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Abstract

TetGen is a quality tetrahedral mesh generator and 3-dimensional
Delaunay triangulator. Based on the the-state-of-the-art algorithms
for Delaunay tetrahedralization and mesh generation, this program
has been specifically designed to fulfill the task of automatically gener-
ating high quality tetrahedral meshes, which are suitable for scientific
computing using numerical methods such as finite element and finite
volume methods.

The purpose of this document is to give a brief explanation of the
problems solved by TetGen and to provide a detailed user’s documen-
tation. In this document, the user will learn how to create tetrahedral
meshes using TetGen’s input files and command line switches. In the
following section, the programming interface of TetGen for calling Tet-
Gen from another program is explained. Various examples are given
to simplify the “getting started”.

keywords: tetrahedral mesh, quality mesh generation, boundary
mesh generation, Delaunay tetrahedralization, constrained Delaunay
tetrahedralization
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1 Introduction

TetGen is a program for generating tetrahedral meshes for arbitrary three-
dimensional domains. The main purpose of TetGen is to create high-quality
tetrahedral meshes for solving partial differential equations using finite ele-
ment and finite volume methods. This program, based on Delaunay methods,
currently generates meshes including exact constrained Delaunay tetrahe-
dralizations and quality (conforming Delaunay) meshes. The latter are nicely
graded and the tetrahedra have circumradius-to-shortest-edge ratio bounded,
hence are satisfying the requirements known from numerical analysis. For a
three-dimensional point set, it generates its exact Delaunay tetrahedraliza-
tion and convex hull as well.

This program, written in C++, includes a suit of state-of-the-art algo-
rithms for Delaunay tetrahedralization and quality mesh generation. It can
be compiled into an executable program or a library which can be integrated
into other applications. The code is highly portable and has been success-
fully compiled and tested on all major operating systems, e.g. Unix/Linux,
MacOS, Windows, etc.

The remainder of this section is to give a brief description of the prob-
lems that TetGen solves and the specific algorithms implemented in TetGen.
References are given for people who are particularly interesting in these ap-
proaches. However, this information is not really crucial for all users. Most
of the sections can be skipped but Section 1.2.1 and Section 1.3.1, which
contain some important points to get a solvable problem.

1.1 Delaunay Triangulation and Convex Hull

The Delaunay triangulation of a vertex set, introduced by Delaunay [1] in
1934, has many favorite properties which make it be a very useful geomet-
ric structure. It has been used extensively both in the design of efficient
algorithms and in practical applications.

The language of combinatorial topology will be used to describe Delaunay
triangulations. Understanding of some basic notions is necessary, such as
convex hull, simplex, simplical complex and so on. A brief explanation of
these notions can be found in Appendix A.

Let V be a set of n-dimensional vertices. s be a k-simplex (0 ≤ k ≤ n)
formed from vertices of V . The circumsphere of s is a full dimensional sphere
that passes through all vertices of s, hence it is a circle when n = 2 and a
sphere when n = 3. If k = d, s has a unique circumsphere, otherwise, there
are infinitely many circumspheres of s. The simplex s is Delaunay if there
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Figure 1: The Delaunay criterion and Delaunay triangulation in two dimen-
sions. (a) Both the 2-simplex abc and the 1-simplex de are Delaunay. (b)
The corresponding Delaunay triangulation of the point set shown in (a).

exists a circumsphere of s such that no vertex of V lies inside it. Figure 1
(a) shows Delaunay simplices in a set of two-dimensional vertices.

The Delaunay triangulation D of V is a simplical complex consisting of
Delaunay simplices, and the set of all simplices of D covers the convex hull of
V . A two-dimensional Delaunay triangulation is illustrated in Figure 1 (b).
In three dimensions, it is also called Delaunay tetrahedralization.

There is a nice relationship between Delaunay triangulation in Rd and
convex hull in Rn+1. For a point p = (p1, p2, · · · , pd) ∈ Rd, define its lift
point p+ = (p1, p2, · · · , pd, pd+1) ∈ Rd+1, where pd+1 =

∑d
i=1 p2

i . For a point
set V ⊂ Rd, define V + = {p+ | p ∈ V }. V + is the set of points “lifted” from
points of V in Rd and on a paraboloid in Rd+1 (see Figure 2 (a)). Then the
convex hull con(V +) is a d + 1-dimensional convex polytope. The Delaunay
triangulation of V can be produced by projecting con(V +) into d dimensions.
Figure 2 illustrates the relationship when d = 2.

In fact, a Delaunay triangulation is just a special type of so-called regular
triangulations, or equivalently weighted Delaunay triangulations [21]. Such
triangulations have closely relationship with convex polytopes [18] which
makes them theoretically interested in understanding three or higher di-
mensional combinatorial structures [36]. Recent research shows that they’re
effective in removing slivers in quality mesh generation [30, 31].

The Delaunay triangulation has many optimal properties. For example,
among all triangulations of a set of points in R2, it maximizes the minimum
angle, and also minimizes the maximum circumradii; optimal time complex-
ity (O(n log n)) algorithms (divide-and-conquer and plane-sweep) are known
to efficient construct them. A discussion on some optimal properties of the
Delaunay triangulation in three or higher dimensions can be found in [15]. In
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Figure 2: The relation between Delaunay triangulation in Rd and convex
hull in Rd+1 (here d = 2). (a) Some 2D points and their corresponding 3D
lift points. (b) The Delaunay triangulation of a set of 2D points and the
lower convex hull of its 3D lifted points.

the following, we introduce two properties which are both useful in numerical
methods and the design of efficient algorithms.

A favorite property of the Delaunay triangulation is its relation with
another useful geometric structure: the Voronoi diagram defined on the same
vertex set. For any vertex a ∈ V , the Voronoi cell of a is the set of points
with distance to a not greater than to any other vertex of V , i.e. it is
the set {x ∈ Rn | |x − a| ≤ |x − b|, ∀b ∈ V }, where | · | stands for the
Euclidean distance. The Voronoi diagram of V is a subdivision of space Rn

into Voronoi cells (some of which may be infinite). Delaunay triangulation
and Voronoi diagram are geometrical dual. For example, in two dimensions,
Voronoi polygons are corresponding to Delaunay vertices, Voronoi edges are
corresponding to Delaunay edges, and Voronoi vertices are corresponding to
Delaunay triangles (illustrated in Figure 3 (a)).

Another useful property is the localization of the Delaunay property. Let
T be an arbitrary triangulation of V , and s be a simplex of T . Let K be
a subcomplex of T formed by simplices containing s. s is locally Delaunay
if there exists a circumsphere of s encloses no vertices from the vertex set
of K in its interior. Figure 3 (b) illustrates the property in two dimensions.
Evidently, if every simplex of T is locally Delaunay, then T is Delaunay
triangulation.

Many algorithms for constructing Delaunay triangulations use “flips”. A
flip is an operation to transform a set of non-locally Delaunay simplices into
another set of simplices which are locally Delaunay. Figure 4 illustrates two
types of flips in three dimensions. The basic idea of these algorithms is rel-
atively simple: start from an arbitrary triangulation, do flips on non-locally
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Figure 3: Properties of Delaunay triangulations. (a) The relation between
Delaunay triangulation and Voronoi diagram. (b) Locally Delaunay prop-
erty. Edge ab is locally Delaunay. Here only c and d affect the property
because there are triangles abc and abd sharing edge ab. e and f are ex-
cluded from the definition of the property.

Delaunay simplices, stop when all simplices are locally Delaunay, the result
is a Delaunay triangulation due to the fact mentioned above. Lawson [5] first
used a flip algorithm to construct two-dimensional Delaunay triangulations.
However, in dimension higher than two, such simple scheme may not termi-
nate (see the discussion in [10]). Nevertheless, it has been proved [10] that
Delaunay tetrahedralizations can be constructed by incremental insertion of
points and flips.

For a three-dimensional point set (number of points ≥ 4), TetGen gener-
ates its exact Delaunay tetrahedralization and convex hull. The convex hull
is represented in a set of triangular faces. The algorithm TetGen uses is from
Edelsbrunner and Shah [20]. It is incremental and adds points in a sequence
of flips. The algorithm is simple and easy to implement.

Our implementation is robust and fast. On a 3.06GHz, Intel Computer,
TetGen computes the Delaunay tetrahedralization of 40,000 randomly dis-
tributed points in 4.8 seconds. It used 3 minutes to compute the Delaunay
tetrahedralization for 1 million points. The robustness is achieved by the
use of the adaptive exact arithmetic [23] code for performing two geometric
predications, i.e., orientation and insphere tests.

1.2 Constrained Delaunay Tetrahedralization (CDT)

The problem here is to decompose a three-dimensional geometric object Ω
into a tetrahedral mesh, where the boundary ∂Ω has to be respect by the
faces of the mesh. Generally, Ω may be arbitrarily complicated in shape, may
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flip23

flip32

Figure 4: Two flip operations in three dimensions. A 2-to-3 flip replaces a
non-locally Delaunay face (the red face on the left figure) into three locally
Delaunay faces (the blue and white faces on the right figure); while a 3-to-2
flip does the inverse.

contain internal boundaries (for separating different regions), and holes. This
problem is also referred as boundary mesh generation or boundary conformity.

Generally, the Delaunay tetrahedralization of the vertices of Ω is not guar-
anteed to conform ∂Ω because faces of ∂Ω can be non-Delaunay simplexes.

A constrained Delaunay tetrahedralization (CDT) is a variation of a De-
launay tetrahedralization that is constrained to respect ∂Ω. CDTs maintain
many properties of Delaunay tetrahedralizations [7, 27]. They are nice struc-
tures for solving this problem.

For simplifying the design of an algorithm, one can assume ∂Ω is a three-
dimensional polyhedron, i.e., ∂Ω is the underlying space of a two-dimensional
simplical complex. More specifically, ∂Ω is a set V ⊂ R3 of vertices, and a set
of polygons. Each polygon is a segment-bounded constraining facet. TetGen
uses a more general representation for ∂Ω which will be introduced separately
in Section 1.2.1.

The following definition of CDT is taken from Shewchuk [27].

The visibility between two vertices p and q of V is occluded if there is
a constraining polygon f such that p and q lie on opposite sides of the
plane that includes f , and the line segment pq intersects this polygon (see
Figure 5). A tetrahedron t formed by vertices of V is constrained Delaunay
if its circumsphere encloses no vertex of V , which is visible from any point
in the relative interior of t (see Figure 5).

A tetrahedralization T of ∂Ω is called constrained tetrahedralization if
T and ∂Ω have exactly the same vertex set, and each polygon of ∂Ω is
completely represented by a union of triangular faces of T .

T is a constrained Delaunay tetrahedralization of ∂Ω if it is a constrained
tetrahedralization and every tetrahedron of T is constrained Delaunay.
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Figure 5: Constrained Delaunay tetrahedron. The shaded region represents
a constraining face f of ∂Ω including vertices a, b, c, and d. Vertices p and q
lie on opposite sides of f , they can not see each other. While c and d can see
each other even if ab is a segment of f . St is the circumsphere of tetrahedron
t (abcp) and it encloses q but not d - t is constrained Delaunay.

Intuitively, the definitions of Delaunay tetrahedralization and constrained
Delaunay tetrahedralization are the same except that, for the CDT, we ignore
the volume of a sphere whenever the sphere passes through a constraining
polygon. Note that simplices (tetrahedra, triangles, and edges) in a CDT are
not always Delaunay.

To construct CDTs is not straightforward. One obstacle is: there are
polyhedra having no tetrahedralization at all [2, 3, 4, 35]. Two examples are
shown in Figure 6. Furthermore, Ruppert and Seidel [13] showed that it is
NP-complete to decide whether a simple polyhedron can be tetrahedralized
or not. Nevertheless, every polyhedron is tetrahedralizable with inserting
additional points into it. Due to these facts, algorithms for constructing
CDTs have to resort to inserting additional vertices. A key question, when
such additional points are necessary to ensure the existence, is to decide
what is the optimal (minimal) number of additional points. Another concern,
mainly for mesh refinement algorithms, is to avoid very short edges, which
engender very small tetrahedra, hence the number of additional points can be
undesirably large. Various approaches [27, 29, 33, 34, 38] based on different
point insertion schemes in order to construct CDTs have been proposed in
literatures.

Shewchuk gave a condition [24] that guarantees the existence of CDTs,
which is useful for designing algorithms to construct CDTs. Because each
polygon of ∂Ω is segment-bounded. One considers the set of all segments
of ∂Ω. A segment s is Delaunay if there exists a circumsphere S of s, such
that no vertices of ∂Ω lies inside S. Furthermore, s is strongly Delaunay if
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(a) (b)

Figure 6: Two polyhedrons which can not be tetrahedralized. (a) The
Schönhardt polyhedron, which is formed by rotating one end of a trian-
gular prism, resulting three non-convex diagonal edges. (b) The Chazelle’s
polyhedron, which can be built out of a cube by cutting deep wedges.

(a) (b) (c) (d)

Figure 7: Cavity triangulation (illustrated in 2D). (a) Two initial cavities
separated by a constraining segment. (b) The two Delaunay triangulations
are constructed at each side of the segment. (c) Mark triangles as “inside”
or “outside”. (d) Remove “outside” triangles.

no vertices of ∂Ω lies inside or on S. The condition is if all segments of ∂Ω
are strongly Delaunay, then the CDT of ∂Ω exists. This condition is useful
because it suggests that the additional points can be inserted on segments
only.

The algorithm that TetGen implemented is described in Si and Gärtner [39].
This algorithm extends the segment recovery algorithm proposed in [38].
The main difference from other CDT algorithms [27, 28, 38] is the practical
exploitability of a strong CDT existence condition which requires no local
degeneracy in the set of vertices of ∂Ω. A new local degeneracy removeal
algorithm combining vertex perturbation and vertex insertion is used to con-
struct a new set of vertices which is consistent with ∂Ω. After the condition
is satidfied, a practically fast facet recovery algorithm is used to construct
the CDT. Figure 7 shows the main idea of this algorithm in 2D.
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Figure 8: A piecewise linear complex, which is a set of vertices, and a set
of segments and facets. The shaded area shows a facet which is non-convex,
has a hole, segments and vertices in it.

TetGen’s implementation of this algorithm is both robust and efficient. It
not only handles reasonably defined geometric objects but also inputs which
are rather badly discretized.

1.2.1 Piecewise Linear Complex (PLC)

Three-dimensional geometric objects are often more complicated than poly-
hedra, TetGen uses a more general input called piecewise linear complex
(PLC), defined by Miller, Talmor, Teng, Walkington, and Wang [17]. A
PLC X is a set of vertices, segments and facets (see Figure 8). Each facet is
a polygonal region, it may have any number of sides and may be non-convex,
possibly with holes, segments and vertices in it. A facet can represent any
planar straight line graph (PSLG), which is a popular input model used by
many two-dimensional mesh algorithms. A facet is actually a PSLG embed-
ded in three dimensions. An example is given in Figure 8, the shaded area
highlights a facet.

PLCs have restrictions like any other complex. For a PLC X, the elements
of X must be closed under intersection. For example, two segments only can
intersect at a common vertex which is also in X. Two facets of X may
intersect only at a shared segment or vertex or a union of shared segments
and vertices (because facets are non-convex). Figure 9 shows non-closed
configurations for examples.

Another restriction of the facets of PLCs is that the point set which used
to define a facet must be coplanar.

Any polyhedron is a PLC. Furthermore, PLCs are more flexible than
polyhedra to represent three-dimensional geometric objects. For example,
the shaded facet in Figure 8 can not be represented by any polygon. For
domains having curved surfaces (which are not piecewise linear), the sur-
face triangulations are previously required, hence, PLCs can approximately
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Figure 9: Some invalid PLCs. Left: one vertex is missing; right: two vertices
and one segment are missing.

represent any three-dimensional domain.

1.3 Quality Tetrahedral Mesh

The main goal of TetGen is to create tetrahedral meshes that have special
properties for solving partial differential equations (PDEs) by finite element
methods (FEM) and finite volume methods (FVM). These methods have been
widely applied in contemporary engineering applications for simulating phys-
ical phenomena, such as mechanical deformation, heat transfer, electromag-
netic problems, etc.

The problem is to generate a tetrahedral mesh conforming to a given
(polyhedral or piecewise linear) domain in three dimensions together with
certain constraints for the size and shape of the mesh elements. It is a
typical problem of provably good mesh generation or quality mesh generation.
The techniques of quality mesh generation provide the “shape” and “size”
guarantees on the meshes:

• all elements have a certain quality measure bounded, and

• the number of elements is limited by a constant factor with respect to
the number of optimal.

Meshes having the above the two properties are called quality meshes.
They are desired as meshes for the FEM and FVM, in which the running time
generally increases with the number of elements, and where the convergence
and stability may be hurt by very badly-shaped elements.

There are many approaches trying to solve this problem. Such as octree
based method [32, 11], advancing front technique [12, 19], and Delaunay
method [6, 25, 26, 22, 37, 31].

One approach for solving this problem, referred as Delaunay refinement.
It is maintaining a Delaunay tetrahedralization, which is refined by insertion
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of additional vertices. The placement of these vertices is chosen to enforce
boundary conformity and to improve the quality of the mesh. Delaunay
refinement was successfully applied to the corresponding two-dimensional
problem. Such algorithms can be found in the work of Chew [8, 9], and Rup-
pert [14]. However, these algorithms do not generalize to three dimensions
because of the problem of slivers, which are very flat and nearly degenerate
tetrahedra.

The algorithm TetGen implemented to tackle this problem is a Delau-
nay refinement algorithm from Shewchuk [25]. It is a smooth generalization
of Ruppert’s algorithm to three dimensions. Given a complex of vertices,
constraining segments and facets in three dimensions, with no input angle
less than 90◦, this algorithm can generate a quality mesh of Delaunay tetra-
hedra with radius-edge ratios (see section 1.3.1) not greater than 2.0. The
size of the tetrahedra can grade from small to large over a short distance.
The advantages of this algorithm are its simplicity. The implementation of
TetGen shows that the algorithm generates meshes generally surpassing the
theoretical bounds and is effective in eliminating tetrahedra with small or
large dihedral angles.

Except the tetrahedra near small input angles, the sliver is the only type of
small volume tetrahedron which could survive after the Delaunay refinement.
Several techniques [6, 30, 22] have been developed to remove slivers from the
mesh. TetGen does a simplied sliver removal step. Slivers are removed by
local flip operations and peeling off from the boundary. This strategy is
effective to remove most of the slivers but does not guarantee to remove all
of them. Methods mentioned above are worth to implement in the future.

1.3.1 A Quality Measure: Radius-Edge Ratio

There are several quality measures available in literature. This section ex-
plains the quality measure used in TetGen due to the algorithm [25] it im-
plements.

For good accuracy bounds in FEM, it is necessary that the shapes of
elements have bounded aspect ratio. The aspect ratio of an element is defined
as its maximum side length divided by its minimum altitude. For a good
quality mesh, this value should as small as possible. For example, “thin and
flat” tetrahedra tend to have large aspect ratio.

A similar but weaker quality measure is radius-edge ratio, proposed by
Miller, Talmor, Teng, Walkington, and Wang [16]. A tetrahedron t has a
unique circumsphere. Let R = R(t) be that radius and L = L(t) the length
of the shortest edge. The radius-edge ratio Q = Q(t) of the tetrahedron is

14



Q ≈ 0.612 Q ≈ 0.645 Q ≈ 0.866

Figure 10: The radius-edge ratios of some well-shaped tetrahedra.

Q ≈ 2.541 Q ≈ 2.5 Q ≈ 3.041

Figure 11: The radius-edge ratios of some badly-shaped tetrahedra.

measured by taking the ratio, that is:

Q =
R

L

The radius-edge ratio is effective for measuring the quality of a tetra-
hedron. For all well-shaped tetrahedra, this value is small (see Figure 10),
while for most of badly-shaped tetrahedra, this value is large (see Figure 11).
Hence, for a good quality mesh, this value should be bounded as small as
possible. However, the ratio can not be arbitrarily small, it is minimized by
the regular tetrahedron (in which case the lengths of the six edges are equal,
and the circumcenter is the barycenter), that is:

Q ≥
√

6/4 ≈ 0.612.

A special type of badly-shaped tetrahedron is called sliver (see Figure 12),
which is very flat and nearly degenerate. Slivers can have very small radius-
edge ratio, as small as

√
2/2 ≈ 0.707. The radius-edge ratio is not a

proper measure for slivers. However, Miller, Talmor, Teng, Walkington, and
Wang [16] have pointed out that it is the most natural and elegant measure
for analyzing Delaunay refinement algorithms.
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Q ≈ 0.707

Figure 12: The radius-edge ratios of a sliver.

2 Getting Started

The distributed version of TetGen (available at http://tetgen.berlios.

de) should include the following files:

README General information.
LICENSE Copyright notices.
tetgen.h Header file of the TetGen library.
tetgen.cxx C++ source code of the TetGen library.
predicates.cxx C++ source code of the geometric predicates.
makefile Makefile for compiling TetGen.
manual.pdf User’s manual (this file).
example.poly A sample data file.

TetGen is written by using the standard C++ library only. The code is
highly portable, it should run on all 32-bit and 64-bit computers. File pred-
icates.cxx is incorporated from the work of Jonathan R. Shewchuk [23]. It
includes C++ versions of the C codes to perform exact geometric predicates.

2.1 Compiling

At first one has to compile TetGen. What you need is just a C++ compiler
available on the system you want to run TetGen, such as g++ on Unix/Linux,
or Microsoft C++ or Borland C++ on Windows, and so on. Depending on
your purpose to use TetGen, you can compile TetGen into an executable
program, or a library which can be embedded into another program, or both
of them.

2.1.1 On Unix/Linux

The easiest way to compile TetGen is to edit and use the included make-
file. Before compiling, put all source files (tetgen.h, tetgen.cxx, and pred-
icates.cxx) and the makefile in one directory (usually they are), read the
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makefile, which describes your options, and edit it accordingly. You should
specify the C++ compiler and the level of optimization.

Once you’ve done this, type “make” to compile TetGen into an executable
program or type “make tetlib” to compile TetGen into a library. The exe-
cutable file “tetgen” or the library “libtet.a” appears in the same directory
as the makefile.

Alternatively, the files are usually easy to compile without a makefile.
Assume you’re using g++, first compile the file predicates.cxx to get an
object file:

g++ -c predicates.cxx

To compile TetGen into an executable file, use the following command:

g++ -O -o tetgen tetgen.cxx predicates.o -lm

To compile TetGen into a library, the symbol TETLIBRARY is needed:

g++ -O -DTETLIBRARY -c tetgen.cxx

ar r libtet.a tetgen.o predicates.o

2.1.2 On Windows 9x/NT/2000/XP

TetGen compiles as a console program “tetgen.exe” or a library “tetgen.lib”
on Win32 systems. Test have been done with Microsoft Visual C++ 6.0
(VC++). The easiest way to compile TetGen is to use the integrated devel-
opment environment (IDE) of VC++. The minimum steps to create “tet-
gen.exe” are:
- create a “Win32 console application” called “tetgen”,
- add all source files into this project,

i.e., tetgen.h, tetgen.cxx, and predicates.cxx
- build the project.

To create a library do the following minimum steps:
- create a “Win32 static library” called “library”,
- add all source files into this project,
- add the symbol “TETLIBRARY” to compile switches.
- build the project.

2.2 Testing

TetGen gives a short list of command line options if it is invoked without
arguments (that is, just type “tetgen”). A brief description of the usage is
printed by invoking TetGen with the -h switch:
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tetgen -h

The enclosed sample file, example.poly, is a simple three-dimensional
piecewise linear complex (PLC). Try out TetGen using:

tetgen -p example

TetGen will read this PLC, and write its constrained Delaunay tetrahe-
dralization to files example.1.node, example.1.ele, and example.1.face, which
are a list of mesh nodes, a list of tetrahedra, and a list of boundary faces
(triangles), respectively. A typical output of TetGen looks like this:

Opening example.poly.
Constructing Delaunay tetrahedrization.
Delaunay seconds: 0.05
Creating surface mesh.
Recovering non-Delaunay segments.
Inserting subfaces into Delaunay tetrahedralization.
Segment and facet seconds: 0.04
Removing unwanted tetrahedra.
Hole seconds: 0
Removing illegal tetrahedra.
Repair seconds: 0

Writing example.1.node.
Writing example.1.ele.
Writing example.1.face.

Output seconds: 0
Total running seconds: 0.09

Statistics:

Input points: 54
Input facets: 29
Input holes: 0
Input regions: 0

Mesh points: 55
Mesh tetrahedra: 119
Mesh faces: 291
Mesh subfaces: 106
Mesh subsegments: 82

To get the quality tetrahedral mesh of this PLC, try:

tetgen -pq example
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The result mesh is contained in the same three files as before. But this
time, it is a quality tetrahedral mesh, whose tetrahedra have circumradius-
to-shortest-edge ratio bounded by 2.0. Now try to run:

tetgen -pq1.414V example

TetGen will again generate a quality mesh, which contains more points
than previous one, and all tetrahedra have radius-edge ratio bounded by
1.414. In addition, TetGen prints a rough mesh quality report (due to the
-V switch). It looks as below:

Mesh quality statistics:

Smallest volume: 0.0053785 | Largest volume: 34.295
Shortest edge: 0.30902 | Longest edge: 8.9271
Smallest dihedral: 1.7613 | Largest dihedral: 176.3442

Radius-edge ratio histogram:
< 0.707 : 38 | 1.6 - 1.8 : 0

0.707 - 1 : 1049 | 1.8 - 2 : 0
1 - 1.1 : 374 | 2 - 2.5 : 0

1.1 - 1.2 : 268 | 2.5 - 3 : 0
1.2 - 1.4 : 285 | 3 - 10 : 0
1.4 - 1.6 : 5 | 10 - : 0

(A tetrahedron’s radius-edge ratio is its radius of circumsphere divided
by its shortest edge length)

Aspect ratio histogram:
1.1547 - 1.5 : 0 | 15 - 25 : 9

1.5 - 2 : 0 | 25 - 50 : 3
2 - 2.5 : 0 | 50 - 100 : 2

2.5 - 3 : 73 | 100 - 300 : 0
3 - 4 : 890 | 300 - 1000 : 0
4 - 6 : 927 | 1000 - 10000 : 0
6 - 10 : 95 | 10000 - 100000 : 0
10 - 15 : 20 | 100000 - : 0

(A tetrahedron’s aspect ratio is its longest edge length divided by the
diameter of its inscribed sphere)

Dihedral Angle histogram:
0 - 10 degrees: 16 | 90 - 100 degrees: 644
10 - 20 degrees: 61 | 100 - 110 degrees: 403
20 - 30 degrees: 224 | 110 - 120 degrees: 328
30 - 40 degrees: 634 | 120 - 130 degrees: 169
40 - 50 degrees: 738 | 130 - 140 degrees: 99
50 - 60 degrees: 303 | 140 - 150 degrees: 48
60 - 70 degrees: 43 | 150 - 160 degrees: 25
70 - 80 degrees: 33 | 160 - 170 degrees: 14
80 - 90 degrees: 250 | 170 - 180 degrees: 6
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To compute the Delaunay tetrahedralization and convex hull of the point
set of this PLC, try this:

cp example.poly example.node

tetgen example

The Delaunay tetrahedralization is saved in example.1.node and exam-
ple.1.ele. The convex hull is represented by a list of triangles in file exam-
ple.1.face.

All these meshes and Delaunay tetrahedralizations can be visualized by
the programs introduced in the next section.

Detailed descriptions of the command line switches and file formats are
found in Section 3.

2.3 Visualizing

Geometric objects and meshes are best understood by visualization. This
section helps to use the viewing tools.

2.3.1 Viewing by TetView

TetView is a graphic interface for viewing piecewise linear complexes and
meshes. It is specially created for TetGen. It can read the input and out-
put files and display the objects like piecewise linear complexes, tetrahedral
meshes and triangular meshes. It also shows other informations as well, such
as boundary types and materials. The interactive GUI allows the user to
manipulate (i.e., rotate, translate, zoom in/out, cut, shrink, etc.) the view-
ing objects easily through either mouse or keyboard. TetView also saves the
current window contents into high quality encapsulated postscript files. See
Figure 13 for a snapshot.

TetView is freely available from the website http://tetgen.berlios.

de/tetview.html. You will find a list of precompiled executable versions on
different platforms. You only need to download the one for your system.

The basic usage of TetView is very easy. For example, to show the PLC in
example.poly, first copy the executable file (tetview) to the directory where
you have this file, it is loaded by running:

tetview example.poly

And the following command will display the mesh (in files example.1.node,
example.1.ele, and example.1.face):
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Figure 13: TetView. Left: displays a surface mesh of a car. Right: displays
one of the views of the tetrahedral mesh of the car.

tetview example.1

The instruction for using TetView can be found in the website mentioned
above.

2.3.2 Viewing by Other Tools

Two programs can be alternatively used to view the mesh created by TetGen,
both are publicly available and run on most computer systems. They are:

• Medit, a user-friendly mesh viewer, available at http://www-rocq.

inria.fr/gamma/medit.

• Gid, the personal pre- and post-processor, available at http://gid.

cimne.upc.es.

For viewing mesh under Medit, add a ’-g’ switch in the command line.
TetGen will additionally output a file example.1.mesh, which can be read
and rendered directly by Medit. Try running:

tetgen -pg example.poly

medit example.1

By invoking ’-G’ switch in command line, two additional files exam-
ple.1.ele.msh and example.1.face.msh will be output by TetGen, which are
tetrahedral mesh and surface mesh, respectively. These files can be loaded
into Gid (version 7.0) using menu “Files” → “Import” → “Gid Mesh...”.
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3 Using TetGen

This section describes the use of TetGen as a stand alone program. It is
invoked from the command line with a set of switches and an input file name.
Switches are used to control the behavior of TetGen and to specify the output
files. In correspondence to the different switches, TetGen will generate the
Delaunay tetrahedrization, the constrained Delaunay tetrahedrization or a
quality conforming Delaunay mesh.

3.1 Command Line Syntax

The command line syntax to run TetGen is:

tetgen [-pq__a__AriMS__T__dzjo_fengGOBNEFICQVvh] input_file

Underscores indicate that numbers may optionally follow certain switches.
Do not leave any space between a switch and its numeric parameter. Com-
mand line switches are described in Section 3.2.

“input file” can be different files depending on the switches you use. If
no switch is used, it must be a file with extension .node which contains a
list of 3D points and the Delaunay tetrahedralization of this point set will
be generated.

If the -p switch is used, “input file” must be one of the following exten-
sions: .poly, .smesh, .off, .stl, and .mesh, which contains a piecewise linear
complex (or a surface mesh) and the constrained Delaunay tetrahedralization
of this object will be generated. If the -q switch is used together, the quality
conforming tetrahedral mesh will be generated.

If the -r switch is used, a pre-created tetrahedral mesh will be read. you
must supply .node and .ele files, and possibly a .face file, and a .vol file as
well. “input file” can have no file extension. Together with -q switch, the
mesh will be refined with respect to the new quality measure and variant
constraints.

File formats are described in Section 4.

3.2 Command Line Switches

Table 1 is an overview of all command line switches and a short description
follows each switch. This information is also available by invoking TetGen
without any switch and input file (i.e., type “tetgen”).
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-p Tetrahedralizes a piecewise linear complex (.poly or .smesh file).
-q Quality mesh generation. A minimum radius-edge ratio may

be specified (default 2.0).
-a Applies a maximum tetrahedron volume constraint.
-A Assigns attributes to identify tetrahedra in certain regions.
-r Reconstructs and Refines a previously generated mesh.
-i Inserts a list of additional points into mesh.
-M Does not merge coplanar facets.
-T Set a tolerance for coplanar test (default 1e-8).
-d Detect intersections of PLC facets.
-z Numbers all output items starting from zero.
-o2 Generates second-order subparametric elements.
-f Outputs faces (including non-boundary faces) to .face file.
-e Outputs subsegments to .edge file.
-n Outputs tetrahedra neighbors to .neigh file.
-g Outputs mesh to .mesh file for viewing by Medit.
-G Outputs mesh to .msh file for viewing by Gid.
-O Outputs mesh to .off file for viewing by Geomview.
-B Suppresses output of boundary information.
-N Suppresses output of .node file.
-E Suppresses output of .ele file.
-F Suppresses output of .face file.
-I Suppresses mesh iteration numbers.
-C Checks the consistency of the final mesh.
-Q Quiet: No terminal output except errors.
-V Verbose: Detailed information, more terminal output.
-v Prints the version information.
-h Help: A brief instruction for using TetGen.

Table 1: Overview of TetGen’s command line switches.
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3.2.1 -p Generates a CDT

The -p switch reads a piecewise linear complex (PLC) stored in file .poly
or .smesh, which can specify vertices, facets, holes, regional attributes, and
volume constraints. The result is a constrained Delaunay tetrahedralization
(CDT) fitting the input.

If the file extension is not specified, TetGen will look for a file which has
extension .poly or .smesh and use whichever one is available. For example,
“tetgen -p xxx” opens the file named xxx.poly (if it doesn’t exist, open the
file xxx.smesh instead) and possibly also opens the file xxx.node; reads in
the whole PLC; and generates a CDT resulting in three files: xxx.1.node,
xxx.1.ele, and xxx.1.face.

In combination with the -q or -a switch, TetGen will generate a quality
tetrahedral mesh of the PLC. -p is not compatible with -r, and should not
be used them together.

3.2.2 -q Quality mesh generation

The -q switch performs quality mesh generation by Shewchuk’s Delaunay
refinement algorithm [25]. It adds vertices to the CDT (used together with
-p) or a previously generated mesh (used together with -r) to ensure that no
tetrahedra have radius-edge ratio greater than 2.0. An alternative minimum
radius-edge ratio may be specified after the ’q’. For a too small ratio, e.g.,
smaller than 1.0, TetGen may not terminate.

If no input angle or input dihedral angle (of the PLC) is smaller than 60◦,
this algorithm is guaranteed to terminate and no tetrahedron has radius-edge
ratio greater than 2.0. In practice, one can observe successful termination
for radius-edge ratios down to

√
2 ≈ 1.414 or even smaller.

Here are some examples of using the -q switch. Tests can be executed
and compared with the enclosed example file (example.poly):

tetgen -pq example

tetgen -rq1.414 example.1

tetgen -ra0.5 example.2

3.2.3 -a Imposes volume constraints

The -a switch imposes a maximum volume constraint on all tetrahedra. If
a number follows the ’a’, no tetrahedra is generated whose volume is larger
than that number.

If no number is specified and the -r switch is not used, TetGen will read
the region part in file .poly or .smesh. A .poly file or .smesh file can op-
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tionally contain a volume constraint for each facet-bounded region, thereby
controlling tetrahedra densities in a tetrahedralization of a PLC in a more
specific way.

One can impose both a fixed volume constraint and a varying volume con-
straint for some regions by invoking the -a switch twice, once with and once
without a number following. Each volume specified may include a decimal
point.

If no number is specified and the -r switch is used, a .vol file is expected,
which contains a separate volume constraint for each tetrahedron. It is useful
for refining a finite element or finite volume mesh based on a posteriori error
estimates.

3.2.4 -A Assigns region attributes

The -A switch assigns an additional attribute to each tetrahedron that iden-
tifies what facet-bounded region each tetrahedron belongs to. Attributes are
assigned to regions by the .poly file or .smesh file. If a region is not explicitly
marked by the .poly file or .smesh file, tetrahedra in that region are assigned
an attribute of zero. The -A switch has an effect only when the -p switch is
used and the -r switch is not.

3.2.5 -r Reconstructs/refines a mesh

The -r switch reconstructs a previously generated mesh. The mesh is read
from a .node and an .ele file, and possibly a .face file. If a .face file exists,
it is read and used to constrain subfaces in the mesh, else, TetGen will
automatically identify the subfaces, internal subfaces are also identified by
comparing the attributes of two adjacent tetrahedra. Subsegments will be
automatically identified from the existing subfaces. The reconstructed mesh
is distinguished from its origin with a different iteration number.

For example, “tetgen -r xxx.1” reads the mesh in files xxx.1.node, xxx.1.ele
and possibly xxx.1.face and xxx.1.edge if they exist; reconstructs the mesh;
outputs it into three files xxx.2.node, xxx.2.ele and xxx.2.face. Now, xxx.2
can be used as input in the above command, the result is another mesh saved
files xxx.3.node, and so on. Mesh iteration numbers allow you to create a
sequence of successively finer meshes.

One can refine a mesh by combining -r with the -q, -a, and -i switches.
Several ways are possible:

• One can impose tighter quality constraints by using the -q with a
smaller number, or the -a followed by a smaller volume than the one
used to generate the mesh currently refining.
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• One can create a .vol file, which specifies a maximum volume for each
tetrahedra, and use the -a switch (without a number following). Each
tetrahedron’s volume constraint is applied to that tetrahedra.

• One can create a .node file, which contains a list of additional nodes
that you want them to be in the mesh. Use the -i switch to inform
TetGen that an additional node list needs to be inserted.

-r should not be used with the -p and -I together.

3.2.6 -i Inserts additional points

The -i switch indicates to insert a list of additional points into a CDT (when
-p switch is used) or a previously generated mesh (when -r switch is used).
The list of additional file is read from file xxx-a.node, which xxx stands
for the input file name (i.e., xxx.poly or xxx.smesh, or xxx.ele, ...). This
switch is useful for refining a finite element or finite volume mesh using a list
of user-defined points. Following are some pointers that you may need be
careful:

• Points lie out of the mesh domain are ignored by TetGen.

• The mesh may not be constrained Delaunay or conforming Delaunay
any more after the insertion of additional points. However, in combi-
nation with the -q switch, TetGen will automatically add additional
points to ensure the conforming Delaunay property of the mesh.

3.2.7 -T Sets a tolerance

The -T switch sets a user-defined tolerance used by many computations of
TetGen, default is 1e − 8.

The main reason to use the tolerance is that, in principle, the vertices
which are used to define a facet of a PLC should be exactly coplanar. But
this is very hard to achieve in practice due to the inconsistent nature of
the floating-point format used in computers. TetGen accepts facets which
vertices are not exactly but approximately coplanar. In TetGen, four points
a, b, c and d are assumed be coplanar if the ratio v/l3 is smaller than the
given tolerance, where v is the volume of the tetrahedron abcd, and l is the
average edge length of tetrahedron abcd.
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3.2.8 Other Switches

-I The -I switch does not use the iteration numbers, it suppresses the output
of .node file, so your input file won’t be overwritten. It cannot be used with
the -r switch, because that would overwrite your input .ele file. It shouldn’t
be used with the -q, -a, -s, or -t switch if one is using a .node file for input,
because no .node file is written, so there is no record of any added Steiner
points.

-z The -z switch numbers all output items starting from zero. This switch
is normally overridden by the value used to number the first vertex of the
input .node or .poly file or .smesh file. However, this switch is useful in case
of calling TetGen from another program.

-o2 TetGen generates meshes with quadratic elements if the -o2 switch is
specified. Quadratic elements have ten nodes per element, rather than four.
The six extra nodes of a tetrahedron fall at the midpoints of its six edges.

-C The -C switch indicates TetGen to check the consistency of the mesh on
finish. If it is specified twice, i.e., ’-CC’, TetGen also checks constrained De-
launay (for the -p switch) or conforming Delaunay (for -q, -a, or -i) property
for the mesh.

-V The -V switch gives detailed information about what TetGen is doing.
More ’V’s are increasing the amount of detail.

Specifically, ’-V’ gives information on algorithmic progress and more de-
tailed statistics including a rough mesh quality report. To get the statistics
for an existing mesh, run TetGen on that mesh with the ’-rNEP’ switches to
read the mesh and print the statistics without writing any files.

’-VV’ gives more details on the algorithms, and slow down the execution.
While ’-VVV’ isx only useful for debugging.

3.3 Examples

TetGen generates Delaunay, constrained tetrahedralizations, and quality meshes
according to different command line switches and input files. this section
provides several examples based on different purposes.
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Figure 14: Generate Delaunay tetrahedralizations. (a) A set V of 3D points.
(b) The DT of V . (c) The convex hull of V .

3.3.1 Generate Delaunay tetrahedralizations

For a set of 3D points, TetGen computes its exact Delaunay tetrahedraliza-
tion (DT). After getting the DT, the convex hull of the point set is obtained
by taking the outmost faces of the DT, which is a list of triangular faces.

Figure 14 (a) shows a set V of 3D points. Store V in a .node file, such as
r100.node. The command

tetgen r100.node

produces the DT of V shown in Figure 14 (b). The convex hull of V is
highlighted in Figure 14 (c).

3.3.2 Generate Constrained Delaunay tetrahedralizations

For a piecewise linear complex (PLC) 1.2.1, TetGen generates its constrained
Delaunay tetrahedralization (CDT), and quality tetrahedral mesh. The latter
is also a conforming Delaunay tetrahedralization if the PLC contains no small
input angle (i.e., angle less than 90 degree).

To do so, save the PLC in a .poly or .smesh file, such as example.poly.
Use -p switch to tell TetGen the input file is a PLC. Pictures in Figure 15
illustrate a PLC, its CDT and its quality conforming Delaunay mesh by the
following commands, respectively.

tetgen -p example

tetgen -pq example
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(a) (b) (c)

Figure 15: Generate constrained Delaunay tetrahedralizations. (a) A PLC
X. (b) The CDT of X. (c) The quality conforming Delaunay mesh of X.

Figure 16: Mesh quality, mesh size control. Left: A higher mesh quality
bound is imposed. Right: A maximum volume bound is imposed.

3.3.3 Mesh Quality, Mesh Size Control

TetGen allows you to specify a quality bound (-q switch with a small number,
default is 2.0), or to impose a maximum volume bound on all tetrahedra (-a
switch with a small volume) to improve the mesh quality. The resulting mesh
will have different quality and size corresponding the command line switches
you imposed. The pictures in Figure 16 shows the effects on the example in
the previous section with the following commands, respectively.

tetgen -pq1.3 example

tetgen -pq1.3a1.0 example

Besides imposing a maximum volume bound on all tetrahedra, you can
impose a maximum area bound on a facet, or a maximum edge length on a
segment of the input PLC. To do so, you specify the facet or segment with
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Figure 17: Mesh quality, mesh size control. Left: The result mesh when facet
area bound and segment length bound are imposed. Right: A close view on
the resulting segments.

the corresponding area or length constraint in a .var 4.1.9 file. Supply this
file along with the PLC file (i.e, .poly or .smesh) and use -p, -q switches to
invoke TetGen. The .var file format allows you to specify as many as facets or
segments. Figure 17 shows the effects of using facet and segment constraints
on the previous example.

3.3.4 Preexisting Mesh Refinement

TetGen is able to refine a preexisting mesh. Use -r switch to tell TetGen that
a mesh (.node and .ele files) is to be read and refined. This feature is helpful
for adaptive finite element or finite volume methods.

When you refine a mesh, you generally want to impose tighter quality
bound to improve the shapes of the tetrahedra. Or you want to impose
variant constraints (such as maximum volume constraint) to introduce more
points in the places where you want to refine. There are several ways to
accomplish the task. They can be used either seperatedly or together.

• You can impose tighter quality constraints by using -q with a smaller
number, or -a followed by a smaller volume than you used to generate
the mesh you are refining.

• You can create a .vol file, which specifies a maximum volume for each
tetrahedra, and use the -a switch (without a number following). Each
tetrahedron’s volume constraint is applied to that tetrahedra.

• You can create a .node file, which contains a list of additional nodes
that you want them to be in the mesh. Use -i switch to tell TetGen
that you have an additional node list needs to be inserted.
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.node input/output a list of nodes.

.poly input a PLC.

.smesh input/output a simple PLC.

.ele input/output a list of tetrahedra.

.face input/output a list of triangular faces.

.edge output a list of boundary edges.

.vol input a list of maximum volumes.

.var input a list of variant constraints.

.neigh output a list of neighbors.

Table 2: Overview of TetGen’s file formats.

4 File Formats

4.1 TetGen File Formats

Table 2 gives an overview over all file formats of TetGen. All files are of ASCII
form and may contain comments prefixed by the character ’#’. Points, tetra-
hedra, facets, holes, and maximum volume constraints must be numbered
consecutively, starting from either 1 or 0. Whichever you choose, all input
files must be consistent; if the vertices are numbered from 1, so must be all
other objects. TetGen automatically detects your choice while reading the
.node (or .poly or .smesh) file. (When calling TetGen from another program,
use the -z switch if you wish to number objects from zero.)

Remark: in the following description ’#’ stands for ’number’ – it should
not cause confusion with the comment prefix.

4.1.1 .node files

First line: <# of points> <dimension (3)> <# of attributes>

<boundary markers (0 or 1)>

Remaining lines list # of points:

<point #> <x> <y> <z> [attributes] [boundary marker]

...

A .node file contains a list of three-dimensional points. Each point has three
coordinates (x, y and z), probably has one or several attributes, and a bound-
ary marker as well. The .node files used as both input and output files to
represent the point set of a PLC, or the point set of a mesh, or a set of
additional points (for the -i switch) which need to be inserted into a mesh.
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The attributes, which are typically floating-point values of physical quan-
tities (such as mass or conductivity) associated with the points, are copied
unchanged to the output mesh. If -p switch is used, each new Steiner point
inserted on segments of the mesh has attributes assigned to it by linear in-
terpolation. Furthermore, if -q, -a, or -i is selected, each new point added to
the mesh to improve mesh quality has attributes zero.

If the fourth entry of the first line is ’1’, the last column of the remainder
of the file is assumed to contain boundary markers. Boundary markers are
used to identify boundary points (points resting on PLC facets). The .node
file produced by TetGen contains boundary markers in the last column unless
they are suppressed by the -B switch. The boundary marker associated with
each point in an output .node file is chosen as follows:

- If a point is assigned a nonzero boundary marker in the input file, then
it is assigned the same marker in the output .node file.

- Otherwise, if the point occurs on a boundary of the mesh, then the
point is assigned the marker one (1).

- Otherwise, the point is assigned the marker zero (0).

TetGen can determine which points are on the boundary, input with the
boundary marker zero (or use no markers at all) will result in output with
boundary marker 1 for all points on the boundary.

4.1.2 .poly files

A .poly file represents a piecewise linear complex (PLC) as well as some
additional information. Although there is no restriction on facets of PLCs,
TetGen requires that the mesh region represented by a PLC should be com-
pletely facet-bounded, i.e. it is waterproof.

The .poly file format consists of four parts, which are a list of points, a
list of facets, a list of (volume) hole points, and a list of region attributes,
respectively. The first three parts are mandatory, but the fourth part is
optional.

Part 1 - node list

First line: <# of points> <dimension (3)> <# of attributes>

<boundary markers (0 or 1)>

Remaining lines list # of points:

<point #> <x> <y> <z> [attributes] [boundary marker]

...
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Part 1 lists all the points, and is identical to the format of .node files. <# of
points> may be set to zero to indicate that the points are listed in a separate
.node file.

Part 2 - facet list

One line: <# of facets> <boundary markers (0 or 1)>

Following lines list # of facets:

<facet #>

...

To understand the format of a facet is crucial. Each facet is a planar straight
line graph (PSLG), i.e., it is a polygonal region which may contain segments,
single points and holes in it. A list of polygons is used to represent a facet.
Each polygon has n corners, n ≥ 1. The polygon can be degenerate, i.e.,
n = 1 or n = 2 represents a single point or a segment, respectively. The
format of a facet is:

One line: <# of polygons> [# of holes] [boundary marker]

Following lines list # of polygons:

<# of corners> <corner 1> <corner 2> ... <corner #>

...

Following lines list # of holes:

<hole #> <x> <y> <z>

...

Each polygon is specified by giving the number of corners, followed by the
list of ordered point indices. Each line of corners should not be arbitrarily
long because the maximum characters per line read by TetGen is 1024. The
corner list can be given by more than one line.

A hole in a facet (don’t confuse with the volume hole below) is sepcified
by identifying a point inside the hole. However, this point need not be exactly
in the hole, as long as its orthogonal projection onto this facet is in the hole.
The list of hole points (consecutively) follows the list of polygons.

If the boundary markers is ’1’, TetGen will produce an additional bound-
ary marker for each face in .face file (in the last column of each record). You
can prevent boundary markers from being written into .face file by using the
-B switch.

Boundary markers of facets are tags used mainly to identify which faces
of the tetrahedralization are associated with which PLC facet, hence identify
which faces occur on a boundary of the tetrahedralization. A common use is
to determine where different boundary condition types should be applied to
a mesh.
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Part 3 - (volume) hole list

One line: <# of holes>

Following lines list # of holes:

<hole #> <x> <y> <z>

...

Holes in the volume are specified by identifying a point inside each hole. After
the constrained Delaunay tetrahedrization is formed, TetGen creates holes
by removing tetrahedra. Thus exactly is the reason why TetGen requires a
closed boundary of the PLCs. In case of non closed PLC facets the whole
tetrahedrization will be ’eaten’ away. If two tetrahedra abutting a subface
are removed, the subface itself is also vanished. Hole points have to be placed
inside a region, else the rounding error determines which side of the facet is
being transformed into the hole.

Part 4 - region attributes list

One line: <# of region>

Following lines list # of region attributes:

<region #> <x> <y> <z> <region number> <region attribute>

...

The optional fourth section lists regional attributes (to be assigned to all
tetrahedra in a region) and regional constraints on the maximum tetrahedron
volume. TetGen will read this section only if the -A switch is used or the
-a switch without a number is invoked. Regional attributes and volume
constraints are propagated in the same manner as holes.

If two values are written on a line after the x, y and z coordinate, the
former is assumed to be a regional attribute (but will only be applied if the
-A switch is selected), and the latter is assumed to be a regional volume
constraint (but will only be applied if the -a switch is selected). It is possible
to specify just one value after the coordinates. It can serve as both an
attribute and an volume constraint, depending on the choice of switches. A
negative maximum volume constraint allows to use the -A and the -a switches
without imposing a volume constraint in this specific region.

Depending on the command line switches -p and -q, the constrained De-
launay or conforming Delaunay property at the internal boundary between
two regions are automatically preserved.
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4.1.3 .smesh files

A .smesh file represents a PLC of special type - surface meshes. The .smesh
file format is a simplified version of the .poly format, that each facet only has
exactly one polygon, no holes, no segment and point inside. It is less flexible
than the .poly file format but is much simpler and useful when the surface
mesh is created by other programs.

The same as .poly file format, the .smesh file format consists of four
parts, which are points, facets, holes and regions, respectively. Only the part
describing facets is different from the .poly format. Hence only this part is
described in this section. Please refer to Section 3.3.2 for other parts.

Part 2 - facet list

One line: <# of facets> <boundary markers (0 or 1)>

Following lines list # of facets:

<# of corners> <corner 1> ... <corner #> [boundary marker]

...

Part 2 of a .smesh file lists all facets. It is different from the facet format of
.poly file. Each facet consists of exactly one polygon. The corner list of each
polygon can be distributed over a number of lines. The optional boundary
marker of each facet is given at the end of the corner list.

4.1.4 .ele files

First line: <# of tetrahedra> <nodes per tet. (4 or 10)>

<region attribute (0 or 1)>

Remaining lines list # of tetrahedra:

<tetrahedron #> <node> <node> ... <node> [attribute]

...

A .ele file contains a list of tetrahedra. Each tetrahedron has four corners
or ten corners (if -o2 switch is used). Nodes are indices into the correspond-
ing .node file. The first four nodes are the corner vertices. If -o2 is used,
the remaining six nodes are generated on the midpoints of the edges of the
tetrahedron. Figure 18 shows how these nodes are numbered.

If the region attribute in the first line is ’1’, each tetrahedra has an addi-
tional region attribute (an integer) in the last column. Region attributes of
tetrahedra are tags used mainly to identify which tetrahedra of the tetrahe-
dralization are associated with which facet-bounded region of the PLC, set
in the part 4 of a .poly or a .smesh file. Region attributes do not diffuse
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Figure 18: The numbering of nodes of a 10-node tetrahedron.

across facets, all tetrahedra in the same region have exactly the same re-
gion attribute. A common use of the region attribute is to determine which
material a tetrahedron has.

The .ele file is the default output file of TetGen if it generated a mesh or
tetrahedralization. However, it can be omitted by -E switch. If -r switch is
used, TetGen reads a .ele file and reconstructs a tetrahedral mesh from it.

4.1.5 .face files

First line: <# of faces> <boundary marker (0 or 1)>

Remaining lines list # of faces:

<face #> <node> <node> <node> [boundary marker]

...

A .face file contains a list of triangular faces, which may be boundary faces (if
-p or -r switch is used), or convex hull faces. Each face has three corners and
possibly has a boundary marker. Nodes are indices into the corresponding
.node file.

After generating a mesh or Delaunay tetrahedralization, TetGen default
outputs the boundary faces or the convex hull into a .face file. However, this
file can be omitted by -F switch. If -r switch is used, TetGen can also read
the .face file for identifying boundary faces in a reconstructed mesh. The
optional column of Boundary markers is suppressed by the -B switch.

If the boundary marker in the first line is ’1’, each face has an additional
boundary marker (an integer) in the last column. Boundary markers of facets
are defined in the .poly or the .smesh files. They are tags used mainly to
identify which faces of the tetrahedralization are associated with which PLC
facet, and to identify which faces occur on a boundary of the tetrahedral-
ization. A common use is to determine where different boundary condition
types should be applied on boundary faces.
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4.1.6 .edge files

First line: <# of edges>

Remaining lines list # of edges:

<edge #> <endpoint> <endpoint>

...

A .edge file contains a list of edges, which are (sub)segments of a PLC. Each
edge has two endpoints which are indices into the corresponding .node file.
It is part of TetGen’s output when -e switch is used.

4.1.7 .vol files

First line: <# of tetrahedra>

Remaining lines list # of maximum volumes:

<tetrahedron #> <maximum volume>

...

A .vol file associates with each tetrahedron a maximum volume which is used
for mesh refinement. It is read by TetGen in case the -r switch is used.

As with other file formats, every tetrahedron must be represented, and
they must be numbered consecutively. A tetrahedron may be left uncon-
strained by assigning it a negative maximum volume.

4.1.8 .var files

One line: <# of facet constraints>

Remaining lines list # of facet constraints:

<constraint #> <boundary marker> <maximum area>

...

One line: <# of segment constraints>

Remaining lines list # of segment constraints:

<constraint #> <point1> <point2> <maximum length>

...

A .var file allows you to specify variant constraints on facets and segments.
Like the maximum volume bound set to a region, each facet can have a
maximum area bound. On the output, no subface of the facet has area
larger that bound. Likewise, each segment can have a maximum length
bound, hence, the subsegments of that segment will no longer than it.

Facet constraint is set on facet by specifying the boundary marker which
is the integer assigned that facet in the corresponding .poly or .smesh file.
Segment constraint is set to a segment by specifying two indices of endpoints
of the segment.
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.off input/output Geomview’s polyhedral file format.

.ply input Polyhedral file format.

.stl input Stereolithography format.

.mesh input/output Medit’s surface mesh file format.

Table 3: Overview of supported file formats.

4.1.9 .neigh files

First line: <# of tetrahedra> <# of nei. per tet. (always 4)>

Following lines list # of neighbors:

<tetrahedra #> <neighbor> <neighbor> <neighbor> <neighbor>

...

A .neigh file associates with each tetrahedron its neighbors (adjacent tetra-
hedra), which are indices into the corresponding .ele file. An index of −1
indicates no neighbor (because the tetrahedron is on a boundary of mesh
domain). The first neighbor of tetrahedron i is opposite the first corner of
tetrahedron i, and so on. It is output by TetGen when -n switch is used.

4.2 Supported File Formats

Besides reading TetGen’s own file formats, TetGen alternatively reads other
popular polyhedral file formats. Table 3 lists the supported file formats.

Polyhedra or surface meshes saved in these file formats can be read and
tetrahedralized by TetGen by using the -p switch. TetGen recognizes the
different file formats from the file extensions.

4.2.1 .off files

.off is the one of the popular file formats of Geomview http://www.geomview.

org - an interactive 3D viewing program for Unix/Linux. It represents col-
lections of planar polygons with possibly shared vertices, a convenient way to
describe polyhedra. The polygons may be concave but there’s no provision
for polygons containing holes.

The description of .off file format can be easily found elsewhere in the
internet. Below is a simple discription of this file format.

OFF numVertices numFaces numEdges

x y z

x y z
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... numVertices like above

NVertices v1 v2 v3 ... vN

MVertices v1 v2 v3 ... vM

... numFaces like above

Note that vertices are numbered starting at 0 (not starting at 1), and
that numEdges will always be zero.

4.2.2 .ply files

The .ply file format is a simple object description that was designed as a
convenient format for researchers who work with polygonal models. Early
versions of this file format were used at Stanford University and at UNC
Chapel Hill.

A description as well as examples, codes of the PLY file format can be
found at http://astronomy.swin.edu.au/~pbourke/geomformats/ply.

4.2.3 .stl files

The .stl or stereolithography format is an ASCII or binary file used in man-
ufacturing. It is a list of the triangular surfaces that describe a computer
generated solid model. This is the standard input for most rapid prototyping
machines.

The description of .stl file format can be easily found elsewhere in the
internet. An elaborated description can be found at http://www.sdsc.edu/
tmf/Stl-specs/stl.html. Below is an example of this file format.

solid

...

facet normal 0.00 0.00 1.00

outer loop

vertex 2.00 2.00 0.00

vertex -1.00 1.00 0.00

vertex 0.00 -1.00 0.00

endloop

endfacet

...

endsolid
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Figure 19: A bar having two boundary markers (−1 and −2) defined.

4.2.4 .mesh files

.mesh is the file formats of Medit - an interactive 3D mesh viewing pro-
gram http://www.ann.jussieu.fr/~frey/logiciels/medit.html. This
file format is described in the documentation of Medit.

4.3 Examples

This section provides some simple examples and is designed to support learn-
ing by trying. The topics are description of the geometry using TetGen’s .poly
file format and constructing different quality meshes through the command
line switches of TetGen.

4.3.1 A Bar with Two Boundary Markers

Figure 19 shows the geometry of a rectangular bar. This bar consists of
eight nodes and six facets (which are all rectangles). In addition, there
are two boundary markers (−1 and −2) associated to the leftmost facet
and the rightmost facet, respectively. This simple model has its physical
meaning. It can be seen as a typical heat transfer problem. The task is
to compute the temperature diffusion in the bar, in which the flow of heat
moves from hot side to cold side. The two boundary markers can represent
two different boundary conditions, one has high temperature and the other
has low temperature. Here is the input file “bar.poly” describing the bar:

# Part 1 - the node list.
# A bar with 8 nodes in 3D, no attributes, no boundary marker.
8 3 0 0
# The 4 leftmost nodes:
1 0 0 0
2 2 0 0
3 2 2 0
4 0 2 0
# The 4 rightmost nodes:
5 0 0 12
6 2 0 12
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7 2 2 12
8 0 2 12

# Part 2 - the facet list.
# Six facets with boundary markers.
6 1
# The leftmost facet.
1 0 -1 # 1 polygon, no hole, boundary marker (-1)
4 1 2 3 4
# The rightmost facet.
1 0 -2 # 1 polygon, no hole, boundary marker (-2)
4 5 6 7 8
# Other facets.
1
4 1 5 6 2 # bottom side
1
4 2 6 7 3 # back side
1
4 3 7 8 4 # top side
1
4 4 8 5 1 # front side

# Part 3 - the hole list.
# There is no hole in bar.
0
# Part 4 - the region list.
# There is no region defined.
0

The command line is chosen as follows: first mesh the PLC (-p), then
impose the quality constraint (-q). This will result a quality mesh in three
files: bar.1.node, bar.1.ele, and bar.1.face.

> tetgen -pq bar

Here is the output file “bar.1.node”. It contains twelve nodes. The last
four points were added by TetGen automatically to meet the quality measure.

12 3 0 0
1 0 0 0
2 2 0 0
3 2 2 0
4 0 2 0
5 0 0 12
6 2 0 12
7 2 2 12
8 0 2 12
9 2 2 6

10 2 0 6
11 0 0 6
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12 0 2 6
# Generated by tetgen -pq bar

Here is the output file “bar.1.ele”, which contains thirteen tetrahedra.

13 4 0
1 10 12 4 11
2 5 11 9 10
3 5 6 10 9
4 9 5 6 7
5 5 9 8 7
6 10 12 11 9
7 10 11 4 1
8 4 10 1 2
9 4 3 10 2

10 3 12 10 9
11 9 11 8 12
12 11 5 9 8
13 10 4 12 3

# Generated by tetgen -pq bar

Here is the output file “bar.1.face” with twenty boundary faces. Faces 1
and 2 are on the leftmost facet thus have markers −1; faces 13 and 14 have
markers −2 indicating they are on the rightmost facet. Other faces have the
default markers zero.

20 1
1 1 2 4 -1
2 4 2 3 -1
3 11 1 4 0
4 11 8 5 0
5 10 1 11 0
6 5 6 10 0
7 6 9 10 0
8 6 7 9 0
9 9 7 8 0

10 8 12 9 0
11 3 2 10 0
12 3 9 12 0
13 5 7 6 -2
14 8 7 5 -2
15 10 9 3 0
16 10 2 1 0
17 5 10 11 0
18 11 12 8 0
19 12 11 4 0
20 4 3 12 0

# Generated by tetgen -pq bar
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Figure 20: A bar having two regions (with region attributes −10 and −20,
respectively) and two boundary markers (−1 and −2) defined.

However, the mesh above may be too coarse for numerical simulation
using finite element method or finite volume method. Using either -q or -a
switch or both of them will results a more dense quality mesh:

> tetgen -pq1.414a0.1 bar

TetGen generates a mesh with 318 points and 1058 tetrahedra. The added
points are due to both the -q and -a switches we’ve applied. To see a quality
report of the mesh, type:

> tetgen -rNEFV bar.1

4.3.2 A Bar with Two Regions

In this example, we add an internal boundary facet into the bar (in Figure 19),
so that create two regions (separated by the newly added facet) in the bar.
Figure 20 shows the modified geometry. This bar consists of twelve nodes
(which I numbered) and seven facets (Note, some of them are not a single
polygon any more). In addition, there are two regions defined, which have
region attributes −10 and −20, respectively. Physically, you can associate
two different materials to each of these two regions. And the two boundary
markers (−1 and −2) in last example still remain. Here is the input file
“bar2.poly” describing the modified bar:

# Part 1 - the node list.
# The model has 12 nodes in 3D, no attributes, no boundary marker.
12 3 0 0
# The 4 leftmost nodes:
1 0 0 0
2 2 0 0
3 2 2 0
4 0 2 0
# The 4 rightmost nodes:
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5 0 0 12
6 2 0 12
7 2 2 12
8 0 2 12
# The 4 added nodes:
9 0 0 3
10 2 0 3
11 2 2 3
12 0 2 3

# Part 2 - the facet list.
# Seven facets with boundary markers.
7 1
# The leftmost facet.
1 0 -1 # 1 polygon, no hole, boundary marker (-1)
4 1 2 3 4
# The rightmost facet.
1 0 -2 # 1 polygon, no hole, boundary marker (-2)
4 5 6 7 8
# Each of following facets has two polygons, which are
# one rectangle (6 corners) and one segment.
2
6 1 9 5 6 10 2 # bottom side
2 9 10
2
6 2 10 6 7 11 3 # back side
2 10 11
2
6 3 11 7 8 12 4 # top side
2 11 12
2
6 4 12 8 5 9 1 # front side
2 12 9
# The internal facet separates two regions.
1
4 9 10 11 12

# Part 3 - the hole list.
# There is no hole in bar.
0
# Part 4 - the region list.
# There are two regions (-10 and -20) defined.
2
1 1.0 1.0 1.5 -10 0.1
2 1.0 1.0 5.0 -20 -1

After “tetgen -pqaA bar2”, here is the part of output file “bar2.1.ele”. It
is different from file “bar.1.ele” in last example that each record follows an
additional region attribute indicating which region it belongs to.

306 4 1
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1 85 91 33 86 -10
2 76 95 46 85 -10
3 16 26 29 27 -20
4 7 5 13 6 -20
5 49 80 55 48 -10
6 27 104 28 26 -20
7 66 93 42 83 -10
...

# Generated by tetgen -pqaA bar2

Visualization of the resulting meshes (by TetView or other tools) shows
the refinement in the region with attribute −10 is denser than the other.
This is due to the volume constraints (0.1) defined in the file “bar2.poly”
and the ’-aA’ switches.
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5 Calling TetGen from Another Program

In addition to being used as a stand alone program, TetGen can be called from
another program. The TetGen library provides functions and data structures
for calling TetGen. One of the advantages of using the TetGen library is
that it can be repeatedly called by other programs without the overhead
of reading and writing files. The feature is very useful for applications like
adaptive FEM and FVM methods.

This section gives the necessary instructions for using the TetGen library.
Examples are included for better understanding. Users are supposed to be
able to use TetGen, i.e., know its command line switches and the input and
output file formats. Furthermore, Section 2 contains the instruction of how
to compile TetGen into a library.

5.1 The Header File

All programs calling TetGen must include the header file “tetgen.h”.

#include "tetgen.h"

It includes all data types and function declarations of the TetGen library.
More specifically, it defines the function “tetrahedralize()” and the data type
“tetgenio”, which are provided for users to call TetGen with all its function-
alities. They are described in Section 5.2 and Section 5.3, respectively.

5.2 The Calling Convention

The function “tetrahedralize()” is declared as follows:

void tetrahedralize(char *switches, tetgenio *in, tetgenio *out)

The parameter “switches” is a string containing the command line switches
for this call. In this string, no initial dash ’-’ is required. The ‘Q’ (quiet)
switch is recommended in the final code. The ‘I’ (no iteration numbers), ‘g’
(.mesh file output), and ’G’ (.msh file output) switches have no effect.

The parameters “in” and “out”, which are two pointers pointing to ob-
jects of “tetgenio”, describing the input and the output. “in” and “out” may
never be NULL.
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5.3 The “tetgenio” Data Type

The “tetgenio” structure is used to pass data into and out of the tetrahe-
dralize() procedure. It replaces the input and output files of TetGen by a
collection of arrays, which are used to store points, tetrahedra, markers, and
so forth. It is declared as a C++ class including data fields and functions.
The data fields of “tetgenio”:

int firstnumber; // 0 or 1, default 0.

int mesh_dim; // must be 3.

REAL *pointlist;

REAL *pointattributelist;

REAL *addpointlist;

int *pointmarkerlist;

int numberofpoints;

int numberofpointattributes;

int numberofaddpoints;

int *tetrahedronlist;

REAL *tetrahedronattributelist;

REAL *tetrahedronvolumelist;

int *neighborlist;

int numberoftetrahedra;

int numberofcorners;

int numberoftetrahedronattributes;

facet *facetlist;

int *facetmarkerlist;

int numberoffacets;

REAL *holelist;

int numberofholes;

REAL *regionlist;

int numberofregions;

REAL *facetconstraintlist;

int numberoffacetconstraints;

REAL *segmentconstraintlist;

int numberofsegmentconstraints;
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int *trifacelist;

int *trifacemarkerlist;

int numberoftrifaces;

int *edgelist;

int *edgemarkerlist;

int numberofedges;

5.4 Description of Arrays

In all cases, the first item in any array is stored starting at index [0]. However,
that item is item number “firstnumber” (0 or 1) unless the ‘z’ switch is used,
in which case it is item number ‘0’. Following is the description of arrays.

pointlist An array of point coordinates. The first point’s x coordinate is
at index [0], its y coordinate at index [1], and its z coordinate at index [2],
followed by the coordinates of the remaining points. Each point occupies
three REALs.

pointattributelist An array of point attributes. Each point’s attributes
occupy “numberofpointattributes” REALs.

pointmarkerlist An array of point markers; one int per point.

addpointlist An array of additional point coordinates, which will be read
and inserted into the mesh when the -i switch is used.. The same structure
as “pointlist”, each point occupies three REALs.

tetrahedronlist An array of tetrahedron corners. The first tetrahedron’s
first corner is at index [0], followed by its other three corners, followed by
any other nodes if the ’-o2’ switch is used. Each tetrahedron occupies “num-
berofcorners” (4 or 10) ints.

tetrahedronattributelist An array of tetrahedron attributes. Each tetra-
hedron’s attributes occupy “numberoftetrahedronattributes” REALs.

tetrahedronvolumelist An array of tetrahedron volume constraints; one
REAL per tetrahedron. Input only.
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neighborlist An array of tetrahedron neighbors; four ints per tetrahedron.
Output only.

facetlist An array of PLC facets. Each facet is an object of type “facet”
(see Section 5.4.2).

facetmarkerlist An array of facet markers; one int per facet.

holelist An array of holes. The first hole’s x, y and z coordinates are at
indices [0], [1] and [2], followed by the remaining holes. Three REALs per
hole.

regionlist An array of regional attributes and volume constraints. The
first constraints’ x, y and z coordinates are at indices [0], [1] and [2], followed
by the regional attribute at index [3], followed by the maximum volume at
index [4], followed by the remaining volume constraints. Five REALs per
volume constraint. Each regional attribute is used only if the ‘A’ switch
is used, and each volume constraint is used only if the ‘a’ switch (with no
number following) is used, but omitting one of these switches does not change
the memory layout.

facetconstraintlist An array of facet maximum area constraints. Two
REALs per constraint. The first one is the facet marker (cast the type to
integer), the second is its maximum area bound. Note the ’facetconstraintlist’
is used only for the ’q’ switch.

segmentconstraintlist An array of segment length constraints. Two RE-
ALs per constraint. The first one is the index (pointing into ’pointlist’) of the
node, the second is its maximum length bound. Note the ’nodeconstraintlist’
is used only for the ’q’ switch.

trifacelist An array of triangular faces. The first face’s corners are at
indices [0], [1] and [2], followed by the remaining faces. Three ints per face.

trifacemarkerlist An array of face markers; one int per face.

edgelist An array of segment endpoints. The first segment’s endpoints are
at indices [0] and [1], followed by the remaining segments. Two ints per
segment.
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edgemarkerlist An array of segment markers; one int per segment.

5.4.1 Memory Management

The “initialize()” and “deinitialize()” routines defined in tetgenio are used
for memory initialization and cleaning. They are:

void initialize();

void deinitialize();

“initialize()” initializes all fields, that is, all pointers to arrays are initial-
ized to NULL, and other variables are initialized to zero except the variable
’numberofcorners’, which is 4 (a tetrahedron has 4 nodes). Initialization is
implicitly called by the constructor of tetgenio. For an example, the following
line creates an object of tetgenio named “io”, all fields of “io” are initialized:

tetgenio io;

The next step is to allocate memory for each array which will be used.
In C++ the memory allocation and deletion can be done by the “new” and
“delete” operators. Another pair of functions (preferred by C programmers)
are “malloc()” and “free()”. Whatever you use, you must stick with one of
these two pairs, e.g., ’new’/’delete’ and ’malloc’/’free’ can not be mixed. For
example, the following line allocates memory for “io.pointlist”:

io.pointlist = new REAL[io.numberofpoints * 3];

“deinitialize” frees the memory allocated in objects of tetgenio by using
’delete’. It is automatically called on deletion of the tetgenio objects. If the
memory was allocated by using the function “malloc()”, the user is responsi-
ble to free it. After having freed all memory, one call of “initialize()” disables
the automatic memory deletion.

To reuse an object is possible: first call “deinitialize()”, then call “initial-
ize()” before the next use.

5.4.2 The “facet” Data Structure

The “facet” data structure defined in tetgenio can be used to represent any
facet of a PLC. However, to preserve the flexibility, to use is not straightfor-
ward.

The structure of facet shown below consists of a list of polygons and a
list of hole points.
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typedef struct {

polygon *polygonlist;

int numberofpolygons;

REAL *holelist;

int numberofholes;

} facet;

A polygon is again an object of type “polygon”’. It consists of a list of
corner points (“vertexlist”). The structure is shown below.

typedef struct {

int *vertexlist;

int numberofvertices;

} polygon;

In fact, the structure of facet is a direct translation of the facet format in
a .poly file, described in Section 3.3.2. The front facet of Figure 20 serves an
example for setting a PLC facet into an object of facet. It has two polygons,
one has six vertices, and the other is a segment, no holes, the ASCII data is:

2

6 4 12 8 5 9 1 # front side

2 12 9

The following C++ code does the translation. Assume the object of
tetgenio is “io” and has already be created.

tetgenio::facet *f; // Define a pointer of facet.
tetgenio::polygon *p; // Define a pointer of polygon.

// All indices start from 1.
io.firstnumber = 1;

...

// Use ’f’ to point to a facet of ’facetlist’.
f = &io.facetlist[i];
// Initialize the fields of this facet.
// There are two polygons, no holes.
f->numberofpolygons = 2;
// Allocate memory for polygons.
f->polygonlist = new tetgenio::polygon[2];
f->numberofholes = 0;
f->holelist = NULL;
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// Set the data of the first polygon into facet.
p = &f->polygonlist[0];
p->numberofvertices = 6;
// Allocate memory for vertices.
p->vertexlist = new int[6];
p->vertexlist[0] = 4;
p->vertexlist[1] = 12;
p->vertexlist[2] = 8;
p->vertexlist[3] = 5;
p->vertexlist[4] = 9;
p->vertexlist[5] = 1;

// Set the data of the second polygon into facet.
p = &f->polygonlist[1];
p->numberofvertices = 2;
p->vertexlist = new int[2]; // Alloc. memory for vertices.
p->vertexlist[0] = 12;
p->vertexlist[1] = 9;

5.5 An Example

This section gives an example of how to call TetGen from another program
by using the “tetgenio” data structure and the function “tetrahedralize()”.
The example in Section ?? (Figure 19) is used again.

The complete C++ source code is given below. It is also available in Tet-
Gen’s website:http://tetgen.berlios.de/files/tetcall.cxx. The code
illustrates the following basic steps:

• at first creates an input object “in” of tetgenio containing the data of
the bar;

• then it calls function “tetrahedralize()” to create a quality mesh of the
bar with output in “out”.

In addition, It outputs the PLC in the object “in” into two files (barin.node
and barin.poly), and outputs the mesh in the object “out” into three files
(barout.node, barout.ele, and barout.face). These files can be visualized by
TetView( Section2.3.1).

This example can be compiled into an executable program with the library
of TetGen. To compile it you need to do the following steps:

• Compile TetGen into a library named “libtet.a” (see Section 2.1 for
compiling);

• Save the file “tetcall.cxx” into the same directory in which you have
the files “tetgen.h” and “libtet.a”;
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• Compile it using the following command:

g++ -o test tetcall.cxx -L./ -ltet

which will result an executable file “test”.

Following are the complete source code:

//
// main() Create and refine a mesh using TetGen library.
//

#include "tetgen.h" // Defined tetgenio, tetrahedralize().

int main(int argc, char *argv[])
{
tetgenio in, out;
tetgenio::facet *f;
tetgenio::polygon *p;
int i;

// All indices start from 1.
in.firstnumber = 1;

in.numberofpoints = 8;
in.pointlist = new REAL[in.numberofpoints * 3];
in.pointlist[0] = 0; // node 1.
in.pointlist[1] = 0;
in.pointlist[2] = 0;
in.pointlist[3] = 2; // node 2.
in.pointlist[4] = 0;
in.pointlist[5] = 0;
in.pointlist[6] = 2; // node 3.
in.pointlist[7] = 2;
in.pointlist[8] = 0;
in.pointlist[9] = 0; // node 4.
in.pointlist[10] = 2;
in.pointlist[11] = 0;
// Set node 5, 6, 7, 8.
for (i = 4; i < 8; i++) {
in.pointlist[i * 3] = in.pointlist[(i - 4) * 3];
in.pointlist[i * 3 + 1] = in.pointlist[(i - 4) * 3 + 1];
in.pointlist[i * 3 + 2] = 12;

}

in.numberoffacets = 6;
in.facetlist = new tetgenio::facet[in.numberoffacets];
in.facetmarkerlist = new int[in.numberoffacets];
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// Facet 1. The leftmost facet.
f = &in.facetlist[0];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 1;
p->vertexlist[1] = 2;
p->vertexlist[2] = 3;
p->vertexlist[3] = 4;

// Facet 2. The rightmost facet.
f = &in.facetlist[1];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 5;
p->vertexlist[1] = 6;
p->vertexlist[2] = 7;
p->vertexlist[3] = 8;

// Facet 3. The bottom facet.
f = &in.facetlist[2];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 1;
p->vertexlist[1] = 5;
p->vertexlist[2] = 6;
p->vertexlist[3] = 2;

// Facet 4. The back facet.
f = &in.facetlist[3];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
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p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 2;
p->vertexlist[1] = 6;
p->vertexlist[2] = 7;
p->vertexlist[3] = 3;

// Facet 5. The top facet.
f = &in.facetlist[4];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 3;
p->vertexlist[1] = 7;
p->vertexlist[2] = 8;
p->vertexlist[3] = 4;

// Facet 6. The front facet.
f = &in.facetlist[5];
f->numberofpolygons = 1;
f->polygonlist = new tetgenio::polygon[f->numberofpolygons];
f->numberofholes = 0;
f->holelist = NULL;
p = &f->polygonlist[0];
p->numberofvertices = 4;
p->vertexlist = new int[p->numberofvertices];
p->vertexlist[0] = 4;
p->vertexlist[1] = 8;
p->vertexlist[2] = 5;
p->vertexlist[3] = 1;

// Set ’in.facetmarkerlist’

in.facetmarkerlist[0] = -1;
in.facetmarkerlist[1] = -2;
in.facetmarkerlist[2] = 0;
in.facetmarkerlist[3] = 0;
in.facetmarkerlist[4] = 0;
in.facetmarkerlist[5] = 0;

// Output the PLC to files ’barin.node’ and ’barin.poly’.
in.save_nodes("barin");
in.save_poly("barin");
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// Tetrahedralize the PLC. Switches are chosen to read a PLC (p),
// do quality mesh generation (q) with a specified quality bound
// (1.414), and apply a maximum volume constraint (a0.1).

tetrahedralize("pq1.414a0.1", &in, &out);

// Output mesh to files ’barout.node’, ’barout.ele’ and ’barout.face’.
out.save_nodes("barout");
out.save_elements("barout");
out.save_faces("barout");

return 0;
}
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(a) (b) (c)

Figure 21: (a) A two-dimensional simplical complex K consists of 2 trian-
gles(which are shaded), 7 edges, and 5 vertices. (b) The underlying space.
(c) A subcomplex, which is a 1-dimensional simplical complex, consists of 4
edges, and 4 vertices.

A Some Notions of Combinatorial Topology

This section gives simplified explanations of some basic notions of combina-
torial topology as a quick reference.

Convex Hull The convex hull of a set V ⊂ Rn of points, denoted convV ,
is the smallest convex set that contains V .

Simplex A simplex σ is the convex hull of an affinely independent set S
of points. The dimension of σ is one less than the number of points of S.
Specifically, in R3 the maximum number of affinely independent points is 4,
so we have non-empty simplices of dimensions 0, 1, 2 and 3 referred to as
vertices, edges, triangles, and tetrahedra, respectively. For any subset T ⊆ S,
the simplex τ = convT is a face of σ and we write τ ≤ σ. τ is a proper face
of σ if T is a proper subset of S.

Simplical Complex A simplical complex K is a finite set of simplices such
that (i) any face of a simplex in K is also in K, and (ii) the intersection of
any two simplices in K is a face of both. Condition (ii) allows for the case
in which two simplices are disjoint because the empty set is the unique (-1)-
dimensional simplex, which is a face of any simplex. Figure 21 (a) illustrates
a two-dimensional simplical complex.

Underlying Space The underlying space of a set of simplices L, denoted
|L|, is the union of interiors,

⋃
σ∈Lintσ (see an illustration in Figure 21 (b)).

|L| is a topologically closed set if and only if L is a simplical complex.

Subcomplex A subcomplex of K is a subset of simplices of K that is also
a simplical complex. For an example see Figure 21 (c).
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[38] Si H. and Gärtner K., An Algorithm for Three-Dimensional Constrained
Delaunay Tetrahedralizations, Proceeding of the Fourth International
Conference on Engineering Computational Technology, Lisbon, Portu-
gal, September 2004.
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