1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
//---------------------------------------------------------------------------<--- Skipping configuration 'ACIS' since the value of 'ACIS' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'DBL_MAX' since the value of 'DBL_MAX' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'DBL_MIN' since the value of 'DBL_MIN' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.<--- Skipping configuration 'M_PI' since the value of 'M_PI' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
// Class Name:  RTree
// Description: Rectangle tree.  Multidimensional access method (efficient
//              method to find ranges of boxes.
// The algorithm was taken from the following paper:
//	      Guttman, A., "R-Trees: A Dynamic Index Structure for
//              Spatial Searching", Proceedings of the SIGMOD
//              Conference, Boston, June 1984, p. 47-57.
// Creation Date: 3/29/02
// Owner:  David R. White
//---------------------------------------------------------------------------

//---------------------------------
//Include Files
//---------------------------------
#include "RTree.hpp"
#include "RTreeNode.hpp"
#include "CubitBox.hpp"
#include "CubitVector.hpp"
#include "DLIList.hpp"
#include "PriorityQueue.hpp"
//---------------------------
//Initialize Static Members
//---------------------------

#ifdef INLINE_TEMPLATES
#define MY_INLINE inline
#else
#define MY_INLINE
#endif
template <class Z> MY_INLINE RTree<Z>::RTree (double tol)
{
  myRoot = NULL;
  myTolerance = tol;
  maxChildren = 8;
  minChildren = 2;
}
template <class Z> MY_INLINE RTree<Z>::RTree (double tol, int max_c, int min_c)
{
  myRoot = NULL;
  myTolerance = tol;
  maxChildren = max_c;
  minChildren = min_c;
}
template <class Z> MY_INLINE RTree<Z>::~RTree()
{
  if ( myRoot != NULL )
  {
      //Go through and get all the children in a list.
    DLIList <RTreeNode<Z>*> to_delete;
    to_list(to_delete, myRoot);
    int ii;
    for(ii = to_delete.size(); ii > 0; ii-- )
      delete to_delete.pop();
    delete myRoot;
  }
}
template <class Z> MY_INLINE void RTree<Z>::to_list(DLIList <RTreeNode<Z>*> &member_list,
                                          RTreeNode<Z> *top)
{
    //Get the children of the top into the list.
  int ii;
  RTreeNode <Z> *curr_node;<--- The scope of the variable 'curr_node' can be reduced.
  for ( ii = 0; ii < top->num_children(); ii++ )
  {
    curr_node = top->get_child(ii);
    member_list.append(curr_node);
      //don't go below the bottom level...
    if ( curr_node->get_leaf_level() == 0 )
      continue;
    to_list(member_list, curr_node);
  }
  return;
}

template <class Z> MY_INLINE CubitStatus RTree<Z>::add(Z data)
{
  CubitStatus stat;
  RTreeNode<Z> *new_root;
  RTreeNode<Z> *new_node = new RTreeNode<Z> (data, myTolerance, maxChildren,
                                             minChildren);
  if ( myRoot == NULL )
  {
    CubitBox b_box = data->bounding_box();
    myRoot = new RTreeNode <Z> (b_box, maxChildren, minChildren);
	myRoot->set_leaf_level(LEAF_RNODE);
    stat = myRoot->insert(new_node, new_root);
      //this shouldn't change the root, or fail!
    if ( stat != CUBIT_SUCCESS || new_root != NULL )
    {
      PRINT_ERROR("Insertion into RTree failed.\n");
      return CUBIT_FAILURE;
    }
    return CUBIT_SUCCESS;
  }
  
  stat = myRoot->insert(new_node, new_root);
  if ( stat != CUBIT_SUCCESS )
  {
    PRINT_ERROR("Insertion into RTree failed.\n");
    return CUBIT_FAILURE;
  }
  if ( new_root != NULL )
  {
      //this is fine, it just means we are adding more
      //so the root had to be split...
    myRoot = new_root;
  }
  return CUBIT_SUCCESS;
}
template <class Z> MY_INLINE CubitStatus RTree<Z>::find(const CubitBox &range_box,
                                              DLIList <Z> &range_members )
{
    //Find all of the members of the RTree that intersect this range_box.
  if ( myRoot == NULL )
  {
      // Nothing has been added to this Tree yet, so we are not going to find this
      // object in it.
      return CUBIT_SUCCESS;
  }
  CubitStatus stat = recursive_find(myRoot, range_box, range_members);
  if ( stat != CUBIT_SUCCESS )
    return CUBIT_FAILURE;
  else
    return CUBIT_SUCCESS;
}
template <class Z> MY_INLINE CubitStatus RTree<Z>::recursive_find(RTreeNode<Z> *rect_tree,
                                                        const CubitBox &range_box,
                                                        DLIList <Z> &range_members )
{
  CubitBox rect_box = rect_tree->bounding_box();
  if ( !range_box.overlap(myTolerance, rect_box ) )
    return CUBIT_SUCCESS;

    //Now see if this is a data member.  If it is, append the data to the
    //list.
  if (rect_tree->is_data() )
  {
    range_members.append(rect_tree->get_data());
    return CUBIT_SUCCESS;
  }
    //Now if this is anything else we need to keep iterating...
  int loop_size = rect_tree->num_children();
    //We are doing a depth-first search of the tree.  Not
    //all branches will need to be followed since they won't
    //all overlap...
  int ii;
  RTreeNode<Z> *curr_node;<--- The scope of the variable 'curr_node' can be reduced.
  CubitStatus stat;<--- The scope of the variable 'stat' can be reduced.
  for ( ii = 0; ii < loop_size; ii++ )
  {
    curr_node = rect_tree->get_child(ii);
    if ( curr_node == NULL )
    {
      PRINT_ERROR("Problems finding boxes in range.\n");
      assert(curr_node != NULL);
      return CUBIT_FAILURE;
    }
    stat = recursive_find(curr_node, range_box, range_members);
    if ( stat != CUBIT_SUCCESS )
      return stat;
  }
  
  return CUBIT_SUCCESS;
}
template <class Z> MY_INLINE CubitBoolean RTree<Z>::remove( Z data )
{
  RTreeNode<Z> *new_root = NULL;
  CubitBoolean delete_root = CUBIT_FALSE;
  CubitBoolean return_val = myRoot->remove( data, new_root, delete_root );
  if ( new_root != NULL )
  {
      //Only if we are condensing the tree do we want to delete the root node.
      //There are other reasons the root has changed (rebalance...), in which
      //cases the root is now a child of the new root...
    if ( delete_root )
      delete myRoot;
    myRoot = new_root;
  }
  return return_val;
}
//--------------------------------------------------------------------------
//Algorithm: min_dist_sq
//Description:  Finds the minimum distance squared between the given
//              point and the box. If the point is on or in the box, the
//              min distance is zero.
//--------------------------------------------------------------------------
template <class Z> MY_INLINE
double RTree<Z>::min_dist_sq(CubitVector &q,
                             CubitBox &b_box)
{
  CubitVector b_min, b_max;
  b_min = b_box.minimum();
  b_max = b_box.maximum();
  double dist;
  CubitVector r;

  if ( q.x() < b_min.x() )
    r.x(b_min.x());
  else if ( q.x() > b_max.x() )
    r.x(b_max.x());
  else
    r.x(q.x());
  
  if ( q.y() < b_min.y() )
    r.y(b_min.y());
  else if ( q.y() > b_max.y() )
    r.y(b_max.y());
  else
    r.y(q.y());
  
  if ( q.z() < b_min.z() )
    r.z(b_min.z());
  else if ( q.z() > b_max.z() )
    r.z(b_max.z());
  else
    r.z(q.z());
  
  dist = (q-r).length_squared();

  return dist;
}
template <class Z> MY_INLINE
bool RTree<Z>::less_than_func(RTreeNode<Z> *&node_a,
                              RTreeNode<Z> *&node_b)
{
  if ( node_a->get_dist() < node_b->get_dist() )
    return true;
  else
    return false;
}

template <class Z> MY_INLINE
CubitStatus RTree<Z>::k_nearest_neighbor(CubitVector &q,
                                         int k,
                                         double &closest_dist,
                                         DLIList<Z> &nearest_neighbors,
                                         typename RTree<Z>::DistSqFunc dist_sq_point_data)
{
    //first create the priority queue.
  PriorityQueue< RTreeNode<Z>*> near_queue(RTree<Z>::less_than_func);
  
  myRoot->set_dist(0.0);
  near_queue.push(myRoot);
  RTreeNode<Z> *element, *child_element;
  int num_found = 0;
  int ii;
  double data_dist, box_dist;
  Z data;
  
  while( !near_queue.empty() )
  {
    element = near_queue.top();
    near_queue.pop();
    if ( element->is_data() )
    {
      data = element->get_data();
        //calculate the exact distance.
      data_dist = dist_sq_point_data(q, data);
        //compare this distance with the next item's distance.
      if ( element->dist_is_box() && !near_queue.empty() &&
           data_dist > near_queue.top()->get_dist())
      {
          //If its bigger, add it back into the list
          //with the updated distance.
        element->set_dist(data_dist);
        near_queue.push(element);
        element->set_dist_is_box(0);
      }
      else
      {
        nearest_neighbors.append(element->get_data());
        if ( num_found == 0 )
          closest_dist = element->get_dist();
        num_found++;
        if ( num_found == k )
          return CUBIT_SUCCESS;
      }
    }
    else 
    {
      for ( ii = 0; ii < element->num_children(); ii++ )
      {
        child_element = element->get_child(ii);
        CubitBox bounding_box = child_element->bounding_box();
        box_dist = min_dist_sq(q, bounding_box);
        child_element->set_dist(box_dist);
        near_queue.push(child_element);
      }
    }
  }
  return CUBIT_FAILURE;
}

template <class Z> MY_INLINE
CubitStatus RTree<Z>::find( const CubitVector &ray_origin, const CubitVector &ray_direction,
      DLIList <Z> &range_members)
{
    //Find all of the members of the RTree that intersect this ray.
  if ( myRoot == NULL )
  {
      // Nothing has been added to this Tree yet, so we are not going to find this
      // object in it.
      return CUBIT_SUCCESS;
  }
  CubitStatus stat = recursive_find(myRoot, ray_origin, ray_direction, range_members);
  if ( stat != CUBIT_SUCCESS )
    return CUBIT_FAILURE;
  else
    return CUBIT_SUCCESS;
}

template <class Z> MY_INLINE
CubitStatus RTree<Z>::recursive_find(RTreeNode<Z> *rect_tree,
                             const CubitVector &ray_origin,
                             const CubitVector &ray_direction,
                             DLIList <Z> &range_members)
{
  CubitBox rect_box = rect_tree->bounding_box();
  //if ( !range_box.overlap(myTolerance, rect_box ) )
  if ( !rect_box.intersect(ray_origin, ray_direction) )
    return CUBIT_SUCCESS;

    //Now see if this is a data member.  If it is, append the data to the
    //list.
  if (rect_tree->is_data() )
  {
    range_members.append(rect_tree->get_data());
    return CUBIT_SUCCESS;
  }
    //Now if this is anything else we need to keep iterating...
  int loop_size = rect_tree->num_children();
    //We are doing a depth-first search of the tree.  Not
    //all branches will need to be followed since they won't
    //all overlap...
  int ii;
  RTreeNode<Z> *curr_node;<--- The scope of the variable 'curr_node' can be reduced.
  CubitStatus stat;<--- The scope of the variable 'stat' can be reduced.
  for ( ii = 0; ii < loop_size; ii++ )
  {
    curr_node = rect_tree->get_child(ii);
    if ( curr_node == NULL )
    {
      PRINT_ERROR("Problems finding boxes in range.\n");
      assert(curr_node != NULL);
      return CUBIT_FAILURE;
    }
    stat = recursive_find(curr_node, ray_origin, ray_direction, range_members);
    if ( stat != CUBIT_SUCCESS )
      return stat;
  }
  
  return CUBIT_SUCCESS;
}