1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
 *
 *
 * Copyright (C) 2004 Sandia Corporation.  Under the terms of Contract DE-AC04-94AL85000
 * with Sandia Corporation, the U.S. Government retains certain rights in this software.
 *
 * This file is part of facetbool--contact via [email protected]
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *
 */

#include "CubitMessage.hpp"
#include "FBClassify.hpp"
#include "IntegerHash.hpp"
#include "GfxDebug.hpp"
#include <stack>
//make this the same CUBIT_RESABS???
//const double EPSILON_CLASSIFY = 1.e-12;
const double EPSILON_CLASSIFY = 1.e-10;
FBClassify::FBClassify()
{
  number_of_groups = 0;
  polya = polyb = 0;
}

FBClassify::~FBClassify()
{

}

void FBClassify::SetPoly(FBPolyhedron *poly1, FBPolyhedron *poly2)
{
  polya = poly1;
  polyb = poly2;
}

CubitStatus FBClassify::Group(int which)
{
unsigned int i;
int hashvalue, v0, v1, v2, tv0, tv1, tv2;
//const int numhashbins = 101;
int *hasharrayptr, hasharraysize, j, itri;
FBPolyhedron *poly;
const int primes[] = { 307, 601, 1009, 3001, 6007, 10007, 30011, 60013, 100003 };
int numhashbins;

  if ( which == 1 ) poly = polya;
  else poly = polyb;
  
  if ( poly == 0 ) {
    PRINT_ERROR("ERROR:  Polyhedral object undefined in FBClassify::Group\n");
    return CUBIT_FAILURE;
  }

  i = poly->verts.size();
  if ( i < 3000 ) numhashbins = primes[0];
  else if ( i < 6000 ) numhashbins = primes[1];
  else if ( i < 10000 ) numhashbins = primes[2];
  else if ( i < 30000 ) numhashbins = primes[3];
  else if ( i < 60000 ) numhashbins = primes[4];
  else if ( i < 100000 ) numhashbins = primes[5];
  else if ( i < 300000 ) numhashbins = primes[6];
//  else if ( i < 600000 ) numhashbins = primes[7];
  else numhashbins = primes[7]; 

  IntegerHash *hash = new IntegerHash(numhashbins,50);
  e0 = new int[poly->tris.size()];
  e1 = new int[poly->tris.size()];
  e2 = new int[poly->tris.size()];

  for ( i = 0; i < poly->tris.size(); i++ ) {
    e0[i] = e1[i] = e2[i]= NO_EDGE_NBR; // initialize 
    group.push_back(UNSET);
    v0 = poly->tris[i]->v0;
    v1 = poly->tris[i]->v1;
    v2 = poly->tris[i]->v2;
    //  Put the triangle sequence, i, in the hash list for each of the 3 edges.
    hash->addtoHashList((v0+v1)%numhashbins,i);
    hash->addtoHashList((v1+v2)%numhashbins,i);
    hash->addtoHashList((v2+v0)%numhashbins,i);
  }
/*  int jmin, jmax, jave;
  jmin = 100000000;
  jmax = -100000000;
  jave = 0;
  for ( i = 0; i < poly->tris.size(); i++ ) {
    hasharrayptr = hash->getHashBin(i,&hasharraysize);
    if ( hasharraysize < jmin ) jmin = hasharraysize;
    if ( hasharraysize > jmax ) jmax = hasharraysize;
    jave += hasharraysize;
    
  } 
  jave /= poly->tris.size();
  printf("jmin jmax jave %d %d %d\n",jmin, jmax, jave);
  */
  
  for ( i = 0; i < poly->tris.size(); i++ ) {
    v0 = poly->tris[i]->v0;
    v1 = poly->tris[i]->v1;
    v2 = poly->tris[i]->v2;
    hashvalue = (v0+v1)%numhashbins;  // get the hash value for edge 0
    hasharrayptr = hash->getHashBin(hashvalue,&hasharraysize);
    for ( j = 0; j < hasharraysize; j++ ) {  
      //  Go through the list and find the other triangle, itri, for each edge.
      //  Then assign its sequence to the edge array.
      itri = hasharrayptr[j];
      if ( (unsigned int)itri == i ) continue;
      tv0 = poly->tris[itri]->v0;
      tv1 = poly->tris[itri]->v1;
      tv2 = poly->tris[itri]->v2;
      if ( ((v1 == tv0) && (v0 == tv1)) || ((v0 == tv0) && (v1 == tv1)) ) {
        e0[i] = itri;
      } else if ( ((v1 == tv1) && (v0 == tv2)) || ((v0 == tv1) && (v1 == tv2)) ) {
        e0[i] = itri;
      } else if ( ((v1 == tv2) && (v0 == tv0)) || ((v0 == tv2) && (v1 == tv0)) ) {
        e0[i] = itri;
      } 
    } 
    hashvalue = (v1+v2)%numhashbins;
    hasharrayptr = hash->getHashBin(hashvalue,&hasharraysize);
    for ( j = 0; j < hasharraysize; j++ ) {
      itri = hasharrayptr[j];
      if ( (unsigned int)itri == i ) continue;
      tv0 = poly->tris[itri]->v0;
      tv1 = poly->tris[itri]->v1;
      tv2 = poly->tris[itri]->v2;
      if ( ((v1 == tv0) && (v2 == tv1)) || ((v2 == tv0) && (v1 == tv1)) ) {
        e1[i] = itri;
      } else if ( ((v1 == tv1) && (v2 == tv2)) || ((v2 == tv1) && (v1 == tv2)) ) {
        e1[i] = itri;
      } else if ( ((v1 == tv2) && (v2 == tv0)) || ((v2 == tv2) && (v1 == tv0)) ) {
        e1[i] = itri;
      } 
    } 
    hashvalue = (v2+v0)%numhashbins;
    hasharrayptr = hash->getHashBin(hashvalue,&hasharraysize);
    for ( j = 0; j < hasharraysize; j++ ) {
      itri = hasharrayptr[j];
      if ( (unsigned int)itri == i ) continue;
      tv0 = poly->tris[itri]->v0;
      tv1 = poly->tris[itri]->v1;
      tv2 = poly->tris[itri]->v2;
      if ( ((v0 == tv0) && (v2 == tv1)) || ((v2 == tv0) && (v0 == tv1)) ) {
        e2[i] = itri;
      } else if ( ((v0 == tv1) && (v2 == tv2)) || ((v2 == tv1) && (v0 == tv2)) ) {
        e2[i] = itri;
      } else if ( ((v0 == tv2) && (v2 == tv0)) || ((v2 == tv2) && (v0 == tv0)) ) {
        e2[i] = itri;
      }
    }       
  }
  //  Now we have to remove the other-side triangles where there was an intersection
  //  edge. 
  for ( i = 0; i < poly->intersection_edges.size(); i++ ) {
    v0 = poly->intersection_edges[i]->v0;
    v1 = poly->intersection_edges[i]->v1;
    hashvalue = (v0+v1)%numhashbins;
    hasharrayptr = hash->getHashBin(hashvalue,&hasharraysize);
    for ( j = 0; j < hasharraysize; j++ ) {
      itri = hasharrayptr[j];
      tv0 = poly->tris[itri]->v0;
      tv1 = poly->tris[itri]->v1;
      tv2 = poly->tris[itri]->v2;
      if ( ((v0 == tv0) && (v1 == tv1)) || ((v0 == tv1) && (v1 == tv0)) ) {
        e0[itri] = NO_EDGE_NBR;
      };
      if ( ((v0 == tv0) && (v1 == tv2)) || ((v0 == tv2) && (v1 == tv0)) ) {
        e2[itri] = NO_EDGE_NBR;
      };
      if ( ((v0 == tv1) && (v1 == tv2)) || ((v0 == tv2) && (v1 == tv1)) ) {
        e1[itri] = NO_EDGE_NBR;
      }
    }    
  }
    
  //  Group the triangles that are neighbors.
  for ( i = 0; i < poly->tris.size(); i++ ) {
    if ( group[i] == UNSET ) {
      fill_group(i,number_of_groups++);
    }
  }

  delete[] e0; delete[] e1; delete[] e2; 
  delete hash;
    
  return CUBIT_SUCCESS;
}

void FBClassify::fill_group(int itri, int ngroup)
{
std::stack<int> vstack;
int ktri;

  group[itri] = ngroup;
  
  if ( (e0[itri] != NO_EDGE_NBR) && (group[e0[itri]] == UNSET) ) 
    vstack.push(e0[itri]); 
  if ( (e1[itri] != NO_EDGE_NBR) && (group[e1[itri]] == UNSET) ) 
    vstack.push(e1[itri]); 
  if ( (e2[itri] != NO_EDGE_NBR) && (group[e2[itri]] == UNSET) ) 
    vstack.push(e2[itri]); 
  while (vstack.size() > 0 ) {
    ktri = vstack.top();
    vstack.pop();
    group[ktri] = ngroup;
    if ( (e0[ktri] != NO_EDGE_NBR) && (group[e0[ktri]] == UNSET) ) 
      vstack.push(e0[ktri]); 
    if ( (e1[ktri] != NO_EDGE_NBR) && (group[e1[ktri]] == UNSET) ) 
      vstack.push(e1[ktri]); 
    if ( (e2[ktri] != NO_EDGE_NBR) && (group[e2[ktri]] == UNSET) ) 
      vstack.push(e2[ktri]); 
  }
}

CubitStatus FBClassify::CharacterizeGroups(int which, bool other_is_planar)
{
  int numberdone;
  unsigned int i;
  bool ifoundit;
  int itri = -1, type;
  FBPolyhedron *poly;

  if ( which == 1 ) poly = polya;
  else poly = polyb;
  
  if ( poly == 0 ) {
    PRINT_ERROR("ERROR:  Polyhedral object undefined in FBClassify::Group\n");
    return CUBIT_FAILURE;
  }
  
  numberdone = 0;
  i = 0; 
  while ( numberdone < number_of_groups ) {
    ifoundit = false;
    while ( i < poly->tris.size() ) {
      if ( group[i] == numberdone ) {
        ifoundit = true;
        itri = (int)i;
        break;      
      }
      i++;
    }
    if ( ifoundit == true ) {
      if ( other_is_planar == false ) 
        type = classify(itri, which);
      else 
        type = classify_against_plane(itri, which);      
      group_characterization.push_back(type);
      numberdone++;
    } else {
      PRINT_ERROR("Error in FBClassify::CharacterizeGroups\n");
      return CUBIT_FAILURE;
    }
  }
  return CUBIT_SUCCESS;
}

int FBClassify::classify_against_plane(int itri, int which)
{
FBPolyhedron *polyref, *polyobj; 
int type, v0, v1, v2;
double xbary, ybary, zbary, a, b, c;
;

  type = FB_ORIENTATION_UNDEFINED;
  if ( which == 1 ) {
    polyobj = polyb;
    polyref = polya;
  } else if ( which == 2 ) {
    polyobj = polya;
    polyref = polya;
  } else {
    PRINT_ERROR("ERROR in FBClassify::classify\n");
    return type;
  }
  v0 = polyref->tris[itri]->v0;
  v1 = polyref->tris[itri]->v1;
  v2 = polyref->tris[itri]->v2;

  xbary = ( polyref->verts[v0]->coord[0] + 
            polyref->verts[v1]->coord[0] + 
            polyref->verts[v2]->coord[0] )/3.;
  ybary = ( polyref->verts[v0]->coord[1] + 
            polyref->verts[v1]->coord[1] + 
            polyref->verts[v2]->coord[1] )/3.;
  zbary = ( polyref->verts[v0]->coord[2] + 
            polyref->verts[v1]->coord[2] + 
            polyref->verts[v2]->coord[2] )/3.;
  a = polyref->tris[itri]->a;
  b = polyref->tris[itri]->b;
  c = polyref->tris[itri]->c;

  //  Figure out which side of the plane we are on.  Since all
  //  of the plane's triangles have the same plane equation
  //  coefficients, might as well use the first one.
  
double obj_tri_a, obj_tri_b, obj_tri_c, obj_tri_d, dotprod, disttoplane;

  obj_tri_a = polyobj->tris[0]->a;
  obj_tri_b = polyobj->tris[0]->b;
  obj_tri_c = polyobj->tris[0]->c;
  obj_tri_d = polyobj->tris[0]->d;
      
  disttoplane = obj_tri_a*xbary + obj_tri_b*ybary + obj_tri_c*zbary + obj_tri_d;    
  if ( disttoplane > EPSILON ) return FB_ORIENTATION_OUTSIDE;
  else if ( disttoplane < -EPSILON ) return FB_ORIENTATION_INSIDE; 
  
  dotprod = obj_tri_a*a + obj_tri_b*b + obj_tri_c*c;
  if ( dotprod > 0. ) return FB_ORIENTATION_SAME;
  else return FB_ORIENTATION_OPPOSITE;
  
  return type;
}

//returns an orientation for the triangle relative to the other body.
//This triangle can be inside or outside the other body.  Or, it can
//be opposite or same.  Opposite means this triangle is very close to
// a triangle in the other body and it has an opposite pointing normal.
// Same means it is very close to a trianglein the other body and it
// their normals point in the same direction.
int FBClassify::classify(int itri, int which)
{
    //  "which" is the object, either 1 or 2, that the triangle itri
    // belongs to.
    //  Th e object to test for inside or outside is the other object.
  FBPolyhedron *polyref, *polyobj; 
    //  polyref = itri's polyhedron; polyobj = the other object
  int type, v0, v1, v2;
  double xbary, ybary, zbary, a, b, c;

  type = FB_ORIENTATION_UNDEFINED;
  if ( which == 1 ) {
    polyobj = polyb;
    polyref = polya;
  } else if ( which == 2 ) {
    polyobj = polya;
    polyref = polyb;
  } else {
    PRINT_ERROR("ERROR in FBClassify::classify\n");
    return type;
  }
  int mydebug = 0;<--- Assignment 'mydebug=0', assigned value is 0
  if(mydebug)<--- Condition 'mydebug' is always false
    polyref->debug_draw_fb_triangle(polyref->tris[itri]);

  v0 = polyref->tris[itri]->v0;
  v1 = polyref->tris[itri]->v1;
  v2 = polyref->tris[itri]->v2;

  xbary = ( polyref->verts[v0]->coord[0] + 
            polyref->verts[v1]->coord[0] + 
            polyref->verts[v2]->coord[0] )/3.;
  ybary = ( polyref->verts[v0]->coord[1] + 
            polyref->verts[v1]->coord[1] + 
            polyref->verts[v2]->coord[1] )/3.;
  zbary = ( polyref->verts[v0]->coord[2] + 
            polyref->verts[v1]->coord[2] + 
            polyref->verts[v2]->coord[2] )/3.;
  a = polyref->tris[itri]->a;
  b = polyref->tris[itri]->b;
  c = polyref->tris[itri]->c;

  unsigned int i, num_perturb;
  double obj_tri_a, obj_tri_b, obj_tri_c, obj_tri_d, dotprod;
  double distance_to_other_sqr, closest_distance_to_plane, t;
  double closest_distance_to_other_sqr;
  double xint, yint, zint, distance_to_plane, closest_dotproduct;
  bool perturb, done, foundone;
  double other_xbar, other_ybar, other_zbar;
  int other_tri_0, other_tri_1, other_tri_2;

  perturb = false;
  num_perturb = 0;
  done = false;
  
  while ( (done == false) && (num_perturb < 20) ) {
    closest_dotproduct = -CUBIT_DBL_MAX + 1.;
    closest_distance_to_plane = CUBIT_DBL_MAX;
    closest_distance_to_other_sqr = CUBIT_DBL_MAX;
    foundone = false;
    for ( i = 0; i < polyobj->tris.size(); i++ ) {
      obj_tri_a = polyobj->tris[i]->a;
      obj_tri_b = polyobj->tris[i]->b;
      obj_tri_c = polyobj->tris[i]->c;
      obj_tri_d = polyobj->tris[i]->d;
  
      dotprod = obj_tri_a*a + obj_tri_b*b + obj_tri_c*c;
        //calculate the distance to the other triangles plane
      distance_to_plane = (obj_tri_a*xbary + obj_tri_b*ybary +
                           obj_tri_c*zbary + obj_tri_d);
       
      
      if ( fabs(dotprod) < EPSILON_CLASSIFY ) {
          //  Is the point in the plane?
        if ( fabs(distance_to_plane) < EPSILON_CLASSIFY ) {
            //  Perturb the ray and recast.
          perturb = true;
          num_perturb += 1;
          break;
        }
        continue;
      }
      
      t =-(distance_to_plane)/dotprod;
      if ( t < -EPSILON_CLASSIFY ) continue;
      xint = xbary + a*t;
      yint = ybary + b*t;
      zint = zbary + c*t;

        //  Check whether the intersection point lies in or on
        //  the object triangle's
        //  bounding box.
      if ( (polyobj->tris[i]->boundingbox.xmin - EPSILON > xint) || 
           (polyobj->tris[i]->boundingbox.xmax + EPSILON < xint) ||
           (polyobj->tris[i]->boundingbox.ymin - EPSILON > yint) || 
           (polyobj->tris[i]->boundingbox.ymax + EPSILON < yint) ||
           (polyobj->tris[i]->boundingbox.zmin - EPSILON > zint) || 
           (polyobj->tris[i]->boundingbox.zmax + EPSILON < zint) ) 
        continue;
      
        //  Is the point (xint, yint, zint) inside or on the triangle?
        //  Get a principal projection to make this a 2D problem.
      double xp1, yp1, xp2, yp2, xp3, yp3, ptx, pty;
      int retval;

      if ( (fabs(obj_tri_b) >= fabs(obj_tri_a)) && 
           (fabs(obj_tri_b) >= fabs(obj_tri_c)) ) {
        xp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[0];
        yp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[2];
        xp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[0];
        yp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[2];
        xp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[0];
        yp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[2];
        ptx = xint;
        pty = zint;        
      } else if ( fabs(obj_tri_a) >= fabs(obj_tri_c) ) {
        xp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[1];
        yp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[2];
        xp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[1];
        yp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[2];
        xp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[1];
        yp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[2];
        ptx = yint;
        pty = zint;   
      } else {
        xp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[0];
        yp1 = polyobj->verts[polyobj->tris[i]->v0]->coord[1];
        xp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[0];
        yp2 = polyobj->verts[polyobj->tris[i]->v1]->coord[1];
        xp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[0];
        yp3 = polyobj->verts[polyobj->tris[i]->v2]->coord[1];
        ptx = xint;
        pty = yint;  
      }
      retval = pt_in_tri_2d(ptx,pty,xp1,yp1,xp2,yp2,xp3,yp3);
      if ( (retval == FB_ORIENTATION_INSIDE) ||
           (retval == FB_ORIENTATION_ON) ) {
          //calculate the distance to the other triangle's centroid
        other_tri_0 = polyobj->tris[i]->v0;
        other_tri_1 = polyobj->tris[i]->v1;
        other_tri_2 = polyobj->tris[i]->v2;
        other_xbar = ( polyobj->verts[other_tri_0]->coord[0] + 
                       polyobj->verts[other_tri_1]->coord[0] + 
                       polyobj->verts[other_tri_2]->coord[0] )/3.;
        other_ybar = ( polyobj->verts[other_tri_0]->coord[1] + 
                       polyobj->verts[other_tri_1]->coord[1] + 
                       polyobj->verts[other_tri_2]->coord[1] )/3.;
        other_zbar = ( polyobj->verts[other_tri_0]->coord[2] + 
                       polyobj->verts[other_tri_1]->coord[2] + 
                       polyobj->verts[other_tri_2]->coord[2] )/3.;
        
          //calculate the distance (squared) to the other triangle's centroid
        distance_to_other_sqr = ( (xbary-other_xbar)*(xbary-other_xbar) +
                                  (ybary-other_ybar)*(ybary-other_ybar) +
                                  (zbary-other_zbar)*(zbary-other_zbar) );
          //if this is the closest other triangle so far...
        if(closest_distance_to_other_sqr > distance_to_other_sqr){
            //then we found one, and update the closest distance, dot prod,
            // and distance to other plane.
          foundone = true;
          closest_distance_to_other_sqr = distance_to_other_sqr;
          closest_dotproduct = dotprod;
          if(mydebug){
            polyobj->debug_draw_fb_triangle(polyobj->tris[i]);
            GfxDebug::mouse_xforms();
          }
          closest_distance_to_plane = distance_to_plane;
            //  This is the closest triangle.
          if ( fabs(closest_distance_to_plane) < EPSILON_CLASSIFY ) 
            break;   
        }
      }       
    }
    if ( perturb == false ) done = true;
    else {
        //  perturb the ray and try again.
      perturb_the_ray(xbary, ybary, zbary);      
      perturb = false;
    }
  }
    //if we are very close to the plane of the closest other triangle
    // then we are either going to classify as opposite or same depending
    // on the relationship of the normals
  if ( (fabs(closest_distance_to_plane) < EPSILON_CLASSIFY ) ){
    if ( closest_dotproduct > 0.0 )
      type = FB_ORIENTATION_SAME;
    else
      type = FB_ORIENTATION_OPPOSITE;
  }
    //otherwise we are going to classify as inside or outside.  If we
    // didn't find any triangles that projected into our triangle,
    // we must be outside.  Otherwise we compare the normals to determine
    // whether we are inside or outside.
  else {
    if  ( foundone == false )
      type = FB_ORIENTATION_OUTSIDE;
    else if ( closest_dotproduct > 0.0 )
      type = FB_ORIENTATION_INSIDE;
    else
      type = FB_ORIENTATION_OUTSIDE;  
  }
  if(mydebug)
    GfxDebug::display_all();
  return type;
}

void FBClassify::perturb_the_ray(double &xbary, double &ybary, double &zbary)
{
  xbary += 1.e-4*(double(rand())/(RAND_MAX+1.0)-0.5);
  ybary += 1.e-4*(double(rand())/(RAND_MAX+1.0)-0.5);
  zbary += 1.e-4*(double(rand())/(RAND_MAX+1.0)-0.5);
}

int FBClassify::pt_in_tri_2d(double xpt, double ypt,
                              double x0, double y0,
		              double x1, double y1,
		              double x2, double y2)
{
//  From Schneider & Eberly, "Geometric Tools for COmputer Graphics",
//  Chap. 13.3.1.  If triangle is needle-thin, CUBIT_FAILURE might be
//  returned, in wich case is_point_in is undefined.

double c0, c1, c2;
double e0x, e1x, e2x, e0y, e1y, e2y;
double n0x, n1x, n2x, n0y, n1y, n2y;
double denom0, denom1, denom2;
int result;

  e0x = x1 - x0; e0y = y1 - y0;  
  e1x = x2 - x1; e1y = y2 - y1;  
  e2x = x0 - x2; e2y = y0 - y2;  
  n0x = e0y; n0y = -e0x;
  n1x = e1y; n1y = -e1x;
  n2x = e2y; n2y = -e2x;
  denom0 = n1x*e0x + n1y*e0y;
  if ( fabs(denom0) < EPSILON_CLASSIFY ) {
    PRINT_ERROR("Failure in pt_in_tri_2d; needle-thin triangle encountered.\n");
    return FB_ORIENTATION_UNDEFINED;
  }
  denom1 = n2x*e1x + n2y*e1y;
  if ( fabs(denom1) < EPSILON_CLASSIFY ) {
    PRINT_ERROR("Failure in pt_in_tri_2d; needle-thin triangle encountered.\n");
    return FB_ORIENTATION_UNDEFINED;
  }
  denom2 = n0x*e2x + n0y*e2y;
  if ( fabs(denom2) < EPSILON_CLASSIFY ) {
    PRINT_ERROR("Failure in pt_in_tri_2d; needle-thin triangle encountered.\n");
    return FB_ORIENTATION_UNDEFINED;
  }
  
  c0 = -( n1x*(xpt-x1) + n1y*(ypt-y1) )/denom0;
  c1 = -( n2x*(xpt-x2) + n2y*(ypt-y2) )/denom1;
  c2 = -( n0x*(xpt-x0) + n0y*(ypt-y0) )/denom2;

  if ( (c0 > 0.0) && (c1 > 0.0) && (c2 > 0.0) ) result = FB_ORIENTATION_INSIDE;
  else if ( (c0 < 0.0) || (c1 < 0.0) || (c2 < 0.0) ) result = FB_ORIENTATION_OUTSIDE;
  else result = FB_ORIENTATION_ON;

  return result;

}

void FBClassify::get_group(std::vector<int> **this_group,
                           std::vector<int> **this_group_characterization)
{
  *this_group = &group;
  *this_group_characterization = &group_characterization;
}