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Chapter 1

Introduction

idas is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [15]. This suite consists of cvode, kinsol, and ida, and variants of these with
sensitivity analysis capabilities, cvodes and idas.

idas is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. idas is an extension of the ida solver within sundials, itself based on
daspk [3, 4]; however, like all sundials solvers, idas is written in ANSI-standard C rather than
Fortran77. Its most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
without any assumptions on the underlying organization of the data; and (3) it provides a flexible,
extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus idas

shares significant modules previously written within CASC at LLNL to support the ordinary differen-
tial equation (ODE) solvers cvode [16, 10] and pvode [6, 7], the DAE solver ida [18] on which idas

is based, the sensitivity-enabled ODE solver cvodes [17, 24], and also the nonlinear system solver
kinsol [11].

The Newton/Krylov methods in idas are: the GMRES (Generalized Minimal RESidual) [23],
Bi-CGStab (Bi-Conjugate Gradient Stabilized) [26], and TFQMR (Transpose-Free Quasi-Minimal
Residual) linear iterative methods [13]. As Krylov methods, these require almost no matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow for a
user-supplied preconditioner matrix, and for most problems preconditioning is essential for an efficient
solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the three Krylov methods in idas, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all three, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage in
storage requirements, in that the number of workspace vectors they require is fixed, while that number
for GMRES depends on the desired Krylov subspace size.

idas is written with a functionality that is a superset of that of ida. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in idas will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP
forward in time followed by the integration of the so-called adjoint equations backward in time. idas

provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for idas. First, a general movement
away from Fortran and toward C in scientific computing is apparent. Second, the pointer, structure,
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and dynamic memory allocation features in C are extremely useful in software of this complexity, with
the great variety of method options offered. Finally, we prefer C over C++ for idas because of the wider
availability of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing
the solver to applications written in extended Fortran.

1.1 Changes in v2.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.
A large number of minor errors have been fixed. Among these are the following: A missing

vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the t location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS USE GENERIC MATH, so that the parameter GENERIC MATH LIB is either defined
(with no value) or not defined.

1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by idas for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the idas solver (§3.2).

• Chapter 4 is the main usage document for idas for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using idas for sensitivity analysis can then skip the next two chapters.

• Chapter 5 describes the usage of idas for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 6 describes the usage of idas for adjoint sensitivity analysis. We begin by describing
the idas checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.
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• Chapter 7 gives a brief overview of the generic nvector module shared amongst the various
components of sundials, as well as details on the two nvector implementations provided with
sundials: a serial implementation (§7.1) and a parallel implementation based on MPI (§7.2).

• Chapter 8 describes the specifications of linear solver modules as supplied by the user.

• Chapter 9 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, in the appendices, we provide detailed instructions for the installation of idas, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from idas functions (Appendix B).

The reader should be aware of the following notational conventions in this user guide: program
listings and identifiers (such as IDAInit) within textual explanations appear in typewriter type style;
fields in C structures (such as content) appear in italics; and packages or modules, such as idadense,
are written in all capitals. Usage and installation instructions that constitute important warnings are
marked with a triangular symbol in the margin. !





Chapter 2

Mathematical Considerations

idas solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0,
ẏ0 are given. (Often t is time, but it certainly need not be.)

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

F (t, y, ẏ, p) = 0

y(t0) = y0(p) , ẏ(t0) = ẏ0(p) ,
(2.2)

idas can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, idas computes the sensitivities of the solution with
respect to the parameters p, while in the second case, idas computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
y0 and ẏ0 are both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, idas provides a routine that computes consistent
initial conditions from a user’s initial guess [4]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption that the system is
“index one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely. In this
case, a solver within idas computes ya and ẏd at t = t0, given yd and an initial guess for ya. A
second available option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly
for quasi-steady-state problems, where ẏ(t0) = 0 is given. In both cases, idas solves the system
F (t0, y0, ẏ0) = 0 for the unknown components of y0 and ẏ0, using Newton iteration augmented with
a line search global strategy. In doing this, it makes use of the existing machinery that is to be used
for solving the linear systems during the integration, in combination with certain tricks involving the
step size (which is set artificially for this calculation). For problems that do not fall into either of
these categories, the user is responsible for passing consistent values, or risks failure in the numerical
integration.

The integration method used in idas is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [1]. The method order ranges from 1 to 5,
with the BDF of order q given by the multistep formula

q
∑

i=0

αn,iyn−i = hnẏn , (2.3)



6 Mathematical Considerations

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively, and the step size
is hn = tn− tn−1. The coefficients αn,i are uniquely determined by the order q, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

G(yn) ≡ F

(

tn, yn, h−1
n

q
∑

i=0

αn,iyn−i

)

= 0 . (2.4)

Regardless of the method options, the solution of the nonlinear system (2.4) is accomplished with
some form of Newton iteration. This leads to a linear system for each Newton correction, of the form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (2.5)

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=

∂F

∂y
+ α

∂F

∂ẏ
, (2.6)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes.
For the solution of the linear systems within the Newton corrections, idas provides several choices,

including the option of an user-supplied linear solver module. The linear solver modules distributed
with sundials are organized in two families, a direct family comprising direct linear solvers for dense or
banded matrices and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers.
The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spbcg, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcg, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [2]. For the spils linear solvers, preconditioning is allowed only on
the left (see §2.2). Note that the direct linear solvers (dense and band) can only be used with serial
vector representations.

In the process of controlling errors at various levels, idas uses a weighted root-mean-square norm,
denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.7)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small”. For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a direct linear solver (dense or banded), the nonlinear iteration (2.5) is a Modified
Newton iteration, in that the Jacobian J is fixed (and usually out of date), with a coefficient ᾱ in
place of α in J . When using one of the Krylov methods spgmr, spbcg, or sptfqmr as the linear
solver, the iteration is an Inexact Newton iteration, using the current Jacobian (through matrix-free
products Jv), in which the linear residual J∆y + G is nonzero but controlled. The Jacobian matrix
J (direct cases) or preconditioner matrix P (spgmr/spbcg/sptfqmr case) is updated when:
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• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The stopping test for the Newton iteration in idas ensures that the iteration error yn − yn(m) is
small relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

R =

(

δm

δ1

)
1

m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, . . .. The Newton iteration is
halted if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (2.8)

where S = R/(R−1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first Newton iteration, we make an
additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably just noise and
therefore not appropriate for use in evaluating R). We allow only a small number (default value 4)
of Newton iterations. If convergence fails with J or P current, we are forced to reduce the step size
hn, and we replace hn by hn/4. The integration is halted after a preset number (default value 10)
of convergence failures. Both the maximum allowable Newton iterations and the maximum nonlinear
convergence failures can be changed by the user from their default values.

When spgmr, spbcg, or sptfqmr is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the Newton iteration, i.e., ‖P−1(Jx+G)‖ <
0.05 · 0.33. The safety factor 0.05 can be changed by the user.

In the direct linear solver cases, the Jacobian J defined in (2.6) can be either supplied by the user or
have idas compute one internally by difference quotients. In the latter case, we use the approximation

Jij = [Fi(t, y + σjej , ẏ + ασjej)− Fi(t, y, ẏ)]/σj , with

σj =
√

U max {|yj |, |hẏj |, 1/Wj} sign(hẏj) ,

where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component
yj defined by (2.7). In the spgmr/spbcg/sptfqmr case, if a routine for Jv is not supplied, such
products are approximated by

Jv = [F (t, y + σv, ẏ + ασv)− F (t, y, ẏ)]/σ ,

where the increment σ is 1/‖v‖. As an option, the user can specify a constant factor that is inserted
into this expression for σ.

During the course of integrating the system, idas computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector difference
∆n ≡ yn − yn(0). Thus there is a constant C such that

LTE = C∆n + O(hq+2) ,
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and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, idas requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C̄‖∆n‖ for another constant C̄. Thus the local error test in
idas is

max{|C|, C̄}‖∆n‖ ≤ 1 . (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In idas, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, idas uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders q′

equal to q, q− 1 (if q > 1), q− 2 (if q > 2), or q + 1 (if q < 5), there are constants C(q′) such that the
norm of the local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖+ O(hq′+2) ,

where φ(k) is a modified divided difference of order k that is retained by idas (and behaves asymp-
totically as hk). Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖ to
select step sizes. But the choice of order in idas is based on the requirement that the scaled derivative
norms, ‖hky(k)‖, are monotonically decreasing with k, for k near q. These norms are again estimated
using the φ(k), and in fact

‖hq′+1y(q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to q′ = q−1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2
and max{T (q − 1), T (q − 2)} ≤ T (q); otherwise q′ = q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order q ← q′ and a new step size h′. The latter is based on the
hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If the local error test
fails a second time, idas uses η = 0.25, and on the third and subsequent failures it uses q = 1 and
η = 0.25. After 10 failures, idas returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if q′ = q−1 from the prior test, if q = 5, or if q was increased on the previous
step. Otherwise, if the last q + 1 steps were taken at a constant order q < 5 and a constant step size,
idas considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then reset q = 2 if
T (2) < T (1)/2. (b) If q > 1 then

• reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};

• else reset q ← q + 1 if T (q + 1) < T (q);

• leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is restricted to
0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset to h′ = ηh. Thus we do not
increase the step size unless it can be doubled. See [1] for details.
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idas permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, idas estimates a new step size h′ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions.

Normally, idas takes steps until a user-defined output value t = tout is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force idas not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.5), idas makes repeated use of a linear
solver to solve linear systems of the form J∆y = −G. If this linear system solve is done with one of
the scaled preconditioned iterative linear solvers, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable
efficiency. A system Ax = b can be preconditioned on the left, on the right, or on both sides. The
Krylov method is then applied to a system with the matrix P−1A, or AP−1, or P−1

L AP−1
R , instead

of A. However, within idas, preconditioning is allowed only on the left, so that the iterative method
is applied to systems (P−1J)∆y = −P−1G. Left preconditioning is required to make the norm of the
linear residual in the Newton iteration meaningful; in general, ‖J∆y + G‖ is meaningless, since the
weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff be-
tween rapid convergence and low cost can be very difficult. Good choices are often problem-dependent
(for example, see [2] for an extensive study of preconditioners for reaction-transport systems).

Typical preconditioners used with idas are based on approximations to the Newton iteration matrix
of the systems involved; in other words, P ≈ ∂F

∂y + α∂F
∂ẏ , where α is a scalar inversely proportional to

the integration step size h. Because the Krylov iteration occurs within a Newton iteration and further
also within a time integration, and since each of these iterations has its own test for convergence, the
preconditioner may use a very crude approximation, as long as it captures the dominant numerical
feature(s) of the system. We have found that the combination of a preconditioner with the Newton-
Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior
to using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as
to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The idas solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), idas can also find the roots of a set of user-defined functions
gi(t, y, ẏ) that depend on t, the solution vector y = y(t), and its t−derivative ẏ(t). The number of
these root functions is arbitrary, and if more than one gi is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the t axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of gi(t, y(t), ẏ(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by idas. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.
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The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [14].
In addition, each time g is computed, idas checks to see if gi(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any gi is found at a point t, idas computes g at t + δ for a small
increment δ, slightly further in the direction of integration, and if any gi(t + δ) = 0 also, idas stops
and reports an error. This way, each time idas takes a time step, it is guaranteed that the values of
all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, idas has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is
further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end
of the time step last taken, or the next requested output time tout if this comes sooner. The endpoint
tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time
interval (starting at thi). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is reset
to tmid according to which subinterval is found to have the sign change. If there is none in (tlo, tmid)
but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ , and then
the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

z(t) =

∫ t

t0

q(τ, y(τ), p) dτ . (2.10)

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

ż = q(t, y, p) , z(t0) = 0 . (2.11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).
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This can be done at the “user level” by simply exposing to idas the extended DAE system
(2.2)+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states z do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values zn are computed explicitly as

zn =
1

αn,0

(

hnq(tn, yn, p)−
q
∑

i=1

αn,izn−i

)

,

once the new approximation yn is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding

relative and absolute tolerances must be provided.

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or sensitivity equations for short):

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
= 0

si(t0) =
∂y0(p)

∂pi
, ṡi(t0) =

∂ẏ0(p)

∂pi
,

(2.12)

obtained by applying the chain rule of differentiation to the original DAEs (2.2).
When performing forward sensitivity analysis, idas carries out the time integration of the combined

system, (2.2) and (2.12), by viewing it as a DAE system of size N(Ns + 1), where Ns is the number
of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, idas offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.

2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct In this approach [9], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate ṡi. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
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to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [20]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in idas.

• Simultaneous Corrector In this method [21], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system Ĝ(ŷn) = 0 where ŷn = [yn, . . . , si, . . .]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

Ĵ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (2.13)

at each iteration, where

Ĵ =















J
J1 J
J2 0 J
...

...
. . .

. . .

JNs
0 . . . 0 J















,

J is defined as in (2.6), and Ji = (∂/∂y) [Fysi + Fẏ ṡi + Fpi
]. It can be shown that 2-step

quadratic convergence can be retained by using only the block-diagonal portion of Ĵ in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fysi + Fẏ ṡi + Fpi

must still be reevaluated

at each step of the iterative process (2.13) to update the sensitivity portions of the residual Ĝ.

• Staggered corrector In this approach [12], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector ξ ≡ si, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J [ξn(m+1) − ξn(m)] =

−
[

Fy(tn, yn, ẏn)ξn(m) + Fẏ(tn, yn, ẏn) · h−1
n

(

αn,0ξn(m) +

q
∑

i=1

αn,iξn−i

)

+ Fpi
(tn, yn, ẏn)

]

.

(2.14)

In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices ∂F/∂y, ∂F/∂ẏ and vectors ∂F/∂pi need be updated only once per integration step,
after the state correction phase (2.5) has converged.

idas implements both the simultaneous corrector method and the staggered corrector method.
An important observation is that the staggered corrector method, combined with a Krylov linear

solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, idas provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
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tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being
dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of idas can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). idas provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), idas can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and (∂F/∂pi), or using directional
derivatives to evaluate [(∂F/∂y)si + (∂F/∂ẏ)ṡi + (∂F/∂pi)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. idas takes into account several problem-related
features: the relative DAE error tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and
the weighted root-mean-square norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F/∂pi

in (2.12) can be evaluated either separately:

∂F

∂y
si +

∂F

∂ẏ
ṡi ≈

F (t, y + σysi, ẏ + σy ṡi, p)− F (t, y − σysi, ẏ − σy ṡi, p)

2σy
, (2.15)

∂F

∂pi
≈ F (t, y, ẏ, p + σiei)− F (t, y, ẏ, p− σiei)

2σi
, (2.15’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

or simultaneously:

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p + σei)− F (t, y − σsi, ẏ − σṡi, p− σei)

2σ
, (2.16)

σ = min(σi, σy) ,

or by adaptively switching between (2.15)+(2.15’) and (2.16), depending on the relative size of the
two finite difference increments σi and σy. In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use
separate evaluations if ρ > ρmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy, σ) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂F

∂pi
separately, or the single directional derivative formula

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p + σei)− F (t, y, ẏ, p)

σ

can be used. In idas, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), idas does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
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depending on both the states y of (2.2) and the state sensitivities si of (2.12) can be evaluated. In
other words, idas provides support for computing integrals of the form:

z̄(t) =

∫ t

t0

q̄(τ, y(τ), s1(τ), . . . , sNp
(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

q̄i = qysi + qpi
, i = 1, . . . , Np ,

as integrands for z̄, where qy and qp are the partial derivatives of the integrand function q of (2.10).
As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver

phase and “corrected” values z̄n are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an DAE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ T

t0

g(t, y, p)dt , (2.17)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time t = T . The function g
must be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [8].

2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier λ, we form the augmented objective function

I(p) = G(p)−
∫ T

t0

λ∗F (t, y, ẏ, p)dt.

Since F (t, y, ẏ, p) = 0, the sensitivity of G with respect to p is

dG

dp
=

dI

dp
=

∫ T

t0

(gp + gyyp)dt−
∫ T

t0

λ∗(Fp + Fyyp + Fẏ ẏp)dt, (2.18)

where subscripts on functions such as F or g are used to denote partial derivatives. By integration
by parts, we have

∫ T

t0

λ∗Fẏ ẏpdt = (λ∗Fẏyp)|Tt0 −
∫ T

t0

(λ∗Fẏ)′ypdt,

where (· · · )′ denotes the t−derivative. Thus equation (2.18) becomes

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt−
∫ T

t0

[−gy + λ∗Fy − (λ∗Fẏ)′] ypdt− (λ∗Fẏyp)|Tt0 . (2.19)

Now by requiring λ to satisfy
(λ∗Fẏ)′ − λ∗Fy = −gy, (2.20)
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we obtain
dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt− (λ∗Fẏyp)|Tt0 . (2.21)

Note that yp at t = t0 is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at t = T ) for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

λ∗Fẏ|t=T = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt + (λ∗Fẏyp)|t=t0 . (2.23)

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final
conditions in such cases, see [8].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution λ is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to idas during the backward integration phase of (2.20). The
approach adopted in idas, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of g(T, p)

Now let us consider the computation of dg/dp(T ). From dg/dp(T ) = (d/dT )(dG/dp) and equation
(2.21), we have

dg

dp
= (gp − λ∗Fp)(T )−

∫ T

t0

λ∗

T Fpdt + (λ∗

T Fẏyp)|t=t0 −
d(λ∗Fẏyp)

dT
(2.24)

where λT denotes ∂λ/∂T . For index-0 and index-1 DAEs, we obtain

d(λ∗Fẏyp)|t=T

dT
= 0,

while for a Hessenberg index-2 DAE system we have

d(λ∗Fẏyp)|t=T

dT
= −

d(gya(CB)−1f2
p )

dt

∣

∣

∣

∣

∣

t=T

.

The corresponding adjoint equations are

(λ∗

T Fẏ)′ − λ∗

T Fy = 0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write λ as λ(t, T ) because it depends on both t and T . Then

λ∗(T, T )Fẏ|t=T = 0.

Taking the total derivative, we obtain

(λt + λT )∗(T, T )Fẏ|t=T + λ∗(T, T )
dFẏ

dt
|t=T = 0.
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Since λt is just λ̇, we have the boundary condition

(λ∗

T Fẏ)|t=T = −
[

λ∗(T, T )
dFẏ

dt
+ λ̇∗Fẏ

]

|t=T .

For the index-one DAE case, the above relation and (2.20) yield

(λ∗

T Fẏ)|t=T = [gy − λ∗Fy] |t=T . (2.26)

For the regular implicit ODE case, Fẏ is invertible; thus we have λ(T, T ) = 0, which leads to λT (T ) =

−λ̇(T ). As with the final conditions for λ(T ) in (2.20), the above selection for λT (T ) is not sufficient
for index-two Hessenberg DAEs (see [8] for details).

2.6.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
idas implements variable-step integration formulas, it is unlikely that the states will be available at
the desired time and so some form of interpolation is needed. The idas implementation being also
variable-order, it is possible that during the forward integration phase the order may be reduced as
low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. idas implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, idas settles for a compromise between storage space and execution time by implementing a so-
called checkpointing scheme. At the cost of at most one additional forward integration, this approach
offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To begin
with, based on the problem size N and the available memory, the user decides on the number Nd

of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors in
the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of
interpolation. Then, during the first forward integration stage, after every Nd integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During the
backward integration stage, the adjoint variables are integrated backwards from T to t0, going from
one checkpoint to the previous one. The backward integration from checkpoint i + 1 to checkpoint i
is preceded by a forward integration from i to i + 1 during which the Nd vectors y (and, if necessary
ẏ) are generated and stored in memory for interpolation1

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval
of integration. If no checkpoints are necessary (Nd is larger than the number of integration steps
taken in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as
one forward plus one backward integration. In addition, idas provides the capability of reusing a set

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires only
half of the memory storage of the cubic Hermite interpolation) and is more accurate.
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in idas provides the necessary infrastructure
to integrate backwards in time any DAE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.25), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21). In particular, for DAE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.7 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the DAE problem (2.2) and some model output
functional2 g(y), the Hessian d2g/dp2 can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(

gy ⊗ INp

)

ypp + yT
p gyyyp ,

where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix DAE
system:
(

Fẏ ⊗ INp

)

· ẏpp +
(

Fy ⊗ INp

)

· ypp +
(

IN ⊗ ẏT
p

)

· (Fẏẏ ẏp + Fyẏyp) +
(

IN ⊗ yT
p

)

· (Fyẏ ẏp + Fyyyp) = 0

ypp(t0) =
∂2y0

∂p2
, ẏpp(t0) =

∂2ẏ0

∂p2
,

where yp denotes the first-order sensitivity matrix, the solution of Np systems (2.12), and ypp is a
third-order tensor. It is easy to see that, except for situations in which the number of parameters Np

is very small, the computational cost of this so-called forward-over-forward approach is exorbitant as
it requires the solution of Np + N2

p additional DAE systems of the same dimension as (2.2).
A much more efficient alternative is to compute Hessian-vector products using a so-called forward-

over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional for-
ward derivation to the gradient of (2.21) (or the equivalent one for a pointwise functional g(T, y(T ))).
With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gra-
dient with forward sensitivity analysis. However, Hessian-vector products can be cheaply computed
with one additional adjoint solve.

As an illustration3, consider the ODE problem

ẏ = f(t, y) , y(t0) = y0(p) ,

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [22].

3The derivation for the general DAE case is too involved for the purposes of this discussion.
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depending on some parameters p through the initial conditions only and consider the model functional
output G(p) =

∫ tf

t0
g(t, y) dt. It can be shown that the product between the Hessian of G (with respect

to the parameters p) and some vector u can be computed as

∂2G

∂p2
u =

[(

λT ⊗ INp

)

yppu + yT
p µ
]

t=t0
,

where λ and µ are solutions of

− µ̇ = fT
y µ +

(

λT ⊗ In

)

fyys ; µ(tf ) = 0

− λ̇ = fT
y λ + gT

y ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu.

(2.27)

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector
product is roughly that of two forward and two backward integrations of a system of DAEs of size
N . For more details, including the corresponding formulas for a pointwise model functional output,
see the work by Ozyurt and Barton [22] who discuss this problem for ODE initial value problems. As
far as we know, there is no published equivalent work on DAE problems. However, the derivations
given in [22] for ODE problems can be extended to DAEs with some careful consideration given to
the derivation of proper final conditions on the adjoint systems, following the ideas presented in [8].

To allow the foward-over-adjoint approach described above, idas provides support for:

• the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems), kinsol

(for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition, sundials

also includes variants of cvode and ida with sensitivity analysis capabilities (using either forward or
adjoint methods): cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 IDAS organization

The idas package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the idas package is shown in Figure 3.2. The central integration
module, implemented in the files idas.h, idas impl.h, and idas.c, deals with the evaluation of
integration coefficients, the Newton iteration process, estimation of local error, selection of stepsize
and order, and interpolation to user output points, among other issues. Although this module contains
logic for the basic Newton iteration algorithm, it has no knowledge of the method being used to solve
the linear systems that arise. For any given user problem, one of the linear system modules is specified,
and is then invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. idas provides two different strategies
for dealing with the correction stage for the sensitivity variables: IDA SIMULTANEOUS IDA STAGGERED

(see §2.5). The idas package includes an algorithm for the approximation of the sensitivity equations
residuals by difference quotients, but the user has the option of supplying these residual functions
directly.

The adjoint sensitivity module (file idaa.c) provides the infrastructure needed for the backward
integration of any system of DAEs which depends on the solution of the original IVP, in particular the
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Figure 3.1: Organization of the SUNDIALS suite
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Figure 3.2: Overall structure diagram of the idas package. Modules specific to idas are distinguished
by rounded boxes, while generic solver and auxiliary modules are in square boxes. Note that the direct
linear solvers using Lapack implementations are not explicitly represented.

adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes the following seven idas linear algebra modules, organized into
two families. The direct familiy of linear solvers provides solvers for the direct solution of linear
systems with dense or banded matrices and includes:

• idadense: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);

• idaband: LU factorization and backsolving with banded matrices (using either an internal
implementation or Blas/Lapack);

The spils family of linear solvers provides scaled preconditioned iterative linear solvers and includes:

• idaspgmr: scaled preconditioned GMRES method;

• idaspbcg: scaled preconditioned Bi-CGStab method;

• idasptfqmr: scaled preconditioned TFQMR method.

The set of linear solver modules distributed with idas is intended to be expanded in the future as
new algorithms are developed.

In the case of the direct methods idadense and idaband the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. In the case of the Krylov iterative methods idaspgmr,
idaspbcg, and idasptfqmr, the package includes an algorithm for the approximation by difference
quotients of the product between the Jacobian matrix and a vector of appropriate length. Again,
the user has the option of providing a routine for this operation. When using any of the Krylov
methods, the user must supply the preconditioning in two phases: a setup phase (preprocessing
of Jacobian data) and a solve phase. While there is no default choice of preconditioner analogous
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to the difference quotient approximation in the direct case, the references [2, 5], together with the
example and demonstration programs included with idas, offer considerable assistance in building
preconditioners.

Each idas linear solver module consists of five routines, devoted to (1) memory allocation and
initialization, (2) setup of the matrix data involved, (3) solution of the system, (4) monitoring perfor-
mance, and (5) freeing of memory. The setup and solution phases are separate because the evaluation
of Jacobians and preconditioners is done only periodically during the integration, as required to achieve
convergence. The call list within the central idas module to each of the five associated functions is
fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. With the exception of the modules inter-
facing to Lapack linear solvers, each of the modules idadense, idaband, idaspgmr, idaspbcg, and
idasptfqmr is a set of interface routines built on top of a generic solver module, named dense, band,
spgmr, spbcg, and sptfqmr, respectively. The interfaces deal with the use of these methods in the
idas context, whereas the generic solver is independent of the context. While the generic solvers here
were generated with sundials in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the idas package elsewhere.

idas also provides a preconditioner module, idabbdpre, that works in conjunction with nvec-

tor parallel and generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix.

All state information used by idas to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the idas package, and so in this
respect it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the idas memory structure. The reentrancy of idas was motivated by
the situation where two or more problems are solved by intermixed calls to the package from one user
program.



Chapter 4

Using IDAS for IVP Solution

This chapter is concerned with the use of idas for the integration of DAEs. The following sections
treat the header files, the layout of the user’s main program, description of the idas user-callable
functions, and description of user-supplied functions. This usage is essentially equivalent to using
ida [18].

The sample programs described in the companion document [25] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the idas package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers, since these linear solver modules need to form the complete system Jacobian. The
idadense and idaband modules (using either the internal implementation or Lapack) can only be
used with nvector serial. The preconditioner module idabbdpre can only be used with nvec-

tor parallel.
idas uses various constants for both input and output. These are defined as needed in this chapter,

but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of idas, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by idas. The relevant library files are

• libdir/libsundials idas.lib,

• libdir/libsundials nvec*.lib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/idas

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).

Note that an application cannot link to both the ida and idas libraries because both contain
user-callable functions with the same names (to ensure that idas is backward compatible with ida).
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Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use idas.

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §A.1.1).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.1).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• idas.h, the header file for idas, which defines the several types and various constants, and
includes function prototypes.

Note that idas.h includes sundials types.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter

7 for details). For the two nvector implementations that are included in the idas package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both these files include in turn the header file sundials nvector.h which defines the
abstract N Vector type.

Finally, a linear solver module header file is required. The header files corresponding to the various
linear solver options in idas are as follows:
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• idas dense.h, which is used with the dense direct linear solver;

• idas band.h, which is used with the band direct linear solver;

• idas lapack.h, which is used with Lapack implementations of dense or band direct linear
solvers;

• idas spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver
spgmr;

• idas spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver
spbcg;

• idas sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver sptfqmr.

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
idas direct.h, which defines common functions. This in turn includes a file (sundials direct.h)
which defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and
macros acting on such matrices.

The header files for the Krylov iterative solvers include idas spils.h which defines common
functions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and (for the spgmr solver only) the choices for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idasFoodWeb kry p example (see [25]), preconditioning is done with a block-diagonal matrix. For
this, even though the idaspgmr linear solver is used, the header sundials dense.h is included for
access to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a
DAE IVP. Some steps are independent of the nvector implementation used; where this is not the
case, usage specifications are given for the two implementations provided with idas: steps marked [P]
correspond to nvector parallel, while steps marked [S] correspond to nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv) to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument counter
and array received by main.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this processor); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processors.

3. Set vectors of initial values

To set the vectors y0 and yp0 to initial values for y and ẏ, use functions defined by the particular
nvector implementation. For the two nvector implementations provided, if a realtype array
ydata already exists, containing the initial values of y, make the calls:

[S] y0 = N VMake Serial(N, ydata);

[P] y0 = N VMake Parallel(comm, Nlocal, N, ydata);

Otherwise, make the calls:

[S] y0 = N VNew Serial(N);
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[P] y0 = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processors
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processors
are to be used, comm must be MPI COMM WORLD.

The initial conditions for ẏ are set similarly.

4. Create idas object

Call ida mem = IDACreate() to create the idas memory block. IDACreate returns a pointer to
the idas memory structure. See §4.5.1 for details. This void * pointer must then be passed as
the first argument to all subsequent idas function calls.

5. Initialize idas solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for idas, and initialize idas. IDAInit returns an
error flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of idas. See §4.5.7.1 for details.

8. Attach linear solver module

Initialize the linear solver module with one of the following calls (for details see §4.5.3):

[S] flag = IDADense(...);

[S] flag = IDABand(...);

[S] flag = IDALapackDense(...);

[S] flag = IDALapackBand(...);

flag = IDASpgmr(...);

flag = IDASpbcg(...);

flag = IDASptfqmr(...);

9. Set linear solver optional inputs

Optionally, call IDA*Set* functions from the selected linear solver module to change optional
inputs specific to that linear solver. See §4.5.7.2 and §4.5.7.3 for details.

10. Correct initial values

Optionally, call IDACalcIC to correct the initial values y0 and yp0 passed to IDAInit. See §4.5.4.
Also see §4.5.7.4 for relevant optional input calls.

11. Specify rootfinding problem
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Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.5 for details, and see §4.5.7.5 for relevant optional input calls.

12. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida mem, tout, &tret, yret,

ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector y0 above) will contain y(t), while the vector ypret will contain ẏ(t). See §4.5.6 for
details.

13. Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.9 for details.

14. Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret by calling
the destructor function defined by the nvector implementation:

[S] N VDestroy Serial(yret);

[P] N VDestroy Parallel(yret);

and similarly for ypret.

15. Free solver memory

IDAFree(&ida mem) to free the memory allocated for idas.

16. [P] Finalize MPI

Call MPI Finalize() to terminate MPI.

4.5 User-callable functions

This section describes the idas functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.7, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of idas. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.7.1).

4.5.1 IDAS initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the idas memory block created and allocated by the first
two calls.

IDACreate

Call ida mem = IDACreate();

Description The function IDACreate instantiates an idas solver object.

Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created idas memory block (of
type void *). Otherwise it returns NULL.
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IDAInit

Call flag = IDAInit(ida mem, res, t0, y0, yp0);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes idas.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F in the
DAE. This function has the form res(t, yy, yp, resval, user data). For
full details see §4.6.1.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

IDAFree

Call IDAFree(&ida mem);

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAFree has no return value.

4.5.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

IDASStolerances

Call flag = IDASStolerances(ida mem, reltol, abstol);

Description The function IDASStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input tolerances was negative.
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IDASVtolerances

Call flag = IDASVtolerances(ida mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

IDAWFtolerances

Call flag = IDAWFtolerances(ida mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAWFtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 10−15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idasRoberts dns in the idas package, and the discussion of it in the idas Examples document [25].
In that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservately, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the
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actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10−6.
But in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in yret returned by idas, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F (t, y, ẏ).

(4) idas provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2.5).
There are five idas linear solvers currently available for this task: idadense, idaband, idaspgmr,
idaspbcg, and idasptfqmr.

The first two linear solvers are direct and derive their names from the type of approximation
used for the Jacobian J = ∂F/∂y + α∂F/∂ẏ. idadense and idaband work with dense and banded
approximations to J , respectively. The sundials suite includes both internal implementations of
these two linear solvers and interfaces to Lapack implementations. Together, these linear solvers are
referred to as idadls (from Direct Linear Solvers).

The remaining three idas linear solvers, idaspgmr, idaspbcg, and idasptfqmr, are Krylov
iterative solvers. The spgmr, spbcg, and sptfqmr in the names indicate the scaled preconditioned
GMRES, scaled preconditioned Bi-CGStab, and scaled preconditioned TFQMR methods, respectively.
Together, they are referred to as idaspils (from Scaled Preconditioned Iterative Linear Solvers).

When using any of the Krylov linear solvers, preconditioning (on the left) is permitted, and in fact
encouraged, for the sake of efficiency. A preconditioner matrix P must approximate the Jacobian J ,
at least crudely. For the specification of a preconditioner, see §4.5.7.3 and §4.6.

To specify an idas linear solver, after the call to IDACreate but before any calls to IDASolve, the
user’s program must call one of the functions IDADense/IDALapackDense, IDABand/IDALapackBand,
IDASpgmr, IDASpbcg, or IDASptfqmr, as documented below. The first argument passed to these
functions is the idas memory pointer returned by IDACreate. A call to one of these functions links
the main idas integrator to a linear solver and allows the user to specify parameters which are specific
to a particular solver, such as the bandwidths in the idaband case. The use of each of the linear
solvers involves certain constants and possibly some macros, that are likely to be needed in the user
code. These are available in the corresponding header file associated with the linear solver, as specified
below.

In each case (with the exception of the Lapack linear solvers), the linear solver module used by
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idas is actually built on top of a generic linear system solver, which may be of interest in itself. These
generic solvers, denoted dense, band, spgmr, spbcg, and sptfqmr, are described separately in
Chapter 9.

IDADense

Call flag = IDADense(ida mem, N);

Description The function IDADense selects the idadense linear solver and indicates the use of the
internal direct dense linear algebra functions.

The user’s main program must include the idas dense.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The idadense initialization was successful.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS ILL INPUT The idadense solver is not compatible with the current nvector

module.

IDADLS MEM FAIL A memory allocation request failed.

Notes The idadense linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

IDALapackDense

Call flag = IDALapackDense(ida mem, N);

Description The function IDALapackDense selects the idadense linear solver and indicates the use
of Lapack functions.

The user’s main program must include the idas lapack.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of IDADense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

IDABand

Call flag = IDABand(ida mem, N, mupper, mlower);

Description The function IDABand selects the idaband linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the idas band.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the approxi-
mation of it).

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The idaband initialization was successful.
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IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND ILL INPUT The idaband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside its valid
range (0 . . . N−1).

IDABAND MEM FAIL A memory allocation request failed.

Notes The idaband linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not. The half-bandwidths
are to be set so that the nonzero locations (i, j) in the banded (approximate) Jacobian
satisfy −mlower ≤ j − i ≤ mupper.

IDALapackBand

Call flag = IDALapackBand(ida mem, N, mupper, mlower);

Description The function IDALapackBand selects the idaband linear solver and indicates the use of
Lapack functions.

The user’s main program must include the idas lapack.h header file.

Arguments The input arguments are identical to those of IDABand, except that N, mupper, and
mlower are of type int here.

Return value The values of the returned flag (of type int) are identical to those of IDABand.

Notes Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.

IDASpgmr

Call flag = IDASpgmr(ida mem, maxl);

Description The function IDASpgmr selects the idaspgmr linear solver.

The user’s main program must include the idas spgmr.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspgmr initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.

IDASpbcg

Call flag = IDASpbcg(ida mem, maxl);

Description The function IDASpbcg selects the idaspbcg linear solver.

The user’s main program must include the idas spbcgs.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspbcg initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.
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IDASptfqmr

Call flag = IDASptfqmr(ida mem, maxl);

Description The function IDASptfqmr selects the idasptfqmr linear solver.

The user’s main program must include the idas sptfqmr.h header file.

Arguments ida mem (void *) pointer to the idas memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idasptfqmr initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.

4.5.4 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [4].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if y0 and yp0 are known to satisfy
F (t0, y0, ẏ0) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit

(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call flag = IDACalcIC(ida mem, icopt, tout1);

Description The function IDACalcIC corrects the initial values y0 and yp0 at time t0.

Arguments ida mem (void *) pointer to the idas memory block.

icopt (int) is one of the following two options for the initial condition calculation.

icopt=IDA YA YDP INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of ẏ, given the differential components
of y. This option requires that the N Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA Y INIT directs IDACalcIC to compute all components of y, given
ẏ. In this case, id is not required.

tout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA MEM NULL The argument ida mem was NULL.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input arguments was illegal.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-
ner.
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IDA BAD EWT Some component of the error weight vector is zero (illegal), either
for the input value of y0 or a corrected value.

IDA FIRST RES FAIL The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA NO RECOVERY The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDA CONSTR FAIL IDACalcIC was unable to find a solution satisfying the inequality
constraints.

IDA LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm.

IDA CONV FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC will correct the values of y(t0) and ẏ(t0) which were specified
in the previous call to IDAInit or IDAReInit. To obtain the corrected values, call
IDAGetconsistentIC (see §4.5.9.2).

4.5.5 Rootfinding initialization function

While integrating the IVP, idas has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function:

IDARootInit

Call flag = IDARootInit(ida mem, nrtfn, g);

Description The function IDARootInit specifies that the roots of a set of functions gi(t, y, ẏ) are to
be found while the IVP is being solved.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

nrtfn (int) is the number of root functions gi.

g (IDARootFn) is the C function which defines the nrtfn functions gi(t, y, ẏ)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

IDA SUCCESS The call to IDARootInit was successful.

IDA MEM NULL The ida mem argument was NULL.

IDA MEM FAIL A memory allocation failed.

IDA ILL INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

4.5.6 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where idas is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.
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IDASolve

Call flag = IDASolve(ida mem, tout, &tret, yret, ypret, itask);

Description The function IDASolve integrates the DAE over an interval in t.

Arguments ida mem (void *) pointer to the idas memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype) the time reached by the solver (output).

yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector ẏ.

itask (int) a flag indicating the job of the solver for the next user step. The
IDA NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and ẏ(tout). The IDA ONE STEP

option tells the solver to just take one internal step and return the solution at
the point reached by that step.

Return value IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), ẏ(t)).

In IDA NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),
ypret = ẏ(tout).

The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA TSTOP RETURN IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime.

IDA ROOT RETURN IDASolve succeeded and found one or more roots. If nrtfn > 1,
call IDAGetRootInfo to see which gi were found to have a root.
See §4.5.9.3 for more information.

IDA MEM NULL The ida mem argument was NULL.

IDA ILL INPUT One of the inputs to IDASolve was illegal, or some other input
to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (c) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific lsolve field in ida mem. (d) A root of one of the
root functions was found both at a point t and also very near t. In
any case, the user should see the printed error message for details.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with |h| = hmin.

IDA CONV FAIL Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA CONSTR FAIL The inequality constraints were violated and the solver was unable
to recover.
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IDA REP RES ERR The user’s residual function repeatedly returned a recoverable error
flag, but the solver was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA RTFUNC FAIL The rootfinding function failed.

Notes The vector yret can occupy the same space as the vector y0 of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as yp0.

In the IDA ONE STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

All failure return values are negative and therefore a test flag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the idas solver. idas

provides functions that can be used to change these optional input parameters from their default
values. Table 4.1 lists all optional input functions in idas which are then described in detail in the
remainder of this section. For the most casual use of idas, the reader can skip to §4.6.

We note that, on an error return, all these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.

4.5.7.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

IDASetErrFile

Call flag = IDASetErrFile(ida mem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all idas messages
should be directed when the default idas error handler function is used.

Arguments ida mem (void *) pointer to the idas memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the idas memory pointer is NULL). This use of IDASetErrFile is strongly dis-
couraged.

If IDASetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.
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Table 4.1: Optional inputs for idas, idadls, and idaspils

Optional input Function name Default
IDAS main solver

Pointer to an error file IDASetErrFile stderr

Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL

Maximum order for BDF method IDASetMaxOrd 5
Maximum no. of internal steps before tout IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep ∞
Value of tstop IDASetStopTime ∞
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Maximum no. of error test failures IDASetMaxErrTestFails 7
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Suppress alg. vars. from error test IDASetSuppressAlg FALSE

Variable types (differential/algebraic) IDASetId NULL

Inequality constraints on solution IDASetConstraints NULL

Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none

IDAS initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Turn off linesearch IDASetLineSearchOffIC FALSE

Lower bound on Newton step IDASetStepToleranceIC uround2/3

IDADLS linear solvers
Dense Jacobian function IDADlsSetDenseJacFn DQ
Band Jacobian function IDADlsSetBandJacFn DQ

IDASPILS linear solvers
Preconditioner functions IDASpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function IDASpilsSetJacTimesVecFn DQ
Factor in linear convergence test IDASpilsSetEpsLin 0.05
Factor in DQ increment calculation IDASpilsSetIncrementFactor 1.0
Maximum no. of restarts (idaspgmr) IDASpilsSetMaxRestarts 5
Type of Gram-Schmidt orthogonalization (a) IDASpilsSetGSType classical GS
Maximum Krylov subspace size(b) IDASpilsSetMaxl 5

(a) Only for idaspgmr
(b) Only for idaspbcg and idasptfqmr
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IDASetErrHandlerFn

Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments ida mem (void *) pointer to the idas memory block.

ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

IDA SUCCESS The function ehfun and data pointer eh data have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Error messages indicating that the idas solver memory is NULL will always be directed
to stderr.

IDASetUserData

Call flag = IDASetUserData(ida mem, user data);

Description The function IDASetUserData specifies the user data block user data and attaches it
to the main idas memory block.

Arguments ida mem (void *) pointer to the idas memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user preconditioner functions, the call to IDASetUserData

must be made before the call to specify the linear solver.

IDASetMaxOrd

Call flag = IDASetMaxOrd(ida mem, maxord);

Description The function IDASetMaxOrd specifies the maximum order of the linear multistep method.

Arguments ida mem (void *) pointer to the idas memory block.

maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The input value maxord is ≤ 0, or larger than its previous value.

Notes The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal idas memory block, its value
cannot be increased past its previous value.

IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.
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Arguments ida mem (void *) pointer to the idas memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Passing mxsteps = 0 results in idas using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

IDASetInitStep

Call flag = IDASetInitStep(ida mem, hin);

Description The function IDASetInitStep specifies the initial step size.

Arguments ida mem (void *) pointer to the idas memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have
idas use the default value.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes By default, idas estimates the initial step as the solution of ‖hẏ‖WRMS = 1/2, with an
added restriction that |h| ≤ .001|tout - t0|.

IDASetMaxStep

Call flag = IDASetMaxStep(ida mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments ida mem (void *) pointer to the idas memory block.

hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value ∞.

IDASetStopTime

Call flag = IDASetStopTime(ida mem, tstop);

Description The function IDASetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments ida mem (void *) pointer to the idas memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The value of tstop is beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.
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IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 7.

IDASetMaxNonlinIters

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step
(> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.

IDASetMaxConvFails

Call flag = IDASetMaxConvFails(ida mem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments ida mem (void *) pointer to the idas memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.

IDASetNonlinConvCoef

Call flag = IDASetNonlinConvCoef(ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.8).

Arguments ida mem (void *) pointer to the idas memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDA ILL INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida mem (void *) pointer to the idas memory block.

suppressalg (booleantype) indicates whether to suppress (TRUE) or not (FALSE) the
algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.

If suppressalg=TRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = TRUE) is discouraged when solv-
ing DAE systems of index 1, whereas it is generally encouraged for systems of index 2
or more. See pp. 146-147 of Ref. [1] for more on this issue.

IDASetId

Call flag = IDASetId(ida mem, id);

Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments ida mem (void *) pointer to the idas memory block.

id (N Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA YA YDP INIT (see §4.5.4).

IDASetConstraints

Call flag = IDASetConstraints(ida mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments ida mem (void *) pointer to the idas memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.

1.0 then yi will be constrained to be yi ≥ 0.0.

−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.

−2.0 then yi will be constrained to be yi < 0.0.
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Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The constraints vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed.

4.5.7.2 Direct linear solvers optional input functions

The idadense solver needs a function to compute a dense approximation to the Jacobian matrix
J(t, y, ẏ). This function must be of type IDADlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
idadense solver. To specify a user-supplied Jacobian function djac, idadense provides the function
IDADlsSetDenseJacFn. The idadense solver passes the pointer user data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through IDASetUserData.

IDADlsSetDenseJacFn

Call flag = IDADlsSetDenseJacFn(ida mem, djac);

Description The function IDADlsSetDenseJacFn specifies the dense Jacobian approximation func-
tion to be used.

Arguments ida mem (void *) pointer to the idas memory block.

djac (IDADlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes By default, idadense uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type IDADlsDenseJacFn is described in §4.6.5.

The idaband solver needs a function to compute a banded approximation to the Jacobian matrix
J(t, y, ẏ). This function must be of type IDADlsBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default difference quotient function that comes with the
idaband solver. To specify a user-supplied Jacobian function bjac, idaband provides the function
IDADlsSetBandJacFn. The idaband solver passes the pointer user data to the banded Jacobian
approximation function. This allows the user to create an arbitrary structure with relevant problem
data and access it during the execution of the user-supplied Jacobian function, without using global
data in the program. The pointer user data may be specified through IDASetUserData.

IDADlsSetBandJacFn

Call flag = IDADlsSetBandJacFn(ida mem, bjac);

Description The function IDADlsSetBandJacFn specifies the banded Jacobian approximation func-
tion to be used.

Arguments ida mem (void *) pointer to the idas memory block.

bjac (IDADlsBandJacFn) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional value has been successfully set.
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IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idaband linear solver has not been initialized.

Notes By default, idaband uses an internal difference quotient function. If NULL is passed to
bjac, this default function is used.

The function type IDADlsBandJacFn is described in §4.6.6.

4.5.7.3 Iterative linear solvers optional input functions

If preconditioning is to be done with one of the idaspils linear solvers, then the user must supply a pre-
conditioner solve function psolve and specify its name through a call to IDASpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s preconditioner

solve function is done in the optional user-supplied function psetup. Both of these functions are
fully specified in §4.6. If used, the name of the psetup function should be specified in the call to
IDASpilsSetPreconditioner.

The pointer user data received through IDASetUserData (or a pointer to NULL if user data was
not specified) is passed to the preconditioner psetup and psolve functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

The idaspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the
idaspils solvers. A user-defined Jacobian-vector function must be of type IDASpilsJacTimesVecFn

and can be specified through a call to IDASpilsSetJacTimesVecFn (see §4.6.7 for specification details).
As with the preconditioner user-supplied functions, a pointer to the user-defined data structure,
user data, specified through IDASetUserData (or a NULL pointer otherwise) is passed to the Jacobian-
times-vector function jtimes each time it is called.

IDASpilsSetPreconditioner

Call flag = IDASpilsSetPreconditioner(ida mem, psetup, psolve);

Description The function IDASpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments ida mem (void *) pointer to the idas memory block.

psetup (IDASpilsPrecSetupFn) user-defined preconditioner setup function. Pass NULL
if no setup is to be done.

psolve (IDASpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional values have been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The function type IDASpilsPrecSolveFn is described in §4.6.8. The function type
IDASpilsPrecSetupFn is described in §4.6.9.

IDASpilsSetJacTimesVecFn

Call flag = IDASpilsSetJacTimesVecFn(ida mem, jtimes);

Description The function IDASpilsSetJacTimesFn specifies the Jacobian-vector function to be used.

Arguments ida mem (void *) pointer to the idas memory block.

jtimes (IDASpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of
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IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes By default, the idaspils solvers use the difference quotient function. If NULL is passed
to jtimes, this default function is used.

The function type IDASpilsJacTimesVecFn is described in §4.6.7.

IDASpilsSetGSType

Call flag = IDASpilsSetGSType(ida mem, gstype);

Description The function IDASpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used. This must be one of the enumeration constants MODIFIED GS or CLASSICAL GS.
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, respec-
tively.

Arguments ida mem (void *) pointer to the idas memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The value of gstype is not valid.

Notes The default value is MODIFIED GS.

This option is available only for the idaspgmr linear solver.!

IDASpilsSetMaxRestarts

Call flag = IDASpilsSetMaxRestarts(ida mem, maxrs);

Description The function IDASpilsSetMaxRestarts specifies the maximum number of restarts to
be used in the GMRES algorithm.

Arguments ida mem (void *) pointer to the idas memory block.

maxrs (int) maximum number of restarts.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The maxrs argument is negative.

Notes The default value is 5. Pass maxrs = 0 to specify no restarts.

This option is available only for the idaspgmr linear solver.!

IDASpilsSetEpsLin

Call flag = IDASpilsSetEpsLin(ida mem, eplifac);

Description The function IDASpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant. (See §2.1).

Arguments ida mem (void *) pointer to the idas memory block.

eplifac (realtype) linear convergence safety factor (>= 0.0).

Return value The return value flag (of type int) is one of
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IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The value of eplifac is negative.

Notes The default value is 0.05.

Passing a value eplifac= 0.0 also indicates using the default value.

IDASpilsSetIncrementFactor

Call flag = IDASpilsSetIncrementFactor(ida mem, dqincfac);

Description The function IDASpilsSetIncrementFactor specifies a factor in the increments to y
used in the difference quotient approximations to the Jacobian-vector products. (See
§2.1). The increment used to approximate Jv will be σ = dqincfac/‖v‖.

Arguments ida mem (void *) pointer to the idas memory block.

dqincfac (realtype) difference quotient increment factor.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The increment factor was non-positive.

Notes The default value is dqincfac = 1.0.

IDASpilsSetMaxl

Call flag = IDASpilsSetMaxl(ida mem, maxl);

Description The function IDASpilsSetMaxl resets the maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments ida mem (void *) pointer to the idas memory block.

maxl (int) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The maximum subspace dimension is initially specified in the call to the linear solver
specification function (see §4.5.3). This function call is needed only if maxl is being
changed from its previous value.

An input value maxl ≤ 0 will result in the default value, 5.

This option is available only for the idaspbcg and idasptfqmr linear solvers. !

4.5.7.4 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.
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IDASetNonlinConvCoefIC

Call flag = IDASetNonlinConvCoefIC(ida mem, epiccon);

Description The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

Arguments ida mem (void *) pointer to the idas memory block.

epiccon (realtype) coefficient in the Newton convergence test (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The epiccon factor is <= 0.0.

Notes The default value is 0.01 · 0.33.

This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and ẏ to be accepted, the norm of J−1F (t0, y, ẏ) must be ≤
epiccon, where J is the system Jacobian.

IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA YA YDP INIT in IDACalcIC, where h appears in the system Jacobian,
J = ∂F/∂y + (1/h)∂F/∂ẏ.

Arguments ida mem (void *) pointer to the idas memory block.

maxnh (int) maximum allowed number of values for h.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnh is non-positive.

Notes The default value is 5.

IDASetMaxNumJacsIC

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj);

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments ida mem (void *) pointer to the idas memory block.

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnj is non-positive.

Notes The default value is 4.
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IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments ida mem (void *) pointer to the idas memory block.

maxnit (int) maximum number of Newton iterations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnit is non-positive.

Notes The default value is 10.

IDASetLineSearchOffIC

Call flag = IDASetLineSearchOffIC(ida mem, lsoff);

Description The function IDASetLineSearchOffIC specifies whether to turn on or off the linesearch
algorithm.

Arguments ida mem (void *) pointer to the idas memory block.

lsoff (booleantype) a flag to turn off (TRUE) or keep (FALSE) the linesearch algo-
rithm.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.

IDASetStepToleranceIC

Call flag = IDASetStepToleranceIC(ida mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments ida mem (void *) pointer to the idas memory block.

steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The steptol tolerance is <= 0.0.

Notes The default value is (unit roundoff)2/3.

4.5.7.5 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

IDASetRootDirection

Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.

Arguments ida mem (void *) pointer to the idas memory block.
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rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function IDARootInit. A value of 0 for rootdir[i]

indicates that crossing in either direction should be reported for gi. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT rootfinding has not been activated through a call to IDARootInit.

Notes The default behavior is to locate both zero-crossing directions.

IDASetNoInactiveRootWarn

Call flag = IDASetNoInactiveRootWarn(ida mem);

Description The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes idas will not report the initial conditions as a possible zero-crossing (assuming that one
or more components gi are zero at the initial time). However, if it appears that some gi

is identically zero at the initial time (i.e., gi is zero at the initial time and after the first
step), idas will issue a warning which can be disabled with this optional input function.

4.5.8 Interpolated output function

An optional function IDAGetDky is available to obtain additional output values. This function must be
called after a successful return from IDASolve and provides interpolated values of y or its derivatives
of order up to the last internal order used for any value of t in the last internal step taken by idas.

The call to the IDAGetDky function has the following form:

IDAGetDky

Call flag = IDAGetDky(ida mem, t, k, dky);

Description The function IDAGetDky computes the interpolated values of the kth derivative of y for
any value of t in the last internal step taken by idas. The value of k must be non-
negative and smaller than the last internal order used. A value of 0 for k means that
the y is interpolated. The value of t must satisfy tn − hu ≤ t ≤ tn, where tn denotes
the current internal time reached, and hu is the last internal step size used successfully.

Arguments ida mem (void *) pointer to the idas memory block.

t (realtype) time at which to interpolate.

k (int) integer specifying the order of the derivative of y wanted.

dky (N Vector) vector containing the interpolated kth derivative of y(t).

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetDky succeeded.

IDA MEM NULL The ida mem argument was NULL.

IDA BAD T t is not in the interval [tn − hu, tn].

IDA BAD K k is not one of {0, 1, . . . , klast}.
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IDA BAD DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.9.1)
can be used to access tn, hu and klast.

4.5.9 Optional output functions

idas provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.2 lists all optional output functions in idas, which are then described in detail in the remainder
of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the idas solver is in doing its job. For example, the counters nsteps and nrevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.9.1 Main solver optional output functions

idas provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the idas memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the idas nonlinear solver being used. As a convenience, additional
extraction functions provide the optional outputs in groups. These optional output functions are
described next.

IDAGetWorkSpace

Call flag = IDAGetWorkSpace(ida mem, &lenrw, &leniw);

Description The function IDAGetWorkSpace returns the idas real and integer workspace sizes.

Arguments ida mem (void *) pointer to the idas memory block.

lenrw (long int) number of real values in the idas workspace.

leniw (long int) number of integer values in the idas workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.5), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 55 + (m + 6) ∗Nr + 3∗nrtfn;
• with IDASVtolerances: lenrw = lenrw +Nr;

• with constraint checking (see IDASetConstraints): lenrw = lenrw +Nr;

• with id specified (see IDASetId): lenrw = lenrw +Nr;
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Table 4.2: Optional outputs from idas, idadls, and idaspils

Optional output Function name
IDAS main solver

Size of idas real and integer workspace IDAGetWorkSpace

Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups

No. of local error test failures that have occurred IDAGetNumErrTestFails

Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder

Order reductions due to stability limit detection IDAGetNumStabLimOrderReds

Actual initial step size used IDAGetActualInitStep

Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep

Current internal time reached by the solver IDAGetCurrentTime

Suggested factor for tolerance scaling IDAGetTolScaleFactor

Error weight vector for state variables IDAGetErrWeights

Estimated local errors IDAGetEstLocalErrors

No. of nonlinear solver iterations IDAGetNumNonlinSolvIters

No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails

Array showing roots found IDAGetRootInfo

No. of calls to user root function IDAGetNumGEvals

Name of constant associated with a return flag IDAGetReturnFlagName

IDAS initial conditions calculation
Number of backtrack operations IDAGetNumBacktrackops

Corrected initial conditions IDAGetConsistentIC

IDADLS linear solver
Size of real and integer workspace IDADlsGetWorkSpace

No. of Jacobian evaluations IDADlsGetNumJacEvals

No. of residual calls for finite diff. Jacobian evals. IDADlsGetNumResEvals

Last return from a linear solver function IDADlsGetLastFlag

Name of constant associated with a return flag IDADlsGetReturnFlagName

IDASPILS linear solvers
Size of real and integer workspace IDASpilsGetWorkSpace

No. of linear iterations IDASpilsGetNumLinIters

No. of linear convergence failures IDASpilsGetNumConvFails

No. of preconditioner evaluations IDASpilsGetNumPrecEvals

No. of preconditioner solves IDASpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations IDASpilsGetNumJtimesEvals

No. of residual calls for finite diff. Jacobian-vector evals. IDASpilsGetNumResEvals

Last return from a linear solver function IDASpilsGetLastFlag

Name of constant associated with a return flag IDASpilsGetReturnFlagName



4.5 User-callable functions 51

where m = max(maxord, 3), and Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 38 + (m + 6) ∗Ni + nrtfn;

• with IDASVtolerances: leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

• with id specified: lenrw = lenrw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial

and 2*npes for nvector parallel on npes processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55 + 11N ,
leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

IDAGetNumSteps

Call flag = IDAGetNumSteps(ida mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

nsteps (long int) number of steps taken by idas.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments ida mem (void *) pointer to the idas memory block.

nrevals (long int) number of calls to the user’s res function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.

IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(ida mem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumErrTestFails

Call flag = IDAGetNumErrTestFails(ida mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments ida mem (void *) pointer to the idas memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastOrder

Call flag = IDAGetLastOrder(ida mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments ida mem (void *) pointer to the idas memory block.

klast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentOrder

Call flag = IDAGetCurrentOrder(ida mem, &kcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.

kcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastStep

Call flag = IDAGetLastStep(ida mem, &hlast);

Description The function IDAGetLastStep returns the integration step size taken on the last internal
step.

Arguments ida mem (void *) pointer to the idas memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments ida mem (void *) pointer to the idas memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments ida mem (void *) pointer to the idas memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to IDASetInitStep, this value might have been changed by idas to ensure that
the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the local
error test.

IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments ida mem (void *) pointer to the idas memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetTolScaleFactor

Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments ida mem (void *) pointer to the idas memory block.

tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current time.
These are the Wi given by Eq. (2.7) (or by the user’s IDAEwtFn).

Arguments ida mem (void *) pointer to the idas memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for eweight.!

IDAGetEstLocalErrors

Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.

Arguments ida mem (void *) pointer to the idas memory block.

ele (N Vector) estimated local errors at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele.!

The values returned in ele are only valid if IDASolve returned a non-negative value.

The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida mem, &nsteps, &nrevals, &nlinsetups,

&netfails, &klast, &kcur, &hinused,

&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nsteps (long int) cumulative number of steps taken by idas.

nrevals (long int) cumulative number of calls to the user’s res function.

nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.

netfails (long int) cumulative number of error test failures.

klast (int) method order used on the last internal step.

kcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.
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Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDAGetNumNonlinSolvIters

Call flag = IDAGetNumNonlinSolvIters(ida mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
(functional or Newton) iterations performed.

Arguments ida mem (void *) pointer to the idas memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumNonlinSolvConvFails

Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNonlinSolvStats

Call flag = IDAGetNonlinSolvStats(ida mem, &nniters, &nncfails);

Description The function IDAGetNonlinSolvStats returns the idas nonlinear solver statistics as a
group.

Arguments ida mem (void *) pointer to the idas memory block.

nniters (long int) cumulative number of nonlinear iterations performed.

nncfails (long int) cumulative number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description The function IDAGetReturnFlagName returns the name of the idas constant correspond-
ing to flag.

Arguments The only argument, of type int, is a return flag from an idas function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9.2 Initial condition calculation optional output functions
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IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida mem, &nbacktr);

Description The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.

nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetConsistentIC

Call flag = IDAGetConsistentIC(ida mem, yy0 mod, yp0 mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments ida mem (void *) pointer to the idas memory block.

yy0 mod (N Vector) consistent solution vector.

yp0 mod (N Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA ILL INPUT The function was not called before the first call to IDASolve.

IDA MEM NULL The ida mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0 mod and yp0 mod (if not NULL).!

4.5.9.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

IDAGetRootInfo

Call flag = IDAGetRootInfo(ida mem, rootsfound);

Description The function IDAGetRootInfo returns an array showing which functions were found to
have a root.

Arguments ida mem (void *) pointer to the idas memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn −1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound.!
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IDAGetNumGEvals

Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments ida mem (void *) pointer to the idas memory block.

ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

4.5.9.4 Direct linear solvers optional output functions

The following optional outputs are available from the idadls modules: workspace requirements,
number of calls to the Jacobian routine, number of calls to the residual routine for finite-difference
Jacobian approximation, and last return value from an idadls function. Note that, where the name
of an output would otherwise conflict with the name of an optional output from the main solver, a
suffix LS (for Linear Solver) has been added here (e.g. lenrwLS).

IDADlsGetWorkSpace

Call flag = IDADlsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDADlsGetWorkSpace returns the sizes of the real and integer workspaces
used by an idadls linear solver (idadense or idaband).

Arguments ida mem (void *) pointer to the idas memory block.

lenrwLS (long int) the number of real values in the idadls workspace.

leniwLS (long int) the number of integer values in the idadls workspace.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadls linear solver has not been initialized.

Notes For the idadense linear solver, in terms of the problem size N , the actual size of the real
workspace is 2N2 realtype words, while the actual size of the integer workspace is N in-
teger words. For the idaband linear solver, in terms of N and Jacobian half-bandwidths,
the actual size of the real workspace is N (2 mupper+3 mlower +2) realtype words,
while the actual size of the integer workspace is N integer words.

IDADlsGetNumJacEvals

Call flag = IDADlsGetNumJacEvals(ida mem, &njevals);

Description The function IDADlsGetNumJacEvals returns the cumulative number of calls to the
idadls (dense or banded) Jacobian approximation function.

Arguments ida mem (void *) pointer to the idas memory block.

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.
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IDADlsGetNumResEvals

Call flag = IDADlsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDADlsGetNumResEvals returns the cumulative number of calls to the user
residual function due to the finite difference (dense or band) Jacobian approximation.

Arguments ida mem (void *) pointer to the idas memory block.

nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if the default internal difference quotient
function is used.

IDADlsGetLastFlag

Call flag = IDADlsGetLastFlag(ida mem, &lsflag);

Description The function IDADlsGetLastFlag returns the last return value from an idadls routine.

Arguments ida mem (void *) pointer to the idas memory block.

lsflag (long int) the value of the last return flag from an idadls function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes If the idadense setup function failed (i.e., IDASolve returned IDA LSETUP FAIL), the
value lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or band) Jacobian
matrix. For all other failures, the value of lsflag is negative.

IDADlsGetReturnFlagName

Call name = IDADlsGetReturnFlagName(lsflag);

Description The function IDADlsGetReturnFlagName returns the name of the idadls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idadls function.

Return value The return value is a string containing the name of the corresponding constant. If 1 ≤
lsflag ≤ N (LU factorization failed), this function returns “NONE”.

4.5.9.5 Iterative linear solvers optional output functions

The following optional outputs are available from the idaspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to
the residual routine for finite-difference Jacobian-vector product approximation, and last return value
from a linear solver function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).
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IDASpilsGetWorkSpace

Call flag = IDASpilsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDASpilsGetWorkSpace returns the global sizes of the idaspgmr real and
integer workspaces.

Arguments ida mem (void *) pointer to the idas memory block.

lenrwLS (long int) global number of real values in the idaspils workspace.

leniwLS (long int) global number of integer values in the idaspils workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
N ∗ ( maxl +5)+ maxl ∗( maxl +4) + 1 realtype words for idaspgmr,
10 ∗N realtype words for idaspbcg,
and 13 ∗N realtype words for idasptfqmr.

In a parallel setting, the above values are global, summed over all processors.

IDASpilsGetNumLinIters

Call flag = IDASpilsGetNumLinIters(ida mem, &nliters);

Description The function IDASpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments ida mem (void *) pointer to the idas memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumConvFails

Call flag = IDASpilsGetNumConvFails(ida mem, &nlcfails);

Description The function IDASpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments ida mem (void *) pointer to the idas memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecEvals

Call flag = IDASpilsGetNumPrecEvals(ida mem, &npevals);

Description The function IDASpilsGetNumPrecEvals returns the cumulative number of precondi-
tioner evaluations, i.e., the number of calls made to psetup.
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Arguments ida mem (void *) pointer to the idas memory block.

npevals (long int) the cumulative number of calls to psetup.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecSolves

Call flag = IDASpilsGetNumPrecSolves(ida mem, &npsolves);

Description The function IDASpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments ida mem (void *) pointer to the idas memory block.

npsolves (long int) the cumulative number of calls to psolve.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumJtimesEvals

Call flag = IDASpilsGetNumJtimesEvals(ida mem, &njvevals);

Description The function IDASpilsGetNumJtimesEvals returns the cumulative number of calls
made to the Jacobian-vector function, jtimes.

Arguments ida mem (void *) pointer to the idas memory block.

njvevals (long int) the cumulative number of calls to jtimes.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumResEvals

Call flag = IDASpilsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDASpilsGetNumResEvals returns the cumulative number of calls to the
user residual function for finite difference Jacobian-vector product approximation.

Arguments ida mem (void *) pointer to the idas memory block.

nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if the default IDASpilsDQJtimes difference
quotient function is used.
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IDASpilsGetLastFlag

Call flag = IDASpilsGetLastFlag(ida mem, &lsflag);

Description The function IDASpilsGetLastFlag returns the last return value from an idaspils

routine.

Arguments ida mem (void *) pointer to the idas memory block.

lsflag (long int) the value of the last return flag from an idaspils function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes If the idaspils setup function failed (IDASolve returned IDA LSETUP FAIL), lsflag will
be SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the idaspgmr solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL,
indicating that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an
unrecoverable failure in the J ∗ v function; SPGMR PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SPGMR GS FAIL, indicat-
ing a failure in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the
matrix R was found to be singular during the QR solve phase.

If the idaspbcg solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL,
indicating that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an
unrecoverable failure in the J ∗v function; or SPBCG PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably.

If the idasptfqmr solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; or SPTFQMR PSOLVE FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.

IDASpilsGetReturnFlagName

Call name = IDASpilsGetReturnFlagName(lsflag);

Description The function IDASpilsGetReturnFlagName returns the name of the idaspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idaspils function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.10 IDAS reinitialization function

The function IDAReInit reinitializes the main idas solver for the solution of a problem, where a
prior call to IDAInit has been made. The new problem must have the same size as the previous
one. IDAReInit performs the same input checking and initializations that IDAInit does, but does no
memory allocation, assuming that the existing internal memory is sufficient for the new problem.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same nvector

module set for the previous problem will be reused for the new problem.
If there are changes to the linear solver specifications, make the appropriate Set calls, as described

in §4.5.3.
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IDAReInit

Call flag = IDAReInit(ida mem, t0, y0, yp0);

Description The function IDAReInit provides required problem specifications and reinitializes idas.

Arguments ida mem (void *) pointer to the idas memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC Memory space for the idas memory block was not allocated through a
previous call to IDAInit.

IDA ILL INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iteration algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

IDAResFn

Definition typedef int (*IDAResFn)(realtype tt, N Vector yy, N Vector yp,

N Vector rr, void *user data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative ẏ.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the output residual vector F (t, y, ẏ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g. yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, idas will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.
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For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the right-hand side function is
called the first time during the following integration step, but a successful step cannot
be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to IDAQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore idas can be flagged to
attempt to recover from such a situation. Also, if sensitivity analysis is performed with
the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and idas

will then try to correct it.

Allocation of memory for yp is handled within idas.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

IDAErrHandlerFn

Definition typedef void (*IDAErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from idas and its sub-modules.

Arguments error code is the error code.

module is the name of the idas module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
IDASetErrHandlerFn.

Return value A IDAErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (IDA WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights Wi used in the WRMS

norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will used in place of those defined by Eq.

(2.7). The function type IDAEwtFn is defined as follows:

IDAEwtFn

Definition typedef int (*IDAEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.
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Return value An IDAEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within idas.

The error weight vector must have all components positive. It is the user’s responsiblity!

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:

IDARootFn

Definition typedef int (*IDARootFn)(realtype t, N Vector y, N Vector yp,

realtype *gout, void *user data);

Purpose This function computes a vector-valued function g(t, y, ẏ) such that the roots of the
nrtfn components gi(t, y, ẏ) are to be found during the integration.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t), the t−derivative of y.

gout is the output array, of length nrtfn, with components gi(t, y, ẏ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC FAIL).

Notes Allocation of memory for gout is handled within idas.

4.6.5 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e. either IDADense or
IDALapackDense is called in Step 8 of §4.4), the user may provide a function of type IDADlsDenseJacFn
defined by

IDADlsDenseJacFn

Definition typedef int (*IDADlsDenseJacFn)(long int Neq, realtype tt, realtype cj,

N Vector yy, N Vector yp, N Vector rr,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J of the DAE system (or an approximation
to it), defined by Eq. (2.6).

Arguments Neq is the problem size (number of equations).

tt is the current value of the independent variable t.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

Jac is the output (approximate) Jacobian matrix, J = ∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.
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tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsDenseJacFn as temporary storage or work space.

Return value An IDADlsDenseJacFn function type should return 0 if successful, a positive value if a
recoverable error occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.6).

Notes A user-supplied dense Jacobian function must load the Neq × Neq dense matrix Jac

with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). Only
nonzero elements need to be loaded into Jac because Jac is set to the zero matrix before
the call to the Jacobian function. The type of Jac is DlsMat (described below and in
§9.1).

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the DlsMat type. DENSE ELEM(Jac, i, j) references the (i, j)-th element of the dense
matrix Jac (i, j= 0 . . . Neq−1). This macro is for use in small problems in which effi-
ciency of access is not a major concern. Thus, in terms of indices m and n running from
1 to Neq, the Jacobian element Jm,n can be loaded with the statement DENSE ELEM(Jac,

m-1, n-1) = Jm,n. Alternatively, DENSE COL(Jac, j) returns a pointer to the storage
for the jth column of Jac (j= 0 . . . Neq−1), and the elements of the j-th column are
then accessed via ordinary array indexing. Thus Jm,n can be loaded with the state-
ments col n = DENSE COL(Jac, n-1); col n[m-1] = Jm,n. For large problems, it is
more efficient to use DENSE COL than to use DENSE ELEM. Note that both of these macros
number rows and columns starting from 0, not 1.

The DlsMat type and the accessor macros DENSE ELEM and DENSE COL are documented
in §9.1.

If the user’s IDADlsDenseJacFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, use the IDAGet* functions described in §4.5.9.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the argument Neq is of type long int, even in the case that
the Lapack dense solver is to be used.

4.6.6 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. either IDABand or
IDALapackBand is called in Step 8 of §4.4), the user may provide a function of type IDADlsBandJacFn
defined as follows:

IDADlsBandJacFn

Definition typedef int (*IDADlsBandJacFn)(long int Neq, long int mupper,

long int mlower, realtype tt, realtype cj,

N Vector yy, N Vector yp, N Vector rr,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2,N Vector tmp3);

Purpose This function computes the banded Jacobian J of the DAE system (or a banded ap-
proximation to it), defined by Eq. (2.6).

Arguments Neq is the problem size.

mupper
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mlower are the upper and lower half bandwidth of the Jacobian.

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

Jac is the output (approximate) Jacobian matrix, J = ∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsBandJacFn as temporary storage or work space.

Return value A IDADlsBandJacFn function type should return 0 if successful, a positive value if a
recoverable error occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.6).

Notes A user-supplied band Jacobian function must load the band matrix Jac of type DlsMat

with the elements of the Jacobian J(t, y, ẏ) at the point (tt, yy, yp). Only nonzero
elements need to be loaded into Jac because Jac is preset to zero before the call to the
Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the DlsMat type. BAND ELEM(Jac, i, j) references the (i, j)th ele-
ment of the band matrix Jac, counting from 0. This macro is for use in small problems
in which efficiency of access is not a major concern. Thus, in terms of indices m and
n running from 1 to Neq with (m,n) within the band defined by mupper and mlower,
the Jacobian element Jm,n can be loaded with the statement BAND ELEM(Jac, m-1,

n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤ mlower.
Alternatively, BAND COL(Jac, j) returns a pointer to the diagonal element of the jth
column of Jac, and if we assign this address to realtype *col j, then the ith element
of the jth column is given by BAND COL ELEM(col j, i, j), counting from 0. Thus for
(m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(Jac, n-1);

BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the jth column can also
be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type DlsMat. The array col n can be indexed
from −mupper to mlower. For large problems, it is more efficient to use the combination
of BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the dense case, these
macros all number rows and columns starting from 0, not 1.

The DlsMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §9.1.

If the user’s IDADlsBandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the IDAGet* functions described in §4.5.9.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the arguments Neq, mlower, and mupper are of type long

int, even in the case that the Lapack band solver is to be used.
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4.6.7 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (IDASp* is called
in step 8 of §4.4), the user may provide a function of type IDASpilsJacTimesVecFn, described below,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

IDASpilsJacTimesVecFn

Definition typedef int (*IDASpilsJacTimesVecFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector v, N Vector Jv,

realtype cj, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.6).

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsJacTimesVecFn as temporary storage or work space.

Return value The value to be returned by the Jacobian-times-vector function should be 0 if successful.
A nonzero value indicates that a nonrecoverable error occurred.

If the user’s IDASpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, use the IDAGet* functions described in §4.5.9.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r
where P is a left preconditioner matrix which approximates (at least crudely) the Jacobian matrix
J = ∂F/∂y + cj ∂F/∂ẏ. This function must be of type IDASpilsPrecSolveFn, defined as follows:

IDASpilsPrecSolveFn

Definition typedef int (*IDASpilsPrecSolveFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector rvec, N Vector zvec,

realtype cj, realtype delta,

void *user data, N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments tt is the current value of the independent variable.
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yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

rvec is the right-hand side vector r of the linear system to be solved.

zvec is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt, call IDAGetErrWeights (see §4.5.9.1).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied C function of type IDASpilsPrecSetupFn, defined as follows:

IDASpilsPrecSetupFn

Definition typedef int (*IDASpilsPrecSetupFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

realtype cj, void *user data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of an IDASpilsPrecSetupFn are as follows:

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recov-
erable error (in which case the step will be retried), negative for an unrecoverable error
(in which case the integration is halted).
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Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

Each call to the preconditioner setup function is preceded by a call to the IDAResFn

user function with the same (tt, yy, yp) arguments. Thus the preconditioner setup
function can use any auxiliary data that is computed and saved during the evaluation
of the DAE residual.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s IDASpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, use the IDAGet* functions described in §4.5.9.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 Integration of pure quadrature equations

idas allows the DAE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin
by excluding the quadrature variables from the vectors yy and yp and the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fQ(t, y, ẏ). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. [P] Initialize MPI

2. Set problem dimensions

[S] Set N to the problem size N (excluding quadrature variables), and Nq to the number of quadra-
ture variables.

[P] Set Nlocal to the local vector length (excluding quadrature variables), and Nqlocal to the
local number of quadrature variables.

3. Set vectors of initial values

4. Create idas object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

10. Initialize quadrature integration

Call IDAQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

11. Set optional inputs for quadrature integration

Call IDASetQuadErrCon to indicate whether or not quadrature variables should be used in the
step size control mechanism. If so, one of the IDAQuad*tolerances functions must be called to
specify the integration tolerances for quadrature variables. See §4.7.4 for details.
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12. Advance solution in time

13. Extract quadrature variables

Call IDAGetQuad or IDAGetQuadDky to obtain the values of the quadrature variables or their
derivatives at the current time. See §4.7.3 for details.

14. Get optional outputs

15. Get quadrature optional outputs

Call IDAGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

16. Deallocate memory for solution vectors and for the vector of quadrature variables

17. Free solver memory

18. [P] Finalize MPI

IDAQuadInit can be called and quadrature-related optional inputs (step 11 above) can be set, any-
where between steps 4 and 12.

4.7.1 Quadrature initialization and deallocation functions

The function IDAQuadInit activates integration of quadrature equations and allocates internal mem-
ory related to these calculations. The form of the call to this function is as follows:

IDAQuadInit

Call flag = IDAQuadInit(ida mem, rhsQ, yQ0);

Description The function IDAQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

rhsQ (IDAQuadRhsFn) is the C function which computes fQ, the right-hand side of
the quadrature equations. This function has the form fQ(t, yy, yp, rhsQ,

user data) (for full details see §4.7.6).

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA MEM FAIL A memory allocation request failed.

Notes If an error occurred, IDAQuadInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: lenrw = lenrw +Nq

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSVtolerances is called: leniw = leniw +Nq
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The function IDAQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to IDAQuadInit (and
maybe a call to IDAReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to IDAQuadInit. The call to the IDAQuadReInit function has the following form:

IDAQuadReInit

Call flag = IDAQuadReInit(ida mem, yQ0);

Description The function IDAQuadReInit provides required problem specifications and reinitializes
the quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA NO QUAD Memory space for the quadrature integration was not allocated by a prior
call to IDAQuadInit.

Notes If an error occurred, IDAQuadReInit also sends an error message to the error handler
function.

IDAQuadFree

Call IDAQuadFree(ida mem);

Description The function IDAQuadFree frees the memory allocated for quadrature integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadFree has no return value.

Notes In general, IDAQuadFree need not be called by the user as it is invoked automatically
by IDAFree.

4.7.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:

IDA QRHS FAIL The quadrature right-hand side function failed in an unrecoverable man-
ner.

IDA FIRST QRHS ERR The quadrature right-hand side function failed at the first call.

IDA REP QRHS ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit, or reinitialized by a call to
IDAQuadReInit, then idas computes both a solution and quadratures at time t. However, IDASolve
will still return only the solution y in y. Solution quadratures can be obtained using the following
function:
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IDAGetQuad

Call flag = IDAGetQuad(ida mem, &tret, yQ);

Description The function IDAGetQuad returns the quadrature solution vector after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yQ (N Vector) the computed quadrature vector.

Return value The return value flag of IDAGetQuad is one of:

IDA SUCCESS IDAGetQuad was successful.

IDA MEM NULL ida mem was NULL.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY yQ is NULL.

The function IDAGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by IDAGetQuad with k = 0 and with the current
time at which IDASolve has returned, but may also be called directly by the user.

IDAGetQuadDky

Call flag = IDAGetQuadDky(ida mem, t, k, dkyQ);

Description The function IDAGetQuadDky returns derivatives of the quadrature solution vector after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) the time at which quadrature information is requested. The time
t must fall within the interval defined by the last successful step taken by idas.

k (int) order of the requested derivative. This must be ≤ klast.

dkyQ (N Vector) the vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag of IDAGetQuadDky is one of:

IDA SUCCESS IDAGetQuadDky succeeded.

IDA MEM NULL The pointer to ida mem was NULL.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY The vector dkyQ is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

4.7.4 Optional inputs for quadrature integration

idas provides the following optional input functions to control the integration of quadrature equa-
tions.

IDASetQuadErrCon

Call flag = IDASetQuadErrCon(ida mem, errconQ);

Description The function IDASetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within idas. If they are, the user must
call either IDAQuadSStolerances or IDAQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.
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errconQ (booleantype) specifies whether quadrature variables are included (TRUE) or
not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL

IDA NO QUAD Quadrature integration has not been initialized.

Notes By default, errconQ is set to FALSE.

It is illegal to call IDASetQuadErrCon before a call to IDAQuadInit. !

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

IDAQuadSStolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSVtolerances

Call flag = IDAQuadSVtolerances(ida mem, reltolQ, abstolQ);

Description The function IDAQuadSVtolerances specifies scalar relative and vector absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (N Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT One of the input tolerances was negative.

4.7.5 Optional outputs for quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.
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IDAGetQuadNumRhsEvals

Call flag = IDAGetQuadNumRhsEvals(ida mem, &nrhsQevals);

Description The function IDAGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQevals (long int) number of calls made to the user’s rhsQ function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

IDAGetQuadNumErrTestFails

Call flag = IDAGetQuadNumErrTestFails(ida mem, &nQetfails);

Description The function IDAGetQuadNumErrTestFails returns the number of local error test fail-
ures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

IDAGetQuadErrWeights

Call flag = IDAGetQuadErrWeights(ida mem, eQweight);

Description The function IDAGetQuadErrWeights returns the quadrature error weights at the cur-
rent time.

Arguments ida mem (void *) pointer to the idas memory block.

eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight.!

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadErrCon with errconQ = TRUE), IDAGetQuadErrWeights does not set the
eQweight vector.

IDAGetQuadStats

Call flag = IDAGetQuadStats(ida mem, &nrhsQevals, &nQetfails);

Description The function IDAGetQuadStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQevals (long int) number of calls to the user’s rhsQ function.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of
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IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDA NO QUAD Quadrature integration has not been initialized.

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type IDAQuadRhsFn defined as follows:

IDAQuadRhsFn

Definition typedef int (*IDAQuadRhsFn)(realtype t, N Vector yy, N Vector yp,

N Vector rhsQ, void *user data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vectors y and ẏ.

Arguments t is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of the dependent variable derivative vector, ẏ(t).

rhsQ is the output vector fQ(t, y, ẏ).

user data is the user data pointer passed to IDASetUserData.

Return value A IDAQuadRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsQ is automatically handled within idas.

Both y and rhsQ are of type N Vector, but they typically have different internal repre-
sentations. It is the user’s responsibility to access the vector data consistently (including
the use of the correct accessor macros from each nvector implementation). For the
sake of computational efficiency, the vector functions in the two nvector implementa-
tions provided with idas do not perform any consistency checks with respect to their
N Vector arguments (see §7.1 and §7.2).

There is one situation in which recovery is not possible even if IDAQuadRhsFn function
returns a recoverable error flag. This is when this occurs at the very first call to the
IDAQuadRhsFn (in which case idas returns IDA FIRST QRHS ERR).

4.8 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as idas lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.5) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [19] and is
included in a software module within the idas package. This module works with the parallel vector
module nvector parallel and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called idabbdpre.
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One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(t, y, ẏ) which approximates the
function F (t, y, ẏ) in the definition of the DAE system (2.1). However, the user may set G = F .
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and ẏ
into M disjoint blocks ym and ẏm, and a decomposition of G into blocks Gm. The block Gm depends
on ym and ẏm, and also on components of ym′ and ẏm′ associated with neighboring sub-domains
(so-called ghost-cell data). Let ȳm and ¯̇ym denote ym and ẏm (respectively) augmented with those
other components on which Gm depends. Then we have

G(t, y, ẏ) = [G1(t, ȳ1, ¯̇y1), G2(t, ȳ2, ¯̇y2), . . . , GM (t, ȳM , ¯̇yM )]T , (4.1)

and each of the blocks Gm(t, ȳm, ¯̇ym) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where

Pm ≈ ∂Gm/∂ym + α∂Gm/∂ẏm (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of Gm, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations

Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatment of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The idabbdpre module calls two user-provided functions to construct P : a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t, y, ẏ) ≈ F (t, y, ẏ) and
which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn
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Definition typedef int (*IDABBDLocalFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, N Vector gval,

void *user data);

Purpose This Gres function computes G(t, y, ẏ). It loads the vector gval as a function of tt,
yy, and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user data.

The case where G is mathematically identical to F is allowed.

IDABBDCommFn

Definition typedef int (*IDABBDCommFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, void *user data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).

Besides the header files required for the integration of the DAE problem (see §4.3), to use the
idabbdpre module, the main program must include the header file idas bbdpre.h which declares
the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values
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4. Create idas object

5. Allocate internal memory

6. Set optional inputs

7. Attach iterative linear solver, one of:

(a) flag = IDASpgmr(ida mem, maxl);

(b) flag = IDASpbcg(ida mem, maxl);

(c) flag = IDASptfqmr(ida mem, maxl);

8. Initialize the idabbdpre preconditioner module

Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idaspils optional input functions.

10. Correct initial values

11. Specify rootfinding problem

12. Advance solution in time

13. Get optional outputs

Additional optional outputs associated with idabbdpre are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

14. Deallocate memory for solution vector

15. Free solver memory

16. Finalize MPI

The user-callable functions that initialize (step 8 above) or re-initialize the idabbdpre preconditioner
module are described next.

IDABBDPrecInit

Call flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecInit initializes and allocates (internal) memory for the id-

abbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.

Nlocal (long int) local vector dimension.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.
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mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy=

√
unit roundoff, which

can be specified by passing dq rel yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual approx-
imation G(t, y, ẏ).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t, y, ẏ).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecInit was successful.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS MEM FAIL A memory allocation request has failed.

IDASPILS LMEM NULL An idaspils linear solver memory was not attached.

IDASPILS ILL INPUT The supplied vector implementation was not compatible with
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced by 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The idabbdpre module also provides a reinitialization function to allow for a sequence of problems
of the same size with idaspgmr/idabbdpre, idaspbcg/idabbdpre, or idasptfqmr/idabbdpre,
provided there is no change in local N, mukeep, or mlkeep. After solving one problem, and after calling
IDAReInit to re-initialize idas for a subsequent problem, a call to IDABBDPrecReInit can be made
to change any of the following: the half-bandwidths mudq and mldq used in the difference-quotient
Jacobian approximations, the relative increment dq rel yy, or one of the user-supplied functions Gres
and Gcomm.

IDABBDPrecReInit

Call flag = IDABBDPrecReInit(ida mem, mudq, mldq, dq rel yy);

Description The function IDABBDPrecReInit reinitializes the idabbdpre preconditioner.

Arguments ida mem (void *) pointer to the idas memory block.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy =

√
unit roundoff, which

can be specified by passing dq rel yy = 0.0.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecReInit was successful.

IDASPILS MEM NULL The ida mem pointer was NULL.
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IDASPILS LMEM NULL An idaspils linear solver memory was not attached.

IDASPILS PMEM NULL The function IDABBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal−1,
it is replaced by 0 or Nlocal−1, accordingly.

The following two optional output functions are available for use with the idabbdpre module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(ida mem, &lenrwBBDP, &leniwBBDP);

Description The function IDABBDPrecGetWorkSpace returns the local sizes of the idabbdpre real
and integer workspaces.

Arguments ida mem (void *) pointer to the idas memory block.

lenrwBBDP (long int) local number of real values in the idabbdpre workspace.

leniwBBDP (long int) local number of integer values in the idabbdpre workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.

Notes In terms of the local vector dimension Nl, and smu = min(Nl − 1, mukeep + mlkeep),
the actual size of the real workspace is Nl (2 mlkeep + mukeep + smu +2) realtype

words. The actual size of the integer workspace is Nl integer words.

IDABBDPrecGetNumGfnEvals

Call flag = IDABBDPrecGetNumGfnEvals(ida mem, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within idabbdpre’s preconditioner setup function.

Arguments ida mem (void *) pointer to the idas memory block.

ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gres evaluations, the costs associated with idabbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLS residual function evaluations, where nlinsetups is an optional idas output (see §4.5.9.1),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.9.5).



Chapter 5

Using IDAS for Forward Sensitivity
Analysis

This chapter describes the use of idas to compute solution sensitivities using forward sensitivity anal-
ysis. One of our main guiding principles was to design the idas user interface for forward sensitivity
analysis as an extension of that for IVP integration. Assuming a user main program and user-defined
support routines for IVP integration have already been defined, in order to perform forward sensitivity
analysis the user only has to insert a few more calls into the main program and (optionally) define
an additional routine which computes the residuals for sensitivity systems (2.12). The only departure
from this philosophy is due to the IDAResFn type definition (§4.6.1). Without changing the definition
of this type, the only way to pass values of the problem parameters to the DAE residual function is
to require the user data structure user data to contain a pointer to the array of real parameters p.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of idas.
The user program is to have these steps in the order indicated, unless otherwise noted. For the sake
of brevity, we defer many of the details to the later sections. As in §4.4, most steps are independent
of the nvector implementation used; where this is not the case, usage specifications are given for
the two implementations provided with idas: steps marked [P] correspond to nvector parallel,
while steps marked [S] correspond to nvector serial. Differences between the user main program
in §4.4 and the one below start only at step (10). Steps that are unchanged from the skeleton program
presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. [P] Initialize MPI

2. Set problem dimensions

3. Set initial values

4. Create idas object

5. Allocate internal memory
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6. Specify integration tolerances

7. Set optional inputs

8. Attach linear solver module

9. Set linear solver optional inputs

10. Define the sensitivity problem

•Number of sensitivities (required)

Set Ns = Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)

If idas is to evaluate the residuals of the sensitivity systems, set p, an array of Np real
parameters upon which the IVP depends. Only parameters with respect to which sensitivities
are (potentially) desired need to be included. Attach p to the user data structure user data.
For example, user data->p = p;

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

•Parameter list (optional)

If idas is to evaluate the sensitivity residuals, set plist, an array of Ns integers to specify the
parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] (0 ≤ j < Np) are desired, set plisti = j, for some
i = 0, . . . , Ns − 1.

If plist is not specified, idas will compute sensitivities with respect to the first Ns parame-
ters; i.e., plisti = i (i = 0, . . . , Ns − 1).

If the user provides a function to evaluate the sensitivity residuals, plist need not be spec-
ified.

•Parameter scaling factors (optional)

If idas is to estimate tolerances for the sensitivity solution vectors (based on tolerances for
the state solution vector) or if idas is to evaluate the residuals of the sensitivity systems
using the internal difference-quotient function, the results will be more accurate if order of
magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄i = |pplisti
|

can be used.

If pbar is not specified, idas will use p̄i = 1.0.

If the user provides a function to evaluate the sensitivity residual and specifies tolerances for
the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user data are arbitrary, but they
must agree with the arguments passed to IDASetSensParams below.

11. Set sensitivity initial conditions

To set the sensitivities vectors yS0 and ypS0 to initial values, use functions defined by a particular
nvector implementation.

For sensitivity vectors yS0, set the Ns N−vectors yS0[i] of initial values for sensitivities (for
i = 0, . . . ,Ns−1).

First, create an array of Ns vectors by making the call

[S] yS0 = N VCloneVectorArray Serial(Ns, y0);

[P] yS0 = N VCloneVectorArray Parallel(Ns, y0);

and, for each i = 0, . . . ,Ns−1, load initial values for the i-th sensitivity vector into the structure
defined by:



5.1 A skeleton of the user’s main program 83

[S] NV DATA S(yS0[i])

[P] NV DATA P(yS0[i])

Here the argument y0 serves only to provide the N Vector type for cloning.

Alternatively, if the initial values for the sensitivity variables are already available in realtype

arrays, create an array of Ns “empty” vectors by making the call

[S] yS0 = N VCloneEmptyVectorArray Serial(Ns, y0);

[P] yS0 = N VCloneEmptyVectorArray Parallel(Ns, y0);

and then attach the realtype array yS0 i containing the initial values of the i-th sensitivity
vector using

[S] N VSetArrayPointer Serial(yS0 i, yS0[i]);

[P] N VSetArrayPointer Parallel(yS0 i, yS0[i]);

for i = 0, · · · Ns −1.

The initial conditions for the sensitivity derivatives ypS0 of ẏ are set similarly.

12. Activate sensitivity calculations

Call flag = IDASensInit(...); to activate forward sensitivity computations and allocate inter-
nal memory for idas related to sensitivity calculations (see §5.2.1).

13. Set sensitivity tolerances

Call IDASensSStolerances, IDASensSVtolerances, or IDASensEEtolerances. See §5.2.2.

14. Set sensitivity analysis optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control
the behavior of idas in computing forward sensitivities. See §5.2.6.

15. Correct initial values

16. Specify rootfinding problem

17. Advance solution in time

18. Extract sensitivity solution

After each successful return from IDASolve, the solution of the original IVP is available in the y

argument of IDASolve, while the sensitivity solution can be extracted into yS and ypS (which can
be the same as yS0 and ypS0, respectively) by calling one of the following routines: IDAGetSens,
IDAGetSens1, IDAGetSensDky or IDAGetSensDky1 (see §5.2.5).

19. Deallocate memory for solutions vector

20. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors contained in yS0 and ypS0:

[S] N VDestroyVectorArray Serial(yS0, Ns);

[P] N VDestroyVectorArray Parallel(yS0, Ns);

and similarly for ypS0.

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS i, and likewise for ypS.

21. Free user data structure
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22. Free solver memory

23. Free vector specification memory

5.2 User-callable routines for forward sensitivity analysis

This section describes the idas functions, in addition to those presented in §4.5, that are called by
the user to set up and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit. The form of the call
to this routine is as follows:

IDASensInit

Call flag = IDASensInit(ida mem, Ns, ism, resS, yS0, ypS0);

Description The routine IDASensInit activates forward sensitivity computations and allocates in-
ternal memory related to sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA SIMULTANEOUS or IDA STAGGERED:

• In the IDA SIMULTANEOUS approach, the state and sensitivity variables are
corrected at the same time. If IDA NEWTON was selected as the nonlinear
system solution method, this amounts to performing a modified Newton
iteration on the combined nonlinear system;

• In the IDA STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the state
variables have passed the local error test;

resS (IDASensResFn) is the C function which computes the residual of the sensitiv-
ity DAE. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of y.

ypS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASensInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDASensInit has an illegal value.

Notes Passing resS=NULL indicates using the default internal difference quotient sensitivity
residual routine.

If an error occurred, IDASensInit also prints an error message to the file specified by
the optional input errfp.

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)NsN
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• With IDASensSVtolerances: lenrw = lenrw +NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)NsNi

• With IDASensSVtolerances: leniw = leniw +NsNi,

where Ni is the number of integer words in one N Vector.
The routine IDASensReInit, useful during the solution of a sequence of problems of same size,

reinitializes the sensitivity-related internal memory and must follow a call to IDASensInit (and maybe
a call to IDAReInit). The number Ns of sensitivities is assumed to be unchanged since the call to
IDASensInit. The call to the IDASensReInit function has the form:

IDASensReInit

Call flag = IDASensReInit(ida mem, ism, yS0, ypS0);

Description The routine IDASensReInit reinitializes forward sensitivity computations.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA SIMULTANEOUS or IDA STAGGERED.

yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing
the initial values of the sensitivities of y.

ypS0 (N Vector *) a pointer to an array of Ns variables of type N Vector containing
the initial values of the sensitivities of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS Memory space for sensitivity integration was not allocated through a
previous call to IDASensInit.

IDA ILL INPUT An input argument to IDASensReInit has an illegal value.

IDA MEM FAIL A memory allocation request has failed.

Notes All arguments of IDASensReInit are the same as those of IDASensInit.

If an error occurred, IDASensReInit also prints an error message to the file specified
by the optional input errfp.

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit), the
user must call

IDASensFree

Call IDASensFree(ida mem);

Description The function IDASensFree frees the memory allocated for forward sensitivity compu-
tations by a previous call to IDASensInit.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDASensFree has no return value.

Notes In general, IDASensFree need not be called by the user as it is invoked automatically
by IDAFree.

After a call to IDASensFree, forward sensitivity computations can be reactivated only
by calling IDASensInit again.

To activate and deactivate forward sensitivity calculations for successive idas runs, without having
to allocate and deallocate memory, the following function is provided:
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IDASensToggleOff

Call IDASensToggleOff(ida mem);

Description The function IDASensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

Return value The return value flag of IDASensToggle is one of:

IDA SUCCESS IDASensToggleOff was successful.

IDA MEM NULL ida mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using IDASensReInit).

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to IDASensInit.

IDASensSStolerances

Call flag = IDASensSStolerances(ida mem, reltolS, abstolS);

Description The function IDASensSStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar absolute
error tolerances.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

IDA ILL INPUT One of the input tolerances was negative.

IDASensSVtolerances

Call flag = IDASensSVtolerances(ida mem, reltolS, abstolS);

Description The function IDASensSVtolerances specifies scalar relative tolerance and vector abso-
lute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from
abstolS[is] specifies the vector tolerances for is-th sensitivity.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

IDA ILL INPUT The relative error tolerance was negative or one of the absolute tolerance
vectors had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].
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IDASensEEtolerances

Call flag = IDASensEEtolerances(ida mem);

Description When IDASensEEtolerances is called, idas will estimate tolerances for sensitivity vari-
ables based on the tolerances supplied for states variables and the scaling factors p̄.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASensEEtolerances was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO SENS The sensitivity allocation function IDASensInit has not been called.

5.2.3 Forward sensitivity initial condition calculation function

IDACalcIC also calculates corrected initial conditions for sensitivity variables of a DAE system. When
used for initial conditions calculation of the forward sensitivities, IDACalcIC must be preceded by
successful calls to IDASensInit (or IDASensReInit) and should precede the call(s) to IDASolve. For
restrictions that apply for initial conditions calculation of the state variables, see §4.5.4.

Calling IDACalcIC is optional. It is only necessary when the initial conditions do not satisfy the
sensitivity systems. Even if forward sensitivity analysis was enabled, the call to the initial conditions
calculation function IDACalcIC is exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, tout1);

See §4.5.4 for a list of possible return values.

5.2.4 IDAS solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve is
exactly the same as in §4.5.6. However, in this case the return value flag can also be one of the
following:
IDA SRES FAIL The sensitivity residual function failed in an unrecoverable manner.

IDA REP SRES ERR The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

5.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit, or reinitialized by
a call to IDASensReInit, then idas computes both a solution and sensitivities at time t. However,
IDASolve will still return only the solutions y and ẏ in yret and ypret, respectively. Solution
sensitivities can be obtained through one of the following functions:

IDAGetSens

Call flag = IDAGetSens(ida mem, &tret, yS);

Description The function IDAGetSens returns the sensitivity solution vectors after a successful return
from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yS (N Vector *) the array of Ns computed forward sensitivity vectors.

Return value The return value flag of IDAGetSens is one of:

IDA SUCCESS IDAGetSens was successful.
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IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY yS is NULL.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

The function IDAGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by IDAGetSens with k = 0, but may also be
called directly by the user.

IDAGetSensDky

Call flag = IDAGetSensDky(ida mem, t, k, dkyS);

Description The function IDAGetSensDky returns derivatives of the sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivatives.

dkyS (N Vector *) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.

Return value The return value flag of IDAGetSensDky is one of:

IDA SUCCESS IDAGetSensDky succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY dkyS or one of the vectors dkyS[i] is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetSens1 and IDAGetSensDky1, defined as follows:

IDAGetSens1

Call flag = IDAGetSens1(ida mem, &tret, is, yS);

Description The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful
return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype *) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yS (N Vector) the computed forward sensitivity vector.

Return value The return value flag of IDAGetSens1 is one of:

IDA SUCCESS IDAGetSens1 was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD IS The index is is not in the allowed range.

IDA BAD DKY yS is NULL.

IDA BAD T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.
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IDAGetSensDky1

Call flag = IDAGetSensDky1(ida mem, t, k, is, dkyS);

Description The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solu-
tion vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyS (N Vector) the vector containing the derivative on output. The space for dkyS
must be allocated by the user.

Return value The return value flag of IDAGetSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA BAD DKY dkyS is NULL.

IDA BAD IS The index is is not in the allowed range.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

5.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to IDASetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in idas which are described in detail in the remainder of this section.

IDASetSensParams

Call flag = IDASetSensParams(ida mem, p, pbar, plist);

Description The function IDASetSensParams specifies problem parameter information for sensitivity
calculations.

Arguments ida mem (void *) pointer to the idas memory block.

p (realtype *) a pointer to the array of real problem parameters used to evalu-
ate F (t, y, ẏ, p). If non-NULL, p must point to a field in the user’s data structure
user data passed to the user’s residual function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components of p
to use in estimating the sensitivity equations. If non-NULL, plist must have
all components ≥ 0. (See §5.1).

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams NULL

DQ approximation method IDASetSensDQMethod centered,0.0
Error control strategy IDASetSensErrCon FALSE

Maximum no. of nonlinear iterations IDASetSensMaxNonlinIters 3
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Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA ILL INPUT An argument has an illegal value.

Notes This function must be preceded by a call to IDASensInit.!

IDASetSensDQMethod

Call flag = IDASetSensDQMethod(ida mem, DQtype, DQrhomax);

Description The function IDASetSensDQMethod specifies the difference quotient strategy in the case
in which the residual of the sensitivity equations are to be computed by idas.

Arguments ida mem (void *) pointer to the idas memory block.

DQtype (int) specifies the difference quotient type and can be either IDA CENTERED or
IDA FORWARD.

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in the
sensitivity residual.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax ≥ 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.5 for more details.

The default value are DQtype=IDA CENTERED and DQrhomax= 0.0.

IDASetSensErrCon

Call flag = IDASetSensErrCon(ida mem, errconS);

Description The function IDASetSensErrCon specifies the error control strategy for sensitivity vari-
ables.

Arguments ida mem (void *) pointer to the idas memory block.

errconS (booleantype) specifies whether sensitivity variables are included (TRUE) or
not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes By default, errconS is set to FALSE. If errconS=TRUE then both state variables and
sensitivity variables are included in the error tests. If errconS=FALSE then the sensi-
tivity variables are excluded from the error tests. Note that, in any event, all variables
are considered in the convergence tests.
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IDASetSensMaxNonlinIters

Call flag = IDASetSensMaxNonlinIters(ida mem, maxcorS);

Description The function IDASetSensMaxNonlinIters specifies the maximum number of nonlinear
solver iterations for sensitivity variables per step.

Arguments ida mem (void *) pointer to the idas memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.

5.2.7 Optional outputs for forward sensitivity analysis

5.2.7.1 Main solver optional output functions

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

IDAGetSensNumResEvals

Call flag = IDAGetSensNumResEvals(ida mem, &nfSevals);

Description The function IDAGetSensNumResEvals returns the number of calls to the sensitivity
residual function.

Arguments ida mem (void *) pointer to the idas memory block.

nfSevals (long int) number of calls to the sensitivity residual function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDAGetNumResEvalsSens

Call flag = IDAGetNumResEvalsSens(ida mem, &nfevalsS);

Description The function IDAGetNumResEvalsSEns returns the number of calls to the user’s residual
function due to the internal finite difference approximation of the sensitivity residuals.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity residual function IDAGetSensNumResEvals

No. of calls to residual function for sensitivity IDAGetNumResEvalsSens

No. of sensitivity local error test failures IDAGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. IDAGetSensNumLinSolvSetups

Sensitivity-related statistics as a group IDAGetSensStats

Error weight vector for sensitivity variables IDAGetSensErrWeights

No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters

No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails

Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolvStats
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Arguments ida mem (void *) pointer to the idas memory block.

nfevalsS (long int) number of calls to the user residual function for sensitivity resid-
uals.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity residuals.

IDAGetSensNumErrTestFails

Call flag = IDAGetSensNumErrTestFails(ida mem, &nSetfails);

Description The function IDAGetSensNumErrTestFails returns the number of local error test fail-
ures for the sensitivity variables that have occurred.

Arguments ida mem (void *) pointer to the idas memory block.

nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see IDASetSensErrCon in §5.2.6). Even in that case, this counter is not
incremented if the ism=IDA SIMULTANEOUS sensitivity solution method has been used.

IDAGetSensNumLinSolvSetups

Call flag = IDAGetSensNumLinSolvSetups(ida mem, &nlinsetupsS);

Description The function IDAGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if Newton iteration has been used and staggered sensi-
tivity solution method (ism=IDA STAGGERED) was specified in the call to IDASensInit

(see §5.2.1).

IDAGetSensStats

Call flag = IDAGetSensStats(ida mem, &nfSevals, &nfevalsS, &nSetfails,

&nlinsetupsS);

Description The function IDAGetSensStats returns all of the above sensitivity-related solver statis-
tics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nfSevals (long int) number of calls to the sensitivity residual function.
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nfevalsS (long int) number of calls to the user-supplied residual function.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDAGetSensErrWeights

Call flag = IDAGetSensErrWeights(ida mem, eSweight);

Description The function IDAGetSensErrWeights returns the sensitivity error weight vectors at the
current time. These are the reciprocals of the Wi of (2.7) for the sensitivity variables.

Arguments ida mem (void *) pointer to the idas memory block.

eSweight (N Vector S) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

IDAGetSensNumNonlinSolvIters

Call flag = IDAGetSensNumNonlinSolvIters(ida mem, &nSniters);

Description The function IDAGetSensNumNonlinSolvIters returns the number of nonlinear itera-
tions performed for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit

(see §5.2.1).

IDAGetSensNumNonlinSolvConvFails

Call flag = IDAGetSensNumNonlinSolvConvFails(ida mem, &nSncfails);

Description The function IDAGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments ida mem (void *) pointer to the idas memory block.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA STAGGERED in the call to IDASensInit

(see §5.2.1).



94 Using IDAS for Forward Sensitivity Analysis

IDAGetSensNonlinSolvStats

Call flag = IDAGetSensNonlinSolvStats(ida mem, &nSniters, &nSncfails);

Description The function IDAGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nSniters (long int) number of nonlinear iterations performed.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

5.2.7.2 Initial condition calculation optional output functions

The sensitivity consistent initial conditions found by idas (after a successful call to IDACalcIC) can
be obtained by calling the following function:

IDAGetSensConsistentIC

Call flag = IDAGetSensConsistentIC(ida mem, yyS0 mod, ypS0 mod);

Description The function IDAGetSensConsistentIC returns the corrected initial conditions calcu-
lated by IDACalcIC for sensitivities variables.

Arguments ida mem (void *) pointer to the idas memory block.

yyS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity vectors.

ypS0 mod (N Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity derivative vectors.

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetSensConsistentIC succeeded.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS The function IDASensInit has not been previously called.

IDA ILL INPUT IDASolve has been already called.

Notes If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass
NULL for the corresponding argument.

The user must allocate space for yyS0 mod and ypS0 mod (if not NULL).!

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using idas for
forward sensitivity analysis, the user has the option of providing a routine that calculates the residual
of the sensitivity equations (2.12).

By default, idas uses difference quotient approximation routines for the residual of the sensitivity
equations. However, idas allows the option for user-defined sensitivity residual routines (which also
provides a mechanism for interfacing idas to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.12), for all sensitivity parameters
at once, through a function of type IDASensResFn defined by:
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IDASensResFn

Definition typedef int (*IDASensResFn)(int Ns, realtype t,

N Vector yy, N Vector yp, N Vector resval,

N Vector *yS, N Vector *ypS,

N Vector *resvalS, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the sensitivity residual for all sensitivity equations. It must com-
pute the vectors (∂F/∂y)si(t)+(∂F/∂ẏ)ṡi(t)+(∂F/∂pi) and store them in resvalS[i].

Arguments t is the current value of the independent variable.

yy is the current value of the state vector, y(t).

yp is the current value of ẏ(t).

resval contains the current value F of the original DAE residual.

yS contains the current values of the sensitivities si.

ypS contains the current values of the sensitivity derivatives ṡi.

resvalS contains the output sensitivity residual vectors.

user data is a pointer to user data.

tmp1

tmp2

tmp3 are N Vectors of length N which can be used as temporary storage.

Return value An IDASensResFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA SRES FAIL is returned).

Notes There is one situation in which recovery is not possible even if IDASensResFn function
returns a recoverable error flag. That is when this occurs at the very first call to the
IDASensResFn, in which case idas returns IDA FIRST RES FAIL.

5.4 Integration of quadrature equations depending on forward
sensitivities

idas provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out.

1. [P] Initialize MPI

2. Set problem dimensions

3. Set vectors of initial values

4. Create idas object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Define the sensitivity problem

10. Set sensitivity initial conditions
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11. Activate sensitivity calculations

12. Set sensitivity analysis optional inputs

13. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

14. Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §5.4.1 for details.

15. Set optional inputs for sensitivity-dependent quadrature integration

Call IDASetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

16. Advance solution in time

17. Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens, IDAGetQuadSens1, IDAGetQuadSensDky or IDAGetQuadSensDky1 to obtain
the values of the quadrature variables or their derivatives at the current time. See §5.4.3 for details.

18. Get optional outputs

19. Extract sensitivity solution

20. Get sensitivity-dependent quadrature optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-
dependent quadratures. See §5.4.5 for details.

21. Deallocate memory for solutions vector

22. Deallocate memory for sensitivity vectors

23. Deallocate memory for sensitivity-dependent quadrature variables

24. Free solver memory

25. [P] Finalize MPI

Note: IDAQuadSensInit (step 14 above) can be called and quadrature-related optional inputs (step
15 above) can be set, anywhere between steps 9 and 16.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit activates integration of quadrature equations depending on sensitivi-
ties and allocates internal memory related to these calculations. The form of the call to this function
is as follows:

IDAQuadSensInit

Call flag = IDAQuadSensInit(ida mem, rhsQS, yQS0);

Description The function IDAQuadSensInit provides required problem specifications, allocates in-
ternal memory, and initializes quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.
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rhsQS (IDAQuadSensRhsFn) is the C function which computes fQS , the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA MEM FAIL A memory allocation request failed.

IDA NO SENS The sensitivities were not initialized by a prior call to IDASensInit.

IDA ILL INPUT The parameter yQS0 is NULL.

Notes Before calling IDAQuadSensInit, the user must enable the sensitivites by calling !

IDASensInit.

If an error occurred, IDAQuadSensInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: lenrw = lenrw +NqNs

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If IDAQuadSensSVtolerances is called: leniw = leniw +NqNs

The function IDAQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes the quadrature related internal memory and must follow a call to IDAQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to IDAQuadSensInit. The call to the IDAQuadSensReInit function has the form:

IDAQuadSensReInit

Call flag = IDAQuadSensReInit(ida mem, yQS0);

Description The function IDAQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadratures.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadSensReInit was successful.

IDA MEM NULL The idas memory was not initialized by a prior call to IDACreate.

IDA NO SENS Memory space for the sensitivity calculation was not allocated by a
prior call to IDASensInit.

IDA NO QUADSENS Memory space for the sensitivity quadratures integration was not
allocated by a prior call to IDAQuadSensInit.

IDA ILL INPUT The parameter yQS0 is NULL.

Notes If an error occurred, IDAQuadSensReInit also sends an error message to the error
handler function.
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IDAQuadSensFree

Call IDAQuadSensFree(ida mem);

Description The function IDAQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the idas memory block (of type void *).

Return value The function IDAQuadSensFree has no return value.

Notes In general, IDAQuadSensFree need not be called by the user as it is called automatically
by IDAFree.

5.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:

IDA QSRHS FAIL The sensitivity quadrature right-hand side function failed in an unrecoverable
manner.

IDA FIRST QSRHS ERR The sensitivity quadrature right-hand side function failed at the first call.

IDA REP QSRHS ERR Convergence test failures occurred too many times due to repeated recover-
able errors in the quadrature right-hand side function. The IDA REP RES ERR

will also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit, or reinitial-
ized by a call to IDAQuadSensReInit, then idas computes a solution, sensitivities, and quadratures
depending on sensitivities at time t. However, IDASolve will still return only the solutions y and ẏ.
Sensitivity-dependent quadratures can be obtained using one of the following functions:

IDAGetQuadSens

Call flag = IDAGetQuadSens(ida mem, &tret, yQS);

Description The function IDAGetQuadSens returns the quadrature sensitivity solution vectors after
a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

yQS (N Vector *) array of Ns computed sensitivity-dependent quadrature vectors.

Return value The return value flag of IDAGetQuadSens is one of:

IDA SUCCESS IDAGetQuadSens was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY yQS or one of the yQS[i] is NULL.

The function IDAGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by IDAGetQuadSens

with k = 0, but may also be called directly by the user.
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IDAGetQuadSensDky

Call flag = IDAGetQuadSensDky(ida mem, t, k, dkyQS);

Description The function IDAGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) the time at which information is requested. The time t must fall
within the interval defined by the last successful step taken by idas.

k (int) order of the requested derivative.

dkyQS (N Vector *) array of Ns vectors containing the derivatives. This vector array
must be allocated by the user.

Return value The return value flag of IDAGetQuadSensDky is one of:

IDA SUCCESS IDAGetQuadSensDky succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY dkyQS or one of the vectors dkyQS[i] is NULL.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetQuadSens1 and IDAGetQuadSensDky1, defined as follows:

IDAGetQuadSens1

Call flag = IDAGetQuadSens1(ida mem, &tret, is, yQS);

Description The function IDAGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

tret (realtype) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yQS (N Vector) the computed sensitivity-dependent quadrature vector.

Return value The return value flag of IDAGetQuadSens1 is one of:

IDA SUCCESS IDAGetQuadSens1 was successful.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD IS The index is is not in the allowed range.

IDA BAD DKY yQS is NULL.

IDAGetQuadSensDky1

Call flag = IDAGetQuadSensDky1(ida mem, t, k, is, dkyQS);

Description The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by idas.

k (int) order of derivative.
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is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyQS (N Vector) the vector containing the derivative. The space for dkyQS must be
allocated by the user.

Return value The return value flag of IDAGetQuadSensDky1 is one of:

IDA SUCCESS IDAGetQuadDky1 succeeded.

IDA MEM NULL ida mem was NULL.

IDA NO SENS Forward sensitivity analysis was not initialized.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA BAD DKY dkyQS is NULL.

IDA BAD IS The index is is not in the allowed range.

IDA BAD K k is not in the range 0, 1, ..., klast.

IDA BAD T The time t is not in the allowed range.

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

idas provides the following optional input functions to control the integration of sensitivity-dependent
quadrature equations.

IDASetQuadSensErrCon

Call flag = IDASetQuadSensErrCon(ida mem, errconQS)

Description The function IDASetQuadSensErrCon specifies whether or not the quadrature variables
are to be used in the local error control mechanism. If they are, the user must specify
the error tolerances for the quadrature variables by calling IDAQuadSensSStolerances,
IDAQuadSensSVtolerances, or IDAQuadSensEEtolerances.

Arguments ida mem (void *) pointer to the idas memory block.

errconQS (booleantype) specifies whether sensitivity quadrature variables are included
(TRUE) or not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes By default, errconQS is set to FALSE.

It is illegal to call IDASetQuadSensErrCon before a call to IDAQuadSensInit.!

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

IDAQuadSensSStolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error
tolerances.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.
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IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSensSVtolerances

Call flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

Description The function IDAQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N Vector*) is an array of Ns variables of type N Vector. The N Vector from
abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA NO QUAD Quadrature integration was not initialized.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

IDA ILL INPUT One of the input tolerances was negative.

IDAQuadSensEEtolerances

Call flag = IDAQuadSensEEtolerances(ida mem);

Description The function IDAQuadSensEEtolerances specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature
variables.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO SENS Sensitivities were not activated.

IDA NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes When IDAQuadSensEEtolerances is used, before calling IDASolve, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

idas provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadSensNumRhsEvals

Call flag = IDAGetQuadSensNumRhsEvals(ida mem, &nrhsQSevals);

Description The function IDAGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments ida mem (void *) pointer to the idas memory block.
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nrhsQSevals (long int) number of calls made to the user’s rhsQS function.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

IDAGetQuadSensNumErrTestFails

Call flag = IDAGetQuadSensNumErrTestFails(ida mem, &nQSetfails);

Description The function IDAGetQuadSensNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments ida mem (void *) pointer to the idas memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

IDAGetQuadSensErrWeights

Call flag = IDAGetQuadSensErrWeights(ida mem, eQSweight);

Description The function IDAGetQuadSensErrWeights returns the quadrature error weights at the
current time.

Arguments ida mem (void *) pointer to the idas memory block.

eQSweight (N Vector *) array of quadrature error weight vectors at the current time.

Return value The return value flag (of type int) is one of:

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

Notes The user must allocate memory for eQSweight.!

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadSensErrCon with errconQS=TRUE), IDAGetQuadSensErrWeights does not
set the eQSweight vector.

IDAGetQuadSensStats

Call flag = IDAGetQuadSensStats(ida mem, &nrhsQSevals, &nQSetfails);

Description The function IDAGetQuadSensStats returns the idas integrator statistics as a group.

Arguments ida mem (void *) pointer to the idas memory block.

nrhsQSevals (long int) number of calls to the user’s rhsQS function.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDA NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of the sensitivity quadrature equations. For sensitivities of quadratures
(2.10) with integrands q, the appropriate right-hand side functions are given by q̄i = (∂q/∂y)si +
∂q/∂pi. This user function must be of type IDAQuadSensRhsFn, defined as follows:

IDAQuadSensRhsFn

Definition typedef int (*IDAQuadSensRhsFn)(int Ns, realtype t, N Vector yy,

N Vector yp, N Vector *yyS, N Vector *ypS,

N Vector rrQ, N Vector *rhsvalQS,

void *user data, N Vector tmp1,

N Vector tmp2, N Vector tmp3)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable t and state vector y.

Arguments Ns is the number of sensitivity vectors.

t is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of the dependent variable vector, ẏ(t).

yyS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity vectors si.

ypS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity vectors ṡi.

rrQ is the current value of the quadrature right-hand side q.

rhsvalQS contains the Ns output vectors.

user data is the user data pointer passed to IDASetUserData.

tmp1

tmp2

tmp3 are N Vectors which can be used as temporary storage.

Return value An IDAQuadSensRhsFn should return 0 if successful, a positive value if a recoverable
error occurred (in which case idas will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA QRHS FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within idas.

Both yy and yp are of type N Vector and both yyS and ypS are pointers to an array
containing Ns vectors of type N Vector. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector

implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with idas do not perform any consistency
checks with respect to their N Vector arguments (see §7.1 and §7.2).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn

function returns a recoverable error flag. That is when this occurs at the very first call
to the IDAQuadSensRhsFn, in which case idas returns IDA FIRST QSRHS ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of idas

may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection.



104 Using IDAS for Forward Sensitivity Analysis

The short explanation of this behavior is that the step size selection implemented by the error
control mechanism in idas is based on the magnitude of the correction calculated by the nonlinear
solver. As mentioned in §5.2.1, even with partial error control selected in the call to IDASensInit,
the sensitivity variables are included in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method (§2.5), the nonlinear system that is solved at each
step involves both the state and sensitivity equations. In this case, it is easy to see how the sensitivity
variables may affect the convergence rate of the nonlinear solver and therefore the step size selection.
The case of the staggered corrector approach is more subtle. The sensitivity variables at a given
step are computed only once the solver for the nonlinear state equations has converged. However, if
the nonlinear system corresponding to the sensitivity equations has convergence problems, idas will
attempt to improve the initial guess by reducing the step size in order to provide a better prediction
of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the
sensitivity system, idas may trigger a call to the linear solver’s setup routine which typically involves
reevaluation of Jacobian information (Jacobian approximation in the case of idadense and idaband,
or preconditioner data in the case of the Krylov solvers). The new Jacobian information will be used
by subsequent calls to the nonlinear solver for the state equations and, in this way, potentially affect
the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods, however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system
of DAEs on the step size selection (through the mechanisms described above) is problem-dependent
and can therefore lead to either an increase or decrease of the total number of steps that idas takes to
complete the simulation. At first glance, one would expect that the impact of the sensitivity variables,
if any, would be in the direction of increasing the step size and therefore reducing the total number
of steps. The argument for this is that the presence of the sensitivity variables in the convergence
test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian
information), both of which will lead to larger steps being taken by idas. However, this is true only
locally. Overall, a larger integration step taken at a given time may lead to step size reductions at
later times, due to either nonlinear solver convergence failures or error test failures.



Chapter 6

Using IDAS for Adjoint Sensitivity
Analysis

This chapter describes the use of idas to compute sensitivities of derived functions using adjoint sensi-
tivity analysis. As mentioned before, the adjoint sensitivity module of idas provides the infrastructure
for integrating backward in time any system of DAEs that depends on the solution of the original IVP,
by providing various interfaces to the main idas integrator, as well as several supporting user-callable
functions. For this reason, in the following sections we refer to the backward problem and not to the
adjoint problem when discussing details relevant to the DAEs that are integrated backward in time.
The backward problem can be the adjoint problem (2.20) or (2.25), and can be augmented with some
quadrature differential equations.

idas uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of idas. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the nvector

implementation used; where this is not the case, usage specifications are given for the two implemen-
tations provided with idas: steps marked [P] correspond to nvector parallel, while steps marked
[S] correspond to nvector serial. Steps that are unchanged from the skeleton program presented
in §5.1 are grayed out.

1. Include necessary header files

The idas.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include
an nvector implementation header file (nvector serial.h or nvector parallel.h for the two
implementations provided with idas) and, if Newton iteration was selected, the main header file
of the desired linear solver module.

2. [P] Initialize MPI

Forward problem

3. Set problem dimensions for the forward problem
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4. Set initial conditions for the forward problem

5. Create idas object for the forward problem

6. Allocate internal memory for the forward problem

7. Specify integration tolerances for forward problem

8. Set optional inputs for the forward problem

9. Attach linear solver module for the forward problem

10. Set linear solver optional inputs for the forward problem

11. Allocate space for the adjoint computation

Call IDAAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
IDAAdjInit also specifies the type of interpolation used (see §2.6.3).

12. Integrate forward problem

Call IDASolveF, a wrapper for the idas main integration function IDASolve, either in IDA NORMAL

mode to the time tout or in IDA ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.2)). The final value of tret is then the maximum allowable
value for the endpoint T of the backward problem.

Backward problem(s)

13. Set problem dimensions for the backward problem

[S] set NB, the number of variables in the backward problem
[P] set NB and NBlocal

14. Set final values for the backward problem

Set the endpoint time tB0 = T and the corresponding vectors yB0 and ypB0 at which the backward
problem starts.

15. Create the backward problem

Call IDACreateB, a wrapper for IDACreate, to create the idas memory block for the new backward
problem. Unlike IDACreate, the function IDACreateB does not return a pointer to the newly
created memory block (see §6.2.3). Instead, this pointer is attached to the internal adjoint memory
block (created by IDAAdjInit) and returns an identifier called which that the user must later
specify in any actions on the newly created backward problem.

16. Allocate memory for the backward problem

Call IDAInitB (or IDAInitBS, when the backward problem depends on the forward sensitivi-
ties). The two functions are actually wrappers for IDAInit and allocate internal memory, specify
problem data, and initialize idas at tB0 for the backward problem (see §6.2.3).

17. Specify integration tolerances for backward problem

Call IDASStolerancesB(...) or IDASVtolerancesB(...) to specify a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances,
respectively. The functions are wrappers for IDASStolerances(...) and IDASVtolerances(...)

but they require an extra argument which, the identifier of the backward problem returned by
IDACreateB. See §6.2.4 for more information.
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18. Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the
behavior of idas. Unlike their counterparts for the forward problem, these functions take an extra
argument which, the identifier of the backward problem returned by IDACreateB (see §6.2.9).

19. Attach linear solver module for the backward problem

Initialize the linear solver module for the backward problem by calling the appropriate wrapper
function: IDADenseB, IDABandB, IDALapackDenseB, IDALapackBandB, IDASpgmrB, IDASpbcgB, or
IDASptfqmr (see §6.2.5). Note that it is not required to use the same linear solver module for
both the forward and the backward problems; for example, the forward problem could be solved
with the idadense linear solver and the backward problem with idaspgmr.

20. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB or IDAQuadInitBS (if
quadrature depends also on the forward sensitivities) as shown in §6.2.11.1. These functions are
wrappers around IDAQuadInit and can be used to initialize and allocate memory for quadrature
integration. Optionally, call IDASetQuad*B functions to change from their default values optional
inputs that control the integration of quadratures during the backward phase.

21. Integrate backward problem

Call IDASolveB, a second wrapper around the idas main integration function IDASolve, to inte-
grate the backward problem from tB0 (see §6.2.7). This function can be called either in IDA NORMAL

or IDA ONE STEP mode. Typically, IDASolveB will be called in IDA NORMAL mode with an end time
equal to the initial time t0 of the forward problem.

22. Extract quadrature variables

If applicable, call IDAGetQuadB, a wrapper around IDAGetQuad, to extract the values of the quadra-
ture variables at the time returned by the last call to IDASolveB. See §6.2.11.2.

23. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to IDAFree to free the idas

memory block for the forward problem. If additional forward integration(s) are to be done for
this problem, a call to IDAAdjFree (see §6.2.1) may be made to free and deallocate the memory
allocated for the backward problems.

24. Finalize MPI

[P] If MPI was initialized by the user main program, call MPI Finalize();.

The above user interface to the adjoint sensitivity module in idas was motivated by the desire to
keep it as close as possible in look and feel to the one for DAE IVP integration. Note that if steps
(13)-(22) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of DAEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(13)-(22) above for each successive backward problem. In the process, each call to IDACreateB creates
a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF, memory for the
combined forward-backward problem must be allocated by a call to the function IDAAdjInit. The
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form of the call to this function is

IDAAdjInit

Call flag = IDAAdjInit(ida mem, Nd, interpType);

Description The function IDAAdjInit updates idas memory block by allocating the internal memory
needed for backward integration. Space is allocated for the Nd = Nd interpolation data
points, and a linked list of checkpoints is initialized.

Arguments ida mem (void *) is the pointer to the idas memory block returned by a previous
call to IDACreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be IDA POLYNOMIAL

or IDA HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.6.3).

Return value The return value flag of IDAAdjInit is one of:

IDA SUCCESS IDAAdjInit was successful.

IDA MEM FAIL A memory allocation request has failed.

IDA MEM NULL ida mem was NULL.

IDA ILL INPUT One of the parameters was invalid: Nd was not positive or interpType
is not one of the IDA POLYNOMIAL or IDA HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. IDAAdjInit attempts to allocate
space for (2Nd+3) variables of type N Vector.

If an error occurred, IDAAdjInit also sends a message to the error handler function.

IDAAdjFree

Call IDAAdjFree(ida mem);

Description The function IDAAdjFree frees the memory related to backward integration allocated
by a previous call to IDAAdjInit.

Arguments The only argument is the idas memory block pointer returned by a previous call to
IDACreate.

Return value The function IDAAdjFree has no return value.

Notes This function frees all memory allocated by IDAAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the idas memory for the backward integration phase.

In general, IDAAdjFree need not be called by the user as it is invoked automatically by
IDAFree.

6.2.2 Forward integration function

The function IDASolveF is very similar to the idas function IDASolve (see §4.5.6) in that it integrates
the solution of the forward problem and returns the solution (y, ẏ). At the same time, however,
IDASolveF stores checkpoint data every Nd integration steps. IDASolveF can be called repeatedly by
the user. The call to this function has the form
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IDASolveF

Call flag = IDASolveF(ida mem, tout, &tret, yret, ypret, itask, &ncheck);

Description The function IDASolveF integrates the forward problem over an interval in t and saves
checkpointing data.

Arguments ida mem (void *) pointer to the idas memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype) the time reached by the solver (output).

yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector ẏ.

itask (int) a flag indicating the job of the solver for the next step. The IDA NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout) and ẏ(tout). The IDA ONE STEP option
tells the solver to take just one internal step and return the solution at the
point reached by that step.

ncheck (int) the number of (internal) checkpoints stored so far.

Return value On return, IDASolveF returns vectors yret, ypret and a corresponding independent
variable value t = tret, such that yret is the computed value of y(t) and ypret the
value of ẏ(t). Additionally, it returns in ncheck the number of internal checkpoints
saved; the total number of checkpoint intervals is ncheck+1. The return value flag (of
type int) will be one of the following. For more details see §4.5.6.

IDA SUCCESS IDASolveF succeeded.

IDA TSTOP RETURN IDASolveF succeeded by reaching the optional stopping point.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA ILL INPUT One of the inputs to IDASolveF is illegal.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAILURE Error test failures occurred too many times during one internal
time step or occurred with |h| = hmin.

IDA CONV FAILURE Convergence test failures occurred too many times during one in-
ternal time step or occurred with |h| = hmin.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF
failures.

At this time, IDASolveF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file as
needed. The data stored at each checkpoint is basically a snapshot of the idas internal
memory block and contains enough information to restart the integration from that
time and to proceed with the same step size and method order sequence as during the
forward integration.

In addition, IDASolveF also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is
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already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to IDASolveF,!

as this information is not captured in the checkpoint data.

6.2.3 Backward problem initialization functions

The functions IDACreateB and IDAInitB (or IDAInitBS) must be called in the order listed. They
instantiate an idas solver object, provide problem and solution specifications, and allocate internal
memory for the backward problem.

IDACreateB

Call flag = IDACreateB(ida mem, &which);

Description The function IDACreateB instantiates an idas solver object for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) contains the identifier assigned by idas for the newly created backward
problem. Any call to IDA*B functions requires such an identifier.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

There are two initialization functions for the backward problem – one for the case when the backward
problem does not depend on the forward sensitivities, and one for the case when it does. These two
functions are described next.

The function IDAInitB initializes the backward problem when it does not depend on the for-
ward sensitivities. It is essentially wrapper for IDAInit with some particularization for backward
integration, as described below.

IDAInitB

Call flag = IDAInitB(ida mem, which, resB, tB0, yB0, ypB0);

Description The function IDAInitB provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

resB (IDAResFnB) is the C function which computes fB, the residual of the back-
ward DAE problem. This function has the form resB(t, y, yp, yB, ypB,

resvalB, user dataB) (for full details see §6.3.1).

tB0 (realtype) specifies the endpoint T where final conditions are provided for the
backward problem, normally equal to the endpoint of the forward integration.

yB0 (N Vector) is the final value (at t = tB0) of the backward problem.

ypB0 (N Vector) is the final derivative value (at t = tB0) of the backward problem.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.
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IDA BAD TB0 The final time tB0 was outside the interval over which the forward
problem was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0, resB was NULL.

Notes The memory allocated by IDAInitB is deallocated by the function IDAAdjFree.

For the case when backward problem also depends on the forward sensitivities, user must call
IDAInitBS instead of IDAInitB. Only the third argument of each function differs between these
functions.

IDAInitBS

Call flag = IDAInitBS(ida mem, which, resBS, tB0, yB0, ypB0);

Description The function IDAInitBS provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

resBS (IDAResFnBS) is the C function which computes fB, the residual or the back-
ward DAE problem. This function has the form resBS(t, y, yp, yS, ypS,

yB, ypB, resvalB, user dataB) (for full details see §6.3.2).

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the final value of the backward problem.

ypB0 (N Vector) is the derivative final value of the backward problem.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA BAD TB0 The final time tB0 was outside the interval over which the forward
problem was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0, resB was NULL, or sensitivities were not active during the forward
integration.

Notes The memory allocated by IDAInitBS is deallocated by the function IDAAdjFree.

The function IDAReInitB reinitializes idas for the solution of a series of backward problems, each
identified by a value of the parameter which. IDAReInitB is essentially a wrapper for IDAReInit,
and so all details given for IDAReInit in §4.5.10 apply. Also, IDAReInitB can be called to reinitialize
a backward problem even if it has been initialized with the sensitivity-dependent version IDAInitBS.
The call to the IDAReInitB function has the form

IDAReInitB

Call flag = IDAReInitB(ida mem, which, tB0, yB0, ypB0)

Description The function IDAReInitB reinitializes idas the backward problem.

Arguments ida mem (void *) pointer to idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the final value of the backward problem.

ypB0 (N Vector) is the derivative final value of the backward problem.
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Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInitB was successful.

IDA NO MALLOC The function IDAInit has not been previously called.

IDA MEM NULL The ida mem memory block pointer was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA BAD TB0 The final time tB0 is outside the interval over which the forward problem
was solved.

IDA ILL INPUT The parameter which represented an invalid identifier, or one of yB0,
ypB0 was NULL.

6.2.4 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to IDAInitB or IDAInitBS.

IDASStolerancesB

Call flag = IDASStolerances(ida mem, which, reltolB, abstolB);

Description The function IDASStolerancesB specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

reltolB (realtype) is the scalar relative error tolerance.

abstolB (realtype) is the scalar absolute error tolerance.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerancesB was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT One of the input tolerances was negative.

IDASVtolerancesB

Call flag = IDASVtolerancesB(ida mem, which, reltolB, abstolB);

Description The function IDASVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) represents the identifier of the backward problem.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerancesB was successful.

IDA MEM NULL The idas memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the DAE state vector y.
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6.2.5 Linear solver initialization functions for backward problem

All idas linear solver modules available for forward problems provide additional specification func-
tions for backward problems. The initialization functions described in §4.5.3 cannot be directly used
since the optional user-defined Jacobian-related functions have different prototypes for the backward
problem than for the forward problem (see §6.3).

The following wrapper functions can be used to initialize one of the linear solver modules for the
backward problem. Their arguments are identical to those of the functions in §4.5.3 with the exception
of the additional second argument, which, the identifier of the backward problem.

flag = IDADenseB(ida_mem, which, nB);

flag = IDABandB(ida_mem, which, nB, mupperB, mlowerB);

flag = IDALapackDenseB(ida_mem, which, nB);

flag = IDALapackBandB(ida_mem, which, nB, mupperB, mlowerB);

flag = IDASpgmrB(ida_mem, which, maxlB);

flag = IDASpbcgB(ida_mem, which, maxlB);

flag = IDASptfqmrB(ida_mem, which, maxlB);

Their return value flag (of type int) can have any of the return values of their counterparts. If
the ida mem argument was NULL, flag will be IDADLS MEM NULL or IDASPILS MEM NULL. Also, if which
is not a valid identifier, the functions will return IDADLS ILL INPUT or IDASPILS ILL INPUT.

6.2.6 Initial condition calculation functions for backward problem

idas provides support for calculation of consistent initial conditions for certain backward index-one
problems of semi-implicit form through the functions IDACalcICB and IDACalcICBS. Calling them is
optional. It is only necessary when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC with
parameter icopt = IDA YA YDP INIT provides for forward problems (see §4.5.4): compute the algebraic
components of yB and differential components of ẏB, given the differential components of yB. They
require that the IDASetIdB was previously called to specify the differential and algebraic components.

Both functions require forward solutions at final time tB0. IDACalcICBS also needs forward sen-
sitivities at final time tB0.

IDACalcICB

Call flag = IDACalcICB(ida mem, which, tBout1, N Vector yB0, N Vector ypB0);

Description The function IDACalcICB corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) is the identifier of the backward problem.

tBout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolveB). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yB0 (N Vector) the forward solution at final time tB0.

ypB0 (N Vector) the forward derivative solution at final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.4). However IDACalcICB can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which represented an invalid identifier.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICB failures.
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Note that IDACalcICB will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitB or IDAReInitB. To obtain the corrected values,
call IDAGetconsistentICB (see §6.2.10.2).

In the case the backward problem also depends on the forward sensitivities, user must call the
following function to correct the initial conditions:

IDACalcICBS

Call flag = IDACalcICBS(ida mem, which, tBout1, N Vector yB0, N Vector ypB0,

N Vector yS0, N Vector ypS0);

Description The function IDACalcICBS corrects the initial values yB0 and ypB0 at time tB0 for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) is the identifier of the backward problem.

tBout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolveB).This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

yB0 (N Vector) the forward solution at final time tB0.

ypB0 (N Vector) the forward derivative solution at final time tB0.

yS (N Vector *) a pointer to an array of Ns vectors containing the sensitivities
of the forward solution at final time tB0.

ypS (N Vector *) a pointer to an array of Ns vectors containing the sensitivities
of the forward derivative solution at final time tB0.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.4). However IDACalcICBS can also return one of the following:

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which represented an invalid identifier, sensitivities were not
active during forward integration, or IDAInitBS (or IDAReInitBS) has
not been previously called.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICBS failures.

Note that IDACalcICBS will correct the values of yB(tB0) and ẏB(tB0) which were
specified in the previous call to IDAInitBS or IDAReInitBS. To obtain the corrected
values, call IDAGetConsistentICB (see §6.2.10.2).

6.2.7 Backward integration function

The function IDASolveB performs the integration of the backward problem. It is essentially a wrapper
for the idas main integration function IDASolve and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. In each pair, the first run integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function IDASolveB does not return the solution yB itself. To obtain that, call the function
IDAGetB, which is also described below.

The call to IDASolveB has the form
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IDASolveB

Call flag = IDASolveB(ida mem, tBout, itaskB);

Description The function IDASolveB integrates the backward DAE problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

tBout (realtype) the next time at which a computed solution is desired.

itaskB (int) a flag indicating the job of the solver for the next step. The IDA NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified value tBout. The solver then interpolates in order to return
an approximate value of yB(tBout). The IDA ONE STEP option tells the solver
to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see
§4.5.6.

IDA SUCCESS IDASolveB succeeded.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA NO BCK No backward problem has been added to the list of backward prob-
lems by a call to IDACreateB

IDA NO FWD The function IDASolveF has not been previously called.

IDA ILL INPUT One of the inputs to IDASolveB is illegal.

IDA BAD ITASK The itaskB argument has an illegal value.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAILURE Error test failures occurred too many times during one internal
time step.

IDA CONV FAILURE Convergence test failures occurred too many times during one in-
ternal time step.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA BCKMEM NULL The idas memory for the backward problem was not created with
a call to IDACreateB.

IDA BAD TBOUT The desired output time tBout is outside the interval over which
the forward problem was solved.

IDA REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

IDA FWD FAIL An error occurred during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all IDASolveB
failures.

In the case of multiple checkpoints and multiple backward problems, a given call to
IDASolveB in IDA ONE STEP mode may not advance every problem one step, depending
on the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function IDAGetB as follows:

IDAGetB

Call flag = IDAGetB(ida mem, which, &tret, yB, ypB);

Description The function IDAGetB provides the solution yB of the backward DAE problem.
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Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

which (int) the identifier of the backward problem.

tret (realtype) the time reached by the solver (output).

yB (N Vector) the backward solution at time tret.

ypB (N Vector) the backward derivative solution at time tret.

Return value The return value flag (of type int) will be one of the following.

IDA SUCCESS IDAGetB was successful.

IDA MEM NULL ida mem is NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB and ypB.!

6.2.8 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

IDAAdjSetNoSensi

Call flag = IDAAdjSetNoSensi(ida mem);

Description The function IDAAdjSetNoSensi instructs IDASolveF not to save checkpointing data
for forward sensitivities anymore.

Arguments ida mem (void *) pointer to the idas memory block.

Return value The return flag (of type int) is one of:

IDA SUCCESS The call to IDACreateB was successful.

IDA MEM NULL The ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

6.2.9 Optional input functions for the backward problem

6.2.9.1 Main solver optional input functions

The adjoint module in idas provides wrappers for most of the optional input functions defined in
§4.5.7.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by idas.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);

flag = IDASetMaxOrdB(ida_mem, which, maxordB);

flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);

flag = IDASetInitStepB(ida_mem, which, hinB)

flag = IDASetMaxStepB(ida_mem, which, hmaxB);

flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);

flag = IDASetIdB(ida_mem, which, idB);

flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be IDA NO ADJ if IDAAdjInit has not been called, or IDA ILL INPUT if which was an invalid
identifier.

6.2.9.2 Dense linear solver

Optional inputs for the idadense linear solver module can be set for the backward problem through
the following function:
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IDADlsSetDenseJacFnB

Call flag = IDADlsSetDenseJacFnB(ida mem, which, jacB);

Description The function IDADlsSetDenseJacFnB specifies the dense Jacobian approximation func-
tion to be used for the backward problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

which (int) represents the identifier of the backward problem.

jacB (IDADlsDenseJacFnB) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of:

IDADLS SUCCESS IDADlsSetDenseJacFnB succeeded.

IDADLS MEM NULL The ida mem was NULL.

IDADLS NO ADJ The function IDAAdjInit has not been previously called.

IDADLS LMEM NULL The linear solver has not been initialized with a call to IDADenseB

or IDALapackDenseB.

IDADLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDADlsDenseJacFnB is described in §6.3.5.

6.2.9.3 Band linear solver

Optional inputs for the idaband linear solver module can be set for the backward problem through
the following function:

IDADlsSetBandJacFnB

Call flag = IDADlsSetBandJacFnB(ida mem, which, jacB);

Description The function IDADlsSetBandJacFnB specifies the banded Jacobian approximation func-
tion to be used for the backward problem.

Arguments ida mem (void *) pointer to the idas memory returned by IDACreate.

which (int) represents the identifier of the backward problem.

jacB (IDADlsBandJacFnB) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of:

IDADLS SUCCESS IDADlsSetBandJacFnB succeeded.

IDADLS MEM NULL The ida mem was NULL.

IDADLS NO ADJ The function IDAAdjInit has not been previously called.

IDADLS LMEM NULL The linear solver has not been initialized with a call to IDABandB or
IDALapackBandB.

IDADLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDADlsBandJacFnB is described in §6.3.6.

6.2.9.4 SPILS linear solvers

Optional inputs for the idaspils linear solver module can be set for the backward problem through
the following functions:

IDASpilsSetPreconditionerB

Call flag = IDASpilsSetPreconditionerB(ida mem, which, psetupB, psolveB);

Description The function IDASpilsSetPrecSolveFnB specifies the preconditioner setup and solve
functions for the backward integration.

Arguments ida mem (void *) pointer to the idas memory block.
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which (int) the identifier of the backward problem.

psetupB (IDASpilsPrecSetupFnB) user-defined preconditioner setup function.

psolveB (IDASpilsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem memory block pointer was NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types IDASpilsPrecSolveFnB and IDASpilsPrecSetupFnB are described
in §6.3.8 and §6.3.9, respectively. The psetupB argument may be NULL if no setup
operation is involved in the preconditioner.

IDASpilsSetJacTimesVecFnB

Call flag = IDASpilsSetJacTimesVecFnB(ida mem, which, jtvB);

Description The function IDASpilsSetJacTimesFnB specifies the Jacobian-vector product function
to be used.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

jtvB (IDASpilsJacTimesVecFnB) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem memory block pointer was NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type IDASpilsJacTimesVecFnB is described in §6.3.7.

IDASpilsSetGSTypeB

Call flag = IDASpilsSetGSType(ida mem, which, gstypeB);

Description The function IDASpilsSetGSTypeB specifies the type of Gram-Schmidt orthogonal-
ization to be used with idaspgmr. This must be one of the enumeration constants
MODIFIED GS or CLASSICAL GS. These correspond to using modified Gram-Schmidt and
classical Gram-Schmidt, respectively.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

gstypeB (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL ida mem was NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The parameter which represented an invalid identifier or the value
of gstypeB was not valid.

Notes The default value is MODIFIED GS.

This option is available only with idaspgmr.!
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IDASpilsSetMaxlB

Call flag = IDASpilsSetMaxlB(ida mem, which, maxlB);

Description The function IDASpilsSetMaxlB resets maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

maxlB (realtype) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL ida mem was NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The parameter which represented an invalid identifier.

Notes The maximum subspace dimension is initially specified in the call to IDASpbcgB or
IDASptfqmrB. The call to IDASpilsSetMaxlB is needed only if maxlB is being changed
from its previous value.

This option is available only for the idaspbcg and idasptfqmr linear solvers. !

IDASpilsSetEpsLinB

Call flag = IDASpilsSetEpsLinB(ida mem, eplifacB);

Description The function IDASpilsSetEpsLinB specifies the factor by which the Krylov linear
solver’s convergence test constant is reduced from the Newton iteration test constant.
(See §2.1).

Arguments ida mem (void *) pointer to the idas memory block.

eplifacB (realtype) linear convergence safety factor (>= 0.0).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS NO ADJ The function IDAAdjInit has not been previously called.

IDASPILS ILL INPUT The value of eplifacB is negative.

Notes The default value is 0.05.

Passing a value eplifacB= 0.0 also indicates using the default value.

6.2.10 Optional output functions for the backward problem

6.2.10.1 Main solver optional output functions

The user of the adjoint module in idas has access to any of the optional output functions described
in §4.5.9, both for the main solver and for the linear solver modules. The first argument of these
IDAGet* and IDA*Get* functions is the pointer to the idas memory block for the backward problem.
In order to call any of these functions, the user must first call the following function to obtain this
pointer:
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IDAGetAdjIDABmem

Call ida memB = IDAGetAdjIDABmem(ida mem, which);

Description The function IDAGetAdjIDABmem returns a pointer to the idas memory block for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block created by IDACreate.

which (int) the identifier of the backward problem.

Return value The return value, ida memB (of type void *), is a pointer to the idas memory for the
backward problem.

Notes The user should not modify in any way ida memB.!

Optional output calls should pass ida memB as the first argument; thus, for example, to
get the number of integration steps: flag = IDAGetNumSteps(idas memB,&nsteps).

6.2.10.2 Initial condition calculation optional output function

IDAGetConsistentICB

Call flag = IDAGetConsistentICB(ida mem, which, yB0 mod, ypB0 mod);

Description The function IDAGetConsistentICB returns the corrected initial conditions for back-
ward problem calculated by IDACalcICB.

Arguments ida mem (void *) pointer to the idas memory block.

which is the identifier of the backward problem.

yB0 mod (N Vector) consistent initial vector.

ypB0 mod (N Vector) consistent initial derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA NO ADJ IDAAdjInit has not been previously called.

IDA ILL INPUT Parameter which did not refer a valid backward problem identifier.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yyB0 mod and ypB0 mod (if not NULL).!

6.2.11 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on
the forward sensitivities. Accordingly, one of the IDAQuadInitB or IDAQuadInitBS should be used to
allocate internal memory and to initialize backward quadratures. For any other operation (extraction,
optional input/output, reinitialization, deallocation), the same function is called regardless of whether
or not the quadratures are sensitivity-dependent.

6.2.11.1 Backward quadrature initialization functions

The function IDAQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depende on forward sensititvities. It has the following form:
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IDAQuadInitB

Call flag = IDAQuadInitB(ida mem, which, rhsQB, yQB0);

Description The function IDAQuadInitB provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

rhsQB (IDAQuadRhsFnB) is the C function which computes fQB, the residual of the
backward quadrature equations. This function has the form rhsQB(t, y, yp,

yB, ypB, rhsvalBQ, user dataB) (see §6.3.3).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitB was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT The parameter which is an invalid identifier.

The function IDAQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depend on the forward sensitivities.

IDAQuadInitBS

Call flag = IDAQuadInitBS(ida mem, which, rhsQBS, yQBS0);

Description The function IDAQuadInitBS provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

rhsQBS (IDAQuadRhsFnBS) is the C function which computes fQBS, the residual of
the backward quadrature equations. This function has the form rhsQBS(t,

y, yp, yS, ypS, yB, ypB, rhsvalBQS, user dataB) (see §6.3.4).

yQBS0 (N Vector) is the value of the sensitivity-dependent quadrature variables at
tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadInitBS was successful.

IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling

IDAQuadReInitB

Call flag = IDAQuadReInitB(ida mem, which, yQB0);

Description The function IDAQuadReInitB re-initializes the backward quadrature integration.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAQuadReInitB was successful.
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IDA MEM NULL ida mem was NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed.

IDA NO QUAD Quadrature integration was not activated through a previous call to
IDAQuadInitB.

IDA ILL INPUT The parameter which is an invalid identifier.

Notes IDAQuadReInitB can be used after a call to either IDAQuadInitB or IDAQuadInitBS.

6.2.11.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB, idas provides
a wrapper for the function IDAGetQuad (see §4.7.3). The call to this function has the form

IDAGetQuadB

Call flag = IDAGetQuadB(ida mem, which, &tret, yQB);

Description The function IDAGetQuadB returns the quadrature solution vector after a successful
return from IDASolveB.

Arguments ida mem (void *) pointer to the idas memory.

tret (realtype) the time reached by the solver (output).

yQB (N Vector) the computed quadrature vector.

Return value!

Notes T

he user must allocate space for yQB. The return value flag of IDAGetQuadB is one of:
IDA SUCCESS IDAGetQuadB was successful.

IDA MEM NULL ida mem is NULL.

IDA NO ADJ The function IDAAdjInit has not been previously called.

IDA NO QUAD Quadrature integration was not initialized.

IDA BAD DKY yQB was NULL.

IDA ILL INPUT The parameter which is an invalid identifier.

6.2.11.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = IDASetQuadErrConB(ida_mem, which, errconQ);

flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);

flag = IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be IDA NO ADJ if the function IDAAdjInit has not been previously called or IDA ILL INPUT

if the parameter which was an invalid identifier.
Access to optional outputs related to backward quadrature integration can be obtained by calling

the corresponding IDAGetQuad* functions (see §4.7.5). A pointer ida memB to the idas memory block
for the backward problem, required as the first argument of these functions, can be obtained through
a call to the functions IDAGetAdjIDABmem (see §6.2.10).
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6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem,
when using the adjoint sensitivity module in idas, the user must supply one function defining the
backward problem DAE and, optionally, functions to supply Jacobian-related information and one
or two functions that define the preconditioner (if one of the idaspils solvers is selected) for the
backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

IDAResFnB

Definition typedef int (*IDAResFnB)(realtype t, N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the output vector containing the residual for the backward DAE problem.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnB should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case idas will attempt to correct), or a negative value if an unre-
coverabl failure occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB, and
resvalB typically have different internal representations from y and yp. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with idas

do not perform any consistency checks with respect to their N Vector arguments (see
§7.1 and §7.2).

The user dataB pointer is passed to the user’s resB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s resB function, idas needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.2 DAE residual for the backward problem depending on the forward
sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:
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IDAResFnBS

Definition typedef int (*IDAResFnBS)(realtype t, N Vector y, N Vector yp,

N Vector *yS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector resvalB, void *user dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the sensitivities of the forward
derivative solution.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the output vector containing the residual for the backward DAE problem.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case idas will attempt to correct), or a negative value if an unre-
coverable error occurred (in which case the integration stops and IDASolveB returns
IDA RESFUNC FAIL).

Notes Allocation of memory for resvalB is handled within idas.

The y, yp, yB, ypB, and resvalB arguments are all of type N Vector, but yB, ypB,
and resvalB typically have different internal representations from y and yp. Likewise
for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each nvector im-
plementation). For the sake of computational efficiency, the vector functions in the two
nvector implementations provided with idas do not perform any consistency checks
with respect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s resBS function every time it is called
and can be the same as the user data pointer used for the forward problem.

Before calling the user’s resBS function, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the inter-
polation, idas triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA RESFUNC FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type IDAQuadRhsFnB defined by

IDAQuadRhsFnB

Definition typedef int (*IDAQuadRhsFnB)(realtype t, N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector rhsvalBQ, void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.
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yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

rhsvalBQ is the output vector containing the residual for the backward quadrature
equations.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQ is handled within idas.

The y, yp, yB, ypB, and rhsvalBQ arguments are all of type N Vector, but they typi-
cally all have different internal representations. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from each
nvector implementation). For the sake of computational efficiency, the vector func-
tions in the two nvector implementations provided with idas do not perform any
consistency checks with repsect to their N Vector arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQB function, idas needs to evaluate (through interpolation) the !

values of the states from the forward integration. If an error occurs in the interpolation,
idas triggers an unrecoverable failure in the quadrature right-hand side function which
will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an fQBS function of type IDAQuadRhsFnBS defined by

IDAQuadRhsFnBS

Definition typedef int (*IDAQuadRhsFnBS)(realtype t, N Vector y, N Vector yp,

N Vector *yS, N Vector *ypS,

N Vector yB, N Vector ypB,

N Vector rhsvalBQS, void *user dataB);

Purpose This function computes the quadrature equation residual for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the sensitivities of the forward
derivative solution.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

rhsvalBQS is the output vector containing the residual for the backward quadrature
equations.

user dataB is a pointer to user data, same as passed to IDASetUserDataB.
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Return value An IDAQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA QRHSFUNC FAIL).

Notes Allocation of memory for rhsvalBQS is handled within idas.

The y, yp, yB, ypB, and rhsvalBQS arguments are all of type N Vector, but they typically
do not all have the same internal representations. Likewise for each yS[i] and ypS[i].
It is the user’s responsibility to access the vector data consistently (including the use
of the correct accessor macros from each nvector implementation). For the sake
of computational efficiency, the vector functions in the two nvector implementations
provided with idas do not perform any consistency checks with repsect to their N Vector

arguments (see §7.1 and §7.2).

The user dataB pointer is passed to the user’s fQBS function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQBS function, idas needs to evaluate (through interpolation)!

the values of the states from the forward integration. If an error occurs in the interpo-
lation, idas triggers an unrecoverable failure in the quadrature right-hand side function
which will halt the integration and IDASolveB will return IDA QRHSFUNC FAIL.

6.3.5 Jacobian information for the backward problem (direct method with
dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is selected for the backward problem
(i.e. IDADenseB or IDALapackDenseB is called in step 19 of §6.1), the user may provide, through a
call to IDADlsSetDenseJacFnB (see §6.2.9), a function of the following type:

IDADlsDenseJacFnB

Definition typedef int (*IDADlsDenseJacFnB)(long int NeqB, realtype tt,

realtype cjB, N Vector yy, N Vector yp,

N Vector yyB, N Vector ypB,

N Vector resvalB,

DlsMat JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the dense Jacobian of the backward problem (or an approxima-
tion to it).

Arguments NeqB is the backward problem size (number of equations).

tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yyB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate dense Jacobian matrix.

user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.

tmp1B

tmp2B
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tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsDenseJacFnB as temporary storage or work space.

Return value An IDADlsDenseJacFnB should return 0 if successful, a positive value if a recover-
able error occurred (in which case idas will attempt to correct, while idadense sets
last flag to IDADLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in
which case the integration is halted, IDASolveB returns IDA LSETUP FAIL and idadense

sets last flag to IDADLS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the NeqB by NeqB dense matrix JacB

with an approximation to the Jacobian matrix at the point (tt,yy,yyB), where yy is the
solution of the original IVP at time tt and yyB is the solution of the backward problem
at the same time. Only nonzero elements need to be loaded into JacB as this matrix is
set to zero before the call to the Jacobian function. The type of JacB is DlsMat. The
user is referred to §4.6.5 for details regarding accessing a DlsMat object.

Before calling the user’s IDADlsDenseJacFnB, idas needs to evaluate (through interpo- !

lation) the values of the states from the forward integration. If an error occurs in the
interpolation, idas triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA LSETUP FAIL and idadense sets last flag

to IDADLS JACFUNC UNRECVR).

6.3.6 Jacobian information for the backward problem (direct method with
banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is selected for the backward problem
(i.e. IDABandB or IDALapackBandB is called in step 19 of §6.1), the user may provide, through a call
to IDADlsSetBandJacFnB (see §6.2.9), a function the following type:

IDADlsBandJacFnB

Definition typedef int (*IDADlsBandJacFnB)(long int NeqB,

long int mupperB, long int mlowerB,

realtype tt, realtype cjB,

N Vector yy, N Vector yp,

N Vector yyB, N Vector ypB,

N Vector resvalB, DlsMat JacB,

void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the banded Jacobian of the backward problem (or a banded
approximation to it).

Arguments NeqB is the backward problem size.

mlowerB

mupperB are the lower and upper half-bandwidth of the Jacobian.

tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

yy is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yyB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate band Jacobian matrix.
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user dataB is a pointer to user data — the parameter passed to IDASetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsBandJacFnB as temporary storage or work space.

Return value An IDADlsBandJacFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct, while idaband sets last flag

to IDADLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which
case the integration is halted, IDASolveB returns IDA LSETUP FAIL and idadense sets
last flag to IDADLS JACFUNC UNRECVR).

Notes A user-supplied band Jacobian function must load the band matrix JacB (of type
DlsMat) with the elements of the Jacobian at the point (tt,yy,yyB), where yy is the
solution of the original IVP at time tt and yyB is the solution of the backward problem
at the same time. Only nonzero elements need to be loaded into JacB because JacB

is preset to zero before the call to the Jacobian function. More details on the acces-
sor macros provided for a DlsMat object and on the rest of the arguments passed to a
function of type IDADlsBandJacFnB are given in §4.6.6.

Before calling the user’s IDADlsBandJacFnB, idas needs to evaluate (through interpo-!

lation) the values of the states from the forward integration. If an error occurs in the
interpolation, idas triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA LSETUP FAIL and idaband sets last flag

to IDADLS JACFUNC UNRECVR).

6.3.7 Jacobian information for the backward problem (matrix-vector prod-
uct)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (IDASp*B is called
in step 19 of §6.1), the user may provide a function of type IDASpilsJacTimesVecFnB in the following
form:

IDASpilsJacTimesVecFnB

Definition typedef int (*IDASpilsJacTimesVecFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yyB, N Vector yyB,

N Vector resvalB,

N Vector vB, N Vector JvB,

realtype cjB, void *user dataB,

N Vector tmp1B, N Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

vB is the vector by which the Jacobian must be multiplied.

JvB is the computed output vector, JB*vB.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).
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user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

tmp1B

tmp2B are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type IDASpilsJtimesFnB should be 0 if successful or
nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDASpilsJacTimesVecFn (see §4.6.7). If the backward
problem is the adjoint of ẏ = f(t, y), then this function is to compute −(∂f/∂y)T vB .

6.3.8 Preconditioning for the backward problem (linear system solution)

If preconditioning is used during integration of the backward problem, then the user must provide a
C function to solve the linear system Pz = r, where P is a left preconditioner matrix. This function
must be of type IDASpilsPrecSolveFnB defined by

IDASpilsPrecSolveFnB

Definition typedef int (*IDASpilsPrecSolveFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

N Vector rvecB, N Vector zvecB,

realtype cjB, realtype deltaB,

void *user dataB, N Vector tmpB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.

tmpB is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).
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6.3.9 Preconditioning for the backward problem (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type IDASpilsPrecSetupFnB defined by

IDASpilsPrecSetupFnB

Definition typedef int (*IDASpilsPrecSetupFnB)(realtype t,

N Vector yy, N Vector yp,

N Vector yB, N Vector ypB,

N Vector resvalB,

realtype cjB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of an IDASpilsPrecSetupFnB are as follows:

t is the current value of the independent variable.

yy is the current value of the forward solution vector.

yp is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.6) ).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to the function IDASetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for vectors which can be used as tempo-
rary storage or work space.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

6.4 Using the band-block-diagonal preconditioner for back-
ward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of
linear systems can be greatly enhanced through preconditioning. The band-block-diagonal precondi-
tioner module idabbdpre, provides interface functions through which it can be used on the backward
integration phase.

The adjoint module in idas offers an interface to the band-block-diagonal preconditioner module
idabbdpre described in section §4.8. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the parallel vector module nvector parallel.

In order to use the idabbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.
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6.4.1 Usage of IDABBDPRE for the backward problem

The idabbdpre module is initialized by calling the following function, after one of the idaspils linear
solvers has been specified, by calling the appropriate function (see §6.2.5).

IDABBDPrecInitB

Call flag = IDABBDPrecInitB(ida mem, which, NlocalB, mudqB, mldqB,

mukeepB, mlkeepB, dqrelyB, GresB, GcommB);

Description The function IDABBDPrecInitB initializes and allocates memory for the idabbdpre

preconditioner for the backward problem.

Arguments ida mem (void *) pointer to the idas memory block.

which (int) the identifier of the backward problem.

NlocalB (long int) local vector dimension for the backward problem.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mukeepB (long int) upper half-bandwidth of the retained banded approximate Jaco-
bian block.

mlkeepB (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which can

be specified by passing dqrely= 0.0.

GresB (IDABBDLocalFnB) the C function which computes GB(t, y, ẏ, yB , ẏB), the func-
tion approximating the residual of the backward problem.

GcommB (IDABBDCommFnB) the optional C function which performs all interprocess com-
munication required for the computation of GB .

Return value If successful, IDABBDPrecInitB creates, allocates, and stores (internally in the idas

solver block) a pointer to the newly created idabbdpre memory block. The return
value flag (of type int) is one of:

IDASPILS SUCCESS The call to IDABBDPrecInitB was successful.

IDASPILS MEM FAIL A memory allocation request has failed.

IDASPILS MEM NULL The ida mem argument was NULL.

IDASPILS LMEM NULL No linear solver has been attached.

IDASPILS ILL INPUT An invalid parameter has been passed.

To reinitialize the idabbdpre preconditioner module for the backward problem, possibly with a change
in mudqB, mldqB, or dqrelyB, call the following function:

IDABBDPrecReInitB

Call flag = IDABBDPrecReInitB(ida mem, which, mudqB, mldqB, dqrelyB);

Description The function IDABBDPrecReInitB reinitializes the idabbdpre preconditioner for the
backward problem.

Arguments ida mem (void *) pointer to the idas memory block returned by IDACreate.

which (int) the identifier of the backward problem.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.
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dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

Return value The return value flag (of type int) is one of:

IDASPILS SUCCESS The call to IDABBDPrecReInitB was successful.

IDASPILS MEM FAIL A memory allocation request has failed.

IDASPILS MEM NULL The ida mem argument was NULL.

IDASPILS PMEM NULL The IDABBDPrecInitB has not been previously called.

IDASPILS LMEM NULL No linear solver has been attached.

IDASPILS ILL INPUT An invalid parameter has been passed.

For more details on idabbdpre see §4.8.

6.4.2 User-supplied functions for IDABBDPRE

To use the idabbdpre module, the user must supply one or two functions which the module calls
to construct the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approxi-
mates the residual of the backward problem and which is computed locally, and an optional function
GcommB (of type IDABBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate residual (see §4.8). The prototypes for these two functions are described below.

IDABBDLocalFnB

Definition typedef int (*IDABBDLocalFnB)(long int NlocalB, realtype t,

N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

N Vector gB, void *user dataB);

Purpose This GresB function loads the vector gB, an approximation to the residual of the back-
ward problem, as a function of t, y, yp, and yB and ypB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

gB is the output vector, GB(t, y, ẏ, yB , ẏB).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

Return value An IDABBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user dataB.

Before calling the user’s IDABBDLocalFnB, idas needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, idas triggers an unrecoverable failure in the preconditioner setup function
which will halt the integration (IDASolveB returns IDA LSETUP FAIL).
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IDABBDCommFnB

Definition typedef int (*IDABBDCommFnB)(long int NlocalB, realtype t,

N Vector y, N Vector yp,

N Vector yB, N Vector ypB,

void *user dataB);

Purpose This GcommB function performs all interprocess communications necessary for the exe-
cution of the GresB function above, using the input vectors y, yp, yB and ypB.

Arguments NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward derivative solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to IDASetUserDataB.

Return value An IDABBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case idas will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA LSETUP FAIL).

Notes The GcommB function is expected to save communicated data in space defined within
the structure user dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the
residual of the backward problem with the same t, y, yp, yB and ypB arguments. If there
is no additional communication needed, then pass GcommB = NULL to IDABBDPrecInitB.





Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two provided
within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);
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realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 7.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 7.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for the data array.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector

module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded (serial) linear solvers, and in the interfaces
to the banded (serial) and band-block-diagonal (parallel) preconditioner
modules provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

continued on next page
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continued from last page

Name Usage and Description

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z: zi =
cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean ℓ2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

continued on next page
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continued from last page

Name Usage and Description

N VL1Norm m = N VL1Norm(x);

Returns the ℓ1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n− 1. This routine returns TRUE if all components of
x are nonzero (successful inversion) and returns FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns FALSE if any element failed the constraint
test, TRUE if all passed. It also sets a mask vector m, with elements equal
to 1.0 where the constraint test failed, and 0.0 where the test passed.
This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

7.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S
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These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
7.1. Their names are obtained from those in Table 7.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneEmptyVectorArray Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneEmptyVectorArray Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);
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• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneEmptyVectorArray Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.
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The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 7.1 Their names are obtained from those in Table 7.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.
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N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneEmptyVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneEmptyVectorArray Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneEmptyVectorArray Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.3 NVECTOR functions used by IDAS

In Table 7.2 below, we list the vector functions in the nvector module used by the idas package.
The table also shows, for each function, which of the code modules uses the function. The idas

column shows function usage within the main integrator module, while the remaining five columns
show function usage within each of the five idas linear solvers (idaspils stands for any of idaspgmr,
idaspbcg, or idasptfqmr), the idabbdpre preconditioner module, and the idas adjoint sensitivity
module (denoted here by idaa).

There is one subtlety in the idaspils column hidden by the table, explained here for the case of
the idaspgmr module. The N VDotProd function is called both within the interface file ida spgmr.c

and within the implementation files sundials spgmr.c and sundials iterative.c for the generic
spgmr solver upon which the idaspgmr solver is built. Also, although N VDiv and N VProd are
not called within the interface file ida spgmr.c, they are called within the implementation file
sundials spgmr.c, and so are required by the idaspgmr solver module. Analogous statements ap-
ply to the idaspbcg and idasptfqmr modules, except that they do not use sundials iterative.c.
This issue does not arise for the direct idas linear solvers because the generic dense and band solvers
(used in the implementation of idadense and idaband) do not make calls to any vector functions.

Of the functions listed in Table 7.1, N VWL2Norm, N VL1Norm, N VCloneEmpty, and N VInvTest

are not used by idas. Therefore a user-supplied nvector module for idas could omit these four
functions.
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Table 7.2: List of vector functions usage by idas code modules
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N VClone X X X X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X

N VSetArrayPointer X

N VLinearSum X X X X

N VConst X X

N VProd X X

N VDiv X X

N VScale X X X X X X

N VAbs X

N VInv X

N VAddConst X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X

N VMin X

N VMinQuotient X

N VConstrMask X

N VWrmsNormMask X

N VCompare X



Chapter 8

Providing Alternate Linear Solver
Modules

The central idas module interfaces with the linear solver module to be used by way of calls to five
routines. These are denoted here by linit, lsetup, lsolve, lperf, and lfree. Briefly, their purposes
are as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lperf: monitor performance and issue warnings;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification routine (like those described in
§4.5.3) which will attach the above five routines to the main idas memory block. The idas memory
block is a structure defined in the header file idas impl.h. A pointer to such a structure is defined as
the type IDAMem. The five fields in a IDAMem structure that must point to the linear solver’s functions
are ida linit, ida lsetup, ida lsolve, ida lperf, and ida lfree, respectively. Note that of the
four interface routines, only the lsolve routine is required. The lfree routine must be provided
only if the solver specification routine makes any memory allocation. The linear solver specification
function must also set the value of the field ida setupNonNull in the ida memory block — to TRUE

if lsetup is used, or FALSE otherwise.
For consistency with the existing idas linear solver modules, we recommend that the return value

of the specification function be 0 for a successful return or a negative value if an error occurs (the
pointer to the main idas memory block is NULL, an input is illegal, the nvector implementation is
not compatible, a memory allocation fails, etc.)

To facilitate data exchange between the five interface functions, the field ida lmem in the idas

memory block can be used to attach a linear solver-specific memory block. That memory should be
allocated in the linear solver specification function.

To be used during the backward integration with the idas module, a linear solver module must
also provide an additional user-callable specification function (like those described in §6.2.5) which
will attach the four functions to the idas memory block for the backward integration. Note that this
block (of type struct IDAMemRec) is not directly accessible to the user, but rather is itself a field in
the idas memory block. The idas memory block is a structure defined in the header file idas impl.h.
A pointer to such a structure is defined as the type IDAAMem. The specification function for backward
integration should also return a negative value if the adjoint idas memory block is NULL.

An additional field (ca lmemB) in the idas memory block provides a hook-up for optionally at-
taching a linear solver-specific memory block.
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The five functions that interface between idas and the linear solver module necessarily have fixed
call sequences. Thus a user wishing to implement another linear solver within the idas package must
adhere to this set of interfaces. The following is a complete description of the call list for each of these
routines. Note that the call list of each routine includes a pointer to the main idas memory block, by
which the routine can access various data related to the idas solution. The contents of this memory
block are given in the file idas.h (but not reproduced here, for the sake of space).

8.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(IDAMem IDA mem);

Purpose The purpose of linit is to complete initializations for a specific linear solver, such as
counters and statistics.

Arguments IDA mem is the idas memory pointer of type IDAMem.

Return value An linit function should return 0 if it has successfully initialized the idas linear solver
and a negative value otherwise.

8.2 Setup routine

The type definition of lsetup is

lsetup

Definition int (*lsetup)(IDAMem IDA mem, N Vector yyp, N Vector ypp,

N Vector resp,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It may
re-compute Jacobian-related data if it deems necessary.

Arguments IDA mem is the idas memory pointer of type IDAMem.

yyp is the predicted y vector for the current idas internal step.

ypp is the predicted ẏ vector for the current idas internal step.

resp is the value of the residual function at yyp and ypp, i.e. F (tn, ypred, ẏpred).

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value The lsetup routine should return 0 if successful, a positive value for a recoverable error,
and a negative value for an unrecoverable error.

8.3 Solve routine

The type definition of lsolve is

lsolve

Definition int (*lsolve)(IDAMem IDA mem, N Vector b, N Vector weight,

N Vector ycur, N Vector ypcur, N Vector rescur);
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Purpose The routine lsolve must solve the linear equation Mx = b, where M is some approxi-
mation to J = ∂F/∂y + cj ∂F/∂ẏ (see Eqn. (2.6)), and the right-hand side vector b is
input. Here cj is available as IDA mem->ida cj.

Arguments IDA mem is the idas memory pointer of type IDAMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the Wi of (2.7).

ycur is a vector that contains the solver’s current approximation to y(tn).

ypcur is a vector that contains the solver’s current approximation to ẏ(tn).

rescur is a vector that contains F (tn, ycur, ẏcur).

Return value lsolve returns a positive value for a recoverable error and a negative value for an
unrecoverable error. Success is indicated by a 0 return value.

8.4 Performance monitoring routine

The type definition of lperf is

lperf

Definition int (*lperf)(IDAMem IDA mem, int perftask);

Purpose The routine lperf is to monitor the performance of the linear solver.

Arguments IDA mem is the idas memory pointer of type IDAMem.

perftask is a task flag. perftask = 0 means initialize needed counters. perftask =
1 means evaluate performance and issue warnings if needed.

Return value The lperf return value is ignored.

8.5 Memory deallocation routine

The type definition of lfree is

lfree

Definition void (*lfree)(IDAMem IDA mem);

Purpose The routine lfree should free up any memory allocated by the linear solver.

Arguments The argument IDA mem is the idas memory pointer of type IDAMem.

Return value This routine has no return value.

Notes This routine is called once a problem has been completed and the linear solver is no
longer needed.





Chapter 9

Generic Linear Solvers in
SUNDIALS

In this chapter, we describe five generic linear solver code modules that are included in idas, but
which are of potential use as generic packages in themselves, either in conjunction with the use of
idas or separately.

These generic linear solver modules in sundials are organized in two families of solvers, the dls
family, which includes direct linear solvers appropriate for sequential computations; and the spils
family, which includes scaled preconditioned iterative (Krylov) linear solvers. The solvers in each
family share common data structures and functions.

The dls family contains the following two generic linear solvers:

• The dense package, a linear solver for dense matrices either specified through a matrix type
(defined below) or as simple arrays.

• The band package, a linear solver for banded matrices either specified through a matrix type
(defined below) or as simple arrays.

Note that this family also includes the Blas/Lapack linear solvers (dense and band) available to the
sundials solvers, but these are not discussed here.

The spils family contains the following three generic linear solvers:

• The spgmr package, a solver for the scaled preconditioned GMRES method.

• The spbcg package, a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these generic solvers begin
with the prefix sundials . But despite this, each of the solvers is in fact generic, in that it is usable
completely independently of sundials.

For the sake of space, the functions for the dense and band modules that work with a matrix type
and the functions in the spgmr, spbcg, and sptfqmr modules are only summarized briefly, since
they are less likely to be of direct use in connection with a sundials solver. However, the functions
for dense matrices treated as simple arrays are fully described, because we expect that they will be
useful in the implementation of preconditioners used with the combination of one of the sundials

solvers and one of the spils linear solvers.

9.1 The DLS modules: DENSE and BAND

The files comprising the dense generic linear solver, and their locations in the sundials srcdir, are
as follows:
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• header files (located in srcdir/include/sundials)
sundials direct.h sundials dense.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c sundials dense.c sundials math.c

The files comprising the band generic linear solver are as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h sundials band.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c sundials band.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense and band packages by themselves (see §A.3 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MIN, MAX, and ABS macros and
RAbs function.

The files listed above for either module can be extracted from the sundials srcdir and compiled
by themselves into a separate library or into a larger user code.

9.1.1 Type DlsMat

The type DlsMat, defined in sundials direct.h is a pointer to a structure defining a generic matrix,
and is used with all linear solvers in the dls family:

typedef struct _DlsMat {

int type;

long int M;

long int N;

long int ldim;

long int mu;

long int ml;

long int s_mu;

realtype *data;

long int ldata;

realtype **cols;

} *DlsMat;

For the dense module, the relevant fields of this structure are as follows. Note that a dense matrix
of type DlsMat need not be square.

type - SUNDIALS DENSE (=1)

M - number of rows

N - number of columns
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ldim - leading dimension (ldim ≥ M)

data - pointer to a contiguous block of realtype variables

ldata - length of the data array (= ldim·N). The (i,j)-th element of a dense matrix A of type DlsMat

(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤
j < N) is given by the expression (A->cols)[j][i]

For the band module, the relevant fields of this structure are as follows (see Figure 9.1 for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square
band matrices are allowed.

type - SUNDIALS BAND (=2)

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < min(M,N)

ml - lower half-bandwidth, 0 ≤ ml < min(M,N)

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routine writes the LU
factors into the storage for A. The upper triangular factor U, however, may have an upper
bandwidth as big as min(N-1,mu+ml) because of partial pivoting. The s mu field holds the upper
half-bandwidth allocated for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element,
j−mu ≤ i ≤ j+ml.

9.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out
explicit data structure references and without knowing too much about the underlying element storage.
The only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL or BAND COL macros. Users should use
these macros whenever possible.

The following two macros are defined by the dense module to provide access to data in the DlsMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the M ×N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 9.1: Diagram of the storage for a banded matrix of type DlsMat. Here A is an N × N band
matrix of type DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandGBTRF and BandGBTRS

routines.
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• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the
expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to M − 1. The (i, j)-th element of A is referenced
by col j[i].

The following three macros are defined by the band module to provide access to data in the DlsMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

9.1.3 Functions in the DENSE module

The dense module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on dense matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat dense matrices are available in the dense package. For full
details, see the header files sundials direct.h and sundials dense.h.

• NewDenseMat: allocation of a DlsMat dense matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of long int integers for use as pivots with DenseGETRF

and DenseGETRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack dense
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with DenseGETRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;
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• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseGETRF: LU factorization with partial pivoting;

• DenseGETRS: solution of Ax = b using LU factorization (for square matrices A);

• DensePOTRF: Cholesky factorization of a real symmetric positive matrix;

• DensePOTRS: solution of Ax = b using the Cholesky factorization of A;

• DenseGEQRF: QR factorization of an m× n matrix, with m ≥ n;

• DenseORMQR: compute the product w = Qv, with Q calculated using DenseGEQRF;

The following functions for small dense matrices are available in the dense package:

• newDenseMat

newDenseMat(m,n) allocates storage for an m by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then newDenseMat

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = newDenseMat(m,n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a pointer to the first element in
the j-th column of a. The location a[0] contains a pointer to m × n contiguous locations which
contain the elements of a.

• destroyMat

destroyMat(a) frees the dense matrix a allocated by newDenseMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• denseCopy

denseCopy(a,b,m,n) copies the m by n dense matrix a into the m by n dense matrix b;

• denseScale

denseScale(c,a,m,n) scales every element in the m by n dense matrix a by the scalar c;

• denseAddIdentity

denseAddIdentity(a,n) increments the square n by n dense matrix a by the identity matrix
In;
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• denseGETRF

denseGETRF(a,m,n,p) factors the m by n dense matrix a, using Gaussian elimination with row
pivoting. It overwrites the elements of a with its LU factors and keeps track of the pivot rows
chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is an m by n lower trapezoidal matrix with all diagonal elements equal to 1, and U is an
n by n upper triangular matrix, then the upper triangular part of a (including its diagonal)
contains U and the strictly lower trapezoidal part of a contains the multipliers, I −L. If a
is square, L is a unit lower triangular matrix.

denseGETRF returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization, indicating that the matrix a does not have full column rank. In this case
it returns the column index (numbered from one) at which it encountered the zero.

• denseGETRS

denseGETRS(a,n,p,b) solves the n by n linear system ax = b. It assumes that a (of size
n × n) has been LU-factored and the pivot array p has been set by a successful call to
denseGETRF(a,n,n,p). The solution x is written into the b array.

• densePOTRF

densePOTRF(a,m) calculates the Cholesky decomposition of the m by m dense matrix a, assumed
to be symmetric positive definite. Only the lower triangle of a is accessed and overwritten with
the Cholesky factor.

• densePOTRS

densePOTRS(a,m,b) solves the m by m linear system ax = b. It assumes that the Cholesky
factorization of a has been calculated in the lower triangular part of a by a successful call to
densePOTRF(a,m).

• denseGEQRF

denseGEQRF(a,m,n,beta,wrk) calculates the QR decomposition of the m by n matrix a (m ≥
n) using Householder reflections. On exit, the elements on and above the diagonal of a contain
the n by n upper triangular matrix R; the elements below the diagonal, with the array beta,
represent the orthogonal matrix Q as a product of elementary reflectors. The real array wrk, of
length m, must be provided as temporary workspace.

• denseORMQR

denseORMQR(a,m,n,beta,v,w,wrk) calculates the product w = Qv for a given vector v of length
n, where the orthogonal matrix Q is encoded in the m by n matrix a and the vector beta of
length n, after a successful call to denseGEQRF(a,m,n,beta,wrk). The real array wrk, of length
m, must be provided as temporary workspace.

9.1.4 Functions in the BAND module

The band module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on band matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat banded matrices are available in the band package. For full
details, see the header files sundials direct.h and sundials band.h.
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• NewBandMat: allocation of a DlsMat band matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of int integers for use as pivots with BandGBRF and
BandGBRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack band
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with BandGBRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandGBTRF: LU factorization with partial pivoting;

• BandGBTRS: solution of Ax = b using LU factorization;

The following functions for small band matrices are available in the band package:

• newBandMat

newBandMat(n, smu, ml) allocates storage for an n by n band matrix with lower half-bandwidth
ml.

• destroyMat

destroyMat(a) frees the band matrix a allocated by newBandMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• bandCopy

bandCopy(a,b,n,a smu, b smu,copymu, copyml) copies the n by n band matrix a into the n

by n band matrix b;

• bandScale

bandScale(c,a,n,mu,ml,smu) scales every element in the n by n band matrix a by c;
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• bandAddIdentity

bandAddIdentity(a,n,smu) increments the n by n band matrix a by the identity matrix;

• bandGETRF

bandGETRF(a,n,mu,ml,smu,p) factors the n by n band matrix a, using Gaussian elimination
with row pivoting. It overwrites the elements of a with its LU factors and keeps track of the
pivot rows chosen in the pivot array p.

• bandGETRS

bandGETRS(a,n,smu,ml,p,b) solves the n by n linear system ax = b. It assumes that a (of
size n × n) has been LU-factored and the pivot array p has been set by a successful call to
bandGETRF(a,n,mu,ml,smu,p). The solution x is written into the b array.

9.2 The SPILS modules: SPGMR, SPBCG, and SPTFQMR

A linear solver module from the spils family can only be used in conjunction with an actual nvector !

implementation library, such as the nvector serial or nvector parallel provided with sundi-

als.

9.2.1 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spbcg and sptfqmr). For full details, including usage instructions, see
the header files sundials spgmr.h and sundials iterative.h.

The files comprising the spgmr generic linear solver, and their locations in the sundials srcdir,
are as follows:

• header files (located in srcdir/include/sundials)
sundials spgmr.h sundials iterative.h sundials nvector.h

sundials types.h sundials math.h sundials config.h

• source files (located in srcdir/src/sundials)
sundials spgmr.c sundials iterative.c sundials nvector.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself (see §A.3 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MAX and ABS macros and RAbs

and RSqrt functions.
The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic

N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.
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The nine files listed above can be extracted from the sundials srcdir and compiled by themselves
into an spgmr library or into a larger user code.

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

9.2.2 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The files needed to use the spbcg module by itself are the same as for the spgmr module, but
with sundials spbcgs.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

9.2.3 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The files needed to use the sptfqmr module by itself are the same as for the spgmr module, but
with sundials sptfqmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.
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IDAS Installation Procedure

The installation of idas is accomplished by installing the sundials suite as a whole, according to
the instructions that follow. The same procedure applies whether or not the downloaded file contains
solvers other than idas.1

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz). The
name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of: sundials,
cvode, cvodes, ida, idas, or kinsol, and x.y.z represents the version number (of the sundials suite
or of the individual solver). To begin the installation, first uncompress and expand the sources, by
issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.4.0 of sundials, two installation methods are provided: in addition to

the previous autotools-based method, sundials now provides a method based on CMake. Before
providing detailed explanations on the installation procedure for the two approaches, we begin with
a few common observations:

• In the remainder of this chapter, we make the following distinctions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials

sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For the CMake-based installation, in-source builds are prohibited; in other words, the build
directory builddir can not be the same as srcdir and such an attempt will lead to an error.
For autotools-based installation, in-source builds are allowed, although even in that case we
recommend using a separate builddir. Indeed, this prevents “polluting” the source tree and
allows efficient builds for different configurations and/or options.

• The installation directory instdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate option to configure or toggle for CMake), the
examples distributed with sundials will be built together with the solver libraries but the

1Files for both the serial and parallel versions of idas are included in the distribution. For users in a serial computing
environment, the files specific to parallel environments (which may be deleted) are as follows: all files in src/nvec par/;
nvector parallel.h (in include/nvector/); idas bbdpre.c, idas bbdpre impl.h (in src/idas/); idas bbdpre.h (in
include/idas/); all files in examples/idas/parallel/. (By “serial version” of idas we mean the idas solver with the
serial nvector module attached, and similarly for “parallel version”.)
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installation step will result in exporting (by default in a subdirectory of the installation directory)
the example sources and sample outputs together with automatically generated configuration
files that reference the installed sundials headers and libraries. As such, these configuration files
for the sundials examples can be used as ”templates” for your own problems. The configure

script will install makefiles. CMake installs CMakeLists.txt files and also (as an option available
only under Unix/Linux) makefiles. Note that both installation approaches also allow the option
of building the sundials examples without having to install them. (This can be used as a sanity
check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 Autotools-based installation

The installation procedure outlined below will work on commodity LINUX/UNIX systems without
modification. However, users are still encouraged to carefully read this entire section before attempting
to install the sundials suite, in case non-default choices are desired for compilers, compilation options,
installation location, etc. The user may invoke the configuration script with the help flag to view a
complete listing of available options, by issuing the command

% ./configure --help

from within srcdir.

The installation steps for sundials can be as simple as the following:

% cd (...)/srcdir

% ./configure

% make

% make install

in which case the sundials header files and libraries are installed under /usr/local/include and
/usr/local/lib, respectively. Note that, by default, the example programs are not built and installed.
To delete all temporary files created by building sundials, issue

% make clean

To prepare the sundials distribution for a new install (using, for example, different options and/or
installation destinations), issue

% make distclean

The above steps are for an “in-source” build. For an “out-of-source” build (recommended), the
procedure is simply:

% cd (...)/builddir

% (...)/srcdir/configure

% make

% make install

Note that, in this case, make clean and make distclean are irrelevant. Indeed, if disk space is a
priority, the entire builddir can be purged after the installation completes. For a new install, a new
builddir directory can be created and used.
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A.1.1 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may be
used to indicate which MPI implementation should be used. Also, if the user wants to use non-default
language compilers, then, again, the necessary shell environment variables must be appropriately
redefined. The remainder of this section provides explanations of available configure script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=/usr/local

--exec-prefix=EPREFIX

Location for architecture-dependent files.

Default: EPREFIX=/usr/local

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=EPREFIX/lib

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, idas,
and kinsol.

--enable-examples

Available example programs are not built by default. Use this option to enable compilation of all
pertinent example programs. Upon completion of the make command, the example executables
will be created under solver-specific subdirectories of builddir/examples:

builddir/examples/solver/serial : serial C examples

builddir/examples/solver/parallel : parallel C examples

builddir/examples/solver/fcmix serial : serial Fortran examples

builddir/examples/solver/fcmix parallel : parallel Fortran examples

Note: Some of these subdirectories may not exist depending upon the solver and/or the configu-
ration options given.

--with-examples-instdir=EXINSTDIR

Alternate location for example executables and sample output files (valid only if examples are en-
abled). Note that installation of example files can be completely disabled by issuing EXINSTDIR=no
(in case building the examples is desired only as a test of the sundials libraries).

Default: DIR=EPREFIX/examples

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).
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--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in nonstan-
dard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named libfoo.a

or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may be
used to build sundials with realtype defined instead as a single-precision floating-point numeric
data type (float C-type) if ARG=single, or as a long double C-type if ARG=extended.

Default: ARG=double

Users should not build sundials with support for single-precision floating-point arithmetic on!

32- or 64-bit systems. This will almost certainly result in unreliable numerical solutions. The
configuration option --with-precision=single is intended for systems on which single-precision
arithmetic involves at least 14 decimal digits.

Options for Fortran support

--disable-fcmix

Using this option will disable all Fortran support. The fcvode, fkinsol, fida, and fnvector

modules will not be built, regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used to
disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers to be
used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sundi-

als configuration script will automatically check under the subdirectories MPIDIR/include and
MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin will also
be searched for the C and Fortran MPI compiler scripts, unless the user uses --with-mpicc=no
or --with-mpif77=no.

--with-mpi-incdir=INCDIR
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--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler script,
but instead would rather use a serial complier and provide the flags necessary to compile the
MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include and LIBDIR=MPIDIR/lib

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared libraries
on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sundials

libraries being built if the system supports shared libraries. To build only shared libraries also
specify --disable-static.

Note: The fcvode, fkinsol, and fida libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

Options for Blas/Lapack support

The configure script will attempt to automatically determine the proper libraries to be linked for
support of the new Blas/Lapack linear solver module. If these are not found, or if Blas and/or Lapack
libraries are installed in a non-standard location, the following options can be used:

--with-blas=BLASDIR

Specify the Blas library.

Default: none

--with-lapack=LAPACKDIR

Specify the Lapack library.

Default: none

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen compiler)
as the C language compiler, use CC=xcc in the configure step.
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CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

A.1.2 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options.
To build sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples,and install libraries, headers, and example sources
under appropriate subdirectories of /home/myname/sundials/, use

% configure --prefix=/home/myname/sundials --enable-examples

To disable installation of the examples, use:

% configure --prefix=/home/myname/sundials \

--enable-examples --with-examples-instdir=no

The following example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The next example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no
option explicitly disables the use of the corresponding MPI compiler script. In addition, since the
--with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include and
-L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions. The
--with-mpi-libs option is required so that the configure script can check if gcc can link with the
appropriate MPI library. The --disable-lapack option explicitly disables support for Blas/Lapack,
while the --disable-fcmix explicitly disables building the FCMIX interfaces. Note that, because of
the last two options, no Fortran-related settings are checked for.

% configure CC=gcc --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich \

--disable-lapack --disable-fcmix

Finally, a minimal configuration and installation of sundials in /home/myname/sundials/ (serial
only, no Fortran support, no examples) can be obtained with:

% configure --prefix=/home/myname/sundials \

--disable-mpi --disable-lapack --disable-fcmix

A.2 CMake-based installation

Support for CMake-based installation has been added to sundials primarily to provide a platform-
independent build system. Like autotools, CMake can generate a Unix Makefile. Unlike autotools,
CMake can also create KDevelop, Visual Studio, and (Apple) XCode project files from the same
configuration file. In addition, CMake provides a GUI front end and therefore the installation process
is more interactive than when using autotools.

The installation options are very similar to the options mentioned above (although their default
values may differ slightly). Practically, all configurations supported by the autotools-based installation
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approach are also possible with CMake, the only notable exception being cross-compilation, which is
currently not implemented in the CMake approach.

The sundials build process requires CMake version 2.4.x or higher and a working compiler.
On Unix-like operating systems, it also requires Make (and curses, including its development li-
braries, for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio.
While many Linux distributions offer CMake, the version included is probably out of date. Many
new CMake features have been added recently, and you should download the latest version from
http://www.cmake.org/HTML/Download.html. Build instructions for Cmake (only necessary for
Unix-like systems) can be found on the CMake website. Once CMake is installed, Linux/Unix user
will be able to use ccmake, while Windows user will be able to use CMakeSetup.

As noted above, when using CMake to configure, build and install sundials, it is always required
to use a separate build directory. While in-source builds are possible, they are explicitly prohibited
by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake does not
provide a make distclean procedure and it is therefore difficult to clean-up the source tree after an
in-source build).

A.2.1 Configuring, building, and installing on Unix-like systems

Use ccmake from the CMake installed location. ccmake is a Curses based GUI for CMake. To run it
go to the build directory and specify as an argument the build directory:

% mkdir (...)/builddir

% cd (...)/builddir

% ccmake (...)/srcdir

About ccmake:

• Iterative process

– Select values, run configure (c key)

– Set the settings, run configure, set the settings, run configure, etc.

• Repeat until all values are set and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced varables, toggle to advanced mode (t key)

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will flip the value

– If it is string or file, it will allow editing of the string

– For file and directories, the <tab> key can be used to complete

• To search for a variable press / key, and to repeat the search, press the n key

CMake will now generate makefiles including all dependencies and all rules to build sundials on
this system. You should not, however, try to move the build directory to another location on this
system or to another system. Once you have makefiles you should be able to just type:

% make

To install sundials in the installation directory specified at configuration time, simply run

% make install
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A.2.2 Configuring, building, and installing on Windows

Use CMakeSetup from the CMake install location. Make sure to select the appropriate source and
the build directory. Also, make sure to pick the appropriate generator (on Visual Studio 6, pick the
Visual Studio 6 generator). Some CMake versions will ask you to select the generator the first time
you press Configure instead of having a drop-down menu in the main dialog.

About CMakeSetup:

• Iterative process

– Select values, press the Configure button

– Set the settings, run configure, set the settings, run configure, etc.

• Repeat until all values are set and the OK button becomes available.

• Some variables (advanced variables) are not visible right away

• To see advanced varables, toggle to advanced mode (”Show Advanced Values” toggle).

• To set the value of a variable, click on that value.

– If it is boolean (ON/OFF), a drop-down menu will appear for changing the value.

– If it is file or directory, an ellipsis button will appear (”...”) on the far right of the entry.
Clicking this button will bring up the file or directory selection dialog.

– If it is a string, it will become an editable string.

CMake will now create Visual Studio project files. You should now be able to open the sundials

project (or workspace) file. Make sure to select the appropriate build type (Debug, Release, ...). To
build sundials, simply build the ALL BUILD target. To install sundials, simply run the INSTALL

target within the build system.

A.2.3 Configuration options

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only. Some of them will be different on different systems.

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: OFF

BUILD STATIC LIBS - Build static libraries
Default: ON
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CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used) Debug
Release RelWithDebInfo MinSizeRel
Default:

CMAKE C COMPILER - C compiler
Default: /usr/bin/gcc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the compiler during release builds
Default: -O3 -DNDEBUG

CMAKE BACKWARDS COMPATIBILITY - For backwards compatibility, what version of CMake commands
and syntax should this version of CMake allow.
Default: 2.4

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/g77
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or Blas/Lapack support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the compiler during debug builds
Default:

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default:

CMAKE Fortran FLAGS RELEASE - Flags used by the compiler during release builds
Default:

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

EXAMPLES ENABLE - Build the sundials examples
Default: OFF
Note: setting this option to ON will trigger additional options related to how and where example
programs will be installed.

EXAMPLES GENERATE MAKEFILES - Create Makefiles for building the examples
Default: ON
Note: This option is triggered only if enabling the building and installing of the example pro-
grams (i.e., both EXAMPLES ENABLE and EXAMPLEs INSTALL are set to ON) and if configuration
is done on a Unix-like system. If enabled, makefiles for the compilation of the example programs
(using the installed sundials libraries) will be automatically generated and exported to the
directory specified by EXAMPLES INSTALL PATH.
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered only if building example programs is enabled (EXAMPLES ENABLE

ON). If the user requires installation of example programs then the sources and sample output
files for all sundials modules that are currently enabled will be exported to the directory
specified by EXAMPLES INSTALL PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under
a Unix-like system, an additional option (EXAMPLES GENERATE MAKEFILES) will be triggered.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will an examples subdirectory created under
CMAKE INSTALL PREFIX.

EXAMPLES USE STATIC LIBS - Link examples using the static libraries
Default: OFF
Note: This option is triggered only if building shared libraries is enabled (BUILD SHARED LIBS

is ON).

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

LAPACK ENABLE - Enable Lapack support
Default: OFF
Note: Setting this option to ON will trigger the two additional options see below.

LAPACK LIBRARIES - Lapack (and Blas) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

LAPACK LINKER FLAGS - Lapack (and Blas) required linker flags
Default: -lg2c

MPI ENABLE - Enable MPI support
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default: /home/radu/apps/mpich1/gcc/bin/mpicc
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON).

MPI MPIF77 - mpif77 program
Default: /home/radu/apps/mpich1/gcc/bin/mpif77
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON)
and Fortran-C support is enabled (FCMIx ENABLE is ON).

MPI INCLUDE PATH - Path to MPI header files
Default: /home/radu/apps/mpich1/gcc/include
Note: This option is triggered only if not using MPI compiler scripts (MPI USE MPISCRIPTS is
ON).

MPI LIBRARIES - MPI libraries
Default: /home/radu/apps/mpich1/gcc/lib/libmpich.a
Note: This option is triggered only if not using MPI compiler scripts (MPI USE MPISCRIPTS is
ON).

MPI USE MPISCRIPTS - Use MPI compiler scripts
Default: ON



A.3 Manually building SUNDIALS 169

SUNDIALS PRECISION - Precision used in sundials, options are: double, single or extended
Default: double

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

A.3 Manually building SUNDIALS

With the addition of CMake support, the installation of the sundials package on almost any platform
was greatly simplified. However, if for whatever reason, neither of the two procedures described above
is convenient (for example for users who prefer to own the build process or otherwise incorporate
sundials or one of its solvers in a larger project with its own build system), we provide here a few
directions for a completely manual installation.

The following files are required to compile a sundials solver module:

• public header files located under srcdir/include/solver

• implementation header files and source files located under srcdir/src/solver

• (optional) Fortran/C interface files located under srcdir/src/solver/fcmix

• shared public header files located under srcdir/include/sundials

• shared source files located under srcdir/src/sundials

• (optional) nvector serial header and source files located under srcdir/include/nvector and
srcdir/src/nvec ser

• (optional) nvector parallel header and source files located under srcdir/include/nvector
and srcdir/src/nvec par

• configuration header file sundials config.h (see below)

A sample header file that, appropriately modified, can be used as sundials config.h (otherwise
created automatically by the configure or CMake scripts) is provided below.

1 /∗ SUNDIALS con f i gu r a t i on header f i l e ∗/
2

3 #de f i n e SUNDIALS PACKAGE VERSION ” 2 . 4 . 0 ”
4

5 #de f i n e F77 FUNC(name ,NAME) name ##
6 #de f i n e F77 FUNC (name ,NAME) name ##
7

8 #de f i n e SUNDIALS DOUBLE PRECISION 1
9

10 #de f i n e SUNDIALS USE GENERIC MATH
11

12 #de f i n e SUNDIALS MPI COMM F2C 1
13

14 #de f i n e SUNDIALS EXPORT

The various preprocessor macros defined within sundials config.h have the following uses:

• Precision of the sundials realtype type

Only one of the macros SUNDIALS SINGLE PRECISION, SUNDIALS DOUBLE PRECISION and
SUNDIALS EXTENDED PRECISION should be defined to indicate if the sundials realtype type is
an alias for float, double, or long double, respectively.
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• Use of generic math functions

If SUNDIALS USE GENERIC MATH is defined, then the functions in sundials math.(h,c) will use
the pow, sqrt, fabs, and exp functions from the standard math library (see math.h), regardless
of the definition of realtype. Otherwise, if realtype is defined to be an alias for the float

C-type, then sundials will use powf, sqrtf, fabsf, and expf. If realtype is instead defined
to be a synonym for the long double C-type, then powl, sqrtl, fabsl, and expl will be used.

Note: Although the powf/powl, sqrtf/sqrtl, fabsf/fabsl, and expf/expl routines are not
specified in the ANSI C standard, they are ISO C99 requirements. Consequently, these routines
will only be used if available.

• Fortran name-mangling scheme

The macros given below are used to transform the C-language function names defined in the
Fortran-C interface modules in a manner consistent with the preferred Fortran compiler,
thus allowing native C functions to be called from within a Fortran subroutine. The name-
mangling scheme is specified by appropriately defining the following parameterized macros (using
the stringization operator, ##, if necessary):

– F77 FUNC(name,NAME)

– F77 FUNC (name,NAME)

For example, to specify that mangled C-language function names should be lowercase with one
underscore appended include

#define F77_FUNC(name,NAME) name ## _

#define F77_FUNC_(name,NAME) name ## _

in the sundials config.h header file.

• Use of an MPI communicator other than MPI COMM WORLD in Fortran

If the macro SUNDIALS MPI COMM F2C is defined, then the MPI implementation used to build
sundials defines the type MPI Fint and the function MPI Comm f2c, and it is possible to use
MPI communicators other than MPI COMM WORLD with the Fortran-C interface modules.

• Mark sundials API functions for export/import. When building shared sundials libraries
under Windows, use

#define SUNDIALS_EXPORT __declspec(dllexport)

When linking to shared sundials libraries under Windows, use

#define SUNDIALS_EXPORT __declspec(dllimport)

In all other cases (other platforms or static libraries under Windows), the SUNDIALS EXPORT

macro is empty.

A.4 Installed libraries and exported header files

Using the standard sundials build system, the command

% make install
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will install the libraries under libdir and the public header files under includedir. The default values
for these directories are instdir/lib and instdir/include, respectively, but can be changed using the
configure script options --prefix, --exec-prefix, --includedir and --libdir (see §A.1) or the
appropriate CMake options (see §A.2). For example, a global installation of sundials on a *NIX

system could be accomplished using

% configure --prefix=/opt/sundials-2.1.1

Although all installed libraries reside under libdir, the public header files are further organized into
subdirectories under includedir.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in Table A.1,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/sundials directory since they are explicitly included by the appropriate solver
header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and safe to
do so (e.g., the functions declared in sundials dense.h could be used in building a preconditioner).
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Table A.1: sundials libraries and header files

shared Libraries n/a
Header files sundials/sundials config.h sundials/sundials types.h

sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials direct.h sundials/sundials lapack.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials iterative.h sundials/sundials spgmr.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode lapack.h
cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h
cvode/cvode spils.h cvode/cvode spgmr.h
cvode/cvode sptfqmr.h cvode/cvode spbcgs.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes lapack.h
cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h
cvodes/cvodes spils.h cvodes/cvodes spgmr.h
cvodes/cvodes sptfqmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida lapack.h
ida/ida dense.h ida/ida band.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas lapack.h
idas/idas dense.h idas/idas band.h
idas/idas spils.h idas/idas spgmr.h
idas/idas spbcgs.h idas/idas sptfqmr.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol lapack.h
kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h
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IDAS Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 IDAS input constants

idas main solver module

IDA NORMAL 1 Solver returns at specified output time.
IDA ONE STEP 2 Solver returns after each successful step.
IDA SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
IDA STAGGERED 2 Staggered corrector forward sensitivity method.
IDA CENTERED 1 Central difference quotient approximation (2nd order) of the

sensitivity RHS.
IDA FORWARD 2 Forward difference quotient approximation (1st order) of the

sensitivity RHS.
IDA YA YDP INIT 1 Compute ya and ẏd, given yd.
IDA Y INIT 2 Compute y, given ẏ.

idas adjoint solver module

IDA HERMITE 1 Use Hermite interpolation.
IDA POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 IDAS output constants

idas main solver module

IDA SUCCESS 0 Successful function return.
IDA TSTOP RETURN 1 IDASolve succeeded by reaching the specified stopping point.
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IDA ROOT RETURN 2 IDASolve succeeded and found one or more roots.
IDA WARNING 99 IDASolve succeeded but an unusual situation occurred.
IDA TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
IDA TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
IDA ERR FAIL -3 Error test failures occurred too many times during one inter-

nal time step or minimum step size was reached.
IDA CONV FAIL -4 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
IDA LINIT FAIL -5 The linear solver’s initialization function failed.
IDA LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
IDA LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
IDA RES FAIL -8 The user-provided residual function failed in an unrecoverable

manner.
IDA REP RES FAIL -9 The user-provided residual function repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA RTFUNC FAIL -10 The rootfinding function failed in an unrecoverable manner.
IDA CONSTR FAIL -11 The inequality constraints were violated and the solver was

unable to recover.
IDA FIRST RES FAIL -12 The user-provided residual function failed recoverably on the

first call.
IDA LINESEARCH FAIL -13 The line search failed.
IDA NO RECOVERY -14 The residual function, linear solver setup function, or linear

solver solve function had a recoverable failure, but IDACalcIC
could not recover.

IDA MEM NULL -20 The ida mem argument was NULL.
IDA MEM FAIL -21 A memory allocation failed.
IDA ILL INPUT -22 One of the function inputs is illegal.
IDA NO MALLOC -23 The idas memory was not allocated by a call to IDAInit.
IDA BAD EWT -24 Zero value of some error weight component.
IDA BAD K -25 The k-th derivative is not available.
IDA BAD T -26 The time t is outside the last step taken.
IDA BAD DKY -27 The vector argument where derivative should be stored is

NULL.
IDA NO QUAD -30 Quadratures were not initialized.
IDA QRHS FAIL -31 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner.
IDA FIRST QRHS ERR -32 The user-provided right-hand side function for quadratures

failed in an unrecoverable manner on the first call.
IDA REP QRHS ERR -33 The user-provided right-hand side repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA NO SENS -40 Sensitivities were not initialized.
IDA SRES FAIL -41 The user-provided sensitivity residual function failed in an

unrecoverable manner.
IDA REP SRES ERR -42 The user-provided sensitivity residual function repeatedly re-

turned a recoverable error flag, but the solver was unable to
recover.
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IDA BAD IS -43 The sensitivity identifier is not valid.
IDA NO QUADSENS -50 Sensitivity-dependent quadratures were not initialized.
IDA QSRHS FAIL -51 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner.
IDA FIRST QSRHS ERR -52 The user-provided sensitivity-dependent quadrature right-

hand side function failed in an unrecoverable manner on the
first call.

IDA REP QSRHS ERR -53 The user-provided sensitivity-dependent quadrature right-
hand side repeatedly returned a recoverable error flag, but
the solver was unable to recover.

idas adjoint solver module

IDA NO ADJ -101 The combined forward-backward problem has not been ini-
tialized.

IDA NO FWD -102 IDASolveF has not been previously called.
IDA NO BCK -103 No backward problem was specified.
IDA BAD TB0 -104 The desired output for backward problem is outside the in-

terval over which the forward problem was solved.
IDA REIFWD FAIL -105 No checkpoint is available for this hot start.
IDA FWD FAIL -106 IDASolveB failed because IDASolve was unable to store data

between two consecutive checkpoints.
IDA GETY BADT -107 Wrong time in interpolation function.

idadls linear solver modules

IDADLS SUCCESS 0 Successful function return.
IDADLS MEM NULL -1 The ida mem argument was NULL.
IDADLS LMEM NULL -2 The idadls linear solver has not been initialized.
IDADLS ILL INPUT -3 The idadls solver is not compatible with the current nvec-

tor module.
IDADLS MEM FAIL -4 A memory allocation request failed.
IDADLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
IDADLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.
IDADLS NO ADJ -101 The combined forward-backward problem has not been ini-

tialized.
IDADLS LMEMB NULL -102 The linear solver was not initialized for the backward phase.

idaspils linear solver modules

IDASPILS SUCCESS 0 Successful function return.
IDASPILS MEM NULL -1 The ida mem argument was NULL.
IDASPILS LMEM NULL -2 The idaspils linear solver has not been initialized.
IDASPILS ILL INPUT -3 The idaspils solver is not compatible with the current nvec-

tor module.
IDASPILS MEM FAIL -4 A memory allocation request failed.
IDASPILS PMEM NULL -5 The preconditioner module has not been initialized.
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IDASPILS NO ADJ -101 The combined forward-backward problem has not been ini-
tialized.

IDASPILS LMEMB NULL -102 The linear solver was not initialized for the backward phase.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup function failed unrecoverably.

spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPBCG PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPBCG PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.
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IDA CONV FAILURE, 109, 115
IDA ERR FAIL, 35
IDA ERR FAILURE, 109, 115
IDA FIRST QRHS ERR, 71, 75
IDA FIRST QSRHS ERR, 98, 103
IDA FIRST RES FAIL, 34, 95
IDA FORWARD, 90
IDA FWD FAIL, 115
IDA HERMITE, 108
IDA ILL INPUT, 28, 29, 33, 35, 38, 39, 41, 42, 46–

48, 56, 62, 73, 84–86, 90, 94, 97, 101,
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IDA LINESEARCH FAIL, 34
IDA LINIT FAIL, 33, 35
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133
IDA LSOLVE FAIL, 33, 35, 109
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122
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IDA NORMAL, 35, 106, 109, 115
IDA ONE STEP, 35, 106, 109, 115
IDA POLYNOMIAL, 108
IDA QRHS FAIL, 71, 75, 103
IDA QRHSFUNC FAIL, 125, 126
IDA QSRHS FAIL, 98
IDA REIFWD FAIL, 115
IDA REP QRHS ERR, 71
IDA REP QSRHS ERR, 98
IDA REP RES ERR, 36
IDA REP SRES ERR, 87
IDA RES FAIL, 34, 36
IDA RESFUNC FAIL, 123, 124
IDA ROOT RETURN, 35
IDA RTFUNC FAIL, 36, 64
IDA SIMULTANEOUS, 19, 84
IDA SOLVE FAIL, 115
IDA SRES FAIL, 87, 95
IDA STAGGERED, 19, 84
IDA SUCCESS, 28, 29, 33, 35, 36, 38–42, 46–48, 56,

57, 62, 70–75, 84–94, 97–102, 108–112,
115, 116, 121, 122

IDA TOO MUCH ACC, 35, 109, 115
IDA TOO MUCH WORK, 35, 109, 115

IDA TSTOP RETURN, 35, 109
IDA WARNING, 63
IDA Y INIT, 33
IDA YA YDP INIT, 33
IDAAdjFree, 108
IDAAdjInit, 106, 108
IDAAdjSetNoSensi, 116
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memory requirements, 57
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optional input, 42–43, 117
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selection of, 31

IDABand, 26, 30, 31, 65
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IDADense, 26, 30, 31, 64
IDADenseB, 126
IDADLS ILL INPUT, 31, 117
IDADLS JACFUNC RECVR, 127, 128
IDADLS JACFUNC UNRECVR, 127, 128
IDADLS LMEM NULL, 42, 43, 57, 58, 117
IDADLS MEM FAIL, 31
IDADLS MEM NULL, 31, 42, 43, 57, 58, 117
IDADLS NO ADJ, 117
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IDAGetQuadB, 107, 122
IDAGetQuadDky, 72
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IDAInit, 28, 61
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IDALapackBandB, 127
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IDAQuadInit, 70, 71
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IDAReInit, 61, 62
IDAReInitB, 111
IDAResFn, 28, 62
IDAResFnB, 110, 123
IDAResFnBS, 111, 123
IDARootFn, 64
IDARootInit, 34
idas

motivation for writing in C, 1–2
package structure, 19
relationship to ida, 1

idas linear solvers
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idaspgmr, 32
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implementation details, 22
list of, 21
nvector compatibility, 23
selecting one, 30
usage with adjoint module, 113

idas.h, 24
idas band.h, 25
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idas lapack.h, 25
idas spbcgs.h, 25
idas spgmr.h, 25
idas sptfqmr.h, 25
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IDASensFree, 85
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IDASensReInit, 85
IDASensResFn, 84, 94
IDASensSStolerances, 86
IDASensSVtolerances, 86
IDASensToggleOff, 86
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IDASetErrFile, 36
IDASetErrHandlerFn, 38
IDASetId, 41
IDASetInitStep, 39
IDASetLineSearchOffIC, 47
IDASetMaxConvFails, 40
IDASetMaxErrTestFails, 40
IDASetMaxNonlinIters, 40
IDASetMaxNumItersIC, 47
IDASetMaxNumJacsIC, 46
IDASetMaxNumSteps, 38
IDASetMaxNumStepsIC, 46
IDASetMaxOrd, 38
IDASetMaxStep, 39
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IDASetNonlinConvCoefIC, 46
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IDASetQuadSensErrCon, 100
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IDASetSensDQMethod, 90
IDASetSensErrCon, 90
IDASetSensMaxNonlinIters, 91
IDASetSensParams, 89
IDASetStepToleranceIC, 47
IDASetStopTime, 39

IDASetSuppressAlg, 41
IDASetUserData, 38
IDASolve, 27, 35, 101
IDASolveB, 107, 114, 115
IDASolveF, 106, 108, 109
idaspbcg linear solver

Jacobian approximation used by, 43
memory requirements, 58
optional input, 43–45, 117–119
optional output, 58–61
preconditioner setup function, 43, 68, 130
preconditioner solve function, 43, 67, 129
selection of, 32

IDASpbcg, 26, 30, 32
idaspgmr linear solver

Jacobian approximation used by, 43
memory requirements, 58
optional input, 43–45, 117–119
optional output, 58–61
preconditioner setup function, 43, 68, 130
preconditioner solve function, 43, 67, 129
selection of, 32

IDASpgmr, 26, 30, 32
IDASPILS ILL INPUT, 44, 45, 79, 118, 119, 131,

132
IDASPILS LMEM NULL, 43–45, 59–61, 79, 80, 118,

119, 131, 132
IDASPILS MEM FAIL, 32, 33, 79, 131, 132
IDASPILS MEM NULL, 32, 33, 43–45, 59–61, 118,

119, 131, 132
IDASPILS NO ADJ, 118, 119
IDASPILS PMEM NULL, 80, 132
IDASPILS SUCCESS, 32, 33, 43–45, 61, 118, 119,

131, 132
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IDASpilsGetNumConvFails, 59
IDASpilsGetNumJtimesEvals, 60
IDASpilsGetNumLinIters, 59
IDASpilsGetNumPrecEvals, 59
IDASpilsGetNumPrecSolves, 60
IDASpilsGetNumResEvals, 60
IDASpilsGetReturnFlagName, 61
IDASpilsGetWorkSpace, 59
IDASpilsJacTimesVecFn, 67
IDASpilsJacTimesVecFnB, 128
IDASpilsPrecSetupFn, 68
IDASpilsPrecSetupFnB, 130
IDASpilsPrecSolveFn, 67
IDASpilsPrecSolveFnB, 129
IDASpilsSetEpsLin, 44
IDASpilsSetEpsLinB, 119
IDASpilsSetGSType, 44
IDASpilsSetGSTypeB, 118
IDASpilsSetIncrementFactor, 45
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IDASpilsSetJacTimesFnB, 118
IDASpilsSetMaxl, 45
IDASpilsSetMaxlB, 119
IDASpilsSetMaxRestarts, 44
IDASpilsSetPreconditioner, 43
IDASpilsSetPrecSolveFnB, 117
idasptfqmr linear solver

Jacobian approximation used by, 43
memory requirements, 58
optional input, 43–45, 117–119
optional output, 58–61
preconditioner setup function, 43, 68, 130
preconditioner solve function, 43, 67, 129
selection of, 32

IDASptfqmr, 26, 30, 33
IDASStolerances, 28
IDASStolerancesB, 112
IDASVtolerances, 29
IDASVtolerancesB, 112
IDAWFtolerances, 29
itask, 35, 109

Jacobian approximation function
band

difference quotient, 42
user-supplied, 42, 65–66
user-supplied (backward), 117, 127

dense
difference quotient, 42
user-supplied, 42, 64–65
user-supplied (backward), 116, 126

Jacobian times vector
difference quotient, 43
user-supplied, 43, 67

Jacobian-vector product
user-supplied (backward), 118, 128

maxl, 32, 33
maxord, 61
memory requirements

idaband linear solver, 57
idabbdpre preconditioner, 80
idadense linear solver, 57
idas solver, 70, 84, 97
idas solver, 49
idaspgmr linear solver, 58

MODIFIED GS, 44, 118
MPI, 3

N VCloneEmptyVectorArray, 136
N VCloneEmptyVectorArray Parallel, 143
N VCloneEmptyVectorArray Serial, 140
N VCloneVectorArray, 136
N VCloneVectorArray Parallel, 142

N VCloneVectorArray Serial, 140
N VDestroyVectorArray, 136
N VDestroyVectorArray Parallel, 143
N VDestroyVectorArray Serial, 140
N Vector, 24, 135
N VMake Parallel, 142
N VMake Serial, 140
N VNew Parallel, 142
N VNew Serial, 140
N VNewEmpty Parallel, 142
N VNewEmpty Serial, 140
N VPrint Parallel, 143
N VPrint Serial, 141
newBandMat, 156
newDenseMat, 154
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NV COMM P, 142
NV CONTENT P, 141
NV CONTENT S, 139
NV DATA P, 141
NV DATA S, 139
NV GLOBLENGTH P, 141
NV Ith P, 142
NV Ith S, 140
NV LENGTH S, 139
NV LOCLENGTH P, 141
NV OWN DATA P, 141
NV OWN DATA S, 139
NVECTOR module, 135
nvector parallel.h, 24
nvector serial.h, 24

optional input
backward solver, 116
band linear solver, 42–43, 117
dense linear solver, 42–43, 116–117
forward sensitivity, 89–91
initial condition calculation, 45–47
iterative linear solver, 43–45, 117–119
quadrature integration, 72–73, 122
rootfinding, 47–48
sensitivity-dependent quadrature integration,

100–101
solver, 36–42

optional output
backward initial condition calculation, 120
backward solver, 119–120
band linear solver, 57–58
band-block-diagonal preconditioner, 80
dense linear solver, 57–58
forward sensitivity, 91–94
initial condition calculation, 55–56, 94
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interpolated sensitivity-dep. quadratures, 98
interpolated solution, 48
iterative linear solver, 58–61
quadrature integration, 73–75, 122
sensitivity-dependent quadrature integration,

101–102
solver, 49–55

output mode, 109, 115

partial error control
explanation of idas behavior, 103

portability, 24
preconditioning

advice on, 9, 21
band-block diagonal, 75
setup and solve phases, 21
user-supplied, 43, 67, 68, 117–118, 129, 130

quadrature integration, 10
forward sensitivity analysis, 13

RCONST, 24
realtype, 24
reinitialization, 61, 111
residual function, 62

backward problem, 123
forward sensitivity, 94
quadrature backward problem, 124
sensitivity-dep. quadrature backward prob-

lem, 125
right-hand side function

quadrature equations, 75
sensitivity-dependent quadrature equations,

103
Rootfinding, 26, 34
rootfinding, 9

second-order sensitivity analysis, 17
support in idas, 18

SMALL REAL, 24
spbcg generic linear solver

description of, 158
functions, 158

spgmr generic linear solver
description of, 157
functions, 158
support functions, 158

sptfqmr generic linear solver
description of, 158
functions, 158

step size bounds, 39
sundials nvector.h, 24
sundials types.h, 24

TFQMR method, 45, 119, 158
tolerances, 6, 29, 30, 63, 73, 100, 101

UNIT ROUNDOFF, 24
User main program

Adjoint sensitivity analysis, 105
forward sensitivity analysis, 81
idabbdpre usage, 77
idas usage, 25
integration of quadratures, 69
integration of sensitivitiy-dependent quadra-

tures, 95
user data, 38, 62–64, 75, 77, 103
user dataB, 132, 133

weighted root-mean-square norm, 6
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