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1 Project Description 

1.1 Abstract

We propose to investigate techniques for improving the analysis and visualization of large-scale scientific simulation datasets.  Our approach focuses on developing four main technologies and brings together the expertise of research groups from three Chicago area universities: A group lead by Stevens (UChicago) will develop a high-performance PC cluster based analysis engine (the Caravel Analysis and Display Engine or CADE) with co-processor augmented nodes to support rapid feature detection algorithms and high-performance rending, a group lead by Choudhary (Northwestern) will adopt high-performance computer vision and clustering algorithms to the analysis of 3D simulation data and developing integrated data-management techniques to support real-time feature based navigation and data exploration, and groups lead by Leigh (UIC) and Stevens and Papka (UChicago) respectively aimed at developing visualization technology utilizing high-resolution tiled and immersive display technology.   In addition the collaboration as a whole will also develop the concept of Datamaps and Feature Landscapes to provide mechanisms for communicating between groups and programs the information needed to organize, plan and navigate terabyte class datasets and record annotations and discoveries. We will apply these techniques to two large-scale datasets, computational astrophysics simulations of compact stellar objects access coordinated by Fryxell (UChicago) and direct Navier-Stokes simulations of model CFD problems coordinated by Tufo (UChicago).  Both of these datasets are terabyte class, have complex time-dependent 3D structures, and are the output of ongoing scientific simulation research by members of the Caravel project team. 
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1.2 Background and Motivation

Like our Project’s namesake the Caravel
, we seek to advance the technology needed to move large-scale scientific dataset exploration, analysis and visualization into the future, and by doing so to enable the exploration of new worlds.  To do this we seek an approach that clearly leverages existing technologies (e.g. feature detection techniques that borrow from computer vision, scalable hardware environments that borrow from commodity PCs and signal processing chips, display environments that leverage commodity projectors) and seeks to combine them in new ways, but also to develop new technologies where needed to realize this new type of exploration vehicle.  We believe this project combines a unique set of investigators, expertise and approaches and builds on solid foundations of existing collaborations. 

1.2.1 Concepts and Challenges

It is rapidly becoming apparent, that as large-scale computers and instruments become more capable and more widely used the data generated for subsequent analysis is increasing in size and complexity. Soon scientific output will be rate limited not by the speed or capacity of our supercomputers, but by the speed at which we can construct meaningful insights from this ocean of data.   Furthermore, it is increasingly the case that, groups of colleagues who wish to explore data from large-scale simulations and discuss a new result are also not co-located.  In the NSF context, scientists, computers, and data may be distributed across a half dozen universities; for these reasons, any coherent future large-scale data visualization strategy must necessarily introduce aggressive support for collaborative computational assistance in analysis and visualization.  In particular:

· We must deal with large-scale data that is rapidly exceeding our ability to informally “browse” for interesting phenomena or features;

· We must deal with collaborative teams that need to collectively pool their expertise in the analysis of complex datasets;

· We must deal with computing systems that are increasingly leveraging commodity technology to provide cost-effective performance; and

· We must deal with multiple types and capabilities of display environments.

In our view, it is important that our strategy should address these issues in an integrated fashion.  The Caravel Project directly addresses each of these challenges and in the process will seek to prototype a set of tools and techniques that will advance the state-of-the-art of large-scale data visualization. 

1.2.2 Data and Visualization Corridors – The DVC Workshops 

During 1998 scientific visualization and data management communities were involved in a series of DOE and NSF sponsored workshops aimed at studying and refining the concept of Data and Visualization Corridors.  These workshops resulted in a technical report being issued from Caltech in the autumn of 1998 [Smith98] that summarized the key findings and recommendations of the community for additional research needed to address the needs of future large-scale simulation programs of the country including the ASCI and planned NSF programs. Important recommendations from the DVC report relevant to the Caravel Project proposal are reproduced below.

The recommendations are that the U.S. federal government should:
1. Establish a vigorous and well-funded interdisciplinary research and development program aimed at significantly improving the ability to see and understand output from large data sources. Such a program should be composed of both small- and large-scale research and development efforts focused on the interaction of data management and visualization technologies. 

2. Conduct R&D focused on graphics and scientific visualization to develop new:

· scalable architectures to assure the availability of high performance graphics systems enabling advanced visualization techniques;  

· modes of visualization for interpretation and understanding of large-scale datasets resulting from simulations and experiments;

· human(s)-in-the-loop methodologies for steering trial computations and monitoring large-scale production simulations; and

· Desktop, large-screen wall displays and immersive VR environments enabling individuals to interact more effectively with data and objects in 3D and with each other.

3. Conduct R&D focused on data management for large-scale datasets, including techniques for extracting abstract scientific features from multi- Petabyte databases and for enabling development of intelligent, adaptive secondary and tertiary storage systems and high-speed network infrastructure capable of moving, storing, querying, and manipulating large datasets on an interactive time scale, reaching the 100-TB dataset size in time. 

We believe that the Caravel Project represents a modest beginning towards these ends and that it is highly relevant to ongoing scientific simulation research programs in NSF.  The Caravel Project addresses, in particular, the important problem of examining the concept of architectures to support data analysis and visualization and the development of commodity technology based approaches to addressing the large-scale data visualization problem. Cost effective architectures for rapid feature detection, extraction, and visualization is the heart of this proposal.  We believe that it addresses not only the spirit of the NSF/DOE workshops, but also the spirit of the NSF solicitation for which are responding.

1.3 Terabyte Test Case Datasets Description

In order to validate our progress and calibrate the contributions this project intends to make in feature detection and visualization of large-scale datasets it is critical that disciplinary scientists be involved in all phases of the project.   To achieve that linkage we have selected two test datasets and the scientific teams involved in creating them.  Each of these datasets is the result of ongoing research in high-performance scientific computing at the University of Chicago.  The first dataset comes from the ASCI FLASH Center at the University of Chicago and Argonne.  The second dataset is the result of an ongoing study of Fischer and Tufo at Argonne and Chicago and has been the target for high-performance visualization research [Tufo99a, Tufo99b].  In both cases, the data is available locally, and resident expertise is intimately involved in this project.   Furthermore we have control over the formatting, structure, and details of the data that will be used for experiments and have rapid access to a larger body of scientific expertise to participate in analysis of experiments.  We believe this is an ideal situation with local expertise prepared to actively participate in the project. We provide more detailed descriptions of the datasets below.

1.3.1 Computational Astrophysics Datasets and Visualization Requirements

Computational astrophysics covers a very broad range of visualization requirements, depending on the type of object to be simulated, the numerical techniques used, and so forth.  Modeling stars primarily involves continuum physics such as gas dynamics and radiative transfer, usually with the addition of complex microphysics.  Cosmological simulations, on the other hand, frequently involve following discreet particles, which represent individual galaxies.  For modeling other objects, such as individual galaxies, a combination of gas and particles may be required.  In this section, we will concentrate on the visualization requirements for the ASCI Center for Thermonuclear Flashes at the University of Chicago, which fall into the first category.

The phenomena being studied include X-ray bursts, Novae, and Type Ia Supernovae.  The common thread between these objects is that all involve the ignition of nuclear fuel in a compact star (neutron star or white dwarf) under degenerate conditions.  The physics, which needs to be modeled, includes gas dynamics, radiative transfer, magnetic fields, nuclear burning, and gravity.  Understanding each of these objects requires a full three-dimensional simulation, partly because of their complex geometries and partly because of the presence of turbulence, which cannot be modeled correctly in two dimensions.  Important small-scale features are present in all three objects, so that very large computational grids are required.  As a result, these simulations will produce extremely large data sets, which must be visualized in order to understand the results. Some of these simulations can best be carried out on a fixed, structured grid.  However, in many cases a more efficient solution can be obtained by using Adaptive Mesh Refinement, which concentrates grid points in only those regions where small-scale features are present.  This can significantly reduce the dataset size, but the complex data structures that result create additional challenges for visualization.

The dataset size produced by these simulations can vary considerably. It depends, for example, on which object is being simulated, whether the entire object or just a small section of it is being computed, and the complexity of the microphysics.  The number of grid points N in each spatial dimension will generally fall in the range from 256 to 2048.  The number of variables V that must be stored at each grid point will be at least 7 for the simplest case of just gas dynamics.  Including magnetic fields adds another 3.  When a nuclear reaction network is added, an additional variable is required for the abundance of each nuclear species.  This could increase the number of variables per grid point to 100 or more. The data set for an entire simulation will consist of all of the gas dynamics variables and perhaps a subset of the composition variables at a number T of time steps, where T is typically in the range of 10 to 1000 depending on the level of analysis required and whether or not a movie of the results is desired.  Using 4 Byte words to store each value, the total data set size S for a single calculation is then given by

   S = 1.28 Tbytes * (N/512)3 * (V/25) * (T/100).

Visualization of the scalar fields, such as density, pressure, and composition will be done using iso-surfaces, volumetric rendering, and one and two-dimensional slices through the grid.  For the velocity, vector plots and streamlines are needed.  For magnetized objects, we would like to plot the field lines.  It is also desired to be able to superimpose the computational grid on the plot and to inquire about the value of any variable at any grid point (See Figure 1). Feature extraction is vital in analyzing data sets of this size. Sharp interfaces, such as shocks, contact discontinuities, and slip surfaces are expected to play a pivotal role in the evolution of all of the objects we wish to simulate.  Automatic identification of turbulent regions and areas where mixing is taking place due to Kelvin-Helmholtz, Rayleigh-Taylor, and Richtmyer-Meshkov instabilities will significantly improve the accuracy and efficiency of the data analysis. In addition, in many simulations, it is useful to analyze the interaction of vortices.  This task would be much easier if the location of these structures were automatically detected.  Another promising application of feature extraction is in the comparison of different simulations of the same object to determine, for example, what changes in the important features occur as a result of modifying the initial conditions or the micro-physics in the code.
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1.3.2 Computational Fluid Dynamics Model Datasets

Visualization requirements for computational fluid dynamics (CFD) are driven by three-dimensionality, unsteadiness, a broad range of scales and complex geometries.   The primitive variables are three components of velocity, pressure, and temperature.  In addition, derived quantities such as vorticity, helicity, dynamic pressure, etc., are indispensable in analysis.  For instance, heat transfer near a solid surface is governed by the temperature gradient at the surface.  Identifying regions of high heat loss requires differentiation of the temperature field followed by plotting the component normal to the surface.  This involves not only differentiation, but also detailed identification of the bounding surface of the domain. 

Currently, we are investigating a number of three-dimensional flows at transitional Reynolds numbers.   These include buoyancy-driven convection in rotating shells, which model deep atmospheres such as on the Sun or Jupiter; heat transfer enhancement in grooved passages; and boundary layer transition in the wake of hemispherical roughness elements.   This latter flow involves the time-periodic formation of a complex chain of hairpin vortices, which interact with the boundary layer and with each other.    Such vortices have been observed in a number of transitional and turbulent boundary layer flows, and are believed to be one of the key elements governing near-wall turbulence [Smith91].  Understanding the vortex dynamics requires visualization of the evolution of vortices in space and time.  This is currently done with a two-step procedure which involves preprocessing data volumes for a given simulation at a number of time steps to generate isosurfaces of vorticity (See Figure 2), a derived quantity which acts as a vortex marker for viscous incompressible flows.  The series of isosurface datasets are then loaded into an interactive viewer for exploration. The computational requirements of isosurface generation exceed interactive exploration of the datasets.

Unfortunately, CFD datasets are produced in a variety of mesh formats, from unstructured low-order tetrahedral, to highly-structured spectral methods on tensor-product grids.  Block-structured methods are also common; in which the domain is partitioned into a few logically tensor-product-based grids whose union encompasses a domain of complex topology. The common denominator approach of interpolating all data to unstructured meshes sacrifices the efficiency and accuracy of the originating discretization. While this is probably not significant for isosurface rendering, it may be important for identification of path- or streamlines that need to be computed through accurate integration.   
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For high-fidelity renderings, some mechanism, which feeds back to the original basis for the data, should be incorporated.  For example, upon a given streamline request, the renderer could compute and display a low-order initial approximation and immediately initiate a more accurate computation based upon a user-specified interpolation routine. The current simulations require about 4 million grid points for Reynolds numbers of interest. There are five primitive variables at each grid point creating datasets that are approximately 80 MB in size per timestep, if the derived quanities are included in the output files the size of the file doubles. Unsteady visualization of a typical event of interest requires from 50 to 200 time slices, corresponding to full data volumes.  This pushes the amount of information for one simulation to between 8 GB – 32 GB. We currently have over 450 GB of simulation data covering 8 different Reynolds numbers; in addition we have over 60 GB of isosurface data representing 3 distinct surfaces for each Reynolds number. These data-intense demands will increase with wider availability of tera-scale computational platforms. On present-day large-scale parallel machines such as the Cray T3E and Intel ASCI Red we have already undertaken a number of large calculations ranging in size from 12 to 28 M gridpoints on block-structured spectral element meshes, yielding between 48 GB – 112 GB for a complete run.   These problems are actually small enough to fit on one-quarter of the parallel machine, so there is significant potential for much larger data sets. 

1.4  Commodity Based Architecture for Data Analysis and Visualization         (UC)

Stevens’ group at Chicago will lead the development of the CADE (Caravel Analysis and Display Engine).

Our design goal for CADE is to develop commodity-based systems that can provide unprecedented price/performance for the analysis, navigation and real-time visualization of Terabyte class datasets.  The idea is to produce a system prototype that can easily support analysis of TB-scale data, yet be relatively inexpensive, and also provide the necessary rendering performance for driving immersive or large-format display systems.  We have some experience with this approach having developed during the past year and half a 20-processor system at Stevens’ lab (www.mcs.anl.gov/fl) at Argonne for driving the Argonne ActiveMural display.  This work builds on that (which was limited simply to optimizing the cluster for driving tile displays) by focusing on improving node performance and optimizing I/O and storage to provide a relatively self-contained system for data storage, analysis and generation of graphics.  Each node of the Caravel Analysis and Display Engine (See Figure 3) consists of: 

· Dual Pentium III CPU @ 500+ MHz and 512 MB RAM

· 72 GB of disk  (three disks, one dedicated to system use, two for data)

· 100Mbit Ethernet for control and booting

· LANai7  Myrinet interface

· One HEPC9 carrier with 4 X HERON3-C6701  (TI DSP) modules and 400 MB/s HEART network 

· One PixelFusion AGP Card with some number of PixelFusion 150 chips 

The CADE is a distributed memory cluster based on dual processor PIII nodes, interconnected by Myrinet.  In this regard, it is quite similar to the many dozens of PC cluster projects underway at many universities.  The CADE differs however in three important respects.  

First, we propose to extend the general PC node to include specialized hardware for accelerating feature detection and feature extraction algorithms based on image processing techniques (it is our contention that computer vision and related image processing techniques are one valuable class of approaches to feature detection and extraction in 3D datasets).  We propose to equip each “analysis” node in the cluster with from 1 to 4 Digital Signal Processor (e.g. TI 320C6701/C6711 DSP or possibly the C80 series) co-processors that are optimized for acceleration of FFTs, convolutions, and other numerically intensive processing on streaming and image data.  Currently available DSP chipsets can add from 1 to 4 Gflops performance per node in addition to the performance on the Pentium III CPU (which by using the 32 bit SIMD streaming instructions could be competitive with dedicated DSPs), however this performance may be difficult to fully utilize as the DSPs do not have direct access to the CPUs memory bus, but rather are attached as I/O devices via PCI. Our estimates however show that even with memory bandwidth limited to that of the PCI bus, the DSPs should provide considerable improvements to throughput on some feature detection algorithms.  Our goal here being to enable characterization of a large-scale dataset in a few hours (more on this in the discussion on datamaps and feature landscape generation below). These co-processor augmented nodes will provide very high performance to specialized image processing type kernels that we believe can be adapted to provide high-throughput object recognition and segmentation in 3D simulation data.  We are investigating the integration, packaging and carrier technology developed by Hunt Engineering[DSPWeb] for the Texas Instruments chip and their integrated multi-chip DSP HEART ring network. As an analysis architecture we believe combining the Pentium III CPUs with TI DSPs will achieve high price/performance, yet maintain considerable flexibility in terms of possible algorithms that can benefit.  We intend to compare the performance of this approach using the same algorithms on non-augmented [image: image8.png]


Pentium III nodes (using the streaming media instructions), SGI Origin 2000, and possibly other approaches (DEC Alphas, and possibly some FPGA based co-processors).
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Secondly, each CADE “display” node will be equipped with a high-performance graphics accelerator chipset.  Our current target is the PixelFusion 150 chipset, that implements the PixelPlanes [Fuchs89, Eyles97, PixelFusionweb] architecture on a single chip, it will provide up o 50 M/tri/s OpenGL rendering performance and utilizes RAMBUS interfaces to provide up to 6 GB/s of local memory bandwidth to the rendering system.  The PixelFusion chipset promises to offer the same or better performance on a PC node as currently available on SGI Infinite Reality graphics, for a small fraction of the price. In addition to providing OpenGL acceleration, the PixelFusion chipset also provides acceleration for volume rendering and other visualization techniques.  The SIMD core is accessible via the OpenGL library and we are developing a relationship with the developers that will enable us access for other purposes.  The use of RAMBUS as the local memory interface means that the PixelFusion chip has many times more memory bandwidth than the host CPU.  This means that depending on the availability of direct access to the SIMD core instruction set and large-memory capacity of the chip, additional algorithms that exploit the SIMD processor may be worth investigation. 3D Rendering Features supported on the PixelFusion 150 include:

· Programmable Z-buffer depth (16 – 48 bits)

· Full graphics pipeline: including geometry and lighting acceleration

· Advanced texturing (bi-linear, tri-linear, anisotropic, true bump-mapping)

· Advanced lighting models (true Phong)

· True color 32 bpp pipeline

· Image super-sampling/scene anti-aliasing

· True Phong specular highlights

· Support for up to 1GB of Direct RDRAM

· Alpha + multipass blending

· Multitexturing support

· Color key and alpha blended textures

· Direct3D and OpenGL blend modes

· Programmable user extensions
The third major difference between the CADE and general PC clusters or Beowulf type systems is the control software and the systems management strategy we plan to use that has been developed at Argonne for the large-scale open systems software testbed called Chiba City [ChibaCityWeb]. The nodes in Chiba City are organized into structures of 32 “towns”, where each town includes from 16 to 32 nodes.  Each town is controlled and managed by a dedicated processor called a “mayor”.  The mayors enable Chiba City to scale up to thousands of nodes by encapsulating the management functions into single systems and thereby reducing the work required managing the system by an order of magnitude. Mayors also provide the ability to dual boot the system with Linux and NT, and to provide an integration mechanism for integrating special purpose clusters into more general-purpose systems.  The Chiba City mayor node in the CADE will enable us to link it with larger scale Linux or NT clusters via wide-area networks to stream simulation data, provide remote rendering and analysis servers and other functions.

The primary tasks associated with bringing up the CADE will be the integration of the DSP and PixelFusion hardware with the OS services, development of software support to enable the use of these functions in parallel via Myrinet and the development of test codes that exercise the full capabilities of the system.  Since the CADE is able to dual boot, initial testing and development will be done on Windows NT as the driver support for DSPs and Graphics is currently superior, however we expect Linux support to catch up within the first year.  The feature detection software and graphics software will be developed on both NT and Linux as needed.

1.5 Feature Landscapes and Datamaps                                          (UC, UIC, NWU)

One of the fundamental challenges in this project is to automatically and rapidly characterize a large-scale dataset in terms of features that are of interest to the end user (e.g. vortex cores in turbulent flow).  We divide the processing needed to do this detection into local analysis of features and global analysis. The output of local analysis is a “feature landscape”.  By combining these landscapes into global ensembles that span the entire dataset we generate a datamap.  The common thread that links the various Caravel Project efforts together is the development of the concept of a datamap. A datamap is used to organize information related to a large-scale dataset.  The datamap provides a framework for organizing feature information, navigation paths and user annotations.  It also is the mechanism that can be used to communicate to the data management system likely paths for dataset navigation, permitting reorganization of the data for higher performance.  It also can be loaded into a visualization environment to provide the user the ability to navigate from feature to feature.  Datamaps will be generated by feature detection software running on the Caravel Analysis and Display Engine.  The CADE can run a variety of feature detection, classification and extraction algorithms and uses these to construct a detailed index of the dataset by feature type.  These indexes, when combined with information about how the dataset is spatially organized, provide the basis for a datamap.  Datamaps can have multiple presentations depending on their purpose.  One presentation is a large-format 2D image that can be displayed on a high-resolution wall, printed, and downloaded to laptops or handheld devices.  When linked to visualization tools the datamap can function as a navigation interface tool allowing the user to easily see and move from one feature to another.  The Caravel Data Management Environment can use these navigation maps to prefetch and reorganize data to optimize performance for real-time navigation. Finally, the datamap can provide a framework for capturing user experiences and discoveries in the dataset.  For example the datamap can have attached to it features, written user annotations and statistics, recorded audio notes, and records of visualizations (which techniques were used etc.).  Our approach of using datamaps to organize the analysis of large-scale data has key advantages: it provides a common framework for users to build up over time an understanding of a dataset in a portable and graphical way, it provides a linkage between computational analysis (feature detection, summary statistics, etc.) and ad hoc visual analysis. It in addition provides a codified mechanism to communicate to data management and storage systems possible navigation paths that then can be optimized for end user performance, and finally it provides a way for multiple sites to collaborate on the analysis of large-scale datasets.   As dataset size increases, the datamap can remain relatively compact.  Finally a datamap can provide a detailed archive of the types of analysis attempted on the data and the coordinates in dataset space that are relevant for such analysis in the future.

1.6 Automated Feature Detection and Cluster Analysis 
                (NWU,UC)

In large-scale scientific visualization, the task of identifying important phenomenon, regions, shapes (together termed as “features”) etc. can be overwhelming, and many times almost impossible if not aided by automatic techniques. Recognizing, classifying, visualizing and tracking features over different time steps or different parameters of simulation is very important to understand the underlying computations and relating the results to the mathematical models [Samtaney94, Wang95, Silver95]. Features can range from as simple statistics as averages to complex regions in multidimensional space that can change in size, shape, orientation, or that can split, merge, and reconnect. For example, regions with certain intensities or shapes in isosurfaces may represent important phenomenon. Computer vision and image processing areas have addressed detection of regions and shapes, and tracking them mainly in two-dimensional spaces [Ball82]. Very little work has been done in higher dimensional data spaces. For analyzing visualization data from scientific simulations, important properties of thee features must be computed and tracked to understand what changes are taking place in the data and what interactions are taking place. 

Feature detection techniques range from computing basic statistics, edges, shapes, regions, volumes etc. These require algorithms for fast histogram calculations, filter operations (e.g., transformations, convolutions), edge detection, hough transforms (to detect lines and shapes), connected components computation and labeling (to detect regions), region growing, classification for indexing and relating features and multidimensional clustering to detect arbitrary regions and shapes. These kernel algorithms have been efficiently implemented using DSP technologies and will be the targets for acceleration on the CADE architecture. We will develop parallel functions to perform the above feature detection tasks and integrate with the visualization and data management components. For many of these tasks such as edge detection, connected component computing, hough transforms etc., we will build upon our previous work in high-performance parallel implementation of these functions [Chou94, Chou92a, Chou92b, Chou92c, Chou91, Chou90]. 

Multidimensional Subspace Clustering
Clustering is one of the primary information discovery tools, which helps a user understand the natural grouping of attributes in a dataset. Clustering essentially finds important groups in the data with similar attribute values, and each group is a feature whose properties can be summarized by cluster attributes. The presence of data distributed in a large multi-dimensional space, due to a large number of attributes makes it difficult to detect clusters.  In general, clustering techniques look for clusters in all the dimensions of a dataset. For example, if the data is five dimensional (3 in space, 1 in time and another in parameter space), traditional clustering techniques only look for clusters in five dimensions. However, clusters can be embedded in some lower dimensional space, a subspace of the total data space. For example, a cluster can be a surface in a three dimensional space.  Algorithms for efficient computation of clusters are as important as correctly detecting the clusters in the data. Therefore, scalability of clustering techniques that can run online with an application is important. Clustering algorithms for feature detection allow detection of arbitrary groups and shapes (unlike some traditional pattern recognition and image processing algorithms that depend on detecting lines, circles etc.) and therefore, can deal well with changes in shapes and cluster dimensions well. For example, a volume identified as a cluster can expand or shrink and it will still be identified easily.

Clustering has been extensively studied in statistics, machine learning, pattern recognition and image processing [Shei98, Jain88, Olson95]. Existing clustering algorithms can be classified into hierarchical and partitioning algorithms. A hierarchical method uses a nested sequence of partitions. This can either be done by starting with each object in its own cluster (e.g., a pixel in an image and then growing a cluster around it) and then merging these to form larger clusters, or all objects are considered in one cluster and the process starts by subdividing it into smaller clusters. Partitioning algorithms (e.g., K-means) construct a partition of the objects in the datasets into clusters such that objects in a cluster are more similar to each other than to the objects in different clusters. 

In this proposal, we will develop efficient, scalable clustering algorithms and implement them for feature detection and extraction tasks. In particular, we will build upon our preliminary work in scalable subspace clustering [Goil99a], which is a bottom up algorithm.  In a grid and density based subspace clustering algorithm, the number of bins in each dimension determine the quality of the clustering results.  Our algorithm uses adaptive bins, which not only reduces the computation requirements, but also detects arbitrary clusters in subspaces. Adaptive grid sizes reduce the computation and improves the clustering quality by concentrating on the portions of the data space which have more points and thus more likelihood of having clusters.  Figure 4 shows one of the performance numbers (scalability) from our initial work on high-dimensional clustering [Goil99b]. Essentially, the computations involve calculations of histograms by partitioning the data space into a number of non-overlapping regions or cells. Cells containing a relatively large number of objects are potential cluster centers and the boundaries between clusters fall in the “valleys” of the histogram. The size of the cells determines the computations and the quality of the clustering. Cells of small volume will give a very ``noisy'' estimate of the density, whereas large cells tend to overly smooth the density estimate. These techniques can detect arbitrary shapes, volumes or higher dimensional structures.
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Figure 4: Scalability of subspace clustering algorithm for high-dimensional data (IBM SP-2).

1.7 Scalable Data Management and Data Organization           

   (NWU, UC)

Data organization, storage, access, and management of the raw data resulting from large-scale simulations is currently done in an ad-hoc manner. The information about the data and its likely use is known to a certain extent by the scientists(s) involved. Given the large-scale of data, large number of variables, high-dimensionality of data, visualization and analysis becomes overwhelming without even considering the performance requirements. Furthermore, analysis, navigation and feature detection result in additional information that must be understood, used and managed. Clearly, new approaches for data management that provide easy to use mechanisms for navigation and analysis, while providing high-performance access to data are required.

We propose a system architecture for the Caravel Data Management Environment (CDME) with three interacting components as shown in figure DM-1. The first major component of this system is a meta-data and feature management system (MDFMS), which is responsible for storing and describing both the information about the visualization data (e.g., features, patterns, and relationships among features and data sets) as well as access patterns, storage and layout information useful for obtaining high performance for visualizing, processing, analyzing and navigating through the data. The second major component of this system is a runtime system which implements high-performance access functions, data reorganization and layout functions and other optimization functions 
such as prefetching to enable high-performance visualization and analysis. Furthermore, this runtime system includes parallel functions for feature detection and extraction that are implemented on top of the basic access functions. This architecture permits the feature detection algorithms to use high-performance access functions easily. For example, a subspace clustering feature detection algorithm [Goil99c] may require quick calculation of histograms of data in each dimension, which in turn may use highly optimized data access functions (using prefetching) from this runtime system. The detected features then can be automatically incorporated into the MDFMS. This can subsequently guide the extraction of features in data produced in newer time steps (because it may guide the runtime system to focus on particular regions based on historical information). The third component of the system is the visualization system itself. Visualization techniques are described in other sections of this proposal. However, the first two components provide the basic runtime system and infrastructure to enable high-performance implementation of the visualization system. Furthermore, feedback from the visualization system can influence the navigation path, which in turn determines the data access pattern and optimization strategies (e.g., prefetch direction in the multidimensional space).

Basic data sets in scientific simulation and analysis are multidimensional in nature (whether they are sparse, hierarchical or dense), where dimensions can represent space, time, variables or derived and/or input parameters. For example, an different scientific 
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Figure 5: The Caravel Architecture for Data and Feature management and Data Access and Feature Detection. 

Simulations with different values of an input parameter X may be of interest. Thus, X represents an additional dimension with respect to which data may be visualized or analyzed. Clearly, number of dimensions can explode. The entire process of visualization and analysis can be viewed as navigation through this high-dimensional space. The goal of the two components in Figure 5, MDFMS and Runtime system is to provide an efficient and easy to use mechanism for navigating thought this multidimensional space. 

Specifically, in the Caravel project we will develop high-performance runtime system with the functionality described in Figure 5. These functions and optimizations go beyond traditional single dataset (file based optimizations) as is required by our problem domain. For example, suppose a user wants to track a cluster (describing some feature) identified in one instance of the data produced by a simulation. If the datamap stored in the CDME contains appropriate information about the cluster (coordinates, values and index), it can be used to guide data access in the right regions of the data from other instances of simulation data (e.g., data from different time instances). This information requires that CDME contain relationships among the data sets. In this particular example, this information will enable (1) reduction in the data because a multidimensional slice of data (rather than the entire data set) is required containing the cluster(s) and surrounding regions, (2) intelligent prefetching because navigation pattern is known better, and   (3) the use of right access functions to optimize data access times (e.g., it may make sense to do parallel independent accesses from different data sets rather than loosely synchronous collective access for each data set). 

As a part of this task, we will develop the runtime system and MDFMS. Various components of these are described in Figure 5. We will build upon our previous work in these areas [Goil99e]. For example, we have identified an initial set of rules which guide a runtime system library to use the most appropriate access functions based on the desired access patter of an application and data storage pattern [Chou99a]. Similarly, we have developed strategies and infrastructure to store, access and analyze high multidimensional datasets that can be sparse or dense or both (within each data sets some parts being dense and others being sparse). We will build upon these preliminary results to develop CDME components described shown in Figure DM-1. For the MDFMS, we will use basic database techniques. A major and very important difference from traditional database systems is that we will not use the access functions or I/O from the database, rather we will use our own runtime system for data access as discussed above. Along with the basic information about the data sets, the MDFMS will store features (which are updated in the database as they are created/identified), and their relationships with the datasets. MDFMS will also contain the suitable optimization techniques in the form of hints for navigating through the data space or feature space. Some of the functions in the runtime system will be associated with features and datasets so that a user can execute them directly within the data space. 

The runtime system will consist of basic access functions, especially optimized for visualization tasks, feature detection and extraction and other optimizations such as prefetching data at different levels of hierarchies depending on what type of navigation a user is interested in at a particular time. Data layout and reorganization functions are important to allow storage of data in a form, which optimized accesses for different analysis and visualization functions. For example, if a simulation result produces data for many different variables, but the user indicates that she is likely to access and analyze three variables (say x, y and z) together, then it may make sense to extract and store data corresponding to these variables (in the multidimensional space) together for different time stamps and/or for different input parameters. This will reduce the subsequent access times to this data. At the same time, CDME via MDFMS will store the relationship among different datasets (through the use of common keys). 

We plan to develop an easy to use GUI interface for a user to describe analysis tasks, access hints and the type of features she is interested in. For example, in [Chou99a], we demonstrate that a user by simply specifying likely data access pattern at a very high-level enables automatic access optimizations. Rules that determine suitable optimizations are discussed in more detail in [Chou99a].

1.8 Visualization Algorithms and Techniques

                              (UC, UIC)

The visualization algorithms and techniques to be investigated as part of the Caravel effort will target the application-driven requirements that have been identified through Papka’s existing collaboration with Fryxell’s group as part of the ASCI Flash Center, and Tufo and Fischer’s CFD work. (See section 1.3)  Both groups are using modern griding techniques for efficiency in the computation; therefore, a major focus of the visualization effort will include handling these datasets in an effective manner. An additional effort will be directed towards how to visualize large datasets that exceed the capacity of core memory. Finally there will be a strong emphasis on the integration of standard visualization techniques with the other components of this proposal in particular the data management, feature detection, feature landscapes, and datamaps. 
Both test datasets provide a rich set of visualization requirements that will be common to many members of the Astrophysics and CFD community.

Astrophysics and CDF Terabyte Test Case

The Astrophysics and CDF terabyte test case datasets use different types of underlying data structures to represent the simulation.  The Astrophysics test case often uses multiresolution adaptive grids where the data is resampled and interpolated onto a regular structured grid for visualization.  This is done because many of today’s production packages are not capable of handling data in this format. This is an inefficient use of resources, and adds a source of error into the interpretation of visualizations.  Therefore an effort will be made to provide direct support for isosurfaces, streamlines, and cutting planes in the native adaptive form.  Furthermore we will investigate how to exploit the capabilities of the CADE architecture to attempt to visualize this data in realtime.

Computational Fluid Dynamics Test Case

The CFD data uses a variety of different griding techniques, unstructured low-order tetrahedral to highly structured spectral methods on tensor-product grids.  This prohibits a standard visualization solution.  Again attempts will be made to address the specific requirements of this test case.  This includes isosurfaces, streamlines, cutting planes, as well as 3D glyphs.  By investigating the specific requirements of each test case, a generalized framework would emerge to address visualization techniques in the CADE environment.

Beyond simply visualizing the datasets, an effort will be made to address the increasing size of the datasets. Simulation datasets continue to grow in size, and individual timesteps are beginning to exceed core memory.  This poses a problem for visualization algorithms in general, and renders interactive visualization techniques impossible.  Recently we have seen approaches to address this problem [Lane94, Cox97, Ueng97]. We plan to leverage efforts supported by the Advance Visualization Technology Center (AVTC) in this area. AVTC is funding Kitware Inc. to add large dataset support to the Visualization Toolkit (vtk) [Schroeder97].  The approach is based on the streaming technology already incorporated into the toolkits imaging pipeline, and now being added to the visualization pipeline [Law99].

Finally the visualization system needs to be integrated with the data management, feature detection, feature landscapes, and datamaps.  Benefiting from the result of these areas will push the visualization system forward allowing for assisted navigation and exploration within large datasets.  The visualization system also needs to be tuned to perform efficiently within the visualization display systems outlined below. This includes both single user and collaborative modes of viewing.  It is essential that the generalized framework support the notion of collaboration from the beginning instead of being retrofitted later.

1.9 High-Performance and High-Resolution Display Environments
      (UC, UIC)

In this project, we are focusing on two classes of display technology.  The first is the class of devices known as tiled displays, where multiple projectors are ganged together to provide a single high-resolution image.  These systems have recently become affordable to construct due to decreasing prices and increasing performance of commodity class projectors.  In a typical setup, each projector has a dedicated PC or workstation (or graphics pipe) driving it at desktop resolution.  In this proposal, we will be deploying a second ActiveMural display at the University of Chicago Computer Science Department.  This system will be a copy of a system currently under development at Argonne.  The ActiveMural will be driven by the Caravel Analysis and Display Engine.  Each node in the CADE will have a high-performance graphics accelerator (e.g. PixelFusion150 card).  (See section 1.9.2 for more details on the AM).  The second display environment targeted is the CAVE family of devices originally developed at EVL.  Here we would port the CAVElibrary to the CADE (which should be relatively straightforward as we already have both Linux and Windows NT versions of the library).  We can link the Caravel Analysis and Display Engine physically to the CAVE (by moving it to EVL or Argonne), or we can use the technology being developed in the CorridorOne DOE NGI grant [COweb] to drive it remotely.  

1.9.1 Integration of CADE Existing High-Performance Visualization Systems
(UIC)

One of the significant contributions the Caravel Analysis and Display Engine (CADE) will make is the creation of low-cost, extreme-performance commodity graphics nodes for driving desktop workstations, ImmersaDesks, CAVEs and Active \Murals. UofC will take the lead on the development of the Caravel Analysis and Display Engine cluster and apply the product of this research to their ActiveMural system. At the same time, EVL will integrate the visualization engine into the ImmersaDesk. Currently EVL is supported by Microsoft to port the CAVE library to Windows NT; and a Linux version is already available, the first step towards making our immersive technology more accessible to a wider audience. The integration of CADE into this library will provide the necessary low-cost hardware support, the necessary next step.

Furthermore, EVL is supported by an NSF-MRI grant to develop the next generation of immersive display devices. One of these devices is called the CAVEscope. The CAVEscope is a high-resolution panel display that is supported by a counter-balanced mechanical arm or trapeze-wire that users in the CAVE can maneuver to gain an extremely high resolution sub-image of a dataset in the CAVE, in effect a visualization lens. The motivation for such a device is that most currently existing CAVEs are unlikely to increase their display resolution in the near future. The CAVEscope provides a means for increasing the CAVE's resolution without having to undergo the costly process of ganging together multiple projectors per wall of the CAVE. This makes it attractive to the over 50 CAVE sites around the world, which are also seeking ways to increase their display resolution. By combining CADE with the CAVEscope we will be able to use the CAVE as a visualization interface for navigating datamaps and visualizing high-resolution datasets .

EVL's role in this proposal involves a tight collaboration between UofC and NWU in two areas:

· The integration of CADE into the ActiveMural, ImmersaDesk, CAVEscope, and full CAVE.

· Building a knowledge crystalization environment to allow cross-platform navigation, querying, and annotation of Feature Landscapes, Datamaps and extracted data-sets.

1.9.2 ActiveMural Development at Chicago                                                              (UC)

Visualization has become an essential component of computational research, and an integral part of visualization is how it is outputted and interacted with.  This could be in the form of printed material, displayed on a monitor, or within an immersive environment. A new form of display technology that is gaining a lot of interest as output technology is large-format display devices.  These devices extend in resolution beyond the current capabilities of the desktop and within immersive environments and are more flexible than printouts. In addition these devices are scalable in price and performance. Research groups at Argonne National Laboratory and Princeton University are actively pursuing research in the design and construction of such systems.  They are also investigating the software infrastructure needed to support these systems. As part of this proposal we are proposing the construction of an ActiveMural at the University of Chicago to pursue the use of large-format projection systems as an output device for the Caravel Analysis Engine.  

Large-scale high-resolution displays are an active new area of research. They are providing an ideal breeding ground for investigating new ways of displaying, interacting, and collaborating with both data and individuals. The high-resolution nature of the environments, the ActiveMural in particular, places a vast number of pixels at the developer’s disposal.  Typically if the user’s dataset exceeds the number of pixels they have one of two things happens, either the user wastes graphics power trying to render objects that will never be seen, or they resample the data to a more appropriate size.  Either approach leaves the user with an additional source of error in the analysis.  When interacting with the data, the increased resolution allows for multiple views, or global and local views of the dataset.  An example of this interaction modality would be the investigation of a log file from a large multiprocessor run (See Figure 6).  If the user is looking at the results of a 1000 processor run, the amount of information directed to the users desktop will become quickly overwhelming, but with the ActiveMural environment this is a simple and enjoyable display task.  In addition the user can zoom in on a section, and still maintain enough pixels around the area to continue to see the overall context of results.  Finally the large-scale displays make a wonderful collaboration environment.  The ActiveMural being over 15 feet in length yields an immersive-like quality by providing a large field of view.  With such an environment a user can have multiple video windows open to a colleague at a remote site, as well as a shared document, and a visualization all happening together without windows covering up each other. 
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Construction

The ActiveMural display developed at Argonne National Laboratory, based on work of Kai Li’s group at Princeton University, is a large format display.  The hardware used to build the ActiveMural has been entirely commodity parts, with only one slightly exotic part, the screen material. The components of the system that will be discussed are the screen material, the screen frame, the projectors, and the shelving.

Screen

The screen material used is the JenMar Visual Systems BlackScreen Technology.  This screen material has a resolution of greater than 200 lines per inch.  The contrast ratio of the BlackScreen material is greater than 250 to 1. The only deficiency of the BlackScreen material is the fact that it’s half-brightness angle is +/- 38 degrees.  The ambient light rejection on the screen is greater than 96%.  These factors together make the screen bright enough to fully usable in a normal room, with the room set for normal ambient conditions.  This differs from most rear projection screens, where the diffusion of light through the material makes it infeasible to use the room in normal ambient conditions.

Frame

The steel and aluminum frame for the screen was designed and fabricated by Argonne engineers and shops.   The screen material properties were known ahead of time, so the frame was over-engineered to support the weight of the four panels of the screen material.  The four screen pieces are hung into the frame vertically creating 4 panels across the ActiveMural.  Sets of adjustment mechanisms have been designed into the frame, both along the top and bottom edges of the frame to minimize the space between the screen pieces.  Based on lessons learned from the construction of the first ActiveMural, plans are being made to simplify the frame’s design.

Projectors

Sixteen Proxima DX1 projectors are driving the current ActiveMural.  They are organized in a five by three matrix, with the sixteenth projector centered in the middle of ActiveMural overlapping the other projectors in that region. The Proxima DX1 projectors are native XGA projectors, but are single chip DLP projectors. This means they produce 1000 ANSI lumens and have an ANSI contrast ration of 220:1.

Shelves

The projectors are mounted on standard commercial chrome wire shelving. This shelving provides very adequate airflow for the projectors, as well as a sturdy support. The one shortcoming of the wire shelving is that it provides a more difficult surface to place projectors on.  The feet of the projectors fall between the wires and sit in a “natural” position that might not be the optimal position for aligning screen usage of the projectors.  The construction of the needed projector mounts will solve this problem.

Projector Mounting

Projector mounts are being designed as a joint effort between Kai Li’s group at Princeton University, Intel Corporation, and Argonne National Laboratory. Projector mounts with fine and precise control are needed for each individual projector to improve the image quality of the entire display surface. A true six degrees of freedom system is needed to allow for the maximum control.  

Leveraging

For the greatest advancements to be made, we plan to leverage as much infrastructure as possible from our collaborators and the work being done as part of other funding sources.  Large-format displays suffer from their relatively short history in that there are still physical problems in how the tiled images are put together.  Below we outline three such problems that we plan to integrate into our system without cost.

Projector Positioning and Alignment

Since the system is constructed from a number of individual projectors, the relation of each projector to its neighbors is required information to build the software components.  The actual positioning of the projectors is handled manipulating by the base to which the projector is connected.  A variety of bases are being designed by other members of the group and by Kai Li’s group at Princeton University.  We plan to incorporate this work into ActiveMural.  

In addition to the hardware support, software support is needed; again we plan to leverage the vision based geometry assessment system currently being designed as part of the work being done by the Advanced Visualization Technology Center (AVTC). This system will create the ability to quickly determine the most likely causes of the projector positioning errors.  The system will use a handheld camera to read in test patterns that are displayed on the projector and compare the images to the known patterns.  From these comparisons the system will attempt to construct the most likely positioning and alignment error scenario. Testing and repositioning is done a single projector at a time; hopefully narrowing in on the optimal solution. This procedure can then be repeated for each projector. A future version of the system will attempt tie the hardware projector mounts described above to the software-based system.  This will allow for the direct feedback of the vision based geometry assessment system into a computer controlled projector mount.  

Color Correction and Correlation Calibration

Again leveraging from the work of the AVTC we expect to be able to integrate a color correction and correlation system into this work without additional development cost. Based on the technology used in the projectors it is possible for the color to vary slightly from projector to projector.  Using tools from the graphic design industry to quantify the palette of colors that are coming out of a given projector, it’s possible to generate a correction table that can be used per projector to manipulate each participant to conform to a global color space.  Current plans are for this to be largely automated procedure.

Image Overlap & Blending

ActiveMural achieves its high resolution by overlapping a number of projectors, tiling them together to form one large image. Based on this fact, a method of quantifying the amount of overlap is needed in order to provide the proper information to the visualization routines that are using the ActiveMural. Another challenge is how to deal with the areas of the screen where projectors are overlapped.  The two overlapping images must be blended in such a manner that it becomes impossible to distinguish the overlapped region from a non-overlapped one.  Several methods are being looked into for solving this problem both in the addition of blending hardware, and the use of software based corrections. Again this problem is being investigated as part of the AVTC, with Caravel being able to benefit without the added cost.

Virtual Framebuffer

In order to increase the usability of ActiveMural beyond that of custom designed applications, the Futures Laboratory is leveraging the work of AT&T Laboratories Cambridge. Using their freely available VNC server and client [Richardson98, VNCweb], the Futures Laboratory has implemented a full 5020x2254 pixel single desktop.  This allows for the use of standard desktop tools on a large desktop. 

1.10 A Knowledge Crystalization Environment for Navigating, Querying, and Annotating Data and Datamaps (UIC, UC)

Knowledge Crystalization is the process of gathering and filtering large amounts of heterogeneous data to reduce to a schema that can then be packaged into some form for communication or action [Card1999]. In the context of scientific inquiry and of this proposal it involves the feature extraction of the massive tera-scale data-sets; the generation of a Datamap representation to summarize the data; and the construction of visualizations and annotations to allow multiple scientists to actively engage in collaborative discourse.

In collaboration with UofC, we propose to build the Caravel Knowledge Crystalization Environment (CKCE)- a collaborative software architecture that will integrate the output from the Caravel Analysis and Display Engine (CADE), and the Caravel Data Management Engine (CDME) into an environment that will allow scientists to collaboratively create and navigate Caravel feature landscapes and datamaps; generate visualizations of data-sets extracted from datamap queries; and annotate and record discoveries.

The figure below depicts one of the many possible configurations of interconnected CADEs, CDMEs, Active Murals, ImmersaDesks, CAVEs, etc. The Caravel Persistent Collaboration Server (CPCS) serves as a persistent entry point into the CKCE. Active Murals, ImmersaDesks, CAVEs and desktop workstations are the display portals that allow users to access the CPCS. The CDME pipelines the data to CADE1 connected to an Active Mural (1 & 8). Hence the Active Mural derives direct benefit from a local CADE allowing realtime visualization and navigation. The CDME can also pipeline data to a shared CADE (CADE2) that serves as an engine for generating high resolution images that are then distributed via the CPCS to the remote viewing clients (ImmersaDesk, CAVE etc) (3, 5, 6, 7). Hence the CPCS is not only in charge of managing collaborative sessions between the display clients (5, 6, 7, 8) it is also responsible for brokering queries with the CADE and CDME. Typically each local client will provide interfaces to navigate the feature and datamaps, but unless they possess a local CADE to render high resolution graphics in realtime, they will invoke remote rendering jobs at CADE2.

A Possible Interconnection of Caravel Data Management, Analysis, and Display Systems
1.10.1 Collaborative Visualization and Navigation of Data and Datamaps        (UC, UIC)

We propose to develop two classes of visualization tools. The first includes tools for visualizing and navigating Feature Landscapes and Datamaps (FLD). The second includes tools for visualizing the data itself in near real-time. These problems are innovative and challenging because firstly the FLD navigator will be a collaborative system allowing multiple collaborators to engage in the long-term knowledge discovery process simultaneously; secondly the navigator will be tightly coupled with the CADE and CDME so that queries can be answered in near real-time.


To build tools for visualizing and navigating FLDs information visualization techniques will be examined with special emphasis on collaboration. To address this we intend to employ a technique called Multiple Collaborative Representations (see section 1.10.2.)
To build tools for collaboratively visualizing data in near real-time, special network-aware tools must be built that is able to fully utilize bandwidth on high speed networks (see section 1.10.3.)
1.10.2 Techniques for Collaborative Visualization                                            

In order to support collaboration effectively one must consider how adding collaboration can improve the overall efficiency of the data analysis process. Hence the goal is not to re-invent past visualization techniques and tools, but to re-examine them in the new context of collaboration. One aspect that we are particularly interested in developing in CKCE is the concept of Multiple Collaborative Representations (MCR.) This is motivated as follows: in the real world, individuals who are trying to solve a common problem gather (in workshops, for example) in the hopes that their combined experiences and expertise will contribute new perspectives and solutions to the problem. In many existing collaborative VR applications, participants typically all view and modify the same representation of the data they are viewing. It is our belief that a greater benefit will be derived if the participants are given the power to create and modify their own representations, based on their particular areas of interest and expertise [Leigh1996]. Recent work in providing multiple representations to enhance learning have implied that this is a non-trivial problem [Larkin1987, Bibby1987, Salzman1998, Ainsworth1997]. We envision a potential application of MCRs in the visualization of multi-dimensional data-sets and datamaps. Here a large number of dimensions may be partitioned across multiple users to assist in reducing the overall complexity of the content being visualized. The goal of research in MCR is to develop tools to allow participants to coordinate their interpretations of each representation to enable a more efficient collective understanding of the data being explored. One example of a tool that has incorporated this technique is CAVE6D [Lascara1999] developed in collaboration with the Center for Coastal and Physical Oceanography. CAVE6D is a tool for collaboratively viewing multi-dimensional numerical data from atmospheric, oceanographic, and other similar models, including isosurfaces, contour slices, volume visualization, wind/trajectory vectors, and various image projection formats. We intend to perform user-studies to observe how users take advantage of MCRs, and in what situations MCRs are effective or a hindrance. Furthermore these user studies will allow us to form ideas on the kinds of tools that will be needed to help participants coordinate the MCRs. For example, one extension to traditional visualization tools is to provide the ability to track the dimensions and regions that other participants are simultaneously viewing/brushing. This also introduces a new concept in VR awareness. VR awareness refers to the problem of locating other participants in a large collaborative virtual environment. Whereas all previous work in these awareness tools consist of three-dimensional radars, the kind of awareness tool needed for MCR is a multi-dimensional radar that will allow each participant to track the regions and dimensions their partners are simultaneously viewing and brushing.

1.10.3 Network-Aware Data Visualization Tools 



      (UIC, UC)

It is not enough to be able to pre-fetch data from data management systems and render all the data in real-time. The networks must be capable of handling the amount of data being sent to the feature detection engines and the visualization end points. This is particularly difficult when multiple collaborators would like to query and view the data set at the same time. Our past experience [Leigh1996, Leigh1997, Johnson1998, Leigh1999] has informed us that it is significantly more difficult to retrofit visualization systems with collaborative capabilities than to consider them early in the design cycle. In addition Card and Mackinlay has noted that collaborative visualization is one of the new challenging, and relatively unexplored areas in visualization [Card1999] that has increasingly gained importance with the expansion of the World Wide Web. The institutions represented in this proposal are currently part of the EMERGE test-bed, a DOE funded project to achieve and demonstrate Differentiated Services (DiffServ) over an IP/ATM GigaPoP regional network as a representative of the second model for DOE/University connectivity. The EMERGE effort will support DOE-specific next generation internet (NGI) applications and attempt to motivate interoperability across GigaPoP, the UCAID/Internet2 Abilene network (the third model) and ESnet (the first model). This testbed will establish a common suite of advanced networking services and the applications-friendly Grid Services Package for use by DOE laboratories and university applications ultimately nationwide (additional information on the EMERGE project is available at www.evl.uic.edu/EMERGE.) We intend to build Caravel's collaborative visualization tools to leverage the EMERGE test-bed so that they are able to take advantage of differentiated services to ensure that the networks are able to provide the necessary bandwidth to feed the visualization and feature detection engines.

1.10.4 Annotating the Knowledge Landscape and Recording Discoveries         (UIC, UC)

The technique discussed above focuses primarily on synchronous collaboration. We predict that an equal if not greater amount of collaborative work will be done asynchronously. To support this, tools for creating annotations and recording discoveries for later review are needed. Most computational scientists agree that a crucial part of the knowledge crystalization process includes the creation of snapshots and annotations to track the progress of the exploration and to record discoveries [Springmeyer1996]. On desktop Problem Solving Environments these annotations (meta-data: data about the data) are typically entered in text windows. This common mode of data-entry however is problematic as well as limiting in immersive environments. All existing displays for immersive environments lack the resolution to display text clearly in a virtual window- for example a 1x1 foot region of a 10x10 foot CAVE screen has a resolution of only 128x102 pixels. Virtual Reality systems such as Head-Mounted Displays essentially blind the user to the outside world making it difficult to operate a keyboard. In the CAVE or ImmersaDesk a keyboard can be placed nearby however both these systems still suffer from the low display resolution problem. There are three ways to address this:

· Increase the resolution of the VR displays as in the work on Active Murals;
· Utilize the CAVEscope as an ancillary annotation input device;
· Provide annotation tools that take advantage of immersion.

We are particularly interested in addressing the third problem. We propose to build tools that will allow a participant to record audio and gesture as an annotation that can then be attached as a virtual post-it to objects or states of the teleimmersive environment. When an annotation is re-played a virtual representation of the original participant (often known as an avatar) materializes to re-enact the recorded message. This is particularly effective in VR because it allows the user to point and gesture at the area of interest in the environment while the annotation is being recorded. This is similar to recording the real world with a video camera- the significant difference however is that VR recordings have the added benefit that the playback can re-create all the attributes of the virtual world and situate you in the world so that you can view the playback from any vantage point. Furthermore since the state of the world and the avatar are all captured as discrete data rather than individual images, the annotations can be queried. This concept is a generalization of our Virtual Mail (Vmail) system [Imai99], a tool for supporting asynchronous communication with users that are many timezones away (for example in collaborations between the U.S. and Japan.) In Vmail it was observed that users viewing the messages would tend to react to the avatars as if the original participant was actually in the environment with them- forgetting that they were actually viewing a recording that was made hours ago. 

2 Management Plan 

2.1 Project Management

The Caravel senior investigators have been working together for many years and have developed a set of close working relationships [DeFanti96, Reed97, Stevens97]. The Co-Is are already working together via an existing NSF visualization and data management project in the NCSA Alliance (Stevens, Leigh, Choudhary). The Caravel team has considerable experience working together as a team and has a proven track record of successful collaboration and technical accomplishment.  Therefore the principal management challenge then in this project is not how to get people to work together, but rather how to move the research and infrastructure development efforts ahead quickly while leveraging the considerable support the team brings to the table. Our management plan is structured around the following activities:

Monthly project management meeting (Senior Co-Is per site).  Stevens will organize and conduct monthly project management meeting that will deal with high-level planning and coordination issues associated with this effort and related projects of the Co-Is.  These meetings will provide the continuity needed to keep the project on track at the strategic level.  We will use these calls to drive towards the overall goals of Caravel. These meetings will rotate among the three sites (since each site is in the Chicago area this is an easy matter).

Establishing five technical working groups organized around our major thrusts.  We will establish five working groups that will have overall responsibility to move the technical and research and development plans forward, and to coordinate the efforts at each site in those areas. Each working group will have a lead from the project and will involve participants from Caravel project sites and others as may be needed to forge connections to related and collaborative efforts. We have indicated next to each area the initial working group leader.

1. Analysis and Visualization Engine  (Stevens, Lead)

2. Data Management Environment (Choudhary, Lead)

3. Knowledge Crystalization Environment (Leigh, Lead)

4. Terabyte Datasets and Experiments (Fryxell, Tufo, Lead)

5. Datamaps, Applications Liaison, Experimental Design and Evaluation (Papka, Lead)

Technical working groups meetings.  The working groups will meet on an as needed basis but not less than once a quarter.  These meeting (both electronic and face to face meeting are planned), will be augmented by email lists, and document exchange via the Caravel web site.

Monthly Technical Conference Calls (working group leads and the PI) these calls will enable the PI to monitor progress in the working groups and to provide overall coordination as needed. 

2.2 Systems Integration Plan

From Figure DM-1 you can see that a end to end test of a the Caravel Analysis and Display Engine and Data Management Environment will require the interoperability of a number of software systems ranging from data servers, analysis engines, visualization servers and client environments.  To test the overall systems we will need to early on encourage interoperability between the various components of the Caravel environment.  To do this we will develop a software integration roadmap that covers the following items: A Software Integration Plan; Software Component Interface Development and documentation; Subsystems Testing; End-to-End; Functionality Tests; Performance Testing of Components and End-to-End System; and Release Engineering and Software Distribution.

2.3 Experiments and Evaluation

Evaluating the progress of developing large-scale visualization capabilities requires that we use real applications data and real users to conduct tests.  Through the Terabyte Dataset working group and the related projects they represent we will bring together applications scientists, real applications datasets, and conduct real-life use tests of the Caravel environment.  These tests will be documented and will be correlated with performance data collected from the CADE system and software infrastructure.  This information will be made available to the entire team and to others in the visualization community.

3 Activities and Milestones

3.1 Year One Proposed Activities

· Development of first prototype of Caravel Data Analysis Engine (20 nodes, tests of DSPs and PixelFuzion co-processors)

· CADE Systems testing with 200 GB size datasets

· Construction of ActiveMural2 at the University of Chicago based on 8 projector design, yielding an overview resolution on the order 6 million pixels

· Integration of ActiveMural2 with the Carvel Data Analysis Engine

· Prototype of software framework to support distributed scientific visualizations from the Carvel Analysis Engine within the ActiveMural environment.

· Develop & Iterate over Caravel Knowledge Crystalization Software Architecture

· Develop & Iterate over Network-Aware Visualization Tools

· Develop & Iterate over Annotation and Discovery Recording Tools

· Design meta-data for common visualization and navigation tasks

· Develop data access functions for visualization tasks

· Parallel implementation of basic feature detection techniques  (edges, histograms)

· Define datamap data structures and functionality for version 1

3.2 Year Two Proposed Activities

· Upgrade of Caravel Data Analysis Engine (add additional DSPs and PixelFuzion co-processors)

· Test CADE functions on datasets up to 500 GB

· Upgrade ActiveMural2 to 15 projectors for 12 million pixels of resolution

· Develop software framework based on prototype to support distributed scientific visualizations from the Carvel Analysis Engine within the ActiveMural environment

· Integration of Argonne on image blending and projector alignment

· Develop ImmersaDesk interface to Caravel Visualization Engine

· Develop first version of  Caravel Knowledge Crystalization Software System 

· Prototype Network-Aware Visualization Tools and Demonstrate 

· Prototype Annotation and Discovery Recording Tools and Demonstrate on version 1 Datamap

· Refine and optimize access functions for visualization and feature  detection

· Parallel implementation of advanced feature detection algorithms  (clustering, connected components, basic shapes)

· Preliminary evaluation of feature detection using applications and available datasets

· Incorporate feature based indexing and relationships in the metadata management

· Test feature landscaping aggregation functions and datamap version 1

· Generate two compete Datamaps of 200GB size data

3.3 Year Three Activities

· Upgrade Caravel Data Analysis Engine (refresh memory, and co-processors if needed)

· Test CADE with 1 TB class datasets

· Conduct performance experiments of CADE and comparisons with other systems

· Upgrade ActiveMural2 to 24 projectors for 18 million pixels of resolution.

· Develop CAVEscope interface to Caravel Visualization Engine and Datamap interface

· Iterate over Caravel Knowledge Crystalization Software Architecture

· Iterate over Network-Aware Visualization Tools

· Iterate over Annotation and Discovery Recording Tools

· Integrate access functions and feature detection algorithms within meta-data system

· Evaluate performance applications and further optimize feature detection and access functions

· Develop and evaluate feature tracking within metadata for navigation tasks

· Incorporate new functions into Datamap version 2

· Publish datamaps for TB class sets
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Collaborative Navigation of Data and Datamaps in the Caravel Knowledge Crystalization Environment








Figure 1:  Image from 2D simulation of X-ray burst, with computational grid overlaid on top.





� EMBED Visio.Drawing.5  ���





Figure 3: Caravel Data Analysis and Display Engine, logical structure.
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Figure 6: The ActiveMural in use, in the left image the ActiveMural is being used to review the output of MPI log file, using the jumpshot desktop tool, the right image is the output of a two-dimensional Raleigh-Taylor simulation that contains 3480 x 960 data values.





Figure 2: Isosurface rendering of hairpin vortices for a Reynolds number of 700, pressure values are used as a colormap on the surface.
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�  In the early period of European exploration, ships called barcas and barinels were used by sailors but, their square sails were clumsy and the ships were slow to respond. One reason for this was that the ship could only travel into the wind at a minimum angle of 67 degrees in order to properly fill its sails. Thus, once the ships were caught sailing into the wind, it was difficult, if not impossible, for them to turn around. The Portuguese quickly realized that a new type of ship and sails were needed to travel in African waters. The Portuguese modeled their new ships on this principle and the result was the caravelas. The caravelas had an axled rudder and earlier models of the ship had two to three masts all using lateen sails.
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