
0.1 EntitySequence & SequenceData

Figure 1: EntitySequences For One SequenceData

The SequenceData class manages as set of arrays of per-entity values. Each
SequenceData has a start and end handle denoting the block of entities for which
the arrays contain data. The arrays managed by a SequenceData instance are
divided into three groups:

• Type-specific data (connectivity, coordinates, etc.): zero or more arrays.

• Adjacency data: zero or one array.

• Dense tag data: zero or more arrays.

The abstract EntitySequence class is a non-strict subset of a SequenceData.
It contains a pointer to a SequenceData and the start and end handles to indi-
cate the subset of the referenced SequenceData. The EntitySequence class is
used to represent the regions of valid (or allocated) handles in a SequenceData.
A SequenceData is expected to be referenced by one or more EntitySequence
instances.

Initial EntitySequence and SequenceData pairs are typically created in one
of two configurations. When reading from a file, a SequenceData will be created
to represent all of a single type of entity contained in a file. As all entries in the

1



SequenceData correspond to valid handles (entities read from the file) a single
EntitySequence instance corresponding to the entire SequenceData is initially
created. The second configuration arises when allocating a single entity. If no
entities have been allocated yet, a new SequenceData must be created to store
the entity data. It is created with a constant size (e.g. 4k entities). The new
EntitySequence corresponds to only the first entity in the SequenceData: the
one allocated entity. As subsequent entities are allocated, the EntitySequence
is extended to cover more of the corresponding SequenceData.

Concrete subclasses of the EntitySequence class are responsible for rep-
resenting specific types of entities using the array storage provided by the
SequenceData class. They also handle allocating SequenceData instances with
appropriate arrays for storing a particular type of entity. Each concrete subclass
typically provides two constructors corresponding to the two initial allocation
configurations described in the previous paragraph. EntitySequence imple-
mentations also provide a split method, which is a type of factory method. It
modifies the called sequence and creates a new sequence such that the range of
entities represented by the original sequence is split.

The VertexSequence class provides an EntitySequence for storing ver-
tex data. It references a SequenceData containing three arrays of doubles
for storing the blocked vertex coordinate data. The ElementSequence class
extends the EntitySequence interface with element-specific functionality. The
UnstructuredElemSeq class is the concrete implementation of ElementSequence
used to represent unstructured elements, polygons, and polyhedra. MeshSetSequence
is the EntitySequence used for storing entity sets.

Each EntitySequence implementation also provides an implementation of
the values per entity method. This value is used to determine if an exist-
ing SequenceData that has available entities is suitable for storing a particular
entity. For example, UnstructuredElemSeq returns the number of nodes per el-
ement from values per entity. When allocating a new element with a specific
number of nodes, this value is used to determine if that element may be stored
in a specific SequenceData. For vertices, this value is always zero. This could
be changed to the number of coordinates per vertex, allowing representation of
mixed-dimension data. However, API changes would be required to utilize such
a feature. Sequences for which the corresponding data cannot be used to store
new entities (e.g. structured mesh discussed in a later section) will return -1 or
some other invalid value.

0.2 TypeSequenceManager & SequenceManager

The TypeSequenceManager class maintains an organized set of EntitySequence
instances and corresponding SequenceData instances. It is used to manage
all such instances for entities of a single EntityType. TypeSequenceManager

enforces the following four rules on its contained data:

1. No two SequenceData instances may overlap.

2



Figure 2: SequenceManager and Related Classes

3



2. No two EntitySequence instances may overlap.

3. Every EntitySequence must be a subset of a SequenceData.

4. Any pair of EntitySequence instances referencing the same SequenceData
must be separated by at least one unallocated handle.

The first three rules are required for the validity of the data model. The
fourth rule avoids unnecessary inefficiency. It is implemented by merging such
adjacent sequences. In some cases, other classes (e.g. SequenceManager) can
modify an EntitySequence such that the fourth rule is violated. In such cases,
the TypeSequenceManager::notify prepended or TypeSequenceManager::notify appended

method must be called to maintain the integrity of the data1. The above rules
(including the fourth) are assumed in many other methods of the TypeSequenceManager
class, such that those methods will fail or behave unexpectedly if the managed
data does not conform to the rules.

TypeSequenceManager contains three principal data structures. The first is
a std::set of EntitySequence pointers sorted using a custom comparison op-
erator that queries the start and end handles of the referenced sequences. The
comparison operation is defined as: a->end_handle() < b->start_handle().
This method of comparison has the advantage that a sequence corresponding to
a specific handle can be located by searching the set for a “sequence” beginning
and ending with the search value. The lower bound and find methods pro-
vided by the library are guaranteed to return the sequence, if it exists. Using
such a comparison operator will result in undefined behavior if the set contains
overlapping sequences. This is acceptable, as rule two above prohibits such
a configuration. However, some care must be taken in writing and modifying
methods in TypeSequenceManager so as to avoid having overlapping sequences
as a transitory state of some operation.

The second important data member of TypeSequenceManager is a pointer
to the last referenced EntitySequence. This “cached” value is used to speed up
searches by entity handle. This pointer is never null unless the sequence is empty.
This rule is maintained to avoid unnecessary branches in fast query paths. In
cases where the last referenced sequence is deleted, TypeSequenceManager will
typically assign an arbitrary sequence (e.g. the first one) to the last referenced
pointer.

The third data member of TypeSequenceManager is a std::set of SequenceData
instances that are not completely covered by a EntitySequence instance2.
This list is searched when allocating new handles. TypeSequenceManager also
embeds in each SequenceData instance a reference to the first corresponding
EntitySequence so that it may be located quickly from only the SequenceData
pointer.

1This source of potential error can be eliminated with changes to the entity set represen-

tation. This is discussed in a later section.
2Given rule four for the data managed by a TypeSequenceManager, any SequenceData for

which all handles are allocated will be referenced by exactly one EntitySequence.

4



The SequenceManager class contains an array of TypeSequenceManager in-
stances, one for each EntityType. It also provides all type-specific operations
such as allocating the correct EntitySequence subtype for a given EntityType.

0.3 Structured Mesh

Structured mesh storage is implemented using subclasses of SequenceData:
ScdElementData and ScdVertexData. The StructuredElementSeq class is
used to access the structured element connectivity. A standard VertexSequence

instance is used to access the ScdVertexData because the vertex data storage
is the same as for unstructured mesh.

0.4 Entity Sets

0.4.1 MeshSetSequence

The MeshSetSequence class is the same as most other subclasses of EntitySequence
in that it utilizes SequenceData to store its data. A single array in the SequenceData
is used to store instances of the MeshSet class, one per allocated EntityHandle.
SequenceData allocates all of its managed arrays using malloc and free as
simple arrays of bytes. MeshSetSequence does in-place construction and de-
struction of MeshSet instances within that array. This is similar to what is
done by std::vector and other container classes that may own more storage
than is required at a given time for contained objects.

0.4.2 MeshSet

Figure 3: SequenceManager and Related Classes

The MeshSet class is used to represent a single entity set instance in MOAB.
The class is optimized to minimize storage (further possible improvements in
storage size are discussed later.)

Figure 3 shows the memory layout of an instance of the MeshSet class.
The flags member holds the set creation bit flags: MESHSET TRACK OWNER,
MESHSET SET, and MESHSET ORDERED. The presence of the MESHSET TRACK OWNER

indicates that reverse links from the contained entities back to the owning set
should be maintained in the adjacency list of each entity. The MESHSET SET

5



and MESHSET ORDERED bits are mutually exclusive, and as such most code only
tests for the MESHSET ORDERED, meaning that in practice the MESHSET SET bit is
ignored. MESHSET ORDERED indicates that the set may contain duplicate handles
and that the order that the handles are added to the set should be preserved.
In practice, such sets are stored as a simple list of handles. MESHSET SET (or in
practice, the lack of MESHSET ORDERED) indicates that the order of the handles
need not be preserved and that the set may not contain duplicate handles. Such
sets are stored in a sorted range-compacted format similar to that of the Range
class.

The memory for storing contents, parents, and children are each handled in
the same way. The data in the class is composed of a 2-bit ‘size’ field and two
values, where the two values may either be two handles or two pointers. The size
bit-fields are grouped together to reduce the required amount of memory. If the
numerical value of the 2-bit size field is 0 then the corresponding list is empty.
If the 2-bit size field is either 1 or 2, then the contents of the corresponding list
are stored directly in the corresponding two data fields of the MeshSet object.
If the 2-bit size field has a value of 3 (11 binary), then the corresponding two
data fields store the begin and end pointers of an external array of handles.
The number of handles in the external array can be obtained by taking the
difference of the start and end pointers. Note that unlike std::vector, we
do not store both an allocated and used size. We store only the ‘used’ size
and call std::realloc whenever the used size is modified, thus we rely on the
std::malloc implementation in the standard C library to track ‘allocated’ size
for us. In practice this performs well but does not return memory to the ‘system’
when lists shrink (unless they shrink to zero). This overall scheme could exhibit
poor performance if the size of one of the data lists in the set frequently changes
between less than two and more than two handles, as this will result in frequent
releasing and re-allocating of the memory for the corresponding array.

If the MESHSET ORDERED flag is not present, then the set contents list (parent
and child lists are unaffected) is stored in a range-compacted format. In this
format the number of handles stored in the array is always a multiple of two.
Each consecutive pair of handles indicate the start and end, inclusive, of a range
of handles contained in the set. All such handle range pairs are stored in sorted
order and do not overlap. Nor is the end handle of one range ever one less than
the start handle of the next. All such ‘adjacent’ range pairs are merged into a
single pair. The code for insertion and removal of handles from range-formatted
set content lists is fairly complex. The implementation will guarantee that a
given call to insert entities into a range or remove entities from a range is never
worse than O(ln n) + O(m + n), where ‘n’ is the number of handles to insert
and ‘m’ is the number of handles already contained in the set. So it is generally
much more efficient to build Ranges of handles to insert (and remove) and call
MOAB to insert (or remove) the entire list at once rather than making may
calls to insert (or remove) one or a few handles from the contents of a set.

The set storage could probably be further minimized by allowing up to six
handles in one of the lists to be elided. That is, as there are six potential ‘slots’
in the MeshSet object then if two of the lists are empty it should be possible

6



to store up to six values of the remaining list directly in the MeshSet object.
However, the additional runtime cost of such complexity could easily outweigh
any storage advantage. Further investigation into this has not been done because
the primary motivation for the storage optimization was to support binary trees.

Another possible optimization of storage would be to remove the MeshSet

object entirely and instead store the data in a ‘blocked’ format. The corre-
sponding SequenceData would contain four arrays: flags, parents, children, and
contents instead of a single array of MeshSet objects. If this were done then
no storage need ever be allocated for parent or child links if none of the sets
in a SequenceData has parent or child links. The effectiveness of the storage
reduction would depend greatly on how sets get grouped into SequenceDatas.
This alternate storage scheme might also allow for better cache utilization as it
would group like data together. It is often the case that application code that
is querying the contents of one set will query the contents of many but never
query the parents or children of any set. Or that an application will query only
parent or child links of a set without every querying other set properties. The
downside of this solution is that it makes the implementation a little less mod-
ular and maintainable because the existing logic contained in the MeshSet class
would need to be spread throughout the MeshSetSequence class.

7


