincrement is
by default1.1, but can be reset with the call

TSPseudoSetTimeStepIncrement(TS ts,double inc);

or the option-ts_pseudo_increment<inc> .

• For location-dependent pseudo-timestepping, the interface function has not yet been created.

88

Chapter 7

Using Matlab with PETSc

There are three basic ways to use Matlab with PETSc: (1) dumping files to be read into Matlab, (2) automat-
ically sending data from a running PETSc program to a Matlab process where you may interactively type
Matlab commands (or run scripts) and (3) automatically sending data back and forth between PETSc and
Matlab where Matlab commands are issued not interactively but from a script or the PETSc program.

7.1 Dumping Data for Matlab

One can dump PETSc matrices and vectors to the screen (and thus save in a file via>filename.m) in a for-
mat that Matlab can read in directly. This is done with the command line options-vec_view_matlab or
-mat_view_matlab . This causes the PETSc program to print the vectors and matrices every time a Ve-
cAssemblyXXX() and MatAssemblyXXX() is called. To provide finer control over when and what vectors
and matrices are dumped one can use the VecView() and MatView() functions with a viewer type of ASCII
(seeViewerASCIIOpen() , VIEWER_STDOUT_WORLD, VIEWER_STDOUT_SELF, or VIEWER_STD
OUT_(MPI_Comm)). Before calling the viewer set the output type withViewerSetFormat(viewer,
PETSC_VIEWER_ASCII_MATLAB,char*name) orViewerPushFormat(viewer,PETSC_VIEW
ER_ASCII_MATLAB.

PetscViewerSetFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_MATLAB);
VecView(A,PETSC_VIEWER_STDOUT_WORLD);
PetscViewerSetFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_MATLAB);
MatView(B,PETSC_VIEWER_STDOUT_WORLD);

7.2 Sending Data to Running Matlab

One creates a viewer to Matlab viaViewerSocketOpen(MPI_Comm,char*machine,intport,
PetscViewer*v) (port is usally set toPETSC_DEFAULT) and then sends matrices or vectors via

VecView(Vec A,v);
MatView(Mat B,v);

One can also send arrays or integer arrays via

PetscViewerSocketPutScalar(v,int m,int n,Scalar *array);
PetscViewerSocketPutReal(v,int m,int n,double *array);
PetscViewerSocketPutInt(v,int m,int *array);

One may start the Matlab program manually or use the PETSc commandPetscStartMatlab(MPI_
Comm,char*machine,char*script,FILE**fp); where machine and script may bePETSC_NU
LL .

89

To receive the objects in Matlab you must first make sure that${PETSC_DIR}/src/sys/src/
viewer/impls/socket/matlab is in your Matlab path. Usep=openport; (orp=openport(portnum)
if you provided a port number in your call toViewerSocketOpen()), thena=receive(p); returns
the object you have passed from PETSc.receive() may be called any number of times. You many call
closeport() to close the connection from Matlab. It is also possible to start your PETSc program from
Matlab vialaunch() .

7.3 Using the Matlab Compute Engine

One creates access to the Matlab engine via

PetscMatlabEngineCreate(MPI_Comm comm,char *machine,PetscMatlabEngine *e);

(machine may bePETSC_NULL). One can send objects to Matlab via

PetscMatlabEnginePut(PetscMatlabEngine e,PetscObject obj);

One can get objects via

PetscMatlabEngineGet(PetscMatlabEngine e,PetscObject obj);.

Similarly one can send arrays via

PetscMatlabEnginePutArray(PetscMatlabEngine e,int m,int n,Scalar *array,
char *name);

and get them back via

PetscMatlabEngineGetArray(PetscMatlabEngine e,int m,int n,Scalar *array,
char *name);

One cannot use Matlab interactively in this mode but you can send Matlab commands via

PetscMatlabEngineEvaluate(PetscMatlabEngine,’’format’’,...);

whereformat has the usualprintf() format. Responses can be returned from Matlab via

PetscMatlabEngineGetOutput(PetscMatlabEngine,char **);

or

PetscMatlabEnginedPrintOutput(PetscMatlabEngine,FILE*).

There is a short-cut to starting the Matlab engine withMATLAB_ENGINE_(MPI_Comm).

90

Chapter 8

PETSc Fortran Users

Most of the functionality of PETSc can be obtained by people who program purely in Fortran 77 or Fortran
90. Note, however, that we recommend the use of C and/or C++ because these languages contain several
extremely powerful concepts that the Fortran77/90 family does not. The PETSc Fortran interface works
with both F77 and F90 compilers.

Since Fortran77 does not provide type checking of routine input/output parameters, we find that many er-
rors encountered within PETSc Fortran programs result from accidentally using incorrect calling sequences.
Such mistakes are immediately detected during compilation when using C/C++. Thus, using a mixture of
C/C++ and Fortran often works well for programmers who wish to employ Fortran for the core numerical
routines within their applications. In particular, one can effectively write PETSc driver routines in C/C++,
thereby preserving flexibility within the program, and still use Fortran when desired for underlying numeri-
cal computations.

8.1 Differences between PETSc Interfaces for C and Fortran

Only a few differences exist between the C and Fortran PETSc interfaces, all of which are due to differences
in Fortran syntax. All Fortran routines have the same names as the corresponding C versions, and PETSc
command line options are fully supported. The routine arguments follow the usual Fortran conventions; the
user need not worry about passing pointers or values. The calling sequences for the Fortran version are in
most cases identical to the C version, except for the error checking variable discussed in Section8.1.2and a
few routines listed in Section8.1.10. Note that use of the PETSc Fortran interface requires first compiling
the interface library, which is discussed in Section8.1.9.

8.1.1 Include Files

PETSc Fortran users have two choices for including the PETSc header files.

Recommended Approach:In the first approach, the Fortran include files for PETSc are located in the di-
rectory${PETSC_DIR}/include/finclude and should be used via statements such as the following:

#include "include/finclude/includefile.h"

Since one must be very careful to include each file no more than once in a Fortran routine, application pro-
grammers must manually include each file needed for the various PETSc components within their program.
This approach differs from the PETSc C/C++ interface, where the user need only include the highest level
file, for example,petscsnes.h , which then automatically includes all of the required lower level files.
As shown in the examples of Section8.2, in Fortran one must explicitly listeachof the include files. If using
this approach one must employ the Fortran file suffix.F rather than.f . This convention enables use of the
CPP preprocessor, which allows the use of the#includestatements that define PETSc objects and variables.

91

(Familarity with the CPP preprocessor is not needed for writing PETSc Fortran code; one can simply begin
by copying a PETSc Fortran example and its corresponding makefile.)

Alternative Approach: If working with .f files is absolutely essential (perhaps as part of a heritage code),
the conventional Fortran style include statement can be employed. The weakness of this approach is that
either the complete path of the include file must be hardwired with a statement such as

include ’/home/username/petsc/include/foldinclude/includefile.h’

or a link must be estabilished in the directory containing the Fortran source file to the file

ln -s /home/username/petsc/include/foldinclude/includefile.h includefile.h

Some Fortran compilers will accept a-I<directory> , but depending on the Fortran compiler, they may
use the-I list only for the \#include style of include. In addition, the user must declare all PETSc
objects asinteger rather than by their name. For example, declarations within Fortran.F files have the
form

SLES solver
Mat A, B
Vec x, y
integer i

while the analogous statements within.f files are

integer solver
integer A, B
integer x, y
integer i

8.1.2 Error Checking

In the Fortran version, each PETSc routine has as its final argument an integer error variable, in contrast
to the C convention of providing the error variable as the routine’s return value. The error code is set to
be nonzero if an error has been detected; otherwise, it is zero. For example, the Fortran and C variants of
SLESSolve() are given, respectively, below, whereierr denotes the error variable:

call SLESSolve(SLES sles,Vec b,Vec x,int its,int ierr)
SLESSolve(SLES sles,Vec b,Vec x,int *its);

Fortran programmers using the.F file suffix, as discussed in Section8.1.1, can check these error codes
with CHKERRQ(ierr) , which terminates all process when an error is encountered. Likewise, one can
set error codes within Fortran programs by usingSETERRQ(ierr,p,’’) , which again terminates all
processes upon detection of an error. Note that complete error tracebacks withCHKERRQ()andSETERR
Q() , as described in Section1.4 for C routines, arenot directly supported for Fortran routines; however,
Fortran programmers can easily use the error codes in writing their own tracebacks. For example, one could
use code such as the following:

call SLESSolve(sles,x,y,ierr)
if (ierr .ne. 0) then

print*, ’Error in routine ...’
return

endif

Note that users of the Fortran.f suffix cannotemploy the macrosSETERRQ() andCHKERRQ().
The most common reason for crashing PETSc Fortran code is forgetting the finalierr argument.

92

8.1.3 Array Arguments

Since Fortran does not allow arrays to be returned in routine arguments, all PETSc routines that return arrays,
such asVecGetArray() , MatGetArray() , ISGetIndices() , andDAGetGlobalIndices()
are defined slightly differently in Fortran than in C. Instead of returning the array itself, these routines
accept as input a user-specified array of dimension one and return an integer index to the actual array used
for data storage within PETSc. The Fortran interface for several routines is as follows:

double precision xx_v(1), aa_v(1)
integer ss_v(1), dd_v(1), ierr, nloc
PetscOffset ss_i, xx_i, aa_i, dd_i
Vec x
Mat A
IS s
DA d

call VecGetArray(x,xx_v,xx_i,ierr)
call MatGetArray(A,aa_v,aa_i,ierr)
call ISGetIndices(s,ss_v,ss_i,ierr)
call DAGetGlobalIndices(d,nloc,dd_v,dd_i,ierr)

To access array elements directly, both the user-specified array and the integer indexmustthen be used
together. For example, the following Fortran program fragment illustrates directly setting the values of a
vector array instead of usingVecSetValues() . Note the (optional) use of the preprocessor#define
statement to enable array manipulations in the conventional Fortran manner.

#define xx_a(ib) xx_v(xx_i + (ib))

double precision xx_v(1)
PetscOffset xx_i
integer i, ierr, n
Vec x
call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetLocalSize(x,n,ierr)
do 10, i=1,n

xx_a(i) = 3*i + 1
10 continue

call VecRestoreArray(x,xx_v,xx_i,ierr)

Figure15contains an example of usingVecGetArray() within a Fortran routine.
Since in this case the array is accessed directly from Fortran, indexing begins with 1, not 0 (unless the

array is declared asxx_v(0:1)). This is different from the use ofVecSetValues() where, indexing
always starts with 0.

Note: If usingVecGetArray() , MatGetArray() , ISGetIndices() , orDAGetGlobalIndices()
from Fortran, the usermust notcompile the Fortran code with options to check for “array entries out of
bounds” (e.g., on the IBM RS/6000 this is done with the-C compiler option, so never use the-C option
with this).

8.1.4 Calling Fortran Routines from C (and C Routines from Fortran)

Since the use of both Fortran and C routines is sometimes needed in application codes, we provide two
PETSc commands to facilitate passing PETSc objects (such asMat andSLES) between the two languages.
These routinesmustbe called within any C/C++ routines that pass/receive PETSc objects to/from Fortran

93

routines to ensure that the objects are properly handled, since Fortran treats PETSc objects simply as inte-
gers.

Different machines have different methods of naming Fortran routines called from C (or C routines
called from Fortran). Most Fortran compilers change all the capital letters in Fortran routines to small. On
some machines, the Fortran compiler appends an underscore to the end of each Fortran routine name; for
example, the Fortran routineDabsc() would be called from C withdabsc_() . Other machines change
all the letters in Fortran routine names to capitals.

PETSc provides two macros (defined in C/C++) to help write portable code that mixes C/C++ and For-
tran. They arePETSC_HAVE_FORTRAN_UNDERSCOREandPETSC_HAVE_FORTRAN_CAPS, which
are defined in the file${PETSC_DIR}/bmake/${PETSC_ARCH}/petscconf.h . The macros are
used, for example, as follows:

#if defined(PETSC_HAVE_FORTRAN_CAPS)
#define dabsc_ DABSC
#elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
#define dabsc_ dabsc
#endif
.....
dabsc_(&n,x,y); /* call the Fortran function */

Another useful routine for mixed language programming with PETSc isPetscInitializeFortran() ,
which should be used if one is using a C main program that calls Fortran routines that in turn call PETSc
routines. In this case,PetscInitializeFortran() should be called from C after the call toPetscI
nitialize() to initialize some of the default viewers, communicators, etc. for use in the Fortran.
PetscInitializeFortran() is not needed if a user’s main program is written in Fortran; in this
case, just callingPetscInitialize() in the main program is sufficient.

8.1.5 Passing Null Pointers

In several PETSc C functions, one has the option of passing a 0 (null) argument (for example, the fifth
argument ofMatCreateSeqAIJ()). From Fortran, usersmustpassPETSC_NULL_XXXto indicate a
null argument (where XXX isINTEGER, DOUBLE, CHARACTER, or SCALARdepending on the type of
argument required); passing 0 from Fortran will crash the code. Note that the C convention of passingPETS
C_NULL(or 0) cannotbe used. For example, when no options prefix is desired in the routineOptionsG
etInt() , one must use the following command in Fortran:

call OptionsGetInt(PETSC_NULL_CHARACTER,’-name’,N,flg,ierr)

This Fortran requirement is inconsistent with C, where the user can employPETSC_NULLfor all null
arguments.

8.1.6 Duplicating Multiple Vectors

The Fortran interface toVecDuplicateVecs() differs slightly from the C/C++ variant because Fortran
does not allow arrays to be returned in routine arguments. To createn vectors of the same format as an
existing vector, the user must declare a vector array,v_new of sizen. Then, afterVecDuplicateVecs()
has been called,v_new will contain (pointers to) the new PETSc vector objects. When finished with the
vectors, the user should destroy them by callingVecDestroyVectors() . For example, the following
code fragment duplicatesv_old to form two new vectors,v_new(1) andv_new(2) .

Vec v_old, v_new(2)
integer ierr
Scalar alpha

94

....
call VecDuplicateVecs(v_old,2,v_new,ierr)
alpha = 4.3
call VecSet(alpha,v_new(1),ierr)
alpha = 6.0
call VecSet(alpha,v_new(2),ierr)
....
call VecDestroyVecs(v_new,2,ierr)

8.1.7 Matrix and Vector Indices

All matrices and vectors in PETSc use zero-based indexing, regardless of whether C or Fortran is being used.
The interface routines, such asMatSetValues() andVecSetValues() , always use zero indexing.
See Section3.2for further details.

8.1.8 Setting Routines

When a routine is set from within a Fortran program by a routine such asKSPSetConvergenceTest() ,
that routine is assumed to be a Fortran routine. Likewise, when a routine is set from within a C program,
that routine is assumed to be written in C.

8.1.9 Compiling and Linking Fortran Programs

Figure21 shows a sample makefile that can be used for PETSc programs. In this makefile, one can com-
pile and run a debugging version of the Fortran programex3.F with the actionsmakeBOPT=gex3 and
makerunex3 , respectively. The compilation command is restated below:

ex3: ex3.o
-${FLINKER} -o ex3 ex3.o ${PETSC_FORTRAN_LIB} ${PETSC_LIB}
${RM} ex3.o

Note that the PETSc Fortran interface library, given by${PETSC_FORTRAN_LIB}, mustprecede the base
PETSc libraries, given by${PETSC_LIB} , on the link line.

8.1.10 Routines with Different Fortran Interfaces

The following Fortran routines differ slightly from their C counterparts; see the manual pages and previous
discussion in this chapter for details:

• PetscInitialize(char*filename,intierr)

• PetscError(interr,char*message,intierr)

• VecGetArray() , MatGetArray()

• ISGetIndices() , DAGetGlobalIndices()

• VecDuplicateVecs() , VecDestroyVecs()

• OptionsGetString()

The following functions are not supported in Fortran:

• PetscFClose() , PetscFOpen() , PetscFPrintf() , PetscPrintf()

95

• PetscPopErrorHandler() , PetscPushErrorHandler()

• PetscLogInfo()

• PetscSetDebugger()

• VecGetArrays() , VecRestoreArrays()

• ViewerASCIIGetPointer() , ViewerBinaryGetDescriptor()

• ViewerStringOpen() , ViewerStringSPrintf()

• OptionsGetStringArray()

8.1.11 Fortran90

PETSc includes limited support for direct use of Fortran90 pointers. Current routines include:

• VecGetArrayF90() , VecRestoreArrayF90()

• VecDuplicateVecsF90() , VecDestroyVecsF90()

• DAGetGlobalIndicesF90()

• MatGetArrayF90() , MatRestoreArrayF90()

• ISGetIndicesF90() , ISRestoreIndicesF90()

See the manual pages for details and pointers to example programs. To use the routinesVecGetArrayF
90() , VecRestoreArrayF90() VecDuplicateVecsF90() , andVecDestroyVecsF90() , one
must use the Fortran90 vector include file,

#include "include/finclude/petscvec.h90"

Analogous include files for other components arepetscda.h90 , petscmat.h90 , andpetscis.h90 ;
the conventional Fortran style include files (as discussed in Section8.1.1) are supported as well.

Unfortunately, these routines currently work only on certain machines with certain compilers. They
currently work with the SGI, the Cray T3E, the IBM and the NAG Fortran 90 compiler.

8.2 Sample Fortran77 Programs

Sample programs that illustrate the PETSc interface for Fortran are given in Figures14- 17, corresponding to
${PETSC_DIR}/src/vec/examples/tests/ex19.F , ${PETSC_DIR}/src/vec/examples/
tutorials/ex4f.F ,
${PETSC_DIR}/src/draw/examples/tests/ex5.F , and${PETSC_DIR}/src/snes/examples/
ex1f.F , respectively. We also refer Fortran programmers to the C examples listed throughout the manual,
since PETSc usage within the two languages differs only slightly.

!
! "$Id: ex19.F,v 1.36 2001/01/15 21:45:13 bsmith Exp $";
!

program main
#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
!
! This example demonstrates basic use of the PETSc Fortran interface

96

! to vectors.
!

integer n,ierr,flg
Scalar one,two,three,dot
double precision norm,rdot
Vec x,y,w

n = 20
one = 1.0
two = 2.0
three = 3.0

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

! Create a vector, then duplicate it
call VecCreate(PETSC_COMM_WORLD,PETSC_DECIDE,n,x,ierr)
call VecSetFromOptions(x,ierr)
call VecDuplicate(x,y,ierr)
call VecDuplicate(x,w,ierr)

call VecSet(one,x,ierr)
call VecSet(two,y,ierr)

call VecDot(x,y,dot,ierr)
rdot = PetscRealPart(dot)
write(6,100) rdot

100 format(’Result of inner product ’,f10.4)

call VecScale(two,x,ierr)
call VecNorm(x,NORM_2,norm,ierr)
write(6,110) norm

110 format(’Result of scaling ’,f10.4)

call VecCopy(x,w,ierr)
call VecNorm(w,NORM_2,norm,ierr)
write(6,120) norm

120 format(’Result of copy ’,f10.4)

call VecAXPY(three,x,y,ierr)
call VecNorm(y,NORM_2,norm,ierr)
write(6,130) norm

130 format(’Result of axpy ’,f10.4)

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call VecDestroy(w,ierr)
call PetscFinalize(ierr)
end

Figure 14: Sample Fortran Program: Using PETSc Vectors

97

!
! "$Id: ex4f.F,v 1.27 2001/01/15 21:45:20 bsmith Exp $";
!
! Description: Illustrates the use of VecSetValues() to set
! multiple values at once; demonstrates VecGetArray().
!
!/*T
! Concepts: vectorsˆassembling
! Concepts: vectorˆarrays of vectors
! Processors: 1
!T*/
! ---

program main
implicit none

! -

! Include files
! -

!
! The following include statements are required for Fortran programs
! that use PETSc vectors:
! petsc.h - base PETSc routines
! petscvec.h - vectors

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"

! -
! Macro definitions
! -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors.
!
! - The element xx_a(ib) is element ib+1 in the vector x
! - Here we add 1 to the base array index to facilitate the use of
! conventional Fortran 1-based array indexing.
!
#define xx_a(ib) xx_v(xx_i + (ib))
#define yy_a(ib) yy_v(yy_i + (ib))

! -

! Beginning of program
! -

Scalar xwork(6)
Scalar xx_v(1),yy_v(1)
integer i,n,ierr,loc(6)
PetscOffset xx_i,yy_i

98

Vec x,y

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
n = 6

! Create initial vector and duplicate it

call VecCreateSeq(PETSC_COMM_SELF,n,x,ierr)
call VecDuplicate(x,y,ierr)

! Fill work arrays with vector entries and locations. Note that
! the vector indices are 0-based in PETSc (for both Fortran and
! C vectors)

do 10 i=1,n
loc(i) = i-1
xwork(i) = 10.0*i

10 continue

! Set vector values. Note that we set multiple entries at once.
! Of course, usually one would create a work array that is the
! natural size for a particular problem (not one that is as long
! as the full vector).

call VecSetValues(x,6,loc,xwork,INSERT_VALUES,ierr)

! Assemble vector

call VecAssemblyBegin(x,ierr)
call VecAssemblyEnd(x,ierr)

! View vector

write(6,20)
20 format(’initial vector:’)

call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)
call VecCopy(x,y,ierr)

! Get a pointer to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
! the array.
! - Note that the Fortran interface to VecGetArray() differs from the
! C version. See the users manual for details.

call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetArray(y,yy_v,yy_i,ierr)

! Modify vector data

do 30 i=1,n
xx_a(i) = 100.0*i
yy_a(i) = 1000.0*i

30 continue

99

! Restore vectors

call VecRestoreArray(x,xx_v,xx_i,ierr)
call VecRestoreArray(y,yy_v,yy_i,ierr)

! View vectors

write(6,40)
40 format(’new vector 1:’)

call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)

write(6,50)
50 format(’new vector 2:’)

call VecView(y,PETSC_VIEWER_STDOUT_SELF,ierr)

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call PetscFinalize(ierr)
end

Figure 15: Sample Fortran Program: Using VecSetValues() and VecGetArray()

!
! "$Id: ex5.F,v 1.28 2001/04/10 19:34:20 bsmith Exp $";
!

program main
#include "include/finclude/petsc.h"
#include "include/finclude/petscdraw.h"
!
! This example demonstrates basic use of the Fortran interface for
! PetscDraw routines.
!

PetscDraw draw
PetscDrawLG lg
PetscDrawAxis axis
integer n,i,ierr,x,y,width,height,flg
Scalar xd,yd

n = 20
x = 0
y = 0
width = 300
height = 300

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-width’,width, &
& flg,ierr)

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-height’,height, &

100

& flg,ierr)
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

! call PetscDrawOpenX(PETSC_COMM_SELF,PETSC_NULL_CHARACTER, &
! PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)

call PetscDrawCreate(PETSC_COMM_SELF,PETSC_NULL_CHARACTER, &
& PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)

call PetscDrawSetType(draw,PETSC_DRAW_X,ierr)

call PetscDrawLGCreate(draw,1,lg,ierr)
call PetscDrawLGGetAxis(lg,axis,ierr)
call PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED, &

& PETSC_DRAW_BLUE,ierr)
call PetscDrawAxisSetLabels(axis,’toplabel’,’xlabel’,’ylabel’, &

& ierr)

do 10, i=0,n-1
xd = i - 5.0
yd = xd*xd
call PetscDrawLGAddPoint(lg,xd,yd,ierr)

10 continue

call PetscDrawLGIndicateDataPoints(lg,ierr)
call PetscDrawLGDraw(lg,ierr)
call PetscDrawFlush(draw,ierr)

call PetscSleep(10,ierr)

call PetscDrawLGDestroy(lg,ierr)
call PetscDrawDestroy(draw,ierr)
call PetscFinalize(ierr)
end

Figure 16: Sample Fortran Program: Using PETSc PetscDraw Routines

!
! "$Id: ex1f.F,v 1.32 2001/04/06 19:54:59 balay Exp $";
!
!/*T
! Concepts: SNESˆbasic uniprocessor example
! Processors: 1
!T*/
!
! Description: Uses the Newton method to solve a two-variable system.
!
! ---

program main
implicit none

! -

101

! Include files
! -

!
! The following include statements are generally used in SNES Fortran
! programs:
! petsc.h - base PETSc routines
! petscvec.h - vectors
! petscmat.h - matrices
! petscksp.h - Krylov subspace methods
! petscpc.h - preconditioners
! petscsles.h - SLES interface
! petscsnes.h - SNES interface
! Other include statements may be needed if using additional PETSc
! routines in a Fortran program, e.g.,
! petscviewer.h - viewers
! petscis.h - index sets
!
#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscksp.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsles.h"
#include "include/finclude/petscsnes.h"
!
! -

! Variable declarations
! -

!
! Variables:
! snes - nonlinear solver
! sles - linear solver
! pc - preconditioner context
! ksp - Krylov subspace method context
! x, r - solution, residual vectors
! J - Jacobian matrix
! its - iterations for convergence
!

SNES snes
SLES sles
PC pc
KSP ksp
Vec x,r
Mat J
integer ierr,its,size,rank
Scalar pfive
double precision tol
PetscTruth setls

! Note: Any user-defined Fortran routines (such as FormJacobian)
! MUST be declared as external.

102

external FormFunction, FormJacobian, MyLineSearch

! -
- -
! Macro definitions
! -
- -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors. These vectors are used in the routines
! FormFunction() and FormJacobian().
! - The element lx_a(ib) is element ib in the vector x
!
#define lx_a(ib) lx_v(lx_i + (ib))
#define lf_a(ib) lf_v(lf_i + (ib))
!
! -

! Beginning of program
! -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
if (size .ne. 1) then

if (rank .eq. 0) then
write(6,*) ’This is a uniprocessor example only!’

endif
SETERRQ(1,’ ’,ierr)

endif

! - - - - - - - - - -- -
! Create nonlinear solver context
! - - - - - - - - - -- -

call SNESCreate(PETSC_COMM_WORLD,SNES_NONLINEAR_EQUATIONS, &
& snes,ierr)

! -

! Create matrix and vector data structures; set corresponding routines
! -

! Create vectors for solution and nonlinear function

call VecCreateSeq(PETSC_COMM_SELF,2,x,ierr)
call VecDuplicate(x,r,ierr)

! Create Jacobian matrix data structure

call MatCreate(PETSC_COMM_SELF,PETSC_DECIDE,PETSC_DECIDE,2,2,J, &
& ierr)

call MatSetFromOptions(J,ierr)

103

! Set function evaluation routine and vector

call SNESSetFunction(snes,r,FormFunction,PETSC_NULL_OBJECT,ierr)

! Set Jacobian matrix data structure and Jacobian evaluation routine

call SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL_OBJECT, &
& ierr)

! -

! Customize nonlinear solver; set runtime options
! -

! Set linear solver defaults for this problem. By extracting the
! SLES, KSP, and PC contexts from the SNES context, we can then
! directly call any SLES, KSP, and PC routines to set various options.

call SNESGetSLES(snes,sles,ierr)
call SLESGetKSP(sles,ksp,ierr)
call SLESGetPC(sles,pc,ierr)
call PCSetType(pc,PCNONE,ierr)
tol = 1.e-4
call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION, &

& PETSC_DEFAULT_DOUBLE_PRECISION,20,ierr)

! Set SNES/SLES/KSP/PC runtime options, e.g.,
! -snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
! These options will override those specified above as long as
! SNESSetFromOptions() is called _after_ any other customization
! routines.

call SNESSetFromOptions(snes,ierr)

call PetscOptionsHasName(PETSC_NULL_CHARACTER,’-setls’,setls,ierr)

if (setls .eq. PETSC_TRUE) then
call SNESSetLineSearch(snes,MyLineSearch, &

& PETSC_NULL_OBJECT,ierr)
endif

! -

! Evaluate initial guess; then solve nonlinear system
! -

! Note: The user should initialize the vector, x, with the initial guess
! for the nonlinear solver prior to calling SNESSolve(). In particular,
! to employ an initial guess of zero, the user should explicitly set
! this vector to zero by calling VecSet().

104

pfive = 0.5
call VecSet(pfive,x,ierr)
call SNESSolve(snes,x,its,ierr)
if (rank .eq. 0) then

write(6,100) its
endif

100 format(’Number of Newton iterations = ’,i5)

! -

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.
! -

call VecDestroy(x,ierr)
call VecDestroy(r,ierr)
call MatDestroy(J,ierr)
call SNESDestroy(snes,ierr)
call PetscFinalize(ierr)
end

! ---
!
! FormFunction - Evaluates nonlinear function, F(x).
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameter:
! f - function vector
!

subroutine FormFunction(snes,x,f,dummy,ierr)
implicit none

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscsnes.h"

SNES snes
Vec x,f
integer ierr,dummy(*)

! Declarations for use with local arrays

Scalar lx_v(1),lf_v(1)
PetscOffset lx_i,lf_i

! Get pointers to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
! the array.
! - Note that the Fortran interface to VecGetArray() differs from the

105

! C version. See the Fortran chapter of the users manual for details.

call VecGetArray(x,lx_v,lx_i,ierr)
call VecGetArray(f,lf_v,lf_i,ierr)

! Compute function

lf_a(1) = lx_a(1)*lx_a(1) &
& + lx_a(1)*lx_a(2) - 3.0

lf_a(2) = lx_a(1)*lx_a(2) &
& + lx_a(2)*lx_a(2) - 6.0

! Restore vectors

call VecRestoreArray(x,lx_v,lx_i,ierr)
call VecRestoreArray(f,lf_v,lf_i,ierr)

return
end

! ---
!
! FormJacobian - Evaluates Jacobian matrix.
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameters:
! A - Jacobian matrix
! B - optionally different preconditioning matrix
! flag - flag indicating matrix structure
!

subroutine FormJacobian(snes,X,jac,B,flag,dummy,ierr)
implicit none

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsnes.h"

SNES snes
Vec X
Mat jac,B
MatStructure flag
Scalar A(4)
integer ierr,idx(2),dummy(*)

! Declarations for use with local arrays

Scalar lx_v(1)
PetscOffset lx_i

106

! Get pointer to vector data

call VecGetArray(x,lx_v,lx_i,ierr)

! Compute Jacobian entries and insert into matrix.
! - Since this is such a small problem, we set all entries for
! the matrix at once.
! - Note that MatSetValues() uses 0-based row and column numbers
! in Fortran as well as in C (as set here in the array idx).

idx(1) = 0
idx(2) = 1
A(1) = 2.0*lx_a(1) + lx_a(2)
A(2) = lx_a(1)
A(3) = lx_a(2)
A(4) = lx_a(1) + 2.0*lx_a(2)
call MatSetValues(jac,2,idx,2,idx,A,INSERT_VALUES,ierr)
flag = SAME_NONZERO_PATTERN

! Restore vector

call VecRestoreArray(x,lx_v,lx_i,ierr)

! Assemble matrix

call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)

return
end

subroutine MyLineSearch(snes,lctx,x,f,g,y,w,fnorm,ynorm,gnorm, &
& flag,ierr)

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscksp.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsles.h"
#include "include/finclude/petscsnes.h"

SNES snes
integer lctx
Vec x, f,g, y, w
double precision fnorm,ynorm,gnorm
integer flag,ierr

Scalar mone

mone = -1.0d0
flag = 0
call VecNorm(y,NORM_2,ynorm,ierr)
call VecAYPX(mone,x,y,ierr)
call SNESComputeFunction(snes,y,g,ierr)

107

call VecNorm(g,NORM_2,gnorm,ierr)
return
end

Figure 17: Sample Fortran Program: Using PETSc Nonlinear Solvers

108

Part III

Additional Information

109

Chapter 9

Profiling

PETSc includes a consistent, lightweight scheme to allow the profiling of application programs. The PETSc
routines automatically log performance data if certain options are specified at runtime. The user can also
log information about application codes for a complete picture of performance. In addition, as described in
Section??, PETSc provides a mechanism for printing informative messages about computations. Section9.1
introduces the various profiling options in PETSc, while the remainder of the chapter focuses on details such
as monitoring application codes and tips for accurate profiling.

9.1 Basic Profiling Information

If an application code and the PETSc libraries have been compiled with the-DPETSC_USE_LOGflag
(which is the default for all versions), then various kinds of profiling of code between calls toPetscI
nitialize() andPetscFinalize() can be activated at runtime. Note that the flag-DPETSC_US
E_LOGcan be specified for an installation of PETSc in the file${PETSC_DIR}/bmake/${PETSC_AR
CH}/base_variables , as discussed in Section12.2. The profiling options include the following:

• -log_summary - Prints an ASCII version of performance data at program’s conclusion. These
statistics are comprehensive and concise and require little overhead; thus,-log_summary is in-
tended as the primary means of monitoring the performance of PETSc codes.

• -log_info - Prints verbose information about code to the screen. This option provides details about
algorithms, data structures, etc. Since the overhead of printing such output slows a code, this option
should not be used when evaluating a program’s performance.

• -log_trace[logfile] - Traces the beginning and ending of all PETSc events. This option,
which can be used in conjunction with-log_info , is useful to see where a program is hanging
without running in the debugger.

As discussed in Section9.1.3, additional profilng can be done with MPE.

9.1.1 Interpreting -log summary Output: The Basics

As shown in Figure7 (in Part I), the option-log_summary activates printing of profile data to standard
output at the conclusion of a program. Profiling data can also be printed at any time within a program by
callingPetscLogPrintSummary() .

We print performance data for each routine, organized by PETSc components, followed by any user-
defined events (discussed in Section9.2). For each routine, the output data include the maximum time

111

and floating point operation (flop) rate over all processors. Information about parallel performance is also
included, as discussed in the following section.

For the purpose of PETSc floating point operation counting, we define oneflop as one operation of any
of the following types: multiplication, division, addition, or subtraction. For example, oneVecAXPY()
operation, which computesy = αx+y for vectors of lengthN , requires2N flops (consisting ofN additions
andN multiplications). Bear in mind that flop rates present only a limited view of performance, since
memory loads and stores are the real performance barrier.

For simplicity, the remainder of this discussion focuses on interpreting profile data for theSLEScom-
ponent, which provides the linear solvers at the heart of the PETSc package. Recall the hierarchical organi-
zation of the PETSc library, as shown in Figure1. EachSLESsolver is composed of aPC(preconditioner)
andKSP(Krylov subspace) component, which are in turn built on top of theMat (matrix) andVec (vector)
modules. Thus, operations in theSLES module are composed of lower-level operations in these compo-
nents. Note also that the nonlinear solvers component,SNES, is build on top of theSLESmodule, and the
timestepping component,TS, is in turn built on top ofSNES.

We briefly discuss interpretation of the sample output in Figure7, which was generated by solving a
linear system on one processor using restarted GMRES and ILU preconditioning. The linear solvers inSLES
consist of two basic phases,SLESSetUp() andSLESSolve() , each of which consists of a variety of
actions, depending on the particular solution technique. For the case of using thePCILU preconditioner and
KSPGMRESKrylov subspace method, the breakdown of PETSc routines is listed below. As indicated by the
levels of indentation, the operations inSLESSetUp() include all of the operations withinPCSetUp() ,
which in turn includeMatILUFactor() , and so on.

• SLESSetUp - Set up linear solver
• PCSetUp - Set up preconditioner

• MatILUFactor - Factor preconditioning matrix
• MatILUFactorSymbolic - Symbolic factorization phase
• MatLUFactorNumeric - Numeric factorization phase

• SLESSolve - Solve linear system
• PCApply - Apply preconditioner

• MatSolve - Forward/backward triangular solves
• KSPGMRESOrthog- Orthogonalization in GMRES

• VecDot or VecMDot - Inner products
• MatMult - Matrix-vector product
• MatMultAdd - Matrix-vector product + vector addition
• VecScale , VecNorm, VecAXPY, VecCopy , ...

The summaries printed via-log_summary reflect this routine hierarchy. For example, the perfor-
mance summaries for a particular high-level routine such asSLESSolve include all of the operations
accumulated in the lower-level components that make up the routine.

Admittedly, we do not currently present the output with-log_summary so that the hierarchy of PETSc
operations is completely clear, primarily because we have not determined a clean and uniform way to do
so throughout the library. Improvements may follow. However, for a particular problem, the user should
generally have an idea of the basic operations that are required for its implementation (e.g., which operations
are performed when using GMRES and ILU, as described above), so that interpreting the-log_summary
data should be relatively straightforward.

112

mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -optionsleft

Number of iterations = 19
Residual norm = 7.7643e-05
Number of iterations = 55
Residual norm = 6.3633e-01

-- PETSc Performance Summary: --

ex21 on a rs6000 named p039 with 4 processors, by mcinnes Wed Jul 24 16:30:22 1996

Max Min Avg Total
Time (sec): 3.289e+01 1.0 3.288e+01
Objects: 1.130e+02 1.0 1.130e+02
Flops: 2.195e+08 1.0 2.187e+08 8.749e+08
Flops/sec: 6.673e+06 1.0 2.660e+07
MPI Messages: 2.205e+02 1.4 1.928e+02 7.710e+02
MPI Message Lengths: 7.862e+06 2.5 5.098e+06 2.039e+07
MPI Reductions: 1.850e+02 1.0

Summary of Stages: ---- Time ------ ----- Flops ------- -- Messages -- -- Message-lengths -- Reductions -
Avg %Total Avg %Total counts %Total avg %Total counts %Total

0: Load System 0: 1.191e+00 3.6% 3.980e+06 0.5% 3.80e+01 4.9% 6.102e+04 0.3% 1.80e+01 9.7%
1: SLESSetup 0: 6.328e-01 2.5% 1.479e+04 0.0% 0.00e+00 0.0% 0.000e+00 0.0% 0.00e+00 0.0%
2: SLESSolve 0: 2.269e-01 0.9% 1.340e+06 0.0% 1.52e+02 19.7% 9.405e+03 0.0% 3.90e+01 21.1%
3: Load System 1: 2.680e+01 107.3% 0.000e+00 0.0% 2.10e+01 2.7% 1.799e+07 88.2% 1.60e+01 8.6%
4: SLESSetup 1: 1.867e-01 0.7% 1.088e+08 2.3% 0.00e+00 0.0% 0.000e+00 0.0% 0.00e+00 0.0%
5: SLESSolve 1: 3.831e+00 15.3% 2.217e+08 97.1% 5.60e+02 72.6% 2.333e+06 11.4% 1.12e+02 60.5%

--

.... [Summary of various phases, see part II below] ...

--

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants’ Mem.
Viewer 5 5 0 0
Index set 10 10 127076 0
Vector 76 76 9152040 0
Vector Scatter 2 2 106220 0
Matrix 8 8 9611488 5.59773e+06
Krylov Solver 4 4 33960 7.5966e+06
Preconditioner 4 4 16 9.49114e+06
SLES 4 4 0 1.71217e+07

Figure 18: Profiling a PETSc Program: Part I - Overall Summary

9.1.2 Interpreting -log summary Output: Parallel Performance

We next discuss performance summaries for parallel programs, as shown within Figures18 and 19, which
present the combined output generated by the-log_summary option. The program that generated this
data is${PETSC_DIR}/src/sles/examples/ex21.c . The code loads a matrix and right-hand-side
vector from a binary file and then solves the resulting linear system; the program then repeats this process
for a second linear system. This particular case was run on four processors of an IBM SP, using restarted
GMRES and the block Jacobi preconditioner, where each block was solved with ILU.

Figure18presents an overall performance summary, including times, floating-point operations, compu-
tational rates, and message-passing activity (such as the number and size of messages sent and collective
operations). Summaries for various user-defined stages of monitoring (as discussed in Section9.3) are
also given. Information about the various phases of computation then follow (as shown separately here in
Figure19). Finally, a summary of memory usage and object creation and destruction is presented.

We next focus on the summaries for the various phases of the computation, as given in the table within
Figure19. The summary for each phase presents the maximum times and flop rates over all processors, as
well as the ratio of maximum to minimum times and flop rates for all processors. A ratio of approximately
1 indicates that computations within a given phase are well balanced among the processors; as the ratio
increases, the balance becomes increasingly poor. Also, the total computational rate (in units of MFlops/sec)
is given for each phase in the final column of the phase summary table.

Total Mflop/sec = 10−6 ∗ (sum of flops over all processors)/(max time over all processors)

Note: Total computational rates< 1 MFlop are listed as 0 in this column of the phase summary table.

113

mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -optionsleft

-- PETSc Performance Summary: --
.... [Overall summary, see part I] ...

Phase summary info:
Count: number of times phase was executed
Time and Flops/sec: Max - maximum over all processors

Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length
Reduct: number of global reductions
Global: entire computation
Stage: optional user-defined stages of a computation. Set stages with PLogStagePush() and PLogStagePop().

%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase

Total Mflop/s: 10ˆ6 * (sum of flops over all processors)/(max time over all processors)
--
Phase Count Time (sec) Flops/sec --- Global --- --- Stage --- Total

Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
--
...

--- Event Stage 4: SLESSetUp 1

MatGetReordering 1 3.491e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 2 0 0 0 0 0
MatILUFctrSymbol 1 6.970e-03 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 3 0 0 0 0 0
MatLUFactorNumer 1 1.829e-01 1.1 3.2e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 90 99 0 0 0 110
SLESSetUp 2 1.989e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 99 99 0 0 0 102
PCSetUp 2 1.952e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 97 99 0 0 0 104
PCSetUpOnBlocks 1 1.930e-01 1.1 3.0e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 96 99 0 0 0 105

--- Event Stage 5: SLESSolve 1

MatMult 56 1.199e+00 1.1 5.3e+07 1.0 1.1e+03 4.2e+03 0.0e+00 5 28 99 23 0 30 28 99 99 0 201
MatSolve 57 1.263e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 187
VecNorm 57 1.528e-01 1.3 2.7e+07 1.3 0.0e+00 0.0e+00 2.3e+02 1 1 0 0 31 3 1 0 0 51 81
VecScale 57 3.347e-02 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 1 1 0 0 0 184
VecCopy 2 1.703e-03 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 3 2.098e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 3 3.247e-03 1.1 5.4e+07 1.1 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 200
VecMDot 55 5.216e-01 1.2 9.8e+07 1.2 0.0e+00 0.0e+00 2.2e+02 2 20 0 0 30 12 20 0 0 49 327
VecMAXPY 57 6.997e-01 1.1 6.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 3 21 0 0 0 18 21 0 0 0 261
VecScatterBegin 56 4.534e-02 1.8 0.0e+00 0.0 1.1e+03 4.2e+03 0.0e+00 0 0 99 23 0 1 0 99 99 0 0
VecScatterEnd 56 2.095e-01 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 1 0 0 0 0 5 0 0 0 0 0
SLESSolve 1 3.832e+00 1.0 5.6e+07 1.0 1.1e+03 4.2e+03 4.5e+02 15 97 99 23 61 99 99 99 99 99 222
KSPGMRESOrthog 55 1.177e+00 1.1 7.9e+07 1.1 0.0e+00 0.0e+00 2.2e+02 4 39 0 0 30 29 40 0 0 49 290
PCSetUpOnBlocks 1 1.180e-05 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
PCApply 57 1.267e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 186
--
.... [Conclusion of overall summary, see part I] ...

Figure 19: Profiling a PETSc Program: Part II - Phase Summaries

Additional statistics for each phase include the total number of messages sent, the average message length,
and the number of global reductions.

As discussed in the preceding section, the performance summaries for higher-level PETSc routines
include the statistics for the lower levels of which they are made up. For example, the communication
within matrix-vector productsMatMult() consists of vector scatter operations, as given by the routines
VecScatterBegin() andVecScatterEnd() .

The final data presented are the percentages of the various statistics (time (\%T), flops/sec (\%F),
messages(\%M), average message length (\%L), and reductions (\%R)) for each event relative to the total
computation and to any user-defined stages (discussed in Section9.3). These statistics can aid in optimiz-
ing performance, since they indicate the sections of code that could benefit from various kinds of tuning.
Chapter10gives suggestions about achieving good performance with PETSc codes.

9.1.3 Using-log mpewith Upshot/Nupshot

It is also possible to use theUpshot(or Nupshot) package [10] to visualize PETSc events. This package
comes with the MPE software, which is part of the MPICH [8] implementation of MPI. The option

-log_mpe [logfile]
creates a logfile of events appropriate for viewing withUpshot. The user can either use the default logging
file, mpe.log , or specify an optional name vialogfile .

114

To use this logging option, the user may employ any implementation of MPI (not necessarily MPICH),
but must build and link the MPE part of the MPICH. The user must compile the PETSc library with the
-DPETSC_HAVE_MPEflag, which isnot activated by default. The user can turn on MPE logging by
specifying-DPETSC_HAVE_MPEin thePCONFvariable within${PETSC_DIR}/bmake/${PETSC_
ARCH}/base.site and (re)compiling all of PETSc.

By default, not all PETSc events are logged with MPE. For example, sinceMatSetValues() may
be called thousands of times in a program, by default its calls are not logged with MPE. To activate MPE
logging of a particular event, one should use the command

PetscLogEventMPEActivate(int event);

To deactivate logging of an event for MPE, one should use

PetscLogEventMPEDeactivate(int event);

The event may be either a predefined PETSc event (as listed in the file${PETSC_DIR}/include/
petsclog.h) or one obtained withPetscEventRegister() (as described in Section9.2). These
routines may be called as many times as desired in an application program, so that one could restrict MPE
event logging only to certain code segments.

To see what events are logged by default, the user can view the source code; see the filessrc/plot/
src/plogmpe.c andinclude/petsclog.h . A simple program and GUI interface to see the events
that are predefined and their definition is being developed.

The user can also log MPI events. To do this, simply consider the PETSc application as any MPI
application, and follow the MPI implementation’s instructions for logging MPI calls. For example, when
using MPICH, this merely required adding-llmpi to the library listbefore-lmpi .

9.2 Profiling Application Codes

PETSc automatically logs object creation, times, and floating-point counts for the library routines. Users can
easily supplement this information by monitoring their application codes as well. The basic steps involved
in logging a user-defined portion of code, called anevent, are shown in the code fragment below:

#include "petsclog.h"
int USER_EVENT;
PetscLogEventRegister(&USER_EVENT,"User event name","Color:");
PetscLogEventBegin(USER_EVENT,0,0,0,0);

/* application code segment to monitor */
PetscLogFlops(number of flops for this code segment);

PetscLogEventEnd(USER_EVENT,0,0,0,0);

One must register the event by callingPetscLogEventRegister() , which assigns a unique integer
to identify the event for profiling purposes:

PetscLogEventRegister(int *e,char *string,char *color);

Herestring is a user-defined event name, andcolor is an optional user-defined event color (for use with
Upshot/Nupshotlogging); one should see the manual page for details. The argument returned ine should
then be passed to thePetscLogEventBegin() andPetscLogEventEnd() routines.

Events are logged by using the pair

PetscLogEventBegin(int event,PetscObject o1,PetscObject o2,PetscObject o3,
PetscObject o4);

PetscLogEventEnd(int event,PetscObject o1,PetscObject o2,PetscObject o3,
PetscObject o4);

115

The four objects are the PETSc objects that are most closely associated with the event. For instance, in
a matrix-vector product they would be the matrix and the two vectors. These objects can be omitted by
specifying 0 foro1 - o4 . The code between these two routine calls will be automatically timed and logged
as part of the specified event.

The user can log the number of floating-point operations for this segment of code by calling

PetscLogFlops(number of flops for this code segment);

between the calls toPetscLogEventBegin() andPetscLogEventEnd() . This value will automat-
ically be added to the global flop counter for the entire program.

9.3 Profiling Multiple Sections of Code

By default, the profiling produces a single set of statistics for all code between thePetscInitialize()
andPetscFinalize() calls within a program. One can independently monitor up to ten stages of code
by switching among the various stages with the comands

PetscLogStagePush(int stage);
PetscLogStagePop();

wherestage is an integer (0-9); see the manual pages for details. The command

PetscLogStageRegister(int stage,char *name)

allows one to associate a name with a stage; these names are printed whenever summaries are generated with
-log_summary or PetscLogPrintSummary() . The following code fragment uses three profiling
stages within an program.

PetscInitialize(int *argc,char ***args,0,0);
/* [stage 0 of code here] */
PetscLogStageRegister(0,"Stage 0 of Code");
for (i=0; i<ntimes; i++) {

PetscLogStagePush(1);
PetscLogStageRegister(1,"Stage 1 of Code");
/* [stage 1 of code here] */
PetscLogStagePop()
PetscLogStagePush(2);
PetscLogStageRegister(1,"Stage 2 of Code");
/* [stage 2 of code here] */
PetscLogStagePop()

}
PetscFinalize();

Figures18 and 19 show output generated by-log_summary for a program that employs several
profiling stages. In particular, this program is subdivided into six stages: loading a matrix and right-hand-
side vector from a binary file, setting up the preconditioner, and solving the linear system; this sequence is
then repeated for a second linear system. For simplicity, Figure19 contains output only for stages 4 and
5 (linear solve of the second system), which comprise the part of this computation of most interest to us
in terms of performance monitoring. This code organization (solving a small linear system followed by a
larger system) enables generation of more accurate profiling statistics for the second system by overcoming
the often considerable overhead of paging, as discussed in Section9.8.

116

9.4 Restricting Event Logging

By default, all PETSc operations are logged. To enable or disable the PETSc logging of individual events,
one uses the commands

PetscLogEventActivate(int event);
PetscLogEventDeactivate(int event);

The event may be either a predefined PETSc event (as listed in the file${PETSC_DIR}/include/
petsclog.h) or one obtained withPetscEventRegister() (as described in Section9.2).

PETSc also provides routines that deactivate (or activate) logging for entire components of the library.
Currently, the components that support such logging (de)activation areMat (matrices),Vec (vectors),SLES
(linear solvers, includingKSPandPCcomponents), andSNES(nonlinear solvers):

PetscLogEventDeactivateClass(MAT_COOKIE);
PetscLogEventDeactivateClass(SLES_COOKIE); /* includes PC and KSP */
PetscLogEventDeactivateClass(VEC_COOKIE);
PetscLogEventDeactivateClass(SNES_COOKIE);

and

PetscLogEventActivateClass(MAT_COOKIE);
PetscLogEventActivateClass(SLES_COOKIE); /* includes PC and KSP */
PetscLogEventActivateClass(VEC_COOKIE);
PetscLogEventActivateClass(SNES_COOKIE);

Recall that the option-log_all produces extensive profile data, which can be a challenge for PETScView
to handle due to the memory limitations of Tcl/Tk. Thus, one should generally use-log_all when run-
ning programs with a relatively small number of events or when disabling some of the events that occur
many times in a code (e.g.,VecSetValues() , MatSetValues()).

Section9.1.3gives information on the restriction of events in MPE logging.

9.5 Interpreting -log info Output: Informative Messages

Users can activate the printing of verbose information about algorithms, data structures, etc. to the screen
by using the option-log_info or by callingPetscLogInfoAllow(PETSC_TRUE) . Such logging,
which is used throughout the PETSc libraries, can aid the user in understanding algorithms and tuning
program performance. For example, as discussed in Section3.1.1, -log_info activates the printing of
information about memory allocation during matrix assembly.

Application programmers can employ this logging as well, by using the routine

PetscLogInfo(void* obj,char *message,...)

whereobj is the PETSc object associated most closely with the logging statement,message . For example,
in the line search Newton methods, we use a statement such as

PetscLogInfo(snes,"Cubically determined step, lambda %g\n",lambda);

One can selectively turn off informative messages about any of the basic PETSc objects (e.g.,Mat ,
SNES) with the command

PetscLogInfoDeactivateClass(int object_cookie)

where object_cookie is one ofMAT_COOKIE, SNES_COOKIE, etc. Messages can be reactivated with
the command

PetscLogInfoActivateClass(int object_cookie)

Such deactivation can be useful when one wishes to view information about higher level PETSc components
(e.g.,TS andSNES) without seeing all lower level data as well (e.g.,Mat). One can deactivate events at
runtime for matrix and linear solver components via-log_info[no_mat,no_sles] .

117

9.6 Time

PETSc application programmers can access the wall clock time directly with the command

PetscLogDouble time;
PetscGetTime(&time);CHKERRQ(ierr);

In addition, as discussed in Section9.2, PETSc can automatically profile user-defined segments of code.

9.7 Saving Output to a File

All output from PETSc programs (including informative messages, profiling information, and convergence
data) can be saved to a file by using the command line option-log_history[filename] . If no file
name is specified, the output is stored in the file$HOME/.petschistory . Note that this option only
saves output printed with thePetscPrintf() and PetscFPrintf() commands, not the standard
printf() andfprintf() statements.

9.8 Accurate Profiling: Overcoming the Overhead of Paging

One factor that often plays a significant role in profiling a code is paging by the operating system. Generally,
when running a program only a few pages required to start it are loaded into memory rather than the entire
executable. When the execution procedes to code segments that are not in memory, a pagefault occurs,
prompting the required pages to be loaded from the disk (a very slow process). This activity distorts the
results significantly. (The paging effects are noticeable in the the log files generated by-log_mpe , which
is described in Section9.1.3.)

To eliminate the effects of paging when profiling the performance of a program, we have found an
effective procedure is to run theexact same codeon a small dummy problem before running it on the actual
problem of interest. We thus ensure that all code required by a solver is loaded into memory during solution
of the small problem. When the code procedes to the actual (larger) problem of interest, all required pages
have already been loaded into main memory, so that the performance numbers are not distorted.

When this procedure is used in conjunction with the user-defined stages of profiling described in Sec-
tion 9.3, we can focus easily on the problem of interest. For example, we used this technique in the program
${PETSC_DIR}/src/sles/examples/tutorials/ex10.c to generate the timings within Fig-
ures18 and19. In this case, the profiled code of interest (solving the linear system for the larger problem)
occurs within event stages 4 and 5. Section9.1.2provides details about interpreting such profiling data.

In particular, the macros

PreLoadBegin(PetscTruth,char* stagename),
PreLoadStage(char *stagename),

and

PreLoadEnd()

can be used to easily convert a regular PETSc program to one that uses preloading. The command line
options-preload true and-preload false may be used to turn on and off preloading at run time
for PETSc programs that use these macros.

118

Chapter 10

Hints for Performance Tuning

This chapter presents some tips on achieving good performance within PETSc codes. We urge users to read
these hints before evaluating the performance of PETSc application codes.

10.1 Compiler Options

Code compiled with theBOPT=Ooption generally runs two to three times faster than that compiled with
BOPT=g, so we recommend using one of the optimized versions of code (BOPT=O, BOPT=O_c++, or
BOPT=O_complex) when evaluating performance.

The user can specify alternative compiler options instead of the defaults set in the PETSc distribution.
One can set the compiler options for a particular architecture (PETSC_ARCH) andBOPTby editing the file
${PETSC_DIR}/bmake/${PETSC_ARCH}/base.${BOPT} . Section12.1.2gives details.

10.2 Profiling

Users should not spend time optimizing a code until after having determined where it spends the bulk of its
time on realistically sized problems. As discussed in detail in Chapter9, the PETSc routines automatically
log performance data if certain runtime options are specified. We briefly highlight usage of these features
below.

• Run the code with the option-log_summary to print a performance summary for various phases
of the code.

• Run the code with the option-log_mpe [logfilename] , which creates a logfile of events suit-
able for viewing with Upshot or Nupshot (part of MPICH).

10.3 Aggregation

Performing operations on chunks of data rather than a single element at a time can significantly enhance
performance.

• Insert several (many) elements of a matrix or vector at once, rather than looping and inserting a single
value at a time. In order to access elements in of vector repeatedly, employ VecGetArray() to allow
direct manipulation of the vector elements.

119

• When usingMatSetValues() , if the column indices of the values being inserted have been sorted
in monotonically increasing order, call the routineMatSetOption(mat,MAT_COLUMNS_SORT
ED) before setting the values to reduce the insertion time significantly.

• When possible, useVecMDot() rather than a series of calls toVecDot() .

10.4 Efficient Memory Allocation

10.4.1 Sparse Matrix Assembly

Since the process of dynamic memory allocation for sparse matrices is inherently very expensive, accurate
preallocation of memory is crucial for efficient sparse matrix assembly. One should use the matrix creation
routines for particular data structures, such asMatCreateSeqAIJ() andMatCreateMPIAIJ() for
compressed, sparse row formats, instead of the genericMatCreate() routine. For problems with mul-
tiple degrees of freedom per node, the block, compressed, sparse row formats, created byMatCreateS
eqBAIJ() andMatCreateMPIBAIJ() , can significantly enhance performance. Section3.1.1includes
extensive details and examples regarding preallocation.

10.4.2 Sparse Matrix Factorization

When symbolically factoring an AIJ matrix, PETSc has to guess how much fill there will be. Careful
use of the fill parameter in theMatILUInfo structure when callingMatLUFactorSymbolic() or
MatILUFactorSymbolic() can reduce greatly the number of mallocs and copies required, and thus
greatly improve the performance of the factorization. One way to determine a good value forf is to run a
program with the option-log_info . The symbolic factorization phase will then print information such
as

Info:MatILUFactorSymbolic_AIJ:Realloc 12 Fill ratio:given 1 needed 2.16423

This indicates that the user should have used a fill estimate factor of about 2.17 (instead of 1) to prevent the
12 required mallocs and copies. The command line option

-pc_ilu_fill 2.17

will cause PETSc to preallocate the correct amount of space for incomplete (ILU) factorization. The corre-
sponding option for direct (LU) factorization is-pc_lu_fill <fill_amount> .

10.4.3 PetscMalloc() Calls

Users should employ a reasonable number ofPetscMalloc() calls in their codes. Hundreds or thousands
of memory allocations may be appropriate; however, if tens of thousands are being used, then reducing the
number ofPetscMalloc() calls may be warranted. For example, reusing space or allocating large
chunks and dividing it into pieces can produce a significant savings in allocation overhead. Section10.5
gives details.

10.5 Data Structure Reuse

Data structures should be reused whenever possible. For example, if a code often creates new matrices or
vectors, there often may be a way to reuse some of them. Very significant performance improvements can
be achieved by reusing matrix data structures with the same nonzero pattern. If a code creates thousands of
matrix or vector objects, performance will be degraded. For example, when solving a nonlinear problem or
timestepping, reusing the matrices and their nonzero structure for many steps when appropriate can make
the code run significantly faster.

120

A simple technique for saving work vectors, matrices, etc. is employing a user-defined context. In C and
C++ such a context is merely a structure in which various objects can be stashed; in Fortran a user context
can be an integer array that contains both parameters and pointers to PETSc objects. See${PETSC_DIR}/
snes/examples/tutorials/ex5.c and${PETSC_DIR}/snes/examples/tutorials/ex5f.
F for examples of user-defined application contexts in C and Fortran, respectively.

10.6 Numerical Experiments

PETSc users should run a variety of tests. For example, there are a large number of options for the linear
and nonlinear equation solvers in PETSc, and different choices can make avery big difference in conver-
gence rates and execution times. PETSc employs defaults that are generally reasonable for a wide range
of problems, but clearly these defaults cannot be best for all cases. Users should experiment with many
combinations to determine what is best for a given problem and customize the solvers accordingly.

• Use the options-snes_view , -sles_view , etc. (or the routinesSLESView() , SNESView() ,
etc.) to view the options that have been used for a particular solver.

• Run the code with the option-help for a list of the available runtime commands.

• Use the option-log_info to print details about the solvers’ operation.

• Use the PETSc monitoring discussed in Chapter9 to evaluate the performance of various numerical
methods.

10.7 Tips for Efficient Use of Linear Solvers

As discussed in Chapter4, the default linear solvers are

• uniprocessor: GMRES(30) with ILU(0) preconditioning

• multiprocessor: GMRES(30) with block Jacobi preconditioning, where there is 1 block per processor,
and each block is solved with ILU(0)

One should experiment to determine alternatives that may be better for various applications. Recall that one
can specify the KSP methods and preconditioners at runtime via the options:

-ksp_type <ksp_name> -pc_type <pc_name>

One can also specify a variety of runtime customizations for the solvers, as discussed throughout the manual.
In particular, note that the default restart parameter for GMRES is 30, which may be too small for some

large-scale problems. One can alter this parameter with the option-ksp_gmres_restart <restart>
or by callingKSPGMRESSetRestart() . Section4.3 gives information on setting alternative GMRES
orthogonalization routines, which may provide much better parallel performance.

10.8 Detecting Memory Allocation Problems

PETSc provides a number of tools to aid in detection of problems with memory allocation, including leaks
and use of uninitialized space. We briefly describe these below.

121

• The PETSc memory allocation (which collects statistics and performs error checking), is employed
by default for codes compiled in a debug mode (BOPT=g, BOPT=g_c++, BOPT=g_complex).
PETSc memory allocation can be activated for other other cases, such asBOPT=O, with the option
-trmalloc , while -trmalloc_off forces the use of conventional memory allocation for the
BOPT=g, BOPT=g_c++, andBOPT=g_complex versions. When running timing tests, one should
use theBOPT=Oversion of the libraries.

• When the PETSc memory allocation routines are used, the option-trdump will print a list of un-
freed memory at the conclusion of a program. If all memory has been freed, only a message stating
the maximum allocated space will be printed. However, if some memory remains unfreed, this infor-
mation will be printed. Note that the option-trdump merely activates a call toPetscTrDump()
duringPetscFinalize() ; the user can also callPetscTrDump() elsewhere in a program.

• Another useful option for use with PETSc memory allocation routines is-trmalloc_log , which
activates logging of all calls to malloc and reports memory usage, including all Fortran arrays. This
option provides a more complete picture than-trdump for codes that employ Fortran with hardwired
arrays. Note that the option-trmalloc_log activates calls toPetscTrLog() , PetscTrLogD
ump() , andPetscGetResidentSetSize() during PetscFinalize() ; the user can also
call these routines elsewhere in a program.

• The option-trmalloc_nan is useful for tracking down the allocated memory that is used before it
has been initialized. This option callsPetscInitializeNans() which marks an array as being
uninitialized, so that if values are used for computation without first having been set, a floating point
exception is generated. This option also calls PetscInitializeLargeInts(); see the manual pages for
details. Note that so far these work only on the certain systems.

10.9 Machine-Specific Optimizations

• On the IBM SP, using the mpirun option-nopoll may improve the performance of some PETSc
programs.

10.10 System-Related Problems

The performance of a code can be affected by a variety of factors, including the cache behavior, other users
on the machine, etc. Below we briefly describe some common problems and possibilities for overcoming
them.

• Problem too large for physical memory size: When timing a program, one should always leave at
least a ten percent margin between the total memory a process is using and the physical size of the
machine’s memory. One way to estimate the amount of memory used by given process is with the
UNIX ps command. Also, the PETSc option-log_summary prints the amount of memory used
by the basic PETSc objects, thus providing a lower bound on the memory used. Another useful option
is -trmalloc_log which reports all memory, including any Fortran arrays in an application code.

• Effects of other users: If other users are running jobs on the same physical processor nodes on which
a program is being profiled, the timing results are essentially meaningless.

• Overhead of timing routines on certain machines: On certain machines, even calling the system
clock in order to time routines is slow; this skews all of the flop rates and timing results. The file
${PETSC_DIR}/src/benchmarks/PetscTime.c contains a simple test problem that will

122

approximate the ammount of time required to get the current time in a running program. On good
systems it will on the order of 1.e-6 seconds or less.

• Problem too large for good cache performance: Certain machines with lower memory bandwidths
(slow memory access) attempt to compensate by having a very large cache. Thus, if a significant
portion of an application fits within the cache, the program will achieve very good performance; if the
code is too large, the performance can degrade markedly. To analyze whether this situation affects a
particular code, one can try plotting the total flop rate as a function of problem size. If the flop rate
decreases rapidly at some point, then the problem may likely be too large for the cache size.

• Inconsistent timings: Inconsistent timings are likely due to other users on the machine, thrashing
(using more virtual memory than available physical memory), or paging in of the initial executable.
Section9.8 provides information on overcoming paging overhead when profiling a code. We have
found on all systems that if you follow all the advise above your timings will be consistent within a
variation of less than five percent.

123

Chapter 11

Other PETSc Features

11.1 Runtime Options

Allowing the user to modify parameters and options easily at runtime is very desirable for many applications.
PETSc provides a simple mechanism to enable such customization. To print a list of available options for a
given program, simply specify the option-help (or -h) at runtime, e.g.,

mpirun -np 1 ex1 -help

Note that all runtime options correspond to particular PETSc routines that can be explicitly called from
within a program to set compile-time defaults. For many applications it is natural to use a combination of
compile-time and runtime choices. For example, when solving a linear system, one could explicitly specify
use of the Krylov subspace technique BiCGStab by calling

KSPSetType(ksp,KSPBCGS);

One could then override this choice at runtime with the option

-ksp_type tfqmr

to select the Transpose-Free QMR algorithm. (See Chapter4 for details.)
The remainder of this section discusses details of runtime options.

11.1.1 The Options Database

Each PETSc process maintains a database of option names and values (stored as text strings). This database
is generated with the commandPETScInitialize() , which is listed below in its C/C++ and Fortran
variants, respectively:

PetscInitialize(int *argc,char ***args,char *file,char *help);
call PetscInitialize(character file,integer ierr)

The argumentsargc andargs (in the C/C++ version only) are the usual command line arguments, while
the file is a name of a file that can contain additional options. By default this file is called.petscrc in
the user’s home directory. The user can also specify options via the environmental variablePETSC_OPTI
ONS. The options are processed in the following order:

• file

• environmental variable

• command line

Thus, the command line options supersede the environmental variable options, which in turn supersede the
options file.

The file format for specifying options is

124

-optionname possible_value
-anotheroptionname possible_value
...

All of the option names must begin with a dash (-) and have no intervening spaces. Note that the option
values cannot have intervening spaces either, and tab characters cannot be used between the option names
and values. The user can employ any naming convention. For uniformity throughout PETSc, we employ the
format-package_option (for instance,-ksp_type and-mat_view_info).

Users can specify an alias for any option name (to avoid typing the sometimes lengthy default name) by
adding an alias to the.petscrc file in the format

alias -newname -oldname

For example,

alias -kspt -ksp_type
alias -sd -start_in_debugger

Comments can be placed in the .petscrc file by using one of the following symbols in the first column of a
line: \#,\% , or ! .

11.1.2 User-Defined Options

Any subroutine in a PETSc program can add entries to the database with the command

OptionsSetValue(char *name,char *value);

though this is rarely done. To locate options in the database, one should use the commands

OptionsHasName(char *pre,char *name,PetscTruth *flg);
OptionsGetInt(char *pre,char *name,int *value,PetscTruth *flg);
OptionsGetDouble(char *pre,char *name,double *value,PetscTruth *flg);
OptionsGetString(char *pre,char *name,char *value,int maxlen,

PetscTruth *flg);
OptionsGetStringArray(char *pre,char *name,char **values,int *maxlen,

PetscTruth *flg);
OptionsGetIntArray(char *pre,char *name,int *value,int *nmax,

PetscTruth *flg);
OptionsGetDoubleArray(char *pre,char *name,double *value, int *nmax,

PetscTruth *flg);

All of these routines setflg=PETSC_TRUE if the corresponding option was found,flg=PETSC_FALSE
if it was not found. The optional argumentpre indicates that the true name of the option is the given name
(with the dash “-” removed) prepended by the prefixpre . Usuallypre should be set toPETSC_NULL
(or PETSC_NULL_CHARACTERfor Fortran); its purpose is to allow someone to rename all the options
in a package without knowing the names of the individual options. For example, when using block Jacobi
preconditioning, the KSP and PC methods used on the individual blocks can be controlled via the options
-sub_ksp_type and-sub_pc_type .

11.1.3 Keeping Track of Options

One useful means of keeping track of user-specified runtime options is use of-optionstable , which
prints tostdout duringPetscFinalize() a table of all runtime options that the user has specified. A
related option is-optionsleft , which prints the options table and indicates any options that havenot
been requested upon a call toPetscFinalize() . This feature is useful to check whether an option has
been activated for a particular PETSc object (such as a solver or matrix format), or whether an option name
may have been accidentally misspelled.

125

11.2 Viewers: Looking at PETSc Objects

PETSc employs a consistent scheme for examining, printing, and saving objects through commands of the
form

XXXView(XXX obj,PetscViewer viewer);

Hereobj is any PETSc object of typeXXX, whereXXX is Mat , Vec, SNES, etc. There are several prede-
fined viewers:

• Passing in a zero for the viewer causes the object to be printed to the screen; this is most useful when
viewing an object in a debugger.

• VIEWER_STDOUT_SELFand VIEWER_STDOUT_WORLDcause the object to be printed to the
screen.

• VIEWER_DRAW_SELFandVIEWER_DRAW_WORLDcauses the object to be drawn in a default X
window.

• Passing in a viewer obtained byViewerDrawOpenX() causes the object to be displayed graphi-
cally.

• To save an object to a file in ASCII format, the user creates the viewer object with the command
ViewerASCIIOpen(MPI_Commcomm,char*file,PetscViewer*viewer) . This object
is analogous toVIEWER_STDOUT_SELF(for a communicator ofMPI_COMM_SELF) andVIEWER
_STDOUT_WORLD(for a parallel communicator).

• To save an object to a file in binary format, the user creates the viewer object with the command
ViewerBinaryOpen(MPI_Comm comm,char*file,PetscViewerBinaryType type,
PetscViewer*viewer) . Details of binary I/O are discussed below.

• Vector and matrix objects can be passed to a running Matlab process with a viewer created by
ViewerMatlabOpen(MPI_Commcomm,char*machine,intport,PetscViewer*viewer) .
On the Matlab side, one must first runv=openport(intport) and thenA=receive(v) to
obtain the matrix or vector. Once all objects have been received, the port can be closed from the
Matlab end withcloseport(v) . On the PETSc side, one should destroy the viewer object with
PetscViewerDestroy() . The corresponding Matlabmex files are located in${PETSC_DI
R}/src/viewer/impls/matlab .

The user can control the format of ASCII printed objects with viewers created byViewerASCII
Open() by calling

PetscViewerSetFormat(PetscViewer viewer,int format);

Possible formats includePETSC_VIEWER_ASCII_DEFAULT, PETSC_VIEWER_ASCII_MATLAB, and

PETSC_VIEWER_ASCII_IMPL. The implementation-specific format,PETSC_VIEWER_ASCII_IMP
L, displays the object in the most natural way for a particular implementation. For example, when view-
ing a block diagonal matrix that has been created withMatCreateSeqBDiag() , PETSC_VIEWER_A
SCII_IMPL prints by diagonals, whilePETSC_VIEWER_ASCII_DEFAULTuses the conventional row-
oriented format.

The routines

PetscViewerPushFormat(PetscViewer viewer,int format);
PetscViewerPopFormat(PetscViewer viewer);

126

allow one to temporarily change the format of a viewer.
As discussed above, one can output PETSc objects in binary format by first opening a binary viewer with

ViewerBinaryOpen() and then usingMatView() , VecView() , etc. The corresponding routines for
input of a binary object have the formXXXLoad() . In particular, matrix and vector binary input is handled
by the following routines:

MatLoad(PetscViewer viewer,MatType outtype,Mat *newmat);
VecLoad(PetscViewer viewer,Vec *newvec);

These routines generate parallel matrices and vectors if the viewer’s communicator has more than one pro-
cessor. The particular matrix and vector formats are determined from the options database; see the manual
pages for details.

One can provide additional information about matrix data for matrices stored on disk by providing an
optional filematrixfilename.info , wherematrixfilename is the name of the file containing the
matrix. The format of the optional file is the same as the.petscrc file and can (currently) contain the
following:

-matload_block_size <bs>
-matload_bdiag_diags <s1,s2,s3,...>

The block size indicates the size of blocks to use if the matrix is read into a block oriented data structure (for
example,MATSEQBDIAGor MATMPIBAIJ). The diagonal informations1,s2,s3,... indicates which
(block) diagonals in the matrix have nonzero values.

11.3 Debugging

PETSc programs may be debugged using one of the two options below.

• -start_in_debugger [noxterm,dbx,xxgdb] [-displayname] - start all processes in
debugger

• -on_error_attach_debugger [noxterm,dbx,xxgdb] [-displayname] - start de-
bugger only on encountering an error

Note that, in general, debugging MPI programs cannot be done in the usual manner of starting the program-
ming in the debugger (because then it cannot set up the MPI communication and remote processes).

By default the GNU debuggergdbis used when-start_in_debugger or -on_error_attach_
debugger is specified. To employ eitherxxgdbor the common UNIX debuggerdbx, one uses command
line options as indicated above. On HP-UX machines the debuggerxdbshould be used instead ofdbx; on
RS/6000 machines thexldbdebugger is supported as well. By default, the debugger will be started in a new
xterm (to enable running separate debuggers on each process), unless the optionnoxterm is used. In order
to handle the MPI startup phase, the debugger command “cont” should be used to continue execution of the
program within the debugger. Rerunning the program through the debugger requires terminating the first
job and restarting the processor(s); the usual “run” option in the debugger will not correctly handle the MPI
startup and should not be used. Not all debuggers work on all machines, so the user may have to experiment
to find one that works correctly.

You can select a subset of the processors to be debugged (the rest just run without the debugger) with
the option

-debugger_nodes node1,node2,...

where you simply list the nodes you want the debugger to run with.

127

11.4 Error Handling

Errors are handled through the routinePetscError() . This routine checks a stack of error handlers and
calls the one on the top. If the stack is empty, it selectsPetscTraceBackErrorHandler() , which
tries to print a traceback. A new error handler can be put on the stack with

PetscPushErrorHandler(int (*HandlerFunction)(int line,char *dir,char *file,
char *message,int number,void*),void *HandlerContext)

The arguments toHandlerFunction() are the line number where the error occurred, the file in which
the error was detected, the corresponding directory, the error message, the error integer, and theHandlerC
ontext. The routine

PetscPopErrorHandler()

removes the last error handler and discards it.
PETSc provides two additional error handlers besidesPetscTraceBackErrorHandler() :

PetscAbortErrorHandler()
PetscAttachErrorHandler()

PetscAbortErrorHandler() calls abort on encountering an error, whilePetscAttachErrorH
andler() attaches a debugger to the running process if an error is detected. At runtime, these er-
ror handlers can be set with the options-on_error_abort or -on_error_attach_debugger
[noxterm,dbx,xxgdb,xldb] [-displayDISPLAY] .

All PETSc calls can be traced (useful for determining where a program is hanging without running in
the debugger) with the option

-log_trace [filename]

wherefilename is optional. By default the traces are printed to the screen. This can also be set with the
commandPetscLogTraceBegin(FILE*) .

It is also possible to trap signals by using the command

PetscPushSignalHandler(int (*Handler)(int,void *),void *ctx);

The default handlerPetscDefaultSignalHandler() calls PetscError() and then terminates.
In general, a signal in PETSc indicates a catastrophic failure. Any error hander that the user provides should
try to clean up only before exiting. By default all PETSc programs use the default signal handler, although
the user can turn this off at runtime with the option-no_signal_handler .

There is a separate signal handler for floating-point exceptions. The option-fp_trap turns on the
floating-point trap at runtime, and the routine

PetscSetFPTrap(int flag);

can be used in-line. Aflag of PETSC_FP_TRAP_ONindicates that floating-point exceptions should be
trapped, while a value ofPETSC_FP_TRAP_OFF(the default) indicates that they should be ignored. Note
that on certain machines, in particular the IBM RS/6000, trapping is very expensive.

A small set of macros is used to make the error handling lightweight. These macros are used throughout
the PETSc libraries and can be employed by the application programmer as well. When an error is first
detected, one should set it by calling

SETERRQ(int flag,int pflag,char *message);

The user should check the return codes for all PETSc routines (and possibly user-defined routines as well)
with

ierr = PetscRoutine(...);CHKERRQ(int ierr);

Likewise, all memory allocations should be checked with

ierr = PetscMalloc(n*sizeof(double),&ptr);CHKERRQ(ierr);

128

If this procedure is followed throughout all of the user’s libraries and codes, any error will by default generate
a clean traceback of the location of the error.

Note that the macro__FUNCT__is used to keep track of routine names during error tracebacks. Users
need not worry about this macro in their application codes; however, users can take advantage of this feature
if desired by setting this macro before each user-defined routine that may callSETERRQ(), CHKERRQ().
A simple example of usage is given below.

#undef __FUNCT__
#define __FUNCT__ "MyRoutine1"
int MyRoutine1() {

/* code here */
return 0;

}

11.5 Incremental Debugging

When developing large codes, one is often in the position of having a correctly (or at least believed to be
correctly) running code; making a change to the code then changes the results for some unknown reason.
Often even determining the precise point at which the old and new codes diverge is a major pain. In other
cases, a code generates different results when run on different numbers of processors, although in exact
arithmetic the same answer is expected. (Of course, this assumes thatexactlythe same solver and parameters
are used in the two cases.)

PETSc provides some support for determining exactly where in the code the computations lead to differ-
ent results. First, compile both programs with different names. Next, start running both programs as a single
MPI job. This procedure is dependent on the particular MPI implementation being used. For example, when
using MPICH on workstations,procgroupfiles can be used to specify the processors on which the job is to
be run. Thus, to run two programs,old andnew, each on two processors, one should create the procgroup
file with the following contents:

local 0
workstation1 1 /home/bsmith/old
workstation2 1 /home/bsmith/new
workstation3 1 /home/bsmith/new

(Of course, workstation1, etc. can be the same machine.) Then, one can execute the command

mpirun -p4pg <procgroup_filemame> old -compare <tolerance> [options]

Note that the same runtime options must be used for the two programs. The first time an inner product
or norm detects an inconsistency larger than<tolerance> , PETSc will generate an error. The usual
runtime options-start_in_debugger and -on_error_attach_debugger may be used. The
user can also place the commands

PetscCompareDouble()
PetscCompareScalar()
PetscCompareInt()

in portions of the application code to check for consistency between the two versions.

11.6 Complex Numbers

PETSc supports the use of complex numbers in application programs written in C, C++, and Fortran. To
do so, we employ C++ versions of the PETSc libraries in which the basic “scalar” datatype, given in

129

PETSc codes byScalar , is defined ascomplex (or complex<double> for machines using tem-
plated complex class libraries). To work with complex numbers, the user should compile the PETSc li-
braries (including the Fortran interface library) and the application code withBOPT=[g_complex,O_
complex] for debugging, optimized, and profiling versions, respectively. The file${PETSC_DIR}/
docs/installation/index.htm provides detailed instructions for installing PETSc.

We recommend using optimized Fortran kernels for some key numerical routines with complex numbers
(such as matrix-vector products, vector norms, etc.) instead of the default C++ routines. See the “Com-
plex Numbers” section of the file${PETSC_DIR}/docs/installation/index.htm for details on
building these kernels. This implementation exploits the maturity of Fortran compilers while retaining the
identical user interface. For example, on rs6000 machines, the base single-node performance when using
the Fortran kernels is 4-5 times faster than the default C++ code.

Recall that each variant of the PETSc libraries is stored in a different directory, given by
${PETSC_DIR}/lib/lib${BOPT}/${PETSC_ARCH} , according to the architecture andBOPTop-
timization variable. Thus, the libraries for complex numbers are maintained separately from those for real
numbers. When using any of the complex numbers versions of PETSc,all vector and matrix elements are
treated as complex, even if their imaginary components are zero. Of course, one can elect to use only the
real parts of the complex numbers when using the complex versions of the PETSc libraries; however, when
working only with real numbers in a code, one should use a version of PETSc for real numbers for best
efficiency.

The program${PETSC_DIR}/src/sles/examples/tutorials/ex11.c solves a linear sys-
tem with a complex coefficient matrix. Its Fortran counterpart is${PETSC_DIR}/src/sles/examples/
tutorials/ex11f.F .

11.7 Emacs Users

If users develop application codes on UNIX machines using Emacs (which we highly recommend), the
etags feature can be used to search PETSc files quickly and efficiently. To use this feature, one should
first check if the file,${PETSC_DIR}/TAGS exists. If this file is not present, it should be generated by
runningmake etags from the PETSc home directory. Once the file exists, from Emacs the user should
issue the command

M-x visit-tags-table

where “M” denotes the Emacs Meta key, and enter the name of theTAGSfile. Then the command “M-. ” will
cause Emacs to find the file and line number where a desired PETSc function is defined. Any string in any
of the PETSc files can be found with the command “M-x tags-search ”. To find repeated occurrences,
one can simply use “M-, ” to find the next occurrence.

11.8 Parallel Communication

When used in a message-passing environment, all communication within PETSc is done through MPI, the
message-passing interface standard [14]. Any file that includespetsc.h (or any other PETSc include file),
can freely use any MPI routine.

11.9 Graphics

PETSc graphics components are not intended to compete with high-quality graphics packages. Instead,
they are intended to be easy to use interactively with PETSc programs. We urge users to generate their
publication-quality graphics using a professional graphics package. If a user wants to hook certain packages

130

in PETSc, he or she should send a message to petsc-maint@mcs.anl.gov, and we will see whether it is
reasonable to try to provide direct interfaces.

11.9.1 Windows as PetscViewers

For drawing predefined PETSc objects such as matrices and vectors, one must first create a viewer using the
command

PetscViewerDrawOpenX(MPI_Comm comm,char *display,char *title,int x,
int y,int w,int h,PetscViewer *viewer);

This viewer may be passed to any of theXXXView() routines. To draw into the viewer, one must obtain
theDraw object with the command

PetscViewerDrawGetDraw(PetscViewer viewer,PetscDraw *draw);

Then one can call any of theDrawXXX commands on thedraw object. If one obtains thedraw object in
this manner, one does not call theDrawOpenX() command discussed below.

Predefined viewers,VIEWER_DRAW_WORLDandVIEWER_DRAW_SELF, may be used at any time.
Their initial use will cause the appropriate window to be created.

By default, PETSc drawing tools employ a private colormap, which remedies the problem of poor color
choices for contour plots due to an external program’s mangling of the colormap (e.g, Netscape tends to
do this). Unfortunately, this causes flashing of colors as the mouse is moved between the PETSc windows
and other windows. Alternatively, a shared colormap can be used via the option-draw_x_shared_
colormap .

11.9.2 Simple PetscDrawing

One can open a window that is not associated with a viewer directly under the X11 Window System with
the command

PetscDrawOpenX(MPI_Comm comm,char *display,char *title,int x,
int y,int w,int h,PetscDraw *win);

All drawing routines are done relative to the windows coordinate system and viewport. By default the draw-
ing coordinates are from(0,0) to (1,1) , where(0,0) indicates the lower left corner of the window.
The application program can change the window coordinates with the command

PetscDrawSetCoordinates(PetscDraw win,double xl,double yl,double xr,
double yr);

By default, graphics will be drawn in the entire window. To restrict the drawing to a portion of the window,
one may use the command

PetscDrawSetViewPort(PetscDraw win,double xl,double yl,double xr,
double yr);

These arguments, which indicate the fraction of the window in which the drawing should be done, must
satisfy0 ≤ xl ≤ xr ≤ 1 and0 ≤ yl ≤ yr ≤ 1.

To draw a line, one uses the command

PetscDrawLine(PetscDraw win,double xl,double yl,double xr,double yr,
int cl);

The argumentcl indicates the color (which is an integer between 0 and 255) of the line. A list of predefined
colors may be found ininclude/petscdraw.h and includesDRAW_BLACK, DRAW_RED, DRAW_BLU
E etc.

To ensure that all graphics actually have been displayed, one should use the command

131

PetscDrawFlush(PetscDraw win);

When displaying by using double buffering, which is set with the command

PetscDrawSetDoubleBuffer(PetscDraw win);

all processors must call

PetscDrawSynchronizedFlush(PetscDraw win);

in order to swap the buffers. From the options database one may use-draw_pausen , which causes the
PETSc application to pausen seconds at eachDrawPause() . A time of -1 indicates that the application
should pause until receiving mouse input from the user.

Text can be drawn with either of the two commands

PetscDrawString(PetscDraw win,double x,double y,int color,char *text);
PetscDrawStringVertical(PetscDraw win,double x,double y,int color,

char *text);

The user can set the text font size or determine it with the commands

PetscDrawStringSetSize(PetscDraw win,double width,double height);
PetscDrawStringGetSize(PetscDraw win,double *width,double *height);

11.9.3 Line Graphs

PETSc includes a set of routines for manipulating simple two-dimensional graphs. These routines, which
begin withDrawAxisDraw() , are usually not used directly by the application programmer. Instead, the
programmer employs the line graph routines to draw simple line graphs. As shown in the program, within
Figure20, line graphs are created with the command

PetscDrawLGCreate(PetscDraw win,int ncurves,PetscDrawLG *ctx);

The argumentncurves indicates how many curves are to be drawn. Points can be added to each of the
curves with the command

PetscDrawLGAddPoint(PetscDrawLG ctx,double *x,double *y);

The argumentsx andy are arrays containing the next point value for each curve. Several points for each
curve may be added with

PetscDrawLGAddPoints(PetscDrawLG ctx,int n,double **x,double **y);

The line graph is drawn (or redrawn) with the command

PetscDrawLGDraw(PetscDrawLG ctx);

A line graph that is no longer needed can be destroyed with the command

PetscDrawLGDestroy(PetscDrawLG ctx);

To plot new curves, one can reset a linegraph with the command

PetscDrawLGReset(PetscDrawLG ctx);

The line graph automatically determines the range of values to display on the two axes. The user can change
these defaults with the command

PetscDrawLGSetLimits(PetscDrawLG ctx,double xmin,double xmax,double ymin,
double ymax);

It is also possible to change the display of the axes and to label them. This procedure is done by first
obtaining the axes context with the command

PetscDrawLGGetAxis(PetscDrawLG ctx,PetscDrawAxis *axis);

One can set the axes’ colors and labels, respectively, by using the commands

132

PetscDrawAxisSetColors(PetscDrawAxis axis,int axis_lines,int ticks,
int text);

PetscDrawAxisSetLabels(PetscDrawAxis axis,char *top,char *x,char *y);

/*$Id: ex3.c,v 1.41 2001/04/10 19:34:20 bsmith Exp $*/

static char help[] = "Plots a simple line graph.\n";

#include "petsc.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

PetscDraw draw;
PetscDrawLG lg;
PetscDrawAxis axis;
int n = 20,i,ierr,x = 0,y = 0,width = 300,height = 300,nports

= 1;
PetscTruth flg;
char *xlabel,*ylabel,*toplabel;
double xd,yd;
PetscDrawViewPorts *ports;

xlabel = "X-axis Label";toplabel = "Top Label";ylabel = "Y-axis Label";

ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-width",&width,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-height",&height,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsHasName(PETSC_NULL,"-nolabels",&flg);CHKERRQ(ierr);
if (flg) {

xlabel = (char *)0; toplabel = (char *)0;
}
/* ierr = PetscDrawOpenX(PETSC_COMM_SELF,0,"Title",x,y,width,height,&draw);CHKERRQ(ierr);*/
ierr = PetscDrawCreate(PETSC_COMM_SELF,0,"Title",x,y,width,height,&draw);CHKERRQ(ierr);
ierr = PetscDrawSetFromOptions(draw);CHKERRQ(ierr);

ierr = PetscOptionsGetInt(PETSC_NULL,"-nports",&nports,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscDrawViewPortsCreate(draw,nports,&ports);CHKERRQ(ierr);
ierr = PetscDrawViewPortsSet(ports,0);CHKERRQ(ierr);

ierr = PetscDrawLGCreate(draw,1,&lg);CHKERRQ(ierr);
ierr = PetscDrawLGGetAxis(lg,&axis);CHKERRQ(ierr);
ierr = PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED,PETSC_DRAW_BLUE);CHKERRQ(ierr);
ierr = PetscDrawAxisSetLabels(axis,toplabel,xlabel,ylabel);CHKERRQ(ierr);

for (i=0; i<n ; i++) {
xd = (double)(i - 5); yd = xd*xd;
ierr = PetscDrawLGAddPoint(lg,&xd,&yd);CHKERRQ(ierr);

}
ierr = PetscDrawLGIndicateDataPoints(lg);CHKERRQ(ierr);
ierr = PetscDrawLGDraw(lg);CHKERRQ(ierr);
ierr = PetscDrawFlush(draw);CHKERRQ(ierr);
ierr = PetscSleep(2);CHKERRQ(ierr);

133

ierr = PetscDrawViewPortsDestroy(ports);CHKERRQ(ierr);
ierr = PetscDrawLGDestroy(lg);CHKERRQ(ierr);
ierr = PetscDrawDestroy(draw);CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 20: Example of PetscDrawing Plots

It is possible to turn off all graphics with the option-nox . This will prevent any windows from being
opened or any drawing actions to be done. This is useful for running large jobs when the graphics overhead
is too large, or for timing.

11.9.4 Graphical Convergence Monitor

For both the linear and nonlinear solvers default routines allow one to graphically monitor convergence
of the iterative method. These are accessed via the command line with-ksp_xmonitor and-snes_
xmonitor . See also Sections4.3.3and5.3.2.

The two functions used areKSPLGMonitor() andKSPLGMonitorCreate() . These can easily
be modified to serve specialized needs.

11.9.5 Disabling Graphics at Compile Time

To disable all x-window-based graphics, edit the file${PETSC_DIR}/bmake/${PETSC_ARCH}/base
and remove the flag-PETSC_DHAVE_X11from the CONF variable definition. Then (re)compile the
PETSc libraries.

134

Chapter 12

Makefiles

This chapter describes the design of the PETSc makefiles, which are the key to managing our code portability
across a wide variety of UNIX and Windows systems.

12.1 Our Makefile System

To make a program namedex1 , one may use the command

make BOPT=[g,O] PETSC_ARCH=arch ex1

which will compile a debugging, optimized, or profiling version of the example and automatically link the
appropriate libraries. The architecture,arch , is one ofsolaris,rs6000,IRIX,hpux , etc. Note that
when using command line options with make (as illustrated above), one mustnot place spaces on either
side of the “=” signs. The variablesBOPTandPETSC_ARCHcan also be set as environmental variables.
Although PETSc is written in C, it can be compiled with a C++ compiler. For many C++ users this may
be the preferred route. To compile with the C++ compiler, one should use the optionBOPT=g_c++ or
BOPT=O_c++. The optionsBOPT=g_complex andBOPT=O_complex will create versions that use
complex double-precision numbers.

12.1.1 Makefile Commands

The directory${PETSC_DIR}/bmake contains virtually all makefile commands and customizations to
enable portability across different architectures. Most makefile commands for maintaining the PETSc sys-
tem are defined in the file${PETSC_DIR}/bmake/common . These commands, which process all ap-
propriate files within the directory of execution, include

• lib - Updates the PETSc libraries based on the source code in the directory.

• libfast - Updates the libraries faster. Sincelibfast recompiles all source files in the directory
at once, rather than individually, this command saves time when many files must be compiled.

• clean - Removes garbage files.

Thetree command enables the user to execute a particular action within a directory and all of its sub-
directories. The action is specified byACTION=[action] , whereaction is one of the basic commands
listed above. For example, if the command

make BOPT=g ACTION=lib tree

were executed from the directory${PETSC_DIR}/src/sles/ksp , the debugging library for all Krylov
subspace solvers would be built.

135

12.1.2 Customized Makefiles

The directory${PETSC_DIR}/bmake contains a subdirectory for each architecture that contains machine-
specific information, enabling the portability of our makefile system. For instance, for Sun workstations
running OS 5.7, the directory is calledsolaris . Each architecture directory contains two base makefiles:

• base.site - locations of all needed include and library files for a particular site. This file (discussed
below) is usually the only one that the user needs to alter.

• base_variables - definitions of the compilers, linkers, etc.

Each architecture base file, denoted by${PETSC_DIR}/bmake/${PETSC_ARCH}/base , includes the
file
${PETSC_DIR}/bmake/common , which contains the rules discussed in Section12.1.1that are com-
mon to all machines.

12.2 PETSc Flags

PETSc has several flags that determine how the source code will be compiled. The default flags for particular
versions are specified by the variablePETSCFLAGSwithin the base files of${PETSC_DIR}/bmake/
${PETSC_ARCH}, discussed in Section12.1.2. The flags include

• PETSC_USE_DEBUG- The PETSc debugging options are activated. We recommend always using
this.

• PETSC_USE_COMPLEX- The version with scalars represented as complex numbers is used.

• PETSC_USE_LOG- Various monitoring statistics on floating-point operations, and message-passing
activity are kept.

12.2.1 Sample Makefiles

Maintaining portable PETSc makefiles is very simple. In Figures21, 22, and23 we present three sample
makefiles.

The first is a “minimum” makefile for maintaining a single program that uses the PETSc libraires. The
most important line in this makefile is the line starting withinclude :

include ${PETSC_DIR}/bmake/${PETSC_ARCH}/base

This line includes other makefiles that provide the needed definitions and rules for the particular base PETSc
installation (specified by${PETSC_DIR}) and architecture (specified by${PETSC_ARCH}). (See1.2
for information on setting these environmental variables.) As listed in the sample makefile, the appropriate
include file is automatically completely specified; the user shouldnot alter this statement within the
makefile.

ALL: ex2

CFLAGS =
FFLAGS =
CPPFLAGS =
FPPFLAGS =

include ${PETSC_DIR}/bmake/${PETSC_ARCH}/base

136

ex2: ex2.o chkopts
${CLINKER} -o ex2 ex2.o ${PETSC_LIB}
${RM} ex2.o

Figure 21: Sample PETSc Makefile for a Single Program

Note that the variable${PETSC_LIB} (as listed on the link line in the above makefile) specifiesall
of the various PETSc libraries in the appropriate order for correct linking. For users who employ only a
specific PETSc component, can use alternative variables like${PETSC_SYS_LIB} , ${PETSC_VEC_LI
B} , ${PETSC_MAT_LIB} , ${PETSC_DM_LIB} , ${PETSC_SLES_LIB} , ${PETSC_SNES_LIB}
or ${PETSC_TS_LIB} .

The second sample makefile, given in Figure22, controls the generation of several example programs.

CFLAGS =
FFLAGS =
CPPFLAGS =
FPPFLAGS =

include ${PETSC_DIR}/bmake/${PETSC_ARCH}/base

ex1: ex1.o
-${CLINKER} -o ex1 ex1.o ${PETSC_LIB}
${RM} ex1.o

ex2: ex2.o
-${CLINKER} -o ex2 ex2.o ${PETSC_LIB}
${RM} ex2.o

ex3: ex3.o
-${FLINKER} -o ex3 ex3.o ${PETSC_FORTRAN_LIB} ${PETSC_LIB}
${RM} ex3.o

ex4: ex4.o
-${CLINKER} -o ex4 ex4.o ${PETSC_LIB}
${RM} ex4.o

runex1:
-@${MPIRUN} ex1

runex2:
-@${MPIRUN} -np 2 ex2 -mat_seqdense -optionsleft

runex3:
-@${MPIRUN} ex3 -v -log_summary

runex4:
-@${MPIRUN} -np 4 ex4 -trdump

RUNEXAMPLES_1 = runex1 runex2
RUNEXAMPLES_2 = runex4
RUNEXAMPLES_3 = runex3
EXAMPLESC = ex1.c ex2.c ex4.c
EXAMPLESF = ex3.F
EXAMPLES_1 = ex1 ex2
EXAMPLES_2 = ex4
EXAMPLES_3 = ex3

include ${PETSC_DIR}/bmake/common_test

Figure 22: Sample PETSc Makefile for Several Example Programs

137

Again, the most important line in this makefile is theinclude line that includes the files defining all
of the macro variables. Some additional variables that can be used in the makefile are defined as follows:

• CFLAGS,FFLAGS- User specified additional options for the C compiler and fortran compiler.

• CPPFLAGS,FPPFLAGS- User specified additional flags for the C preprocessor and fortran prepro-
cesor.

• CLINKER,FLINKER - the C and Fortran linkers.

• RM- the remove command for deleting files.

• EXAMPLES_1- examples that will be built withmakeBOPT=[g,O]examples (see Section12.1.1)

• RUNEXAMPLES_1- examples that will be run withmakerunexamples (see Section12.1.1)

• EXAMPLESC- all C examples that will be checked in/out of RCS withmakeci andmakeco (not
generally needed by users).

• EXAMPLESF- all Fortran examples that will be checked in/out of RCS withmakeci andmakeco
(not generally needed by users).

• PETSC_LIB - all of the base PETSc libraries.

• PETSC_FORTRAN_LIB- the PETSc Fortran interface library.

Note that the PETSc example programs are divided into several categories, which currently include:

EXAMPLES_1- basic C suite used in installation tests
EXAMPLES_2- additional C suite including graphics
EXAMPLES_3- basic Fortran .F suite
EXAMPLES_4- subset of 1 and 2 that runs on only a single processor
EXAMPLES_5- examples that require complex numbers
EXAMPLES_6- C examples that do not work with complex numbers
EXAMPLES_7- C examples that require BlockSolve
EXAMPLES_8- Fortran .F examples that do not work with complex numbers
EXAMPLES_9- uniprocessor version of 3
EXAMPLES_10- Fortran .F examples that require complex numbers

We next list in Figure23a makefile that maintains a PETSc library. Although most users do not need to
understand or deal with such makefiles, they are also easily used.

ALL: lib

CFLAGS =
SOURCEC = sp1wd.c spinver.c spnd.c spqmd.c sprcm.c
SOURCEF = degree.f fnroot.f genqmd.f qmdqt.f rcm.f fn1wd.f gen1wd.f \

genrcm.f qmdrch.f rootls.f fndsep.f gennd.f qmdmrg.f qmdupd.f
SOURCEH =
OBJSC = sp1wd.o spinver.o spnd.o spqmd.o sprcm.o
OBJSF = degree.o fnroot.o genqmd.o qmdqt.o rcm.o fn1wd.o gen1wd.o \

genrcm.o qmdrch.o rootls.o fndsep.o gennd.o qmdmrg.o qmdupd.o
LIBBASE = libpetscmat
MANSEC = Mat

include ${PETSC_DIR}/bmake/${PETSC_ARCH}/base

138

Figure 23: Sample PETSc Makefile for Library Maintenance

The library’s name islibpetscmat.a , and the source files being added to it are indicated bySO
URCEC(for C files) andSOURCEF(for Fortran files). Note that theOBJSFandOBJSCare identical to
SOURCEFandSOURCEC, respectively, except they use the suffix.o rather than.c or .f .

The variableMANSECindicates that any manual pages generated from this source should be included in
theMat section.

12.3 Limitations

This approach to portable makefiles has some minor limitations, including the following:

• Each makefile must be called “makefile”.

• Each makefile can maintain at most one archive library.

139

Chapter 13

Unimportant and Advanced Features of
Matrices and Solvers

This chapter introduces additional features of the PETSc matrices and solvers. Since most PETSc users
should not need to use these features, we recommend skipping this chapter during an initial reading.

13.1 Extracting Submatrices

One can extract a (parallel) submatrix from a given (parallel) using

MatGetSubMatrix(Mat A,IS rows,IS cols,int csize,MatReuse call,Mat *B);

This extracts therows andcol umns of the matrixA into B. If call is MAT_INITIAL_MATRIX it will
create the matrixB. If call is MAT_REUSE_MATRIXit will reuse theB created with a previous call. The
argumentcsize is ignored on sequential matrices, for parallel matrices it determines the “local columns”
if the matrix format supports this concept. Often one can use the default by passing inPETSC_DECIDE.
To create aB matrix that may be multiplied with a vectorx one can use

VecGetLocalSize(x,&csize);
MatGetSubMatrix(Mat A,IS rows,IS cols,int csize,MatReuse call,Mat *B);

13.2 Matrix Factorization

Normally, PETSc users will access the matrix solvers through the SLES interface, as discussed in Chapter
4, but the underlying factorization and triangular solve routines are also directly accessible to the user.

The LU and Cholesky matrix factorizations are split into two or three stages depending on the user’s
needs. The first stage is to calculate an ordering for the matrix. The ordering generally is done to reduce fill
in a sparse factorization; it does not make much sense for a dense matrix.

MatGetOrdering(Mat matrix,MatOrderingType type,IS* rowperm,IS* colperm);

The currently available alternatives for the orderingtype are

• MATORDERING_NATURAL- Natural

• MATORDERING_ND- Nested Dissection

• MATORDERING_1WD- One-way Dissection

140

• MATORDERING_RCM- Reverse Cuthill-McKee

• MATORDERING_QMD- Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following:-pc_
lu_ordering_type natural , -pc_lu_ordering_type nd , -pc_lu_ordering_type 1wd ,
-pc_lu_ordering_type rcm , -pc_lu_ordering_type qmd . Certain matrix formats
may support only a subset of these; more options may be added. Check the manual pages for up-to-date
information. All of these orderings are symmetric at the moment; ordering routines that are not symmetric
may be added. Currently we support orderings only for sequential matrices.

Users can add their own ordering routines by providing a function with the calling sequence

int reorder(Mat A,MatOrderingType type,IS* rowperm,IS* colperm);

HereA is the matrix for which we wish to generate a new ordering,type may be ignored androwperm
andcolperm are the row and column permutations generated by the ordering routine. The user registers
the ordering routine with the command

MatOrderingRegisterDynamic(MatOrderingType inname,char *path,char *sname,
int (*reorder)(Mat,MatOrderingType,IS*,IS*)));

The input argumentinname is a string of the user’s choice,iname is either an ordering defined in
petscmat.h or a users string, to indicate one is introducing a new ordering, while the output See the
code insrc/mat/impls/order/sorder.c and other files in that directory for examples on how the
reordering routines may be written.

Once the reordering routine has been registered, it can be selected for use at runtime with the command
line option-pc_lu_ordering_typesname . If reordering directly, the user should provide thename
as the second input argument ofMatGetOrdering() .

The following routines perform complete, in-place, symbolic, and numerical factorizations for symmet-
ric and nonsymmetric matrices, respectively:

MatCholeskyFactor(Mat matrix,IS permutation,double pf);
MatLUFactor(Mat matrix,IS rowpermutation,IS columnpermutation,

MatLUInfo *info);

The argumentinfo->fill>1 is the predicted fill expected in the factored matrix, as a ratio of the original
fill. For example,info->fill=2.0 would indicate that one expects the factored matrix to have twice as
many nonzeros as the original.

For sparse matrices it is very unlikely that the factorization is actually done in-place. More likely, new
space is allocated for the factored matrix and the old space deallocated, but to the user it appears in-place
because the factored matrix replaces the unfactored matrix.

The two factorization stages can also be performed separately, by using the out-of-place mode:

MatCholeskyFactorSymbolic(Mat matrix,IS perm, double pf,Mat *result);
MatLUFactorSymbolic(Mat matrix,IS rowperm,IS colperm,MatLUInfo *info,

Mat *result);
MatCholeskyFactorNumeric(Mat matrix,Mat *result);
MatLUFactorNumeric(Mat matrix, Mat *result);

In this case, the contents of the matrixresult is undefined between the symbolic and numeric factorization
stages. It is possible to reuse the symbolic factorization. For the second and succeeding factorizations, one
simply calls the numerical factorization with a new inputmatrix and thesamefactoredresult matrix. It
is essentialthat the new input matrix have exactly the same nonzero structure as the original factored matrix.
(The numerical factorization merely overwrites the numerical values in the factored matrix and does not
disturb the symbolic portion, thus enabling reuse of the symbolic phase.) In general, callingXXXFactorS

141

ymbolic with a dense matrix will do nothing except allocate the new matrix; theXXXFactorNumeric
routines will do all of the work.

Why provide the plainXXXfactor routines when one could simply call the two-stage routines? The
answer is that if one desires in-place factorization of a sparse matrix, the intermediate stage between the
symbolic and numeric phases cannot be stored in aresult matrix, and it does not make sense to store the
intermediate values inside the original matrix that is being transformed. We originally made the combined
factor routines do either in-place or out-of-place factorization, but then decided that this approach was not
needed and could easily lead to confusion.

We do not currently support sparse matrix factorization with pivoting for numerical stability. This is
because trying to both reduce fill and do pivoting can become quite complicated. Instead, we provide a
poor stepchild substitute. After one has obtained a reordering, withMatGetOrdering(MatA,MatO
rderingtype,IS*row,IS*col) one may call

MatReorderForNonzeroDiagonal(Mat A,double tol,IS row, IS col);

which will try to reorder the columns to ensure that no values along the diagonal are smaller thantol in
a absolute value. If small values are detected and corrected for, a nonsymmetric permutation of the rows
and columns will result. This is not guaranteed to work, but may help if one was simply unlucky in the
original ordering. When using the SLES solver interface the options-pc_ilu_nonzeros_along_
diagonal<tol> and-pc_lu_nonzeros_along_diagonal<tol> may be used. Here,tol is an
optional tolerance to decide if a value is nonzero; by default it is1.e− 10.

Once a matrix has been factored, it is natural to solve linear systems. The following four routines enable
this process:

MatSolve(Mat A,Vec x, Vec y);
MatSolveTrans(Mat A, Vec x, Vec y);
MatSolveAdd(Mat A,Vec x, Vec y, Vec w);
MatSolveTransAdd(Mat A, Vec x, Vec y, Vec w);

The matrixA of these routines must have been obtained from a factorization routine; otherwise, an error
will be generated. In general, the user should use the SLES solvers introduced in the next chapter rather
than using these factorization and solve routines directly.

13.3 Unimportant Details of KSP

Again, virtually all users should use KSP through the SLES interface and, thus, will not need to know the
details that follow.

It is possible to generate a Krylov subspace context with the command

KSPCreate(MPI_Comm comm,KSP *kps);

Before using the Krylov context, one must set the matrix-vector multiplication routine and the preconditioner
with the commands

PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);
KSPSetPC(KSP ksp,PC pc);

In addition, the KSP solver must be initialized with

KSPSetUp(KSP ksp);

Solving a linear system is done with the command

KSPSolve(KSP ksp,int *its);

Finally, the KSP context should be destroyed with

KSPDestroy(KSP ksp);

142

It may seem strange to put the matrix in the preconditioner rather than directly in the KSP; this decision
was the result of much agonizing. The reason is that for SSOR with Eisenstat’s trick, and certain other
preconditioners, the preconditioner has to change the matrix-vector multiply. This procedure could not be
done cleanly if the matrix were stashed in the KSP context that PC cannot access.

Any preconditioner can supply not only the preconditioner, but also a routine that essentially performs
a complete Richardson step. The reason for this is mainly SOR. To use SOR in the Richardson framework,
that is,

un+1 = un + B(f −Aun),

is much more expensive than just updating the values. With this addition it is reasonable to state thatall our
iterative methods are obtained by combining a preconditioner from thePCcomponent with a Krylov method
from theKSPcomponent. This strategy makes things much simpler conceptually, so (we hope) clean code
will result. Note: We had this idea already implicitly in older versions of SLES, but, for instance, just doing
Gauss-Seidel with Richardson in old SLES was much more expensive than it had to be. With PETSc this
should not be a problem.

13.4 Unimportant Details of PC

Most users will obtain their preconditioner contexts from the SLES context with the commandSLESGetP
C() . It is possible to create, manipulate, and destroy PC contexts directly, although this capability should
rarely be needed. To create a PC context, one uses the command

PCCreate(MPI_Comm comm,PC *pc);

The routine
PCSetType(PC pc,PCType method);

sets the preconditioner method to be used. The two routines
PCSetOperators(PC pc,Mat mat,Mat pmat,MatStructure flag);
PCSetVector(PC pc,Vec vec);

set the matrices and type of vector that are to be used with the preconditioner. Thevec argument is needed
by the PC routines to determine the format of the vectors. The routine

PCGetOperators(PC pc,Mat *mat,Mat *pmat,MatStructure *flag);

returns the values set withPCSetOperators() .
The preconditioners in PETSc can be used in several ways. The two most basic routines simply apply

the preconditioner or its transpose and are given, respectively, by
PCApply(PC pc,Vec x,Vec y);
PCApplyTrans(PC pc,Vec x,Vec y);

In particular, for a preconditioner matrix,B, that has been set viaPCSetOperators(pc,A,B,flag) ,
the routinePCApply(pc,x,y) computesy = B−1x by solving the linear systemBy = x with the
specified preconditioner method.

Additional preconditioner routines are
PCApplyBAorAB(PC pc,PCSide right,Vec x,Vec y,Vec work,int its);
PCApplyBAorABTrans(PC pc,PCSide right,Vec x,Vec y,Vec work,int its);
PCApplyRichardson(PC pc,Vec x,Vec y,Vec work,int its);

The first two routines apply the action of the matrix followed by the preconditioner or the preconditioner
followed by the matrix depending on whether theright is PC_LEFTor PC_RIGHT. The final routine
appliesits iterations of Richardson’s method. The last three routines are provided to improve efficiency
for certain Krylov subspace methods.

A PC context that is no longer needed can be destroyed with the command
PCDestroy(PC pc);

143

Index

n
-compare,129
-draw pause,132
-fp trap,6, 128
-h, 6, 124
-help,124
-ksp atol,54
-ksp cancelmonitors,55
-ksp computeeigenvalues,56
-ksp computeeigenvaluesexplicitly, 56
-ksp divtol, 54
-ksp gmresirorthog,52
-ksp gmresmodifiedgramschmidt,52
-ksp gmresrestart,52
-ksp gmresunmodifiedgramschmidt,52
-ksp max it, 54
-ksp monitor,54, 55
-ksp plot eigenvalues,56
-ksp plot eigenvaluesexplicitly, 56
-ksp richardsonscale,52
-ksp right pc,53
-ksp rtol, 54
-ksp singmonitor,55
-ksp smonitor,55
-ksp truemonitor,55, 58
-ksp type,52
-ksp xmonitor,54, 55, 134
-log history,118
-log info, 42, 44, 111, 117
-log mpe,114, 119
-log summary,111, 113, 119
-log trace,111, 128
-mat aij oneindex,41
-mat coloring,84
-mat fd coloring err,84
-mat fd coloring umin,84
-mat view matlab,89
-mg levels,63
-no signalhandler,128
-nox,134
-on error attachdebugger,6

-optionsleft,125
-optionstable,125
-pc asmtype,60
-pc bgsblocks,60
-pc bjacobiblocks,60
-pc compositepcs,62
-pc compositetrue,62
-pc compositetype,62
-pc eisenstatno diagonalscaling,59
-pc eisenstatomega,59
-pc ilu diagonalfill, 57
-pc ilu fill, 120
-pc ilu in place,57
-pc ilu levels,57
-pc ilu nonzerosalongdiagonal,57, 142
-pc ilu reusefill, 57
-pc ilu reuseordering,57
-pc ilu usedrop tolerance,57
-pc lu fill, 120
-pc lu in place,59
-pc lu nonzerosalongdiagonal,59, 142
-pc lu orderingtype,59, 141
-pc mg cycles,63
-pc mg smoothdown,63
-pc mg smoothup,63
-pc mg type,63
-pc slestrue,62
-pc sor backward,59
-pc sor its, 59
-pc sor local backward,59
-pc sor local forward,59
-pc sor local symmetric,59
-pc sor omega,59
-pc sor symmetric,59
-pc type,56
-preload,118
-snesatol,73
-snescancelmonitors,74
-sneseq ls, 72
-sneseq ls alpha,72
-sneseq ls maxstep,72

144

-sneseq ls steptol,72
-snesfmin, 73
-snesksp ew conv,75
-snesmax funcs,73
-snesmax it, 73
-snesmf, 76
-snesmf err,76
-snesmf operator,76
-snesmf umin,76
-snesmonitor,74
-snesrtol, 73
-snessmonitor,74
-snesstol,73
-snestestdisplay,74
-snestrtol, 73
-snestype,71
-snesxmonitor,74, 134
-start in debugger,6
-subksp type,59
-subpc type,59
-trdump,6, 122
-trmalloc,121
-trmalloc log, 122
-trmalloc nan,122
-trmalloc off, 121
-ts pseudoincrement,88
-ts pseudoincrementdt from initial dt, 88
-ts pvodegmresrestart,88
-ts pvodegramschmidttype,88
-ts pvodetype,87
-ts type,86
-v, 6
-vec type,24
-vec view matlab,89
.petschistory,118
.petscrc,124, 125
1-norm,26, 45
2-norm,26

Adams,87
ADD VALUES, 25, 35
additive preconditioners,61
aggregation,119
AIJ matrix format,41
alias,125
AO, 28, 29
AOApplicationToPetsc(),28
AOApplicationToPetscIS(),28
AOCreateBasic,28

AOCreateBasicIS,28
AODestroy(),28
AOPetscToApplication(),28
AOPetscToApplicationIS(),28
AOView, 28
Arnoldi, 56
array, distributed,30
ASM, 59
assembly,25
axis, drawing,132

backward Euler,86
BDF, 87
Bi-conjugate gradient,53
block Gauss-Seidel,59, 60
block Jacobi,59, 60, 125
boundary conditions,46

C++,135
Cai, Xiao-Chuan,60
CG,52
CHKERRQ(),128, 129
Cholesky,140
coarse grid solve,63
collective operations,13
coloring with SNES,82
coloring with TS,87
combining preconditioners,61
command line arguments,6
command line options,124
communicator,7, 55
compiler options,119
complex numbers,11, 129, 135
composite,62
convergence tests,54, 73
coordinates,131
CSR, compressed sparse row format,41

DA NONPERIODIC,30
DA STENCIL BOX, 30
DA STENCIL STAR,30
DA XPERIODIC,30
DA XYPERIODIC,30
DA XYZPERIODIC,31
DA XZPERIODIC,31
DA YPERIODIC,30
DA YZPERIODIC,31
DA ZPERIODIC,31
DACreate1d(),31
DACreate2d,30

145

DACreate3d(),31
DACreateGlobalVector,31
DACreateGlobalVector(),31
DACreateLocalVector(),31, 32
DAGetAO,33
DAGetColoring(),84
DAGetCorners(),33
DAGetGhostCorners(),33
DAGetGlobalIndices(),33, 93
DAGetScatter(),32
DAGlobalToLocalBegin(),31
DAGlobalToLocalEnd(),31
DALocalToGlobal(),31
DALocalToLocalBegin(),32
DALocalToLocalEnd(),32
debugger,6
debugging,127, 128
DIFFERENTNONZEROPATTERN,51
direct solver,59
distributed array,30
double buffer,132
DrawAxis*(), 55
DrawAxisSetColors(),132
DrawAxisSetLabels(),132
DrawFlush(),131
DrawLG*(), 55
DrawLGAddPoint(),132
DrawLGAddPoints(),132
DrawLGCreate(),132
DrawLGDestroy(),132
DrawLGDraw(),132
DrawLGGetAxis(),132
DrawLGReset(),132
DrawLGSetLimits(),132
DrawLine(),131
DrawOpenX(),131
DrawSetCoordinates(),131
DrawSetDoubleBuffer(),132
DrawSetViewPort(),131
DrawSP*(),56
DrawString(),132
DrawStringGetSize(),132
DrawStringSetSize(),132
DrawStringVertical(),132
DrawSynchronizedFlush(),132

eigenvalues,56
Eisenstat trick,59
Emacs,130

errors,128
etags, in Emacs,130
Euler,86

factorization,140
floating-point exceptions,128
flushing, graphics,131

gather,35
ghost points,29, 30
global numbering,28
global representation,29
global to local mapping,29
GMRES,52
Gram-Schmidt,52
graphics,130
graphics, disabling,134
grid partitioning,47

Hermitian matrix,52
Hessian, debugging,74
Hindmarsh,87

ICC, parallel,57
IEEE floating point,128
ILU, parallel,57
in-place solvers,59
incremental debugging,129
index sets,33
inexact Newton methods,75
infinity norm,26, 45
INSERT VALUES, 25, 35
installing PETSc,5
IS GTOLM DROP,29
IS GTOLM MASK, 29
ISBlock(),35
ISBlockGetBlockSize(),35
ISBlockGetIndices(),35
ISBlockGetSize(),35
ISColoringDestroy(),83
ISCreateBlock,35
ISCreateGeneral(),33
ISDestroy(),34
ISGetIndices(),34, 93
ISGetSize(),34
ISGlobalToLocalMappingApply,29
ISLocalToGlobalMapping,29
ISLocalToGlobalMappingApply(),29
ISLocalToGlobalMappingApplyIS(),29
ISLocalToGlobalMappingCreate(),29

146

ISLocalToGlobalMappingDestroy(),29
ISRestoreIndices(),34
ISStrideGetInfo(),34

Jacobi,59
Jacobian,64
Jacobian, debugging,74
Jacobian, testing,74

Krylov subspace methods,50, 52
KSP CG SYMMETRIC, 52
KSPBCGS,52
KSPBICG,52, 53
KSPBuildResidual(),56
KSPBuildSolution(),56
KSPCG,52
KSPCGSetType(),52
KSPCGType,52
KSPCHEBYCHEV,52
KSPChebychevSetEigenvalues(),52
KSPComputeEigenvalues(),55
KSPConvergedReason,54
KSPCR,52
KSPCreate(),142
KSPDefaultMonitor(),55
KSPDestroy(),142
KSPGetRhs(),56
KSPGetSolution(),56
KSPGMRES,52
KSPGMRESIROrthogonalization,52
KSPGMRESModifiedGramSchmidtOrthogonalization,

52
KSPGMRESSetOrthogonalization(),52
KSPGMRESSetRestart(),52
KSPGMRESUnmodifiedGramSchmidtOrthogonalization,

52
KSPLGMonitor(),134
KSPLGMonitorCreate(),55, 134
KSPLGMonitorDestroy(),55
KSPPREONLY,52
KSPRICHARDSON,52
KSPRichardsonSetScale(),52
KSPSetComputeEigenvalues(),55
KSPSetConvergenceTest(),54
KSPSetInitialGuessNonzero(),52
KSPSetMonitor(),54
KSPSetPC(),142
KSPSetRhs(),56
KSPSetSolution(),56

KSPSetTolerances(),53
KSPSetType(),52
KSPSetUp(),142
KSPSingularValueMonitor(),55
KSPSolve(),142
KSPTCQMR,52
KSPTFQMR,52
KSPTrueMonitor(),55

Lanczo,56
line graphs,132
line search,64, 72
linear system solvers,50
lines, drawing,131
local linear solves,59
local representation,29
local to global mapping,29
logging,111, 119
LU, 140

MAT COLUMNS SORTED,40
MAT FINAL ASSEMBLY, 40
MAT FLUSH ASSEMBLY, 40
MAT INITIAL MATRIX, 140
MAT REUSEMATRIX, 140
MAT ROWSSORTED,40
MatAssemblyBegin(),11, 40
MatAssemblyEnd(),11, 40
MatCholeskyFactor(),141
MatCholeskyFactorNumeric(),141
MatCholeskyFactorSymbolic(),141
MATCOLORING ID, 84
MATCOLORING LF, 84
MATCOLORING NATURAL, 84
MATCOLORING SL, 84
MatConvert(),47
MatCopy(),45
MatCreate(),11, 39
MatCreateMPIAIJ(),42
MatCreateMPIRowbs(),58
MatCreateSeqAIJ(),41
MatCreateSeqDense(),44
MatCreateShell(),46, 50
MatCreateSNESMF(),75
MatFDColoring,83
MatFDColoringCreate(),83
MatFDColoringSetFromOptions(),83
MatFDColoringSetParameters(),84
MatGetArray(),93

147

MatGetColoring(),83
MatGetOrdering(),140
MatGetOwnershipRange(),40
MatGetRow(),47
MatGetSubMatrix,140
MatILUInfo, 120
Matlab,89
MatLoad(),127
MatLUFactor(),141
MatLUFactorNumeric(),141
MatLUFactorSymbolic(),141
MatMult(), 45
MatMultAdd(), 45
MatMultTrans(),45
MatMultTransAdd(),45
MatNorm(),45
MATORDERING 1WD, 59, 141
MATORDERING NATURAL, 59, 141
MATORDERING ND, 59, 141
MATORDERING QMD, 59, 141
MATORDERING RCM, 59, 141
MatOrderingRegisterDynamic(),141
MatPartitioning,47
MatPartitioningApply(),49
MatPartitioningCreate(),49
MatPartitioningDestroy(),49
MatPartitioningSetAdjacency(),49
MatPartitioningSetFromOptions(),49
MatReorderForNonzeroDiagonal,142
MatRestoreRow(),47
matrices,11, 39
matrix ordering,141
matrix-free Jacobians,75
matrix-free methods,46, 50
MatSetOption(),39
MatSetValues(),11, 39
MatSetValuesBlocked(),40
MATSHELL, 75
MatShellGetContext(),46
MatShellSetOperation(),46
MatSNESMFDefaultSetUmin(),76
MatSNESMFRegisterDynamic),76
MatSNESMFSetFunctionError(),76
MatSNESMFSetType(),76
MatSolve(),142
MatSolveAdd(),142
MatSolveTrans(),142
MatSolveTransAdd(),142
MatView(), 45

MatZeroEntries(),46
MatZeroRows(),47
memory allocation,121
memory leaks,121
MG W CYCLE, 62
MGADDITIVE, 62
MGDefaultResidual(),63
MGFULL, 62
MGGetCoarseSolve(),63
MGGetSmoother(),63
MGKASKADE, 62
MGMULTIPLICATIVE, 62
MGSetCycles(),62
MGSetLevels(),62
MGSetNumberSmoothDown(),63
MGSetNumberSmoothUp(),63
MGSetR(),63
MGSetResidual(),63
MGSetRhs(),63
MGSetSmoother(),63
MGSetType(),62
MGSetX(),63
MPI, 130
MPI Finalize(),7
MPI Init(), 6
mpirun,6
multigrid, 62
multigrid, additive,62
multigrid, full, 62
multigrid, Kaskade,62
multigrid, multiplicative,62
multiplicative preconditioners,61

nested dissection,59, 141
Newton-like methods,64
nonlinear equation solvers,64
NORM 1, 26, 45
NORM 2, 26
NORM INFINITY, 26, 45
NormType,26, 45
Nupshot,114

ODE solvers,85, 87
one-way dissection,59, 141
options,124
OptionsGetDouble(),125
OptionsGetDoubleArray(),125
OptionsGetInt(),125
OptionsGetIntArray(),125

148

OptionsGetString(),125
OptionsHasName(),125
OptionsSetValue(),125
ordering,141
orderings,28, 29, 57, 59
overlapping Schwarz,59

partitioning,47
PC ASM BASIC, 60
PC ASM INTERPOLATE,60
PC ASM NONE,60
PC ASM RESTRICT,60
PC COMPOSITEADDITIVE, 61
PC COMPOSITEMULTIPLICATIVE, 61
PC LEFT, 143
PC RIGHT, 143
PCApply(),143
PCApplyBAorAB(),143
PCApplyBAorABTrans(),143
PCApplyRichardson(),143
PCApplyTrans(),143
PCASM,56
PCASMSetOverlap(),60
PCASMSetTotalSubdomains(),60
PCASMSetType(),60
PCBJACOBI,56
PCBJacobiGetSubSLES(),60
PCBJacobiSetTotalBlocks(),60
PCCOMPOSITE,61
PCCompositeAddPC,61
PCCompositeGetPC,62
PCCompositeSetType(),61
PCCompositeSetUseTrue(),61
PCCreate(),143
PCDestroy(),143
PCEISENSTAT,59
PCEisenstatNoDiagonalScaling(),59
PCEisenstatSetOmega(),59
PCGetOperators(),143
PCICC,56
PCILU, 56
PCILUDTSetReuseFill(),57
PCILUSetAllowDiagonalFill(),57
PCILUSetLevels(),57
PCILUSetReuseOrdering,57
PCILUSetUseDropTolerance(),57
PCILUSetUseInPlace(),57
PCJACOBI,56
PCLU,56

PCLUSetUseInPlace(),51, 59
PCNONE,56
PCSetOperators(),142, 143
PCSetType(),56, 143
PCSetVector(),143
PCSHELL,56, 75
PCShellSetApply(),61
PCShellSetSetUp(),61
PCSide,53
PCSLES,62
PCSLESGetSLES(),62
PCSLESSetUseTrue(),62
PCSOR,56
PCSORSetIterations(),58
PCSORSetOmega(),58
PCSORSetSymmetric(),58
performance tuning,119
PETSCCOMM WORLD, 6
PETSCDECIDE,24, 43, 44
PETSCDEFAULT, 54
PETSCDIR, 5
PETSCFORTRAN LIB, 95, 138
PETSCFP TRAP OFF,128
PETSCFP TRAP ON, 128
PETSCHAVE FORTRAN CAPS,94
PETSCHAVE FORTRAN UNDERSCORE,94
PETSCLIB, 95, 137, 138
PETSCNULL CHARACTER,94
PETSCNULL DOUBLE, 94
PETSCNULL INTEGER,94
PETSCNULL SCALAR, 94
PETSCOPTIONS,124
PETSCUSE COMPLEX,136
PETSCUSE DEBUG,136
PETSCUSE LOG, 111, 136
PETSCVIEWER ASCII DEFAULT, 126
PETSCVIEWER ASCII IMPL, 126
PETSCVIEWER ASCII MATLAB, 89, 126
PetscAbortErrorHandler(),128
PetscAttachErrorHandler(),128
PetscCompareDouble(),129
PetscCompareInt(),129
PetscCompareScalar(),129
PetscDefaultSignalHandler(),128
PetscError(),128
PetscFinalize(),7
PetscFPrintf(),118
PetscGetResidentSetSize(),122
PetscGetTime(),118

149

PetscInitialize(),6
PetscInitializeFortran(),94
PetscInitializeLargeInts(),122
PetscInitializeNans(),122
PetscLogEventBegin(),115
PetscLogEventEnd(),116
PetscLogEventRegister(),115
PetscLogFlops(),116
PetscLogInfo(),117
PetscLogInfoActivateClass(),117
PetscLogInfoAllow(),117
PetscLogInfoDeactivateClass(),117
PetscLogStagePop(),116
PetscLogStagePush(),116
PetscLogStageRegister(),116
PetscLogTraceBegin(),128
PetscObjectGetComm(),55
PetscPopErrorHandler(),128
PetscPrintf(),118
PetscPushErrorHandler(),128
PetscPushSignalHandler(),128
PetscSetCommWorld,7
PetscSetFPTrap(),128
PetscTraceBackErrorHandler(),128
PetscTrDump(),122
PetscTrLog(),122
PetscTrLogDump(),122
preconditioners,56
preconditioning,50, 53
preconditioning, right and left,143
PreLoadBegin(),118
PreLoadEnd(),118
PreLoadStage(),118
profiling, 111, 119
providing arrays for vectors,26
PVODE,87
PVODE MODIFIED GS,88
PVODE UNMODIFIED GS,88

quotient minimum degree,59, 141

relaxation,58, 63
reorder,140
restart,52
reverse Cuthill-McKee,59, 141
Richardson’s method,143
running PETSc programs,6
runtime options,124

SAME NONZEROPATTERN,50, 72

SAME PRECONDITIONER,51
Sarkis, Marcus,60
Scalar,11
scatter,35
SCATTERFORWARD,35
SCATTERREVERSE,35
SETERRQ(),128, 129
signals,128
SLESCreate(),11, 50
SLESDestroy(),11, 51
SLESGetKSP(),51
SLESGetPC(),51
SLESSetFromOptions(),11, 51
SLESSetOperators(),11, 50
SLESSetUp(),51, 60
SLESSolve(),11, 51
smoothing,63
snesmf ksp monitor,77
SNESConvergedReason,74
SNESDefaultComputeJacobianColor(),83
SNESDefaultMonitor(),74
SNESetFromOptions(),71
SNESGetFunction,74
SNESGetSolution(),74
SNESGetTolerances(),73
SNESNoLineSearch(),72
SNESNoLineSearchNoNorms(),72
SNESQuadraticLineSearch(),72
SNESSetConvergenceTest(),73
SNESSetFunction(),71
SNESSetJacobian(),71, 87
SNESSetLineSearch(),72
SNESSetMonitor(),74
SNESSetTolerances(),73
SNESSetType(),70
SNESSolve,71
SOR,58
SORBACKWARD SWEEP,58
SORFORWARD SWEEP,58
SORLOCAL BACKWARD SWEEP,58
SORLOCAL FORWARD SWEEP,58
SORLOCAL SYMMETRIC SWEEP,58
SORSYMMETRIC SWEEP,58
SPARSKIT,41
spectrum,56
SSOR,58
stride,34
submatrices,140
symbolic factorization,141

150

text, drawing,132
time,118
timing, 111, 119
trust region,64, 72
TS,85
TS BEULER,86
TS EULER,86
TS PSEUDO,86
TS PVODE,87
TSCreate(),86
TSDefaultComputeJacobian(),87
TSDefaultComputeJacobianColor(),87
TSDestroy(),86
TSGetTimeStep(),86
TSProblemType,86
TSPseudoIncrementDtFromInitialDt(),88
TSPseudoSetTimeStepIncrement(),88
TSPVodeGetPC(),87
TSPVodeGramSchmidtType,88
TSPVodeSetGMRESRestart(),88
TSPVodeSetGramSchmidtType(),88
TSPVodeSetTolerance(),88
TSPVodeSetType(),87
TSPVodeType,87
TSSetDuration(),86
TSSetInitialTimeStep,86
TSSetRHSFunction,87, 88
TSSetRHSJacobian,87, 88
TSSetRHSMatrix(),87
TSSetSolution(),86
TSSetTimeStep(),86
TSSetType(),86
TSSetUp(),86
TSView(),86

Upshot,114

V-cycle,62
Vec,24
VecAssemblyBegin(),25
VecAssemblyEnd(),25
VecCreate(),11, 24
VecCreateGhost(),37
VecCreateGhostWithArray(),37
VecCreateMPI(),24, 29
VecCreateMPIWithArray(),26
VecCreateSeq(),24
VecCreateSeqWithArray(),26
VecDestroy(),25

VecDestroyVecs(),26
VecDestroyVectors(),94
VecDotBegin(),27
VecDotEnd(),27
VecDuplicate(),11, 25
VecDuplicateVecs(),25, 94
VecGetArray(),27, 93, 119
VecGetLocalSize(),27
VecGetOwnershipRange(),26
VecGetSize(),27
VecGetValues(),35, 36
VecGhostGetLocalForm(),37
VecGhostRestoreLocalForm(),37
VecGhostUpdateBegin(),37
VecGhostUpdateEnd(),37
VecLoad(),127
VecNorm(),26
VecNormBegin(),27
VecNormEnd(),27
VecScatterBegin(),35
VecScatterCreate(),35
VecScatterDestroy(),35
VecScatterEnd(),35
VecSet(),11, 24
VecSetFromOptions,11
VecSetFromOptions(),24
VecSetLocalToGlobalMapping,29
VecSetType(),11
VecSetValues(),11, 25, 36
VecSetValuesLocal,29
VecTDotBegin(),27
VecTDotEnd(),27
vector values, getting,35
vector values, setting,25
vectors,11, 24
vectors, setting values with local numbering,29
vectors, user-supplied arrays,26
vectors, with ghost values,37
VecView(),25
Viewer,126
VIEWER DRAW SELF,126, 131
VIEWER DRAW WORLD, 25, 45, 126, 131
VIEWER STDOUT SELF,126
VIEWER STDOUT WORLD, 25, 126
ViewerASCIIOpen(),126
ViewerBinaryOpen,126
ViewerDestroy(),126
ViewerDrawGetDraw(),131
ViewerDrawOpenX,45

151

ViewerDrawOpenX(),131
ViewerMatlabOpen(),126
ViewerPopFormat,127
ViewerPushFormat(),127
ViewerSetFormat(),126

W-cycle,62
wall clock time,118

X windows,131

152

n

153

Bibliography

[1] Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations.SIAM
J. Sci. Stat. Comput., 11:450–481, 1990.

[2] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. Technical Report CU-CS 843-97, Computer Science Department, University of Colorado-
Boulder, 1997. (accepted by SIAM J. of Scientific Computing).

[3] J. E. Dennis Jr. and Robert B. Schnabel.Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[4] S. Eisenstat. Efficient implementation of a class of CG methods.SIAM J. Sci. Stat. Comput., 2:1–4,
1981.

[5] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method.SIAM J.
Sci. Stat. Comput., 17:16–32, 1996.

[6] R. Freund, G. H. Golub, and N. Nachtigal.Iterative Solution of Linear Systems, pages 57–100. Acta
Numerica. Cambridge University Press, 1992.

[7] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear sys-
tems.SIAM J. Sci. Stat. Comput., 14:470–482, 1993.

[8] William Gropp and Ewing Lusk. MPICH Web page. http://www.mcs.anl.gov/mpi/mpich.

[9] William Gropp, Ewing Lusk, and Anthony Skjellum.Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, 1994.

[10] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with Upshot. Technical Report
ANL-91/15, Argonne National Laboratory, August 1991.

[11] Magnus R. Hestenes and Eduard Steifel. Methods of conjugate gradients for solving linear systems.J.
Research of the National Bureau of Standards, 49:409–436, 1952.

[12] Mark T. Jones and Paul E. Plassmann. BlockSolve95 users manual: Scalable library software for the
parallel solution of sparse linear systems. Technical Report ANL-95/48, Argonne National Laboratory,
December 1995.

[13] Jorge J. Moŕe, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK
project. In Wayne R. Cowell, editor,Sources and Development of Mathematical Software, pages 88–
111, 1984.

[14] MPI: A message-passing interface standard.International J. Supercomputing Applications, 8(3/4),
1994.

154

[15] M. Pernice and H. F. Walker. NITSOL: A newton iterative solver for nonlinear systems.SIAM J. Sci.
Stat. Comput., 19:302–318, 1998.

[16] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems.SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[17] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.SIAM J. Sci. Stat.
Comput., 10:36–52, 1989.

[18] Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization.SIAM J.
Numer. Anal., 20:626–637, 1983.

[19] H. A. van der Vorst. BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution of
nonsymmetric linear systems.SIAM J. Sci. Stat. Comput., 13:631–644, 1992.

155

	Abstract
	I Introduction to PETSc
	Getting Started
	Suggested Reading
	Running PETSc Programs
	Writing PETSc Programs
	Simple PETSc Examples
	Referencing PETSc
	Directory Structure

	II Programming with PETSc
	Vectors and Distributing Parallel Data
	Creating and Assembling Vectors
	Basic Vector Operations
	Indexing and Ordering
	Application Orderings
	Local to Global Mappings

	Structured Grids Using Distributed Arrays
	Creating Distributed Arrays
	Local/Global Vectors and Scatters
	Local (Ghosted) Work Vectors
	Accessing the Vector Entries for DA Vectors
	Grid Information

	Software for Managing Vectors Related to Unstructured Grids
	Index Sets
	Scatters and Gathers
	Scattering Ghost Values
	Vectors with Locations for Ghost Values

	Matrices
	Creating and Assembling Matrices
	Sparse Matrices
	Dense Matrices

	Basic Matrix Operations
	Matrix-Free Matrices
	Other Matrix Operations
	Partitioning

	SLES: Linear Equations Solvers
	Using SLES
	Solving Successive Linear Systems
	Krylov Methods
	Preconditioning within KSP
	Convergence Tests
	Convergence Monitoring
	Understanding the Operator's Spectrum
	Other KSP Options

	Preconditioners
	ILU and ICC Preconditioners
	SOR and SSOR Preconditioners
	LU Factorization
	Block Jacobi and Overlapping Additive Schwarz Preconditioners
	Shell Preconditioners
	Combining Preconditioners
	Multigrid Preconditioners

	SNES: Nonlinear Solvers
	Basic Usage
	Solving Systems of Nonlinear Equations

	The Nonlinear Solvers
	Line Search Techniques
	Trust Region Methods

	General Options
	Convergence Tests
	Convergence Monitoring
	Checking Accuracy of Derivatives

	Inexact Newton-like Methods
	Matrix-Free Methods
	Finite Difference Jacobian Approximations

	TS: Scalable ODE Solvers
	Basic Usage
	Solving Time-dependent Problems
	Using PVODE from PETSc
	Solving Steady-State Problems with Pseudo-Timestepping

	Using Matlab with PETSc
	Dumping Data for Matlab
	Sending Data to Running Matlab
	Using the Matlab Compute Engine

	PETSc Fortran Users
	Differences between PETSc Interfaces for C and Fortran
	Include Files
	Error Checking
	Array Arguments
	Calling Fortran Routines from C (and C Routines from Fortran)
	Passing Null Pointers
	Duplicating Multiple Vectors
	Matrix and Vector Indices
	Setting Routines
	Compiling and Linking Fortran Programs
	Routines with Different Fortran Interfaces
	Fortran90

	Sample Fortran77 Programs

	III Additional Information
	Profiling
	Basic Profiling Information
	Interpreting -log_summary Output: The Basics
	Interpreting -log_summary Output: Parallel Performance
	Using -log_mpe with Upshot/Nupshot

	Profiling Application Codes
	Profiling Multiple Sections of Code
	Restricting Event Logging
	Interpreting -log_info Output: Informative Messages
	Time
	Saving Output to a File
	Accurate Profiling: Overcoming the Overhead of Paging

	Hints for Performance Tuning
	Compiler Options
	Profiling
	Aggregation
	Efficient Memory Allocation
	Sparse Matrix Assembly
	Sparse Matrix Factorization
	PetscMalloc() Calls

	Data Structure Reuse
	Numerical Experiments
	Tips for Efficient Use of Linear Solvers
	Detecting Memory Allocation Problems
	Machine-Specific Optimizations
	System-Related Problems

	Other PETSc Features
	Runtime Options
	The Options Database
	User-Defined Options
	Keeping Track of Options

	Viewers: Looking at PETSc Objects
	Debugging
	Error Handling
	Incremental Debugging
	Complex Numbers
	Emacs Users
	Parallel Communication
	Graphics
	Windows as PetscViewers
	Simple PetscDrawing
	Line Graphs
	Graphical Convergence Monitor
	Disabling Graphics at Compile Time

	Makefiles
	Our Makefile System
	Makefile Commands
	Customized Makefiles

	PETSc Flags
	Sample Makefiles

	Limitations

	Unimportant and Advanced Features of Matrices and Solvers
	Extracting Submatrices
	Matrix Factorization
	Unimportant Details of KSP
	Unimportant Details of PC

	Index
	Index
	Bibliography

