elemental
192

El

Elemental Manual
Release 0.77

Jack Poulson

December 14, 2012

Introduction

1.1 Overview o e
1.2 Dependencies
1.3 License and copyright

Build system

2.1 Dependencies
2.2 Getting Elemental’ssource
2.3 BuildingElemental
2.4 Testing the installation
2.5 FElemental as a subproject
2.6 Troubleshooting
Core functionality

3.1 Imported library routines
32 Environment
33 TheMatrixclass
34 TheGridclass
3.5 The DistMatrixclass
3.6 Partitioning
3.7 Repartitioning
3.8 Sliding partitions
3.9 The Axpyinterface
Basic linear algebra

4.1 Level 1
42 Level2
43 Level3
4.4 Tuning parameterso v e e e ..

High-level linear algebra

5.1
52
53
54
5.5
5.6
5.7
5.8

Invariants, inner products, and divergences

Factorizations
Linearsolvers
Factorization-based inversion
Reduction to condensed form
Eigensolversand SVD
Matrix functions
Utilities e

CONTENTS

S \C RS

O 03NN W W

........................ 38

5.9 Tuning parameters v v v v v e
6 Special matrices

6.1 DeterminiStiC v v i i e

6.2 Random. e e e e e e e e e
7 Indices
Index

101
101
106

109

111

CHAPTER
ONE

INTRODUCTION

1.1 Overview

Elemental is a library for distributed-memory dense linear algebra that is essentially a careful combination of the
following:

¢ A PLAPACK-like framework of matrix distributions that are trivial for users to redistribute between.
* A FLAME approach to tracking submatrices within (blocked) algorithms.

* Element-wise distribution of matrices. One of the major benefits to this approach is the much more convenient
handling of submatrices, relative to block distribution schemes.

Just like ScaLAPACK and PLAPACK, Elemental’s primary goal is in extending BLAS and LAPACK-like functionality
into distributed-memory environments.

Though Elemental already contains high-quality implementations of a large portion of BLAS and LAPACK-like rou-
tines, there are a few important reasons why ScaLAPACK or PLAPACK might be more appropriate:

» Elemental does not yet support non-Hermitian eigenvalue problems, but ScaLAPACK does.

* Elemental does not yet provide routines for narrowly banded linear systems, though ScaLAPACK does (though
you may want to consider the sparse-direct solver, Clique, which is built on top of Elemental.

» Some applications exploit the block distribution format used by ScaLAPACK and PLAPACK in order to increase
the efficiency of matrix construction. Though it is clearly possible to redistribute the matrix into an element-wise
distribution format after construction, this might add an unnecessary level of complexity.

Note: At this point, the vast majority of Elemental’s source code is in header files, so do not be surprised by the
sparsity of the src/ folder; please also look in include/. There were essentially two reasons for moving as much
of Elemental as possible into header files:

1. In practice, most executables only require a small subset of the library, so avoiding the overhead of compiling
the entire library beforehand can be significant. On the other hand, if one naively builds many such executables
with overlapping functionality, then the mainly-header approach becomes slower.

2. Though Elemental does not yet fully support computation over arbitrary fields, the vast majority of its pieces
do. Moving templated implementations into header files is a necessary step in the process and also allowed for
certain templating techniques to exploited in order to simplify the class hierarchy.

http://cs.utexas.edu/users/plapack
http://cs.utexas.edu/users/flame
http://netlib.org/scalapack
http://netlib.org/blas
http://netlib.org/lapack
http://github.com/poulson/Clique

Elemental Manual, Release 0.77

1.2 Dependencies

* Functioning C++03 and ANSI C compilers.
* A working MPI implementation.

* BLAS and LAPACK (ideally version 3.3 or greater) implementations. If a sufficiently up-to-date LAPACK im-
plementation is not provided, then a working FOO compiler is required in order to build Elemental’s eigensolvers
(the tridiagonal eigensolver, PMRRR, requires recent LAPACK routines).

e CMake (version 2.8.5 or later).

Elemental should successfully build on nearly every platform, as it has been verified to build on most major desktop
platforms (including Linux, Mac OS X, Microsoft Windows, and Cygwin), as well as a wide variety of Linux clusters
(including Blue Gene/P).

1.3 License and copyright

All files distributed with Elemental are made available under the New BSD license, which states:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

— Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

— Neither the name of the owner nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Most source files contain the copyright notice:

Copyright (c) 2009-2012, Jack Poulson
All rights reserved.

For an up-to-date list of contributing authors, please see the AUTHORS file.

2 Chapter 1. Introduction

http://code.google.com/p/pmrrr
http://www.cmake.org
http://www.opensource.org/licenses/bsd-license.php
https://github.com/poulson/Elemental/blob/master/AUTHORS

CHAPTER
TWO

BUILD SYSTEM

Elemental’s build system relies on CMake in order to manage a large number of configuration options in a platform-
independent manner; it can be easily configured to build on Linux and Unix environments (including Darwin) as well
as various versions of Microsoft Windows.

Elemental’s main dependencies are
1. CMake (required)
2. MPI (required)
3. BLAS and LAPACK (required)
4. PMRRR (required for eigensolvers)
5. libFLAME (recommended for faster SVD’s)

Each of these dependencies is discussed in detail below.

2.1 Dependencies

2.1.1 CMake

Elemental uses several new CMake modules, so it is important to ensure that version 2.8.5 or later is installed. Thank-
fully the installation process is extremely straightforward: either download a platform-specific binary from the down-
loads page, or instead grab the most recent stable tarball and have CMake bootstrap itself. In the simplest case, the
bootstrap process is as simple as running the following commands:

./bootstrap
make
make install

Note that recent versions of Ubuntu (e.g., version 12.04) have sufficiently up-to-date versions of CMake, and so the
following command is sufficient for installation:

sudo apt-get install cmake

If you do install from source, there are two important issues to consider

1. By default, make install attempts a system-wide installation (e.g., into /usr/bin) and will likely require
administrative privileges. A different installation folder may be specified with the ——prefix option to the
bootstrap script, e.g.,:

http://www.cmake.org
http://www.cmake.org/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://netlib.org/blas
http://netlib.org/lapack
http://code.google.com/p/pmrrr
http://www.cs.utexas.edu/users/flame/
http://www.cmake.org/cmake/help/install.html
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.ubuntu.com/

Elemental Manual, Release 0.77

./bootstrap —-prefix=/home/your_username
make
make install

Afterwards, it is a good idea to make sure that the environment variable PATH includes the bin subdirectory of
the installation folder, e.g., /home/your_username/bin.

2. Some highly optimizing compilers will not correctly build CMake, but the GNU compilers nearly always work.
You can specify which compilers to use by setting the environment variables CC and CXX to the full paths to
your preferred C and C++ compilers before running the boot st rap script.

Basic usage

Though many configuration utilities, like autoconf, are designed such that the user need only invoke . /configure
&& make && make install from the top-level source directory, CMake targets out-of-source builds, which is
to say that the build process occurs away from the source code. The out-of-source build approach is ideal for projects
that offer several different build modes, as each version of the project can be built in a separate folder.

A common approach is to create a folder named build in the top-level of the source directory and to invoke CMake
from within it:

mkdir build
cd build
cmake

The last line calls the command line version of CMake, cmake, and tells it that it should look in the parent directory for
the configuration instructions, which should be in a file named CMakeLists. txt. Users that would prefer a graph-
ical interface from the terminal (through curses) should instead use ccmake (on Unix platforms) or CMakeSetup
(on Windows platforms). In addition, a GUI version is available through cmake—gui.

Though running make clean will remove all files generated from running make, it will not remove configuration
files. Thus, the best approach for completely cleaning a build is to remove the entire build folder. On *nix machines,
this is most easily accomplished with:

cd ..
rm —-rf build

This is a better habit than simply running rm -rf » since, if accidentally run from the wrong directory, the former
will most likely fail.

2.1.2 MPI

An implementation of the Message Passing Interface (MPI) is required for building Elemental. The two most com-
monly used implementations are

1. MPICH2
2. OpenMPI
If your cluster uses InfiniBand as its interconnect, you may want to look into MVAPICH?2.

Each of the respective websites contains installation instructions, but, on recent versions of Ubuntu (such as version
12.04), MPICH2 can be installed with

sudo apt-get install libmpich2-dev

and OpenMPI can be installed with

4 Chapter 2. Build system

http://www.gnu.org/software/autoconf/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/
http://en.wikipedia.org/wiki/InfiniBand
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://www.ubuntu.com/

Elemental Manual, Release 0.77

sudo apt-get install libopenmpi-dev

2.1.3 BLAS and LAPACK

The Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACKage (LAPACK) are both used heavily
within Elemental. On most installations of Ubuntu, the following command should suffice for their installation:

sudo apt-get install libatlas-dev liblapack-dev

The reference implementation of LAPACK can be found at
http://www.netlib.org/lapack/

and the reference implementation of BLAS can be found at
http://www.netlib.org/blas/

However, it is better to install an optimized version of these libraries, especialy for the BLAS. The most commonly
used open source versions are ATLAS and OpenBLAS.

2.1.4 PMRRR

PMRRR is a parallel implementation of the MRRR algorithm introduced by Inderjit Dhillon and Beresford Parlett for
computing k eigenvectors of a tridiagonal matrix of size n in O(nk) time. PMRRR was written by Matthias Petschow
and Paolo Bientinesi and is available at:

http://code.google.com/p/pmrrr

Elemental builds a copy of PMRRR by default whenever possible: if an up-to-date non-MKL version of LAPACK is
used, then PMRRR only requires a working MPI C compiler, otherwise, a Fortran 90 compiler is needed in order to
build several recent LAPACK functions. If these LAPACK routines cannot be made available, then PMRRR is not
built and Elemental’s eigensolvers are automatically disabled.

2.1.5 libFLAME

libFLAME is an open source library made available as part of the FLAME project. Its stated objective is to

...transform the development of dense linear algebra libraries from an art reserved for experts to a science
that can be understood by novice and expert alike.

Elemental’s current implementation of parallel SVD is dependent upon a serial kernel for the bidiagonal SVD. A
high-performance implementation of this kernel was recently introduced in “Restructuring the QR Algorithm for
Performance”, by Field G. van Zee, Robert A. van de Geijn, and Gregorio Quintana-Orti. It can be found at

http://www.cs.utexas.edu/users/flame/pubs/RestructuredQRTOMS.pdf

Installation of libFLAME is fairly straightforward. It is recommended that you download the latest nightly snapshot
from

http://www.cs.utexas.edu/users/flame/snapshots/
and then installation should simply be a matter of running:

./configure
make
make install

2.1. Dependencies 5

http://www.ubuntu.com
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
https://github.com/xianyi/OpenBLAS
http://www.cs.utexas.edu/~inderjit/
http://math.berkeley.edu/~parlett/
http://www.aices.rwth-aachen.de/people/petschow
http://www.aices.rwth-aachen.de/people/bientinesi
http://code.google.com/p/pmrrr
http://www.cs.utexas.edu/users/flame/pubs/RestructuredQRTOMS.pdf
http://www.cs.utexas.edu/users/flame/snapshots/

Elemental Manual, Release 0.77

2.2 Getting Elemental’s source

There are two basic approaches:

1. Download a tarball of the most recent version from http://code.google.com/p/elemental/downloads/list. A new
version is released roughly once a month, on average.

2. Install Mercurial and check out a copy of the repository by running

hg clone https://elemental.googlecode.com/hg elemental

2.3 Building Elemental

On *nix machines with BLAS, LAPACK, and MPI installed in standard locations, building Elemental can be as simple
as:

cd elemental
mkdir build
cd build
cmake ..
make

make install

As with the installation of CMake, the default install location is system-wide, e.g., /usr/local. The installation
directory can be changed at any time by running:

cmake —-D CMAKE_INSTALL_PREFIX=/your/desired/install/path ..
make install

Though the above instructions will work on many systems, it is common to need to manually specify several build
options, especially when multiple versions of libraries or several different compilers are available on your sys-
tem. For instance, any C++, C, or Fortran compiler can respectively be set with the CMAKE_CXX_COMPILER,
CMAKE_C_COMPILER, and CMAKE_Fortran_COMPILER variables, e.g.,

cmake —-D CMAKE_CXX_COMPILER=/usr/bin/g++ \
-D CMAKE_C_COMPILER=/usr/bin/gcc \
-D CMAKE_Fortran_COMPILER=/usr/bin/gfortran ..

It is also common to need to specify which libraries need to be linked in order to provide serial BLAS and LAPACK
routines (and, if SVD is important, libFLAME). The MATH_LIBS variable was introduced for this purpose and an
example usage for configuring with BLAS and LAPACK libraries in /usr/1ib would be

cmake -D MATH_LIBS="-L/usr/lib -llapack -1lblas -1m"

It is important to ensure that if library A depends upon library B, A should be specified to the left of B; in this case,
LAPACK depends upon BLAS, so ~11apack is specified to the left of ~1blas.

If libFLAME is available at /path/to/1libflame. a, then the above link line should be changed to

cmake -D MATH_LIBS="/path/to/libflame.a;-L/usr/lib -llapack -lblas —-1m"

Elemental’s performance in Singular Value Decompositions (SVD’s) is greatly improved on many architectures when
libFLAME is linked.

2.3.1 Build Modes

Elemental currently has four different build modes:

6 Chapter 2. Build system

http://code.google.com/p/elemental/downloads/list
http://mercurial.selenic.com
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.cs.utexas.edu/users/flame/

Elemental Manual, Release 0.77

* PureDebug - An MPI-only build that maintains a call stack and provides more error checking.

* PureRelease - An optimized MPI-only build suitable for production use.

HybridDebug - An MPI+OpenMP build that maintains a call stack and provides more error checking.

HybridRelease - An optimized MPI+OpenMP build suitable for production use.

The build mode can be specified with the CMAKE_BUILD_TYPE option, e.g., -D
CMAKE_BUILD_TYPE=PureDebug. If this option is not specified, Elemental defaults to the PureRelease
build mode.

2.4 Testing the installation

Once Elemental has been installed, it is a good idea to verify that it is functioning properly. An example of generating
a random distributed matrix, computing its Singular Value Decomposition (SVD), and checking for numerical error is
available in examples/lapack-like/SVD.cpp.

As you can see, the only required header is elemental.hpp, which must be in the include path
when compiling this simple driver, SVD.cpp. If Elemental was installed in /usr/local, then
/usr/local/conf/elemvariables can be used to build a simple Makefile:

include /usr/local/conf/elemvariables

SVD: SVD.cpp
${CXX} ${ELEM_COMPILE_FLAGS} $< -o $@ ${ELEM_LINK_FLAGS} S${ELEM_LIBS}

Aslong as SVD . cpp and this Makefile are in the current directory, simply typing make should build the driver.
The executable can then typically be run with a single process (generating a 300 x 300 distributed matrix, using

./SVD --height 300 --width 300

and the output should be similar to

| TA]|_max = 0.999997

[TA]_1 = 165.286

[IA]]_oo = 164.116

| |A]|_F = 173.012

| 1A]]_2 = 19.7823

||A — U Sigma V H||_max = 2.20202e-14

| |A - U Sigma V" H||_1 = 1.187e-12

| /A - U Sigma V"H||_oo = 1.17365e-12

| |A - U Sigma V" H||_F = 1.10577e-12

||A - U Sigma V_H||_F / (max(m,n) eps ||A||_2) = 1.67825

The driver can be run with several processes using the MPI launcher provided by your MPI implementation; a typical
way to run the SVD driver on eight processes would be:

mpirun -np 8 ./SVD --height 300 --width 300

You can also build a wide variety of example and test drivers (unfortunately the line is a little blurred) by using the
CMake options:

-D ELEM_EXAMPLES=O0ON

and/or

2.4. Testing the installation 7

https://github.com/poulson/Elemental/blob/master/examples/lapack-like/SVD.cpp

Elemental Manual, Release 0.77

-D ELEM_TESTS=ON

2.5 Elemental as a subproject

Adding Elemental as a dependency into a project which uses CMake for its build system is relatively straightfor-
ward: simply put an entire copy of the Elemental source tree in a subdirectory of your main project folder, say
external/elemental, and uncomment out the bottom section of Elemental’s CMakeLists.txt, i.e., change

#EFAFAAAFAAAREAAFAAARARAAFARARAAFAAA A A AAA R EA AR A AA AR AR A AR AA AR
Uncomment 1if including Elemental as a subproject in another build system
#HAARHARAAFAHARAAAAAAFA R A AR RARAAAARARA AR A A AR A AR A AR AAAH
#set (LIBRARY TYPE S${LIBRARY TYPE} PARENT SCOPE)

#set (MPI_C_COMPILER S{MPI_C_COMPILER} PARENT_SCOPE)

#set (MPI_C_INCLUDE_PATH ${MPI_C_ INCLUDE_PATH} PARENT_ SCOPE)

#set (MPI_C _COMPILE_FLAGS S{MPI_C _COMPILE FLAGS} PARENT SCOPE)

#set (MPI_C_LINK_FLAGS S{MPI_C_LINK FLAGS} PARENT SCOPE)

#set (MPI_C_LIBRARIES S{MPI_C_ LIBRARIES} PARENT SCOPE)

#set (MPI_CXX_ COMPILER S{MPI_CXX_ COMPILER} PARENT SCOPE)

#set (MPI_CXX_INCLUDE_PATH S${MPI_CXX INCLUDE_PATH} PARENT_SCOPE)

#set (MPI_CXX_COMPILE_FLAGS S${MPI_CXX_ COMPILE_FLAGS} PARENT SCOPE)

#set (MPI_CXX_ LINK_FLAGS S{MPI_CXX_ LINK_FLAGS} PARENT SCOPE)

#set (MPI_CXX_LIBRARIES S${MPI_CXX LIBRARIES} PARENT SCOPE)

#set (MATH _LIBS S${MATH LIBS} PARENT SCOPE)

#set (RESTRICT S{RESTRICT} PARENT_ SCOPE)

#set (RELEASE S${RELEASE} PARENT_SCOPE)

#set (BLAS_POST S${BLAS_POST} PARENT_SCOPE)

#set (LAPACK_POST S${LAPACK POST} PARENT_ SCOPE)

#set (HAVE_F90_INTERFACE S${HAVE_F90_ INTERFACE} PARENT_SCOPE)

#set (WITHOUT _PMRRR S{WITHOUT_ PMRRR} PARENT_ SCOPE)

#set (AVOID COMPLEX_MPI S{AVOID_ COMPLEX MPI} PARENT SCOPE)

#set (HAVE_REDUCE_SCATTER_BLOCK S{HAVE_REDUCE_SCATTER_BLOCK} PARENT_ SCOPE)

#set (REDUCE_SCATTER BLOCK_VIA ALLREDUCE ${REDUCE_SCATTER BLOCK_VIA ALLREDUCE} PARENT_ SCOPE)
#set (USE_BYTE _ALLGATHERS S{USE_BYTE_ALLGATHERS} PARENT SCOPE)

to

FHE A S R R R
Uncomment if including Elemental as a subproject in another build system
FHE A R R R
set (MPI_C_COMPILER ${MPI_C_COMPILER} PARENT_SCOPE)

set (MPI_C_INCLUDE_PATH ${MPI_C_INCLUDE_PATH} PARENT_SCOPE)

set (MPI_C_COMPILE_FLAGS ${MPI_C_COMPILE_FLAGS} PARENT_SCOPE)

set (MPI_C_LINK_FLAGS ${MPI_C_LINK_FLAGS} PARENT_SCOPE)

set (MPI_C_LIBRARIES ${MPI_C_LIBRARIES} PARENT_SCOPE)

set (MPI_CXX_COMPILER ${MPI_CXX_COMPILER} PARENT_SCOPE)

set (MPI_CXX_INCLUDE_PATH ${MPI_CXX_ INCLUDE_PATH} PARENT_SCOPE)

set (MPI_CXX_COMPILE_FLAGS ${MPI_CXX_COMPILE_FLAGS} PARENT_SCOPE)

set (MPI_CXX_LINK_FLAGS ${MPI_CXX_ LINK_FLAGS} PARENT_SCOPE)

set (MPI_CXX_LIBRARIES ${MPI_CXX_LIBRARIES} PARENT_SCOPE)

set (MATH_LIBS ${MATH_LIBS} PARENT_SCOPE)

set (RESTRICT ${RESTRICT} PARENT_SCOPE)

set (RELEASE ${RELEASE} PARENT_SCOPE)

set (BLAS_POST ${BLAS_POST} PARENT_SCOPE)

set (LAPACK_POST ${LAPACK_POST} PARENT_SCOPE)

set (HAVE_F90_INTERFACE ${HAVE_F90_INTERFACE} PARENT_SCOPE)

set (WITHOUT_PMRRR ${WITHOUT_PMRRR} PARENT_SCOPE)

8 Chapter 2. Build system

Elemental Manual, Release 0.77

set (AVOID_COMPLEX_MPI ${AVOID_COMPLEX MPI} PARENT_SCOPE)

set (HAVE_REDUCE_SCATTER_BLOCK ${HAVE_REDUCE_SCATTER_BLOCK} PARENT_SCOPE)

set (REDUCE_SCATTER_BLOCK_VIA_ALLREDUCE ${REDUCE_SCATTER_BLOCK_VIA_ALLREDUCE} PARENT_SCOPE)
set (USE_BYTE_ALLGATHERS ${USE_BYTE_ALLGATHERS} PARENT_SCOPE)

Afterwards, create a CMakeLists.txt in your main project folder that builds off of the following snippet:

cmake_minimum_required (VERSION 2.8.5)
project (Foo)

add_subdirectory (external/elemental)
include_directories ("${PROJECT_BINARY DIR}/external/elemental/include")
include_directories (${MPI_CXX_INCLUDE_PATH})

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${MPI_CXX_COMPILE_FLAGS}")

Build your project here

e.qg.,

add_library (foo STATIC ${FOO_SRC})

target_link_libraries (foo elemental)

2.6 Troubleshooting

If you run into build problems, please email jack.poulson@gmail.com and make sure to attach the file
include/elemental/config.h, which should be generated within your build directory. Please only direct
general usage questions to elemental-dev @ googlegroups.com.

2.6. Troubleshooting 9

mailto:jack.poulson@gmail.com
mailto:elemental-dev@googlegroups.com

Elemental Manual, Release 0.77

10 Chapter 2. Build system

CHAPTER
THREE

CORE FUNCTIONALITY

3.1 Imported library routines

Since one of the goals of Elemental is to provide high-performance datatype-independent parallel routines, yet Ele-
mental’s dependencies are datatype-dependent, it is convenient to first build a thin datatype-independent abstraction
on top of the necessary routines from BLAS, LAPACK, and MPI. The “first-class” datatypes are f1oat, double,
Complex<float>, and Complex<double>, but int and byte (unsigned char) are supported for many
cases, and support for higher precision arithmetic is in the works.

3.1.1 BLAS

The Basic Linear Algebra Subprograms (BLAS) are heavily exploited within Elemental in order to achieve high
performance whenever possible. Since the official BLAS interface uses different routine names for different datatypes,
the following interfaces are built directly on top of the datatype-specific versions.

The prototypes can be found in include/elemental/core/imports/blas.hpp, while the implementations are in
src/imports/blas.cpp.

Level 1

void blas: :Axpy (int n, T alpha, const T* x, int incx, T* y, int incy)
Performs y := ax + y for vectors z,y € T™ and scalar « € T'. x and y must be stored such that x; occurs at
x [i*incx] (and likewise for y).

Tblas: :Dot (int n, const T* x, int incx, T* y, int incy)
Returns o := x5, where x and y are stored in the same manner as in blas: : Axpy.

Tblas: :Dote (int n, const T* x, int incx, T* y, int incy)
Equivalentto blas: : Dot, but this name is kept for historical purposes (the BLAS provide ?dotc and ?dotu
for complex datatypes).

Tblas: :Dotu (int n, const T* x, int incx, T* y, int incy)
Similar to blas: : Dot, but this routine instead returns o := 27y (x is not conjugated).

Base<T>::itype blas: :Nrm2 (int n, const T* x, int incx)

Return the Euclidean two-norm of the vector x, where ||z||s = \/Z?:_Ol |z;|?. Note that if T represents a
complex field, then the return type is the underlying real field (e.g., T=Complex<double> results in a return
type of double), otherwise T equals the return type.

void blas: :Secal (int n, T alpha, T* x, int incx)
Performs x := ax, where © € T™ is stored in the manner described in blas: :Axpy,and o € T.

11

https://github.com/poulson/Elemental/tree/master/include/elemental/core/imports/blas.hpp
https://github.com/poulson/Elemental/tree/master/src/imports/blas.cpp

Elemental Manual, Release 0.77

Level 2

void blas: : Gemv (char trans, int m, int n, T alpha, const T* A, int lda, const T* x, int incx, T beta, T* y, int
incy)
Updates y := aop(A)x + By, where A € T™*™ and op(A) € {A, AT, A"} is chosen by choosing rrans from
{N, T, C}, respectively. Note that x is stored in the manner repeatedly described in the Level 1 routines, e.g.,
blas: :Axpy, but A is stored such that A(4, j) is located at A[i+j*1da].

void blas: :Ger (int m, int n, T alpha, const T* x, int incx, const T* y, int incy, T* A, int lda)
Updates A := axy™ +A, where A € T™*" and x, y, and A are stored in the manner describedinblas: : Gemv.

void blas: :Gere (int m, int n, T alpha, const T* x, int incx, const T* y, int incy, T* A, int lda)
Equivalent to blas: : Ger, but the name is provided for historical reasons (the BLAS provides ?gerc and
?geru for complex datatypes).

void blas: :Geru (int m, int n, T alpha, const T* x, int incx, const T* y, int incy, T* A, int lda)
Same as blas: : Ger, but instead perform A := axy” + A (y is not conjugated).

void blas: : Hemv (char uplo, int m, T alpha, const T* A, int Ida, const T* x, int incx, T beta, T* y, int incy)
Performs y := aAx + By, where A € T™*" is assumed to be Hermitian with the data stored in either the lower
or upper triangle of A (depending upon whether uplo is equal to ‘L’ or ‘U’, respectively).

void blas: :Her (char uplo, int m, T alpha, const T* x, int incx, T* A, int lda)
Performs A := azx™ + A, where A € T™*™ is assumed to be Hermitian, with the data stored in the triangle
specified by uplo (depending upon whether uplo is equal to ‘L’ or ‘U’, respectively).

void blas: :Her2 (char uplo, int m, T alpha, const T* x, int incx, const T* y, int incy, T* A, int Ilda)
Performs A := a(zy? + yz™) + A, where A € T™*™ is assumed to be Hermitian, with the data stored in the
triangle specified by uplo (depending upon whether uplo is equal to ‘L’ or ‘U’, respectively).

void blas: : Symv (char uplo, int m, T alpha, const T* A, int Ida, const T* x, int incx, T beta, T* y, int incy)
The same as blas: :Hemv, but A € T™>™ is instead assumed to be symmetric, and the update is y :=
aAx + By.

Note: The single and double precision complex interfaces, csymv and zsymv, are technically a part of
LAPACK and not BLAS.

void blas: : Syr (char uplo, int m, T alpha, const T* x, int incx, T* A, int lda)
The same as blas: :Her, but A € T™*"™ is instead assumed to be symmetric, and the update is A :=
T
azz’ + A.

Note: The single and double precision complex interfaces, csyr and zsyr, are technically a part of LAPACK
and not BLAS.

void blas: : Syr2 (char uplo, int m, T alpha, const T* x, int incx, const T* y, int incy, T* A, int Ilda)
The same as blas::Her2, but A € T™*™ is instead assumed to be symmetric, and the update is A :=
a(zy? +yzT) + A.

Note: The single and double precision complex interfaces do not exist in BLAS or LAPACK, so Elemental
instead calls csyr2k or zsyr2k with k=1. This is likely far from optimal, though Syr2 is not used very
commonly in Elemental.

void blas: : Trmv (char uplo, char trans, char diag, int m, const T* A, int Ida, T* x, int incx)
Perform the update = := «op(A)z, where A € T™*™ is assumed to be either lower or upper triangular

12 Chapter 3. Core functionality

Elemental Manual, Release 0.77

(depending on whether uplo is ‘L’ or ‘U’), unit diagonal if diag equals ‘U’, and op(4) € {A7AT, Al } is
determined by trans being chosen as ‘N’, “T’, or ‘C’, respectively.

void blas: : Trsv (char uplo, char trans, char diag, int m, const T* A, int lda, T* x, int incx)
Perform the update z := cop(A)~ 'z, where A € T™*™ is assumed to be either lower or upper triangular
(depending on whether uplo is ‘L’ or ‘U’), unit diagonal if diag equals ‘U’, and op(4) € {A, AT AH} is
determined by trans being chosen as ‘N’, “T’, or ‘C’, respectively.

Level 3

void blas: : Gemm (char transA, char transB, int m, int n, int k, T alpha, const T* A, int lda, const T* B, int
ldb, T beta, T* C, int ldc)
Perform the update C' := aop4(A)opg(B) + SC, where op, and opy are each determined (according to
transA and transB) in the manner described for blas: : Trmv; it is required that C' € T"™*™ and that the inner
dimension of op 4 (A)op;(B) is k.

void blas: : Hemm (char side, char uplo, int m, int n, T alpha, const T* A, int lda, const T* B, int ldb, T beta,

T* C, int ldc)
Perform either C' := aAB + BC or C := aBA + C (depending upon whether side is respectively ‘L’ or ‘R”)

where A is assumed to be Hermitian with its data stored in either the lower or upper triangle (depending upon
whether uplo is set to ‘L’ or ‘U’, respectively) and C' € T *".

void blas: : Her2k (char uplo, char trans, int n, int k, T alpha, const T* A, int lda, const T* B, int ldb, T beta,
T* C, int ldc)
Perform either C' := a(ABH + BA®)BC or C := a(A” B + BH A)BC (depending upon whether trans is
respectively ‘N’ or ‘C’), where C' € T™*" is assumed to be Hermitian, with the data stored in the triangle
specified by uplo (see blas : : Hemv) and the inner dimension of ABH or A B is equal to k.

void blas: : Herk (char uplo, char trans, int n, int k, T alpha, const T* A, int lda, T beta, T* C, int ldc)
Perform either C' := aAA™ + BC or C := oA A + BC (depending upon whether trans is respectively ‘N’
or ‘C’), where C' € T™*" is assumed to be Hermitian with the data stored in the triangle specified by uplo (see
blas: :Hemv) and the inner dimension of AAH or A A equal to k.

void blas: : Hetrmm (char uplo, int n, T* A, int lda)
Form either A := L or A := UU*, depending upon the choice of uplo: if uplo equals ‘L, then L € T"*"
is equal to the lower triangle of A, otherwise U is read from the upper triangle of A. In both cases, the relevant
triangle of A is overwritten in order to store the Hermitian product.

Note: This routine is built on top of the LAPACK routines s1lauum, dlauum, clauum, and zlauum; it in
the BLAS section since its functionality is extremely BLAS-like.

void blas: : Symm (char side, char uplo, int m, int n, T alpha, const T* A, int lda, const T* B, int ldb, T beta,

T* C, int ldc)
Perform either C' := aAB + BC or C := aBA + SC (depending upon whether side is respectively ‘L’ or ‘R’)

where A is assumed to be symmetric with its data stored in either the lower or upper triangle (depending upon
whether uplo is set to ‘L or ‘U’, respectively) and C € T™*".

void blas: : Syr2k (char uplo, char trans, int n, int k, T alpha, const T* A, int lda, const T* B, int ldb, T beta,
T* C, int ldc)
Perform either C' := a(ABT + BAT)BC or C := a(ATB + BT A)BC (depending upon whether trans is
respectively ‘N’ or ‘T’), where C' € T™*™ is assumed to be symmetric, with the data stored in the triangle
specified by uplo (see blas : : Symv) and the inner dimension of ABT or A" B is equal to k.

void blas: : Syrk (char uplo, char trans, int n, int k, T alpha, const T* A, int Ilda, T beta, T* C, int ldc)
Perform either C' := a AAT + BC or C := a AT A + BC (depending upon whether trans is respectively ‘N’ or
‘T”), where C € T™*™ is assumed to be symmetric with the data stored in the triangle specified by uplo (see
blas: : Symv) and the inner dimension of AAT or AT A equal to k.

3.1. Imported library routines 13

Elemental Manual, Release 0.77

void blas: : Trmm (char side, char uplo, char trans, char unit, int m, int n, T alpha, const T* A, int lda, T* B,

int ldb)
Performs C := aop(A)B or C' := aBop(A), depending upon whether side was chosen as ‘L’ or ‘R’, respec-

tively. Whether A is treated as lower or upper triangular is determined by whether uplo is ‘L’ or ‘U’ (setting unit
equal to ‘U’ treats A as unit diagonal, otherwise it should be set to ‘N”). op is determined in the same manner as
inblas::Trmv.

void blas: : Trsm (char side, char uplo, char trans, char unit, int m, int n, T alpha, const T* A, int lda, T* B,

int Ildb)
Performs C := aop(A)~'B or C' := aBop(A)~!, depending upon whether side was chosen as ‘L’ or ‘R’,

respectively. Whether A is treated as lower or upper triangular is determined by whether uplo is ‘L’ or ‘U’
(setting unit equal to ‘U’ treats A as unit diagonal, otherwise it should be set to ‘N’). op is determined in the
same manner as in blas: : Trmv.

3.1.2 LAPACK

A handful of LAPACK routines are currently used by Elemental: a few routines for querying floating point character-
istics, serial Cholesky and LU factorization, triangular inversion, and a few other utilities. In addition, there are several
BLAS-like routines which are technically part of LAPACK (e.g., csyr) which were included in the BLAS imports
section.

The prototypes can be found in include/elemental/core/imports/lapack.hpp, while the implementations are in
src/imports/lapack.cpp.

Machine information

In all of the following functions, R can be equal to either float or double.

R lapack: :MachineEpsilon<R> ()
Return the relative machine precision.

R lapack: :MachineSafeMin<R> ()
Return the minimum number which can be inverted without underflow.

R lapack: :MachinePrecision<R> ()
Return the relative machine precision multiplied by the base.

R lapack: :MachineUnderflowExponent<R> ()
Return the minimum exponent before (gradual) underflow occurs.

R lapack: :MachineUnderflowThreshold<R> ()
Return the underflow threshold: (base) ”~ ((underflow exponent)-1).

R lapack: :MachineOverflowExponent<R> ()
Return the largest exponent before overflow.

R lapack: :MachineOverflowThreshold<R> ()
Return the overflow threshold: (1-rel. prec.)) =« (base)” (overflow exponent).

Safe norms
R lapack: :SafeNorm (R alpha, R beta)
Return /@2 + (32 in a manner which avoids under/overflow. R can be equal to either floar or double.

R lapack: :SafeNorm (R alpha, R beta, R gamma)
Return \/a2 + 32 + ~2 in a manner which avoids under/overflow. R can be equal to either float or double.

14 Chapter 3. Core functionality

https://github.com/poulson/Elemental/tree/master/include/elemental/core/imports/lapack.hpp
https://github.com/poulson/Elemental/tree/master/src/imports/lapack.cpp

Elemental Manual, Release 0.77

Givens rotations

Given ¢,y € C™*™, carefully compute ¢ € R and s, p € C such that

c os|lo|_|pr
-3 ¢ v 0|
where ¢? + |s|? = 1 and the mapping from (¢,) — (c, s, p) is “as continuous as possible”, in the manner described

by Kahan and Demmel’s “On computing Givens rotations reliably and efficiently”.

void lapack: : ComputeGivens (R phi, R gamma, R* ¢, R* s, R* rho)
Computes a Givens rotation for real ¢ and .

void lapack: :ComputeGivens (C phi, C gamma, R* ¢, C* 5, C* rho)
Computes a Givens rotation for complex ¢ and ~.

Cholesky factorization

void lapack: :Cholesky (char uplo, int n, const F* A, int lda)
Perform a Cholesky factorization on A € F™*", where A(i,j) can be accessed at A[i+j*1da] and A is
implicitly Hermitian, with the data stored in the lower triangle if uplo equals ‘L, or in the upper triangle if uplo
equals ‘U’.

LU factorization

void lapack: : LU (int m, int n, F* A, int lda, int* p)
Perform an LU factorization with partial pivoting on A € F™*" where A(i,j) can be accessed at
A[i+7j*1da]. On exit, the pivots are stored in the vector p, which should be at least as large as min (m, n) .

Triangular inversion

void lapack: : TriangularInverse (char uplo, char diag, int n, const F* A, int Ida)
Overwrite either the lower or upper triangle of A € F™*™ with its inverse. Which triangle is accessed is
determined by uplo (‘L for lower or ‘U’ for upper), and setting diag equal to ‘U’ results in the triangular matrix
being treated as unit diagonal (set diag to ‘N’ otherwise).

QR-based SVD

void lapack: : QRSVD (int m, int n, R* A, int Ida, R* s, R* U, int Idu, R* VTrans, int ldvt)

void lapack: : QRSVD (int m, int n, Complex<R>* A, int Ida, R* s, Complex<R>* U, int ldu, Complex<R>*
VAdj, int ldva)

Computes the singular value decomposition of a general matrix by running the QR algorithm on the condensed bidi-
agonal matrix.

void lapack: :SingularValues (int m, int n, R* A, int lda, R* s)
void lapack: : SingularValues (int m, int n, Complex<R>* A, int Ida, R*)

Computes the singular values of a general matrix by running the QR algorithm on the condensed bidiagonal matrix.

3.1. Imported library routines 15

Elemental Manual, Release 0.77

Divide-and-conquer SVD

void lapack: :DivideAndConquerSVD (int m, int n, R* A, int Ida, R* s, R* U, int ldu, R* VTrans, int
ldvt)

void lapack: :DivideAndConquerSVD (int m, int n, Complex<R>* A, int lda, R* s, Complex<R>* U, int
ldu, Complex<R>* VAdj, int ldva)

Computes the SVD of a general matrix using a divide-and-conquer algorithm on the condensed bidiagonal matrix.

Bidiagonal QR

void lapack: :BidiagQRAlg (char uplo, int n, int numColsVTrans, int numRowsU, R* d, R* e, R* VTrans,
int ldvt, R* U, int ldu)

void lapack: :BidiagQRAlg (char uplo, int n, int numColsVAdj, int numRowsU, R* d, R* e, Complex<R>*
VAdj, int ldva, Complex<R>* U, int Idu)

Computes the SVD of a bidiagonal matrix using the QR algorithm.
Hessenberg QR

void lapack: : HessenbergEig (int n, R* H, int Idh, Complex<R>* w)
void lapack: : HessenbergEig (int n, Complex<R>* H, int Idh, Complex<R>* w)

Computes the eigenvalues of an upper Hessenberg matrix using the QR algorithm.

3.1.3 MPI

All communication within Elemental is built on top of the Message Passing Interface (MPI). Just like with BLAS
and LAPACK, a minimal set of datatype independent abstractions has been built directly on top of the standard MPI
interface. This has the added benefit of localizing the changes required for porting Elemental to architectures that do

not have full MPI implementations available.

The prototypes can be found in include/elemental/core/imports/mpi.hpp, while the implementations are in

src/imports/mpi.cpp.

Datatypes
type mpi: : Comm
Equivalent to MPI__Comm.

type mpi: :Datatype
Equivalent to MPI_Datatype.

type mpi: :ErrorHandler

Equivalent to MPI_Errhandler.

type mpi: : Group

Equivalent to MPI_Group.
type mpi: :0Op

Equivalent to MPI_Op.
type mpi: :Request

Equivalent to MPI_Request.

16

Chapter 3. Core functionality

https://github.com/poulson/Elemental/tree/master/include/elemental/core/imports/mpi.hpp
https://github.com/poulson/Elemental/tree/master/src/imports/mpi.cpp

Elemental Manual, Release 0.77

type mpi: :Status
Equivalent to MPI_Status.

type mpi: :UserFunction
Equivalent to MPI_User_function.

Constants
constint mpi: : ANY SOURCE
Equivalent to MPI_ANY_SOURCE.

constint mpi: : ANY TAG
Equivalent to MPI_ANY_TAG.

constint mpi: : THREAD_SINGLE
Equivalent to MPT_THREAD_SINGLE.

const int mp1i : : THREAD_FUNNELED
Equivalent to MPI_ THREAD_FUNNELED.

const int mpi : : THREAD_ SERIALIZED
Equivalent to MPI_THREAD_SERIALIZED.

const int mp1i : : THREAD_MULTIPLE
Equivalent to MPI_THREAD_MULTIPLE.

const int mpi : : UNDEFINED
Equivalent to MPI_UNDEFINED.

const mpi::Comm mp1i : : COMM_WORLD
Equivalent to MPI_ COMM_WORLD.

const mpi::ErrorHandler mp1i : : ERRORS_RETURN
Equivalent to MPI_ERRORS_RETURN.

const mpi::ErrorHandler mp1i : : ERRORS_ARE_FATAL

Equivalent to MPI_ERRORS_ARE_FATAL.
const mpi::Group mpi : : GROUP_EMPTY
Equivalent to MPI__GROUP_EMPTY.
const mpi::Request mpi : : REQUEST NULL
Equivalent to MPT_REQUEST_NULL.
const mpi::Op mpi : :MAX
Equivalent to MPI_MAX.
const mpi::Op mp1i : :MIN
Equivalent to MPT_MIN.
const mpi::Op mpi : : PROD
Equivalent to MPI_PROD.
const mpi::Op mpi: : SUM
Equivalent to MPI__ SUM.
const mpi::Op mpi: : LOGICAL_AND
Equivalent to MPI_LAND.
const mpi::Op mpi: : LOGICAL_OR
Equivalent to MPI_LOR.

3.1. Imported library routines

17

Elemental Manual, Release 0.77

const mpi::Op mpi : : LOGICAL_XOR
Equivalent to MPI_LXOR.

const mpi::Op mp1i: :BINARY AND
Equivalent to MPI_BAND.

const mpi::Op mpi : :BINARY_ OR
Equivalent to MPI_BOR.

const mpi::Op mpi: : BINARY_ XOR
Equivalent to MPI_BXOR.

constint mpi: :MIN_COLL_MSG
The minimum message size for collective communication, e.g., the minimum number of elements contributed
by each process in an MPI_Allgather. By default, it is hardcoded to / in order to avoid problems with MPI
implementations that do not support the 0 corner case.

Routines

Environmental

void mpi: :Initialize (int& argc, char**& argv)
Equivalent of MPT_Init (but notice the difference in the calling convention).

#include "elemental.hpp"
using namespace elem;

int main(int argc, charx argv([])
{

mpi::Initialize(argc, argv);

mpi::Finalize();
return 0;

}

intmpi::InitializeThread (int& argc, char**& argv, int required)
The threaded equivalent of mpi::Initialize; the return integer indicates the level of achieved threading
support, e.g., mpi : : THREAD_MULTIPLE.

void mpi: :Finalize ()
Shut down the MPI environment, freeing all of the allocated resources.

boolmpi: :Initialized()
Return whether or not MPI has been initialized.

bool mpi: :Finalized()
Return whether or not MPI has been finalized.

double mpi: : Time ()
Return the current wall-time in seconds.

void mp1i : : OpCreate (mpi::UserFunction* func, bool commutes, Op& op)
Create a custom operation for use in reduction routines, e.g., mpi: :Reduce, mpi: :Al1Reduce, and
mpi: :ReduceScatter, where mpi: :UserFunction could be defined as

namespace mpi {
typedef void (UserFunction) (wvoidx a, voidx b, intx length, mpi::Datatypex datatype);
}

18 Chapter 3. Core functionality

Elemental Manual, Release 0.77

The commutes parameter is also important, as it specifies whether or not the operation b[i] = a[i] op
b[i], for i=0,...,length-1, can be performed in an arbitrary order (for example, using a minimum
spanning tree).

void mp1i : : OpFree (mpi::Op& op)
Free the specified MPI reduction operator.

Communicator manipulation

int mpi : : CommRank (mpi::Comm comm)
Return our rank in the specified communicator.

intmpi : : CommSize (mpi::Comm comm)
Return the number of processes in the specified communicator.

void mp1i : : CommCreate (mpi::Comm parentComm, mpi::Group subsetGroup, mpi::Commé& subsetComm)
Create a communicator (subsetComm) which is a subset of parentComm consisting of the processes specified
by subsetGroup.

void mp1i : : CommDup (mpi::Comm original, mpi::Commé& duplicate)
Create a copy of a communicator.

void mp1i : : CommSplit (mpi::Comm comm, int color, int key, mpi::Commé& newComm)
Split the communicator comm into different subcommunicators, where each process specifies the color (unique
integer) of the subcommunicator it will reside in, as well as its key (rank) for the new subcommunicator.

void mp1i : : CommFree (mpi::Commé& comm)
Free the specified communicator.

bool mpi : : CongruentComms (mpi::Comm comml, mpi::Comm comm?2)
Return whether or not the two communicators consist of the same set of processes (in the same order).

void mp1i: : ErrorHandlerSet (mpi::Comm comm, mpi::ErrorHandler errorHandler)
Moditfy the specified communicator to use the specified error-handling approach.

Cartesian communicator manipulation

void mp1i : : CartCreate (mpi::Comm comm, int numDims, const int* dimensions, const int* periods, bool

reorder, mpi::Commé& cartComm)
Create a Cartesian communicator (cartComm) from the specified communicator (comm), given the number of

dimensions (numDims), the sizes of each dimension (dimensions), whether or not each dimension is periodic
(periods), and whether or not the ordering of the processes may be changed (reorder).

void mp1i : : CartSub (mpi::Comm comm, const int* remainingDims, mpi::Comm& subComm)
Create this process’s subcommunicator of comm that results from only keeping the specified dimensions (0 for
ignoring and 1 for keeping).

Group manipulation

int mpi : : GroupRank (mpi::Group group)
Return our rank in the specified group.
intmpi : :GroupSize (mpi::Group group)
Return the number of processes in the specified group.

void mp1i : : CommGroup (mpi::Comm comm, mpi::Group& group)
Extract the underlying group from the specified communicator.

3.1. Imported library routines 19

Elemental Manual, Release 0.77

void mp1i : : GroupIncl (mpi::Group group, int n, const int* ranks, mpi::Group& subGroup)
Create a subgroup of group that consists of the n processes whose ranks are specified in the ranks array.

void mp1i : : GroupDifference (mpi::Group parent, mpi::Group subset, mpi::Group& complement)
Form a group (complement) out of the set of processes which are in the parent communicator, but not in the
subset communicator.

void mp1i : : GroupFree (mpl::Group& group)
Free the specified group.

void mp1i : : GroupTranslateRanks (mpi::Group origGroup, int size, const int* origRanks, mpi::Group
newGroup, int* newRanks)
Return the ranks within newGroup of the size processes specified by their ranks in the origGroup communicator

using the origRanks array. The result will be in the newRanks array, which must have been preallocated to a
length at least as large as size.

Utilities
void mp1i : :Barrier (mpi::Comm comm)

Pause until all processes within the comm communicator have called this routine.

void mp1i : :Wait (mpi::Request& request)
Pause until the specified request has completed.

bool mp1i: : Test (mpi::Request& request)
Return whether or not the specified request has completed.

bool mpi : : IProbe (int source, int tag, mpi::Comm comm, mpi::Status& status)
Return whether or not there is a message ready which

*is from the process with rank source in the communicator comm (note that mpi: : ANY_SOURCE is al-
lowed)

had the integer tag fag
If true was returned, then status will have been filled with the relevant information, e.g., the source’s rank.

intmpi : : GetCount<T> (mpi::Status& status)
Return the number of entries of the specified datatype which are ready to be received.

Point-to-point communication

void mp1 : : Send (const T* buf, int count, int to, int tag, mpi::Comm comm)
Send count entries of type T to the process with rank fo in the communicator comm, and tag the message with
the integer fag.

void mp1i : : ISend (const T* buf, int count, int to, int tag, mpi::Comm comm, mpi::Request& request)
Same as mp1i : : Send, but the call is non-blocking.

void mp1i : : ISSend (const T* buf, int count, int to, int tag, mpi::Comm comm, mpi::Request& request)
Same as mp1i : : ISend, but the call is in synchronous mode.

void mp1i : :Reev (T* buf, int count, int from, int tag, mpi::Comm comm)
Receive count entries of type T from the process with rank from in the communicator comm, where the message
must have been tagged with the integer fag.

void mp1i : : IRecv (T* buf, int count, int from, int tag, mpi::Comm comm, mpi::Request& request)
Same as mp1i : : Recv, but the call is non-blocking.

20 Chapter 3. Core functionality

Elemental Manual, Release 0.77

void mp1i : : SendRecv (const T* sendBuf, int sendCount, int to, int sendTag, T* recvBuf, int recvCount, int

from, int recvTag, mpi::Comm comm)
Send sendCount entries of type T to process fo, and simultaneously receive recvCount entries of type T from

process from.

Collective communication

void mp1i : :Broadcast (T* buf, int count, int root, mpi::Comm comm)
The contents of buf (count entries of type T) on process root are duplicated in the local buffers of every process
in the communicator.

void mp1i : : Gather (const T* sendBuf, int sendCount, T* recvBuf, int recvCount, int root, mpi::Comm comm)
Each process sends an independent amount of data (i.e., sendCount entries of type T') to the process with rank
root; the root process must specify the maximum number of entries sent from each process, recvCount, so that
the data received from process i lies within the [ixrecvCount, (1i+1) xrecvCount) range of the receive
buffer.

void mp1i : :AllGather (const T* sendBuf, int sendCount, T* recvBuf, int recvCount, mpi::Comm comm)
Same as mpi : : Gather, but every process receives the result.

void mp1i: : Scatter (const T* sendBuf, int sendCount, T* recvBuf, int recvCount, int root, mpi::Comm

comnt)
The same as mpi::Gather, but in reverse: the root process starts with an array of data and sends the

[i*sendCount, (i+1) *sendCount) entries to process i.

void mpi: :A11ToAll (const T* sendBuf, int sendCount, T* recvBuf, int recvCount, mpi::Comm comm)
This can be thought of as every process simultaneously scattering data: after completion, the
[ixrecvCount, (i+1) xrecvCount) portion of the receive buffer on process j will contain the
[j*sendCount, (j+1) *sendCount) portion of the send buffer on process i, where sendCount refers
to the value specified on process i, and recvCount refers to the value specified on process j.

void mpi: :A11ToAll (const T* sendBuf, const int* sendCounts, const int* sendDispls, T* recvBuf, const

int* recvCounts, const int* recvDispls, mpi::Comm comm)
Same as previous mpi: :A11ToAll, but the amount of data sent to and received from each process is al-

lowed to vary; after completion, the [recvDispls([i], recvDispls|[i]+recvCounts([i]) portion of
the receive buffer on process j will contain the [sendDispls[j], sendDispls[j]+sendCounts[j])
portion of the send buffer on process i.

void mp1i : : Reduce (const T* sendBuf, T* recvBuf, int count, mpi::Op op, int root, mpi::Comm comm)
The root process receives the result of performing

Sp—1+ (Sp—2+ -+ (S2 + (S1 4+ Sp)) - - -), where S; represents the send buffer of process i, and + represents
the operation specified by op.

void mp1i : : Al1Reduce (const T* sendBuf, T* recvBuf, int count, mpi::Op op, mpi::Comm comm)
Same as mpi : : Reduce, but every process receives the result.

void mp1i : : ReduceScatter (const T* sendBuf, T* recvBuf, const int* recvCounts, mpi::Op op, mpi::Comm

comm)
Same as mpi: :Al1Reduce, but process 0 only receives the [0, recvCounts [0]) portion of the result,

process 1 only receives the [recvCounts[0], recvCounts[0]+recvCounts[1]) portion of the re-
sult, etc.

3.1.4 Parallel LCG

Since it is often necessary to generate a large matrix with pseudo-random entries in parallel, a method for ensuring that
a large set of processes can each generate independent uniformly random samples is required. The purpose of Parallel

3.1. Imported library routines 21

Elemental Manual, Release 0.77

LCG (PLCQG) is to provide a provably independent generalization of a simple (but well-studied) Linear Congruential
Generator. Knuth’s constants from The Art of Computer Programming Vol. 2 are used.

The prototypes can be found in include/elemental/core/imports/plcg.hpp, while the implementations are in exter-
nal/plcg/parallel_lcg.cpp.

Datatypes

type plcg: :UInt32
Since the vast majority of modern systems make use of unsigned for storing 32-bit unsigned integers, we
simply hardcode the type. If your system does not follow this convention, then this typedef will need to be
changed!

type struct plcg: : UInt 64
A custom 64-bit unsigned integer which is simply the concatenation of two 32-bit unsigned integers (UInt 32).

type struct plcg: : ExpandedUInt 64
A custom 64-bit unsigned integer which is stores each of the four 16-bit pieces within the first 16 bits of a 32-bit
unsigned integer. This is done so that two such expanded 16-bit numbers can be multiplied without any chance
of overflow.

LCG primitives

plcg::UInt32 plcg: : Lowerl6Bits (plcg::UInt32 a)
Return the lower 16 bits of a in the lower 16 bits of the returned 32-bit unsigned integer.

pleg::UInt32 plcg: :Upperl6Bits (plcg::UInt32 a)
Return the upper 16 bits of a in the lower 16 bits of the returned 32-bit unsigned integer.

plcg::ExpandedUInt64 plcg: : Expand (plcg::UInt32 a)
Expand a 32-bit unsigned integer into a 64-bit expanded representation.

plcg::ExpandedUInt64 plcg: : Expand (plcg::Ulnt64 a)
Expand a 64-bit unsigned integer into a 64-bit expanded representation.

plcg::UInt64 plcg: :Deflate (plcg::ExpandedUInt64 a)
Deflate an expanded 64-bit unsigned integer into the standard 64-bit form.

void plcg: :CarryUpperl6Bits (plcg::ExpandedUInt64& a)
Carry the results stored in the upper 16-bits of each of the four pieces into the next lower 16 bits.

pleg::ExpandedUInt64 plcg: : AddWith64BitMod (plcg::ExpandedUInt64 a, pleg::ExpandedUlInt64 b)
Return @ + b mod 264,

plcg::ExpandedUInt64 plcg: :MultiplyWith64BitMod (plcg::ExpandedUInt64 a,
plcg::ExpandedUInt64 b)
Return ab mod 254,

plcg::ExpandedUInt64 plcg: : IntegerPowerWith64BitMod (plcg::ExpandedUInt64 X,
plcg::ExpandedUInt64 n)
Return z™ mod 24,

void plcg: : Halve (plcg::ExpandedUInt64& a)
a:=a/2.

void plcg: : SeedSerialleg (plcg::Ulnt64 globalSeed)
Set the initial state of the serial Linear Congruential Generator.

22 Chapter 3. Core functionality

https://github.com/poulson/Elemental/tree/master/include/elemental/core/imports/plcg.hpp
https://github.com/poulson/Elemental/tree/master/external/plcg/parallel_lcg.cpp
https://github.com/poulson/Elemental/tree/master/external/plcg/parallel_lcg.cpp

Elemental Manual, Release 0.77

void plcg: : SeedParallelLcg (plcg::Ulnt32 rank, plcg::UInt32 commSize, plcg::UInt64 globalSeed)
Have our process seed a separate LCG meant for parallel computation, where the calling process has the given
rank within a communicator of the specified size.

plcg::UInt64 plcg: : SerialLeg ()
Return the current state of the serial LCG, and then advance to the next one.

plcg::UInt64 plcg: :Parallellcq ()
Return the current state of our process’s portion of the parallel LCG, and then advance to our next local state.

void plcg: :ManuallLcg (plcg::ExpandedUlInt64 a, pleg::ExpandedUInt64 ¢, plcg::ExpandedUInt64& X)
X :=aX +c mod 2%,

Sampling

Rplcg::SerialUniform()
Return a uniform sample from (0, 1] using the serial LCG.

Rplcg::ParallelUniform()
Return a uniform sample from (0, 1] using the parallel LCG.

void plcg: : SerialBoxMuller (R& X, R& Y)
Return two samples from a normal distribution with mean 0 and standard deviation of 1 using the serial LCG.

void plcg: :ParallelBoxMuller (R& X, R& Y)
Return two samples from a normal distribution with mean 0 and standard deviation 1, but using the parallel
LCG.

void plcg: : SerialGaussianRandomVariable (R& X)
Return a single sample from a normal distribution with mean 0 and standard deviation 1 using the serial LCG.

void plcg: :ParallelGaussianRandomVariable (R& X)
Return a single sample from a normal distribution with mean 0 and standard deviation 1, but using the parallel
LCG.

3.1.5 PMRRR

Rather than directly using Petschow and Bientinesi’s parallel implementation of the Multiple Relatively Robust Rep-
resentations (MRRR) algorithm, several simplified interfaces have been exposed.

The prototypes can be found in include/elemental/core/imports/pmrrr.hpp, while the implementations are in the folder
external/pmrrr/.

Data structures

type struct pmrrr: :Estimate
For returning upper bounds on the number of local and global eigenvalues with eigenvalues lying in the specified
interval, (a, b].

int numLocalEigenvalues
The upper bound on the number of eigenvalues in the specified interval that our process stores locally.

int numGlobalEigenvalues
The upper bound on the number of eigenvalues in the specified interval.

type struct pmrrr: : Info
For returning information about the computed eigenvalues.

3.1. Imported library routines 23

https://github.com/poulson/Elemental/tree/master/include/elemental/core/imports/pmrrr.hpp
https://github.com/poulson/Elemental/tree/master/external/pmrrr/

Elemental Manual, Release 0.77

int numLocalEigenvalues
The number of computed eigenvalues that our process locally stores.

int numGlobalEigenvalues
The number of computed eigenvalues.

int firstLocalEigenvalue
The index of the first eigenvalue stored locally on our process.

Compute all eigenvalues

pmrrr::Info pmrrr: :Eig (int n, double* d, double* e, double* w, mpi::Comm comm)
Compute all of the eigenvalues of the real symmetric tridiagonal matrix with diagonal d and subdiagonal e: the
eigenvalues will be stored in w and the work will be divided among the processors in comm.

pmrrr::Info pmrrr: : Eig (int n, double* d, double* e, double* w, double* Z, int Idz, mpi::Comm comm)
Same as above, but also compute the corresponding eigenvectors.

Compute eigenvalues within interval

pmrrr::Info pmrrr: : Eig (int n, double* d, double* e, double* w, mpi::Comm comm, double a, double b)
Only compute the eigenvalues lying within the interval (a, b].

pmrrr::Info pmrrr: :Eig (int n, double* d, double* e, double* w, double* Z, int Idz, mpi::Comm comm,

double a, double b)
Same as above, but also compute the corresponding eigenvectors.

pmrrr::Estimate pmrrr: : EigEstimate (int n, double* d, double* w, mpi::Comm comm, double a, double

b)
Return upper bounds on the number of local and global eigenvalues lying within the specified interval.

Compute eigenvalues in index range

pmrrr::Info pmrrr: : Eig (int n, double* d, double* e, double* w, mpi::Comm comm, int a, int b)
Only compute the eigenvalues with indices ranging from a to b, where 0 < a < b < n.

pmrrr::Info pmrrr: : Eig (int n, double* d, double* e, double* w, double* Z, int Idz, mpi::Comm comm, int a,

int b)
Same as above, but also compute the corresponding eigenvectors.

3.1.6 libFLAME

int FLA_Bsvd_v_opd_varl (intk, int mU, int mV, int nGH, int niterMax, double* d, int dInc, double* e, int
elnc, Complex<double>* G, int rsG, int csG, Complex<double>* H, int rsH,
int csH, double* U, int rsU, int csU, double* V, int rsV, int ¢sV, int nb)

int FLA_Bsvd_v_opd_varl (int k, int mU, int mV, int nGH, int nlterMax, double* d, int dInc, double* e,
int elnc, Complex<double>* G, int rsG, int ¢sG, Complex<double>* H, int
rsH, int csH, Complex<double>* U, int rsU, int csU, Complex<double>* V,
int sV, int ¢sV, int nb)

Optional high-performance implementations of the bidiagonal QR algorithm. This can lead to substantial improve-
ments in Elemental’s distributed-memory SVD on supported architectures (as of now, modern Intel architectures).

24 Chapter 3. Core functionality

Elemental Manual, Release 0.77

3.2 Environment

This section describes the routines and data structures which help set up Elemental’s programming environment: it
discusses initialization of Elemental, call stack manipulation, a custom data structure for complex data, many routines
for manipulating real and complex data, a litany of custom enums, and a few useful routines for simplifying index
calculations.

3.2.1 Set up and clean up

void Initialize (int& argc, char**& argv)
Initializes Elemental and (if necessary) MPI. The usage is very similar to MPI_Init, but the argc and argv can
be directly passed in.

#include "elemental.hpp"

int
main(int argc, charx argvl[])
{

elem::Initialize(argc, argv);
V2R

elem: :Finalize();
return 0O;

}

void Finalize ()
Frees all resources allocated by Elemental and (if necessary) MPL.

bool Initialized ()
Returns whether or not Elemental is currently initialized.

3.2.2 Blocksize manipulation

int Blocksize ()
Return the currently chosen algorithmic blocksize. The optimal value depends on the problem size, algorithm,
and architecture; the default value is 128.

void SetBlocksize (int blocksize)
Change the algorithmic blocksize to the specified value.

void PushBlocksizeStack (int blocksize)
It is frequently useful to temporarily change the algorithmic blocksize, so rather than having to manually store
and reset the current state, one can simply push a new value onto a stack (and later pop the stack to reset the
value).

void PopBlocksizeStack ()
Pops the stack of blocksizes. See above.

3.2.3 Default process grid

Grid& DefaultGrid ()
Return a process grid built over mpi : : COMM_WORLD. This is typically used as a means of allowing instances

3.2. Environment 25

Elemental Manual, Release 0.77

of the DistMatrix<T,MC, MR> class to be constructed without having to manually specify a process grid,
e.g.,

// Build a 10 x 10 distributed matrix over mpi::COMM_WORLD
elem: :DistMatrix<T,MC,MR> A(10, 10);

3.2.4 Call stack manipulation

Note: The following call stack manipulation routines are only available in non-release builds (i.e., PureDebug and
HybridDebug) and are meant to allow for the call stack to be printed (via DumpCallStack ()) when an exception
is caught.

void PushCallStack (std::string s)
Push the given routine name onto the call stack.

void PopCallStack ()
Remove the routine name at the top of the call stack.

void DumpCallStack ()
Print (and empty) the contents of the call stack.

3.2.5 Custom exceptions

type class SingularMatrixException
An extension of std: : runt ime_error which is meant to be thrown when a singular matrix is unexpectedly
encountered.

SingularMatrixException (const char* msg="Matrix was singular”)
Builds an instance of the exception which allows one to optionally specify the error message.

throw elem::SingularMatrixException();
type class NonHPDMatrixException

An extension of std: : runt ime_error which is meant to be thrown when a non positive-definite Hermitian
matrix is unexpectedly encountered (e.g., during Cholesky factorization).

NonHPDMatrixException (const char* msg="Matrix was not HPD”)
Builds an instance of the exception which allows one to optionally specify the error message.

throw elem: :NonHPDMatrixException () ;
type class NonHPSDMatrixException

An extension of std: : runtime_error which is meant to be thrown when a non positive semi-definite Her-
mitian matrix is unexpectedly encountered (e.g., during computation of the square root of a Hermitian matrix).

NonHPSDMatrixException (const char* msg="Matrix was not HPSD")
Builds an instance of the exception which allows one to optionally specify the error message.

throw elem: :NonHPSDMatrixException () ;

3.2.6 Complex data

type struct Complex<R>

26 Chapter 3. Core functionality

Elemental Manual, Release 0.77

type R BaseType

R real
The real part of the complex number

R imag
The imaginary part of the complex number

Complex ()
This default constructor is a no-op.

Complex (R a)
Construction from a real value.

Complex (Ra,R D)
Construction from a complex value.

Complex (const std::complex<R>& alpha)

Construction from an std: : complex<R> instance.

Complex<R>& operator= (const R& alpha)
Assignment from a real value.

Complex<R>& operator+= (const R& alpha)
Increment with a real value.

Complex<R>& operator—= (const R& alpha)
Decrement with a real value.

Complex<R>& operator= (const R& alpha)
Scale with a real value.

Complex<R>& operator/= (const R& alpha)
Divide with a real value.

Complex<R>& operator= (const Complex<R>& alpha)

Assignment from a complex value.

Complex<R>& operator+= (const Complex<R>& alpha)

Increment with a complex value.

Complex<R>& operator—= (const Complex<R>& alpha)

Decrement with a complex value.

Complex<R>& operatorx= (const Complex<R>& alpha)

Scale with a complex value.

Complex<R>& operator/= (const Complex<R>& alpha)

Divide with a complex value.

type struct Base<F>

type type

The underlying real datatype of the (potentially complex) datatype F. For example, typename
Base<Complex<double> >::type and typename Base<double>::type are both equiva-
lent to double. This is often extremely useful in implementing routines which are templated over real

and complex datatypes but still make use of real datatypes.

(complex,complex) addition.

Complex<R> operator+ (const Complex<R>& alpha, const R& beta)

(complex,real) addition.

Complex<R> operator+ (const Complex<R>& alpha, const Complex<R>& beta)

3.2. Environment

27

Elemental Manual, Release 0.77

Complex<R> operator+ (const R& alpha, const Complex<R>& beta)
(real,complex) addition.

Complex<R> operator- (const Complex<R>& alpha, const Complex<R>& beta)
(complex,complex) subtraction.

Complex<R> operator— (const Complex<R>& alpha, R& beta)
(complex,real) subtraction.

Complex<R> operator- (const R& alpha, const Complex<R>& beta)
(real,complex) subtraction.

Complex<R> operator#* (const Complex<R>& alpha, const Complex<R>& beta)
(complex,complex) multiplication.

Complex<R> operatorx* (const Complex<R>& alpha, R& beta)
(complex,real) multiplication.

Complex<R> operator#* (const R& alpha, const Complex<R>& beta)
(real,complex) multiplication.

Complex<R> operator/ (const Complex<R>& alpha, const Complex<R>& beta)
(complex,complex) division.

Complex<R> operator/ (const Complex<R>& alpha, const R& beta)
(complex,real) division.

Complex<R> operator/ (const R& alpha, const Complex<R>& beta)
(real,complex) division.

Complex<R> operator+ (const Complex<R>& alpha)
Returns alpha.

Complex<R> operator—- (const Complex<R>& alpha)
Returns negative alpha.

bool operator== (const Complex<R>& alpha, const Complex<R>& beta)
(complex,complex) equality check.

bool operator== (const Complex<R>& alpha, const R& beta)
(complex,real) equality check.

bool operator== (const R& alpha, const Complex<R>& beta)
(real,complex) equality check.

bool operator!= (const Complex<R>& alpha, const Complex<R>& beta)
(complex,complex) inequality check.

bool operator!= (const Complex<R>& alpha, const R& beta)
(complex,real) inequality check.

bool operator!= (const R& alpha, const Complex<R>& beta)
(real,complex) inequality check.

std::ostream& operator<< (std::ostream& os, Complex<R> alpha)
Pretty prints alpha in the form a+bi.

type scomplex
typedef Complex<float> scomplex;

type dcomplex
typedef Complex<double> dcomplex;

28 Chapter 3. Core functionality

Elemental Manual, Release 0.77

3.2.7 Scalar manipulation

typename Base<F>::type Abs (const F& alpha)
Return the absolute value of the real or complex variable a.

F FastAbs (const F& alpha)
Return a cheaper norm of the real or complex a:

|@lgast = [R(@)] + [Z(a)]

F RealPart (const F& alpha)
Return the real part of the real or complex variable .

F ImagPart (const F& alpha)
Return the imaginary part of the real or complex variable a.

F Conj (const F& alpha)
Return the complex conjugate of the real or complex variable a.

F sqrt (const F& alpha)
Returns the square root or the real or complex variable a.

F Cos (const F& alpha)
Returns the cosine of the real or complex variable .

F Sin (const F& alpha)
Returns the sine of the real or complex variable a.

F Tan (const F& alpha)
Returns the tangent of the real or complex variable a.

F Ccosh (const F& alpha)
Returns the hyperbolic cosine of the real or complex variable .

F Sinh (const F& alpha)
Returns the hyperbolic sine of the real or complex variable o.

typename Base<F>::type Arg (const F& alpha)
Returns the argument of the real or complex variable .

Complex<R> Polar (const R& r, const R& theta=0)
Returns the complex variable constructed from the polar coordinates (7, 6).

F Exp (const F& alpha)
Returns the exponential of the real or complex variable a.

F Pow (const F& alpha, const F& beta)
Returns o for real or complex « and j3.

F Log (const F& alpha)
Returns the logarithm of the real or complex variable a.

3.2.8 Other typedefs and enums
type byte
typedef unsigned char byte;

type enum Conjugation
An enum which can be set to either CONJUGATED or UNCONJUGATED.

3.2. Environment

29

Elemental Manual, Release 0.77

type enum Distribution
An enum for specifying the distribution of a row or column of a distributed matrix:

*MC: Column of a standard matrix distribution
*MD: Diagonal of a standard matrix distribution
*MR: Row of a standard matrix distribution
*vC: Column-major vector distribution

*VR: Row-major vector distribution

*STAR: Redundantly stored

type enum ForwardOrBackward
An enum for specifying FORWARD or BACKWARD.

type enum GridOrder
An enum for specifying either a ROW_MAJOR or COLUMN_MAJOR ordering; it is used to tune one
of the algorithms in HermitianTridiag () which requires building a smaller square process grid
from a rectangular process grid, as the ordering of the processes can greatly impact performance. See
SetHermitianTridiagGridOrder ().

type enum LeftOrRight
An enum for specifying LEFT or RIGHT.

type enum NormType
An enum that can be set to either

*ONE_NORM:

m—1
A = max Az = max Y Ja,|

=1
Iz —

*INFINITY_NORM:

n—1
Alloo = nax | Az|lc = mZT&XZ |ovi |

Z|| oo = =0
*MAX_NORM:

| Allmax = max |ai
*NUCLEAR_NORM:

min(m,n)
A=) ai(4)
=0

*FROBENIUS_NORM:

m—1n—1 min(m,n)

|AllF = 2=) ai(A)
i=0 j=0 =0

*TWO_NORM:

30 Chapter 3. Core functionality

Elemental Manual, Release 0.77

type enum Orientation
An enum for specifying whether a matrix, say A, should be implicitly treated as A (NORMAL), A (ADJOINT),
or AT (TRANSPOSE).

type enum UnitOrNonUnit
An enum for specifying either UNIT or NON_UNIT; typically used for stating whether or not a triangular
matrix’s diagonal is explicitly stored (NON_UNIT) or is implicitly unit-diagonal (UNIT).

type enum UpperOrLower
An enum for specifying LOWER or UPPER (triangular).

type enum VerticalOrHorizontal
An enum for specifying VERTICAL or HORIZONTAL.

3.2.9 Indexing utilities

Int Shift (Int rank, Int firstRank, Int numProcs)
Given a element-wise cyclic distribution over numProcs processes, where the first entry is owned by the process
with rank firstRank, this routine returns the first entry owned by the process with rank rank.

Int LocalLength (Int n, Int shift, Int numProcs)
Given a vector with n entries distributed over numProcs processes with shift as defined above, this routine
returns the number of entries of the vector which are owned by this process.

Int LocalLength (Int n, Int rank, Int firstRank, Int numProcs)
Given a vector with n entries distributed over numProcs processes, with the first entry owned by process
firstRank, this routine returns the number of entries locally owned by the process with rank rank.

3.3 The Matrix class

This is the basic building block of the library: its purpose it to provide convenient mechanisms for performing basic
matrix manipulation operations, such as setting and querying individual matrix entries, without giving up compatibility
with interfaces such as BLAS and LAPACK, which assume column-major storage.

An example of generating an m X n matrix of real double-precision numbers where the (¢, j) entry is equal to i — j
would be:

#include "elemental.hpp"
using namespace elem;

Matrix<double> A(m, n);
for(int j=0; j<n; ++3j)
for(int i=0; i<m; ++1i)
A.Set(i, j, (double)i-j);

The underlying data storage is simply a contiguous buffer that stores entries in a column-major fashion with an arbitrary
leading dimension. For modifiable instances of the Mat rix<T> class, the routine Matrix<T>: :Buf fer returns a
pointer to the underlying buffer, while Mat rix<T>: : LDim returns the leading dimension; these two routines could
be used to directly perform the equivalent of the first code sample as follows:

#include "elemental.hpp"
using namespace elem;

Matrix<double> A(m, n);
doublex buffer = A.Buffer();
const int 1dim = A.LDim();

3.3. The Matrix class 31

Elemental Manual, Release 0.77

for(int 3=0; j<n; ++3j)
for(int i=0; i<m; ++1i)
buffer[i+j*x1ldim] = (double)i-j;

For constant instances of the Matrix<T> class, a const pointer to the underlying data can similarly be re-
turned with a call to Matrix<T>::LockedBuffer (). In addition, a (const) pointer to the place in the
(const) buffer where entry (i, ;) resides can be easily retrieved with a call to Matrix<T>::Buffer () or
Matrix<T>::LockedBuffer ().

It is also important to be able to create matrices which are simply views of existing (sub)matrices. For example, if
A is a 10 x 10 matrix of complex doubles, then a matrix Apgp can easily be created to view the bottom-right 6 x 7
submatrix using

#include "elemental.hpp"

Matrix<Complex<double> > ABR;
ABR.View(A, 4, 3, 6, 7);

since the bottom-right 6 x 7 submatrix beings at index (4, 3). In general, to view the M x N submatrix starting at
entry (4,7), one would call ABR.View(A, 1, Jj, M, N);.

type class Mat rix<T>
The most general case, where the underlying datatype 7 is only assumed to be a ring; that is, it supports
multiplication and addition and has the appropriate identities.

Constructors

Matrix ()
This simply creates a default 0 x 0 matrix with a leading dimension of one (BLAS and LAPACK require
positive leading dimensions).

Matrix (int height, int width)
A height X width matrix is created with an unspecified leading dimension (though it is currently imple-
mented as std: :max (height, 1)).

Matrix (int height, int width, int ldim)
A height x width matrix is created with a leading dimension equal to /dim (which must be greater than or
equal std: :min (height, 1)).

Matrix (int height, int width, const T* buffer, int Idim)
A matrix is built around column-major constant buffer const Tx buffer with the specified dimen-
sions. The memory pointed to by buffer should not be freed until after the Mat rix<T> object is destruc-
ted.

Matrix (int height, int width, T* buffer, int ldim)
A matrix is built around the column-major modifiable buffer T+ buf fer with the specified dimensions.
The memory pointed to by buffer should not be freed until after the Mat rix<T> object is destructed.

Matrix (const Matrix<T>& A)
A copy (not a view) of the matrix A is built.

Basic information

int Height () const
Return the height of the matrix.

32 Chapter 3. Core functionality

Elemental Manual, Release 0.77

int Width () const
Return the width of the matrix.

int DiagonalLength (int offset=0) const
Return the length of the specified diagonal of the matrix: an offset of 0 refers to the main diagonal, an
offset of 1 refers to the superdiagonal, an offset of —1 refers to the subdiagonal, etc.

int LDim () const
Return the leading dimension of the underlying buffer.

int MemorySize () const
Return the number of entries of type T that this Mat rix<T> instance has allocated space for.

T* Buffer ()
Return a pointer to the underlying buffer.

const T* LockedBuffer () const
Return a pointer to the underlying buffer that does not allow for modifying the data.

T* Buffer (int i, intj)
Return a pointer to the portion of the buffer that holds entry (4, 7).

const T* LockedBuffer (inti, intj) const
Return a pointer to the portion of the buffer that holds entry (4, j) that does not allow for modifying the
data.

/0

void Print (const std::string msg="") const

The matrix is printed to standard output (std: : cout) with the preceding message msg (which is empty if
unspecified).

u(()

void Print (std::ostream& os, const std::string msg= const
The matrix is printed to the output stream os with the preceding message msg (which is empty if unspeci-
fied).

Entry manipulation

T Get (int i, intj) const
Return entry (4, j).

void Set (int i, int j, T alpha)
Set entry (i,) to a.

void Update (int i, int j, T alpha)
Add « to entry (i, j).

void GetDiagonal (Matrix<T>& d, int offset=0) const
Modify d into a column-vector containing the entries lying on the offset diagonal of our matrix (for in-
stance, the main diagonal has offset 0, the subdiagonal has offset —1, and the superdiagonal has offset
+1).

void SetDiagonal (const Matrix<T>& d, int offset=0)
Set the entries in the offset diagonal entries from the contents of the column-vector d.

void UpdateDiagonal (const Matrix<T>& d, int offset=0)
Add the contents of d onto the entries in the offset diagonal.

3.3. The Matrix class 33

Elemental Manual, Release 0.77

Note: Many of the following routines are only valid for complex datatypes.

typename Base<T>::type GetRealPart (int i, intj) const
Return the real part of entry (4, j).

typename Base<T>::type Get ImagPart (int i, intj) const
Return the imaginary part of entry (4, j).

void SetRealPart (int i, int j, typename Base<T>::type alpha)
Set the real part of entry (4, j) to a.

void Set ImagPart (int i, int j, typename Base<T>::type alpha)
Set the imaginary part of entry (¢, j) to a.

void UpdateRealPart (int i, int j, typename Base<T>::type alpha)
Add « to the real part of entry (i, 7).

void UpdateImagPart (int i, int j, typename Base<T>::type alpha)
Add « to the imaginary part of entry (i, 7).

void GetRealPartOfDiagonal (Matrix<typename Base<T>::itype>& d, int offset=0) const
Modify d into a column-vector containing the real parts of the entries in the offset diagonal.

void Get ImagPartOfDiagonal (Matrix<typename Base<T>::type>& d, int offset=0) const
Modify d into a column-vector containing the imaginary parts of the entries in the offser diagonal.

void SetRealPartOfDiagonal (const Matrix<typename Base<T>::type>& d, int offset=0)
Set the real parts of the entries in the offser diagonal from the contents of the column-vector d.

void SetImagPartOfDiagonal (const Matrix<typename Base<T>::type>& d, int offset=0)
Set the imaginary parts of the entries in the offset diagonal from the column-vector d.

void UpdateRealPartOfDiagonal (const Matrix<typename Base<T>::type>& d, int offset=0)
Add the contents of the column-vector d onto the real parts of the entries in the offset diagonal.

void UpdateImagPartOfDiagonal (const Matrix<typename Base<T>::type>& d, int offset=0)
Add the contents of the column-vector d onto the imaginary parts of the entries in the offset diagonal.

Views

bool Viewing () const
Return whether or not this matrix is currently viewing another matrix.

bool LockedView () const
Return whether or not we can modify the data we are viewing.

void View (int height, int width, T* buffer, int Idim)
Reconfigure the matrix around the specified buffer.

void View (Matrix<T>& A)
Reconfigure the matrix around the modifiable buffer underlying A.

void LockedView (int height, int width, const T* buffer, int ldim)
Reconfigure the matrix around the specified unmodifiable buffer.

void LockedView (const Matrix<T>& A)
Reconfigure the matrix around the unmodifiable buffer underlying A.

34 Chapter 3. Core functionality

Elemental Manual, Release 0.77

void View (Matrix<T>& A, int i, int j, int height, int width)
Reconfigure the matrix around the modifiable buffer underlying A, but only the portion that holds the
height X width submatrix starting at entry (i,j)

void LockedView (const Matrix<T>& A, int i, int j, int height, int width)
Same as above, but the resulting matrix data is unmodifiable.

void Viewlx2 (Matrix<T>& AL, Matrix<T>& AR)
Reconfigure the matrix to use the modifiable buffer that spans the matrices Ay, and Ag such that it behaves
like [A Ag] (this routine requires that Ag‘s buffer begins at the same memory location that an extra
column of A;, would have).

void LockedViewlx2 (const Matrix<T>& AL, const Matrix<T>& AR)
Same as above, but the resulting matrix data is unmodifiable.

void View2x1 (Matrix<T>& AT, Matrix<T>& AB)
Reconfigure the matrix to use the modifiable buffer that spans the matrices A7 and A g such that it behaves
like [A7; Apg] (this routine requires that A g ‘s buffer begins at the same memory location that an extra row
of At would have).

void LockedView2x1 (const Matrix<T>& AT, const Matrix<T>& AB)
Same as above, but the resulting matrix data is unmodifiable.

void View2x2 (Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& ABL, Matrix<T>& ABR)
Reconfigure the matrix to behave like [Arp Arg; AprApr] (the buffer requirements are similar to
Matrix<T>::Viewlx2 () and Matrix<T>::View2xl1 ()).

void LockedView2x2 (const Matrix<T>& ATL, const Matrix<T>& ATR, const Matrix<T>& ABL, const

Matrix<T>& ABR)
Same as above, but the resulting matrix data is unmodifiable.

Utilities
const Matrix<T>& operator= (const Matrix<T>& A)

Create a copy of matrix A.

void Empty ()
Sets the matrix to 0 x 0 and frees the underlying buffer.

void ResizeTo (int height, int width)
Reconfigures the matrix to be height x width.

void ResizeTo (int height, int width, int Idim)
Reconfigures the matrix to be height x width, but with leading dimension equal to /dim (which must be
greater than or equal to std: :min (height, 1)).

3.3.1 Special cases used in Elemental
This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of Matrix<T>.

type class Matrix<R>
Used to denote that the underlying datatype R is real.

type class Mat rix<Complex<R>>
Used to denote that the underlying datatype Complex<R> is complex with base type R.

type class Mat rix<F>
Used to denote that the underlying datatype F is a field.

3.3. The Matrix class 35

Elemental Manual, Release 0.77

3.4 The Grid class

This class is responsible for converting MPI communicators into a two-dimensional process grid meant for distributing
matrices (ala the soon-to-be-discussed DistMatrix<T, U, V> class).

type class Grid

Grid (mpi::Comm comm=mpi::COMM_WORLD)
Construct a process grid over the specified communicator and let Elemental decide the process grid dimen-
sions. If no communicator is specified, mpi::COMM_WORLD is used.

Grid (mpi::Comm comm, int height, int width)
Construct a process grid over the specified communicator with the given dimensions. Note that the size of
the communicator should be height x width.

Simple interface (simpler version of distribution-based interface)

intRow () const
Return the index of the row of the process grid that this process lies in.

intCol () const
Return the index of the column of the process grid that this process lies in.

int Rank () const
Return our process’s rank in the grid. The result is equivalent to the VCRank () function described below,
but this interface is provided for simplicity.

int Height () const
Return the height of the process grid.

intWidth () const
Return the width of the process grid.

int Size () const
Return the number of active processes in the process grid. This number is equal to Height () X
Width ().

mpi::Comm ColComm () const
Return the communicator for this process’s column of the process grid.

mpi::Comm RowComm () const
Return the communicator for this process’s row of the process grid.

mpi::Comm Comm () const
Return the communicator for the process grid.

Distribution-based interface

int MCRank () const
Return our process’s rank in the MC (Matrix Column) communicator. This corresponds to our row in the

process grid.

int MRRank () const
Return our process’s rank in the MR (Matrix Row) communicator. This corresponds to our column in the
process grid.

36

Chapter 3. Core functionality

Elemental Manual, Release 0.77

int VCRank () const
Return our process’s rank in the VC (Vector Column) communicator. This corresponds to our rank in a
column-major ordering of the process grid.

int VRRank () const
Return our process’s rank in the VR (Vector Row) communicator. This corresponds to our rank in a row-
major ordering of the process grid.

intMCSize () const
Return the size of the MC (Matrix Column) communicator, which is equivalent to the height of the process
grid.

int MRSize () const
Return the size of the MR (Matrix Row) communicator, which is equivalent to the width of the process
grid.

int v€sSize () const
Return the size of the VC (Vector Column) communicator, which is equivalent to the size of the process
grid.

int VRSize () const
Return the size of the VR (Vector Row) communicator, which is equivalent to the size of the process grid.

mpi::Comm MCComm () const
Return the MC (Matrix Column) communicator. This consists of the set of processes within our column of
the grid (ordered top-to-bottom).

mpi::Comm MRComm () const
Return the MR (Matrix Row) communicator. This consists of the set of processes within our row of the
grid (ordered left-to-right).

mpi::Comm VCComm () const
Return the VC (Vector Column) communicator. This consists of the entire set of processes in the grid, but
ordered in a column-major fashion.

mpi::Comm VRComm () const
Return the VR (Vector Row) communicator. This consists of the entire set of processes in the grid, but
ordered in a row-major fashion.

Advanced routines

Grid (mpi::Comm viewingComm, mpi::Group owningGroup)
Construct a process grid where only a subset of the participating processes should actively participate in
the process grid. In particular, viewingComm should consist of the set of all processes constructing this
Gridinstance, and owningGroup should define a subset of the processes in viewingComm. Elemental then
chooses the grid dimensions. Most users should not call this routine, as this type of grid is only supported
for a few DistMatrix types.

Grid (mpi::Comm viewingComm, mpi::Group owningGroup, int height, int width)
This is the same as the previous routine, but the process grid dimensions are explicitly specified, and it is
required that height x width equals the size of owningGroup. Most users should not call this routine, as it
is only supported for a few DistMatrix types.

int GCD () const
Return the greatest common denominator of the height and width of the process grid.

int LCM() const
Return the lowest common multiple of the height and width of the process grid.

3.4. The Grid class 37

Elemental Manual, Release 0.77

bool InGrid () const
Return whether or not our process is actively participating in the process grid.

int OwningRank () const
Return our process’s rank within the set of processes that are actively participating in the grid.

int ViewingRank () const
Return our process’s rank within the entire set of processes that constructed this grid.

int VCToViewingMap () const
Map the given column-major grid rank to the rank in the (potentially) larger set of processes which con-
structed the grid.

mpi::Group OwningGroup () const
Return the group of processes which is actively participating in the grid.

mpi::Comm OwningComm () const
Return the communicator for the set of processes actively participating in the grid. Note that this can only
be valid if the calling process is an active member of the grid!

mpi::Comm ViewingComm () const
Return the communicator for the entire set of processes which constructed the grid.

int DiagPath () const
Return our unique diagonal index in an tesselation of the process grid.

int DiagPath (int vectorColRank) const
Return the unique diagonal index of the process with the given column-major vector rank in an tesselation
of the process grid.

int DiagPathRank () const
Return our process’s rank out of the set of processes lying in our diagonal of the tesselation of the process
grid.

int DiagPathRank (int vectorColRank) const
Return the rank of the given process out of the set of processes in its diagonal of the tesselation of the
process grid.

Grid comparison functions

bool operator== (const Grid& A, const Grid& B)
Returns whether or not !A! and !B! are the same process grid.

bool operator!= (const Grid& A, const Grid& B)
Returns whether or not !A! and !B! are different process grids.

3.5 The DistMatrix class

The DistMatrix<T, U, V> class is meant to provide a distributed-memory analogue of the Matrix<T> class.
Similarly to PLAPACK, roughly ten different matrix distributions are provided and it is trivial (in the programmability
sense) to redistribute from one to another: in PLAPACK, one would simply call PLA_Copy, whereas, in Elemental,
it is handled through overloading the = operator.

Since it is crucial to know not only how many processes to distribute the data over, but which processes, and in what
manner they should be decomposed into a logical two-dimensional grid, an instance of the Grid class must be passed
into the constructor of the DistMatrix<T, U, V> class.

38 Chapter 3. Core functionality

Elemental Manual, Release 0.77

Note: Since the DistMatrix<T,U,V> class makes use of MPI for message passing, custom inter-
faces must be written for nonstandard datatypes. As of now, the following datatypes are fully supported for
DistMatrix<T,U,V>: int, float, double, Complex<float>, and Complex<double>.

3.5.1 AbstractDistMatrix

This abstract class defines the list of member functions that are guaranteed to be available for all matrix distributions.

type class AbstractDistMatrix<T>
The most general case, where the underlying datatype T is only assumed to be a ring; that is, it supports
multiplication and addition and has the appropriate identities.

Basic information

int Height () const
Return the height of the matrix.

int Width () const
Return the width of the matrix.

int LocalHeight () const
Return the local height of the matrix.

int LocalWidth () const
Return the local width of the matrix.

int LocalLDim () const
Return the local leading dimension of the matrix.

size_tAllocatedMemory () const
Return the number of entries of type 7' that we have locally allocated space for.

const elem::Grid& Grid () const
Return the grid that this distributed matrix is distributed over.

T* LocalBuffer (int iLocal=0, int jLocal=0)
Return a pointer to the portion of the local buffer that stores entry (iLocal,jLocal).

const T* LockedLocalBuffer (int iLocal=0, int jLocal=0) const
Return a pointer to the portion of the local buffer that stores entry (iLocal,jLocal), but do not allow for the
data to be modified through the returned pointer.

Matrix<T>& LocalMatrix ()
Return a reference to the local matrix.

const Matrix<T>& LockedLocalMatrix () const
Return an unmodifiable reference to the local matrix.

/0

void Print (const std::string msg="") const
Print the distributed matrix to standard output (std: : cout).

u(()

void Print (std::ostream& os, const std::string msg= const

Print the distributed matrix to the output stream os.

3.5. The DistMatrix class 39

Elemental Manual, Release 0.77

. u)

void Write (const std::string filename, const std::string msg= const

Print the distributed matrix to the file named filename.

Distribution details

void FreeAlignments ()
Free all alignment constaints.

bool ConstrainedColAlignment () const
Return whether or not the column alignment is constrained.

bool ConstrainedRowAlignment () const
Return whether or not the row alignment is constrained.

int ColAlignment () const
Return the alignment of the columns of the matrix.

int RowAlignment () const
Return the alignment of the rows of the matrix.

int ColShift () const
Return the first global row that our process owns.

int RowShift () const
Return the first global column that our process owns.

int ColStride () const
Return the number of rows between locally owned entries.

int RowStride () const
Return the number of columns between locally owned entries.

Entry manipulation

T Get (int i, intj) const
Return the (i,j) entry of the global matrix. This operation is collective.

void Set (int i, int j, T alpha)
Set the (i,j) entry of the global matrix to a.. This operation is collective.

void Update (int i, int j, T alpha)
Add « to the (i,j) entry of the global matrix. This operation is collective.

T GetLocal (intilLocal, int jLocal) const
Return the (iLocal,jLocal) entry of our local matrix.

void SetLocal (int iLocal, int jLocal, T alpha)
Set the (iLocal,jLocal) entry of our local matrix to o.

void UpdateLocal (int iLoca, int jLocal, T alpha)
Add « to the (iLocal,jLocal) entry of our local matrix.

Note: Many of the following routines are only valid for complex datatypes.

typename Base<T>::type GetRealPart (inti, intj) const
Return the real part of the (i,j) entry of the global matrix. This operation is collective.

40

Chapter 3. Core functionality

Elemental Manual, Release 0.77

typename Base<T>::type Get ImagPart (int i, intj) const
Return the imaginary part of the (i,j) entry of the global matrix. This operation is collective.

void SetRealPart (int i, intj, typename Base<T>::type alpha)
Set the real part of the (i,j) entry of the global matrix to a.

void SetImagPart (int i, intj, typename Base<T>::type alpha)
Set the imaginary part of the (i,j) entry of the global matrix to a.

void UpdateRealPart (int i, int j, typename Base<T>::type alpha)
Add « to the real part of the (i,j) entry of the global matrix.

void UpdateImagPart (int i, int j, typename Base<T>::type alpha)
Add « to the imaginary part of the (i,j) entry of the global matrix.

typename Base<T>::type GetRealPartLocal (int iLocal, int jLocal) const
Return the real part of the (iLocal,jLocal) entry of our local matrix.

typename Base<T>::type GetLocalImagPart (int iLocal, int jLocal) const
Return the imaginary part of the (iLocal,jLocal) entry of our local matrix.

void SetLocalRealPart (int iLocal, int jLocal, typename Base<T>::type alpha)
Set the real part of the (iLocal,jLocal) entry of our local matrix.

void SetLocalImagPart (int iLocal, int jLocal, typename Base<T>::type alpha)
Set the imaginary part of the (iLocal,jLocal) entry of our local matrix.

void UpdateRealPartLocal (int iLocal, int jLocal, typename Base<T>::type alpha)
Add « to the real part of the (iLocal,jLocal) entry of our local matrix.

void UpdateLocalImagPart (intiLocal, int jLocal, typename Base<T>::type alpha)
Add « to the imaginary part of the (iLocal,jLocal) entry of our local matrix.

Viewing
bool Viewing () const

Return whether or not this matrix is viewing another.

bool LockedView () const
Return whether or not this matrix is viewing another in a manner that does not allow for modifying the
viewed data.

Utilities
void Empty ()

Resize the distributed matrix so that it is 0 x 0 and free all allocated storage.

void ResizeTo (int height, int width)
Reconfigure the matrix so that it is height x width.

void SetGrid (const elem::Grid& grid)
Clear the distributed matrix’s contents and reconfigure for the new process grid.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of AbstractDistMatrix<T>.

3.5. The DistMatrix class 41

Elemental Manual, Release 0.77

type class AbstractDistMatrix<R>
Used to denote that the underlying datatype R is real.

type class AbstractDistMatrix<Complex<R>>
Used to denote that the underlying datatype Complex<R> is complex with base type R.

type class AbstractDistMatrix<F>
Used to denote that the underlying datatype F is a field.

3.5.2 DistMatrix

type class DistMatrix<T, U, V>
This templated class for manipulating distributed matrices is only defined for the following choices of the col-
umn and row Distribution‘s, U and V (T is a ring in this case).

Special cases used in Elemental
This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, U, V>.

type class DistMatrix<double, U, V>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, U, V>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, U, V>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, U, V>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, U, V>
The underlying datatype F is a field.

3.5.3 [MC,MR]

This is by far the most important matrix distribution in Elemental, as the vast majority of parallel routines expect the
input to be in this form. For a 7 x 7 matrix distributed over a 2 x 3 process grid, individual entries would be owned by
the following processes (assuming the column and row alignments are both 0):

02 40 2 40
1 35 13 51
02 40 2 40
135 13 51
02402 40
13513 51
0240 2 40

42 Chapter 3. Core functionality

Elemental Manual, Release 0.77

Similarly, if the column alignment is kept at O and the row alignment is changed to 2 (meaning that the third process
column owns the first column of the matrix), the individual entries would be owned as follows:

SO R O R O
O, O OO
DWW WwWN
S O R O R O
O O, OO
W W WwN
S O O O

It should also be noted that this is the default distribution format for the DistMatrix<T, U, V> class, as
DistMatrix<T> defaultsto DistMatrix<T,MC, MR>.

type class DistMatrix<T>

type class DistMatrix<T, MC, MR>
The most general case, where the underlying datatype T is only assumed to be a ring.

Constructors

DistMatrix(const elem: :Grid& grid=DefaultGrid())
Create a 0 x 0 distributed matrix over the specified grid.

DistMatrix(int height, int width, const elem::Gridé& grid=DefaultGrid())
Create a height x width distributed matrix over the specified grid.

DistMatrix (int height, int width, bool constrainedColAlignment, bool constrainedRowAlignment, int

colAlignment, int rowAlignment, const elem::Grid& grid)
Create a height x width distributed matrix distributed over the specified process grid, but with the top-

left entry owned by the colAlignment process row and the rowAlignment process column. Each of these
alignments may be constrained to remain constant when redistributing data into this DistMatrix<T>.

DistMatrix (int height, int width, bool constrainedColAlignment, bool constrainedRowAlignment, int

colAlignment, int rowAlignment, int Idim, const elem::Grid& grid)
Same as above, but the local leading dimension is also specified.

DistMatrix (int height, int width, int colAlignment, int rowAlignment, const T* buffer, int Idim, const
elem::Grid& grid)
View a constant distributed matrix’s buffer; the buffer must correspond to the local portion of an elemental
distributed matrix with the specified row and column alignments and leading dimension, Idim.

DistMatrix (int height, int width, int colAlignment, int rowAlignment, T* buffer, int ldim, const
elem::Grid& grid)
Same as above, but the contents of the matrix are modifiable.
DistMatrix (const DistMatrix<T, U, V>& A)
Build a copy of the distributed matrix A, but force it to be in the [MC, MR] distribution.

Redistribution

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, MC, MR>& A)
If this matrix can be properly aligned with A, then perform a local copy, otherwise perform an
mpi::SendRecv () permutation first.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, MC, STAR>& A)
Perform a local (filtered) copy to form an [MC, MR] distribution and then, if necessary, fix the alignment
of the MC distribution via an mp1i : : SendRecv () within process columns.

3.5. The DistMatrix class 43

Elemental Manual, Release 0.77

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, MR>& A)
Perform a local (filtered) copy to form an [MC, MR] distribution and then, if necessary, fix the alignment
of the MR distribution via an mp1i : : SendRecv () within process rows.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, MD, STAR>& A)
Since the [MD, STAR] distribution is defined such that its columns are distributed like a diagonal of an
[MC, MR] distributed matrix, this operation is not very common.

Note: This redistribution routine is not yet implemented.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, MD>& A)

Note: This redistribution routine is not yet implemented.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, MR, MC>& A)
This routine serves to transpose the distribution of A[MR,MC] into the standard matrix distribution,
A [MC,MR]. This redistribution is implemented with four different approaches: one for matrices that are
taller than they are wide, one for matrices that are wider than they are tall, one for column vectors, and one
for row vectors.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, MR, STAR>& A)
This is similar to the above routine, but with each row of A being undistributed, and only one approach is
needed: A[M¢, Mg] < A[Ve, *| < A[Vg,*] + A[Mg,*].

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, MC>& A)

This routine is dual to the A[M¢c, MR] < A[Mg, %] redistribution and is accomplished through the se-
quence: A[M¢, Mg] A[x, Vg] < Alx, V| « A[x, M¢].

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, VC, STAR>& A)
Performanmpi: :A11ToAll () within process rows in order to redistribute to the [MC, MR] distribution
(anmpi: : SendRecv () within process columns may be required for alignment).

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, VC>& A)
Accomplished through the sequence A[M¢c, Mg <+ Al[x, Vi] + A[x, V.

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, VR, STAR>& A)
Accomplished through the sequence A[M¢, Mg] + A[Ve,] < A[Vg,*].

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, VR>& A)
Perform anmpi: :A11ToAll () within process columns in order to redistribute to the [MC, MR] distri-
bution (an mpi : : SendRecv () within process rows may be required for alignment).

const DistMatrix<T, MC, MR>& operator= (const DistMatrix<T, STAR, STAR>& A)
Perform an mpi: :A11Gather () over the entire grid in order to give every process a full copy of A.

Diagonal manipulation

void GetDiagonal (DistMatrix<T, MD, STAR>& d, int offset=0) const
The [Mp, %] distribution is defined such that its columns are distributed like diagonals of the standard

matrix distribution, [MC, MR]. Thus, d can be formed locally if the distribution can be aligned with that
of the offset diagonal of A[M¢, Mg].

void GetDiagonal (DistMatrix<T, STAR, MD>& d, int offset=0) const
This is the same as above, but d is a row-vector instead of a column-vector.

44

Chapter 3. Core functionality

Elemental Manual, Release 0.77

void SetDiagonal (const DistMatrix<T, MD, STAR>& d, int offset=0)
Same as DistMatrix<T>::GetDiagonal (), butin reverse.

void SetDiagonal (const DistMatrix<T, STAR, MD>& d, int offset=0)
Same as DistMatrix<T>::GetDiagonal (), butin reverse.

Note: Many of the following routines are only valid for complex datatypes and are analogous to their general
counterparts from above in the obvious manner.

void GetRealPartOfDiagonal (DistMatrix<typename Base<T>::type, MD, STAR>& d, int offset=0

) const

void Get ImagPartOfDiagonal (DistMatrix<typename Base<T>::type, MD, STAR>& d, int offset=0
) const

void GetRealPartOfDiagonal (DistMatrix<typename Base<T>::type, STAR, MD>& d, int offset=0
) const

void Get ImagPartOfDiagonal (DistMatrix<typename Base<T>::type, STAR, MD>& d, int offset=0
) const

void SetRealPartOfDiagonal (const DistMatrix<typename Base<T>::type, MD, STAR>& d, int
offset=0)

void SetImagPartOfDiagonal (const DistMatrix<typename Base<T>::type, MD, STAR>& d, int
offset=0)

void SetRealPartOfDiagonal (const DistMatrix<typename Base<T>::type, STAR, MD>& d, int
offset=0)

void SetImagPartOfDiagonal (const DistMatrix<typename Base<T>::type, STAR, MD>& d, int
offset=0)

Alignment

All of the following clear the distributed matrix’s contents and then reconfigure the alignments as described.

void Align (int colAlignment, int rowAlignment)
Specify the process row, colAlignment, and process column, rowAlignment, which own the top-left entry.

void AlignCols (int colAlignment)
Specify the process row which owns the top-left entry.

void AlignRows (int rowAlignment)
Specify the process column which owns the top-left entry.

void AlignWith (const DistMatrix<S, MC, MR>& A)
Force the alignments to match those of A.

void AlignWith (const DistMatrix<S, MC, STAR>& A)
Force the column alignment to match that of A.

void AlignWith (const DistMatrix<S, STAR, MR>& A)
Force the row alignment to match that of A.

void AlignWith (const DistMatrix<S, MR, MC>& A)
Force the column alignment to match the row alignment of A (and vice-versa).

void AlignWith (const DistMatrix<S, MR, STAR>& A)
Force the row alignment to match the column alignment of A.

3.5. The DistMatrix class 45

Elemental Manual, Release 0.77

void AlignWith (const DistMatrix<S, STAR, MC>& A)
Force the column alignment to match the row alignment of A.

void AlignWith (const DistMatrix<S, VC, STAR>& A)
Force the column alignment to be equal to that of A (modulo the number of process rows).

void AlignWith (const DistMatrix<S, STAR, VC>& A)
Force the column alignment to equal the row alignment of A (modulo the number of process rows).

void AlignWith (const DistMatrix<S, VR, STAR>& A)
Force the row alignment to equal the column alignment of A (modulo the number of process columns).

void AlignWith (const DistMatrix<S, STAR, VR>& A)
Force the row alignment to equal the row alignment of A (modulo the number of process columns).

void AlignColsWith (const DistMatrix<S, MC, MR>& A)
Force the column alignment to match that of A.

void AlignColsWith (const DistMatrix<S, MC, STAR>& A)
Force the column alignment to match that of A.

void AlignColsWith (const DistMatrix<S, MR, MC>& A)
Force the column alignment to match the row alignment of A.

void AlignColsWith (const DistMatrix<S, STAR, MC>& A)
Force the column alignment to match the row alignment of A.

void AlignColsWith (const DistMatrix<S, VC, STAR>& A)
Force the column alignment to match the column alignment of A (modulo the number of process rows).

void AlignColsWith (const DistMatrix<S, STAR, VC>& A)
Force the column alignment to match the row alignment of A (modulo the number of process rows).

void AlignRowsWith (const DistMatrix<S, MC, MR>& A)
Force the row alignment to match that of A.

void AlignRowsWith (const DistMatrix<S, STAR, MR>& A)
Force the row alignment to match that of A.

void AlignRowsWith (const DistMatrix<S, MR, MC>& A)
Force the row alignment to match the column alignment of A.

void AlignRowsWith (const DistMatrix<S, MR, STAR>& A)
Force the row alignment to match the column alignment of A.

void AlignRowsWith (const DistMatrix<S, VR, STAR>& A)
Force the row alignment to match the column alignment of A (modulo the number of process columns).

void AlignRowsWith (const DistMatrix<S, STAR, VR>& A)
Force the row alignment to match the row alignment of A (modulo the number of process columns).

Views

void View (DistMatrix<T, MC, MR>& A)
Reconfigure this matrix such that it is essentially a copy of the distributed matrix A, but the local data
buffer simply points to the one from A.

void LockedView (const DistMatrix<T, MC, MR>& A)
Same as above, but this matrix is “locked”, meaning that it cannot change the data from A that it points to.

46

Chapter 3. Core functionality

Elemental Manual, Release 0.77

void View (DistMatrix<T, MC, MR>& A, int i, int j, int height, int width)
View a subset of A rather than the entire matrix. In particular, reconfigure this matrix to behave like the
submatrix defined from the [i, i+height) rows and [j, j+width) columns of A.

void LockedView (const DistMatrix<T, MC, MR>& A, int i, int j, int height, int width)
Same as above, but this matrix is “locked”, meaning that it cannot change the data from A that it points to.

void View (int height, int width, int colAlignment, int rowAlignment, T* buffer, int ldim, const
elem::Grid& grid)
Reconfigure this distributed matrix around an implicit [MC, MR] distributed matrix of the specified di-
mensions, alignments, local buffer, local leading dimension, and process grid.

void LockedView (int height, int width, int colAlignment, int rowAlignment, const T* buffer, int Idim,

const elem::Grid& grid)
Same as above, but the resulting matrix is “locked”, meaning that it cannot modify the underlying local

data.

Note: The following functions have strict requirements on the input matrices and must be used with care in
PureRelease and HybridRelease modes.

void Viewlx2 (DistMatrix<T, MC, MR>& AL, DistMatrix<T, MC, MR>& AR)
Recombine two adjacent submatrices to form [Aj, ARg].

void LockedViewlx2 (const DistMatrix<T, MC, MR>& AL, const DistMatrix<T, MC, MR>& AR)
Same as above, but the result is “locked” (the data is not modifiable).

void View2x1 (DistMatrix<T, MC, MR>& AT, DistMatrix<T, MC, MR>& AB)
Recombine two adjacent submatrices to form [Ar; Ag].

void LockedView2x1 (const DistMatrix<T, MC, MR>& AT, const DistMatrix<T, MC, MR>& AB)
Same as above, but the result is “locked” (the data is not modifiable).

void View2x2 (DistMatrix<T, MC, MR>& ATL, DistMatrix<T, MC, MR>& ATR, DistMatrix<T, MC,

MR>& ABL, DistMatrix<T, MC, MR>& ABR)
Recombine four adjacent submatrices to form [Ar; Argr; AL ABg].

void LockedView2x2 (const DistMatrix<T, MC, MR>& ATL, const DistMatrix<T, MC, MR>& ATR,

const DistMatrix<T, MC, MR>& ABL, const DistMatrix<T, MC, MR>& ABR)
Same as above, but the result is “locked” (the data is not modifiable).

Custom communication routines

The following routines primarily exist as a means of avoiding the poor memory bandwidth which results from
packing or unpacking large amounts of data without a unit stride. PLAPACK noticed this issue and avoided
the problem by carefully (conjugate-)transposing matrices in strategic places, usually before a gather or after a
scatter, and we follow suit.

void SumScatterFrom (const DistMatrix<T, MC, STAR>& A)
Simultaneously sum A[M¢,] within each process row and scatter the entries in each row to form the
result in an [M¢, M| distribution.

void SumScatterUpdate (T alpha, const DistMatrix<T, MC, STAR>& A)
Same as above, but add « times the result onto the parent distributed matrix rather than simply assigning
the result to it.

void SumScatterFrom (const DistMatrix<T, STAR, MR>& A)
Simultaenously sum A[x, Mp] within each process column and scatter the entries in each column to form
the result in an [M¢, Mg| distribution.

3.5. The DistMatrix class 47

Elemental Manual, Release 0.77

void SumScatterUpdate (T alpha, const DistMatrix<T, STAR, MR>& A)
Same as above, but add « times the result onto the parent distributed matrix rather than simply assigning
the result to it.

void SumScatterFrom (const DistMatrix<T, STAR, STAR>& A)
Simultaneously sum A[x, %] over the entire process grid and scatter the entries in each row and column to
form the result in an [M¢, Mg] distribution.

void SumScatterUpdate (T alpha, const DistMatrix<T, STAR, STAR>& A)
Same as above, but add « times the result onto the parent distributed matrix rather than simply assigning
the result to it.

void AdjointFrom (const DistMatrix<T, STAR, MC>& A)
Set the parent matrix equal to the redistributed adjoint of A[x, M¢]; in particular, (A[x, Mc))H =
AH[Me,+], so perform an [M¢, Mg] < [Mc,*] redistribution on the adjoint of A, which typically just
consists of locally copying (and conjugating) subsets of the data from A[x, M¢].

void AdjointFrom (const DistMatrix<T, MR, STAR>& A)
This routine is the dual of the above routine, and performs an [M¢o, Mg] + [*, M| redistribution on the
adjoint of A.

void TransposeFrom (const DistMatrix<T, STAR, MC>& A)
Same as the corresponding DistMatrix<T>::AdjointFrom (), but with no conjugation.

void TransposeFrom (const DistMatrix<T, MR, STAR>& A)
Same as the corresponding DistMatrix<T>::AdjointFrom(), but with no conjugation.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T,MC,MR> =DistMatrix<T>.

type class DistMatrix<double>

type class DistMatrix<double, MC, MR>

The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>>

type class DistMatrix<Complex<double>, MC, MR>

The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R>

type class DistMatrix<R, MC, MR>

The underlying datatype R is real.

type class DistMatrix<Complex<R>>

type class DistMatrix<Complex<R>, MC, MR>

The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F>

type class DistMatrix<F, MC, MR>

The underlying datatype F is a field.

48

Chapter 3. Core functionality

Elemental Manual, Release 0.77

3.5.4 [MC, *]

This distribution is often used as part of matrix-matrix multiplication. For a 7 X 7 matrix distributed over a 2 x 3
process grid, individual entries would be owned by the following processes (assuming the column alignment is 0):

{0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4}
{1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5}
{0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4}
{1,3,5) {1.3,5} {1,3,5} {1,3,5} {1.3,5} {1,3,5} {1,3,5}
{0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4}
{1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5} {1,3,5}
{0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4} {0,2,4}

type class DistMatrix<T, MC, STAR>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T,MC, STAR>.

type class DistMatrix<double, MC, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, MC, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, MC, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, MC, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, MC, STAR>
The underlying datatype F is a field.

3.5.5 [,MR]

This distribution is also frequently used for matrix-matrix multiplication. For a 7 X 7 matrix distributed over a 2 x 3
process grid, individual entries would be owned by the following processes (assuming the row alignment is 0):

{0.1) {23} {45} {0.1} {23} {45} {0,1}
{01} {23} {45} {0.1} {23} {45} {0,1}
{01} {2.3} {45} {0.1} {23} {45} {0.1}
0,1} {23} {45} {0.1} {23} {45 {0,1}
{01} {23} {45} {0.1} {23} {45 {0,1}
{0.1) {23} {45} {0.1} {23} {45} {0,1}
0,1} {23} {45} {0.1} {23} {45 {0,1}

type class DistMatrix<T, STAR, MR>
TODO: Add the member functions.

3.5. The DistMatrix class 49

Elemental Manual, Release 0.77

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, STAR, MR>.

type class DistMatrix<double, STAR, MR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, MR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, MR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, MR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, MR>
The underlying datatype F is a field.

3.5.6 [MR,MC]

This is essentially the transpose of the standard matrix distribution, [MC, MR]. For a 7 x 7 matrix distributed over
a 2 x 3 process grid, individual entries would be owned by the following processes (assuming the column and row
alignments are both 0):

01 01010
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0101010
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0101010

type class DistMatrix<T, MR, MC>
TODO: Add the member functions.

Special cases used in Elemental
This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, MR, MC>.

type class DistMatrix<double, MR, MC>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, MR, MC>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, MR, MC>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, MR, MC>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, MR, MC>
The underlying datatype F is a field.

50 Chapter 3. Core functionality

Elemental Manual, Release 0.77

3.5.7 [MR, *]

This is the transpose of the [+ ,MR] distribution and is, like many of the previous distributions, useful for matrix-
matrix multiplication. For a 7 x 7 matrix distributed over a 2 x 3 process grid, individual entries would be owned by
the following processes (assuming the column alignment is 0):

{0,1} {o0,1} {o,1} {o0,1} {o,1} {o,1} {o,1}
{2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3}
{4,651 {4,5} {45} {4,5} {45} {4,5} {4,5}
{0,1y {o,1} {0,1} {o,1} {0,1} {o,1} {0,1}
{2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3}
{4,5} {4,5} {45} {4,5} {4,5} {4,5} {4,5}
{0,1}+ {o0,1} {o,1} {o,1} {o,1} {o,1} <{oO,1}

type class DistMatrix<T, MR, STAR>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, MR, STAR>.

type class DistMatrix<double, MR, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, MR, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, MR, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, MR, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, MR, STAR>
The underlying datatype F is a field.

3.5.8 [+ ,MC]

This is the transpose of the [MC, =] distribution and is, like many of the previous distributions, useful for matrix-
matrix multiplication. For a 7 x 7 matrix distributed over a 2 x 3 process grid, individual entries would be owned by
the following processes (assuming the column alignment is 0):

{0.2,4} {1,3,5} {0,2,4} {1.3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}
{0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4} {1,3,5} {0,2,4}

type class DistMatrix<T, STAR, MC>
TODO: Add the member functions.

3.5. The DistMatrix class 51

Elemental Manual, Release 0.77

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, STAR, MC>.

type class DistMatrix<double, STAR, MC>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, MC>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, MC>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, MC>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, MC>
The underlying datatype F is a field.

3.5.9 [MD, x]

TODO, but not as high of a priority since the [Mp, x| distribution is not as crucial for end users as many other details
that have not yet been documented.

type class DistMatrix<T, MD, STAR>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T,MD, STAR>.

type class DistMatrix<double, MD, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, MD, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, MD, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, MD, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, MD, STAR>
The underlying datatype F is a field.

3.5.10 [+ ,MD]

TODO, but not as high of a priority since the [x, M| distribution is not as crucial for end users as many other details
that have not yet been documented.

type class DistMatrix<T, STAR, MD>
TODO: Add the member functions.

52 Chapter 3. Core functionality

Elemental Manual, Release 0.77

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, STAR, MD>.

type class DistMatrix<double, STAR, MD>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, MD>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, MD>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, MD>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, MD>
The underlying datatype F is a field.

3.5.11 [VC, *]

This distribution makes use of a 1d distribution which uses a column-major ordering of the entire process grid. Since
1d distributions are useful for distributing vectors, and a column-major ordering is used, the distribution symbol is VC.
Again using the simple 2 x 3 process grid, with a zero column alignment, each entry of a 7 X 7 matrix would be owned
by the following sets of processes:

O UL W N~ O
O T W N~ O
O T W= O
O Ui W~ O
O T Wi~ O
O T W N~ O
O UL W= O

type class DistMatrix<T, VC, STAR>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, VC, STAR>.

type class DistMatrix<double, VC, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, VC, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, VC, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, VC, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, VC, STAR>
The underlying datatype F is a field.

3.5. The DistMatrix class 53

Elemental Manual, Release 0.77

3.5.12 [* ,VC]

This is the transpose of the above [VC, «] distribution. On the standard 2 x 3 process grid with a row alignment of
zero, a 7 x 7 matrix would be distributed as:

01 2 3 450
01 2 3 450
01 2 3 450
01 2 3 450
01 2 3 45 0
01 2 3 450
01 2 3 450

type class DistMatrix<T, STAR, VC>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, STAR, VC>.

type class DistMatrix<double, STAR, VC>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, VC>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, VC>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, VC>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, VC>
The underlying datatype F is a field.

3.5.13 [VR, x]

This distribution makes use of a 1d distribution which uses a row-major ordering of the entire process grid. Since 1d
distributions are useful for distributing vectors, and a row-major ordering is used, the distribution symbol is VR. Again
using the simple 2 x 3 process grid, with a zero column alignment, each entry of a 7 X 7 matrix would be owned by
the following sets of processes:

00 0 O0O0O0TO 0
2 22 2 2 2 2
4 4 4 4 4 4 4
1111111
33 3 3 3 3 3
5 5 5 5 5 5 5
00 0 O0O0O0TO 0

type class DistMatrix<T, VR, STAR>
TODO: Add the member functions.

54 Chapter 3. Core functionality

Elemental Manual, Release 0.77

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, VR, STAR>.

type class DistMatrix<double, VR, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, VR, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, VR, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, VR, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, VR, STAR>
The underlying datatype F is a field.

3.5.14 [+ ,VR]

This is the transpose of the above [VR, =] distribution. On the standard 2 x 3 process grid with a row alignment of
zero, a 7 x 7 matrix would be distributed as:

O OO OO oo
NN DNDNDNDDN
N N o S S
I e T T S S S
W W Wwwwww
. Ot Ot Ot Ot Ot Ot
OO OO O OO

type class DistMatrix<T, STAR, VR>
TODO: Add the member functions.

Special cases used in Elemental

This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of Di stMatrix<T, STAR, VR>.

type class DistMatrix<double, STAR, VR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, VR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, VR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, VR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, VR>
The underlying datatype F is a field.

3.5. The DistMatrix class 55

Elemental Manual, Release 0.77

3.5.15 [* ,*]

This “distribution” actually redundantly stores every entry of the associated matrix on every process. Again using a
2 x 3 process grid, the entries of a 7 x 7 matrix would be owned by the following sets of processes:

{0,1,..,5} {0,1,..,5} {o0,1,...5} {0,1,...5} {0,1,...5} {0,1,..,5} {0,1,..,5}
{0,1,..,5} {0,1,..,5} {0,1,...5} {0,1,...5} {0,1,...5} {0,1,...,5} {0,1,..,5}
{0,1,...5} {0,1,..,5} {0,1,...5} {0,1,...5} {0,1,...5} {0,1,...,5} {0,1,..,5}
{0,1,..,5} {0,1,...5} {0,1,...5} {0,1,...5} {0,1,...5} {0,1,..,5} {0,1,..,5}
{0,1,..,5} {0,1,..,5} {0,1,...5} {0,1,...5} {0,1,...5} {0,1,..,5} {0,1,..,5}
{0,1,..,5} {0,1,..,5} {o0,1,...5} {0,1,...5} {0,1,...5} {0,1,..,5} {0,1,..,5}
{0,1,..,5} {0,1,..,5} {o0,1,...5} {0,1,...5} {0,1,...5} {0,1,..,5} {0,1,..,5}

type class DistMatrix<T, STAR, STAR>
TODO: Add the member functions.

Special cases used in Elemental
This list of special cases is here to help clarify the notation used throughout Elemental’s source (as well as this
documentation). These are all special cases of DistMatrix<T, STAR, STAR>.

type class DistMatrix<double, STAR, STAR>
The underlying datatype is the set of double-precision real numbers.

type class DistMatrix<Complex<double>, STAR, STAR>
The underlying datatype is the set of double-precision complex numbers.

type class DistMatrix<R, STAR, STAR>
The underlying datatype R is real.

type class DistMatrix<Complex<R>, STAR, STAR>
The underlying datatype Complex<R> is complex with base type R.

type class DistMatrix<F, STAR, STAR>
The underlying datatype F is a field.

3.6 Partitioning

The following routines are slight tweaks of the FLAME project’s (as well as PLAPACK’s) approach to submatrix
tracking; the difference is that they have “locked” versions, which are meant for creating partitionings where the
submatrices cannot be modified.

3.6.1 PartitionUp

Given an m X n matrix A, configure AT and AB to view the local data of A corresponding to the partition
_(Ar
=)

void PartitionUp(Matrix<T>& A, Matrix<T>& AT, Matrix<T>& AB, int heightAB=Blocksize())

where Ap is of a specified height.

void LockedPartitionUp(const Matrix<T>& A, Matrix<T>& AT, Matrix<T>& AB, int heightAB=Blo«
Templated over the datatype, T, of the serial matrix A.

56 Chapter 3. Core functionality

Elemental Manual, Release 0.77

void PartitionUp(DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& AB, int]

void LockedPartitionUp(const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AT, DistMatrix<T,U,?
Templated over the datatype, 7, and distribution scheme, (U, V), of the distributed matrix A.

3.6.2 PartitionDown

Given an m X n matrix A, configure AT and AB to view the local data of A corresponding to the partition
Ar
=)

void PartitionDown (Matrix<T>& A, Matrix<T>& AT, Matrix<T>& AB, int heightAT=Blocksize())

where Ar is of a specified height.

void LockedPartitionDown(const Matrix<T>& A, Matrix<T>& AT, Matrix<T>& AB, int heightAT=B!
Templated over the datatype, T, of the serial matrix A.

void PartitionDown(DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& AB, in

void LockedPartitionDown(const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AT, DistMatrix<T,]
Templated over the datatype, 7, and distribution scheme, (U, V), of the distributed matrix A.

3.6.3 PartitionLeft

Given an m X n matrix A, configure AL and AR to view the local data of A corresponding to the partition
A=(A, Ag),

where Ap, is of a specified width.
void PartitionlLeft (Matrix<T>& A, Matrix<T>& AL, Matrix<T>& AR, int widthAR=Blocksize())

void LockedPartitionLeft (const Matrix<T>& A, Matrix<T>& AL, Matrix<T>& AR, int widthAR=Bl«
Templated over the datatype, T, of the serial matrix A.

void PartitionLeft (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AL, DistMatrix<T,U,V>& AR, inf

void LockedPartitionLeft (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AL, DistMatrix<T,T
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

3.6.4 PartitionRight

Given an m X n matrix A, configure AL and AR to view the local data of A corresponding to the partition
A= (AL Agr),

where Ay is of a specified width.
void PartitionRight (Matrix<T>& A, Matrix<T>& AL, Matrix<T>& AR, int widthAL=Blocksize())

void LockedPartitionRight (const Matrix<T>& A, Matrix<T>& AL, Matrix<T>& AR, int widthAL=B!
Templated over the datatype, T, of the serial matrix A.

void PartitionRight (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AL, DistMatrix<T,U,V>& AR, i

void LockedPartitionRight (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& AL, DistMatrix<T
Templated over the datatype, 7, and the distribution scheme, (U, V), of the distributed matrix A.

3.6. Partitioning 57

Elemental Manual, Release 0.77

3.6.5 PartitionUpDiagonal

Given an m X n matrix A, configure ATL, ATR, ABL, and ABR to view the local data of A corresponding to the
partitioning

A Arr, Arr
Apr Apr)’

where the diagonal of Agg lies on the main diagonal (aka, the left diagonal) of A and is of the specified height/width.
void PartitionUpDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& ABL, Maf

void LockedPartitionUpDiagonal (const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix:
Templated over the datatype, T, of the serial matrix A.

void PartitionUpDiagonal(DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,U,V>&

void LockedPartitionUpDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMat
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

3.6.6 PartitionUpLeftDiagonal

Same as PartitionUpDiagonal.
void PartitionUpLeftDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& ABL,

void LockedPartitionUpLeftDiagonal (const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Maf
Templated over the datatype, 7, of the serial matrix A.

void PartitionUpLeftDiagonal (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,U

void LockedPartitionUpLeftDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, Di:
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

3.6.7 PartitionUpRightDiagonal

Given an m X n matrix A, configure ATL, ATR, ABL, and ABR to view the local data of A corresponding to the
partitioning

A:<ATL ATR>’

Apr Apr

where the diagonal of Appg lies on the right diagonal of A, which is defined to include the bottom-right entry of A;
the length of the diagonal of App, is specified as a parameter in all of the following routines.

void PartitionUpRightDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& ABI

void LockedPartitionUpRightDiagonal(const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, M:
Templated over the datatype, T, of the serial matrix A.

void PartitionUpRightDiagonal (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,I

void LockedPartitionUpRightDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, D:
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

58 Chapter 3. Core functionality

Elemental Manual, Release 0.77

3.6.8 PartitionDownDiagonal

Given an m X m matrix A, configure ATL, ATR, ABL, and ABR to view the local data of A corresponding to the
partitioning

A— Arr, Arr
Apr Apr)’

where the diagonal of Ary, is of the specified length and lies on the main diagonal (aka, the left diagonal) of A.
void PartitionDownDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& ABL, 1

void LockedPartitionDownDiagonal (const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matr:
Templated over the datatype, T, of the serial matrix A.

void PartitionDownDiagonal (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,U,V:

void LockedPartitionDownDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, Distl
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

3.6.9 PartitionDownLeftDiagonal

Same as PartitionDownDiagonal.
void PartitionDownLeftDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& Al

void LockedPartitionDownLeftDiagonal(const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, !
Templated over the datatype, 7, of the serial matrix A.

void PartitionDownlLeftDiagonal (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,

void LockedPartitionDownLeftDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, I
Templated over the datatype, T, and the distribution scheme, (U, V), of the distributed matrix A.

3.6.10 PartitionDownRightDiagonal

Given an m X n matrix A, configure ATL, ATR, ABL, and ABR to view the local data corresponding to the partitioning
A Arr, Arr
Apr Apr /)’

where the diagonal of Apy, is of the specified length and lies on the right diagonal of A, which includes the bottom-
right entry of A.
void PartitionDownLeftDiagonal (Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& Al

void LockedPartitionDownLeftDiagonal (const Matrix<T>& A, Matrix<T>& ATL, Matrix<T>& ATR, !
Templated over the datatype, T, of the serial matrix A.

void PartitionDownLeftDiagonal (DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, DistMatrix<T,

void LockedPartitionDownLeftDiagonal (const DistMatrix<T,U,V>& A, DistMatrix<T,U,V>& ATL, I
Templated over the datatype, 7, and the distribution scheme, (U, V), of the distributed matrix A.

3.6. Partitioning 59

Elemental Manual, Release 0.77

3.7 Repartitioning

3.7.1 RepartitionUp

Given the partition

_(Ar
1= (an).

and a blocksize, ny, turn the two-way partition into the three-way partition

where A; is of height n, and As = Ap.
void RepartitionUp(Matrix<T>& AT, Matrix<T>& AO, Matrix<T>& Al, Matrix<T>& AB, Matrix<T>&

void LockedRepartitionUp(const Matrix<T>& AT, Matrix<T>& A0, Matrix<T>& Al, const Matrix<
Templated over the datatype, T.

void RepartitionUp(DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& A0, DistMatrix<T,U,V>& Al, D:

void LockedRepartitionUp(const DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& A0, DistMatrix<T,
Templated over the datatype, T, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

RepartitionUp(AT, AO,
Al,
VST AVE V4

AB, A2, blocksize);

3.7.2 RepartitionDown

Given the partition

A= ()

and a blocksize, ny, turn the two-way partition into the three-way partition

() (%
A = Al ’
B A2

void RepartitionDown (Matrix<T>& AT, Matrix<T>& A0, Matrix<T>& Al, Matrix<T>& AB, Matrix<T:

where A; is of height n, and Ag = Ar.

void LockedRepartitionDown(const Matrix<T>& AT, Matrix<T>& AO, Matrix<T>& Al, const Matri:
Templated over the datatype, T.

void RepartitionDown (DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& A0, DistMatrix<T,U,V>& Al,

void LockedRepartitionDown(const DistMatrix<T,U,V>& AT, DistMatrix<T,U,V>& A0, DistMatrix:
Templated over the datatype, T, and distribution scheme, (U,V).

Note that each of the above routines is meant to be used in a manner similar to the following:

60 Chapter 3. Core functionality

Elemental Manual, Release 0.77

RepartitionDown (AT, AO,
VAT TAVE TV
Al,

AB, A2, blocksize);

3.7.3 RepartitionLeft

Given the partition
A= (AL | Ar),
and a blocksize, ny, turn the two-way partition into the three-way partition
(AL | Ar)=(40 A1 |A2),

where A1 is of width n, and A, = Ag.
void RepartitionLeft (Matrix<T>& AL, Matrix<T>& AR, Matrix<T>& A0, Matrix<T>& Al, Matrix<T:

void LockedRepartitionLeft (const Matrix<T>& AL, const Matrix<T>& AR, Matrix<T>& A0, Matri:
Templated over the datatype, T.

void RepartitionLeft (DistMatrix<T,U,V>& AL, DistMatrix<T,U,V>& AR, DistMatrix<T,U,V>& AO,

void LockedRepartitionLeft (const DistMatrix<T,U,V>& AL, const DistMatrix<T,U,V>& AR, Distl
Templated over the datatype, T, and distribution scheme, (U,V).

Note that each of the above routines is meant to be used in a manner similar to the following:

RepartitionLeft (AL, /#+/ AR,
AQ, Al, /#%/ A2, blocksize);

3.7.4 RepartitionRight

Given the partition
A=(AL| Ar),
and a blocksize, ny, turn the two-way partition into the three-way partition
(AL |Ar) =(40| A A2),

where A; is of width n, and Ag = Apr.
void RepartitionRight (Matrix<T>& AL, Matrix<T>& AR, Matrix<T>& A0, Matrix<T>& Al, Matrix<

void LockedRepartitionRight (const Matrix<T>& AL, const Matrix<T>& AR, Matrix<T>& A0, Matr:

Templated over the datatype, T.
void RepartitionRight (DistMatrix<T,U,V>& AL, DistMatrix<T,U,V>& AR, DistMatrix<T,U,V>& A0

void LockedRepartitionRight (const DistMatrix<T,U,V>& AL, const DistMatrix<T,U,V>& AR, Dist
Templated over the datatype, T, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

RepartitionRight (AL, /*+/ AR,
A0, /##+/ Al, A2, blocksize);

3.7. Repartitioning 61

Elemental Manual, Release 0.77

3.7.5 RepartitionUpDiagonal

Given the partition

e < Arr | Arr >
Apr | Agr)’

turn the two-by-two partition into the three-by-three partition

Ao Ao1 | Aoz
() = | n_du |).
BL | #BR Ay Ag | Az

where A1; is n, X np and the corresponding quadrants are equivalent.
void RepartitionUpDiagonal (Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& AO0O, Matrix<T>& A0l

void LockedRepartitionUpDiagonal (const Matrix<T>& ATL, const Matrix<T>& ATR, Matrix<T>& Al
Templated over the datatype, T.

void RepartitionUpDiagonal (DistMatrix<T,U,V>& ATL, DistMatrix<T,U,V>& ATR, DistMatrix<T,U

void LockedRepartitionUpDiagonal (const DistMatrix<T,U,V>& ATL, const DistMatrix<T,U,V>& A
Templated over the datatype, T, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

RepartitionUpDiagonal (ATL, /xx/ ATR, A00, A0l, /x+/ A02,
VAT Y4 Al0, All, /=*x/ Al2,
Sk k ok ko kkkhkkk) [k kok ok ok ko ok ko kA kA Ak

ABL, /#*#%/ ABR, A20, A21, /#%/ A22, blocksize);

3.7.6 RepartitionDownDiagonal

Given the partition

e < Arr | Arr >
Apr | Agr)’

turn the two-by-two partition into the three-by-three partition

= AlO All A12)

Aoy | Aar Ago

A A A
(Arp | Apn) 00 | Ao Aoz
Apr | ABr

where A1; is n, X nyp and the corresponding quadrants are equivalent.
void RepartitionDownDiagonal (Matrix<T>& ATL, Matrix<T>& ATR, Matrix<T>& A00, Matrix<T>& Al

void LockedRepartitionDownDiagonal(const Matrix<T>& ATL, const Matrix<T>& ATR, Matrix<T>&
Templated over the datatype, T.

void RepartitionDownDiagonal (DistMatrix<T,U,V>& ATL, DistMatrix<T,U,V>& ATR, DistMatrix<T,

void LockedRepartitionDownDiagonal (const DistMatrix<T,U,V>& ATL, const DistMatrix<T,U,V>&
Templated over the datatype, T, and distribution scheme, (U,V).

Note that each of the above routines is meant to be used in a manner similar to the following:

62 Chapter 3. Core functionality

Elemental Manual, Release 0.77

RepartitionDownDiagonal (ATL, /#x/ ATR, A00, /xx/ AO1l, A02,

Johk Ak hkkhkkhkk k) [k ok ok ok kA ok k Ak kA A A Ak
VAT V4 Al0, /#%/ All, Al2,
ABL, /#%/ ABR, A20, /*x/ A21, A22, blocksize);

3.8 Sliding partitions

3.8.1 SlidePartitionUp

Simultaneously slide and merge the partition

into

void SlidePartitionUp (Matrix<T>& AT, Matrix<T>& A0, Matrix<T>& Al, Matrix<T>& AB, Ma-
trix<T>& A2)

void SlideLockedPartitionUp (Matrix<T>& AT, const Matrix<T>& A0, const Matrix<T>& Al, Ma-

trix<T>& AB, const Matrix<T>& A2)
Templated over the datatype, T.

void SlidePartitionUp (DistMatrix<T, U, V>& AT, DistMatrix<T, U, V>& A0, DistMatrix<T, U, V>&
Al, DistMatrix<T, U, V>& AB, DistMatrix<T, U, V>& A2)

void SlideLockedPartitionUp (DistMatrix<T, U, V>& AT, const DistMatrix<T, U, V>& A0, const Dist-
Matrix<T, U, V>& Al, DistMatrix<T, U, V>& AB, const DistMatrix<T,

U, V>& A2)
Templated over the datatype, T, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

SlidePartitionUp(AT, AO,

VESTAVE T YA
Al,
AB, A2);

3.8.2 SlidePartitionDown

Simultaneously slide and merge the partition

into

3.8. Sliding partitions 63

Elemental Manual, Release 0.77

void SlidePartitionDown (Matrix<T>& AT, Matrix<T>& A0, Matrix<T>& Al, Matrix<T>& AB, Ma-
trix<T>& A2)

void SlideLockedPartitionDown (Matrix<T>& AT, const Matrix<T>& A0, const Matrix<T>& Al, Ma-

trix<T>& AB, const Matrix<T>& A2)
Templated over the datatype, T.

void SlidePartitionDown (DistMatrix<T, U, V>& AT, DistMatrix<T, U, V>& A0, DistMatrix<T, U, V>&
Al, DistMatrix<T, U, V>& AB, DistMatrix<T, U, V>& A2)

void SlideLockedPartitionDown (DistMatrix<T, U, V>& AT, const DistMatrix<T, U, V>& A0, const
DistMatrix<T, U, V>& Al, DistMatrix<T, U, V>& AB, const Dist-

Matrix<T, U, V>& A2)
Templated over the datatype, T, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

SlidePartitionDown (AT, AOQO,

a1,
VR VAVE T VA
AB, A2);

3.8.3 SlidePartitionLeft

Simultaneously slide and merge the partition
A=(A 4 ‘ Az)
into

(Ar[Ar)= (40| A Az).

void SlidePartitionLeft (Matrix<T>& AL, Matrix<T>& AR, Matrix<T>& A0, Matrix<T>& Al, Ma-
trix<T>& A2)
void SlidePartitionLeft (DistMatrix<T, U, V>& AL, DistMatrix<T, U, V>& AR, DistMatrix<T, U,
V>& A0, DistMatrix<T, U, V>& Al, DistMatrix<T, U, V>& A2)
Templated over the datatype, T.

void SlideLockedPartitionLeft (Matrix<T>& AL, Matrix<T>& AR, const Matrix<T>& A0, const Ma-
trix<T>& A1, const Matrix<T>& A2)

void SlideLockedPartitionLeft (DistMatrix<T, U, V>& AL, DistMatrix<T, U, V>& AR, const Dist-
Matrix<T, U, V>& A0, const DistMatrix<T, U, V>& Al, const Dist-

Matrix<T, U, V>& A2)
Templated over the datatype, T, and distribution scheme, (U,V).

Note that each of the above routines is meant to be used in a manner similar to the following:

SlidePartitionLeft (AL, /x*x/ AR,
AO, /#+x/ Al, A2);

3.8.4 SlidePartitionRight

Simultaneously slide and merge the partition

A= (4| A Ay)

64 Chapter 3. Core functionality

Elemental Manual, Release 0.77

into

(A |Ar)=(40 Af4z).

void SlidePartitionRight (Matrix<T>& AL, Matrix<T>& AR, Matrix<T>& A0, Matrix<T>& Al, Ma-
trix<T>& A2)

void SlidePartitionRight (DistMatrix<T, U, V>& AL, DistMatrix<T, U, V>& AR, DistMatrix<T, U,

V>& A0, DistMatrix<T, U, V>& A1, DistMatrix<T, U, V>& A2)
Templated over the datatype, T.

void SlideLockedPartitionRight (Matrix<T>& AL, Matrix<T>& AR, const Matrix<T>& A0, const
Matrix<T>& Al, const Matrix<T>& A2)

void SlideLockedPartitionRight (DistMatrix<T, U, V>& AL, DistMatrix<T, U, V>& AR, const Dist-
Matrix<T, U, V>& A0, const DistMatrix<T, U, V>& A1, const Dist-

Matrix<T, U, V>& A2)
Templated over the datatype, 7, and distribution scheme, (U, V).

Note that each of the above routines is meant to be used in a manner similar to the following:

SlidePartitionRight (AL, /+#/ AR,
AO, Al, /#%/ A2);

3.8.5 SlidePartitionUpDiagonal

Simultaneously slide and merge the partition

Aoo Ao | Aoz
A=\ A Aun | A
Agg Api | Az
into
Ao | Aor Age
(iTL iTR > =| Ao | Aur A2
BL | ©°BR Ao | Ag1 Ago

Note that the above routines are meant to be used as:

SlidePartitionUpDiagonal (ATL, /x%/ ATR, A00, /#x/ A01l, AO02,
J ok k ok k ok ok k ko kkk k) [k ok ok k ok ok ko ok ko kA kA k)
/Hxx/ Al0, /#x/ All, Al2,

ABL, /#%/ ABR, A20, /#x/ A21, A22);

3.8.6 SlidePartitionDownDiagonal

Simultaneously slide and merge the partition

Ago | A Aoz
A=| A | An Ao
Asg | Ao1 Ago
into
Ao Ao | Aoz
(jTL jllTR) =| Ao An | Ao
BL | #BR Az Az | Az

Note that the above routines are meant to be used as:

3.8. Sliding partitions

65

Elemental Manual, Release 0.77

SlidePartitionDownDiagonal (ATL, /#x/ ATR, A00, A01l, /*x/ A02,
VEZ V4 A10, All, /*=x/ Al2,
Sk kh kA Ak Ak k) A kA kKA KA A A A A A A A AR

ABL, /#x/ ABR, A20, A21, /*x/ RA22);

3.9 The Axpy interface

The Axpy interface is Elemental’s version of the PLAPACK Axpy interface, where Axpy is derived from the BLAS
shorthand for ¥ := aX + Y (Alpha X Plus Y). Rather than always requiring users to manually fill their dis-
tributed matrix, this interface provides a mechanism so that individual processes can independently submit local
submatrices which will be automatically redistributed and added onto the global distributed matrix (this would be
LOCAL_TO_GLOBAL mode). The interface also allows for the reverse: each process may asynchronously request
arbitrary subset of the global distributed matrix (GLOBAL_TO_LOCAL mode).

Note: The catch is that, in order for this behavior to be possible, all of the processes that share a particular distributed
matrix must synchronize at the beginning and end of the Axpy interface usage (these synchronizations correspond to
the Attach and Detach member functions). The distributed matrix should not be manually modified between the
Attach and Detach calls.

An example usage might be:

#include "elemental.hpp"
using namespace elen;

// Create an 8 x 8 distributed matrix over the given grid
DistMatrix<double,MC,MR> A(8, 8, grid);

// Set every entry of A to zero
A.SetToZero () ;

// Print the original A
A.Print ("Original distributed A");

// Open up a LOCAL _TO_GLOBAL interface to A
AxpyInterface<double> interface;
interface.Attach(LOCAL_TO_GLOBAL, A);

// If we are process 0, then create a 3 x 3 identity matrix, B,
// and Axpy it into the bottom-right of A (using alpha=2)
// NOTE: The bottom-right 3 x 3 submatrix starts at the (5,5)
// entry of A.
// NOTE: Every process 1s free to Axpy as many submatrices as they
// desire at this point.
if (grid.VCRank () ==)
{

Matrix<double> B(3, 3);

B.SetToIdentity();

interface.Axpy(2.0, B, 5, 5);

// Have all processes collectively detach from A
interface.Detach () ;

// Print the updated A

66 Chapter 3. Core functionality

Elemental Manual, Release 0.77

A.Print ("Updated distributed A");

// Reattach to A, but 1in the GLOBAI_TO LOCAL direction
interface.Attach(GLOBAL_TO_LOCAL, A);

// Have process 0 request a copy of the entire distributed matrix

//

// NOTE: Every process 1s free to Axpy as many submatrices as they
// desire at this point.

Matrix<double> C;

if(grid.VCRank () == 0)

{
C.ResizeTo(8, 8);
C.SetToZero();
interface.Axpy(1.0, C, 0, 0);

// Collectively detach in order to finish filling process 0’s request
interface.Detach () ;

// Process 0 can now locally print its copy of A
if (g.VCRank () ==)
C.Print ("Process 0’s local copy of A");

The output would be

Original distributed A

000O0O0OOOO
000O0O0O

000O0O0OOCOO
000O0OOOOO
000O0O0OOCOO
000O0O0O0OOOO
000O0O0OOOO
000O0O0OOCOO

Updated distributed A

000O0O0OOCDO
000O0O0O
000O0O0OOCDO
000O0O0O0OOCDO
000O0O0O0OOCDO
00000200
000O0O0O0Z20
000O0O0O0O02
Process 0’s local copy of A
000O0O0O0OOCDO
000O0O0OO0CDO
000O0O0OOCDO
000O0O0O0OOCDO
0000O0OO0CDO
00000200
00000020
000O0O0OO02
type AxpyType

An enum that can take on the value of either LOCAL_TO_GLOBAL or GLOBAL_TO_LOCAL, with the meanings
described above.

3.9. The Axpy interface 67

Elemental Manual, Release 0.77

type class AxpyInterface<T>

AxpyInterface ()
Initialize a blank instance of the interface class. It will need to later be attached to a distributed matrix

before any Axpy’s can occur.

AxpyInterface (AxpyType type, DistMatrix<T, MC, MR>& Z)
Initialize an interface to the distributed matrix Z, where type can be either LOCAL_TO_GLOBAL or
GLOBAL_TO_LOCAL.

AxpyInterface (AxpyType type, const DistMatrix<T, MC, MR>& Z)
Initialize an interface to the (unmodifiable) distributed matrix Z; since Z cannot be modified, the only sen-
sical AxpyType is GLOBAL_TO_LOCAL. The AxpyType argument was kept in order to be consistent
with the previous routine.

void Attach (AxpyType type, DistMatrix<T, MC, MR>& Z)
Attach to the distributed matrix Z, where type can be either LOCAL_TO_GLOBAL or
GLOBAL_TO_LOCAL.

void Attach (AxpyType type, const DistMatrix<T, MC, MR>& Z)
Attach to the (unmodifiable) distributed matrix Z; as mentioned above, the only sensical value of type is
GLOBAL_TO_LOCAL, but the AxpyType argument was kept for consistency.

void Axpy (T alpha, Matrix<T>& Z, int i, int j)
If the interface was previously attached in the LOCAL_TO_GLOBAL direction, then the matrix \alpha
7 will be added onto the associated distributed matrix starting at the (7, j) global index; otherwise « times
the submatrix of the associated distributed matrix, which starts at index (¢, j) and is of the same size as 7,
will be added onto Z.

void Axpy (T alpha, const Matrix<T>& Z, int i, int j)
Same as above, but since Z is unmodifiable, the attachment must have been in the LOCAL_TO_GLOBAL
direction.

void Detach ()
All processes collectively finish handling each others requests and then detach from the associated dis-
tributed matrix.

68

Chapter 3. Core functionality

CHAPTER
FOUR

BASIC LINEAR ALGEBRA

This chapter describes Elemental’s support for basic linear algebra routines, such as matrix-matrix multiplication,
triangular solves, and matrix-vector multiplication. Most of these routines have counterparts in the Basic Linear
Algebra Subprograms (BLAS).

4.1 Level 1

The prototypes for the following routines can be found at include/elemental/blas-like_decl.hpp, while the implemen-
tations are in include/elemental/blas-like/level1/.

4.1.1 Adjoint

Note: This is not a standard BLAS routine, but it is BLAS-like.

B:= AH,

void Adjoint (const Matrix<T>& A, Matrix<T>& B)
The serial version (templated over the datatype).

void Adjoint (const DistMatrix<T, U, V>& A, DistMatrix<T, W, Z>& B)
The distributed version (templated over the datatype and the individual distributions of A and B).

4.1.2 Axpy

Performs Y := aX + Y (hence the name axpy).

void Axpy (T alpha, const Matrix<T>& X, Matrix<T>& Y)
The serial implementation (templated over the datatype).

void Axpy (T alpha, const DistMatrix<T, U, V>& X, DistMatrix<T, U, V>& Y)
The distributed implementation (templated over the datatype and the shared distribution of A and B).

4.1.3 Conjugate

Note: This is not a standard BLAS routine, but it is BLAS-like.

A := A. For real datatypes, this is a no-op.

69

https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like_decl.hpp
https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like/level1

Elemental Manual, Release 0.77

void Conjugate (Matrix<T>& A)
The serial version (templated over datatype).

void Conjugate (DistMatrix<T, U, V>& A)
The distributed version (templated over the datatype and the distribution of A).

B .= A.

void Conjugate (const Matrix<T>& A, Matrix<T>& B)
The serial version (templated over the datatype).

void Conjugate (const DistMatrix<T, U, V>& A, DistMatrix<T, W, Z>& B)
The distributed version (templated over the datatype and the individual distributions of A and B).

4.1.4 Copy

Sets Y := X.

void Copy (const Matrix<T>& X, Matrix<T>& Y)
The serial implementation (templated over the datatype).

void Copy (const DistMatrix<T, U, V>& A, DistMatrix<T, W, Z>& B)
The distributed implementation (templated over the datatype and the individual distributions of A and B).

4.1.5 DiagonalScale

Note: This is not a standard BLLAS routine, but it is BLAS-like.

Performs either X := op(D)X or X := Xop(D), where op(D) equals D = DT, or D = D, where D = diag(d)
and d is a column vector.

void DiagonalScale (LeftOrRight side, Orientation orientation, const Matrix<T>& d, Matrix<T>& X)
The serial implementation (templated over the datatype).

void DiagonalScale (LeftOrRight side, Orientation orientation, const DistMatrix<T, U, V>& d, DistMa-

trix<T, W, Z>& X)
The distributed implementation (templated over the datatype and the individual distributions of d and X).

4.1.6 DiagonalSolve

Note: This is not a standard BLAS routine, but it is BLAS-like.

Performs either X := op(D)~'X or X := Xop(D)~ !, where D = diag(d) and d is a column vector.

void DiagonalSolve (LeftOrRight side, Orientation orientation, const Matrix<F>& d, Matrix<F>& X, bool

checklfSingular=false)
The serial implementation (templated over the datatype).

void DiagonalSolve (LeftOrRight side, Orientation orientation, const DistMatrix<F, U, V>& d, DistMa-

trix<F, W, Z>& X, bool checklfSingular=false)
The distributed implementation (templated over the datatype and the individual distributions of d and X).

70 Chapter 4. Basic linear algebra

Elemental Manual, Release 0.77

4.1.7 Dot

Returns (z,7) = 2"y. x and y are both allowed to be stored as column or row vectors, but will be interpreted as
column vectors.

T Dot (const Matrix<T>& x, const Matrix<T>& y)
The serial implementation (templated over the datatype).

T Dot (const DistMatrix<T, U, V>& x, const DistMatrix<T, W, Z>& y)
The distributed implementation (templated over the datatype and the individual distributions of = and y).

4.1.8 Dotc

Same as Dot. This routine name is provided since it is the usual BLAS naming convention.

T Dotec (const Matrix<T>& x, const Matrix<T>& y)
The serial implementation (templated over the datatype).

T Dotc (const DistMatrix<T, U, V>& x, const DistMatrix<T, W, Z>& y)
The distributed implementation (templated over the datatype and the individual distributions of x and y).

4.1.9 Dotu

Returns :JcTy, which is not an inner product.

T Dotu (const Matrix<T>& x, const Matrix<T>& y)
The serial implementation (templated over the datatype).

T Dotu (const DistMatrix<T, U, V>& x, const DistMatrix<T, W, Z>& y)
The distributed implementation (templated over the datatype and the individual distributions of = and y).

4.1.10 MakeTrapezoidal

Note: This is not a standard BLAS routine, but it is BLAS-like.

Sets all entries outside of the specified trapezoidal submatrix to zero. The diagonal of the trapezoidal matrix is defined
relative to either the upper-left or bottom-right corner of the matrix, depending on the value of side; whether or
not the trapezoid is upper or lower (analogous to an upper or lower-triangular matrix) is determined by the uplo
parameter, and the last diagonal is defined with the of f set integer.

void MakeTrapezoidal (LeftOrRight side, UpperOrLower uplo, int offset, Matrix<T>& A)
The serial implementation.

void MakeTrapezoidal (LeftOrRight side, UpperOrLower uplo, int offset, DistMatrix<T, U, V>& A)
The distributed implementation.

4.1.11 Nrm2

Returns ||zl = +/(z,2) = VaHz. As with most other routines, even if z is stored as a row vector, it will be
interpreted as a column vector.

typename Base<F>::type Nrm2 (const Matrix<F>& x)

typename Base<F>::type Nrm2 (const DistMatrix<F>& x)

41. Level 1 71

Elemental Manual, Release 0.77

4.1.12 Scal

X = aX.

void Scal (T alpha, Matrix<T>& X)
The serial implementation (templated over the datatype).

void Scal (T alpha, DistMatrix<T, U, V>& X)
The distributed implementation (templated over the datatype and the distribution of X).

4.1.13 ScaleTrapezoid

Note: This is not a standard BLLAS routine, but it is BLAS-like.

Scales the entries within the specified trapezoid of a general matrix. The parameter conventions follow those of
MakeTrapezoidal described above.

void ScaleTrapezoid (T alpha, LeftOrRight side, UpperOrLower uplo, int offset, Matrix<T>& A)
The serial implementation.

void ScaleTrapezoid (T alpha, LeftOrRight side, UpperOrLower uplo, int offset, DistMatrix<T, U, V>&

)
The distributed implementation.

4.1.14 Transpose

Note: This is not a standard BLLAS routine, but it is BLAS-like.

B:= AT,

void Transpose (const Matrix<T>& A, Matrix<T>& B)
The serial version (templated over the datatype).

void Transpose (const DistMatrix<T, U, V>& A, DistMatrix<T, W, Z>& B)
The distributed version (templated over the datatype and the individual distributions of A and B).

4.1.15 Zero

Note: This is not a standard BLAS routine, but it is BLAS-like.

Sets all of the entries of the input matrix to zero.

void Zero (Matrix<T>& A)
The serial implementation.

void Zero (DistMatrix<T, U, V>& A)
The distributed implementation.

72 Chapter 4. Basic linear algebra

Elemental Manual, Release 0.77

4.2 Level 2

The prototypes for the following routines can be found at include/elemental/blas-like_decl.hpp, while the implemen-
tations are in include/elemental/blas-like/level2/.

4.2.1 Gemv

General matrix-vector multiply: 3 := cop(A)z + By, where op(A) can be A, AT, or A”. Whether or not and y are
stored as row vectors, they will be interpreted as column vectors.

void Gemv (Orientation orientation, T alpha, const Matrix<T>& A, const Matrix<T>& x, T beta, Matrix<T>&

y)
Serial implementation (templated over the datatype).

void Gemv (Orientation orientation, T alpha, const DistMatrix<T>& A, const DistMatrix<T>& x, T beta, Dist-

Matrix<T>& y)
Distributed implementation (templated over the datatype).

4.2.2 Ger

General rank-one update: A := axy™ + A. x and y are free to be stored as either row or column vectors, but they will
be interpreted as column vectors.

void Ger (T alpha, const Matrix<T>& x, const Matrix<T>& y, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Ger (T alpha, const DistMatrix<T>& x, const DistMatrix<T>& y, DistMatrix<T>& A)
The distributed implementation (templated over the datatype).

4.2.3 Gerc

This is the same as Ger (), but the name is provided because it exists in the BLAS.

void Gerc (T alpha, const Matrix<T>& x, const Matrix<T>& y, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Gerc (T alpha, const DistMatrix<T>& x, const DistMatrix<T>& y, DistMatrix<T>& A)
The distributed implementation (templated over the datatype).

4.2.4 Geru

General rank-one update (unconjugated): A := axy” + A. x and y are free to be stored as either row or column
vectors, but they will be interpreted as column vectors.

void Geru (T alpha, const Matrix<T>& x, const Matrix<T>& y, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Geru (T alpha, const DistMatrix<T>& x, const DistMatrix<T>& y, DistMatrix<T>& A)
The distributed implementation (templated over the datatype).

4.2. Level 2 73

https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like_decl.hpp
https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like/level2

Elemental Manual, Release 0.77

4.2.5 Hemv

Hermitian matrix-vector multiply: y := aAx + Sy, where A is Hermitian.

void Hemv (UpperOrLower uplo, T alpha, const Matrix<T>& A, const Matrix<T>& x, T beta, Matrix<T>& y)
The serial implementation (templated over the datatype).

void Hemv (UpperOrLower uplo, T alpha, const DistMatrix<T>& A, const DistMatrix<T>& x, T beta, DistMa-

trix<T>& y)
The distributed implementation (templated over the datatype).

Please see SetLocalHemvBlocksize<T> () and LocalHemvBlocksize<T> () in the Tuning parameters
section for information on tuning the distributed Hemv () .

4.2.6 Her

Hermitian rank-one update: implicitly performs A := axz® + A, where only the triangle of A specified by uplo is
updated.

void Her (UpperOrLower uplo, T alpha, const Matrix<T>& x, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Her (UpperOrLower uplo, T alpha, const DistMatrix<T>& x, DistMatrix<T>& A)
The distributed implementation (templated over the datatype).

4.2.7 Her2

Hermitian rank-two update: implicitly performs A := a(zy™ + yx™) 4 A, where only the triangle of A specified by
uplo is updated.

void Her2 (UpperOrLower uplo, T alpha, const Matrix<T>& x, const Matrix<T>& y, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Her2 (UpperOrLower uplo, T alpha, const DistMatrix<T>& x, const DistMatrix<T>& y, DistMa-

trix<T>& A)
The distributed implementation (templated over the datatype).

4.2.8 Symv

Symmetric matrix-vector multiply: y := aAx + By, where A is symmetric.

void Symv (UpperOrLower uplo, T alpha, const Matrix<T>& A, const Matrix<T>& x, T beta, Matrix<T>& y)
The serial implementation (templated over the datatype).

void Symv (UpperOrLower uplo, T alpha, const DistMatrix<T>& A, const DistMatrix<T>& x, T beta, DistMa-

trix<T>& y)
The distributed implementation (templated over the datatype).

Please see SetLocalSymvBlocksize<T> () and LocalSymvBlocksize<T> () in the Tuning parameters
section for information on tuning the distributed Symv () .

4.2.9 Syr

Symmetric rank-one update: implicitly performs A := axaz” + A, where only the triangle of A specified by uplo is
updated.

74 Chapter 4. Basic linear algebra

Elemental Manual, Release 0.77

void Syr (UpperOrLower uplo, T alpha, const Matrix<T>& x, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Syr (UpperOrLower uplo, T alpha, const DistMatrix<T>& x, DistMatrix<T>& A)
The distributed implementation (templated over the datatype).

4.2.10 Syr2

Symmetric rank-two update: implicitly performs A := a(xy” + yz) 4 A, where only the triangle of A specified by
uplo is updated.

void Syr2 (UpperOrLower uplo, T alpha, const Matrix<T>& x, const Matrix<T>& y, Matrix<T>& A)
The serial implementation (templated over the datatype).

void Syr2 (UpperOrLower uplo, T alpha, const DistMatrix<T>& x, const DistMatrix<T>& y, DistMa-

trix<T>& A)
The distributed implementation (templated over the datatype).

4.2.11 Trmv

Not yet written. Please call Trmm () for now.

4.2.12 Trsv

Triangular solve with a vector: computes := op(A)~ 'z, where op(A) is either A, AT, or A, and A is treated
an either a lower or upper triangular matrix, depending upon uplo. A can also be treated as implicitly having a
unit-diagonal if diag is set to UNIT.

void Trsv (UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, const Matrix<F>& A, Ma-

trix<F>& x)
The serial implementation (templated over the datatype).

void Trsv (UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, const DistMatrix<F>& A, Dist-

Matrix<F>& x)
The distributed implementation (templated over the datatype).

4.3 Level 3

The prototypes for the following routines can be found at include/elemental/blas-like_decl.hpp, while the implemen-
tations are in include/elemental/blas-like/level3/.

4.3.1 Gemm

General matrix-matrix multiplication: updates C' := aop 4 (A)opg(B) + BC, where op , (M) and opz (M) can each
be chosen from M, M7, and MH.

void Gemm (Orientation orientationOfA, Orientation orientationOfB, T alpha, const Matrix<T>& A, const Ma-

trix<T>& B, T beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

void Gemm (Orientation orientationOfA, Orientation orientationOfB, T alpha, const DistMatrix<T>& A, const

DistMatrix<T>& B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

4.3. Level 3 75

https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like_decl.hpp
https://github.com/poulson/Elemental/tree/master/include/elemental/blas-like/level3

Elemental Manual, Release 0.77

4.3.2 Hemm

Hermitian matrix-matrix multiplication: updates C := aAB + BC, or C' := aBA + BC, depending upon whether
side is set to LEFT or RIGHT, respectively. In both of these types of updates, A is implicitly Hermitian and only the
triangle specified by uplo is accessed.

void Hemm (LeftOrRight side, UpperOrLower uplo, T alpha, const Matrix<T>& A, const Matrix<T>& B, T

beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

void Hemm (LeftOrRight side, UpperOrLower uplo, T alpha, const DistMatrix<T>& A, const DistMatrix<T>&

B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

4.3.3 Her2k

Hermitian rank-2K update: updates C' := a(AB® + BAT) + BC, or C := a(A" B + BH A) + BC, depending
upon whether orientation is set to NORMAL or ADJOINT, respectively. Only the triangle of C' specified by the uplo
parameter is modified.

void Her2k (UpperOrLower uplo, Orientation orientation, T alpha, const Matrix<T>& A, const Matrix<T>&

B, T beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

void Her2k (UpperOrLower uplo, Orientation orientation, T alpha, const DistMatrix<T>& A, const DistMa-

trix<T>& B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

Please see SetLocalTrr2kBlocksize<T> () and LocalTrr2kBlocksize<T> () inthe Tuning parameters
section for information on tuning the distributed Her2k ().

4.3.4 Herk

Hermitian rank-K update: updates C' := aAA" + 3C, or C := aA” A + BC, depending upon whether orientation
is set to NORMAL or ADJOINT, respectively. Only the triangle of C' specified by the uplo parameter is modified.

void Herk (UpperOrLower uplo, Orientation orientation, T alpha, const Matrix<T>& A, T beta, Matrix<T>&

The serial implementation (templated over the datatype).

void Herk (UpperOrLower uplo, Orientation orientation, T alpha, const DistMatrix<T>& A, T beta, DistMa-

trix<T>& C)
The distributed implementation (templated over the datatype).

Please see SetLocalTrrkBlocksize<T> () and LocalTrrkBlocksize<T> () in the Tuning parameters
section for information on tuning the distributed Herk ().

4.3.5 Symm

Symmetric matrix-matrix multiplication: updates C' := a«AB + C, or C := aBA + BC, depending upon whether
side is set to LEF'T or RIGHT, respectively. In both of these types of updates, A is implicitly symmetric and only the
triangle specified by uplo is accessed.

void Symm (LeftOrRight side, UpperOrLower uplo, T alpha, const Matrix<T>& A, const Matrix<T>& B, T

beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

76 Chapter 4. Basic linear algebra

Elemental Manual, Release 0.77

void Symm (LeftOrRight side, UpperOrLower uplo, T alpha, const DistMatrix<T>& A, const DistMatrix<T>&

B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

4.3.6 Syr2k

Symmetric rank-2K update: updates C' := a(ABT + BAT) + BC, or C := a(ATB + BT A) + BC, depending
upon whether orientation is set to NORMAL or TRANSPOSE, respectively. Only the triangle of C' specified by the uplo
parameter is modified.

void Syr2k (UpperOrLower uplo, Orientation orientation, T alpha, const Matrix<T>& A, const Matrix<T>&

B, T beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

void Syr2k (UpperOrLower uplo, Orientation orientation, T alpha, const DistMatrix<T>& A, const DistMa-

trix<T>& B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

Please see SetLocalTrr2kBlocksize<T> () and LocalTrr2kBlocksize<T> () inthe Tuning parameters
section for information on tuning the distributed Syr2k ().

4.3.7 Syrk

Symmetric rank-K update: updates C := aAAT 4 BC, or C := a AT A + BC, depending upon whether orientation
is set to NORMAL or TRANSPOSE, respectively. Only the triangle of C specified by the uplo parameter is modified.

void Syrk (UpperOrLower uplo, Orientation orientation, T alpha, const Matrix<T>& A, T beta, Matrix<T>&

C)
The serial implementation (templated over the datatype).

void Syrk (UpperOrLower uplo, Orientation orientation, T alpha, const DistMatrix<T>& A, T beta, DistMa-

trix<T>& C)
The distributed implementation (templated over the datatype).

Please see SetLocalTrrkBlocksize<T> () and LocalTrrkBlocksize<T> () in the Tuning parameters
section for information on tuning the distributed Syrk ().

4.3.8 Trmm

Triangular matrix-matrix multiplication: performs C' := aop(A)B, or C' := aBop(A), depending upon whether side
was chosen to be LEFT or RIGHT, respectively. Whether A is treated as lower or upper triangular is determined by
uplo, and op(A) can be any of A, AT and A" (and diag determines whether A is treated as unit-diagonal or not).

void Trmm (LeftOrRight side, UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, T alpha,

const Matrix<T>& A, Matrix<T>& B)
The serial implementation (templated over the datatype).

void Trmm (LeftOrRight side, UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, T alpha,

const DistMatrix<T>& A, DistMatrix<T>& B)
The distributed implementation (templated over the datatype).

4.3.9 Trr2k

Triangular rank-2k update: performs E := a(op(A)op(B) + op(C)op(D)) + SE, where only the triangle of E
specified by uplo is modified, and op(X) is determined by orientationOfX, for each X € {A, B, C, D}.

4.3. Level 3 77

Elemental Manual, Release 0.77

Note: There is no corresponding BLAS routine, but it is a natural generalization of “symmetric” and “Hermitian”
updates.

void Trr2k (UpperOrLower uplo, Orientation orientationOfA, Orientation orientationOfB, Orientation orien-
tationOfC, Orientation orientationOfD, T alpha, const Matrix<T>& A, const Matrix<T>& B,

const Matrix<T>& C, const Matrix<T>& D, T beta, Matrix<T>& E)
The serial implementation (templated over the datatype).

void Trr2k (UpperOrLower uplo, Orientation orientationOfA, Orientation orientationOfB, Orientation ori-
entationOfC, Orientation orientationOfD, T alpha, const DistMatrix<T>& A, const DistMa-

trix<T>& B, const DistMatrix<T>& C, const DistMatrix<T>& D, T beta, DistMatrix<T>& E)
The distributed implementation (templated over the datatype).

4.3.10 Trrk

Triangular rank-k update: performs C' := aop(A)op(B) + BC, where only the triangle of C specified by uplo is
modified, and op(A) and op(B) are determined by orientationOfA and orientationOfB, respectively.

Note: There is no corresponding BLAS routine, but this type of update is frequently encountered, even in serial. For
instance, the symmetric rank-k update performed during an LDL factorization is symmetric but one of the two update
matrices is scaled by D.

void Trrk (UpperOrLower uplo, Orientation orientationOfA, Orientation orientationOfB, T alpha, const Ma-

trix<T>& A, const Matrix<T>& B, T beta, Matrix<T>& C)
The serial implementation (templated over the datatype).

void Trrk (UpperOrLower uplo, Orientation orientationOfA, Orientation orientationOfB, T alpha, const Dist-

Matrix<T>& A, const DistMatrix<T>& B, T beta, DistMatrix<T>& C)
The distributed implementation (templated over the datatype).

4.3.11 Trirmm

Note: This routine loosely corresponds with the LAPACK routines ?lauum.

Symmetric/Hermitian triangular matrix-matrix multiply: performs L := LTL, L := L¥L, U = UUT, or U :=
UU*H, depending upon the choice of the orientation and uplo parameters.

void Trtrmm (Orientation orientation, UpperOrLower uplo, Matrix<T>& A)

void Trtrmm (Orientation orientation, UpperOrLower uplo, DistMatrix<T>& A)

4.3.12 Trdtrmm

Note: This is a modification of Trtrmm for LDL factorizations.

Symmetric/Hermitian triangular matrix-matrix multiply (with diagonal scaling): performs L := LTD'L, L :=
LED'L,U :=UD U, or U := UD~'U*¥, depending upon the choice of the orientation and uplo parameters.
Note that L and U are unit-diagonal and their diagonal is overwritten with D.

void Trdt rmm (Orientation orientation, UpperOrLower uplo, Matrix<F>& A)

void Trdt rmm (Orientation orientation, UpperOrLower uplo, DistMatrix<F>& A)

78 Chapter 4. Basic linear algebra

Elemental Manual, Release 0.77

4.3.13 Trsm

Triangular solve with multiple right-hand sides: performs C := aop(A)~!B, or C := aBop(A)~!, depending upon
whether side was chosen to be LEFT or RIGHT, respectively. Whether A is treated as lower or upper triangular is
determined by uplo, and op(A) can be any of A, AT, and A (and diag determines whether A is treated as unit-
diagonal or not).

void Trsm (LeftOrRight side, UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, F alpha,
const Matrix<F>& A, Matrix<F>& B)

void Trsm (LeftOrRight side, UpperOrLower uplo, Orientation orientation, UnitOrNonUnit diag, F alpha,
const DistMatrix<F>& A, DistMatrix<F>& B)

4.3.14 Two-sided Trmm

Performs a two-sided triangular multiplication with multiple right-hand sides which preserves the symmetry of the
input matrix, either A := LTALor A:=UAUH,

void TwoSidedTrmm (UpperOrLower uplo, UnitOrNonUnit diag, Matrix<T>& A, const Matrix<T>& B)

void TwoSidedTrmm (UpperOrLower uplo, UnitOrNonUnit diag, DistMatrix<T>& A, const DistMatrix<T>&
B)

4.3.15 Two-sided Trsm

Performs a two-sided triangular solves with multiple right-hand sides which preserves the symmetry of the input
matrix, either A := L='AL " H or A := U7 AU

void TwoSidedTrsm (UpperOrLower uplo, UnitOrNonUnit diag, Matrix<F>& A, const Matrix<F>& B)

void TwoSidedTrsm (UpperOrLower uplo, UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>&
B)

4.4 Tuning parameters

The following tuning parameters have been exposed since they are system-dependent and can have a large
impact on performance. The first two sets of tuning parameters, those of LocalHemvBlocksize and
LocalSymvBlocksize, should probably be combined.

4.4.1 LocalHemvBlocksize

void SetLocalHemvBlocksize<T> (int blocksize)
Sets the local blocksize for the distributed Hemv () routine for datatype T. It is set to 64 by default and is
important for the reduction of a complex Hermitian matrix to real symmetric tridiagonal form.

int LocalHemvBlocksize<T> ()
Retrieves the local Hemv () blocksize for datatype T.

4.4.2 LocalSymvBlocksize

void SetLocalSymvBlocksize<T> (int blocksize)
Sets the local blocksize for the distributed Symv () routine for datatype T. It is set to 64 by default and is
important for the reduction of a real symmetric matrix to symmetric tridiagonal form.

4.4. Tuning parameters 79

Elemental Manual, Release 0.77

int LocalSymvBlocksize<T> ()
Retrieves the local Symv () blocksize for datatype T.

4.4.3 LocalTrrkBlocksize

void SetLocalTrrkBlocksize<T> (int blocksize)
Sets the local blocksize for the distributed internal: :LocalTrrk routine for datatype T. It is set to 64
by default and is important for routines that perform distributed Syrk () or Herk () updates, e.g., Cholesky
factorization.

int LocalTrrkBlocksize<T> ()
Retrieves the local blocksize for the distributed internal: : LocalTrrk routine for datatype T.

4.4.4 LocalTrr2kBlocksize

void SetLocalTrr2kBlocksize<T> (int blocksize)
Sets the local blocksize for the distributed internal: : LocalTrr2k routine for datatype T. It is set to 64 by
default and is important for routines that perform distributed Syr2k () or Her2k () updates, e.g., Householder
tridiagonalization.

int LocalTrr2kBlocksize<T> ()
Retrieves the local blocksize for the distributed internal: : LocalTrr2k routine for datatype T.

80 Chapter 4. Basic linear algebra

CHAPTER
FIVE

HIGH-LEVEL LINEAR ALGEBRA

This chapter describes all of the linear algebra operations which are not basic enough to fall within the BLAS (Basic
Linear Algebra Subprograms) framework. In particular, algorithms which would traditionally have fallen into the
domain of LAPACK (Linear Algebra PACKage), such as factorizations and eigensolvers, are placed here.

5.1 Invariants, inner products, and divergences

5.1.1 Condition number

Returns the two-norm condition number

ka(A) = || All2| A7 2.

typename Base<F>::type ConditionNumber (const Matrix<F>& A)

typename Base<F>::type ConditionNumber (const DistMatrix<F, U, V>& A)

5.1.2 Determinant

Though there are many different possible definitions of the determinant of a matrix A € F"*", the simplest one is in
terms of the product of the eigenvalues (including multiplicity):

n—1
det(A) = [T M-
1=0

Since det(AB) = det(A)det(B), we can compute the determinant of an arbitrary matrix in O(n?®) work by comput-
ing its LU decomposition (with partial pivoting), PA = LU, recognizing that det(P) = =£1 (the signature of the
permutation), and computing

n—1

det(A) = det(P)det(L)det(U) = det(P) ﬁ vii =+ [] v,
1=0 1=0

where v; ; is the i’th diagonal entry of U.
F Determinant (const Matrix<F>& A)
F Determinant (const DistMatrix<F>& A)

F Determinant (Matrix<F>& A, bool canOverwrite=false)

81

Elemental Manual, Release 0.77

F Determinant (DistMatrix<F>& A, bool canOverwrite=false)
Returns the determinant of the (fully populated) square matrix A. Some of the variants allow for overwriting the
input matrix in order to avoid forming another temporary matrix.

type struct SafeProduct<F>
Represents the product of n values as p exp(xn), where |p| < 1and x € R.

F rho
For nonzero values, rho is the modulus and lies on the unit circle; in order to represent a value that is
precisely zero, rho is set to zero.

typename Base<F>::type kappa
kappa can be an arbitrary real number.

intn
The number of values in the product.

SafeProduct<F> SafeDeterminant (const Matrix<F>& A)
SafeProduct<F> SafeDeterminant (const DistMatrix<F>& A)
SafeProduct<F> SafeDeterminant (Matrix<F>& A, bool canOverwrite=false)

SafeProduct<F> SafeDeterminant (DistMatrix<F>& A, bool canOverwrite=false)
Returns the determinant of the square matrix A in an expanded form which is less likely to over/under-flow.

5.1.3 HPDDeterminant

A version of the above determinant specialized for Hermitian positive-definite matrices (which will therefore have all
positive eigenvalues and a positive determinant).

typename Base<F>::type HPDDeterminant (UpperOrLower uplo, const Matrix<F>& A)
typename Base<F>::type HPDDeterminant (UpperOrLower uplo, const DistMatrix<F>& A)

typename Base<F>::type HPDDeterminant (UpperOrLower uplo, Matrix<F>& A, bool canOverwrite=false
)

typename Base<F>::type HPDDeterminant (UpperOrLower uplo, DistMatrix<F>& A, bool canOver-

write=false)
Returns the determinant of the (fully populated) Hermitian positive-definite matrix A. Some of the variants allow

for overwriting the input matrix in order to avoid forming another temporary matrix.
SafeProduct<F> SafeHPDDeterminant (UpperOrLower uplo, const Matrix<F>& A)
SafeProduct<F> SafeHPDDeterminant (UpperOrLower uplo, const DistMatrix<F>& A)
SafeProduct<F> SafeHPDDeterminant (UpperOrLower uplo, Matrix<F>& A, bool canOverwrite=false)

SafeProduct<F> SafeHPDDeterminant (UpperOrLower uplo, DistMatrix<F>& A, bool canOver-

write=false)
Returns the determinant of the Hermitian positive-definite matrix A in an expanded form which is less likely to

over/under-flow.

5.1.4 LogBarrier

Uses a careful calculation of the log of the determinant in order to return the log barrier of a Hermitian positive-definite
matrix A, — log(det(A)).
typename Base<F>::type LogBarrier (UpperOrLower uplo, const Matrix<F>& A)

typename Base<F>::type LogBarrier (UpperOrLower uplo, const DistMatrix<F>& A)

82 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

typename Base<F>::type LogBarrier (UpperOrLower uplo, Matrix<F>& A, bool canOverwrite=false)

typename Base<F>::type LogBarrier (UpperOrLower uplo, DistMatrix<F>& A, bool canOverwrite=false)

5.1.5 LogDetDivergence
The log-det divergence of a pair of n x n Hermitian positive-definite matrices A and B is
Dia(A, B) = tr(AB™') — log(det(AB™1)) — n,

which can be greatly simplified using the Cholesky factors of A and B. In particular, if we set Z = LglL A, Where
A= LaLf and B = Lp LY are Cholesky factorizations, then

Du(A, B) = |Z|[3 - 2log(det(2)) — n.

typename Base<F>::type LogDetDivergence (UpperOrLower uplo, const Matrix<F>& A, const Ma-

trix<F>& B)

typename Base<F>::type LogDetDivergence (UpperOrLower uplo, const DistMatrix<F>& A, const Dist-
Matrix<F>& B)

5.1.6 Norm

The following routines can return either ||Al|1, ||Alloo ||A||# (the Frobenius norm), the maximum entrywise norm,

A2, or || Al|« (the nuclear/trace norm) of fully-populated matrices.
typename Base<F>::type Norm (const Matrix<F>& A, NormType type=FROBENIUS_NORM)
typename Base<F>::type Norm (const DistMatrix<F, U, V>& A, NormType type=FROBENIUS_NORM)

5.1.7 HermitianNorm

Same as Norm (), but the (distributed) matrix is implicitly Hermitian with the data stored in the triangle specified
by UpperOrLower. Also, while Norm () supports every type of distribution, HermitianNorm () currently only
supports the standard matrix distribution.

typename Base<F>::type HermitianNorm (UpperOrLower uplo, const Matrix<F>& A, NormType
type=FROBENIUS_NORM)

typename Base<F>::type HermitianNorm (UpperOrLower uplo, const DistMatrix<F>& A, NormType
type=FROBENIUS_NORM)

5.1.8 SymmetricNorm

Same as Norm (), but the (distributed) matrix is implicitly symmetric with the data stored in the triangle specified
by UpperOrLower. Also, while Norm () supports every type of distribution, Symmet ricNorm () currently only
supports the standard matrix distribution.

typename Base<F>::type SymmetricNorm (UpperOrLower uplo, const Matrix<F>& A, NormType
type=FROBENIUS_NORM)

typename Base<F>::type SymmetricNorm (UpperOrLower uplo, const DistMatrix<F>& A, NormType
type=FROBENIUS_NORM)

5.1. Invariants, inner products, and divergences 83

Elemental Manual, Release 0.77

5.1.9 Two-norm estimates

Since the two-norm is extremely useful, but expensive to compute, it is useful to be able to compute rough lower and
upper bounds for it. The following routines provide cheap, rough estimates. The ability to compute sharper estimates
will likely be added later.

typename Base<F>::type TwoNormLowerBound (const Matrix<F>& A)

typename Base<F>::type TwoNormLowerBound (const DistMatrix<F>& A)
Return the tightest lower bound on || A||2 implied by the following inequalities:

14112 2 14l
1

Allg > —||Alloo,

4l = =14

1
412> Al and

1

Allg > ———
14112 = min(m, n)

1Al 7

typename Base<F>::type TwoNormUpperBound (const Matrix<F>& A)

typename Base<F>::type TwoNormUpperBound (const DistMatrix<F>& A)
Return the tightest upper bound on || A||2 implied by the following inequalities:

[All2 < vVmn| Allmax
[All2 < Vm|| Al

[A]l2 < V[All1, and

[All2 < VAl Allo-

5.1.10 Trace

The two equally useful definitions of the trace of a square matrix A € F"*™ are

n—1 n—1
tr(A) = Z Q5 = Z iy
=0 =0

where «; ; is the i’th diagonal entry of A and J; is the i’th eigenvalue (counting multiplicity) of A.
Clearly the former equation is easier to compute, but the latter is an important characterization.
F Trace (const Matrix<F>& A)

F Trace (const DistMatrix<F>& A)
Return the trace of the square matrix A.

84 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

5.1.11 HilbertSchmidt

The Hilbert-Schmidt inner-product of two m x n matrices A and B is tr(A” B).
F HilbertSchmidt (const Matrix<F>& A, const Matrix<F>& B)
F HilbertSchmidt (const DistMatrix<F, U, V>& A, const DistMatrix<F, U, V>& B)

5.2 Factorizations

5.2.1 Cholesky factorization

It is well-known that Hermitian positive-definite (HPD) matrices can be decomposed into the form A = LLH or
A =UH"U, where L = U is lower triangular, and Cholesky factorization provides such an L (or U) given an HPD
A. If A is found to be numerically indefinite, then a NonHPDMat rixException will be thrown.

void Cholesky (UpperOrLower uplo, Matrix<F>& A)

void Cholesky (UpperOrLower uplo, DistMatrix<F>& A)
Overwrite the uplo triangle of the HPD matrix A with its Cholesky factor.

Note: See HPSDCholesky () for a generalization which also works for semi-definite matrices.

5.2.2 [DL" factorization

Though the Cholesky factorization is ideal for most HPD matrices, there exist many Hermitian matrices whose eigen-
values are not all positive. The LDL* factorization exists as slight relaxation of the Cholesky factorization, i.e.,
it computes lower-triangular (with unit diagonal) L and diagonal D such that A = LDLY. If A is found to be
numerically singular, then a SingularMatrixException will be thrown.

Warning: The following routines do not pivot, so please use with caution.

void LDLH (Matrix<F>& A)

void LDLH (DistMatrix<F>& A)
Overwrite the strictly lower triangle of A with the strictly lower portion of L (L implicitly has ones on its
diagonal) and the diagonal with D.

void LDLH (Matrix<F>& A, Matrix<F>& d)

void LDLH (DistMatrix<F>& A, DistMatrix<F, MC, STAR>& d)
Same as above, but also return the diagonal in the column vector d.

5.2.3 LDL™ factorization

While the LD L™ factorization targets Hermitian matrices, the LDL” factorization targets symmetric matrices. If A
is found to be numerically singular, then a SingularMatrixException will be thrown.

Warning: The following routines do not pivot, so please use with caution.

void LDLT (Matrix<F>& A)

5.2. Factorizations 85

Elemental Manual, Release 0.77

void LDLT (DistMatrix<F>& A)
Overwrite the strictly lower triangle of A with the strictly lower portion of L (L implicitly has ones on its
diagonal) and the diagonal with D.

void LDLT (Matrix<F>& A, Matrix<F>& d)

void LDLT (DistMatrix<F>& A, DistMatrix<F, MC, STAR>& d)
Same as above, but also return the diagonal in the vector d.

5.2.4 LU factorization

Froxmin(m,n) ,n4q upper-

Given A € F™*" an LU factorization (without pivoting) finds a unit lower-trapezoidal L €
trapezoidal U € FMIN(m.n)xn gych that A = LU. Since L is required to have its diaganal entries set to one: the upper
portion of A can be overwritten with U, and the strictly lower portion of A can be overwritten with the strictly lower

portion of L. If A is found to be numerically singular, then a SingularMatrixException will be thrown.
void LU (Matrix<F>& A)

void LU (DistMatrix<F>& A)
Overwrites A with its LU decomposition.

Since LU factorization without pivoting is known to be unstable for general matrices, it is standard practice to pivot
the rows of A during the factorization (this is called partial pivoting since the columns are not also pivoted). An
LU factorization with partial pivoting therefore computes P, L, and U such that PA = LU, where L and U are as
described above and P is a permutation matrix.

void LU (Matrix<F>& A, Matrix<int>& p)

void LU (DistMatrix<F>& A, DistMatrix<F, VC, STAR>& p)
Overwrites the matrix A with the LU decomposition of P A, where P is represented by the pivot vector p.

5.2.5 L() factorization

Given A € F™*", an LQ factorization typically computes an implicit unitary matrix Q € F"*" such that L = AQ¥

is lower trapezoidal. One can then form the thin factors L € FroxMin(m.n) ang Qe Fmin(m,n)xn by setting L and Q)
to first min(m, n) columns and rows of L and Q, respectively. Upon completion L is stored in the lower trapezoid of
A and the Householder reflectors representing () are stored within the rows of the strictly upper trapezoid.

void LQ (Matrix<R>& A)

void LQ (DistMatrix<R>& A) X
Overwrite the real matrix A with L and the Householder reflectors representing ().

void LQ (Matrix<Complex<R>>& A, Matrix<Complex<R>>& ¢)

void LQ (DistMatrix<Complex<R>>& A, DistMatrix<Complex<R>, MD, STAR>& ¢)
Overwrite the complex matrix A with L and the Householder reflectors representing Q; unlike the real case,
phase information is needed in order to define the (generalized) Householder transformations and is stored in
the column vector ¢.

5.2.6 QR factorization

Given A € F™*", a QR factorization typically computes an implicit unitary matrix Qe ™™ such that R=0QHA
is upper trapezoidal. One can then form the thin factors) € Fm>MIN(m.n) and R ¢ FMINmn) X7 by setting @ and
R to first min(m, n) columns and rows of Q and R, respectively. Upon completion R is stored in the upper trapezoid
of A and the Householder reflectors representing Q are stored within the columns of the strictly lower trapezoid.

86 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

void QR (Matrix<R>& A)

void QR (DistMatrix<R>& A) R
Overwrite the real matrix A with R and the Householder reflectors representing Q).

void QR (Matrix<Complex<R>>& A, Matrix<Complex<R>>& t)

void QR (DistMatrix<Complex<R>>& A, DistMatrix<Complex<R>, MD, STAR>& t)
Overwrite the complex matrix A with R and the Householder reflectors representing Q; unlike the real case,
phase information is needed in order to define the (generalized) Householder transformations and is stored in
the column vector .

5.3 Linear solvers

5.3.1 Cholesky solve

Solves AX = B for X given Hermitian positive-definite (HPD) A and right-hand side matrix B. The solution
is computed by first finding the Cholesky factorization of A and then performing two successive triangular solves
against B:

B:=A'B=(LL™)"'B=L""L7'B

void CholeskySolve (UpperOrLower uplo, Matrix<F>& A, Matrix<F>& B)

void CholeskySolve (UpperOrLower uplo, DistMatrix<F>& A, DistMatrix<F>& B)
Overwrite B with the solution to AX = B, where A is Hermitian positive-definite and only the triangle of A
specified by uplo is accessed.

5.3.2 Gaussian elimination

Solves AX = B for X given a general square nonsingular matrix A and right-hand side matrix B. The solution is
computed through (partially pivoted) Gaussian elimination.

void GaussianElimination (Matrix<F>& A, Matrix<F>& B)

void GaussianElimination (DistMatrix<F>& A, DistMatrix<F>& B)
Upon completion, A will have been overwritten with Gaussian elimination and B will be overwritten with X.

5.3.3 Householder solve

Solves AX = B or A" X = B for X in a least-squares sense given a general full-rank matrix A € F™*"_ If m > n,
then the first step is to form the QR factorization of A, otherwise the LQ factorization is computed.

s If solving AX = B, then either X = R™'Q¥Bor X = QF L' B.
* If solving A” X = B, then either X = QR Bor X = L HQB.
void HouseholderSolve (Orientation orientation, Matrix<F>& A, const Matrix<F>& B, Matrix<F>& X)

void HouseholderSolve (Orientation orientation, DistMatrix<F>& A, const DistMatrix<F>& B, DistMa-

) trix<F>& X))
If orientation is set to NORMAL, then solve AX = B, otherwise orientation must be equal to ADJOINT and

AT X = B will be solved. Upon completion, A is overwritten with its QR or LQ factorization, and X is
overwritten with the solution.

5.3. Linear solvers 87

Elemental Manual, Release 0.77

5.3.4 Solve after Cholesky

Uses an in-place Cholesky factorization to solve against one or more right-hand sides.

void SolveAfterCholesky (UpperOrLower uplo, Orientation orientation, const Matrix<F>& A, Ma-

trix<F>& B)
void SolveAfterCholesky (UpperOrLower uplo, Orientation orientation, const DistMatrix<F>& A, Dist-
Matrix<F>& B)
Update B := A7 1B, B:= ATB, or B := A—H B, where one triangle of A has been overwritten with its

Cholesky factor.

5.3.5 Solve after LU

Uses an in-place LU factorization (with or without partial pivoting) to solve against one or more right-hand sides.
void SolveAfterLU (Orientation orientation, const Matrix<F>& A, Matrix<F>& B)

void SolveAfterLU (Orientation orientation, const DistMatrix<F>& A, DistMatrix<F>& B)
Update B := A™'B, B:= A" B, or B := A" B, where A has been overwritten with its LU factors (without
partial pivoting).

void SolveAfterLU (Orientation orientation, const Matrix<F>& A, const Matrix<int>& p, Matrix<F>& B)

void SolveAfterLU (Orientation orientation, const DistMatrix<F>& A, const DistMatrix<int, VC, STAR>&
p, DistMatrix<F>& B)
Update B := A™'B, B := A~TB, or B := A~H B, where A has been overwritten with its LU factors with
partial pivoting, which satisfy PA = LU, where the permutation matrix P is represented by the pivot vector p.

5.4 Factorization-based inversion

5.4.1 General inversion

This routine computes the in-place inverse of a general fully-populated (invertible) matrix A as
ATt =U"L7P,

where PA = LU is the result of LU factorization with partial pivoting. The algorithm essentially factors A, inverts U
in place, solves against L one block column at a time, and then applies the row pivots in reverse order to the columns
of the result.

void Inverse (Matrix<F>& A)
Overwrites the general matrix A with its inverse.

void Inverse (DistMatrix<F>& A)
The same as above, but for distributed matrices.

5.4.2 HPD inversion

This routine uses a custom algorithm for computing the inverse of a Hermitian positive-definite matrix A as
A71 _ (LLH)71 _ L*HLfl,

where L is the lower Cholesky factor of A (the upper Cholesky factor is computed in the case of upper-triangular
storage). Rather than performing Cholesky factorization, triangular inversion, and then the Hermitian triangular outer
product in sequence, this routine makes use of the single-sweep algorithm described in Bientinesi et al.’s “Families of

88 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

algorithms related to the inversion of a symmetric positive definite matrix”, in particular, the variant 2 algorithm from
Fig. 9.

If the matrix is found to not be HPD, then a NonHPDMat rixExcept ion is thrown.

void HPDInverse (UpperOrLower uplo, Matrix<F>& A)
Overwrite the uplo triangle of the HPD matrix A with the same triangle of the inverse of A.

void HPDInverse (UpperOrLower uplo, DistMatrix<F>& A)
Same as above, but for a distributed matrix.

5.4.3 Triangular inversion

Inverts a (possibly unit-diagonal) triangular matrix in-place.

void TriangularInverse (UpperOrLower uplo, UnitOrNonUnit diag, Matrix<F>& A)
Inverts the triangle of A specified by the parameter uplo; if diag is set to UNIT, then A is treated as unit-diagonal.

void TriangularInverse (UpperOrLower uplo, UnitOrNonUnit diag, DistMatrix<F>& A)
Same as above, but for a distributed matrix.

5.5 Reduction to condensed form

5.5.1 Hermitian to tridiagonal

The currently best-known algorithms for computing eigenpairs of dense Hermitian matrices begin by performing
a unitary similarity transformation which reduces the matrix to real symmetric tridiagonal form (usually through
Householder transformations). This routine performs said reduction on a Hermitian matrix and stores the scaled
Householder vectors in place of the introduced zeroes.

void HermitianTridiag (UpperOrLower uplo, Matrix<R>& A)
Overwrites the main and sub (super) diagonal of the real matrix A with its similar symmetric tridiagonal matrix
and stores the scaled Householder vectors below (above) its tridiagonal entries.

void HermitianTridiag (UpperOrLower uplo, Matrix<Complex<R>>& A, Matrix<Complex<R>>& t)
Similar to above, but the complex Hermitian matrix is reduced to real symmetric tridiagonal form, with the
added complication of needing to also store the phase information for the Householder vectors (the scaling can
be inferred since the Householder vectors must be unit length); the scales with proper phases are returned in the
column vector ?.

void HermitianTridiag (UpperOrLower uplo, DistMatrix<R>& A)
Overwrites the main and sub (super) diagonal of the real distributed matrix A with its similar symmetric tridiag-
onal matrix and stores the scaled Householder vectors below (above) its tridiagonal entries.

void HermitianTridiag (UpperOrLower uplo, DistMatrix<Complex<R>>& A, DistMatrix<Complex<R>,

STAR, STAR>& t)
Similar to above, but the complex Hermitian matrix is reduced to real symmetric tridiagonal form, with the

added complication of needing to also store the phase information for the Householder vectors (the scaling can
be inferred since the Householder vectors must be unit length); the scales with proper phases are returned in the
column vector ¢.

Please see the Tuning parameters section for extensive information on maximizing the performance of Householder
tridiagonalization.

5.5. Reduction to condensed form 89

Elemental Manual, Release 0.77

5.5.2 General to Hessenberg

Not yet written, but it is planned and relatively straightforward after writing the reductions to tridiagonal and bidiagonal
form.

5.5.3 General to bidiagonal

Reduces a general fully-populated m x n matrix to bidiagonal form through two-sided Householder transformations;
when the m > n, the result is upper bidiagonal, otherwise it is lower bidiagonal. This routine is most commonly used
as a preprocessing step in computing the SVD of a general matrix.

void Bidiag (Matrix<R>& A)
Overwrites the main and sub (or super) diagonal of the real matrix A with the resulting bidiagonal matrix and
stores the scaled Householder vectors in the remainder of the matrix.

void Bidiag (Matrix<Complex<R>>& A, Matrix<Complex<R>>& ¢P, Matrix<Complex<R>>& tQ)
Same as above, but the complex scalings for the Householder reflectors are returned in the vectors ¢P and Q.

void Bidiag (DistMatrix<R>& A)
Overwrites the main and sub (or super) diagonal of the real distributed matrix A with the resulting bidiagonal
matrix and stores the scaled Householder vectors in the remainder of the matrix.

Note: The m < n case is not yet supported.

void Bidiag (DistMatrix<Complex<R>>& A, DistMatrix<Complex<R>, STAR, STAR>& tP, DistMa-

trix<Complex<R>, STAR, STAR>& tQ)
Same as above, but the complex scalings for the Householder reflectors are returned in the vectors ¢P and rQ.

Note: The m < n case is not yet supported.

5.6 Eigensolvers and SVD

5.6.1 Hermitian eigensolver

Elemental provides a collection of routines for both full and partial solution of the Hermitian eigenvalue problem
AZ = ZQ,
where A is the given Hermitian matrix, and unitary Z and real diagonal € are sought. In particular, with the eigenvalues
and corresponding eigenpairs labeled in non-decreasing order, the three basic modes are:
1. Compute all eigenvalues or eigenpairs, {w; }1'—; or {(z;,w;)}1=y -

2. Compute the eigenvalues or eigenpairs with a given range of indices, say {w; }?_, or {(z;,w;)}_,, with 0 <

i=a’
a<b<n.

3. Compute all eigenpairs (or just eigenvalues) with eigenvalues lying in a particular half-open interval, either
{wi [wi € (a,b]} or {(z,wi) | wi € (a,b]}.

As of now, all three approaches start with Householder tridiagonalization (ala HermitianTridiag ()) and then
call Matthias Petschow and Paolo Bientinesi’s PMRRR for the tridiagonal eigenvalue problem.

90 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

Note: Please see the Tuning parameters section for information on optimizing the reduction to tridiagonal form, as it
is the dominant cost in all of Elemental’s Hermitian eigensolvers.

Full spectrum computation

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w)
Compute the full set of eigenvalues of the double-precision real symmetric distributed matrix A.

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w)
Compute the full set of eigenvalues of the double-precision complex Hermitian distributed matrix A.

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w,

DistMatrix<double>& Z)
Compute the full set of eigenpairs of the double-precision real symmetric distributed matrix A.

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z)
Compute the full set of eigenpairs of the double-precision complex Hermitian distributed matrix A.

Index-based subset computation

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w,

int a, int b)
Compute the eigenvalues of a double-precision real symmetric distributed matrix A with indices in the range

a,a+1,...,b.

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w, int a, int b)
Compute the eigenvalues of a double-precision complex Hermitian distributed matrix A with indices in the range

a,a+1,..0b.

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w,

DistMatrix<double>& Z, int a, int b)
Compute the eigenpairs of a double-precision real symmetric distributed matrix A with indices in the range

a,a+1,...,b.

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z)
Compute the eigenpairs of a double-precision complex Hermitian distributed matrix A with indices in the range

a,a+1,...,b.

Range-based subset computation

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w,

double a, double b)
Compute the eigenvalues of a double-precision real symmetric distributed matrix A lying in the half-open inter-

val (a, b].

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w, double a, double b)
Compute the eigenvalues of a double-precision complex Hermitian distributed matrix A lying in the half-open

interval (a, b].

void HermitianEig (UpperOrLower uplo, DistMatrix<double>& A, DistMatrix<double, VR, STAR>& w,

DistMatrix<double>& Z, double a, double b)
Compute the eigenpairs of a double-precision real symmetric distributed matrix A with eigenvalues lying in the

half-open interval (a, b].

5.6. Eigensolvers and SVD 91

Elemental Manual, Release 0.77

void HermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& A, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z)
Compute the eigenpairs of a double-precision complex Hermitian distributed matrix A with eigenvalues lying in

the half-open interval (a, b].

Sorting the eigenvalues/eigenpairs
Since extra time is required in order to sort the eigenvalues/eigenpairs, they are not sorted by default. However, this
can be remedied by the appropriate routine from the following list:

void SortEig (DistMatrix<R, VR, STAR>& w)
Sort a column-vector of real eigenvalues into non-decreasing order.

void SortEig (DistMatrix<R, VR, STAR>& w, DistMatrix<R>& Z)
Sort a set of real eigenpairs into non-decreasing order (based on the eigenvalues).

void SortEig (DistMatrix<R, VR, STAR>& w, DistMatrix<Complex<R>>& Z)
Sort a set of real eigenvalues and complex eigenvectors into non-decreasing order (based on the eigenvalues).

5.6.2 Skew-Hermitian eigensolver

Essentially identical to the Hermitian eigensolver, HermitianEig (); for any skew-Hermitian matrix G, iG is
Hermitian, as

(G = —iGH =iG.
This fact implies a fast method for solving skew-Hermitian eigenvalue problems:
1. Form iG in O(n?) work (switching to complex arithmetic in the real case)
2. Run a Hermitian eigensolve on iG, yielding iG = ZQZH.
3. Recognize that G = Z(—iQ) ZH provides an EVD of G.

Please see the HermitianEig () documentation for more details.

Note: Please see the Tuning parameters section for information on optimizing the reduction to tridiagonal form, as it
is the dominant cost in all of Elemental’s Hermitian eigensolvers.

Full spectrum computation

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wilmag)
Compute the full set of eigenvalues of the double-precision real skew-symmetric distributed matrix G.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wimag)
Compute the full set of eigenvalues of the double-precision complex skew-Hermitian distributed matrix G.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wlmag, DistMatrix<Complex<double>>& Z)
Compute the full set of eigenpairs of the double-precision real skew-symmetric distributed matrix G.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wimag, DistMatrix<Complex<double>>& Z)
Compute the full set of eigenpairs of the double-precision complex skew-Hermitian distributed matrix G.

92 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

Index-based subset computation

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wlmag, int a, int b)
Compute the eigenvalues of a double-precision real skew-symmetric distributed matrix G with indices in the

range a,a+ 1,...,b.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wlmag, int a, int b)
Compute the eigenvalues of a double-precision complex skew-Hermitian distributed matrix G with indices in

the range a,a + 1, ..., b.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wImag, DistMatrix<Complex<double>>& Z, int a, int b)
Compute the eigenpairs of a double-precision real skew-symmetric distributed matrix G with indices in the

range a,a + 1, ..., b.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wimag, DistMatrix<Complex<double>>& Z)
Compute the eigenpairs of a double-precision complex skew-Hermitian distributed matrix G with indices in the

range a,a + 1,...,b.

Range-based subset computation

void SkewHermitianEig (UpperOrLower wuplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wlmag, double a, double b)
Compute the eigenvalues of a double-precision real skew-symmetric distributed matrix G lying in the half-open

interval (a, bli.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wimag, double a, double b)
Compute the eigenvalues of a double-precision complex skew-Hermitian distributed matrix G lying in the half-

open interval (a, b]i.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<double>& G, DistMatrix<double, VR,

STAR>& wlmag, DistMatrix<Complex<double>>& Z, double a, double b)
Compute the eigenpairs of a double-precision real skew-symmetric distributed matrix G with eigenvalues lying

in the half-open interval (a, b]i.

void SkewHermitianEig (UpperOrLower uplo, DistMatrix<Complex<double>>& G, DistMatrix<double,

VR, STAR>& wimag, DistMatrix<Complex<double>>& Z)
Compute the eigenpairs of a double-precision complex skew-Hermitian distributed matrix G with eigenvalues

lying in the half-open interval (a, b]i.

5.6.3 Hermitian generalized-definite eigensolvers
The following Hermitian generalized-definite eigenvalue problems frequently appear, where both A and B are Hermi-
tian, and B is additionally positive-definite:
ABzx = wz,
which is denoted with the value ABX via the HermitianGenDefiniteEigType enum,
BAx = wz,
which uses the BAX value, and finally
Ax = wBz,

which uses the AXBX enum value.

5.6. Eigensolvers and SVD 93

Elemental Manual, Release 0.77

type HermitianGenDefiniteEigType
An enum for specifying either the ABX, BAX, or AXBX generalized eigenvalue problems (described above).

Full spectrum computation

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType fype, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w)
Compute the full set of eigenvalues of a generalized EVP involving the double-precision real symmetric dis-

tributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<xComplex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w)
Compute the full set of eigenvalues of a generalized EVP involving the double-precision complex Hermitian

distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z)
Compute the full set of eigenpairs of a generalized EVP involving the double-precision real symmetric dis-

tributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trixxComplex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w, DistMatrix<double>& Z)
Compute the full set of eigenpairs of a generalized EVP involving the double-precision complex Hermitian

distributed matrices A and B, where B is also positive-definite.

Index-based subset computation

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w, int a, int b)
Compute the eigenvalues with indices in the range a,a + 1, ..., b of a generalized EVP involving the double-

precision real symmetric distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<Complex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w, int a, int b)
Compute the eigenvalues with indices in the range a,a + 1, ...,b of a generalized EVP involving the double-

precision complex Hermitian distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z, int a, int b)
Compute the eigenpairs with indices in the range a,a + 1,...,b of a generalized EVP involving the double-

precision real symmetric distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<Complex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w, DistMatrix<double>& Z)
Compute the eigenpairs with indices in the range a,a + 1,...,b of a generalized EVP involving the double-

precision complex Hermitian distributed matrices A and B, where B is also positive-definite.

94 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

Range-based subset computation

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType fype, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w, double a, double b)
Compute the eigenvalues lying in the half-open interval (a,b] of a generalized EVP involving the double-

precision real symmetric distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<Complex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w, double a, double b)
Compute the eigenvalues lying in the half-open interval (a,b] of a generalized EVP involving the double-

precision complex Hermitian distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trix<double>& A, DistMatrix<double>& B, DistMatrix<double, VR,

STAR>& w, DistMatrix<double>& Z, double a, double b)
Compute the eigenpairs whose eigenvalues lie in the half-open interval (a, b] of a generalized EVP involving the

double-precision real symmetric distributed matrices A and B, where B is also positive-definite.

void HermitianGenDefiniteEig (HermitianGenDefiniteEigType type, UpperOrLower uplo, DistMa-
trixxComplex<double>>& A, DistMatrix<Complex<double>>& B,

DistMatrix<double, VR, STAR>& w, DistMatrix<double>& Z)
Compute the eigenpairs whose eigenvalues lie in the half-open interval (a, b] of a generalized EVP involving the

double-precision complex Hermitian distributed matrices A and B, where B is also positive-definite.

5.6.4 Unitary eigensolver

Not yet written, will likely be based on Ming Gu’s unitary Divide and Conquer algorithm for unitary Hessenberg
matrices.

5.6.5 Normal eigensolver

Not yet written, will likely be based on Angelika Bunse-Gerstner et al.’s Jacobi-like method for simultaneous diago-
nalization of the commuting Hermitian and skew-Hermitian portions of the matrix.

5.6.6 Schur decomposition

Not yet written, will likely eventually include Greg Henry et al.’s and Robert Granat et al.’s approaches.

5.6.7 Hermitian SVD

Given an eigenvalue decomposition of a Hermitian matrix A, say
A=VAVE,

where V' is unitary and A is diagonal and real. Then an SVD of A can easily be computed as
A=U|AVEH,

where the columns of U equal the columns of V', modulo sign flips introduced by negative eigenvalues.

5.6. Eigensolvers and SVD 95

Elemental Manual, Release 0.77

void HermitianSVD (UpperOrLower uplo, DistMatrix<F>& A, DistMatrix<typename Base<F>::type, VR,

STAR>& s, DistMatrix<F>& U, DistMatrix<F>& V)
Return a vector of singular values, s, and the left and right singular vector matrices, U and V, such that A =

Udiag(s)V.

void HermitianSingularValues (UpperOrLower uplo, DistMatrix<F>& A, DistMatrix<typename

Base<F>::type, VR, STAR>& s)
Return the singular values of A in s. Note that the appropriate triangle of A is overwritten during computation.

5.6.8 Polar decomposition

Every matrix A can be written as A = Q) P, where () is unitary and P is Hermitian and positive semi-definite. This is
known as the polar decomposition of A and can be constructed as Q := UV and P := VXV where A = UXVH
is the SVD of A. Alternatively, it can be computed through Halley iteration.

void Polar (Matrix<F>& A, Matrix<F>& P)

void Polar (DistMatrix<F>& A, DistMatrix<F>& P)
Compute the polar decomposition of A, A = Q P, returning () within A and P within P. The current implemen-
tation first computes the SVD.

void Halley (Matrix<F>& A, typename Base<F>::type upperBound)

void Halley (DistMatrix<F>& A, typename Base<F>::type upperBound)
Overwrites A with the) from the polar decomposition using a simple QR-based Halley iteration. TODO:
better explanation

void QDWH (Matrix<F>& A, typename Base<F>::type lowerBound, typename Base<F>::type upperBound)

void QDWH (DistMatrix<F>& A, typename Base<F>::type lowerBound, typename Base<F>::type upperBound)
Overwrites A with the) from the polar decomposition using a QR-based dynamically weighted Halley iteration.
TODO: better explanation

5.6.9 SVD

Given a general matrix A, the Singular Value Decomposition is the triplet (U, X, V') such that
A=UsV",
where U and V' are unitary, and ¥ is diagonal with non-negative entries.

void SVD (Matrix<F>& A, Matrix<typename Base<F>::type>& s, Matrix<F>& V)

void SVD (DistMatrix<F>& A, DistMatrix<typename Base<F>::type, VR, STAR>& s, DistMatrix<F>& V)
Overwrites A with U, s with the diagonal entries of X, and V with V.

void SingularValues (Matrix<F>& A, Matrix<typename Base<F>::type>& s)

void SingularValues (DistMatrix<F>& A, DistMatrix<typename Base<F>::type, VR, STAR>& s)
Forms the singular values of A in s. Note that A is overwritten in order to compute the singular values.

5.7 Matrix functions

5.7.1 Hermitian functions

Reform the matrix with the eigenvalues modified by a user-defined function. When the user-defined function is real-
valued, the result will remain Hermitian, but when the function is complex-valued, the result is best characterized as

96 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

normal.

When the user-defined function, say f, is analytic, we can say much more about the result: if the eigenvalue decom-
position of the Hermitian matrix A is A = ZQZ H then

J(A) = f(292™) = 2§ () 2.

Two important special cases are f(\) = exp(A) and f(\) = exp(i\), where the former results in a Hermitian matrix
and the latter in a normal (in fact, unitary) matrix.

Note: Since Elemental currently depends on PMRRR for its tridiagonal eigensolver, only double-precision results
are supported as of now.

void RealHermitianFunction (UpperOrLower uplo, DistMatrix<F>& A, const RealFunctor& f')
Modifies the eigenvalues of the passed-in Hermitian matrix by replacing each eigenvalue w; with f(w;) € R.
RealFunctor is any class which has the member function R operator () (R omega) const. See
examples/lapack-like/RealSymmetricFunction.cpp for an example usage.

void ComplexHermitianFunction (UpperOrLower uplo, DistMatrix<Complex<R>>& A, const Com-

plexFunctor& f)
Modifies the eigenvalues of the passed-in complex Hermitian matrix by replacing each eigenvalue w;

with f(w;) € C. ComplexFunctor can be any class which has the member function Complex<R>
operator () (R omega) const. See examples/lapack-like/ComplexHermitianFunction.cpp for an ex-
ample usage.

TODO: A version of ComplexHermitianFunction which begins with a real matrix

5.7.2 Pseudoinverse

Pseudoinverse (Matrix<F>& A)

Pseudoinverse (DistMatrix<F>& A)
Computes the pseudoinverse of a general matrix through computing its SVD, modifying the singular values with
the function

)

0, otherwise

(o) = { 1/0, o >enll4|l2

where € is the relative machine precision, n is the height of A, and || A||5 is the maximum singular value.

HermitianPseudoinverse (UpperOrLower uplo, DistMatrix<F>& A)
Computes the pseudoinverse of a Hermitian matrix through a customized version of
RealHermitianFunction () which used the eigenvalue mapping function

_ [Vw, wl = en|[A]l
flw)= { 0, otherwise ’

where ¢ is the relative machine precision, n is the height of A, and || A||2 can be computed as the maximum
absolute value of the eigenvalues of A.

5.7.3 Square root

A matrix B satisfying

BZ=A

5.7. Matrix functions 97

https://github.com/poulson/Elemental/tree/master/examples/lapack-like/RealHermitianFunction.cpp
https://github.com/poulson/Elemental/tree/master/examples/lapack-like/ComplexHermitianFunction.cpp

Elemental Manual, Release 0.77

is referred to as the square-root of the matrix A. Such a matrix is guaranteed to exist as long as A is diagonalizable: if
A = XAX1 then we may put

B=XVAX',

where each eigenvalue A = re’” maps to VA = /re??/2,

void HPSDSquareRoot (UpperOrLower uplo, DistMatrix<F>& A)
Hermitian matrices with non-negative eigenvalues have a natural matrix square root which remains Hermitian.
This routine attempts to overwrite a matrix with its square root and throws a NonHP SDMatrixException if
any sufficiently negative eigenvalues are computed.

TODO: HermitianSquareRoot

5.7.4 Semi-definite Cholesky

It is possible to compute the Cholesky factor of a Hermitian positive semi-definite (HPSD) matrix through its eigen-
value decomposition, though it is significantly more expensive than the HPD case: Let A = UAU be the eigenvalue
decomposition of A, where all entries of A are non-negative. Then B = U+vAUH is the matrix square root of A4, i.e.,
BB = A, and it follows that the QR and LQ factorizations of B yield Cholesky factors of A:

A=BB=B"B=(QR"(QR)=R*Q"QR = R"R,

and

A= BB =BB" = (LQ)(LQ)" = LQQ"L" = LL".

If A is found to have eigenvalues less than —ne|| A||2, then a NonHPSDMat rixException will be thrown.

void HPSDCholesky (UpperOrLower uplo, DistMatrix<F>& A)
Overwrite the uplo triangle of the potentially singular matrix A with its Cholesky factor.

5.8 Utilities

5.8.1 Householder reflectors

TODO: Describe major difference from LAPACK’s conventions (i.e., we do not treat the identity matrix as a House-
holder transform since it requires the v in H = I — 2uw’ to have norm zero rather than one).

5.8.2 Applying packed Householder transforms

TODO: Describe ApplyPackedReflectors here.

5.8.3 Applying pivots

TODO

98 Chapter 5. High-level linear algebra

Elemental Manual, Release 0.77

5.9 Tuning parameters

5.9.1 Hermitian to tridiagonal

Two different basic strategies are available for the reduction to tridiagonal form:

1. Run a pipelined algorithm designed for general (rectangular) process grids.

2. Redistribute the matrix so that it is owned by a perfect square number of processes, perform a fast reduction

to tridiaogal form, and redistribute the data back to the original process grid. This algorithm is essentially
an evolution of the HJS tridiagonalization approach (see “Towards an efficient parallel eigensolver for dense
symmetric matrices” by Bruce Hendrickson, Elizabeth Jessup, and Christopher Smith) which is described in
detail in Ken Stanley’s dissertation, “Execution time of symmetric eigensolvers”.

There is clearly a small penalty associated with the extra redistributions necessary for the second approach, but the
benefit from using a square process grid is usually quite signficant. By default, HermitianTridiag () will run
the standard algorithm (approach 1) unless the matrix is already distributed over a square process grid. The reasoning
is that good performance depends upon a “good” ordering of the square (say, p x p) subgrid, though usually either a
row-major or column-major ordering of the first 5? processes suffices.

type HermitianTridiagApproach

*HERMITIAN_TRIDIAG_NORMAL: Run the pipelined rectangular algorithm.

*HERMITIAN_TRIDIAG_SQUARE: Run the square grid algorithm on the largest possible square process
grid.

*HERMITIAN_TRIDIAG_DEFAULT: If the given process grid is already square, run the square grid algo-
rithm, otherwise use the pipelined non-square approach.

Note: A properly tuned HERMITIAN_TRIDIAG_SQUARE approach is almost always fastest, so it is worth-
while to test it with both the COLUMN_MAJOR and ROW_MAJOR subgrid orderings, as described below.

Note: The first algorithm heavily depends upon the performance of distributed Symv () and Hemv ()
(for real and complex data, respectively), so users interested in maximizing the performance of the first
algorithm will likely want to investigate different values for the local blocksizes through the routines
SetLocalSymvBlocksize<T>(int blocksize) and SetLocalHemvBlocksize<T>(int
blocksize); the default values are both 64.

void SetHermitianTridiagApproach (HermitianTridiagApproach approach)

Sets the algorithm used by subsequent calls to HermitianTridiag ().

HermitianTridiagApproach GetHermitianTridiagApproach ()

Queries the currently set approach for the reduction of a Hermitian matrix to tridiagonal form.

void SetHermitianTridiagGridOrder (GridOrder order)

Sets the ordering to use for the first 52 processes in the construction of the p x p subgrid. This is only relevant
to the HERMITIAN_TRIDIAG_SQUARE approach.

GridOrder GetHermitianTridiagGridOrder ()

Queries the currently set approach for the ordering of the square subgrid needed by the
HERMITIAN_TRIDIAG_SQUARE approach to the tridiagonalization of a Hermitian matrix.

5.9. Tuning parameters 99

Elemental Manual, Release 0.77

100 Chapter 5. High-level linear algebra

CHAPTER
SIX

It is frequently useful to test algorithms on well-known, trivial, and random matrices, such as

1.

SPECIAL MATRICES

matrices with entries sampled from a uniform distribution,

. matrices with spectrum sampled from a uniform distribution,
. Wilkinson matrices,

2
3
4,
5

identity matrices,

. matrices of all ones, and

6.

matrices of all zeros.

Elemental therefore provides utilities for generating many such matrices.

6.1

Deterministic

6.1.1 Cauchy

An m x n matrix A is called Cauchy if there exist vectors x and y such that

1
Xi_77j’

@5 =

where x; is the ¢ ‘th entry of x and 7; is the j‘th entry of y.

void Cauchy (const std::vector<F>& x, const std::vector<F>& y, Matrix<F>& A)

void Cauchy (const std::vector<F>& x, const std::vector<F>& y, DistMatrix<F, U, V>& A)

Generate a serial Cauchy matrix using the defining vectors, x and y (templated over the datatype, F, which must

be a field).

Generate a distributed Cauchy matrix using the defining vectors, x and y (templated over the datatype, F, which

must be a field, as well as the distribution scheme of A, (U,V)).

6.1.2 Cauchy-like

An m x n matrix A is called Cauchy-like if there exist vectors r, s, x, and y such that

_ ity
Xi — 15 ’

Q5

where p; is the i‘th entry of 7, v; is the j‘th entry of s, ; is the i‘th entry of z, and 7); is the j‘th entry of y.

101

Elemental Manual, Release 0.77

void CauchyLike (const std::vector<F>& r, const std::vector<F>& s, const std::vector<F>& x, const

std::vector<F>& y, Matrix<F>& A)
Generate a serial Cauchy-like matrix using the defining vectors: r, s, x, and y (templated over the datatype, F,

which must be a field).

void CauchyLike (const std::vector<F>& r, const std::vector<F>& s, const std::vector<F>& x, const

std::vector<F>& y, DistMatrix<F, U, V>& A)
Generate a distributed Cauchy-like matrix using the defining vectors: r, s, x, and y (templated over the datatype,

F, which must be a field, as well as the distribution scheme of A, (U,V)).

6.1.3 Circulant

An n x n matrix A is called circulant if there exists a vector b such that

Q= B(i—j) mod n>»
where [y, is the k‘th entry of vector b.

void Circulant (const std::vector<T>& a, Matrix<T>& A)
Generate a serial circulant matrix (templated over the datatype, 7).

void Circulant (const std::vector<T>& a, DistMatrix<T, U, V>& A)
Generate a distributed circulant matrix (templated over the datatype, 7T, and distribution scheme of 2, (U,V)).

6.1.4 Diagonal

Ann x n matrix A is called diagonal if each entry (4, j), where ¢ # j, is 0. They are therefore defined by the diagonal
values, where 7 = j.

void Diagonal (const std::vector<T>& d, Matrix<T>& D)
Construct a serial diagonal matrix from the vector of diagonal values, d (templated over the datatype, T).

void Diagonal (const std::vector<T>& d, DistMatrix<T, U, V>& D)
Construct a distributed diagonal matrix from the vector of diagonal values, d (templated over the datatype, 7,
and the distribution scheme, (U,V)).

6.1.5 DiscreteFourier

The n x n Discrete Fourier Transform (DFT) matrix, say A, is given by

e—27rz]/n

-
2,7 \/,E
void DiscreteFourier (int n, Matrix<Complex<R>>& A)
Set the sequential matrix A equal to the n x n DFT matrix (templated over the real datatype, R).

void DiscreteFourier (int n, DistMatrix<Complex<R>, U, V>& A)
Set the distributed matrix A equal to the n x n DFT matrix (templated over the real datatype, R, and distribution
scheme of &, (U,V)).

void MakeDiscreteFourier (Matrix<Complex<R>>& A)
Turn the existing n x n serial matrix A into a discrete Fourier matrix (templated over the real datatype, R).

void MakeDiscreteFourier (DistMatrix<Complex<R>, U, V>& A)
Turn the existing n X n serial matrix A into a discrete Fourier matrix (templated over the real datatype, R, and
distribution scheme, (U,V)).

102 Chapter 6. Special matrices

Elemental Manual, Release 0.77

6.1.6 Hankel

An m X n matrix A is called a Hankel matrix if there exists a vector b such that
@iy = Bity,
where «; ; is the (i, j) entry of A and 3, is the k‘th entry of the vector b.

void Hankel (int m, int n, const std::vector<T>& b, Matrix<T>& A)
Create an m x n Hankel matrix from the generate vector, b (templated over the datatype, T').

void Hankel (int m, int n, const std::vector<T>& b, DistMatrix<T, U, V>& A)
Create an m x n Hankel matrix from the generate vector, b (templated over the datatype, 7, and distribution
scheme, (U,V)).

6.1.7 Hilbert

The Hilbert matrix of order n is the n x n matrix where entry (4,) is equal to 1/(i + j + 1).

void Hilbert (int n, Matrix<F>& A)
Generate the n x n Hilbert matrix A (templated over the datatype, F, which must be a field).

void Hilbert (int n, DistMatrix<F, U, V>& A)
Generate the n x n Hilbert matrix A (templated over the datatype, F, which must be a field, and distribution
scheme, (U,V)).

void MakeHilbert (Matrix<F>& A)
Turn the square serial matrix A into a Hilbert matrix (templated over the datatype, F, which must be a field).

void MakeHilbert (DistMatrix<F, U, V>& A)
Turn the square distributed matrix A into a Hilbert matrix (templated over the datatype, F, which must be a field,
and distribution scheme, (U,V)).

6.1.8 Identity

The n x n identity matrix is simply defined by setting entry (4,) to one if ¢ = j, and zero otherwise. For various
reasons, we generalize this definition to nonsquare, m X n, matrices.

void Identity (int m, int n, Matrix<T>& A)
Set the serial matrix A equal to the m x n identity(-like) matrix (templated over the datatype, 7).

void Identity (int m, int n, DistMatrix<T, U, V>& A)
Set the distributed matrix A equal to the m X n identity(-like) matrix (templated over the datatype, 7, and
distribution scheme, (U,V)).

void MakeIdentity (Matrix<T>& A)
Set the serial matrix A to be identity-like (templated over datatype, 7).

void MakeIdentity (DistMatrix<T, U, V>& A)
Set the distributed matrix A to be identity-like (templated over datatype, 7, and distribution scheme, (U, V)).

6.1.9 Legendre
The n x n tridiagonal Jacobi matrix associated with the Legendre polynomials. Its main diagonal is zero, and the
off-diagonal terms are given by

B=5 (- @G+,

6.1. Deterministic 103

Elemental Manual, Release 0.77

where (3; connects the j‘th degree of freedom to the j + 1‘th degree of freedom, counting from zero. The eigenvalues
of this matrix lie in [—1, 1] and are the locations for Gaussian quadrature of order n. The corresponding weights may
be found by doubling the square of the first entry of the corresponding normalized eigenvector.

void Legendre (int n, Matrix<F>& A)

void Legendre (int n, DistMatrix<F, U, V>& A)
Sets the matrix A equal to the n X n Jacobi matrix.

6.1.10 Ones

Create an m x n matrix of all ones.

void Ones (int m, int n, Matrix<T>& A)
Set the serial matrix A to be an m x n matrix of all ones (templated over datatype, T).

void Ones (int m, int n, DistMatrix<T, U, V>& A)
Set the distributed matrix A to be an m X n matrix of all ones (templated over datatype, 7, and distribution
scheme, (U,V)).

Change all entries of the matrix A to one.

void MakeOnes (Matrix<T>& A)
Change the entries of the serial matrix to ones (templated over datatype, 7).

void MakeOnes (DistMatrix<T, U, V>& A)
Change the entries of the distributed matrix to ones (templated over datatype, 7, and distribution scheme, (U, V)).

6.1.11 OneTwoOne

A “1-2-1” matrix is tridiagonal with a diagonal of all twos and sub- and super-diagonals of all ones.

void OneTwoOne (int n, Matrix<T>& A)
Set A to a serial n X n “1-2-1” matrix (templated over the datatype, 7).

void OneTwoOne (int n, DistMatrix<T, U, V>& A)
Set A to a distributed n x n “1-2-1” matrix (templated over the datatype, T, and distribution scheme, (U, V)).

void MakeOneTwoOne (Matrix<T>& A)
Modify the entries of the square serial matrix A to be “1-2-1” (templated over the datatype, 7).

void MakeOneTwoOne (DistMatrix<T, U, V>& A)
Modify the entries of the square distributed matrix A to be “1-2-1” (templated over the datatype, 7, and the
distribution scheme, (U,V)).

6.1.12 Toeplitz

Anm x n matrix is Toeplitz if there exists a vector b such that, for each entry a; ; of A,

QG5 = 5i7j+(n71)7
where [y, is the k°th entry of b.

void Toeplitz (int m, int n, const std::vector<T>& b, Matrix<T>& A)
Build the serial matrix A using the generating vector b (templated over the datatype, T).

void Toeplitz (int m, int n, const std::vector<T>& b, DistMatrix<T, U, V>& A)
Build the distributed matrix A using the generating vector b (templated over the datatype, 7, and distribution
scheme, (U,V)).

104 Chapter 6. Special matrices

Elemental Manual, Release 0.77

void MakeToeplitz (const std::vector<T>& b, Matrix<T>& A)
Turn the serial matrix A into a Toeplitz matrix using the generating vector b (templated over the datatype, T).

void MakeToeplitz (const std::vector<T>& b, DistMatrix<T, U, V>& A)
Turn the distributed matrix A into a Toeplitz matrix defined from the generating vector b (templated over the
datatype, T, and distribution scheme, (U,V)).

6.1.13 Walsh

The Walsh matrix of order k is a 25 x 2* matrix, where
1 1
Wl - (1 1))

W, = (Wio1 Wi >

and

Wit Wi
A binary Walsh matrix changes the bottom-right entry of W; from —1 to 0.

void Walsh (int k, Matrix<T>& W, bool binary=false)
Set the serial matrix W equal to the k‘th (possibly binary) Walsh matrix (templated over the datatype, T).

void Walsh (int k, DistMatrix<T, U, V>& W, bool binary=false)
Set the distributed matrix W equal to the k‘th (possibly binary) Walsh matrix (templated over the datatype, 7,
and distribution scheme, (U,V)).

6.1.14 Wilkinson

A Wilkinson matrix of order k is a tridiagonal matrix with diagonal
[k, k—1,k—2,...,1,0,1,.... k — 2,k — 1, k],
and sub- and super-diagonals of all ones.

void Wilkinson (int k, Matrix<T>& W)
Set the serial matrix W equal to the k‘th Wilkinson matrix (templated over the datatype, T).

void Wilkinson (int k, DistMatrix<T, U, V>& W)
Set the distributed matrix W equal to the & ‘th Wilkinson matrix (templated over the datatype, T, and distribution
scheme, (U, V)).

6.1.15 Zeros

Create an m X n matrix of all zeros.

void Zeros (int m, int n, Matrix<T>& A)
Set the serial matrix A to be an m x n matrix of all zeros (templated over datatype, T).

void Zeros (int m, int n, DistMatrix<T, U, V>& A)
Set the distributed matrix A to be an m x n matrix of all zeros (templated over datatype, 7, and distribution
scheme, (U,V)).

Change all entries of the matrix A to zero.

void MakeZeros (Matrix<T>& A)
Change the entries of the serial matrix to zero (templated over datatype, T).

6.1. Deterministic 105

Elemental Manual, Release 0.77

void MakeZeros (DistMatrix<T, U, V>& A)
Change the entries of the distributed matrix to zero (templated over datatype, 7, and distribution scheme, (U, V)).

6.2 Random

6.2.1 Uniform

We call an m x n matrix uniformly random if each entry is drawn from a uniform distribution over some ball B, (x),
which is centered around some point x and of radius r.

void Uniform (int m, int n, Matrix<T>& A, T center=0, typename Base<T>::type radius=1)
Set the serial matrix A to an m X n matrix with each entry sampled from the uniform distribution centered at
center with radius radius (templated over datatype, 7).

void Uniform (int m, int n, DistMatrix<T, U, V>& A, T center=0, typename Base<T>::type radius=1)
Set the distributed matrix A to an m X n matrix with each entry sampled from the uniform distribution centered
at center with radius radius (templated over datatype, T, and distribution scheme, (U, V)).

void MakeUniform (Matrix<T>& A, T center=0, typename Base<T>::type radius=1)
Sample each entry of A from U (B, (z)), where r is given by radius and z is given by center (templated
over the datatype, T).

void MakeUniform (DistMatrix<T, U, V>& A, T center=0, typename Base<T>::type radius=1)
Sample each entry of A from U(B,.(x)), where r is given by radius and z is given by center (templated
over the datatype, 7T, and distribution scheme, (U, V)).

6.2.2 HermitianUniformSpectrum

These routines sample a diagonal matrix from the specified interval of the real line and then perform a similarity
transformation using a random Householder transform.

void HermitianUniformSpectrum (int n, Matrix<F>& A, typename Base<F>::type lower=0, typename
Base<F>::type upper=1)
Build the n x n serial matrix A with a spectrum sampled uniformly from the interval (lower, upper] (templated
over the datatype, F).

void HermitianUniformSpectrum (int n, DistMatrix<F, U, V>& A, typename Base<F>::type lower=0,
typename Base<F>::type upper=1)
Build the n x n distributed matrix A with a spectrum sampled uniformly from the interval (lower, upper]

(templated over the datatype, F, which must be a field, and the distribution scheme, (U,V)).

void MakeHermitianUniformSpectrum (Matrix<F>& A, typename Base<F>::type lower=0, typename
Base<F>::type upper=1)
Sample the entries of the square serial matrix A from the interval (lower, upper| (templated over the datatype,
F).

void MakeHermitianUniformSpectrum (DistMatrix<F, U, V>& A, typename Base<F>::type lower=0,
typename Base<F>::type upper=1)
Sample the entries of the square distributed matrix A from the interval (lower, upper] (templated over the
datatype, F, and the distribution scheme, (U,V)).

6.2.3 NormalUniformSpectrum

These routines sample a diagonal matrix from the specified ball in the complex plane and then perform a similarity
transformation using a random Householder transform.

106 Chapter 6. Special matrices

Elemental Manual, Release 0.77

void NormalUniformSpectrum (int n, Matrix<Complex<R>>& A, Complex<R> center=0, R radius=1)
Build the n x n serial matrix A with a spectrum sampled uniformly from the ball B;,gius(center) (templated
over the real datatype, R).

void NormalUniformSpectrum (int n, DistMatrix<Complex<R>, U, V>& A, Complex<R> center=0, R
radius=1)
Build the n x n distributed matrix A with a spectrum sampled uniformly from the ball B, ,qius(center) (templated
over the real datatype, R, and the distribution scheme, (U, V)).

void MakeNormalUniformSpect rum (Matrix<Complex<R>>& A, Complex<R> center=0, R radius=1)
Sample the entries of the square serial matrix A from the ball in the complex plane centered at center with
radius radius (templated over the real datatype, R).

void MakeNormalUniformSpect rum (DistMatrix<Complex<R>, U, V>& A, Complex<R> center=0, R

radius=1)
Sample the entries of the square distributed matrix A from the ball in the complex plane centered at center

with radius radius (templated over the real datatype, R, and the distribution scheme, (U, V)).

6.2. Random 107

Elemental Manual, Release 0.77

108 Chapter 6. Special matrices

CHAPTER
SEVEN

INDICES

* genindex

e search

109

Elemental Manual, Release 0.77

110 Chapter 7. Indices

A

Abs (C++ function), 29

AbstractDistMatrix<Complex<R>> (C++ type), 42

AbstractDistMatrix<F>

(C++ type), 42

AbstractDistMatrix<R> (C++ type), 41

AbstractDistMatrix<T>
AbstractDistMatrix<T>
tion), 39
AbstractDistMatrix<T>
40
AbstractDistMatrix<T>
AbstractDistMatrix<T>
AbstractDistMatrix<T>
function), 40
AbstractDistMatrix<T>

(C++ type), 39
::AllocatedMemory (C++ func-

::ColAlignment (C++ function),
::ColShift (C++ function), 40
::ColStride (C++ function), 40

::ConstrainedColAlignment (C++

::ConstrainedRowAlignment

(C++ function), 40

AbstractDistMatrix<T>

AbstractDistMatrix<T>:

40

AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:

tion), 41

AbstractDistMatrix<T>::
AbstractDistMatrix<T>:

tion), 41

AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>:

tion), 39

AbstractDistMatrix<T>:

tion), 39

AbstractDistMatrix<T>:
AbstractDistMatrix<T>:
AbstractDistMatrix<T>::

::Empty (C++ function), 41
:Free Alignments (C++ function),

:Get (C++ function), 40
:GetIlmagPart (C++ function), 40
:GetLocal (C++ function), 40
:GetLocallmagPart (C++ func-

:GetRealPart (C++ function), 40
:GetRealPartLocal (C++ func-

:Grid (C++ function), 39

:Height (C++ function), 39
:LocalBuffer (C++ function), 39
:LocalHeight (C++ function), 39
:LocalLDim (C++ function), 39
:LocalMatrix (C++ function), 39
:LocalWidth (C++ function), 39
:LockedLocalBuffer (C++ func-

:LockedLocalMatrix (C++ func-
:LockedView (C++ function), 41

:Print (C++ function), 39
ResizeTo (C++ function), 41

AbstractDistMatrix<T>::

40

AbstractDistMatrix<T>::
AbstractDistMatrix<T>:
AbstractDistMatrix<T>::
AbstractDistMatrix<T>::
AbstractDistMatrix<T>::
AbstractDistMatrix<T>::
AbstractDistMatrix<T>:

tion), 41

AbstractDistMatrix<T>::

tion), 41

AbstractDistMatrix<T>::
AbstractDistMatrix<T>:
AbstractDistMatrix<T>::

tion), 41

AbstractDistMatrix<T>::
AbstractDistMatrix<T>::

function), 41

AbstractDistMatrix<T>::

41

AbstractDistMatrix<T>::

function), 41

AbstractDistMatrix<T>:
AbstractDistMatrix<T>::
AbstractDistMatrix<T>::

INDEX

RowAlignment (C++ function),

RowShift (C++ function), 40

:RowStride (C++ function), 40

Set (C++ function), 40

SetGrid (C++ function), 41
SetlmagPart (C++ function), 41
SetLocal (C++ function), 40

:SetLocallmagPart (C++ func-

SetLocalRealPart (C++ func-

SetRealPart (C++ function), 41

:Update (C++ function), 40

UpdateImagPart (C++ func-

UpdateLocal (C++ function), 40
UpdateLocallmagPart (C++

UpdateRealPart (C++ function),

UpdateRealPartLocal (C++

:Viewing (C++ function), 41

Width (C++ function), 39
Write (C++ function), 39

Adjoint (C++ function), 69

Arg (C++ function), 29

Axpy (C++ function), 69

Axpylnterface<T> (C++ type), 67
Axpylnterface<T>::Attach (C++ function), 68
Axpylnterface<T>::Axpy (C++ function), 68
AxpyInterface<T>:: AxpylInterface (C++ function), 68
AxpylInterface<T>::Detach (C++ function), 68
AxpyType (C++ type), 67

B

Base<F> (C++ type), 27

Base<F>::type (C++ type), 27
Bidiag (C++ function), 90
blas::Axpy (C++ function), 11
blas::Dot (C++ function), 11

111

Elemental Manual, Release 0.77

blas::Dotc (C++ function), 11
blas::Dotu (C++ function), 11
blas::Gemm (C++ function), 13
blas::Gemv (C++ function), 12
blas::Ger (C++ function), 12
blas::Gerc (C++ function), 12
blas::Geru (C++ function), 12
blas::Hemm (C++ function), 13
blas::Hemv (C++ function), 12
blas::Her (C++ function), 12
blas::Her2 (C++ function), 12
blas::Her2k (C++ function), 13
blas::Herk (C++ function), 13
blas::Hetrmm (C++ function), 13
blas::Nrm2 (C++ function), 11
blas::Scal (C++ function), 11
blas::Symm (C++ function), 13
blas::Symv (C++ function), 12
blas::Syr (C++ function), 12
blas::Syr2 (C++ function), 12
blas::Syr2k (C++ function), 13
blas::Syrk (C++ function), 13
blas:: Trmm (C++ function), 13
blas::Trmv (C++ function), 12
blas:: Trsm (C++ function), 14
blas::Trsv (C++ function), 13
Blocksize (C++ function), 25
byte (C++ type), 29

C

Cauchy (C++ function), 101
CauchyLike (C++ function), 101, 102
Cholesky (C++ function), 85
CholeskySolve (C++ function), 87
Circulant (C++ function), 102
Complex<R> (C++ type), 26

Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:
Complex<R>:

:BaseType (C++ type), 26
:Complex (C++ function), 27
:imag (C++ member), 27
:operator*= (C++ function), 27
:operator+= (C++ function), 27
:operator-= (C++ function), 27
:operator/= (C++ function), 27
:operator= (C++ function), 27
:real (C++ member), 27
ComplexHermitianFunction (C++ function), 97

ConditionNumber (C++ function), 81
Conj (C++ function), 29

Conjugate (C++ function), 69, 70
Conjugation (C++ type), 29

Copy (C++ function), 70

Cos (C++ function), 29

Cosh (C++ function), 29

D

dcomplex (C++ type), 28

DefaultGrid (C++ function), 25

Determinant (C++ function), 81

Diagonal (C++ function), 102

DiagonalScale (C++ function), 70

DiagonalSolve (C++ function), 70

DiscreteFourier (C++ function), 102
DistMatrix<Complex<double>, MC, MR> (C++ type),

DistMatri)fComplex<double>, MC, STAR> (C++ type),
DistMatrijgcomplex<double>, MD, STAR> (C++ type),
DistMatrijiComplex<d0uble>, MR, MC> (C++ type),
DistMatrifSComplex<double>, MR, STAR> (C++ type),
DistMatri)f<1Complex<d0uble>, STAR, MC> (C++ type),
DistMatri)sz0mplex<double>, STAR, MD> (C++ type),
DistMatriijomplex<double>, STAR, MR> (C++ type),
DistMatri)fgComplex<d0uble>, STAR, STAR> (C++
type), 56
DistMatrix<Complex<double>, STAR, VC> (C++ type),
DistMatriijomplex<double>, STAR, VR> (C++ type),
55

DistMatrix<Complex<double>, U, V> (C++ type), 42
DistMatrix<Complex<double>, VC, STAR> (C++ type),
53
DistMatrix<Complex<double>, VR, STAR> (C++ type),
55
DistMatrix<Complex<double>> (C++ type), 48
DistMatrix<Complex<R>, MC, MR> (C++ type), 48
DistMatrix<Complex<R>, MC, STAR> (C++ type), 49
DistMatrix<Complex<R>, MD, STAR> (C++ type), 52
DistMatrix<Complex<R>, MR, MC> (C++ type), 50
DistMatrix<Complex<R>, MR, STAR> (C++ type), 51
DistMatrix<Complex<R>, STAR, MC> (C++ type), 52
DistMatrix<Complex<R>, STAR, MD> (C++ type), 53
DistMatrix<Complex<R>, STAR, MR> (C++ type), 50
DistMatrix<Complex<R>, STAR, STAR> (C++ type), 56
DistMatrix<Complex<R>, STAR, VC> (C++ type), 54
DistMatrix<Complex<R>, STAR, VR> (C++ type), 55
DistMatrix<Complex<R>, U, V> (C++ type), 42
DistMatrix<Complex<R>, VC, STAR> (C++ type), 53
DistMatrix<Complex<R>, VR, STAR> (C++ type), 55
DistMatrix<Complex<R>> (C++ type), 48
DistMatrix<double, MC, MR> (C++ type), 48
DistMatrix<double, MC, STAR> (C++ type), 49
DistMatrix<double, MD, STAR> (C++ type), 52

112

Index

Elemental Manual, Release 0.77

DistMatrix<double, MR, MC> (C++ type), 50
DistMatrix<double, MR, STAR> (C++ type), 51
DistMatrix<double, STAR, MC> (C++ type), 52
DistMatrix<double, STAR, MD> (C++ type), 53
DistMatrix<double, STAR, MR> (C++ type), 50
DistMatrix<double, STAR, STAR> (C++ type), 56
DistMatrix<double, STAR, VC> (C++ type), 54
DistMatrix<double, STAR, VR> (C++ type), 55
DistMatrix<double, U, V> (C++ type), 42
DistMatrix<double, VC, STAR> (C++ type), 53
DistMatrix<double, VR, STAR> (C++ type), 55
DistMatrix<double> (C++ type), 48
DistMatrix<F, MC, MR> (C++ type), 48
DistMatrix<F, MC, STAR> (C++ type), 49
DistMatrix<F, MD, STAR> (C++ type), 52
DistMatrix<F, MR, MC> (C++ type), 50
DistMatrix<F, MR, STAR> (C++ type), 51
DistMatrix<F, STAR, MC> (C++ type), 52
DistMatrix<F, STAR, MD> (C++ type), 53
DistMatrix<F, STAR, MR> (C++ type), 50
DistMatrix<F, STAR, STAR> (C++ type), 56
DistMatrix<F, STAR, VC> (C++ type), 54
DistMatrix<F, STAR, VR> (C++ type), 55
DistMatrix<F, U, V> (C++ type), 42
DistMatrix<F, VC, STAR> (C++ type), 53
DistMatrix<F, VR, STAR> (C++ type), 55
DistMatrix<F> (C++ type), 48
DistMatrix<R, MC, MR> (C++ type), 48
DistMatrix<R, MC, STAR> (C++ type), 49
DistMatrix<R, MD, STAR> (C++ type), 52
DistMatrix<R, MR, MC> (C++ type), 50
DistMatrix<R, MR, STAR> (C++ type), 51
DistMatrix<R, STAR, MC> (C++ type), 52
DistMatrix<R, STAR, MD> (C++ type), 53
DistMatrix<R, STAR, MR> (C++ type), 50
DistMatrix<R, STAR, STAR> (C++ type), 56
DistMatrix<R, STAR, VC> (C++ type), 54
DistMatrix<R, STAR, VR> (C++ type), 55
DistMatrix<R, U, V> (C++ type), 42
DistMatrix<R, VC, STAR> (C++ type), 53
DistMatrix<R, VR, STAR> (C++ type), 55
DistMatrix<R> (C++ type), 48
DistMatrix<T, MC, MR> (C++ type), 43
DistMatrix<T, MC, MR>::AdjointFrom (C++ function),
48
DistMatrix<T, MC, MR>::Align (C++ function), 45
DistMatrix<T, MC, MR>::AlignCols (C++ function), 45
DistMatrix<T, MC, MR>::AlignColsWith (C++ func-
tion), 46
DistMatrix<T, MC, MR>::AlignRows (C++ function), 45
DistMatrix<T, MC, MR>::AlignRowsWith (C++ func-
tion), 46
DistMatrix<T, MC, MR>::AlignWith (C++ function), 45,
46

DistMatrix<T, MC, MR>::DistMatrix (C++ function), 43

DistMatrix<T, MC, MR>::GetDiagonal (C++ function),
44

DistMatrix<T, MC, MR>::GetImagPartOfDiagonal (C++
function), 45

DistMatrix<T, MC, MR>::GetRealPartOfDiagonal (C++
function), 45

DistMatrix<T, MC, MR>::LockedView (C++ function),
46, 47

DistMatrix<T, MC, MR>::LockedView1x2 (C++ func-
tion), 47

DistMatrix<T, MC, MR>::LockedView2x1 (C++ func-
tion), 47

DistMatrix<T, MC, MR>::LockedView2x2 (C++ func-
tion), 47

DistMatrix<T, MC, MR>::operator= (C++ function), 43,
44

DistMatrix<T, MC, MR>::SetDiagonal (C++ function),
44, 45

DistMatrix<T, MC, MR>::SetlmagPartOfDiagonal (C++
function), 45

DistMatrix<T, MC, MR>::SetRealPartOfDiagonal (C++
function), 45

DistMatrix<T, MC, MR>::SumScatterFrom (C++ func-

tion), 47, 48

DistMatrix<T, MC, MR>::SumScatterUpdate (C++ func-
tion), 47, 48

DistMatrix<T, MC, MR>::TransposeFrom (C++ func-
tion), 48

DistMatrix<T, MC, MR>::View (C++ function), 46, 47
DistMatrix<T, MC, MR>::View1x2 (C++ function), 47
DistMatrix<T, MC, MR>::View2x1 (C++ function), 47
DistMatrix<T, MC, MR>::View2x2 (C++ function), 47
DistMatrix<T, MC, STAR> (C++ type), 49
DistMatrix<T, MD, STAR> (C++ type), 52
DistMatrix<T, MR, MC> (C++ type), 50
DistMatrix<T, MR, STAR> (C++ type), 51
DistMatrix<T, STAR, MC> (C++ type), 51
DistMatrix<T, STAR, MD> (C++ type), 52
DistMatrix<T, STAR, MR> (C++ type), 49
DistMatrix<T, STAR, STAR> (C++ type), 56
DistMatrix<T, STAR, VC> (C++ type), 54
DistMatrix<T, STAR, VR> (C++ type), 55
DistMatrix<T, U, V> (C++ type), 42

DistMatrix<T, VC, STAR> (C++ type), 53
DistMatrix<T, VR, STAR> (C++ type), 54
DistMatrix<T> (C++ type), 43

Distribution (C++ type), 29

Dot (C++ function), 71

Dotc (C++ function), 71

Dotu (C++ function), 71

DumpCallStack (C++ function), 26

Index

113

Elemental Manual, Release 0.77

E

Exp (C++ function), 29

F

FastAbs (C++ function), 29

Finalize (C++ function), 25
FLA_Bsvd_v_opd_varl (C++ function), 24
ForwardOrBackward (C++ type), 30

G

GaussianElimination (C++ function), 87
Gemm (C++ function), 75

Gemv (C++ function), 73

Ger (C++ function), 73

Gerc (C++ function), 73

Geru (C++ function), 73
GetHermitianTridiagApproach (C++ function), 99
GetHermitianTridiagGridOrder (C++ function), 99
Grid (C++ type), 36

Grid::Col (C++ function), 36
Grid::ColComm (C++ function), 36
Grid::Comm (C++ function), 36
Grid::DiagPath (C++ function), 38
Grid::DiagPathRank (C++ function), 38
Grid::GCD (C++ function), 37
Grid::Grid (C++ function), 36, 37
Grid::Height (C++ function), 36
Grid::InGrid (C++ function), 37
Grid::LCM (C++ function), 37
Grid::MCComm (C++ function), 37
Grid::MCRank (C++ function), 36
Grid::MCSize (C++ function), 37
Grid::MRComm (C++ function), 37
Grid::MRRank (C++ function), 36
Grid::MRSize (C++ function), 37
Grid::OwningComm (C++ function), 38
Grid::OwningGroup (C++ function), 38
Grid::OwningRank (C++ function), 38
Grid::Rank (C++ function), 36
Grid::Row (C++ function), 36
Grid::RowComm (C++ function), 36
Grid::Size (C++ function), 36
Grid::VCComm (C++ function), 37
Grid::VCRank (C++ function), 36
Grid::VCSize (C++ function), 37
Grid::VCToViewingMap (C++ function), 38
Grid::ViewingComm (C++ function), 38
Grid::ViewingRank (C++ function), 38
Grid::VRComm (C++ function), 37
Grid::VRRank (C++ function), 37
Grid::VRSize (C++ function), 37
Grid::Width (C++ function), 36
GridOrder (C++ type), 30

H

Halley (C++ function), 96

Hankel (C++ function), 103

Hemm (C++ function), 76

Hemyv (C++ function), 74

Her (C++ function), 74

Her2 (C++ function), 74

Her2k (C++ function), 76

Herk (C++ function), 76

HermitianEig (C++ function), 91, 92
HermitianGenDefiniteEig (C++ function), 94, 95
HermitianGenDefiniteEigType (C++ type), 93
HermitianNorm (C++ function), 83
HermitianPseudoinverse (C++ function), 97
HermitianSingularValues (C++ function), 96
HermitianSVD (C++ function), 95
HermitianTridiag (C++ function), 89
HermitianTridiagApproach (C++ type), 99
HermitianUniformSpectrum (C++ function), 106
Hilbert (C++ function), 103

HilbertSchmidt (C++ function), 85
HouseholderSolve (C++ function), 87
HPDDeterminant (C++ function), 82
HPDInverse (C++ function), 89
HPSDCholesky (C++ function), 98
HPSDSquareRoot (C++ function), 98

Identity (C++ function), 103
ImagPart (C++ function), 29
Initialize (C++ function), 25
Initialized (C++ function), 25
Inverse (C++ function), 88

L

lapack::BidiagQRAlg (C++ function), 16

lapack::Cholesky (C++ function), 15

lapack::ComputeGivens (C++ function), 15

lapack::DivideAndConquerSVD (C++ function), 16

lapack::HessenbergEig (C++ function), 16

lapack::LU (C++ function), 15

lapack::MachineEpsilon<R> (C++ function), 14

lapack::MachineOverflowExponent<R> (C++ function),
14

lapack::MachineOverflowThreshold<R> (C++ function),
14

lapack::MachinePrecision<R> (C++ function), 14

lapack::MachineSafeMin<R> (C++ function), 14

lapack::MachineUnderflowExponent<R> (C++ function),
14

lapack::MachineUnderflowThreshold<R> (C++ func-
tion), 14

lapack::QRSVD (C++ function), 15

114

Index

Elemental Manual, Release 0.77

lapack::SafeNorm (C++ function), 14
lapack::SingularValues (C++ function), 15
lapack::TriangularInverse (C++ function), 15
LDLH (C++ function), 85

LDLT (C++ function), 85, 86

LeftOrRight (C++ type), 30

Legendre (C++ function), 104
LocalHemvBlocksize<T> (C++ function), 79
LocalLength (C++ function), 31
LocalSymvBlocksize<T> (C++ function), 79
LocalTrr2kBlocksize<T> (C++ function), 80
LocalTrrkBlocksize<T> (C++ function), 80
Log (C++ function), 29

LogBarrier (C++ function), 82, 83
LogDetDivergence (C++ function), 83

LQ (C++ function), 86

LU (C++ function), 86

M

MakeDiscreteFourier (C++ function), 102
MakeHermitianUniformSpectrum (C++ function), 106
MakeHilbert (C++ function), 103

Makeldentity (C++ function), 103
MakeNormalUniformSpectrum (C++ function), 107
MakeOnes (C++ function), 104

MakeOneTwoOne (C++ function), 104
MakeToeplitz (C++ function), 105
MakeTrapezoidal (C++ function), 71

MakeUniform (C++ function), 106

MakeZeros (C++ function), 105
Matrix<Complex<R>> (C++ type), 35

Matrix<F> (C++ type), 35

Matrix<R> (C++ type), 35

Matrix<T> (C++ type), 32

Matrix<T>::Buffer (C++ function), 33
Matrix<T>::DiagonalLength (C++ function), 33
Matrix<T>::Empty (C++ function), 35
Matrix<T>::Get (C++ function), 33
Matrix<T>::GetDiagonal (C++ function), 33
Matrix<T>::GetImagPart (C++ function), 34
Matrix<T>::GetImagPartOfDiagonal (C++ function), 34
Matrix<T>::GetRealPart (C++ function), 34
Matrix<T>::GetRealPartOfDiagonal (C++ function), 34
Matrix<T>::Height (C++ function), 32
Matrix<T>::LDim (C++ function), 33
Matrix<T>::LockedBuffer (C++ function), 33
Matrix<T>::LockedView (C++ function), 34, 35
Matrix<T>::LockedView1x2 (C++ function), 35
Matrix<T>::LockedView2x1 (C++ function), 35
Matrix<T>::LockedView2x2 (C++ function), 35
Matrix<T>::Matrix (C++ function), 32
Matrix<T>::MemorySize (C++ function), 33
Matrix<T>::operator= (C++ function), 35
Matrix<T>::Print (C++ function), 33

Matrix<T>::ResizeTo (C++ function), 35
Matrix<T>::Set (C++ function), 33
Matrix<T>::SetDiagonal (C++ function), 33
Matrix<T>::SetlmagPart (C++ function), 34
Matrix<T>::SetlmagPartOfDiagonal (C++ function), 34
Matrix<T>::SetRealPart (C++ function), 34
Matrix<T>::SetRealPartOfDiagonal (C++ function), 34
Matrix<T>::Update (C++ function), 33
Matrix<T>::UpdateDiagonal (C++ function), 33
Matrix<T>::UpdateIlmagPart (C++ function), 34
Matrix<T>::UpdatelmagPartOfDiagonal (C++ function),
34
Matrix<T>::UpdateRealPart (C++ function), 34
Matrix<T>::UpdateRealPartOfDiagonal (C++ function),
34
Matrix<T>::View (C++ function), 34
Matrix<T>::View1x2 (C++ function), 35
Matrix<T>::View2x1 (C++ function), 35
Matrix<T>::View2x2 (C++ function), 35
Matrix<T>::Viewing (C++ function), 34
Matrix<T>::Width (C++ function), 32
mpi::AllGather (C++ function), 21
mpi::AllReduce (C++ function), 21
mpi::AllToAll (C++ function), 21
mpi::ANY_SOURCE (C++ member), 17
mpi::ANY_TAG (C++ member), 17
mpi::Barrier (C++ function), 20
mpi::BINARY_AND (C++ member), 18
mpi::BINARY_OR (C++ member), 18
mpi::BINARY_XOR (C++ member), 18
mpi::Broadcast (C++ function), 21
mpi::CartCreate (C++ function), 19
mpi::CartSub (C++ function), 19
mpi::Comm (C++ type), 16
mpi::COMM_WORLD (C++ member), 17
mpi::CommCreate (C++ function), 19
mpi::CommDup (C++ function), 19
mpi::CommFree (C++ function), 19
mpi::CommGroup (C++ function), 19
mpi::CommRank (C++ function), 19
mpi::CommSize (C++ function), 19
mpi::CommSplit (C++ function), 19
mpi::CongruentComms (C++ function), 19
mpi::Datatype (C++ type), 16
mpi::ErrorHandler (C++ type), 16
mpi::ErrorHandlerSet (C++ function), 19
mpi::ERRORS_ARE_FATAL (C++ member), 17
mpi::ERRORS_RETURN (C++ member), 17
mpi::Finalize (C++ function), 18
mpi::Finalized (C++ function), 18
mpi::Gather (C++ function), 21
mpi::GetCount<T> (C++ function), 20
mpi::Group (C++ type), 16
mpi::GROUP_EMPTY (C++ member), 17

Index

115

Elemental Manual, Release 0.77

mpi::GroupDifference (C++ function), 20
mpi::GroupFree (C++ function), 20
mpi::Grouplncl (C++ function), 19
mpi::GroupRank (C++ function), 19
mpi::GroupSize (C++ function), 19
mpi::GroupTranslateRanks (C++ function), 20
mpi::Initialize (C++ function), 18
mpi::Initialized (C++ function), 18
mpi::InitializeThread (C++ function), 18
mpi::IProbe (C++ function), 20

mpi::IRecv (C++ function), 20

mpi::ISend (C++ function), 20

mpi::ISSend (C++ function), 20
mpi::LOGICAL_AND (C++ member), 17
mpi::LOGICAL_OR (C++ member), 17
mpi::LOGICAL_XOR (C++ member), 17
mpi::MAX (C++ member), 17

mpi::MIN (C++ member), 17
mpi::MIN_COLL_MSG (C++ member), 18
mpi::Op (C++ type), 16

mpi::OpCreate (C++ function), 18
mpi::OpFree (C++ function), 19

mpi::PROD (C++ member), 17

mpi::Recv (C++ function), 20

mpi::Reduce (C++ function), 21
mpi::ReduceScatter (C++ function), 21
mpi::Request (C++ type), 16
mpi::REQUEST_NULL (C++ member), 17
mpi::Scatter (C++ function), 21

mpi::Send (C++ function), 20
mpi::SendRecv (C++ function), 20
mpi::Status (C++ type), 16

mpi::SUM (C++ member), 17

mpi::Test (C++ function), 20

mpi:: THREAD_FUNNELED (C++ member), 17
mpi:: THREAD_MULTIPLE (C++ member), 17
mpi:: THREAD_SERIALIZED (C++ member), 17
mpi:: THREAD_SINGLE (C++ member), 17
mpi::Time (C++ function), 18
mpi::UNDEFINED (C++ member), 17
mpi::UserFunction (C++ type), 17
mpi::Wait (C++ function), 20

N

NonHPDMatrixException (C++ type), 26

NonHPDMatrixException::NonHPDMatrixException
(C++ function), 26

NonHPSDMatrixException (C++ type), 26

NonHPSDMatrixException::NonHPSDMatrixException
(C++ function), 26

Norm (C++ function), 83

NormalUniformSpectrum (C++ function), 106, 107

NormType (C++ type), 30

Nrm2 (C++ function), 71

O

Ones (C++ function), 104
OneTwoOne (C++ function), 104
operator

= (C++ function), 28, 38
operator* (C++ function), 28
operator+ (C++ function), 27, 28
operator- (C++ function), 28
operator/ (C++ function), 28
operator== (C++ function), 28, 38
operator<< (C++ function), 28
Orientation (C++ type), 31

P

plcg::AddWith64BitMod (C++ function), 22

plcg::CarryUpper16Bits (C++ function), 22

plcg::Deflate (C++ function), 22

plcg::Expand (C++ function), 22

plcg::ExpandedUInt64 (C++ type), 22

plcg::Halve (C++ function), 22

plcg::IntegerPowerWith64BitMod (C++ function), 22

plcg::Lowerl16Bits (C++ function), 22

plcg::ManualLcg (C++ function), 23

plcg::MultiplyWith64BitMod (C++ function), 22

plcg::Paralle]lBoxMuller (C++ function), 23

plcg::ParallelGaussianRandomVariable (C++ function),
23

plcg::ParallelL.cg (C++ function), 23

plcg::ParallelUniform (C++ function), 23

plcg::SeedParallelLcg (C++ function), 22

plcg::SeedSerialL.cg (C++ function), 22

plcg::SerialBoxMuller (C++ function), 23

plcg::SerialGaussianRandomVariable (C++ function), 23

plcg::SerialLcg (C++ function), 23

plcg::SerialUniform (C++ function), 23

plcg::UInt32 (C++ type), 22

plcg::Ulnt64 (C++ type), 22

plcg::Upper16Bits (C++ function), 22

pmrrr::Eig (C++ function), 24

pmrrr::EigEstimate (C++ function), 24

pmrrr::Estimate (C++ type), 23

pmrrr::Estimate::numGlobalEigenvalues (C++ member),
23

pmrrr::Estimate::numLocalEigenvalues (C++ member),
23

pmrrr::Info (C++ type), 23

pmrrr::Info::firstLocalEigenvalue (C++ member), 24

pmrrr::Info::numGlobalEigenvalues (C++ member), 24

pmrrr::Info::numLocalEigenvalues (C++ member), 23

Polar (C++ function), 29, 96

PopBlocksizeStack (C++ function), 25

PopCallStack (C++ function), 26

Pow (C++ function), 29

Pseudoinverse (C++ function), 97

116

Index

Elemental Manual, Release 0.77

PushBlocksizeStack (C++ function), 25
PushCallStack (C++ function), 26

Q

QDWH (C++ function), 96
QR (C++ function), 86, 87

R

RealHermitianFunction (C++ function), 97
RealPart (C++ function), 29

S

SafeDeterminant (C++ function), 82

SafeHPDDeterminant (C++ function), 82

SafeProduct<F> (C++ type), 82

SafeProduct<F>::kappa (C++ member), 82

SafeProduct<F>::n (C++ member), 82

SafeProduct<F>::rho (C++ member), 82

Scal (C++ function), 72

ScaleTrapezoid (C++ function), 72

scomplex (C++ type), 28

SetBlocksize (C++ function), 25

SetHermitianTridiagApproach (C++ function), 99

SetHermitianTridiagGridOrder (C++ function), 99

SetLocalHemvBlocksize<T> (C++ function), 79

SetLocalSymvBlocksize<T> (C++ function), 79

SetLocalTrr2kBlocksize<T> (C++ function), 80

SetLocalTrrkBlocksize<T> (C++ function), 80

Shift (C++ function), 31

Sin (C++ function), 29

SingularMatrixException (C++ type), 26

SingularMatrixException::SingularMatrixException
(C++ function), 26

SingularValues (C++ function), 96

Sinh (C++ function), 29

SkewHermitianEig (C++ function), 92, 93

SlideLockedPartitionDown (C++ function), 64

SlideLockedPartitionLeft (C++ function), 64

SlideLockedPartitionRight (C++ function), 65

SlideLockedPartitionUp (C++ function), 63

SlidePartitionDown (C++ function), 63, 64

SlidePartitionLeft (C++ function), 64

SlidePartitionRight (C++ function), 65

SlidePartitionUp (C++ function), 63

SolveAfterCholesky (C++ function), 88

SolveAfterLU (C++ function), 88

SortEig (C++ function), 92

Sqrt (C++ function), 29

SVD (C++ function), 96

Symm (C++ function), 76

SymmetricNorm (C++ function), 83

Symv (C++ function), 74

Syr (C++ function), 74, 75

Syr2 (C++ function), 75

Syr2k (C++ function), 77
Syrk (C++ function), 77

T

Tan (C++ function), 29

Toeplitz (C++ function), 104

Trace (C++ function), 84

Transpose (C++ function), 72

Trdtrmm (C++ function), 78
TriangularInverse (C++ function), 89
Trmm (C++ function), 77

Trr2k (C++ function), 78

Trrk (C++ function), 78

Trsm (C++ function), 79

Trsv (C++ function), 75

Trtrmm (C++ function), 78
TwoNormLowerBound (C++ function), 84
TwoNormUpperBound (C++ function), 84
TwoSidedTrmm (C++ function), 79
TwoSidedTrsm (C++ function), 79

U

Uniform (C++ function), 106
UnitOrNonUnit (C++ type), 31
UpperOrLower (C++ type), 31

V

VerticalOrHorizontal (C++ type), 31

W

Walsh (C++ function), 105
Wilkinson (C++ function), 105

Z

Zero (C++ function), 72
Zeros (C++ function), 105

Index

117

	Introduction
	Overview
	Dependencies
	License and copyright

	Build system
	Dependencies
	Getting Elemental's source
	Building Elemental
	Testing the installation
	Elemental as a subproject
	Troubleshooting

	Core functionality
	Imported library routines
	Environment
	The Matrix class
	The Grid class
	The DistMatrix class
	Partitioning
	Repartitioning
	Sliding partitions
	The Axpy interface

	Basic linear algebra
	Level 1
	Level 2
	Level 3
	Tuning parameters

	High-level linear algebra
	Invariants, inner products, and divergences
	Factorizations
	Linear solvers
	Factorization-based inversion
	Reduction to condensed form
	Eigensolvers and SVD
	Matrix functions
	Utilities
	Tuning parameters

	Special matrices
	Deterministic
	Random

	Indices
	Index

