
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

A Case Study in Configuration
Management Tool Deployment

Narayan Desai, Rick Bradshaw, Scott Matott
Sandra Bittner, Susan Coghlan, Remy Evard

Cory Lueninghoener, Ti Leggett, John-Paul Navarro,
Gene Rackow, Craig Stacey, Tisha Stacey

Systems Group
Mathematics and Computer Science Division

Argonne National Laboratory
December 08, 2005

2

The Big Picture

 Configuration management tools aren't widely used
– Ad hoc mechanisms abound

 These tools could improve administrators daily lives, but..
– The upside is not well understood

 I will discuss
– Our goals in deploying a tool
– The social processes involved in a group adoption of new configuration

mechanisms
– How things worked out

 I won't discuss
– Specific tool architecture, more than neccessary

 This talk contains observations from two perspectives
– A group implementing a tool
– A tool implementor watching a group adopt a tool

3

Why Bother?

 We had configuration problems
– Change Propagation issues
– Patching

 It was a time sink
 We wanted a central configuration specification
 Security issues

– No one likes it if a government site has “issues”
– Top-down mandates
– Audits

 Surely something better is possible
– We are, after all, a research lab

4

Bcfg2 Architecture

 Built around a centralized specification
– Bcfg2 provides impedance matching between it and reality
– Has constructs for describing machine similarities efficiently

 Designed to control reconfiguration propagation
– Makes configuration state changes cheap and observable

 Provides a comprehensive configuration reporting infrastructure
– Current configuration states
– Actions taken
– Discrepancies between the spec and the world
– Time of last update
– Aids in specification refinement

5

Timeline

 December 2002
– Started working on Bcfg (1)

 January 2004
– Started working on Bcfg2

 August 2004
– Bcfg2 stable enough to consider deploying
– Deployed on a research cluster

 October 2004
– Started deployment on division infrastructure

 November 2004
– SuperComputing

 December 2004
– Workstation build process complete enough for testing

6

Timeline (cont)

 January 2005
– Begin real user deployments of new workstation builds

 February 2005
– All user desktops rebuilt (~85 machines)

 March 2005
– Try to begin server conversion

 March-April 2005
– Resolve administrator issues with Bcfg2, for managing servers

 April-July 2005
– Rebuild server infrastructure (~30 machines)

 August-December 2005
– Finish the stragglers (~10 critical [and hand tweaked] servers)

7

Tool Fitness Criteria

 Can I express my configuration patterns efficiently?
 Can I trust the tool?

– Will it do what I tell it to?
– Will it do what I expect it to?
– Will it fail gracefully?

 Does this make my life easier?
 Is the complexity worthwhile?
 Can I count on it to work?

8

Group Consensus

 Our environment requires consensus for major methodology changes
 Everyone needed to come along

– Passive-aggressive behavior can be destructive
– Ideally, administrators need to use the tools in the same way

 From the tool development perspective this data is quite useful
– Administration methods are highly varied, from person to person

 Functionally, consensus was built individually
– Increasing familiarity with Bcfg2
– Implementing critical features

9

The Hard Sell

 Deployment wasn't a forgone conclusion
– Bcfg1

 Administrators had real concerns
– Risk aversity
– Previous experiences

 Ignoring these is a non-starter
– In general, administrator's instincts are right

10

Administrator Concerns

 Initial buy-in
– Can the tool work?
– Will it destroy my world?

 Existing investments
– Current ad-hoc methods work, at least to some extent
– Current techniques are well understood
– “There are many like it, but this one is mine”
– Emotional investment can be hard to overcome

 Level of Control
– Abstraction mechanisms remove control
– Comprehensive expression is needed
– Too much abstraction can keep people from getting work done

11

Adoption Process Stalls

 Workstation Deployment
– Testing the specification was challenging
– It took several weeks to gain confidence in the spec

 Server Deployment
– Could already describe all needed aspects of system configuration
– Deployment mechanisms weren't polished enough for important servers
– Made Bcfg2 useful even when you didn't trust it to reconfigure servers

 Tool developers need to be optimists
– You had better believe in the code you write
– Sometime we need reality checks

12

Group Dynamics Issues

 Administrator assessments of tools embed a lot of personal belief
– Mental model of system administration
– Set of common tasks
– Problems previously encountered
– Confidence in tools derives from (first-hand) experience

 Tool confidence can be described as a continuum
– Everyone learns at different rates, and about different aspects
– These experiences cause a shift in problem perception over time
– Experience makes more complex operations practical

 These factors make communication hard
– Radically different assessments of the tool
– Different problem solving approaches
– Different complexity goals

13

Recommendations (So you want to deploy a tool)

 The tool needs an advocate
– Understand the problem space
– Respected by the group

 Administrator concerns need to be addressed
– Most are based on experiences
– Once all are resolved, administrators will be much more enthusiastic

 Advocacy is most compelling with a short-term payoff
– Administrators are time constrained
– Long-term improvements are hard to prioritize

 Keep everyone on the same page, where possible
– Avoid per-user tutorials
– Any variance in tool perceptions makes communication much more

difficult

14

Other Critical Factors

 Our group already believed that configuration management techniques
were needed
– Long history of working on (and with) tolls
– If we had needed to convince administrators of this and of the utility of a

given tool, the game would have been over
 Our evangelist (not me) was involved in the Bcfg2 development process

– Provided a good feedback mechanism
– Users felt heard
– His comments had weight with both groups

 Our group is amicable
– No name calling
– We all trust one another, though we don't always agree
– We could work through contentious issues

15

This Sounds Painful

 It was
 But it was entirely worthwhile
 We would do it again in a heartbeat
 Our system management infrastructure helps us in ways we couldn't predict

16

Benefits

 Central Configuration Specification
 Function Abstraction
 Tool-based Task Simplification
 Efficiency Improvements

17

Central Configuration Specification

 Administrators can get a birds-eye view of overall desired state
– Including class-based system of configuration similarities

 Bcfg2 adds an impedance matching mechanism
– Compares the specification with reality
– Aids in the reconciliation process
– Allows administrators to fix latent specification problems while they are

still latent
 Data mining

– Auditing

18

Functional Abstraction

 Metadata -- “What you want”
 Specification -- “How to get it”
 Reconfiguration -- “How to make clients correct”
 Allows the easy addition of new instances of “what you want” without

considering “how to get it”
 Domain specific languages can be used to describe configuration patterns

with out impacting metadata layer
 The client implements all reconfiguration operations, exposing all

information needed for

19

Efficiency Improvements

 Central specification provides a powerful mechanism for scripts
– Extends “reach”
– Provides portability

 Get out of fire fighting mode
 Resulting “free” time can be used

– To better automate complex configuration tasks
– Better understand user needs
– Improve infrastructure
– Provide better services

20

Where the rubber meets the road

 Configuration tasks that took ~3 FTEs of effort can now be performed with
0.3-0.5 of an FTE

 Our administrators can now build new instances of any configurations we
have already modelled trivially (in nearly all cases)

 We now have a detailed understanding of our systems' configuration
 We also understand how our systems do (and don't) correspond to our

overall configuration specification
 Our approaches to solving system problems have been augmented with

better configuration instrumentation and infrastructure to solve them in a
more thorough fashion

21

Conclusions

 Deploying a tool can be difficult, but it is entirely worthwhile
 The systematic administration methodologies make environments easier to

understand and modify
 Tools result in time savings after the initial deployment

– and sometimes reduce system administrators' blood pressure

