
BCFG: Validation and Change Detection

Narayan Desai

desai@mcs.anl.gov

10/25/03



Initial Observations
• Existing tools don't scale well to diverse administrator groups

• Some administrators aren't comfortable “programing” the environment.

• Tools don't recover gracefully from chaos.

• Method consensus is rare.

• Existing user interfaces only partially address daily administration 
tasks
• Imaging systems allow ad-hoc problem solving on a live configuration, but 

don't allow abstraction across multiple configurations

• Metadata-based systems require programming mentality for configuration 
updates. However, configuration is reusable across multiple configurations. 



Goals
• Imaging system style user interface

• Underlying metadata-based configuration repository

• Suitable for use on a testbed cluster

• Research platform for configuration management research



BCFG Architecture
• Client/Server 

• Client has no access to configuration repository

• The configuration repository is metadata based

• A classing mechanism is built into all aspects of the configuration 
repository

• The server-side configuration for a client is defined to be correct, 
despite actual state of client configuration



Idealized Update Model
• Client on-disk configuration updated

• Changes tested

• Configuration put tool run
• Changes detected

• Administrator interrogated to categorize changes

• Changes, tagged with metadata, uploaded to the server

• Changes integrated into the configuration repository



Configuration Change Detection
• Changes detected using verification

• Verification process is two pass
• First pass is verification of specified client configuration

• Detail verification

• Can find many configuration changes

• Second pass detects extra configuration

• Configuration details not previously contained in the client 
configuration 

• Heuristics abound

• Configuration changes consist of any failures in pass 1 and any 
configuration detected by pass 2



Change Detection Requirements
• Client configuration requirements

• Comprehensive

• Composed of verifiable entities

• Entities also comprehensive

• No opaque entities

• No logic

• Defines state, not process



Generators
• Comprehensive client configuration requirement means all 

configuration must transit the configuration management system

• Generators are server side executable logic

• Used when system configuration not well suited by model
• Allows integration of external data sources

• Provides an external interface to high level changes

• Provides triggers on data access

• Context specific constructs

• Example generator: user account configuration on cluster nodes
• Interface to user managent system

• Access to compute nodes dependent on scheduler state



Heuristics
• Heuristics are designed to find configuration changes made in good 

faith
• This is not a tripwire replacement

• Simple heuristics implemented
• Check for any extra files in /etc

• Check for extra packages installed

• Check for extra active services

• These are sufficient, but not perfect

• More complicated algorithms could easily be implemented, but so far 
there has been no need



Benefits of Verification
• Most configuration processes simplified

• Manual change assimilation accelerated

• Initial configuration generation automatable

• Results of fire-fighting sessions summarized

• Chaotic activity can be recovered from

• Permanent configuration skew can be avoided

• Automated change assimilation now possible



Next Steps
• Automated change assimilation

• Automate initial configuration build

• More heuristics with input from other users

• Change notification interface to allow sparse configuration 
propagation

• Accommodate other problem solving styles 


