
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

A Case Study in Configuration
Management Tool Deployment

Narayan Desai, Rick Bradshaw, Scott Matott
Sandra Bittner, Susan Coghlan, Remy Evard

Cory Lueninghoener, Ti Leggett, John-Paul Navarro,
Gene Rackow, Craig Stacey, Tisha Stacey

Systems Group
Mathematics and Computer Science Division

Argonne National Laboratory
December 08, 2005

2

The Big Picture

 Configuration management tools aren't widely used
– Ad hoc mechanisms abound

 These tools could improve administrators daily lives, but..
– The upside is not well understood

 I will discuss
– Our goals in deploying a tool
– The social processes involved in a group adoption of new configuration

mechanisms
– How things worked out

 I won't discuss
– Specific tool architecture, more than neccessary

 This talk contains observations from two perspectives
– A group implementing a tool
– A tool implementor watching a group adopt a tool

3

Why Bother?

 We had configuration problems
– Change Propagation issues
– Patching

 It was a time sink
 We wanted a central configuration specification
 Security issues

– No one likes it if a government site has “issues”
– Top-down mandates
– Audits

 Surely something better is possible
– We are, after all, a research lab

4

Bcfg2 Architecture

 Built around a centralized specification
– Bcfg2 provides impedance matching between it and reality
– Has constructs for describing machine similarities efficiently

 Designed to control reconfiguration propagation
– Makes configuration state changes cheap and observable

 Provides a comprehensive configuration reporting infrastructure
– Current configuration states
– Actions taken
– Discrepancies between the spec and the world
– Time of last update
– Aids in specification refinement

5

Timeline

 December 2002
– Started working on Bcfg (1)

 January 2004
– Started working on Bcfg2

 August 2004
– Bcfg2 stable enough to consider deploying
– Deployed on a research cluster

 October 2004
– Started deployment on division infrastructure

 November 2004
– SuperComputing

 December 2004
– Workstation build process complete enough for testing

6

Timeline (cont)

 January 2005
– Begin real user deployments of new workstation builds

 February 2005
– All user desktops rebuilt (~85 machines)

 March 2005
– Try to begin server conversion

 March-April 2005
– Resolve administrator issues with Bcfg2, for managing servers

 April-July 2005
– Rebuild server infrastructure (~30 machines)

 August-December 2005
– Finish the stragglers (~10 critical [and hand tweaked] servers)

7

Tool Fitness Criteria

 Can I express my configuration patterns efficiently?
 Can I trust the tool?

– Will it do what I tell it to?
– Will it do what I expect it to?
– Will it fail gracefully?

 Does this make my life easier?
 Is the complexity worthwhile?
 Can I count on it to work?

8

Group Consensus

 Our environment requires consensus for major methodology changes
 Everyone needed to come along

– Passive-aggressive behavior can be destructive
– Ideally, administrators need to use the tools in the same way

 From the tool development perspective this data is quite useful
– Administration methods are highly varied, from person to person

 Functionally, consensus was built individually
– Increasing familiarity with Bcfg2
– Implementing critical features

9

The Hard Sell

 Deployment wasn't a forgone conclusion
– Bcfg1

 Administrators had real concerns
– Risk aversity
– Previous experiences

 Ignoring these is a non-starter
– In general, administrator's instincts are right

10

Administrator Concerns

 Initial buy-in
– Can the tool work?
– Will it destroy my world?

 Existing investments
– Current ad-hoc methods work, at least to some extent
– Current techniques are well understood
– “There are many like it, but this one is mine”
– Emotional investment can be hard to overcome

 Level of Control
– Abstraction mechanisms remove control
– Comprehensive expression is needed
– Too much abstraction can keep people from getting work done

11

Adoption Process Stalls

 Workstation Deployment
– Testing the specification was challenging
– It took several weeks to gain confidence in the spec

 Server Deployment
– Could already describe all needed aspects of system configuration
– Deployment mechanisms weren't polished enough for important servers
– Made Bcfg2 useful even when you didn't trust it to reconfigure servers

 Tool developers need to be optimists
– You had better believe in the code you write
– Sometime we need reality checks

12

Group Dynamics Issues

 Administrator assessments of tools embed a lot of personal belief
– Mental model of system administration
– Set of common tasks
– Problems previously encountered
– Confidence in tools derives from (first-hand) experience

 Tool confidence can be described as a continuum
– Everyone learns at different rates, and about different aspects
– These experiences cause a shift in problem perception over time
– Experience makes more complex operations practical

 These factors make communication hard
– Radically different assessments of the tool
– Different problem solving approaches
– Different complexity goals

13

Recommendations (So you want to deploy a tool)

 The tool needs an advocate
– Understand the problem space
– Respected by the group

 Administrator concerns need to be addressed
– Most are based on experiences
– Once all are resolved, administrators will be much more enthusiastic

 Advocacy is most compelling with a short-term payoff
– Administrators are time constrained
– Long-term improvements are hard to prioritize

 Keep everyone on the same page, where possible
– Avoid per-user tutorials
– Any variance in tool perceptions makes communication much more

difficult

14

Other Critical Factors

 Our group already believed that configuration management techniques
were needed
– Long history of working on (and with) tolls
– If we had needed to convince administrators of this and of the utility of a

given tool, the game would have been over
 Our evangelist (not me) was involved in the Bcfg2 development process

– Provided a good feedback mechanism
– Users felt heard
– His comments had weight with both groups

 Our group is amicable
– No name calling
– We all trust one another, though we don't always agree
– We could work through contentious issues

15

This Sounds Painful

 It was
 But it was entirely worthwhile
 We would do it again in a heartbeat
 Our system management infrastructure helps us in ways we couldn't predict

16

Benefits

 Central Configuration Specification
 Function Abstraction
 Tool-based Task Simplification
 Efficiency Improvements

17

Central Configuration Specification

 Administrators can get a birds-eye view of overall desired state
– Including class-based system of configuration similarities

 Bcfg2 adds an impedance matching mechanism
– Compares the specification with reality
– Aids in the reconciliation process
– Allows administrators to fix latent specification problems while they are

still latent
 Data mining

– Auditing

18

Functional Abstraction

 Metadata -- “What you want”
 Specification -- “How to get it”
 Reconfiguration -- “How to make clients correct”
 Allows the easy addition of new instances of “what you want” without

considering “how to get it”
 Domain specific languages can be used to describe configuration patterns

with out impacting metadata layer
 The client implements all reconfiguration operations, exposing all

information needed for

19

Efficiency Improvements

 Central specification provides a powerful mechanism for scripts
– Extends “reach”
– Provides portability

 Get out of fire fighting mode
 Resulting “free” time can be used

– To better automate complex configuration tasks
– Better understand user needs
– Improve infrastructure
– Provide better services

20

Where the rubber meets the road

 Configuration tasks that took ~3 FTEs of effort can now be performed with
0.3-0.5 of an FTE

 Our administrators can now build new instances of any configurations we
have already modelled trivially (in nearly all cases)

 We now have a detailed understanding of our systems' configuration
 We also understand how our systems do (and don't) correspond to our

overall configuration specification
 Our approaches to solving system problems have been augmented with

better configuration instrumentation and infrastructure to solve them in a
more thorough fashion

21

Conclusions

 Deploying a tool can be difficult, but it is entirely worthwhile
 The systematic administration methodologies make environments easier to

understand and modify
 Tools result in time savings after the initial deployment

– and sometimes reduce system administrators' blood pressure

