1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#ifndef CUBITFACETDATA_HPP 
#define CUBITFACETDATA_HPP 
 
// Include for CubitBoolean 
#include "CubitDefines.h" 
#include "MemoryManager.hpp" 
#include "CubitPoint.hpp" 
#include "DLIList.hpp" 
#include "CubitBox.hpp" 
#include "CubitFacet.hpp" 
class CubitVector; 
class CubitBox; 
class CubitPlane; 
class CubitFacetEdge; 
 
class CubitFacetData : public CubitFacet 
{ 
private: 
  CubitPoint *pointArray[3]; 
  CubitFacetEdge *edgeArray[3]; 
  int edgeUse[3]; 
  static MemoryManager memoryManager; 
    //- memory management object 
  int entityId; 
    //- for debug tracking...
  void allocate_edge(CubitPoint *p1, CubitPoint *p2, int edge_index);
  void define_point(CubitFacetEdge *e1, CubitFacetEdge *e2, 
                    int point_index);
  void define_bounding_box();
 
public: 
  CubitFacetData( CubitPoint *p1, CubitPoint *p2, 
                  CubitPoint *p3);
  CubitFacetData( CubitPoint *p1, CubitPoint *p2,
                  CubitPoint *p3, int *tool_data);
  CubitFacetData( CubitFacetEdge *e1, CubitFacetEdge *e2, 
                  CubitFacetEdge *e3);
  ~CubitFacetData();
  
  void destruct_facet_internals();
  
  virtual int id(){return entityId;} <--- Function in derived class<--- Function in derived class
  virtual void set_id( int ii ) { entityId = ii; }<--- Function in derived class<--- Function in derived class
       
  SetDynamicMemoryAllocation(memoryManager) 
    //- class specific new and delete operators 
  CubitStatus closest_point( const CubitVector &point,  
                                     CubitVector &closest_point); 
    //- Sets the closest point on the plane defined by  
    //- this facet to the point in space. 
    //- If the normal length to the facet is 0, it will return CUBIT_FAILURE. 
 
  CubitPoint* point( int index ); <--- Function in derived class<--- Function in derived class
    //Get the point at the specified index. 
    //asserts that the index is in range, for a 
    //triangle, 0 <= index <= 2. 
 
   
  void set_point( CubitPoint *the_point, int index );  
    //- sets the point into the facet. 
 
  CubitFacetEdge *edge( int index ); <--- Function in derived class<--- Function in derived class
  void edge( CubitFacetEdge *the_edge, int index ); <--- Function in derived class<--- Function in derived class
    //- get and set edge pointers 
 
  void edge_use( int direction, int index ); <--- Function in derived class<--- Function in derived class
  int edge_use( int index ); <--- Function in derived class<--- Function in derived class
    //- get and set the edge uses 
  int sense(int index); <--- Function in derived class<--- Function in derived class
 
  CubitPoint* split_edge( int edge_index, const CubitVector& position );
  CubitPoint* split_edge( CubitPoint* edge_pt1, CubitPoint* edge_pt2, <--- Function in derived class<--- Function in derived class
                          const CubitVector& position ); 
    //R CubitPoint 
    //R- The new CubitPoint created. 
    //I edge_pt1, edge_pt2 
    //I- The end points of an edge of this triangle. 
    //I position 
    //I- The position at which to split the edge. 
    //O new_facet1 
    //O- The new facet resulting from splitting the edge on 
    //O- this triangle. 
    //O new_facet2 
    //O- The new facet resulting from splitting the same edge 
    //O- on the ajacent triangle.  If there is no other  
    //O- triangle sharing the edge, NULL will be passed back. 
    //- Split an edge on this triangle and the other triangle 
    //- sharing the edge, if it exists. 
    //- 
    //- Note:  No check is done on the location of the split 
    //-        position. 
     
  CubitPoint* insert_point( const CubitVector& position, <--- Function in derived class<--- Function in derived class
                            CubitFacet*& new_tri1, 
                            CubitFacet*& new_tri2 ); 
    //R CubitPoint 
    //R- The new CubitPoint created. 
    //I position 
    //I- The position at which to insert a point in the triangle. 
    //O new_facet1, new_facet2 
    //O- The two new facets created. 
    //- Insert a point in the interior of this triangle. 
    //- 
    //- Note:  No check is done on the location of the split 
    //-        position. 
  
  CubitStatus flip_edge( int edge_index );
  CubitStatus flip_edge( CubitFacetEdge *edge );
    //- Given an edge shared by exactly two facets, 
    //- flip the edge such that it connects the 
    //- "other" two facet points instead.
    //-
    //-  *----*        *----*
    //-  |\   |        |   /|
    //-  | \  |  ==>   |  / |  
    //-  |  \ |        | /  |
    //-  |   \|        |/   |
    //-  *----*        *----*
    //-
    //- NOTE:  If you are trying to reverse the sense of
    //-        an edge, this is NOT the function you want!
   
  void flip(); <--- Function in derived class<--- Function in derived class
    //- reorient the facet 

}; 


inline CubitPoint* CubitFacetData::point( int index ) 
{ 
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) 
    return pointArray[index]; 
  else 
  { 
    switch(index) 
    { 
    case 0: return pointArray[0]; 
    case 1: return pointArray[2]; 
    case 2: return pointArray[1]; 
    } 
  } 
  return NULL; 
} 
 
inline void CubitFacetData::set_point( CubitPoint* the_point, int index ) 
{ 
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) 
    pointArray[index] = the_point; 
  else 
  { 
    switch(index) 
    { 
    case 0: pointArray[0] = the_point; break; 
    case 1: pointArray[2] = the_point; break; 
    case 2: pointArray[1] = the_point; break; 
    } 
  } 
} 
 
inline CubitFacetEdge* CubitFacetData::edge( int index ) 
{ 
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) { 
    return edgeArray[index]; 
  } 
  else 
  { 
    switch(index) 
    { 
    case 0:return edgeArray[0]; 
    case 1:return edgeArray[2]; 
    case 2:return edgeArray[1]; 
    } 
  } 
  return NULL; 
} 
 
 
inline void CubitFacetData::edge( CubitFacetEdge *the_edge, int index ) 
{ 
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) 
    edgeArray[index] = the_edge; 
  else 
  { 
    switch(index) 
    { 
    case 0: edgeArray[0] = the_edge; break; 
    case 1: edgeArray[2] = the_edge; break; 
    case 2: edgeArray[1] = the_edge; break; 
    } 
  } 
} 
 
inline int CubitFacetData::edge_use( int index )  
{  
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) 
    return edgeUse[index];  
  else 
  { 
    switch(index) 
    { 
    case 0: return -edgeUse[0]; 
    case 1: return -edgeUse[2]; 
    case 2: return -edgeUse[1]; 
    } 
  } 
  return 0; 
} 

//- This function is defined so that Meshing and Geometry Entities 
//- return the same values as needed in the FacetorTool
inline int CubitFacetData::sense( int index ) { 
  if(edge_use(index) == 1)
    return CUBIT_FORWARD;
  else if(edge_use(index) == -1)
    return CUBIT_REVERSED;
  else 
    return CUBIT_UNKNOWN;
} 
 
inline void CubitFacetData::edge_use( int direction, int index )  
{  
  assert( (index >= 0) && (index < 3) ); 
  if (!is_backwards()) 
    edgeUse[index] = direction;  
  else 
  { 
    switch(index) 
    { 
    case 0: edgeUse[0] = -direction; break; 
    case 1: edgeUse[2] = -direction; break; 
    case 2: edgeUse[1] = -direction; break; 
    } 
  } 
} 
 
#endif