MUItifrontal Massively Parallel Solver
(MUMPS Version 4.3.1)
Users guide *
P.R. Amestoy! |. S. Dufff J.-Y. L’ Excellent} and J. Koster]
November 12, 2003

Abstract

This document describes the Fortran 90 and C user interface to MUMPS Version 4.3. We describe in
detail the data structures, parameters, calling sequences, and error diagnostics. Example programs using
MUMPS are also given.

*Information on how to obtain updated copies of MUMPS can be obtained from the Web page
http://ww. enseei ht. fr/apo/ MUMPS/ or by sending email to mumps@cerfacs.fr

tamestoy@enseeiht.fr, ENSEEIHT-IRIT, 2 rue Camichel, Toulouse, France.

t1.Duff@rl.ac.uk, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, 0X11 0QX England, and CERFACS, Toulouse, France.

§Jean-Yves.L.Excellent@ens-lyon.fr, INRIA Rhone-Alpes, LIP-ENS Lyon, 46 allée d’ltalie, 69364 Lyon Cedex 07, France.

9jak@ii.uib.no, Parallab, University of Bergen, Norway.

Contents

1

2

Introduction 3
Main functionalities of MUMPS 4.3 3
2.1 Inputmatrix structure e e e 4
2.2 Symmetric orderings e e 4
2.3 Other pre-processing facilities L 4
2.4 Post-processing facilities 5
2.5 Solvingthetransposed system 5
2.6 Return aspecified Schur complemento 5
2.7 Arithmeticversions 6
2.8 Theworking host processor e 6
2.9 Sequential version e 6
2.10 Shared memory VErsion e 6
Calling sequence 6
Input and output parameters 9
4.1 Control of the three main phases: Analysis, Factorization, Solve 9
4.2 Control of parallelism 10
4.3 Matrixtype 11
4.4 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0 11
4.5 Element matrix input: ICNTL(5)=1and ICNTL(18)=0 11
4.6 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)#A0 12
4.7 Prescaling 12
48 Givenorderingo 13
4.9 ReturnaSchurcomplement 13
4.10 Workspace parameters o e e 13
4.11 Right-hand side and solutionvector 13
Control parameters 13
Information parameters 17
6.1 Information local to each processor 17
6.2 Information availableonthehost L. 18
Error diagnostics 20
Calling MUMPS from C 21
8.1 ArrayindiCes 21
8.2 Issues related to the C and Fortran communicators 23
83 Fortran I/O 23
8.4 Runtimelibraries 23
8.5 Integer, real and complex datatypes in Cand Fortran 24
8.6 Sequential version 24
Examples of use of MUMPS 24
9.1 Anassembled problem 24
9.2 Anelemental problem 26
9.3 Anexample of calling MUMPS fromC 26

1 Introduction

MUMPS (“MUItifrontal Massively Parallel Solver”) is a package for solving linear systems of equations
Ax = b, where the matrix A is sparse and can be either unsymmetric, symmetric positive definite, or
general symmetric. MUMPS uses a multifrontal technique which is a direct method based on either the
LU or the LDLT factorization of the matrix. We refer the reader to the papers [3, 4, 7, 15, 16] for full
details of the techniques used. MUMPS exploits both parallelism arising from sparsity in the matrix A and
from dense factorizations kernels.

The main features of the MUMPS package include the solution of the transposed system, input of
the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative
refinement, scaling of the original matrix, and return of a Schur complement matrix. MUMPS offers
several built-in ordering algorithms, a tight interface to some external ordering packages such as PORD
[18] and METIS [17], and the possibility for the user to input a given ordering. Finally, MUMPS is available
in various arithmetics (real or complex, single or double).

The software is written in Fortran 90 although a C interface is available (see Section 8). The parallel
version of MUMPS requires MPI for message passing and makes use of the BLAS [11, 12], BLACS, and
ScaL APACK [9] libraries. The sequential version only relies on BLAS.

MUMPS has been tested on an SGI Origin 2000, a CRAY T3E, an IBM SP, and a cluster of PC under
Linux, and on the following operating systems: IR1X 6.4 and higher, UNICOS, AlIX 4.3 and higher, and
Linux.

MUMPS distributes the work tasks among the processors, but an identified processor (the host) is
required to perform most of the analysis phase, distribute the incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, and collect the solution. The system Ax = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based on the symmetrized pattern A +
AT and carries out symbolic factorization. A mapping of the multifrontal computational graph is
then computed, and symbolic information is transferred from the host to the other processors. Using
this information, the processors estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will participate in the
numerical factorization. The numerical factorization on each frontal matrix is conducted by a
master processor (determined by the analysis phase) and one or more slave processors (determined
dynamically). Each processor allocates an array for contribution blocks and factors; the factors
must be kept for the solution phase.

3. Solution. The right-hand side b is broadcast from the host to the other processors. These processors
compute the solution x using the (distributed) factors computed during Step 2, and the solution is
assembled on the host.

Each of these phases can be called independently and several instances of MUMPS can be handled
simultaneously. MUMPS allows the host processor to participate in computations during the factorization
and solve phases, just like any other processor (see Sec. 2.8).

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a
fully asynchronous approach with dynamic scheduling of the computational tasks. Asynchronous
communication is used to enable overlapping between communication and computation. Dynamic
scheduling was initially chosen to accommodate numerical pivoting in the factorization. The other
important reason for this choice was that, with dynamic scheduling, the algorithm can adapt itself at
execution time to remap work and data to more appropriate processors. In fact, we combine the main
features of static and dynamic approaches; we use the estimation obtained during the analysis to map
some of the main computational tasks; the other tasks are dynamically scheduled at execution time. The
main data structures (the original matrix and the factors) are similarly partially mapped according to the
analysis phase.

2 Main functionalities of MUMPS 4.3

We describe here the main functionalities of the solver MUMPS. The user should refer to Sections 4 and
5 for a complete description of the parameters that must be set or that are referred to in this Section.

The variables mentioned in this section are components of a structure [sdcz]mumps_par of type
[SDCZIMUMPS_STRUC (see Section 3) and for the sake of clarity, we refer to them only by their
component name. For example, we use ICNTL to refer to mumps_par%ICNTL.

2.1 Input matrix structure

MUMPS provides several possibilities to input the matrix. This is controlled by the parameters ICNTL(5)
and ICNTL(18).

The input matrix can be supplied in elemental format and must be input centrally on the host
(ICNTL(5)=0 and ICNTL(18)=0). For implementation details see Section 4.5.

Otherwise, it can be supplied in assembled format (ICNTL(5)=0) in coordinate form, and, in this case,
there are several possibilities (see Sections 4.4 and 4.6):

1. the matrix can be input centrally on the host processor (ICNTL(18)=0);

2. only the matrix structure is provided on the host for the analysis phase and the matrix entries are
provided for the numerical factorization, distributed across the processors:

e either according to a mapping supplied by the analysis (ICNTL(18)=1),
e or according to a user determined mapping (ICNTL(18)=2);

3. itis also possible to distribute the matrix pattern and the entries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization.

By default the input matrix is considered in assembled format (ICNTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Symmetric orderings

A range of orderings to preserve sparsity is available in the analysis phase. Most of them have been
introduced in release 4.2 of the MUMPS package. The parameter ICNTL(7) is used to control the ordering
request.

Besides the approximate minimum degree ordering (AMD, [2]), an approximate minimum degree
ordering with automatic quasi dense row detection (QAMD, [1]), an approximate minimum fill-in
ordering (AMF), an ordering where bottom-up strategies are used to build separators by Jiirgen Schulze
at Paderborn (PORD, [18]), and the METIS package from Minnesota [17] are possible choices. For what
concerns the METIS package, only their METIS_NODEND hybrid ordering routine can be used.

A user-supplied ordering can also be provided and the pivot order must be set by the user in PERM_IN
(see Section 4.8). Also, it should be noted that the logic that handles this case is different from the built-in
orderings so that, for example, a different performance and different internal data structures are created
by a run that generates an ordering and a separate one that feeds that same ordering array in as input.

If ICNTL(7)=7, the MUMPS package will automatically choose the ordering depending on the ordering
packages installed, the type of the matrix (symmetric or unsymmetric), the size of the matrix and the
number of processors available.

The default value of ICNTL(7) is 7.

2.3 Other pre-processing facilities

Besides the symmetric orderings, MUMPS offers other pre-processing facilities: permuting to zero-free
diagonal and prescaling.

Permutations to zero-free diagonal can be applied to very unsymmetric matrices and can help reduce
fill-in and arithmetic. We use the public domain code MC64 [13, 14] to compute a column permutation.
This functionality is controlled by ICNTL(6) and is inhibited for symmetric matrices.

Prescaling of the input matrix can help reduce fill-in during factorization and can improve the
numerical accuracy. A range of classical scalings are provided and can be automatically performed before
numerical factorization. This functionality is controlled by ICNTL(8).

For some values of ICNTL(6) and when ICNTL(8)ne0 the arrays COLSCA/ROWSCA are accessed
(see Section 4.7)

2.4 Post-processing facilities

It has been shown [8] that with only two to three steps of iterative refinement the solution can often be
significantly improved. Iterative refinement can be optionally performed after the solution step using the
parameter ICNTL(10).

MUMPS also enables the user to perform classical error analysis based on the residuals (see the
description of ICNTL(11) in Section 5). We calculate an estimate of the sparse backward error using
the theory and metrics developed in [8]. We use the notation x for the computed solution and a modulus
sign on a vector or a matrix to indicate the vector or matrix obtained by replacing all entries by their
moduli. The scaled residual

b Ax,
EED M

is computed for all equations except those for which the numerator is nonzero and the denominator is
small. For all the exceptional equations,

b — A%|,
- — &)
(1AL [=]); + Al %]

is used instead, where A; is row ¢ of A. The largest scaled residual (1) is returned, on the host, in
RINFOG(7) and the largest scaled residual (2) is returned in RINFOG(8). If all equations are in category
(2), zero is returned in RINFOG(8). The computed solution x is the exact solution of the equation

(A + 3A)x = (b + b),

where
0A;; < max(RINFOG(T7), RINFOG(S))|A|U,

and 6b; < max(RINFOG(7)|b|,, RINFOG(8)[|A:||[IXl|.,)- Note that § A respects the sparsity of
A. An upper bound for the error in the solution is returned in RINFOG(9). Finally condition numbers
cond; and conds for the matrix are returned in RINFOG(10) and RINFOG(11), respectively, and

IXI RINFOG(7) x conds + RINFOG(8) x cond.

[l

2.5 Solving the transposed system

Given a sparse matrix A, the system Ax = b or ATx = b can be solved during the solve stage. This is
controlled by ICNTL(9).

2.6 Return a specified Schur complement

A Schur complement matrix can be returned to the user by setting ICNTL(19) to a value different from
zero. The user must specify the list of indices of the Schur matrix. MUMPS then provides both a partial
factorization of the complete matrix and returns the assembled Schur matrix in user memory. The Schur
matrix is considered as a full matrix. The partial factorization that builds the Schur matrix can also be
used to solve linear systems associated with the “interior” variables.

For example, consider the partitioned matrix

Ain A

A= ’ ’ 3
< Aszq1 Asp) ©)
where the variables of A, > are those specified by the user. Then the Schur complement, as returned
by MUMPS, is Az 2 — AQ,IA;}AI,Q, and the solve is performed on A ; only. (Entries in the solution

vector corresponding to indices in the Schur matrix are explicitly set to 0.)
See also the descriptions of the components SIZE_.SCHUR, LISTVAR_SCHUR, and SCHUR in

Section 4.9.

Note that the Schur complement could be considered as an element contribution to the interface block
in a domain decomposition and so MUMPS could be used to solve this subproblem using the element entry.

When the Schur complement option is chosen the numerical pivoting is suppressed and CNTL(1) is
set to O (see Section 5). Moreover, the option to find a column permutation to have a zero-free diagonal
is inhibited, i.e. ICNTL(6) is treated has 0.

2.7 Arithmetic versions

Several versions of the package MUMPS are available: REAL, DOUBLE PRECISION, COMPLEX, and
DOUBLE COMPLEX.
This document applies to all four precisions. In the following we use the conventions below:

1. the term real is used for REAL or DOUBLE PRECISION,

2. the term complex is used for COMPLEX or DOUBLE COMPLEX,

3. complex version means either COMPLEX, or DOUBLE COMPLEX version,
4. real version means either REAL or DOUBLE PRECISION version.

2.8 The working host processor

The analysis phase is performed on the host processor. MUMPS allows the host to participate to
computations during the factorization and solve phases, just like any other processor, by setting the
variable PAR to 1 (see Section 4.2). This allows for example MUMPS to run on a single processor and
avoids the host processor to be idle during the factorization and solve phases (as is the case for PAR=0).
We thus generally recommend to use a working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a large centralized matrix on a purely
distributed architecture with relatively small local memory: PAR=1 will lead to a memory imbalance
because of storage related to the initial matrix on the host.

2.9 Sequential version

It is possible to use MUMPS sequentially by limiting the number of processors to one, but the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries and the user program needed to make explicit
callsto MPI_INIT and MPI_FINALIZE.

A purely sequential version of MUMPS is also available: for this, a special library is distributed which
provides all external symbols needed by MUMPS for a sequential environment. MUMPS can thus be used in
a simple sequential program, ignoring anything related to MPI. Details on how to build a purely sequential
version of MUMPS are available in the file README available in the MUMPS distribution. Note that for
the sequential version, the component PAR must be set to 1 (see Section 4.2) and that the calling program
should not make use of MPI.

2.10 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a shared memory), a parallel shared memory
BLAS library (also called multithread BLAS) is often provided by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) can be significantly more efficient than running
with only MPI processes. For example on a computer with 2 SMP nodes and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MPI process.

3 Calling sequence

In the following we use the notation [SDCZIMUMPS for referring to DMUMPS, SMUMPS,
ZMUMPS or CMUMPS for REAL, DOUBLE PRECISION, COMPLEX and DOUBLE COMPLEX versions,
respectively. Similarly [SDCZIMUMPS_STRUC refers to either SMUMPS_STRUC, DMUMPS_STRUC,
CMUMPS_STRUC, or ZMUMPS_STRUC, and [sdcz]mumps_struc.h to smumps_struc.h,
dmumps_struc.h, cmumps_struc.h or zmumps_struc.h.

In the Fortran 90 interface, there is a single user callable subroutine per precision, called
[SDCZIMUMPS, that has a single parameter mumps_par of Fortran 90 derived datatype

[SDCZIMUMPS_STRUC defined in [sdczJmumps_struc.h. The interface is the same for the sequential
version, only the compilation process and libraries need be changed. In the case of the parallel version,
MPI must be initialized by the user before the first call to [SDCZ]MUMPS is made. The calling sequence
for the DOUBLE PRECISION version may look as follows:

INCLUDE “mpif.h~

INCLUDE ~dmumps_struc.h’

INTEGER 1ERR

TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPI_INIT(IERR) I Not needed in purely sequential version
CALL DMUMPS(mumps_par)

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential version

For other precisions, dmumps_struc.h should be replaced by smumps_struc.h,
cmumps_struc.h, or zmumps_struc.h, and the *D” in DMUMPS and DMUMPS_STRUC by
’S?,’Cor’Z”.

The variable mumps_par of datatype [SDCZ]MUMPS_STRUC holds all the data for the problem. It
has many components, only some of which are of interest to the user. The other components are internal
to the package. Some of the components must only be defined on the host. Others must be defined
on all processors. The file [sdcz]mumps_struc.h defines the derived datatype and must always
be included in the program that calls MUMPS. The file [sdcz]mumps_root.h, which is included in
[sdcz]mumps_struc.h, must also be available at compilation time. Components of the structure
[SDCZIMUMPS_STRUC that are of interest to the user are shown in Figure 1.

The interface to MUMPS consists in calling the subroutine [SDCZIMUMPS with the appropriate
parameters set in mumps_par.

I NCLUDE ' [sdcz] nunps_r oot . h’
TYPE [SDCZ] MUMPS_STRUC
SEQUENCE
C | NPUT PARAMETERS

C ¥ *hxkkkhhhkkkhhxx

C Probl em definition
C e a -
C Sol ver (SYM=0 Unsynmetric, SYMe1 Sym Positive Definite, SYM2 General Symmetric)
C Type of parallelism(PAR=1 host working, PAR=0 host not working)
I NTEGER SYM PAR, JOB
C Control paraneters
C e a -
| NTEGER | CNTL(40)
real CNTL(5)
INTEGER N ! Order of input matrix
C Assenbl ed input matrix : User interface
I NTEGER Nz
real/complex, DI MENSION(:), PONTER :: A
I NTEGER, DI MENSION(:), PONTER :: IRN, JCN
C Case of distributed matrix entry
C e e e e -
I NTEGER NZ_| oc
I NTEGER, DI MENSION(:), PONTER :: IRN_loc, JCN_|oc
real/complex, DIMENSION(:), PONTER :: ALCC
C Unassenbl ed i nput matrix: User interface
C mmmmmm e e e e e e mmmm e
I NTEGER NELT
| NTEGER, DI MENSI ON(:), PO NTER :: ELTPTR, ELTVAR
real/complex, DI MENSION(:), PONTER :: AELT
C MPI Conmuni cat or
-
| NTEGER COWM
C O dering and scaling, if given by user (optional)
C o mmm e e e e e e o

I NTEGER, DI MENSI ON(:), PO NTER :: PERMIN
real/complex, DI MENSI ON(:), PONTER :: COLSCA, ROWSCA
I NPUT/ QUTPUT dat a

kkkkkkkkkkhkkhkkhk**k

C

C

C RHS : on input it holds the right-hand side

C on output it always holds the assenbl ed sol ution
C

real/complex, DI MENSION(:), PO NTER :: RHS
QUTPUT data and Statistics

hkkkkkkkkkhkkkhkhkkhkkhkkkkkk

I NTEGER, DI MENSI ON(:), PO NTER :: SYM PERM UNS PERM
I NTEGER | NFQ(40)

real Rl NFQ(20)
real RINFOG(20) ! dobal information (host only)

Schur

I NTEGER SI ZE_SCHUR
I NTEGER, DI MENSI ON(:), PO NTER :: LISTVAR SCHUR

real/complex, DI MENSI ON(:), PO NTER :: SCHUR
C Mappi ng potentially provided by MUWS
C

(eXe}

[eX@)

I NTEGER, DI MENSI ON(:), PO NTER :: MAPPI NG
END TYPE [SDCZ] MUMPS_STRUC

Figure 1. Main components of the structure [SDCZ] MUMPS_STRUC defi ned

in

[sdcz] munps_struc. h. real/complex qualifi es parameters that are real in the rea version and
complex in the complex version, whereas real is used for parameters that are always real, even in the

complex version of MUMPS.

4 |nput and output parameters

In this section, we describe the components of the variable mumps_par% of datatype
[SDCZIMUMPS_STRUC that must be set by the user.

4.1 Control of the three main phases: Analysis, Factorization, Solve

mumps_par%JOB (integer) must be initialized by the user on all processors before a call to MUMPS. It
controls the main action taken by MUMPS. It is not altered.

JOB=-1 initializes an instance of the package. This must be called before any other call
to the package concerning that instance. It sets default values for other components of
MUMPS_STRUC, which may then be altered before subsequent calls to MUMPS. Note that three
components of the structure must always be set by the user (on all processors) before a call
with JOB=-1. These are

e mumps_par%COMM,
e mumps_par%SYM, and
e mumps_par%PAR.

JOB=-2 destroys an instance of the package. All data structures associated with the instance,
except those provided by the user in mumps_par, are deallocated. It should be called by the
user only when no further calls to MUMPS with this instance are required. It should be called
before a further JOB=-1 call with the same argument mumps_par.

JOB=1 performs the analysis. In this phase, MUMPS chooses pivots from the diagonal using a
selection criterion to preserve sparsity. It uses the pattern of A + AT but ignores numerical
values. It subsequently constructs subsidiary information for the numerical factorization (a
JOB=2 call).

An option exists for the user to input the pivotal sequence (ICNTL(7)=1, see below) in which
case only the necessary information for a JOB=2 call will be generated.

The numerical values of the original matrix, mumps_par%A, must be provided by the user
during the analysis phase only for particular values of ICNTL(6) (computation of a column
permutation to get a zero-free diagonal). See Section 5 for more details.

MUMPS uses the pattern of the matrix A input by the user. In the case of a centralized matrix,
the following components of the structure defining the matrix pattern must be set by the user
only on the host:

e mumps_par%N, mumps_par%NZ, mumps_par%IRN, and mumps_par%JCN if the user
wishes to input the structure of the matrix in assembled format (ICNTL(5)=0 and
ICNTL(18) #£ 3) (see Section 4.4,

e mumps_par%N, mumps_par%NELT, mumps_par%ELTPTR, and mumps_par%ELTVAR
if the user wishes to input the matrix in elemental format (ICNTL(5)=1) (see Section 4.5).

These components should be passed unchanged when later calling the factorization (JOB=2)
and solve (JOB=3) phases.
In the case of a distributed assembled matrix (see Section 4.6 for more details and options),

e IfICNTL(18) = 1 or 2, the previous requirements hold except that IRN and JCN are no
longer required and need not be passed unchanged to the factorization phase.

e IfICNTL(18) = 3, the user should provide
— mumps_par%N on the host
— mumps_par%NZ _loc, mumps_par%IRN_loc and mumps_par%JCN_loc on all slave

processors. Those should be passed unchanged to the factorization (JOB=2) and solve
(JOB=3) phases.
A call to MUMPS with JOB=1 must be preceded by a call with JOB=-1 on the same instance.

JOB=2 performs the factorization. It uses the numerical values of the matrix A provided by the
user and the information from the analysis phase (JOB=1) to factorize the matrix A.

If the matrix is centralized on the host (ICNTL(18)=0), the pattern of the matrix should
be passed unchanged since the last call to the analysis phase (see JOB=1); the following

components of the structure define the numerical values and must be set by the user (on the
host only) before a call with JOB=2:
e mumps_par%A if the matrix is in assembled format (ICNTL(5)=0), or
e mumps_par%A_ELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed (ICNTL(5)=0 and ICNTL(18) # 0), then the following
components of the structure must be set by the user on all slave processors before a call with
JOB=2:
e mumps_par%A _loc on all slave processors, and
e mumps_par%NZ_loc, mumps_par%IRN_loc and mumps_par%JCN_loc if ICNTL(18)=1
or 2. (For ICNTL(18)=3, NZ_loc, IRN_loc and JCN_loc have already been passed to the
analysis step and must be passed unchanged.)
(See Sections 4.4-4.5-4.6.) The actual pivot sequence used during the factorization may differ
slightly from the sequence returned by the analysis if the matrix A is not diagonally dominant.
An option exists for the user to input scaling vectors or let MUMPS compute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(8) # 0, see Section 4.7).
A call to MUMPS with JOB=2 must be preceded by a call with JOB=1 on the same instance.
JOB=3 performs the solution. It uses the right-hand side b provided by the user and the factors
generated by the factorization (JOB=2) to solve a system of equations Ax = bor ATx = b.
The pattern and values of the matrix should be passed unchanged since the last call to the
factorization phase (see JOB=2). The structure component mumps_par%RHS must be set by
the user (on the host only) before a call with JOB=3. (See Section 4.11.)
A call to MUMPS with JOB=3 must be preceded by a call with JOB=2 (or JOB=4) on the same
instance.
JOB=4 combines the actions of JOB=1 with those of JOB=2. It must be preceded by a call to
MUMPS with JOB=-1 on the same instance.
JOB=5 combines the actions of JOB=2 and JOB=3. It must be preceded by a call to MUMPS with
JOB=1 on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. It must be preceded by a call to
MUMPS with JOB=-1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance are possible.

4.2 Control of parallelism

mumps_par%COMM (integer) must be set by the user on all processors before the initialization phase
(JOB=-1) and must not be changed. It must be set to a valid MPI communicator that will be used
for message passing inside MUMPS. It is not altered by MUMPS. The processor with rank 0 in this
communicator is used by MUMPS as the host processor.

mumps_par%PAR (integer) must be initialized by the user on all processors and is accessed by MUMPS
only during the initialization phase (JOB=-1). It is not altered by MUMPS. Possible values for PAR
are:

0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problem, perform symbolic computations during
the analysis phase, distribute data, and collect results from other processors. If set to 1, the host will
also participate in the factorization and solve phases. If the initial problem is large and memory is
an issue, PAR =1 is not recommended if the matrix is centralized on processor 0 because this can
lead to memory imbalance, with processor 0 having a larger memory load than the other processors.
Note that setting PAR to 1, and using only 1 processor, leads to a sequential code.

10

4.3 Matrix type

mumps_par%SY M (integer) must be initialized by the user on all processors and is accessed by MUMPS
only during the initialization phase (JOB=-1). It is not altered by MUMPS except for the complex
version of MUMPS where SYM=1 is replaced by SYM=2 and structural symmetry is exploited up
to the root. Possible values for SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

For the complex version, the value SYM=L1 is currently treated as SYM=2. We do not have a version
for Hermitian matrices in this release of MUMPS.

4.4 Centralized assembled matrix input: ICNTL(5)=0and ICNTL(18)=0

mumps_par%N (integer), mumps_par%NZ (integer), mumps_par%IRN (integer array pointer, dimension
NZ), mumps_par%JCN (integer array pointer, dimension NZ), and mumps_par%A (real/complex
array pointer, dimension NZ) hold the matrix in assembled format. These components should be
set by the user only on the host and only when ICNTL(5)=0 and ICNTL(18)=0:

e N is the order of the matrix A, N > 0. It is not altered by MUMPS.

e NZ is the number of entries being input, NZ > 0. It is not altered by MUMPS.

e IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries. IRN is unchanged. JCN is unchanged unless ICNTL(6)>0, in which
case the original matrix might be permuted to have a zero-free diagonal.

A is a real (complex in the complex version) array of length NZ. The user must set A(k) to
the value of the entry in row IRN(K) and column JCN(k) of the matrix. A is accessed when
JOB=1 only when ICNTL(6)neq0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.

Note that, in the case of the symmetric solver, a diagonal nonzero a;; is held as A(k)=a.s,
IRN(k)=JCN(k)=:, and a pair of off-diagonal nonzeros a;; = aj; is held as A(k)=a;; and
IRN(K)=3, JCN(K)=4 or vice-versa. Again, duplicate entries are summed and entries with
IRN(K) or JCN(K) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern of the matrix and must be set by the
user before the analysis phase (JOB=1). Component A must be set before the factorization phase
(JOB=2).

4.5 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumps_par%N (integer), mumps_par%NELT (integer), mumps_par%ELTPTR (integer array pointer,
dimension NELT+1), mumps_par%ELTVAR (integer array pointer, dimension ELTPTR(NELT+1)-
1), and mumps_par%A_ELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the host and only when ICNTL(5)=1:

e N is the order of the matrix A, N > 0. It is not altered by MUMPS.

e NELT is the number of elements being input, NELT > 0. It is not altered by MUMPS.

e ELTPTR s an integer array of length NELT+1. ELTPTR(j) points to the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) must be set to the position after the
last variable of the last element. Note that ELTPTR(1) should be equal to 1. It is not altered
by MUMPS.

e ELTVAR is an integer array of length ELTPTR(NELT+1)-1 and must be set to the lists of
variables of the elements. It is not altered by MUMPS. Those for element j are stored in
positions ELTPTR(j), ..., ELTPTR(j+1)-1. Out-of-range variables are ignored.

e A_ELT is a real (complex in the complex version) array. If N, denotes ELTPTR(p+1)—
ELTPTR(p), then the values for element j are stored in positions Kj + 1, ..., Kj + Lj;, where

- K; =17 Np* and L; = N;® in the unsymmetric case (SYM = 0)

11

- K; = ZL;II(NP - (Np +1))/2,and Lj = (Nj - (N; + 1))/2 in the symmetric case
(SYM # 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Values corresponding to out-of-range
variables are ignored and values corresponding to duplicate variables within an element are
summed. A_ELT is not accessed when JOB = 1. Note that, although the elemental matrix may
be symmetric or unsymmetric in value, its structure is always symmetric.

The components N, NELT, ELTPTR, and ELTVAR describe the pattern of the matrix and must
be set by the user before the analysis phase (JOB=1). Component A_ELT must be set before the
factorization phase (JOB=2). Note that, in the current release of the package, the element entry
must be centralized on the host.

4.6 Distributed assembled matrix input: ICNTL(5)=0and ICNTL(18)#0

When the matrix is in assembled form (ICNTL(5)=0), we offer several options, defined by the control
parameter ICNTL(18) described in Section 5. The following components of the structure define the
distributed assembled matrix input. They are valid for nonzero values of ICNTL(18), otherwise the user
should refer to Section 4.4.

mumps_par%N (integer), mumps_par%NZ (integer), mumps_par%IRN (integer array pointer, dimension
NZ), mumps_par%JCN (integer array pointer, dimension NZ), mumps_par%IRN_loc (integer array
pointer, dimension NZ_loc), mumps_par%JCN_loc (integer array pointer, dimension NZ_loc),
mumps_par%A_loc (real/complex array pointer, dimension NZ_loc), and mumps_par%MAPPING
(integer array, dimension NZ).

e N is the order of the matrix A, N > 0. It must be set on the host before analysis. It is not
altered by MUMPS.

e NZ is the number of entries being input in the definition of A, NZ > 0. It must be defined on
the host before analysis if ICNTL(18) =1, or 2.

e IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries. They must be defined on the host before analysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis.

e NZ_loc is the number of entries local to a processor. It must be defined on all processors in
the case of the working host model of parallelism (PAR=1), and on all processors except the
host in the case of the non-working host model of parallelism (PAR=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) =1 or 2.

e IRN_loc, JCN_loc are integer arrays of length NZ_loc containing the row and column indices,
respectively, for the matrix entries. They must be defined on all processors if PAR=1, and
on all processors except the host if PAR=0, before analysis if ICNTL(18) = 3, and before
factorization if ICNTL(18) =1 or 2.

e Al_loc is a real (complex in the complex version) array of dimension NZ_loc that must be
defined before the factorization phase (JOB=2) on all processors if PAR = 1, and on all
processors except the host if PAR = 0. The user must set A_loc(k) to the value in row
IRN_loc(k) and column JCN_loc(K).

e MAPPING is an integer array of size NZ which is returned by MUMPS on the host after
the analysis phase as an indication of a preferred mapping if ICNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) should be provided on processor with
rank IPROC in the MUMPS communicator.

We recommend the use of options ICNTL(18)= 2 or 3 because they are the simplest and most flexible
options. Furthermore, those options (2 or 3) are in general almost as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.

4.7 Prescaling

mumps_par%COLSCA, mumps_par%aROWSCA (double precision array pointers, dimension N) are
optional scaling arrays required only by the host. If a scaling is provided by the user

12

(ICNTL(8)=-1), these arrays must be allocated and initialized by the user on the host, before a
call to the factorization phase (JOB=2). They might also be automatically allocated and computed
by the package during analysis (if ICNTL(6)=5 or 6). They should be passed unchanged to the
solve phase (JOB=3).

4.8 Given ordering

mumps_par%PERM_IN (integer array pointer, dimension N) must be allocated and initialized by the
user on the host if IENTL(7)=1. It is accessed during the analysis (JOB=1) and PERM_IN(i), i=1,
..., N must hold the position of variable i in the pivot order. Note that, even when the ordering is
provided by the user, the analysis must still be performed before numerical factorization.

4.9 Return a Schur complement

mumps_par%SIZE_SCHUR (integer) must be initialized on the host to the size of the Schur complement
if ICNTL(19) # 0. It is accessed during the analysis phase and should be passed unchanged to the
factorization and solve phases.

mumps_par%LISTVAR_SCHUR (integer array pointer, dimension mumps_par%SIZE_SCHUR must
be allocated and initialized by the user on the host if ICNTL(19) # 0. It is not altered by MUMPS. It
is accessed during analysis (JOB=1) and LISTVAR_SCHUR(i), i=1, ..., SIZE_SCHUR must hold
the i*" index of the Schur matrix.

mumps_par%SCHUR is a real (complex in the complex version) pointer array of size SIZE_SCHUR
x SIZE_SCHUR that must be allocated by the user on the host before the factorization phase if
ICNTL(19) # 0. On exit, it holds the Schur complement matrix (see ICNTL(19) above).

4.10 Workspace parameters

mumps_par%MAXIS and mumps_par%MAXS (integers) are defined, for each processor, as the size
of the integer and the real (complex for the complex version) workspaces respectively required
for factorization and/or solve. On return from analysis (JOB = 1), INFO(7) and INFO(8) return
the minimum values for MAXIS and MAXS, respectively, to the user. If the user has reason to
believe that significant numerical pivoting will be required, it may be desirable to choose a higher
value for MAXIS (or MAXS) than output from the analysis. At the beginning of the factorization,
MAXIS and MAXS are set to the maximum of estimates based on analysis phase data and the
values supplied by the user. An integer array IS of size MAXIS and a real (complex in the complex
version) array S of size MAXS are then dynamically allocated and used during the factorization
and solve phases to hold the factors and contribution blocks.

4.11 Right-hand side and solution vector

mumps_par%RHS (real/complex array pointer, dimension N) is a real (complex in the complex
version) array that must be set by the user on the host only, before a call to MUMPS with JOB =
3, 5, or 6. On entry, RHS(i) must hold the i-th component of the right-hand side of the equations
being solved. On exit, RHS(i) will hold the i-th component of the solution vector.

5 Control parameters

On exit from the initialization call (JOB=-1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the corresponding entries in mumps_par%ICNTL and
mumps_par%CNTL should be reset after this initial call and before the call in which they are used.

mumps_par%ICNTL is an integer array of dimension 40.

ICNTL(1) is the output stream for error messages. If it is negative or zero, these messages will be
suppressed. Default value is 6.

13

ICNTL(2) is the output stream for diagnostic printing, statistics, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is 0.

ICNTL(3) is the output stream for global information, collected on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possible values are
e < 0: No messages output.
: Only error messages printed.
: Errors and warnings printed.
: Errors and warnings and terse diagnostics (only first ten entries of arrays) printed.
: Errors and warnings and all information on input and output parameters printed.

[EEY

A w N

ICNTL(5) has default value 0 and is only accessed by the host and only during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled format in the structure components N,
NZ, IRN, JCN, and A (or NZ_loc, IRN_loc, JCN_loc, A_loc, see Section 4.6). If ICNTL(5) = 1, the
input matrix must be given in elemental format in the structure components N, NELT, ELTPTR,
ELTVAR, and A_ELT.

ICNTL(6) has default value 7 for unsymmetric matrices and 0 for symmetric matrices. Itis only accessed
by the host and only during the analysis phase. If ICNTL(6)=1, 2, 3, 4, 5, 6, 7 a column permutation
based on the public domain code MC64 (see [13, 14] for more details) is applied to the original
matrix. Column permutations are then applied to the original matrix to get a zero-free diagonal.
Possible values of ICNTL(6) are:

e 0: No column permutation is computed.

e 1 : The permuted matrix has as many entries on its diagonal possible. The values on the

diagonal are of arbitrary size.

e 2: The smallest value on the diagonal of the permuted matrix is maximized.

e 3: Variant of option 2 with different performance.

e 4: The sum of the diagonal entries of the permuted matrix is maximized.

e 5: The product of the diagonal entries of the permuted matrix is maximized. Vectors are also
computed (and stored in COLSCA and ROWSCA, only if ICNTL(8) was set to 7) to scale
the permuted matrix so that the nonzero diagonal entries in the permuted matrix are one in
absolute value and all the off-diagonal entries are less than or equal to one in absolute value.
6 : Similar to 5 but with a different algorithm.

e 7 : Based on the structural symmetry of the input matrix and on the availability of the

numerical values, the value of ICNTL(6) is automatically chosen by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the original matrix, mumps_par%A, must
be provided by the user during the analysis phase. The user is advised to set ICNTL(6) only
when the matrix is very unsymmetric. If the matrix is symmetric (SYM = 0), or in elemental
format (ICNTL(5)=1), or the ordering is provided by the user (ICNTL(7)=1), or the Schur option
(ICNTL(19) £ 0) is required, or the matrix is initially distributed (ICNTL(18) £ 0) then ICNTL(6)
is treated as zero. On output from the analysis phase, when the column permutation is not the
identity, the pointer mumps_par%UNS_PERM (internal data valid until a call to MUMPS with JOB=-
2) provides access to the permutation. Otherwise, the pointer is unassociated.

ICNTL(7) has default value 7 and is only accessed by the host and only during the analysis phase.
It determines the pivot order to be used for the factorization. Note that, even when the ordering
is provided by the user, the analysis must be performed before numerical factorization. Possible
values are:

e 0: Approximate Minimum Degree (AMD) [2] is used,

e 1: the pivot order should be set by the user in PERM_IN. In this case, PERM_IN(i), (i=1, ...
N) holds the position of variable i in the pivot order.

14

: the Approximate Minimum Fill (AMF) is used,

: Not available in the current version.

: PORD! [18] is used,

: the METIS2 [17] routine METIS_NODEND is used,

: the Approximate Minimum Degree with automatic quasi-dense row detection (QAMD) is
used.

e 7 : Automatic value chosen by the software during analysis phase. This choice will depend
on the ordering packages made available, on the matrix (type and size), and on the number of
processors.

L]
o OB~ wN

Other values are treated as 7. Currently, options 3, 4 and 5 are only available if the corresponding
packages are installed (see comments in the Makefiles to let MUMPS know about them). If the
packages are not installed or if the matrix is by elements, options 3, 4 and 5 are treated as 7.
With option 7, the automatic value of ICNTL(7) chosen by the package depends on the ordering
packages installed, the type of matrix (symmetric or unsymmetric), the size of the matrix and the
number of processors.
For linear programming matrices of form A AT, and for matrices with relatively dense rows, we
highly recommend option 6 which may significantly reduce the time for analysis.
If the user asks for a Schur complement matrix, or if the matrix is by elements, only options 0 and 1
are currently available. On output, the pointer mumps_par%SYM_PERM (internal data valid until
a call to MUMPS with JOB=-2) provides access to the symmetric permutation.

ICNTL(8) has default value O for symmetric matrices and 7 for unsymmetric matrices. It is used to
describe the scaling strategy and is only accessed by the host.
On entry to the analysis phase, if ICNTL(8) = 7, then an automatic choice of the scaling option is
performed during the analysis and ICNTL(8) is modified accordingly. In particular, if ICNTL(8)
is reset to -1 by the package during the analysis, scaling arrays have been computed internally and
are ready to be used by the factorization phase. This corresponds to the case where ICNTL(6) was
equal 5, 6, or 7.
On entry to the factorization phase, if ICNTL(8) =-1, scaling vectors must be provided in
COLSCA and ROWSCA (either by the package, see previous paragraph, either by the user, who is
then responsible for allocating and freeing them). If ICNTL(8) = 0, no scaling is performed, and
arrays COLSCA/ROWSCA are not used. If ICNTL(8) > 0, the scaling arrays COLSCA/ROWSCA
are allocated and computed by the package during the factorization phase.

Possible values of ICNTL(8) are listed below:

e -1: Scaling provided on entry to numerical fatorization phase,

: No scaling applied/computed.

: Diagonal scaling,

: Scaling based on [10] (HSL code MC29),

: Column scaling,

: Row and column scaling,

: Scaling based on [10] followed by column scaling,

: Scaling based on [10] followed by row and column scaling.

e 7 (analysis only) : Automatic choice of scaling value done during analysis.

L]
o O~ W N - O

If the input matrix is symmetric (SYM # 0), then only options -1, 0, and 1 are allowed and other
options are treated as 0; if ICNTL(8)=-1, the user should ensure that the array ROWSCA is equal to
the array COLSCA. If the input matrix is in elemental format (ICNTL(5) = 1), then only options -1
and 0 are allowed and other options are treated as 0. If the initial matrix is distributed (ICNTL(18)
0 and ICNTL(5) = 0) or if rank-revealing options are set (ICNTL(16) # 0), then the value of
ICNTL(8) is ignored and no scaling is applied.

1Distributed within MUMPS by permission of J. Schulze (University of Paderborn).
2See http://www-users.cs.umn.edu/~karypis/metis/ to obtain a copy.

15

ICNTL(9) has default value 1 and is only accessed by the host during the solve phase. If ICNTL(9) = 1,
Ax = b is solved, otherwise, A”x = b is solved.

ICNTL(10) has default value 0 and is only accessed by the host during the solve phase. It corresponds
to the maximum number of steps of iterative refinement. If ICNTL(10) < 0, iterative refinement is
not performed.

ICNTL(11) has default value 0 and is only accessed by the host and only during the solve phase. A
positive value will return statistics related to the linear system solved (Ax = bor A”x = b
depending on the value of ICNTL(9)): the infinite norm of the input matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respectively, a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in the solution in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). See also Section 2.4. Note that if
performance is concerned, ICNTL(11) should be left to 0.

Note that, although the following ICNTL entries (12 to 14) control the efficiency of the factorization
and solve phases, they involve preprocessing work performed during analysis and must thus be set at the
analysis phase.

ICNTL(12) has default value 0 and is only accessed by the host and only during the analysis phase. If
ICNTL(12) = 0, node level parallelism is switched on, otherwise only tree parallelism will be used
during factorization/solve phases.

ICNTL(13) has default value 0 and is only accessed by the host during the analysis phase. If ICNTL(13)
=0, ScaLAPACK will be used for the root node if the size of the root node of the assembly tree
is larger than a machine-dependent minimum size. Otherwise, the root node of the tree will be
processed sequentially.

ICNTL(14) is accessed by the host both during the analysis and the factorization phases. It corresponds
to the percentage increase in the estimated working space. When significant extra fill-in is caused
by numerical pivoting, larger values of ICNTL(14) may help use the real working space more
efficiently. Default value is 20 % except for symmetric positive definite matrices (SYM=1) where
the default value is 15 %.

ICNTL(15-17) Experimental rank-revealing functionalities, available on request.

ICNTL(18) has default value 0 and is only accessed by the host during the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines the strategy for the distributed input
matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is the default, see Section 4.4.

e 1: the user provides the structure of the matrix on the host at analysis, MUMPS returns a
mapping and the user should then provide the matrix distributed according to the mapping on
entry to the numerical factorization phase.

e 2: the user provides the structure of the matrix on the host at analysis, and the distributed
matrix on all slave processors at factorization. Any distribution is allowed.

e 3: user directly provides the distributed matrix input both for analysis and factorization.

For options 1, 2, 3, see Section 4.6 for more details on the input/output parameters to MUMPS. For
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the host during the analysis phase. If ICNTL(19)
= 0 then the Schur matrix will be returned to the user. The user must set on entry on the host node
(before analysis):

e the integer variable SIZE_SCHUR to the size of the Schur matrix,

o the integer array pointer LISTVAR_SCHUR to the list of indices of the Schur matrix.
Before the factorization phase, on the host node, the 1-dimensional pointer array SCHUR should
point to SIZE_SCHUR*SIZE_SCHUR locations in memory, allocated by the user. On output
from the factorization phase, and on the host node, the 1-dimensional pointer array SCHUR of

length SIZE_.SCHUR*SIZE_SCHUR holds the (dense) Schur matrix of order SIZE_SCHUR. Note
that the order of the indices in the Schur matrix is identical to the order provided by the user in

16

LISTVAR_SCHUR and that the Schur matrix is stored by rows. If the matrix is symmetric then
only the lower triangular part of the Schur matrix is provided (by rows) and the upper part is not
significant.

The partial factorization of the interior variables can then be exploited to perform a solve phase
(transposed matrix or not). Note that the right-hand side (RHS) provided on input must still be of
size N even if only the N-SIZE_SCHUR indices will be considered and if only N-SIZE_SCHUR
indices of the solution will be relevant to the user.

Finally note that since the Schur complement can be viewed as a partial factorization of the
global matrix (with partial ordering of the variables provided by the user) the following options
of MUMPS are incompatible with the Schur option: maximum transversal, scaling, iterative
refinement, error analysis. Note that if the ordering is given then the following property should
hold: PERM_IN(LISTVAR_SCHUR(i)) = N-SIZE_SCHUR+i, for i=1,SIZE_SCHUR.

ICNTL(20-40) are not used in the current version.

mumps_par%CNTL is a real (also real in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivoting. It forms a trade-off between preserving
sparsity and ensuring numerical stability during the factorization. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate factorization. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, no such pivoting will be performed
and the subroutine will fail if a zero pivot is encountered. If the matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorization time while still providing a stable
decomposition. If the code is called for unsymmetric or general symmetric matrices, CNTL(1) has
default value 0.01. For symmetric positive definite matrices and if the Schur complement is asked to
be returned (ICNTL(19)+ 0), numerical pivoting is suppressed and the default value is 0.0. Values
less than 0.0 are treated as 0.0, values greater than 1.0 are treated as 1.0.

CNTL(2) is the stopping criterion for iterative refinement and is only accessed by the host during the
solve phase. Let Berr = max; iy [8]. Iterative refinement will stop when either the
required accuracy is reached (Berr < CNTL(2)) or the convergence rate is too slow (Berr does

not decrease by at least a factor of 5). Default value is /z.

CNTL(3) determines the absolute threshold thres for numerical pivoting. It has default value -1.0 and
is only accessed by the host during the numerical factorization phase. If CNTL(3) < 0 (default),
thres is determined automatically: thres = €||A|| if ICNTL(16) # 0 or if SYM=2 in the case of
node level parallelism; thres = 0 otherwise. If CNTL(3) > 0, then the value thres = CNTL(3)
is used. During the numerical factorization, a potential pivot has to be larger than thres to be
accepted.

CNTL(4) - CNTL(5) are not used in the current version.

6 Information parameters

The parameters described in this section are returned by MUMPS and hold information that may be of
interest to the user. Some of the information is local to each processor and some only on the host. If an
error is detected (see Section 7), the information may be incomplete.

6.1 Information local to each processor

The arrays mumps_par%RINFO and mumps_par%INFO are local to each process.

mumps_par%RINFO is a double precision array of dimension 20. It contains the following local
information on the execution of MUMPS:

RINFO(1) - after analysis: The estimated number of floating-point operations on the processor for the
elimination process.

17

RINFO(2) - after factorization: The number of floating-point operations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-point operations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumps_par%INFO is an integer array of dimension 40. It contains the following local information on
the execution of MUMPS:

INFO(1) is 0 if the call to MUMPS was successful, negative if an error occurred (see Section 7), or
positive if a warning is returned.

INFO(2) holds additional information about the error or the warning. If INFO(1)=-1, INFO(2) is the
processor number (in communicator mumps_par%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed on the processor for factors.
INFO(4) - after analysis: Estimated integer space needed on the processor for factors.
INFO(5) - after analysis: Estimated maximum front size on the processor.

INFO(6) - after analysis: Number of nodes in the complete tree. The same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated by the analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimated by the analysis phase to run the numerical
factorization successfully.

INFO(9) - after factorization: Size of the real space used on the processor to store the LU factors.
INFO(10) - after factorization: Size of the integer space used on the processor to store the LU factors.
INFO(11) - after factorization: Order of the largest frontal matrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pivots encountered on the processor if SYM=0
or number of negative pivots on the processor if SYM=1 or 2. If ICNTL(13)=0 (the default), this
excludes pivots from the parallel root node treated by ScaLAPACK. Note that if SYM=1 or 2,
INFO(12) will be 0 for complex symmetric matrices.

INFO(13) - after factorization: The number of uneliminated variables, corresponding to delayed pivots,
sent to the father. If a delayed pivot is subsequently passed to the father of the father, it is counted
a second time.

INFO(14) - after factorization: Number of memory compresses on the processor.

INFO(15) - after analysis: estimated total size (in millions of bytes) of all MUMPS internal data for
running numerical factorization.

INFO(16) - after factorization: total size (in millions of bytes) of all MUMPS internal data used during
numerical factorization.

INFO(17) - INFO(40) are not used in the current version.

6.2 Information available on the host
The arrays mumps_par%RINFOG and mumps_par%INFOG :

mumps_par%RINFOG is a double precision array of dimension 20. It contains the following global
information on the execution of MUMPS:

RINFOG(1) - after analysis: The estimated number of floating-point operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of floating-point operations (on all processors) for
the assembly process.

18

RINFOG(3) - after factorization: The total number of floating-point operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysis: Only returned on the host process if
ICNTL(11) # 0. See description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumps_par%INFOG is an integer array of dimension 40. It contains the following global information on
the execution of MUMPS:

INFOG(1) is 0 if the call to MUMPS was successful, negative if an error occurred (see Section 7), or
positive if a warning is returned.

INFOG(2) holds additional information about the error or the warning.

The difference between INFOG(1:2) and INFO(1:2) is that INFOG(1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returned with the most negative INFO(1) value. For
example, if processor p returns with INFO(1)=-13, and INFO(2)=10000, then all other processors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still INFO(1)=-1 and INFO(2)=p.

INFOG(3) - after analysis: Total estimated real workspace for factors on all processors.
INFOG(4) - after analysis: Total estimated integer workspace for factors on all processors.
INFOG(5) - after analysis: Estimated maximum front size in the complete tree.

INFOG(6) - after analysis: Number of nodes in the complete tree.

INFOG(7) - after analysis: ordering option effectively used (see ICNTL(7)).

INFOG(8) - after analysis: structural symmetry in percent (100 : symmetric, 0 : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structural symmetry was not computed.)

INFOG(9) - after factorization: Total real space to store the LU factors.
INFOG(10) - after factorization: Total integer space to store the LU factors.
INFOG(11) - after factorization: Order of largest frontal matrix.

INFOG(12) - after factorization: Total number of off-diagonal pivots if SYM=0 or total number of
negative pivots if SYM=1 or 2. If ICNTL(13)=0 (the default) this excludes pivots from the parallel
root node treated by ScaLAPACK. Note that if SYM=1 or 2, INFOG(12) will be 0 for complex
symmetric matrices.

INFOG(13) - after factorization: Total number of delayed pivots.
INFOG(14) - after factorization: Total number of memory compresses.
INFOG(15) - after solution: Number of steps of iterative refinement.

INFOG(16) - after analysis: Estimated size (in million of bytes) of all MUMPS internal data for running
factorization: value on the most memory consuming processor.

INFOG(17) - after analysis: Estimated size (in millions of bytes) of all MUMPS internal data for running
factorization: sum over all processors.

INFOG(18) - after factorization: Size in millions of bytes of all MUMPS internal data allocated during
factorization: value on the most memory consuming processor.

INFOG(19) - after factorization: Size in millions of bytes of all MUMPS internal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entries in the factors.
INFOG(21) - INFOG(40) are not used in the current version.

19

7 Error diagnostics

MUMPS uses the following mechanism to process errors that may occur during the parallel execution of
the code. If, during a call to MUMPS, an error occurs on a processor, this processor informs all the other
processors before they return from the call. In parts of the code where messages are sent asynchronously
(for example factorization and solve phases), the processor on which the error occurs sends a message to
the other processors with a specific error tag. On the other hand, if the error occurs in a subroutine that
does not use asynchronous communication, the processor propagates the error to the other processors.

On successful completion, a call to MUMPS will exit with the parameter mumps_par%INFOG(1) set
to zero. A negative value for mumps_par%INFOG(1) indicates that an error has been detected on one of
the processors. For example, if processor s returns with INFO(1)=-8 and INFO(2)=1000, then processor
s ran out of integer workspace during the factorization and the size of the workspace MAXIS should be
increased by 1000 at least. The other processors are informed about this error and return with INFO(1) =
-1 (i.e., an error occurred on another processor) and INFO(2)=s (i.e., the error occurred on processor s).
Processors that detected a local error, do not overwrite INFO(1), i.e., only processors that did not produce
an error will set INFO(1) to -1 and INFO(2) to the processor having the smallest error code.

The behaviour is slightly different for INFOG(1) and INFOG(2): in the previous example, all
processors would return with INFOG(1)=-8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOG(1)) have the following meaning:

-1 An error occurred on processor INFO(2).
—2 NZis out of range. INFO(2)=NZ.

-3 MUMPS was called with an invalid value for JOB. This may happen for example if the analysis
(JOB=1) was not performed before the factorization (JOB=2), or the factorization was not
performed before the solve (JOB=3). See item for JOB in Section 3. This error also occurs if
JOB does not contain the same value on all processes on entry to MUMPS.

—4 Error in user-provided permutation array PERM_IN in position INFO(2). This error occurs on the
host only.

-5 Problem of REAL workspace allocation of size INFO(2) during analysis.
—6 Matrix is singular in structure.
—7 Problem of INTEGER workspace allocation of size INFO(2) during analysis.

-8 MAXIS too small for factorization. This may happen, for example, if numerical pivoting leads to
significantly more fill-in than was predicted by the analysis. The user should increase the value of
ICNTL(14) or the value of MAXIS before entering the factorization (JOB=2).

-9 MAXS too small for factorization. The user should increase the value of ICNTL(14) or MAXS before
entering the factorization (JOB=2).

—-10 Numerically singular matrix.

-11 MAXS too small for solution. See error INFO(1)=-9.

-12 MAXS too small for iterative refinement. See error INFO(1)=-9.

—13 Error in a Fortran ALLOCATE statement. INFO(2) contains the size that the package requested.
-14 MAXIS too small for solution. See error INFO(1)=-8.

-15 MAXIS too small for iterative refinement and/or error analysis. See error INFO(1)=-8.

-16 N is out of range. INFO(2)=N.

—-17 The internal send buffer that was allocated dynamically by MUMPS on the processor is too small.
The user should increase the value of ICNTL(14) before entering the analysis (JOB=1).

-18 MAXIS too small to process root node. See error INFO(1)=-8.
-19 MAXS too small to process root node. See error INFO(1)=-9.

—20 The internal reception buffer that was allocated dynamically by MUMPS on the processor is too
small. INFO(2) holds the minimum size of the reception buffer required (in bytes). The user should
increase the value of ICNTL(14) before entering the analysis (JOB=1).

20

—21 Incompatible values of PAR=0 and NPROCS=1. INFO(2)=NPROCS. Running MUMPS in host-node
mode (the host is not a slave processor itself) requires at least two processors. The user should
either set PAR to 1 or increase the number of processors.

—22 A pointer array is provided by the user that is either
e not associated, or
o has an insufficient size, or
e isassociated and should not be associated (for example, RHS on non-host processors).

INFO(2) points to the pointer array having the wrong format in the table below:
INFO(2) array
1 IRN or ELTPTR
JCN or ELTVAR
PERM.IN
Aor AELT
ROWSCA
COLSCA
RHS
LISTVAR_SCHUR
9 SCHUR

—23 MPI was not initialized by the user prior to a call to MUMPS with JOB=-1.
—24 NELT is out of range. INFO(2)=NELT.

—25 A problem has occured in the initialization of the BLACS. This may be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instead.

O ~NO Ok WwN

A positive value of INFO(1) is associated with a warning message which will be output on unit
ICNTL(2).

+1 Index (in IRN or JCN) out of range. Action taken by subroutine is to ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. Details of the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solution was found to be zero.

+8 Warning return from the iterative refinement routine. More than ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to summing the constituent warnings.

8 CallingMUMPSfrom C

MUMPS is a Fortran 90 library, designed to be used from Fortran 90 rather than C. However a basic C
interface is provided that allows users to call MUMPS directly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose components match those in the MUMPS structure for
Fortran (Figure 1). Thus the description of the parameters in Sections 4and 5 applies. Figure 2 shows the
C structure [SDCZIMUMPS_STRUC_C. This structure is defined in the include file [sdcz]mumps_c.h
and there is one main routine per available precision with the following prototype:

void [sdcz]mumps_c(MUMPS_STRUC_C * idptr);

An example of calling MUMPS from C for a complex assembled problem is given in Section 9.3. The
following subsections discuss some technical issues that a user should be aware of before using the C
interface to MUMPS.

In the following, we suppose that id has been declared of type [SDCZ]JMUMPS_STRUC_C.

8.1 Array indices

Arrays in C start at index 0 whereas they normally start at 1 in Fortran. Therefore, care must be taken when
providing arrays to the C structure. For example, the row indices of the matrix A, stored in IRN(1:NZ)
in the Fortran version should be stored in irn[0-nz-1] in the C version. (Note that the contents of
i rnitself is unchanged with values between 1 and N.) One solution to deal with this is to define macros:

21

typedef struct

{

int sym, par, job;

int comm_fortran; /* Fortran communicator */

int icntl[40];

real cntl[5];

int n;

/* Assembled entry */

int nz; int *irn; Int *jcn; real/complex *a;

/* Distributed entry */

int nz_loc; int *irn_loc; int *jcn_loc; real/complex *a_loc;
/* Element entry */

int nelt; int *eltptr; int *eltvar; real/complex *a_elt;
/* Ordering, if given by user */

int *perm.in;

/* Scaling (input only in this version) */

real/complex *colsca; real/complex *rowsca;

/* Output data and statistics */

real/complex *rhs;

int info[40], infog[40];

real rinfo[20], rinfog[20];

int *sym_perm, *uns_perm;

/* Null space (nhot maintained) */

int deficiency; real/complex * nullspace; int * mapping;
/* Schur */ int size_schur; int *listvar_schur; real/complex *schur;
/* Internal parameters */

int instance_number;

} [SDCZIMUMPS_STRUC_.C;

Figure 2: Defi nition of the C structure [SDCZ] MUMPS STRUC C. real/complex is used for data that can
be either real or complex, real for datathat staysreal (f | oat or doubl e) in the complex version.

22

#define ICNTLC 1) icntl[(i) - 1]
#define ACi1) a[(i) -1 1]
#define IRNC 1) irn[(i) -1 1]

and then use the uppercase notation with parenthesis (instead of lowercase/brackets). In that case, the
notation id. IRN(I), where 1isin{ 1,2, ... NZ} can be used instead of id. irn[1-17; this notation
then matches exactly with the description in Sections 4 and 5, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix input (see Section 4.5), where some arrays
are used to index other arrays. For instance, the first value in eltptr, eltptr[0], pointing into
the list of variables of the first element in eltvar, should be equal to 1. Effectively, using the
notation above, the list of variables for element j = 1 starts at location ELTVAR(ELTPTR(J)) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]1-1].

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a different datatype and are not directly compatible.
For the C interface, MUMPS requires a Fortran communicator to be provided in id.comm_fortran.
If, however, this field is initialized to the special value -987654, the Fortran communicator
MP I_COMM_WORLD is used by default. If you need to call MUMPS based on a smaller number of processors
defined by a C subcommunicator, then you should convert your C communicator to a Fortran one. This
has not been included in MUMPS because it is dependent on the MP I implementation and thus not portable.
For MP 12, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that F_INT is defined in [sdcz]mumps_c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators have the same integer representation

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

should work.
For MPICH, check if id.comm_fortran = MPIR_FromPointer(commc) gives the
expected result.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlled by ICNTL(1:4) / icntl[0. .3]) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 which corresponds to stdout. For a more
general usage with specific file names from C, passing a C file handler is not currently possible. One
solution would be to use a Fortran subroutine along the lines of the model below:

SUBROUTINE OPENFILE(UNIT, NAME)
INTEGER UNIT

CHARACTER*(*) NAME

OPEN(UNIT, File=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile_(&mumps_par.ICNTL(1), name, name_length_byval)
(or slightly different depending on the C-Fortran calling conventions); something similar could be done
to close the file.

8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the compiler used to compile MUMPS is required at the
link stage. One way to provide it is to perform the link phase with the Fortran compiler (instead of the C
compiler or 1d).

23

8.5 Integer, real and complex datatypes in C and Fortran

We assume that the int, Float and double types are compatible with the Fortran INTEGER, REAL
and DOUBLE PRECISION datatypes. If this was not the case, the files [dscz]mumps_prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define the comp 1 ex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortran COMPLEX and DOUBLE COMPLEX types:

typedef struct {float r,i;} mumps_complex; forsimple precision (cmumps), and

typedef struct {double r,i;} mumps_double_.complex; for double precision
(zmumps).

Types for complex data from the user program should be compatible with those above.

8.6 Sequential version

The C interface to MUMPS is compatible with the sequential version; see Section 2.9.

9 Examplesof use of MUMPS

9.1 An assembled problem

An example program illustrating a possible use of MUMPS on assembled DOUBLE PRECISION
problems is given Figure 3. Two files must be included in the program: mpif.h for MPI and
mumps_struc . h for MUMPS. The file mumps_root . h must also be available because it is included in
mumps_struc.h. The initialization and termination of MPI are performed in the user program via the
callsto MPI_INIT and MP1_FINALIZE.

The MUMPS package is initialized by calling MUMPS with JOB=-1, the problem is read in by the host
(in the components N, NZ, IRN, JCN, A, and RHS), and the solution is computed in RHS with a call on
all processors to MUMPS with JOB=6. Finally, a call to MUMPS with JOB=-2 is performed to deallocate
the data structures used by the instance of the package.

Thus for the assembled 5 x 5 matrix and right-hand side

2 3 4 20
3 -3 6 24
-1 1 2 , 9
2 6
4 1 13
we could have as input
5 N
12 . \V4
123.0
2 3 -3.0
43 2.0
551.0
213.0
112.0
5240
3420
256.0
32-1.0
134.0
331.0 A
20.0
24.0
9.0
6.0

24

PROGRAM MUMPS_EXAMPLE
INCLUDE “mpif.h~
INCLUDE >dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, 1
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code
1d%SYM = 0O
Host working
id%PAR = 1
Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)
Define problem on the host (processor 0)
IF (id%MYID .eq. O) THEN
READ(5,*) id%N
READ(5,*) id%NZ
ALLOCATE(id%IRN (id%NZ))
ALLOCATE(1d%JCN (id%NZ))
ALLOCATE(id%A(id%NZ))
ALLOCATE(id%RHS (id%N))
READ(5,*) (id%IRN(I) ,I=1, id%NZ)
READ(5,*) (id%JCN(1) ,1=1, id%NZ)
READ(5,*) (id%A(1),I1=1, id%NZ)
READ(5,*) (id%RHS(I) ,I=1, id%N)
END IF
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF (id%MYID .eq. O) THEN
WRITE(6, *) ” Solution is ~,(id%RHS(1),1=1, id%N)
END IF
Deallocate user data
IF (id%MYID .eq. O)THEN
DEALLOCATE(id%IRN)
DEALLOCATE(id%JCN)
DEALLOCATE(id%A)
DEALLOCATE(id%RHS)
END IF
Destroy the instance (deallocate internal data structures)
id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 3: Example program using MUMPS on an assembled DOUBLE PREC! SI ON problem

25

13.0 :RHS
and we obtain the solution RHS(i) =i,i=1,...,5.

9.2 An elemental problem

An example of a driver to use MUMPS for element DOUBLE PRECISION problems is given in Figure 4.
The calling sequence is similar to that for the assembled problem in Section 9.1 but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, A_ELT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matrices always have a symmetric structure. For
the two-element matrix and right-hand side

1 /-1 2 3
2 2 1 1 |,
3 11 1

we could have as input

12

2 -1 3 7
1 2 -1, 23
3 2 1 6

22

5
2
6
18
147

123345
-1.02.01.02.01.01.03.01.01.02.01.03.0-1.02.02.03.0-1.01.0

12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i) =i,i=1,...,5.

9.3 An example of calling MUMPS from C

An example of a driver to use MUMPS from C is given in Figure 5.

Acknowledgements

MUMPS has been partially supported by the ESPRIT IV Project PARASOL, and by CERFACS,
ENSEEIHT-IRIT, INRIA Rhone-Alpes, LBNL-NERSC, Parallab and the Rutherford-Appleton
Laboratory.

The functionalities related to rank-revealing on the root of the multifrontal tree were implemented by
M. Tdima 3 while he was at CERFACS and are not anymore maintained.

We are also grateful to Caroline Bousquet, Christophe Daniel, Abdou Guermouche, Chiara Puglisi,
Séphane Pralet, Grégoire Richard, and Christophe Vomel who have been contributed to this work.

Stuma@uivt.cas.cz, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou, v&7i 2, 182 07
Praha 8, Czech Republic.

26

PROGRAM MUMPS_EXAMPLE
INCLUDE “mpif.h~
INCLUDE >dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER 1ERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MP1_COMM_WORLD
Ask for unsymmetric code
1d%SYM = 0O
Host working
1d%PAR = 1
Initialize an instance of the package
1d%JOB = -1
CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF (id%MYID .eq. O) THEN
READ(5,*) 1d%N
READ(5,*) 1d%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE(Id%ELTPTR (#d%NELT+1))
ALLOCATE(id%ELTVAR (LELTVAR))
ALLOCATE(1d%A_ELT(NA_ELT))
ALLOCATE(1d%RHS (id%N))
READ(5,*) (Fd%ELTPTR(1) ,1=1, §d%NELT+1)

I
READ(5,*) (id%ELTVAR(I) ,1=1, LELTVAR)
READ(5,*) (id%A_ELT(1),1=1, NA_ELT)
READ(5,*) (id%RHS(I) ,1=1, id%N)

END IF

Specify element entry
id%ICNTL(5) = 1
Call package for solution
1d%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF (1d%MYID .eq. O) THEN
WRITE(C 6, *) ” Solution is ~,(id%RHS(1), =1, id%N)
END IF
Deallocate user data
DEALLOCATE(id%ELTPTR)
DEALLOCATE(1d%ELTVAR)
DEALLOCATE(id%A_ELT)
DEALLOCATE(id%RHS)
Destroy the instance (deallocate internal data structures)
1d%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 4: Example program using MUMPS on an element DOUBLE PRECI SI ON problem.

27

/* Example program using the C interface to the
double precision version of MUMPS, dmumps_c.
We solve the system A x = RHS with
A = diag(1 2) and RHS [14]°T
Solution is [1 2]°T */
#include <stdio.h>
#include "mpi.h"
#include "dmumps_c.h"
#define JOB_INIT -1
#define JOB_END -2
#define USE_COMM_WORLD -987654
int main(int argc, char ** argv) {
DMUMPS_STRUC_C 1id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jen[] = {1,2};
double a[2];
double rhs[2];

* %
|

*

*

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MP1_Comm_rank(MP1_COMM_WORLD, &myid);
/* Define A and rhs */
rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

/* Initialize a MUMPS instance. Use MPI_COMM_WORLD. */
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=USE_COMM_WORLD;
dmumps_c(&id);

/* Define the problem on the host */

if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

#deFfine ICNTL(I) icntl[(1)-1] /* macro s.t. indices match documentation */
/* No outputs */

id. ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICNTL(4)=0;
/* Call the MUMPS package. */

id.job=6;

dmumps_c(&id);

id.job=JOB_END; dmumps_c(&id); /* Terminate instance */

if (myid == 0) {

printf(""Solution is : (%8.2F %8.2F)\n", rhs[0],rhs[1]);
}

return O;

Figure 5: Example program using MUMPS from C on an assembled problem.

28

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

P. R. Amestoy. Recent progress in parallel multifrontal solvers for unsymmetric sparse matrices.
In Proceedings of the 15th World Congress on Scientific Computation, Modelling and Applied
Mathematics, IMACS 97, Berlin, 1997.

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM Journal on Matrix Analysis and Applications, 17:886-905, 1996.

P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multifrontal code. Int. J. of
Supercomputer Applics., 3:41-59, 1989.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications,
23(1):15-41, 2001.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal solvers within the PARASOL
environment. In B. Kégstrom, J. Dongarra, E. Elmroth, and J. Waéniewski, editors, Applied Parallel
Computing, PARA’98, Lecture Notes in Computer Science, No. 1541, pages 7-11, Berlin, 1998.
Springer-Verlag.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Parallélisation de la factorisation LU de matrices
creuses non-symétriques pour des architectures a mémoire distribuée. Calculateurs Paralléles
Réseaux et Systémes Répartis, 10(5):509-520, 1998.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501-520, 2000.

M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward error.
SIAM Journal on Matrix Analysis and Applications, 10:165-190, 1989.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. SIAM Press, 1997.

A. R. Curtis and J. K. Reid. On the automatic scaling of matrices for Gaussian elimination. J. Inst.
Maths. Applics., 10:118-124, 1972.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16:1-17, 1990.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679. A set of Level 3 Basic
Linear Algebra Subprograms: model implementation and test programs. ACM Transactions on
Mathematical Software, 16:18-28, 1990.

1. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the diagonal
of sparse matrices. SIAM Journal on Matrix Analysis and Applications, 20(4):889-901, 1999.

1. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.
SIAM Journal on Matrix Analysis and Applications, 22(4):973-996, 2001.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear systems.
ACM Transactions on Mathematical Software, 9:302-325, 1983.

I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems. SIAM
Journal on Scientific and Statistical Computing, 5:633-641, 1984.

G. Karypis and V. Kumar. METIS — A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices — Version 4.0.
University of Minnesota, September 1998.

J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods.
BIT, 41(4):800-841, 2001.

29

