
PDF Version
of Developer's

Guide

Zoltan Home
Page

Zoltan User's
Guide

How to Cite
Zoltan

Zoltan:
Data-Management Services for
Parallel Applications

Developer's Guide

The Zoltan Team
Sandia National Laboratories:
Erik Boman
Karen Devine
Lee Ann Fisk
Robert Heaphy
Bruce Hendrickson
Courtenay Vaughan

Ohio State University
Umit Catalyurek
Doruk Bozdag

National Institute of Standards and Technology
William F. Mitchell

Zoltan Developer's Guide, Version 2.01

Introduction and General Principles

Philosophy of Zoltan
Coding Principles in Zoltan

Include files
Global Variables
Function Names
Parallel Communication
Memory Management
Errors, Warnings and Return Codes

Zoltan Quality Assurance

Zoltan Distribution

CVS

Zoltan Developer's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (1 of 3) [8/4/2006 9:20:56 AM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://bmi.osu.edu/personnel/detail.cfm?id=29
http://math.nist.gov/~mitchell

Layout of Directories
Compilation and Makefiles

Zoltan Interface and Data Structures

Interface Functions
ID Data Types
Data Structures

Services (to simplify new algorithm development)

Parameter Setting Routines
Parallel Computing Routines
Common Functions for Querying Applications
Hash Function
Timing Routines
Debugging Services

Adding New Load-Balancing Algorithms to Zoltan

Load-Balancing Interface Routines
Load-Balancing Function Implementation
Data Structures
Memory Management
Parameters
Partition Remapping

Migration Tools

FORTRAN Interface

C++ Interface

References

Appendix: Using the Test Drivers zdrive, zCPPdrive and zfdrive

Introduction
Running the Test Drivers
Adding New Algorithms

Appendix: Visualization of Geometric Partitionings

2D problems with gnuplot

Zoltan Developer's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (2 of 3) [8/4/2006 9:20:56 AM]

3D problems with vtk_view
Off-screen rendering with vtk_write
Other file formats

Appendix: Using the Test Script test_zoltan

Appendix: Recursive Coordinate Bisection (RCB)

Appendix: Recursive Inertial Bisection (RIB)

Appendix: Graph Partitioning (ParMETIS and Jostle)

Appendix: Hypergraph Partitioning (PHG)

Appendix: Refinement Tree

Appendix: Hilbert Space_Filling Curve (HSFC)

Appendix: Handling Degenerate Geometries

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU Lesser
General Public License (LGPL). See the README file in the main Zoltan
directory for more information.

[Zoltan Home Page | Next: Introduction and General Principles]

Zoltan Developer's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (3 of 3) [8/4/2006 9:20:56 AM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html

Zoltan Developer's Guide | Next | Previous

Introduction and General Principles
The goal of the Zoltan project is to design a general-purpose tool for parallel data management for
unstructured, dynamic applications. This tool includes a suite of load-balancing algorithms, an
unstructured communication package, distributed data directories, and dynamic debugging tools that can
be used by a variety of applications. It will, thus, be used by many application developers and be added
to by many algorithm developers. Software projects of this scale need general guidelines and principles
so that the code produced is easily maintained and added to. We have tried to keep restrictions on
developers to a minimum. However, we do require that a few coding practices be followed. These
guidelines are described in the following sections:

Philosophy of Zoltan
Coding Principles in Zoltan
Zoltan Quality Assurance

[Table of Contents | Next: Philosophy of Zoltan | Previous: Table of Contents]

Zoltan Developer's Guide: Introduction

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro.html [8/4/2006 9:20:58 AM]

Zoltan Developer's Guide | Next | Previous

Philosophy of Zoltan
The Zoltan library is designed to be a general-purpose tool-kit providing a variety of parallel data
management services to a wide range of scientific applications (see the Zoltan User's Guide). To enable
general use of the library, the library does not directly access the data structures of an application.
Instead, the library obtains information it needs through an object-oriented interface between Zoltan and
the application. This interface uses call-back query functions to gather information. An application
developer must write and register these query functions before using Zoltan. The intent, however, is that
the number and complexity of these query functions are low, allowing applications to easily interface
with the library. In addition, new algorithm development would use the same query functions as previous
algorithms, enabling applications to use new algorithms without changes to the query functions.

In developing new algorithms for Zoltan, the developer must write the code that calls the query functions
to build the needed data structures for the algorithm. However, the application need not change its query
functions. Thus, new algorithms can be added to the library and used by an application with minimal
effort on the part of the application developer.

[Table of Contents | Next: Coding Principles | Previous: Introduction]

Zoltan Developer's Guide: Philosophy

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_philosophy.html [8/4/2006 9:20:58 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide | Next | Previous

Coding Principles in Zoltan
Include files
Global Variables
Function Names
Parallel Communication
Memory Management
Errors, Warnings and Return Codes

Include files

Include files should be used for function prototypes, macro definitions, and data structure definitions.
The convention used is that external function prototypes and data structure definitions required by more
than one module are stored in include files named *_const.h (e.g., zz/zz_const.h). Include files with static
function prototypes or static data structure definitions (i.e., files that are included in only one module) are
named *.h (e.g., rcb/rcb.h).

The include file include/zoltan.h contains the Zoltan interface; it should be included by C application
source files that call Zoltan. C++ applications that use the C++ interface should include
include/zoltan_cpp.h instead.

The include file zz/zz_const.h describes the principle Zoltan data structures. As these data structures are
used heavily by the algorithms in Zoltan, zz/zz_const.h should be included in most source files of Zoltan.

Every Zoltan C language header file should be surrounded with an extern "C" {} declaration. The
declaration must occur after every other #include statement, and before all function declarations. This
declaration tells a C++ compiler not to mangle the names of functions declared in that header file.

#ifndef __EXAMPLE_H
#define __EXAMPLE_H

#include "mpi.h"
#include "zoltan_types.h"
#include "zoltan_align.h"

#ifdef __cplusplus
extern "C" {
#endif

int func1(int a, int b);
double dfunc(int a, int b, int c);

#ifdef __cplusplus
} /* closing bracket for extern "C" */

Zoltan Developer's Guide: Coding Principles

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (1 of 3) [8/4/2006 9:20:59 AM]

#endif

#endif /* __EXAMPLE_H */

Example of C language header file with extern "C"

If an #include statement appears after the opening of the extern "C" {} declaration, the included file
may cause mpi.h or some other system header file to be processed. When compiling with a C++
compiler, this usually leads to compile errors because the function names in some of those headers are
supposed to be mangled.

It should not be necessary to use the declaration in all header files, but rather only in header files that are
used in C++ applications. But experience has taught us that you never know what header files will end up
being included, and that one that is not included now, may be included in the future when someone adds
an #include statement to a file. To save someone the effort later on of figuring out why their C++
compilation is failing, please include the extern "C" {} declaration in every header file, even if at this
point in time you do not believe it will ever be included in the compilation of a C++ application.

Global variables

The use of global variables is highly discouraged in Zoltan. In limited cases, static global variables can
be tolerated within a source file of an algorithm. However, developers should keep in mind that several
Zoltan structures may be used by an application, with each structure using the same algorithm. Thus,
global variables set by one invocation of a routine may be reset by other invocations, causing errors in
the algorithms. Global variable names may also conflict with variables used elsewhere in the library or
application, causing unintended side-effects and complicating debugging. For greatest robustness,
developers are asked NOT to use global variables in their algorithms. See Data Structures for ideas on
avoiding the use of global variables.

Function Names

In order to avoid name conflicts with applications and other libraries, all non-static functions should be
prepended with Zoltan_. Moreover, function names should, in general, include their module names;
e.g., Zoltan_HSFC_Box_Assign is part of the HSFC module of Zoltan. As a general rule, each new
word in a function name should be capitalized (for example, Zoltan_Invert_Lists). Static Zoltan
functions do not have to follow these rules.

Parallel Communication

All communication in the Zoltan library should be performed through MPI communication routines. The
MPI interface was chosen to enable portability to many different platforms. It will be especially
important as the code is extended to heterogeneous computing systems.

Some useful communication utilities are provided within the library to perform unstructured

Zoltan Developer's Guide: Coding Principles

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (2 of 3) [8/4/2006 9:20:59 AM]

communication and synchronization. See Unstructured Communication Utilities and Parallel Computing.

Memory Management

It is strongly suggested that all memory allocation in the library is handled using the functions supplied
in Utilities/Memory. Use of these functions will make debugging and maintenance of the library much
easier as the library gets larger. See Memory Management Utilities for more information on these
utilities.

For memory that is returned by Zoltan to an application, however, special memory allocation functions
must be used to maintain compatibility with both C and Fortran90 applications. See Memory
Management in Zoltan Algorithms for more information.

One of the few data types specified for use in the Zoltan interface is the ZOLTAN_ID_PTR type used
for global and local object identifiers (IDs). Macros simplifying and providing error checking for ID
allocation and manipulation are provided.

Errors, Warnings, and Return Codes

If an error or warning occurs in the Zoltan library, a message should be printed to stderr (using one of the
printing macros below), all memory allocated in the current function should be freed, and an error code
should be returned. The Zoltan library should never "exit"; control should always be returned to the
application with an error code. The error codes are defined in include/zoltan_types.h.

Currently, this philosophy is not strictly followed in all portions of Zoltan. Efforts are underway to bring
existing code up-to-date, and to follow this rule in all future development.

ZOLTAN_PRINT_ERROR(int processor_number, char *function_name, char *message)
ZOLTAN_PRINT_WARN(int processor_number, char *function_name, char *message)

Macros for printing error and warning messages in Zoltan. The macros are defined in
Utilities/shared/zoltan_util.h.

Arguments:
 processor_number The processor's rank in the Zoltan communicator. The value -1 can be used if the

rank is not available.
 function_name A string containing the name of the function in which the error or warning

occurred.
 message A string containing the error or warning message.

[Table of Contents | Next: Zoltan Quality Assurance | Previous: Philosophy]

Zoltan Developer's Guide: Coding Principles

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (3 of 3) [8/4/2006 9:20:59 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide | Next | Previous

Zoltan Quality Assurance
This document describes the Software Quality Assurance (SQA) policies and procedures used in the
Zoltan project. Zoltan developers at Sandia and under contract to Sandia are required to follow these
software development policies.

Quality Policy
Quality Definition
Classification of Defects
Release Policy
Software Quality Tools
Software Quality Processes

Quality Policy

The Zoltan project has been funded by a variety of DOE programs (MICS, CSRF, ASC, and LDRD).
Thus, Zoltan is simultaneously under the umbrella of multiple quality programs including that of the
Accelerated Strategic Computing Initiative (ASC). Fortunately, all of these quality programs derive from
the DOE/AL Quality Criteria (QC-1). Therefore, the Zoltan project is committed to a program of quality
improvement targeting the QC-1 standard. The Zoltan team leader is the owner of the Zoltan quality
program.

The entire delivered Zoltan product will be considered a "class A" program under ASC program
guidelines. Modules created before the ASC guidelines had no formal QA program and will lack ASC
SQA artifacts (objective evidence).

The Zoltan team shall participate in all ASC reporting processes as directed by ASC management. The
Zoltan team will evaluate new practices to reflect ASC Program Office process revisions. FY2004
money has been committed for quality improvement.

Research software will follow the guidelines of QC-1 which allow specific relaxations in the QA rigor
for research activities.

Quality Definition

The Zoltan project accepts the following definition of quality: "the totality of characteristics of a product
or service that bear on its ability to satisfy stated or implied needs." This is known as the "fitness for use"
definition of quality (ANSI/ASQC A8402-1994).

Classification of Defects

The Zoltan project accepts the following system of classification of defects:

Critical: A defect that could lead to loss of life, significant environmental damage, or
substantial financial loss.

Zoltan Quality Program

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqe.html (1 of 3) [8/4/2006 9:20:59 AM]

Major: A non critical defect that significantly impacts Zoltan's fitness for use.
Minor: A (non critical, non major) defect that reasonably impacts Zoltan's fitness for use.
Incidental: Any other defect which does not reasonably reduce Zoltan's fitness for use.

Release Policy

Only the Zoltan team leader may authorize a release. The Zoltan team leader shall not release software
with any known critical or major defects. User registration shall allow the Zoltan team to notify all
Sandia and ASC users and recall their defective software if a critical or major defect is discovered after
release. The Zoltan team leader may determine that it is acceptable to release software with known minor
or incidental defects.

Software Quality Tools

Because of the small scale of the Zoltan Project, only a few, simple tools are required for use by
developers:

CVS: maintains code, documentation, meeting notes, emails, and QA program artifacts;
Purify, PureCoverage, Quantify (Rational): for code testing, coverage measurements, and
performance analysis;
Bugzilla: tracks bugs and requests for changes and enhancements (deployment in FY2004);
Mailman: creates email lists to automatically notify users by area(s) of interest (deployment
in FY2004);
Quality Function Deployment (QFD): tracks user requirements through implementation
and testing (phased-in deployment in FY2004 in which one pilot project will use QFD);
Makefiles: ensures proper compilation and linking for all supported platforms;
Zoltan Test Script: runs integration, regression, release and acceptance testing; and
Kanban: Team Leader's white board displays all outstanding issues, schedules, and
assignments.

Software Quality Processes

The Zoltan's software quality process defines how work may be performed, including process ownership,
authorization to perform, activities and their sequence (if sequencing is required), process instructions,
metrics, and checklists (with places to identify who performed each activity). The only source for a
process is Zoltan's CVS repository. Currently the following processes are defined:

Meeting: defines the process of calling and documenting meetings;
Development: (not currently used) defines the software development process including
requirements, design, implementation, testing, reviews, and approvals;
Request: defines the process of capturing user requests for new features;
Requirement: the process of capturing user comments that may become requirements after
review and approval;
Review: defines the materials reviewed prior to acceptance for Zoltan release; and
Release: defines the release process including testing requirements and creation of the
release product;

Zoltan Quality Program

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqe.html (2 of 3) [8/4/2006 9:20:59 AM]

A Zoltan developer initiates a process by obtaining the current CVS version of the process, renaming it to
reflect its usage, and committing the renamed process back into CVS in an appropriate directory (on the
same day to ensure that it is the current version). As a policy, the process may continue under this
committed version even if its original process is later superceded. After one or more activities are
completed, the renamed process is updated to reflect the results and committed back to CVS (with
appropriate comments.) A process is completed when all required activities are completed including
reviews and approvals (as necessary), and committed to CVS. The final CVS comment should indicate
that the process is complete.

[Table of Contents | Next: Zoltan Distribution | Previous: Coding Principles in Zoltan]

Zoltan Quality Program

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqe.html (3 of 3) [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide | Next | Previous

Zoltan Distribution
The organization of the Zoltan software distribution is described in the following sections. Full
pathnames are specific to Sandia's 980 SON LAN.

CVS (source code control)
Layout of Directories
Compilation and Makefiles

[Table of Contents | Next: CVS | Previous: Zoltan Quality Assurance]

Zoltan Developer's Guide: Distribution

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist.html [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide | Next | Previous

CVS
The source code and documentation for the Zoltan library is maintained under the Concurrent Versions
System (CVS) software. CVS allows multiple developers to edit their own copies of the software and
merges updated versions with the developers' own versions.

On Sandia's 980 SON LAN, CVS is accessed through the following path:

/Net/local/gnu/bin/cvs for Sun workstations running Solaris.

Developers must set the CVSROOT environment variable to the repository directory:

setenv CVSROOT username@software.sandia.gov:/space/CVS-Zoltan

where username is the developer's username on the CVS server software.sandia.gov. To get a working
copy of the Zoltan software, the CVS check-out facility is used:

cvs checkout -P Zoltan

Other useful CVS commands update a developer's working directory, merging the developer's changes
with those in the repository:

cvs update

and check into the repository a developer's changes:

cvs commit

The UNIX man page for cvs contains information on these and other useful CVS commands.

[Table of Contents | Next: Layout of Directories | Previous: Zoltan Distribution]

Zoltan Developer's Guide: CVS

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_cvs.html [8/4/2006 9:21:00 AM]

Zoltan Developer's Guide | Next | Previous

Layout of Directories
The source code is organized into several subdirectories within the Zoltan main directory. General
interface routines are stored in a single directory. Communication and memory allocation utilities
available to all algorithms are in separate directories. Each load-balancing method (or family of methods)
should be stored in its own directory. In addition, a courtesy copy of the ParMETIS graph-partitioning
package is included in the top-level directory ParMETIS.

In the following table, the source-code directories currently in the Zoltan directory are listed and
described.

Directory Description
zz General Interface definitions, Zoltan data structure definitions, interface

functions and functions related to the interface See Interface Functions, ID
Data Types, and Data Structures.

lb Load-Balancing interface routines, and load-balancing data structure
definitions.

all Special memory allocation functions for memory returned by Zoltan to an
application.

par Parallel computing routines.

param Routines for changing parameter values at runtime.

parmetis Routines to access the ParMETIS and Jostle partitioning libraries.

rcb Recursive Coordinate Bisection (RCB) and Recursive Inertial Bisection
(RIB) algorithms.

hsfc Hilbert Space-Filling Curve partitioning algorithm.

bsfc Binned Space-Filling Curve partitioning algorithm.
oct Rensselaer Polytechnic Institute's octree partitioning algorithms.

reftree
William Mitchell's Refinement Tree Partitioning algorithm and refinement
tree data structure.

timer Timing routines.

ch Routines to read Chaco input files and build graphs for the driver program
zdrive.

ha Routines to support heterogeneous architectures.
fort Fortran (F90) interface for Zoltan.

Utilities/shared Simple functions and utilities shared by Zoltan and other Zoltan Utilities.
Utilities/Memory Memory management utilities

Utilities/Communication Unstructured communication utilities

Zoltan Developer's Guide: Directory Layout

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_dir.html (1 of 2) [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_oct.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html

Utilities/DDirectory Distributed Data Directory utilities

Utilities/Config Platform-specific makefile definitions for compiler, library and include-file
paths.

driver Test driver programs, zdrive and zCPPdrive.

fdriver Fortran90 version of the test driver program.

examples Simple examples written in C and C++ that use Zoltan.
docs/Zoltan_html Zoltan documentation and home page.

docs/Zoltan_html/ug_html User's guide in HTML format.

docs/Zoltan_html/dev_html Developer's guide in HTML format.

docs/Zoltan_pdf PDF versions of the Zoltan User's Guide and Developer's Guide.
docs/internal SQA documents for the Zoltan project.

The directory structure of the Zoltan distribution.

[Table of Contents | Next: Compilation | Previous: CVS]

Zoltan Developer's Guide: Directory Layout

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_dir.html (2 of 2) [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide | Next | Previous

Compilation and Makefiles
The Zoltan distribution includes a main (top-level) Makefile with targets for the Zoltan library, the test
driver programs, and some graphical tools. When the library is compiled for a specific target platform, A,
the top-level Makefile obtains platform-specific values for platform A from the configuration file
Utilities/Config/Config.A. This file should be edited to reflect the environment of the target platform A.
A subdirectory, Obj_A, is created, and Makefile_sub is copied into that directory for use by gmake.

New source code files are added to the Zoltan Makefiles in two ways. Files added to existing directories
are added to the source files listed in the "<directory_name>_CSRC" and "<directory_name>_INC"
variables in Zoltan/Makefile, where <directory_name> corresponds to the existing Zoltan directory
name; the files will then be included in the compilation of Zoltan. For new source code files in new
directories, new variables "<directory_name>_CSRC" and "<directory_name>_INC" should be added
to Zoltan/Makefile. These variables should also be included in the "ZOLTAN_CSRC" variable and in the
zscript target. The variables "ALL_CSRC" and "ALL_INC" can be used as examples.

New algorithms can be added as separate libraries with which Zoltan may link. The implementation of
the ParMETIS interface in Zoltan can serve as an example. Within the Utilities/Config files, pathnames
for the new libraries and their include files can be specified. Within Zoltan/Makefile, tests should be
added for the definition of these paths. If they are defined, appropriate information should be added to
the THIRD_PARTY_LIBS, THIRD_PARTY_LIBPATH, and THIRD_PARTY_INCPATH variables in
Zoltan/Makefile.

[Table of Contents | Next: Zoltan Interface and Data Structures | Previous: Layout of Directories]

Zoltan Developer's Guide: Compilation

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_compile.html [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide | Next | Previous

Zoltan Interface and Data Structures
The interface functions, data types and data structures for the Zoltan library are described in the
following sections:

Interface Functions (files defining the interface)
ID Data Types (descriptions of data types used for global and local identifiers)
Data Structures (Zoltan data structures for storing information registered by an application)

[Table of Contents | Next: Interface Functions | Previous: Compilation]

Zoltan Developer's Guide: Load-Balancing

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb.html [8/4/2006 9:21:01 AM]

Zoltan Developer's Guide | Next | Previous

Interface Functions
The interface to the Zoltan library is defined in the file include/zoltan.h. This file should be included in
application programs that use Zoltan. It is also included in zz/zz_const.h, which should be included by
most Zoltan files to provide access to the Zoltan data structures described below.

In include/zoltan.h, the enumerated type ZOLTAN_FN_TYPE defines the application query function
types (e.g., ZOLTAN_NUM_OBJ_FN_TYPE and ZOLTAN_OBJ_LIST_FN_TYPE). The interface
query routines (e.g., ZOLTAN_NUM_OBJ_FN and ZOLTAN_OBJ_LIST_FN) and their argument
lists are defined as C type definitions (typedef). These type definitions are used by the application
developer to implement the query functions needed for the application to use Zoltan.

Prototypes for the Zoltan interface functions (e.g., Zoltan_LB_Partition and Zoltan_Migrate) are also
included in include/zoltan.h. Interface functions are called by the application to register functions, select
a load-balancing method, invoke load balancing and migrate data.

The interface to the C++ version of the Zoltan library is in the file include/zoltan_cpp.h. This file defines
the Zoltan class, representing a Zoltan_Struct data structure and the functions which operate upon it.
The conventions used to wrap C library functions as C++ library functions are described in the chapter
C++ Interface. A C++ program that uses Zoltan includes include/zoltan_cpp.h instead of
include/zoltan.h.

For more detailed information on Zoltan's query and interface functions, please see the Zoltan User's
Guide.

[Table of Contents | Next: ID Data Types | Previous: Zoltan Interface and Data Structures]

Zoltan Developer's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_interface.html [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide | Next | Previous

ID Data Types
Within Zoltan, objects are identified by a global identification (ID) value provided by the application.
This global ID must be unique across all processors. The application may also provide a local ID value
that it can use for faster location of objects within its own data structure. For example, local array indices
to objects' data may be provided as the local IDs; these indices can then be used to directly access data in
the query functions. Zoltan does not use these local IDs, but since it must pass them to the application in
the interface query functions, it must store them with the objects' data. ID data types and macros for
manipulating IDs are described below.

IDs and Arrays of IDs
Allocating IDs
Common Operations on IDs

IDs and Arrays of IDs

Zoltan stores each global and local ID as an array of unsigned integers. Arrays of IDs are passed to the
application as a one-dimensional array of unsigned integers with size number_of_IDs *
number_of_entries_per_ID. A type definition ZOLTAN_ID_PTR (in include/zoltan_types.h) points to
an ID or array of IDs. The number of array entries per ID can be set by the application using the
NUM_GID_ENTRIES and NUM_LID_ENTRIES parameters.

Allocating IDs

Macros that simplify the allocation of global and local IDs are described in the table below. These
macros provide consistent, easy-to-use memory allocation with error checking and, thus, their use is
highly recommended. Each macro returns NULL if either a memory error occurs or the number of IDs
requested is zero.

ZOLTAN_ID_PTR ZOLTAN_MALLOC_GID(struct
Zoltan_Struct *zz);

Allocates and returns a pointer to a
single global ID.

ZOLTAN_ID_PTR ZOLTAN_MALLOC_LID(struct
Zoltan_Struct *zz);

Allocates and returns a pointer to a
single local ID.

ZOLTAN_ID_PTR
ZOLTAN_MALLOC_GID_ARRAY(struct Zoltan_Struct *zz,
int n);

Allocates and returns a pointer to an
array of n global IDs, where the
index into the array for the ith global
ID is i*NUM_GID_ENTRIES.

ZOLTAN_ID_PTR
ZOLTAN_MALLOC_LID_ARRAY(struct Zoltan_Struct *zz,
int n);

Allocates and returns a pointer to an
array of n local IDs, where the
index into the array for the ith local
ID is i*NUM_LID_ENTRIES.

Zoltan Developer's Guide: Data Types

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_types.html (1 of 2) [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

ZOLTAN_ID_PTR
ZOLTAN_REALLOC_GID_ARRAY(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR ptr, int n);

Reallocates and returns a pointer to
an array of n global IDs, replacing
the current array pointed to by ptr.

ZOLTAN_ID_PTR
ZOLTAN_REALLOC_LID_ARRAY(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR ptr, int n);

Reallocates and returns a pointer to
an array of n local IDs, replacing
the current array pointed to by ptr.

Common Operations on IDs

In addition, macros are defined for common operations on global and local IDs. These macros include
error checking when appropriate and account for different values of NUM_GID_ENTRIES and
NUM_LID_ENTRIES. Use of these macros improves code robustness and simplifies code maintenance;
their use is highly recommended.

void ZOLTAN_INIT_GID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR id);

Initializes all entries of the global ID id to
zero; id must be allocated before calling
ZOLTAN_INIT_GID.

void ZOLTAN_INIT_LID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR id);

Initializes all entries of the local ID id to
zero; id must be allocated before calling
ZOLTAN_INIT_LID.

void ZOLTAN_SET_GID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR tgt, ZOLTAN_ID_PTR src);

Copies the global ID src into the global ID
tgt. Both src and tgt must be allocated
before calling ZOLTAN_SET_LID.

void ZOLTAN_SET_LID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR tgt, ZOLTAN_ID_PTR src);

Copies the local ID src into the local ID
tgt. Both src and tgt must be allocated
before calling ZOLTAN_SET_LID.

int ZOLTAN_EQ_GID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR a, ZOLTAN_ID_PTR b);

Returns TRUE if global ID a is equal to
global ID b.

void ZOLTAN_PRINT_GID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR id);

Prints all entries of a single global ID id.

void ZOLTAN_PRINT_LID(struct Zoltan_Struct *zz,
ZOLTAN_ID_PTR id);

Prints all entries of a single local ID id.

[Table of Contents | Next: Data Structures | Previous: Interface Functions]

Zoltan Developer's Guide: Data Types

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_types.html (2 of 2) [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs

Zoltan Developer's Guide | Next | Previous

Data Structures
The Zoltan_Struct data structure is the main data structure for interfacing between Zoltan and the
application. The application creates an Zoltan_Struct data structure through a call to Zoltan_Create.
Fields of the data structure are then set through calls from the application to interface routines such as
Zoltan_Set_Param and Zoltan_Set_Fn. The fields of the Zoltan_Struct data structure are listed and
described in the table below. See the Zoltan User's Guide for descriptions of the function types used in
the Zoltan_Struct.

A Zoltan_Struct data structure zz is passed from the application to Zoltan in the call to
Zoltan_LB_Partition. This data structure is passed to the individual load-balancing routines. The
zz->LB.Data_Structure pointer field should point to the main data structures of the particular
load-balancing algorithm so that the data structures may be preserved for future calls to
Zoltan_LB_Partition and so that separate instances of the same load-balancing algorithm (with different
Zoltan_Struct structures) can be used by the application.

Fields of Zoltan_Struct Description
MPI_Comm Communicator The MPI communicator to be used by the

Zoltan structure; set by Zoltan_Create.

int Proc The rank of the processor within
Communicator; set in Zoltan_Create.

int Num_Proc The number of processors in Communicator;
set in Zoltan_Create.

int Num_GID The number of array entries used to
represent a global ID. Set via a call to
Zoltan_Set_Param for
NUM_GID_ENTRIES.

int Num_LID The number of array entries used to
represent a local ID. Set via a call to
Zoltan_Set_Param for
NUM_LID_ENTRIES.

int Debug_Level A flag indicating the amount of debugging
information that should be printed by
Zoltan.

int Fortran A flag indicating whether or not the
structure was created by a call from Fortran.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (1 of 11) [8/4/2006 9:21:03 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

PARAM_LIST * Params A linked list of string pairs. The first item in
each pair is the name of a modifiable
parameter. The second string is the new
value the parameter should adopt. These
string pairs are read upon invocation of a
Zoltan algorithm and the appropriate
parameter changes are made. This design
allows for different Zoltan structures to have
different parameter settings.

int Deterministic Flag indicating whether algorithms used
should be forced to be deterministic; used to
obtain completely reproducible results. Set
via a call to Zoltan_Set_Param for
DETERMINISTIC.

int Obj_Weight_Dim Number of weights per object. Set via a
call to Zoltan_Set_Param for
OBJ_WEIGHT_DIM.

int Edge_Weight_Dim For graph algorithms, number of weights per
edge. Set via a call to Zoltan_Set_Param
for EDGE_WEIGHT_DIM.

int Timer Timer type that is currently active. Set via a
call to Zoltan_Set_Param for TIMER.

ZOLTAN_NUM_EDGES_FN *
Get_Num_Edges

A pointer to an application-registered
function that returns the number of edges
associated with a given object. Set in
Zoltan_Set_Fn or
Zoltan_Set_Num_Edges_Fn.

void *Get_Num_Edges_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Edges. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Edges_Fn.

ZOLTAN_EDGE_LIST_FN * Get_Edge_List A pointer to an application-registered
function that returns a given object's
neighbors along its edges. Set in
Zoltan_Set_Fn or
Zoltan_Set_Edge_List_Fn.

void *Get_Edge_List_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Edge_List. Set in Zoltan_Set_Fn or
Zoltan_Set_Edge_List_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (2 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#DETERMINISTIC
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#EDGE_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_EDGES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_EDGE_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

ZOLTAN_NUM_GEOM_FN *
Get_Num_Geom

A pointer to an application-registered
function that returns the number of geometry
values needed to describe the positions of
objects. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Geom_Fn.

void *Get_Num_Geom_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Geom. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Geom_Fn.

ZOLTAN_GEOM_FN * Get_Geom A pointer to an application-registered
function that returns a given object's
geometry information (e.g., coordinates). Set
in Zoltan_Set_Fn or
Zoltan_Set_Geom_Fn.

void *Get_Geom_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Geom. Set in Zoltan_Set_Fn or
Zoltan_Set_Geom_Fn.

ZOLTAN_NUM_OBJ_FN * Get_Num_Obj A pointer to an application-registered
function that returns the number of objects
assigned to the processor before load
balancing. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Obj_Fn.

void *Get_Num_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Obj. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Obj_Fn.

ZOLTAN_OBJ_LIST_FN * Get_Obj_List A pointer to an application-registered
function that returns arrays of objects
assigned to the processor before load
balancing. Set in Zoltan_Set_Fn or
Zoltan_Set_Obj_List_Fn.

void *Get_Obj_List_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Obj_List. Set in Zoltan_Set_Fn or
Zoltan_Set_Obj_List_Fn.

ZOLTAN_FIRST_OBJ_FN * Get_First_Obj A pointer to an application-registered
function that returns the first object assigned
to the processor before load balancing. Used
with Get_Next_Obj as an iterator over all
objects. Set in Zoltan_Set_Fn or
Zoltan_Set_First_Obj_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (3 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

void *Get_First_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First_Obj. Set in Zoltan_Set_Fn or
Zoltan_Set_First_Obj_Fn.

ZOLTAN_NEXT_OBJ_FN * Get_Next_Obj A pointer to an application-registered
function that, given an object assigned to the
processor, returns the next object assigned to
the processor before load balancing. Used
with Get_First_Obj as an iterator over all
objects. Set in Zoltan_Set_Fn or
Zoltan_Set_Next_Obj_Fn.

void *Get_Next_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next_Obj. Set in Zoltan_Set_Fn or
Zoltan_Set_Next_Obj_Fn.

ZOLTAN_NUM_BORDER_OBJ_FN *
Get_Num_Border_Obj

A pointer to an application-registered
function that returns the number of objects
sharing a subdomain border with a given
processor. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Border_Obj_Fn.

void *Get_Num_Border_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Border_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_Num_Border_Obj_Fn.

ZOLTAN_BORDER_OBJ_LIST_FN *
Get_Border_Obj_List

A pointer to an application-registered
function that returns arrays of objects that
share a subdomain border with a given
processor. Set in Zoltan_Set_Fn or
Zoltan_Set_Border_Obj_List_Fn.

void *Get_Border_Obj_List_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Border_Obj_List. Set in
Zoltan_Set_Fn or
Zoltan_Set_Border_Obj_List_Fn.

ZOLTAN_FIRST_BORDER_OBJ_FN *
Get_First_Border_Obj

A pointer to an application-registered
function that returns the first object sharing
a subdomain border with a given processor.
Used with Get_Next_Border_Obj as an
iterator over objects along borders. Set in
Zoltan_Set_Fn or
Zoltan_Set_First_Border_Obj_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (4 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_BORDER_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

void *Get_First_Border_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First_Border_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_First_Border_Obj_Fn.

ZOLTAN_NEXT_BORDER_OBJ_FN *
Get_Next_Border_Obj

A pointer to an application-registered
function that, given an object, returns the
next object sharing a subdomain border with
a given processor. Used with
Get_First_Border_Obj as an iterator over
objects along borders. Set in Zoltan_Set_Fn
or Zoltan_Set_Next_Border_Obj_Fn.

void *Get_Next_Border_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next_Border_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_Next_Border_Obj_Fn.

ZOLTAN_NUM_COARSE_OBJ_FN *
Get_Num_Coarse_Obj

A pointer to an application-registered
function that returns the number of objects
in the initial coarse grid. Set in
Zoltan_Set_Fn or
Zoltan_Set_Num_Coarse_Obj_Fn.

void *Get_Num_Coarse_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Coarse_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_Num_Coarse_Obj_Fn.

ZOLTAN_COARSE_OBJ_LIST_FN *
Get_Coarse_Obj_List

A pointer to an application-registered
function that returns arrays of objects in the
initial coarse grid. Set in Zoltan_Set_Fn or
Zoltan_Set_Coarse_Obj_List_Fn.

void *Get_Coarse_Obj_List_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Coarse_Obj_List. Set in
Zoltan_Set_Fn or
Zoltan_Set_Coarse_Obj_List_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (5 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_COARSE_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

ZOLTAN_FIRST_COARSE_OBJ_FN *
Get_First_Coarse_Obj

A pointer to an application-registered
function that returns the first object of the
initial coarse grid. Used with
Get_Next_Coarse_Obj as an iterator over all
objects in the coarse grid. Set in
Zoltan_Set_Fn or
Zoltan_Set_First_Coarse_Obj_Fn.

void *Get_First_Coarse_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First_Coarse_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_First_Coarse_Obj_Fn.

ZOLTAN_NEXT_COARSE_OBJ_FN *
Get_Next_Coarse_Obj

A pointer to an application-registered
function that, given an object in the initial
coarse grid, returns the next object in the
coarse grid. Used with
Get_First_Coarse_Obj as an iterator over all
objects in the coarse grid. Set in
Zoltan_Set_Fn or
Zoltan_Set_Next_Coarse_Obj_Fn.

void *Get_Next_Coarse_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next_Coarse_Obj. Set in
Zoltan_Set_Fn or
Zoltan_Set_Next_Coarse_Obj_Fn.

ZOLTAN_NUM_CHILD_FN *
Get_Num_Child

A pointer to an application-registered
function that returns the number of
refinement children of an object. Set in
Zoltan_Set_Fn or
Zoltan_Set_Num_Child_Fn.

void *Get_Num_Child_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num_Child. Set in Zoltan_Set_Fn or
Zoltan_Set_Num_Child_Fn.

ZOLTAN_CHILD_LIST_FN * Get_Child_List A pointer to an application-registered
function that returns arrays of objects that
are refinement children of a given object.
Set in Zoltan_Set_Fn or
Zoltan_Set_Child_List_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (6 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_CHILD_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

void *Get_Child_List_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Child_List. Set in Zoltan_Set_Fn or
Zoltan_Set_Child_List_Fn.

ZOLTAN_CHILD_WEIGHT_FN *
Get_Child_Weight

A pointer to an application-registered
function that returns the weight of an object.
Set in Zoltan_Set_Fn or
Zoltan_Set_Child_Weight_Fn.

void *Get_Child_Weight_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Child_Weight. Set in Zoltan_Set_Fn or
Zoltan_Set_Child_Weight_Fn.

ZOLTAN_OBJ_SIZE_FN * Get_Obj_Size A pointer to an application-registered
function that returns the size (in bytes) of
data objects to be migrated. Called by
Zoltan_Migrate. Set in Zoltan_Set_Fn or
Zoltan_Set_Obj_Size_Fn.

void *Get_Obj_Size_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Obj_Size. Set in Zoltan_Set_Fn or
Zoltan_Set_Obj_Size_Fn.

ZOLTAN_PACK_OBJ_FN * Pack_Obj A pointer to an application-registered
function that packs all data for a given
object into a communication buffer provided
by the migration tools in preparation for
data-migration communication. Called by
Zoltan_Migrate for each object to be
exported. Set in Zoltan_Set_Fn or
Zoltan_Set_Pack_Obj_Fn.

void *Pack_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Pack_Obj. Set in Zoltan_Set_Fn or
Zoltan_Set_Pack_Obj_Fn.

ZOLTAN_UNPACK_OBJ_FN * Unpack_Obj A pointer to an application-registered
function that unpacks all data for a given
object from a communication buffer after
the communication for data migration is
completed. Called by Zoltan_Migrate for
each imported object. Set in
Zoltan_Set_Fn or
Zoltan_Set_Unpack_Obj_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (7 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_WEIGHT_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_OBJ_SIZE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

void *Unpack_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Unpack_Obj. Set in Zoltan_Set_Fn or
Zoltan_Set_Unpack_Obj_Fn.

ZOLTAN_LB LB A structure with data used by the
load-balancing tools. See the table below.

ZOLTAN_MIGRATE Migrate A structure with data used by the migration
tools. See the table below.

Fields of the Zoltan_Struct data structure.

Each Zoltan_Struct data structure has a ZOLTAN_LB sub-structure. The ZOLTAN_LB structure
contains data used by the load-balancing tools, including pointers to specific load-balancing methods and
load-balancing data structures. The fields of the ZOLTAN_LB structure are listed and described in in
the following table.

Fields of ZOLTAN_LB Description
void * Data_Structure The data structure used by the selected

load-balancing algorithm; this pointer is
cast by the algorithm to the appropriate
data type.

double Imbalance_Tol The degree of load balance which is
considered acceptable. Set via a call to
Zoltan_Set_Param for
IMBALANCE_TOL.

int Num_Global_Parts The total number of partitions to be
generated. Set via a call to
Zoltan_Set_Param for
NUM_GLOBAL_PARTITIONS or
through summation of
NUM_LOCAL_PARTITIONS
parameters.

int Num_Local_Parts The number of partitions to be generated
on this processor. Set via a call to
Zoltan_Set_Param for
NUM_LOCAL_PARTITIONS or
(roughly) through division of the
NUM_GLOBAL_PARTITIONS
parameter by the number of processors.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (8 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#IMBALANCE_TOL
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS

int Return_Lists A flag indicating whether the application
wants import and/or export lists returned
by Zoltan_LB_Partition. Set via a call to
Zoltan_Set_Param for RETURN_LISTS.

ZOLTAN_LB_METHOD Method An enumerated type designating which
load-balancing algorithm should be used
with this Zoltan structure; set via a call to
Zoltan_Set_Param for LB_METHOD.

LB_FN * LB_Fn A pointer to the load-balancing function
specified by Method.

ZOLTAN_LB_FREE_DATA_FN
*Free_Structure

Pointer to a function that frees the
Data_Structure memory.

ZOLTAN_LB_POINT_ASSIGN_FN
*Point_Assign

Pointer to the function that performs
Zoltan_LB_Point_Assign for the particular
load-balancing method.

ZOLTAN_LB_BOX_ASSIGN_FN *Box_Assign Pointer to the function that performs
Zoltan_LB_Box_Assign for the particular
load-balancing method.

Fields of the ZOLTAN_LB data structure.

Each Zoltan_Struct data structure has a ZOLTAN_MIGRATE sub-structure. The
ZOLTAN_MIGRATE structure contains data used by the migration tools, including pointers to pre-
and post-processing routines. These pointers are set through the interface routine Zoltan_Set_Fn and are
used in Zoltan_Migrate. The fields of the ZOLTAN_MIGRATE structure are listed and described in
in the following table.

Fields of ZOLTAN_MIGRATE Description
int Auto_Migrate A flag indicating whether Zoltan should

perform auto-migration for the application. If
true, Zoltan calls Zoltan_Migrate to move
objects to their new processors; if false, data
migration is left to the user. Set in
Zoltan_Set_Param for AUTO_MIGRATE.

ZOLTAN_PRE_MIGRATE_PP_FN *
Pre_Migrate_PP

A pointer to an application-registered
function that performs pre-processing for
data migration. The function is called by
Zoltan_Migrate before data migration is
performed. Set in Zoltan_Set_Fn or
Zoltan_Set_Pre_Migrate_PP_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (9 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#AUTO_MIGRATE
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

void *Pre_Migrate_PP_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Pre_Migrate_PP. Set in Zoltan_Set_Fn or
Zoltan_Set_Pre_Migrate_PP_Fn.

ZOLTAN_MID_MIGRATE_PP_FN *
Mid_Migrate_PP

A pointer to an application-registered
function that performs processing between
the packing and unpacking operations in
Zoltan_Migrate. Set in Zoltan_Set_Fn or
Zoltan_Set_Mid_Migrate_PP_Fn.

void *Mid_Migrate_PP_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Mid_Migrate_PP. Set in Zoltan_Set_Fn or
Zoltan_Set_Mid_Migrate_PP_Fn.

ZOLTAN_POST_MIGRATE_PP_FN
*Post_Migrate_PP

A pointer to an application-registered
function that performs post-processing for
data migration. The function is called by
Zoltan_Migrate after data migration is
performed. Set in Zoltan_Set_Fn or
Zoltan_Set_Post_Migrate_PP_Fn.

void *Post_Migrate_PP_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Post_Migrate_PP. Set in Zoltan_Set_Fn or
Zoltan_Set_Post_Migrate_PP_Fn.

ZOLTAN_PRE_MIGRATE_FN *
Pre_Migrate

A pointer to an application-registered
function that performs pre-processing for
data migration. The function is called by
Zoltan_Help_Migrate before data migration
is performed. Set in Zoltan_Set_Fn or
Zoltan_Set_Pre_Migrate_Fn. Maintained
for backward compatibility with Zoltan v1.3
interface.

void *Pre_Migrate_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Pre_Migrate. Set in Zoltan_Set_Fn or
Zoltan_Set_Pre_Migrate_Fn.

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (10 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

ZOLTAN_MID_MIGRATE_FN *
Mid_Migrate

A pointer to an application-registered
function that performs processing between
the packing and unpacking operations in
Zoltan_Help_Migrate. Set in
Zoltan_Set_Fn or
Zoltan_Set_Mid_Migrate_Fn. Maintained
for backward compatibility with Zoltan v1.3
interface.

void *Mid_Migrate_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Mid_Migrate. Set in Zoltan_Set_Fn or
Zoltan_Set_Mid_Migrate_Fn.

ZOLTAN_POST_MIGRATE_FN
*Post_Migrate

A pointer to an application-registered
function that performs post-processing for
data migration. The function is called by
Zoltan_Help_Migrate after data migration
is performed. Set in Zoltan_Set_Fn or
Zoltan_Set_Post_Migrate_Fn. Maintained
for backward compatibility with Zoltan v1.3
interface.

void *Post_Migrate_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Post_Migrate. Set in Zoltan_Set_Fn or
Zoltan_Set_Post_Migrate_Fn.

Fields of the ZOLTAN_MIGRATE data structure.

For each pointer to an application registered function in the Zoltan_Struct and ZOLTAN_MIGRATE
data structures there is also a pointer to a Fortran application registered function, of the form
ZOLTAN_FUNCNAME_FORT_FN *Get_Funcname_Fort. These are for use within the Fortran
interface. The Zoltan routines should invoke the usual application registered function regardless of
whether the Zoltan structure was created from C or Fortran.

[Table of Contents | Next: Services | Previous: ID Data Types]

Zoltan Developer's Guide: Load Balancing Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (11 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide | Next | Previous

Services
Within Zoltan, several services are provided to simplify development of new algorithms in the library.
Each service consists of a routine or set of routines that is compiled directly into Zoltan. Use of these
services makes debugging easier and provides a uniform look to the algorithms in the library. The
services available are listed below.

Parameter Setting Routines
Parallel Computing Routines
Object List Function
Hash Function
Timing Routines
Debugging Services

[Table of Contents | Next: Parameter Setting Routines | Previous: Data Structures]

Zoltan Developer's Guide: Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services.html [8/4/2006 9:21:05 AM]

Zoltan Developer's Guide | Next | Previous

Parameter Setting Routines
Zoltan allows applications to change a number of parameter settings at runtime. This facility supports
debugging by, for instance, allowing control over the type and quantity of output. It also allows users to
modify some of the parameters that characterize the partitioning algorithms. The design of the parameter
setting routines was driven by several considerations. First, we wanted to keep the user interface as
simple as possible. Second, we wanted to allow different Zoltan structures to have different parameter
settings associated with them. This second consideration precluded the use of C's static global variables
(except in a few special places). The parameter routines described below allow developers to provide
runtime access to any appropriate variables. In some cases, it is appropriate to allow developers to tinker
with parameters that will never be documented for users.

Our solution to parameter setting is to have a single interface routine Zoltan_Set_Param. This function
calls a set of more domain-specific parameter setting routines, each of which is responsible for a
domain-specific set of parameters. Assuming there are no errors, the parameter name and new value are
placed in a linked list of new parameters which is maintained by the Zoltan structure. When a
partitioning method is invoked on a Zoltan structure, it scans through this linked list using the
Zoltan_Assign_Param_Vals function, resetting parameter values that are appropriate to the method.

In addition to the method-specific parameters, Zoltan also has a set of so-called key parameters. These
are normally stored in the Zoltan structure and may be accessed by any part of the Zoltan code (including
all the methods). A list of the key parameters currently used in Zoltan can be found in the User's Guide.

The routines that control parameter setting are listed below. Note that these routines have been written to
be as independent of Zoltan as possible. Only a few minor changes would be required to use these
routines as a separate library.

Zoltan_Set_Param: User interface function that calls a set of method-specific routines.
Zoltan_Set_Param_Vec: Same as Zoltan_Set_Param, but for vector parameters.
Zoltan_Check_Param: Routine to check if parameter name and value are OK.
Zoltan_Bind_Param: Routine to associate a parameter name with a variable.
Zoltan_Bind_Param_Vec: Same as Zoltan_Bind_Param, but for vector parameters.
Zoltan_Assign_Param_Vals: Scans list of parameter names & values, setting relevant
parameters accordingly.
Zoltan_Free_Params: Frees a parameter list.

See also: Adding new parameters in Zoltan.

int Zoltan_Set_Param(struct Zoltan_Struct *zz, char *param_name, char *new_val);

The Zoltan_Set_Param function is the user interface for parameter setting. Its principle purpose is to
call a sequence of more domain-specific routines for setting domain-specific parameters (e.g.,
Zoltan_RCB_Set_Param). If you are adding algorithms to Zoltan, you must write one of these

Zoltan Developer's Guide: Parameter Setting Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (1 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

domain-specific parameter routines and modify Zoltan_Set_Param to call it. Zoltan_RCB_Set_Param
can serve as a template for this task. The arguments to this routine are two strings param_name and
new_val. The domain-specific routines return an integer value with the following meaning.

0 - The parameter name was found, and the value passed all error checks.
1 - The parameter name was not found among the parameters known by the domain-specific
routine.
2 - The parameter name was found, but the value failed the error checking.
3 - Same as 0, but do not add parameter and value to linked list.
Other - More serious error; value is an error code.

If one of the domain-specific parameter routines returns with a 0, Zoltan_Set_Param adds the parameter
and the value (both strings) to a linked list of such pairs that is pointed to by the Params field of the zz
structure.

Arguments:
 zz The Zoltan structure whose parameter value is being modified.
 param_name A string containing the name of the parameter being modified. It is automatically

converted to all upper-case letters.
 new_val The new value desired for the parameter, expressed as a string.
Returned Value:
 int Error code.

int Zoltan_Set_Param_Vec(struct Zoltan_Struct *zz, char *param_name, char *new_val, int index);

This routine works the same way as Zoltan_Set_Param, but is used for vector parameters. A vector
parameter is a parameter that in addition to a name also has a set of indices, usually starting at 0. Each
entry (component) may have a different value. This routine sets a single entry (component) of a vector
parameter. If you want all entries (components) of a vector parameter to have the same value, set the
parameter using Zoltan_Set_Param as if it were a scalar parameter.

int Zoltan_Check_Param(char *param_name, char *new_val, PARAM_VARS *params,
PARAM_UTYPE *result, int *matched_index);

The Zoltan_Check_Param routine simplifies the task of writing your own domain-specific parameter
setting function. Zoltan_Check_Param compares the param_name string against a list of strings that
you provide, and if a match is found it extracts the new value from the new_val string. See
Zoltan_RCB_Set_Param for an example of how to use this routine.

Arguments:
 param_name A capitalized string containing the name of the parameter being modified.
 new_val The new value desired for the parameter, expressed as a string.

Zoltan Developer's Guide: Parameter Setting Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (2 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

 params The data structure (defined in params/params_const.h) describing the
domain-specific parameters to be matched against. The data structure is an array of
items, each of which consists of four fields. The first field is a string that is a
capitalized name of a parameter. The second field is an address that is unused in
Zoltan_Check_Param, but is used in Zoltan_Assign_Param_Vals. The third
field is another capitalized string that indicates the type of the parameter from the
first field. Currently supported types are "INT", "INTEGER", "FLOAT", "REAL",
"DOUBLE", "LONG", "STRING" and "CHAR". It is easy to add additional types
by simple modifications to Zoltan_Check_Param and
Zoltan_Assign_Param_Vals. The fourth field is an integer that gives the
dimension (length) of the parameter, if it is a vector parameter. Scalar parameters
have dimension 0. The array is terminated by an item consisting of four NULL
fields. See Zoltan_RCB_Set_Param for an example of how to set up this data
structure.

 result Structure of information returned by Zoltan_Check_Param (defined in
params/params_const.h). If param_name matches any of the parameter names
from the first field of the params data structure, Zoltan_Check_Param attempts
to decode the value in new_val. The type of the value is determined by the third
field in the params data structure. If the value decodes properly, it is returned in
result.

 matched_index If param_name matches, then matched_index returns the index into the params
array that corresponds to the matched parameter name. The matched_index and
result values allow the developer to check that values being assigned to parameters
are valid.

Returned Value:
 int 0 - param_name found in params data structure and new_val decodes OK.

1 - param_name not found in params data structure.
2 - param_name found in params data structure but new_val doesn't decode
properly.

int Zoltan_Bind_Param (PARAM_VARS *params, char *name, void *var);

This routine is used to associate the name of a parameter in the parameter array params with a variable
pointed to by var.
Note that since the variable to be bound can be of an arbitrary type, the pointer should be cast to a void
pointer. Zoltan_Bind_Param must be called before Zoltan_Assign_Param_Vals, where the actual
assignment of values takes place.

Arguments:

Zoltan Developer's Guide: Parameter Setting Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (3 of 5) [8/4/2006 9:21:06 AM]

 params The data structure describing the domain-specific parameters to be matched
against. The data structure is an array of items, each of which consists of four
fields. The first field is a string that is a capitalized name of a parameter. The
second field is an address that is unused in Zoltan_Check_Param, but is used in
Zoltan_Assign_Param_Vals. The third field is another capitalized string that
indicates the type of the parameter from the first field. Currently supported types
are "INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG", "STRING"
and "CHAR". It is easy to add additional types by simple modifications to
Zoltan_Check_Param and Zoltan_Assign_Param_Vals. The fourth field is an
integer that gives the dimension (length) of the parameter, if it is a vector
parameter. Scalar parameters have dimension 0. The array is terminated by an item
consisting of four NULL fields.

 name A capitalized string containing the name of the parameter being modified.
 var A pointer to the variable you wish to associate with the parameter name name.

The pointer should be type cast to a void pointer. The user is responsible for
ensuring that the pointer really points to a variable of appropriate type. A NULL
pointer may be used to "unbind" a variable such that it will not be assigned a value
upon future calls to Zoltan_Assign_Param_Vals.

Returned Value:
 int Error code.

int Zoltan_Bind_Param_Vec(PARAM_VARS *params, char *name, void *var, int dim);

Same as Zoltan_Bind_Param, but for vector parameters. The additional parameter dim gives the
dimension or length of the vector parameter.

int Zoltan_Assign_Param_Vals(PARAM_LIST *change_list, PARAM_VARS *params, int
debug_level, int my_proc, int debug_proc);

This routine changes parameter values as specified by the list of names and new values which is
associated with a Zoltan structure. To use this routine, parameter values should first be set to their
defaults, and then Zoltan_Assign_Param_Vals should be called to alter the values as appropriate. See
Zoltan_RCB for a template.

Arguments:
 change_list The linked list of parameter names and values which is constructed by

Zoltan_Set_Param and is a field of an Zoltan_Struct data structure (defined in
params/param_const.h).

Zoltan Developer's Guide: Parameter Setting Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (4 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

 params The data structure (defined in params/params_const.h) describing the
domain-specific parameters to be matched against. The data structure is an array of
items, each of which consists of three fields. The first field is a string which is a
capitalized name of a parameter. The second field is an address of the parameter
which should be altered. The third field is another capitalized string which
indicates the type of the parameter being altered. Currently supported types are
"INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG", "STRING" and
"CHAR". It is easy to add additional types by simple modifications to
Zoltan_Check_Param and Zoltan_Assign_Param_Vals. The array is terminated
by an item consisting of three NULL fields.

 debug_level Zoltan debug level. (Normally this is zz->Debug_Level.)
 my_proc Processor number. (Normally this is zz->Proc.)
 debug_proc Processor number for debugging. (Normally this is zz->Debug_Proc.)

Returned Value:
 int Error code.

The last three input parameters may seem strange. They are present to support Zoltan's debugging
features. If the parameter utility code is used outside of Zoltan, these parameters may be removed or
simply set these input values to zero in the function call.

void Zoltan_Free_Params (PARAM_LIST **param_list);

This routine frees the parameters in the list pointed to by param_list.

Arguments:
 param_list A pointer to a list (array) of parameters to be freed. PARAM_LIST is defined in

params/param_const.h.

[Table of Contents | Next: Parallel Computing Routines | Previous: Services]

Zoltan Developer's Guide: Parameter Setting Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (5 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide | Next | Previous

Parallel Computing Routines
Parallel computing utilities are described in this section.

Zoltan_Print_Sync_Start / Zoltan_Print_Sync_End: provide synchronization of
processors for I/O (with example).
Zoltan_Print_Stats : print statistics about a parallel variable.

void Zoltan_Print_Sync_Start(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_Start function is adapted from work of John Shadid for the MPSalsa project at
Sandia National Laboratories. With Zoltan_Print_Sync_End, it provides synchronization so that one
processor in the Zoltan communicator can complete its I/O before the next processor begins its I/O. This
synchronization utility is useful for debugging algorithms, as it allows the output from processors to be
produced in an organized manner. It is, however, a serializing process, and thus, does not scale well to
large number of processors.

Zoltan_Print_Sync_Start should called by each processor in the MPI communicator before the desired
I/O is performed. Zoltan_Print_Sync_End is called by each processor after the I/O is performed. No
communication can be performed between calls to Zoltan_Print_Sync_Start and
Zoltan_Print_Sync_End. See the example below for usage of Zoltan_Print_Sync_Start.

Arguments:
 communicator The MPI communicator containing all processors to participate in the

synchronization.
 do_print_line A flag indicating whether to print a line of "#" characters before and after the

synchronization block. If do_print_line is TRUE, a line is printed; no line is
printed otherwise.

void Zoltan_Print_Sync_End(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_End function is adapted from work of John Shadid for the MPSalsa project at
Sandia National Laboratories. With Zoltan_Print_Sync_Start, it provides synchronization so that one
processor in the Zoltan communicator can complete its I/O before the next processor begins its I/O. This
synchronization utility is useful for debugging algorithms, as it allows the output from processors to be
produced in an organized manner. It is, however, a serializing process, and thus, does not scale well to
large number of processors.

Zoltan_Print_Sync_Start should called by each processor in the MPI communicator before the desired
I/O is performed. Zoltan_Print_Sync_End is called by each processor after the I/O is performed. No

Zoltan Developer's Guide: Parallel Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (1 of 3) [8/4/2006 9:21:06 AM]

communication can be performed between calls to Zoltan_Print_Sync_Start and
Zoltan_Print_Sync_End. See the example below for usage of Zoltan_Print_Sync_End.

Arguments:
 communicator The MPI communicator containing all processors to participate in the

synchronization.
 do_print_line A flag indicating whether to print a line of "#" characters before and after the

synchronization block. If do_print_line is TRUE, a line is printed; no line is
printed otherwise.

void Zoltan_Print_Stats(MPI_Comm comm, int debug_proc, double x, char *msg);

Zoltan_Print_Stats is a very simple routine that computes the maximum and sum of the variable x over
all processors associated with the MPI communicator comm. It also computes and prints the imbalance of
x, that is, the maximum value divided by the average minus one. If x has the same value on all
processors, the imbalance is zero.

Arguments:
 comm The MPI Communicator to be used in maximum and sum operations.
 debug_proc The processor from which output should be printed.
 x The variable of which one wishes to display statistics.
 msg A string that typically describes the meaning of x.

Example Using Zoltan_Print_Sync_Start/Zoltan_Print_Sync_End

...
if (zz->Debug_Level >= ZOLTAN_DEBUG_ALL) {
 int i;
 Zoltan_Print_Sync_Start(zz->Communicator, TRUE);
 printf("Zoltan: Objects to be exported from Proc %d\n",
zz->Proc);
 for (i = 0; i < *num_export_objs; i++) {
 printf(" Obj: ");
 ZOLTAN_PRINT_GID(zz,
&((*export_global_ids)[i*zz->Num_GID]));
 printf(" Destination: %4d\n",
 (*export_procs)[i]);
 }
 Zoltan_Print_Sync_End(zz->Communicator, TRUE);
}

Example usage of Zoltan_Print_Sync_Start and Zoltan_Print_Sync_End to synchronize output

Zoltan Developer's Guide: Parallel Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (2 of 3) [8/4/2006 9:21:06 AM]

among processors. (Taken from Zoltan_LB_Partition in lb/lb_balance.c.)

[Table of Contents | Next: Object List Function | Previous: Parameter Setting Routines]

Zoltan Developer's Guide: Parallel Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (3 of 3) [8/4/2006 9:21:06 AM]

Zoltan Developer's Guide | Next | Previous

Common Functions for Querying Applications
Many Zoltan algorithms need to query applications for similar data. The following functions provide
simple, uniform query functionality for algorithm developers:

Zoltan_Get_Obj_List
Zoltan_Get_Coordinates

These functions provide a uniform method of calling the query functions registered by an application.
Their use simplifies new algorithm development and code maintenance. Usage examples are in
rcb/shared.c.

Zoltan_Get_Obj_List can be called from any Zoltan algorithm to obtain a list of object IDs, weights,
and partition assignments.

Given a list of object IDs, Zoltan_Get_Coordinates can be called from any Zoltan algorithm to obtain a
list of coordinates for those IDs.

Note that, contrary to most Zoltan functions, these functions allocate memory for their return lists.

int Zoltan_Get_Obj_List(
 struct Zoltan_Struct *zz,
 int *num_obj,
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int wdim,
 float **objwgts,
 int **parts);

Zoltan_Get_Obj_List returns arrays of global and local IDs, partition assignments, and object weights
(if OBJ_WEIGHT_DIM is not zero) for all objects on a processor. It is a convenient function that frees
algorithm developers from calling ZOLTAN_OBJ_LIST_FN, ZOLTAN_FIRST_OBJ_FN,
ZOLTAN_NEXT_OBJ_FN, and ZOLTAN_PARTITION_FN query functions directly.

Arguments:
 zz A pointer to the Zoltan structure created by Zoltan_Create.
 num_obj Upon return, the number of objects.
 global_ids Upon return, an array of global IDs of objects on the current processor.
 local_ids Upon return, an array of local IDs of objects on the current processor. NULL is

returned when NUM_LID_ENTRIES is zero.
 wdim The number of weights associated with an object (typically 1), or 0 if weights are

not requested.

Zoltan Developer's Guide: Object List function

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_objlist.html (1 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

 objwgts Upon return, an array of object weights. Weights for object i are stored in
objwgts[i*wdim:(i+1)*wdim-1], for i=0,1,...,num_obj-1. If wdim is zero, the return
value of objwgts is undefined and may be NULL.

 parts Upon return, an array of partition assignments. Object i is currently in partition
parts[i].

Returned value:
Error code.

Required Query
Functions:

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

Optional Query
Functions:

ZOLTAN_PARTITION_FN

int Zoltan_Get_Coordinates(
 struct Zoltan_Struct *zz,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *num_dim,
 double **coords);

Given lists of object IDs, Zoltan_Get_Coordinates returns the dimensionality of the problem and an
array of coordinates of the objects. It is a convenient function that frees algorithm developers from
calling ZOLTAN_NUM_GEOM_FN, ZOLTAN_GEOM_MULTI_FN, and ZOLTAN_GEOM_FN
query functions directly.

Arguments:
 zz A pointer to the Zoltan structure created by Zoltan_Create.
 num_obj The number of objects.
 global_ids An array of global IDs of objects on the current processor.
 local_ids An array of local IDs of objects on the current processor. local_ids is NULL when

NUM_LID_ENTRIES is zero.
 num_dim Upon return, the number of coordinates for each object (typically 1, 2 or 3).
 coords Upon return, an array of coordinates for the objects. Coordinates for object i are

stored in coords[i*num_dim:(i+1)*num_dim-1], for i=0,1,...,num_obj-1.
Returned value:

Error code.
Required Query
Functions:

Zoltan Developer's Guide: Object List function

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_objlist.html (2 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Hash Function | Previous: Parallel Routines]

Zoltan Developer's Guide: Object List function

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_objlist.html (3 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN

Zoltan Developer's Guide | Next | Previous

Hash Function
Zoltan provides a hash function for global and local IDs. The hash function computes a non-negative
integer value in a certain range from an ID.

Zoltan_Hash : hash a global or local ID into non-negative integers

unsigned int Zoltan_Hash(ZOLTAN_ID_PTR key, int num_id_entries, unsigned int n);

Zoltan_Hash computes a hash value for a global or local ID. Note that this hash function has been
optimized for 32-bit integer systems, but should work on any machine. The current implementation uses
a simple multiplicative hash function based on Don Knuth's golden ratio method; see The Art of
Computer Programming, vol. 3.

Arguments:
 key A pointer to the ID to be hashed.
 num_id_entries The length of the ID (as given by NUM_GID_ENTRIES or

NUM_LID_ENTRIES).
 n The computed hash value will be between 0 and n-1.
Return Value:
 unsigned int The hash value (between 0 and n-1).

[Table of Contents | Next: Timing Routines | Previous: Object List Function]

Zoltan Developer's Guide: Hash function

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_hash.html [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide | Next | Previous

Timing Routines
To assist in performance measurements and profiling, several timing routines are included in the Zoltan
library. The main timer function, Zoltan_Time, provides access to at least two portable timers: one CPU
clock and one wall clock. On most systems, user time can also be measured.

The routines included in the utility are listed below.

Zoltan_Time: Returns the time (in seconds) after some fixed reference point in time.
Zoltan_Time_Resolution: The resolution of the specified timer.

Currently, the following timers are supported:

ZOLTAN_TIME_WALL : wall-clock time.
On most systems, this timer calls MPI_Wtime.

●

ZOLTAN_TIME_CPU : cpu time.
On most systems, this timer calls the ANSI C function clock(). Note that this timer may roll over
at just 71 minutes. Zoltan_Time attempts to keep track of the number of roll-overs but this feature
will work only if Zoltan_Time is called at least once during every period between roll-overs.

●

ZOLTAN_TIME_USER : user time.
On most systems, this timer calls times(). Note that times() is required by POSIX and is widely
available, but it is not required by ANSI C so may be unavailable on some systems. Compile
Zoltan with -DNO_TIMES in this case.

●

Within Zoltan, it is recommended to select which timer to use by setting the TIMER general parameter
via Zoltan_Set_Param. The default value of TIMER is wall. Zoltan stores an integer representation of
the selected timing method in zz->Timer. This value should be passed to Zoltan_Time, as in
Zoltan_Time(zz->Timer).

double Zoltan_Time(int timer);

Zoltan_Time returns the time in seconds, measured from some fixed reference time. Note that the time
is not synchronized among different processors or processes. The time may be either CPU time or
wall-clock time. The timer is selected through Zoltan_Set_Param.

Arguments:
 timer The timer type (e.g., wall or cpu) represented as an integer. See top of page for a

list of valid values.
Returned Value:
 double The time in seconds. The time is always positive; a negative value indicates an

error.

Zoltan Developer's Guide: Timing Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_time.html (1 of 2) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

double Zoltan_Time_Resolution(int timer) ;

Zoltan_Time_Resolution returns the resolution of the current timer. The returned resolution is a lower
bound on the actual resolution.

Arguments:
 timer The timer type (e.g., wall or cpu) represented as an integer. See top of page for a

list of valid values.
Returned Value:
 double The timer resolution in seconds. If the resolution is unknown, -1 is returned.

Example:
Here is a simple example for how to use the timer routines:

double t0, t1, t2;
Zoltan_Set_Param(zz, "TIMER", "wall");
t0 = Zoltan_Time(zz->Timer);
/* code segment 1 */
t1 = Zoltan_Time(zz->Timer);
/* code segment 2 */
t2 = Zoltan_Time(zz->Timer);
/* Print timing results */
Zoltan_Print_Stats(zz->Communicator, zz->Debug_Proc, t1-t0, "Time
for part 1:");
Zoltan_Print_Stats(zz->Communicator, zz->Debug_Proc, t2-t1, "Time
for part 2:");
Zoltan_Print_Stats(zz->Communicator, zz->Debug_Proc, t2-t0, "Total
time :");

[Table of Contents | Next: Debugging Services | Previous: Hash Function]

Zoltan Developer's Guide: Timing Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_time.html (2 of 2) [8/4/2006 9:21:07 AM]

Zoltan Developer's Guide | Next | Previous

Debugging Services
Execution of code for debugging can be controlled by algorithm specific parameters or by the Zoltan key
parameter DEBUG_LEVEL. The value of the Debug_Level field of the Zoltan_Struct structure can be
tested to determine whether the user desires debugging information. Several constants
(ZOLTAN_DEBUG_*) are defined in zz/zz_const.h; the Debug_Level field should be compared to these
values so that future changes to the debugging levels can be made easily. An example is included below.

Several macros for common debugging operations are provided. The macros can be used to generate
function trace information, such as when control enters or exits a function or reaches a certain point in
the execution of a function.

ZOLTAN_TRACE_ENTER
ZOLTAN_TRACE_EXIT
ZOLTAN_TRACE_DETAIL

These macros produce output depending upon the value of the DEBUG_LEVEL parameter set in Zoltan
by a call to Zoltan_Set_Param. The macros are defined in zz/zz_const.h.

Examples of the use of these macros can be found below and in lb/lb_balance.c and rcb/rcb.c.

ZOLTAN_TRACE_ENTER(struct Zoltan_Struct *zz, char *function_name);

ZOLTAN_TRACE_ENTER prints to stdout a message stating that a given processor is entering a
function. The call to the macro should be included at the beginning of major functions for which
debugging information is desired. Output includes the processor number and the function name passed
as an argument to the macro. The amount of output produced is controlled by the value of the
DEBUG_LEVEL parameter set in Zoltan by a call to Zoltan_Set_Param.

Arguments:
 zz Pointer to a Zoltan structure.
 function_name Character string containing the function's name.
Output:
 ZOLTAN (Processor #) Entering function_name

ZOLTAN_TRACE_EXIT(struct Zoltan_Struct *zz, char *function_name);

ZOLTAN_TRACE_EXIT prints to stdout a message stating that a given processor is exiting a
function. The call to the macro should be included at the end of major functions (and before return
statements) for which debugging information is desired. Output includes the processor number and the
function name passed as an argument to the macro. The amount of output produced is controlled by the
value of the DEBUG_LEVEL parameter set in Zoltan by a call to Zoltan_Set_Param.

Zoltan Developer's Guide: Debugging Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (1 of 3) [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Arguments:
 zz Pointer to a Zoltan structure.
 function_name Character string containing the function's name.
Output:
 ZOLTAN (Processor #) Leaving function_name

ZOLTAN_TRACE_DETAIL(struct Zoltan_Struct *zz, char *function_name, char *message);

ZOLTAN_TRACE_DETAIL prints to stdout a message specified by the developer. It can be used to
indicate how far execution has progressed through a routine. It can also be used to print values of
variables. See the example below. Output includes the processor number, the function name passed as
an argument to the macro, and a user-defined message passed to the macro. The amount of output
produced is controlled by the value of the DEBUG_LEVEL parameter set in Zoltan by a call to
Zoltan_Set_Param.

Arguments:
 zz Pointer to a Zoltan structure.
 function_name Character string containing the function's name.
 message Character string containing a message defined by the developer.
Output:
 ZOLTAN (Processor #) function_name: message

Example:
An example using the debugging macros in shown below.

#include "zoltan.h"
void example(struct Zoltan_Struct *zz)
{
char *yo = "example";
char tmp[80];
int a, b;

ZOLTAN_TRACE_ENTER(zz, yo);
a = function_one(zz);
ZOLTAN_TRACE_DETAIL(zz, yo, "After function_one");
b = function_two(zz);
sprintf(tmp, "b = %d a = %d", b, a);
ZOLTAN_TRACE_DETAIL(zz, yo, tmp);
if (zz->Debug_Level >= ZOLTAN_DEBUG_ALL)

Zoltan Developer's Guide: Debugging Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (2 of 3) [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

 printf("Total = %d\n", a+b);
ZOLTAN_TRACE_EXIT(zz, yo);

}

[Table of Contents | Next: Adding New Load-Balancing Algorithms | Previous: Timing Routines]

Zoltan Developer's Guide: Debugging Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (3 of 3) [8/4/2006 9:21:08 AM]

Zoltan Developer's Guide | Next | Previous

Adding New Load-Balancing Algorithms to Zoltan
The Zoltan library is designed so that adding new load-balancing algorithms to the library is simple. In
many cases, existing code can be easily modified to use the interface query functions to build the data
structures needed for the algorithm. The process for adding new algorithms to the library is described
below; more detail is provided at each link.

Make sure you follow the Philosophy of Zoltan and the Coding Principles in Zoltan.1.

Add the algorithm to the Load-Balancing Interface Routines.2.

Use the Data Structures provided by Zoltan.3.

Implement a Load-Balancing Function front-end to the algorithm.4.

Add the Parameters needed by the algorithm. Also make sure that the algorithm uses the General
Parameters in Zoltan properly, in particular Imbalance_Tol and Debug_Level.

5.

If necessary, write a routine to free your dynamically allocated data structures. See tips on memory
management in Zoltan.

6.

If the parameter KEEP_CUTS is defined for your algorithm, write a routine to copy your load
balancing data structure.

7.

Add partition remapping to your algorithm using Zoltan_LB_Remap.8.

Update the Fortran and C++ interfaces, if necessary.9.

Document your new method. The documentation should be written in a format that can easily be
converted into HTML and PDF. Consider adding a simple application to the examples directory
demonstrating the use of your method.

10.

Please contact the Zoltan team if you would like your method to be distributed with future versions
of Zoltan.

11.

[Table of Contents | Next: Load-Balancing Interface Routines | Previous: Debugging Services]

Zoltan Developer's Guide: Adding Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add.html [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_.html

Zoltan Developer's Guide | Next | Previous

Load-Balancing Interface Routines
Any new method that you wish to add to the Zoltan library must have an interface that conforms to the
prototype LB_FN. Note that the load balancing function may return either import lists, export lists, or
both. All processes must return the same type of list. If import (export) lists are not computed, then the
variable num_import (num_export) must be set to a negative number (typically -1) upon return. Full
support of the RETURN_LISTS parameter is not required. If RETURN_LISTS is not set to NONE, the
new algorithm may return either import or export lists; the Zoltan interface will then build the lists
requested by RETURN_LISTS.

A new algorithm must be added to the load-balancing interface for use with parameter LB_METHOD.
An entry for the new algorithm must be added to the enumerated type Zoltan_LB_Method in
lb/lb_const.h. An external LB_FN prototype for the load-balancing function must also be added to
lb/lb_const.h; see the prototype for function Zoltan_RCB as an example. A character string describing the
new algorithm should be chosen to be used as the parameter value for LB_METHOD. In function
Zoltan_LB_Set_LB_Method, a test for this string should be added and the Method and LB_Fn fields of
the Zoltan_Struct should be set to the new enumerated type value and new load-balancing function
pointer.

[Table of Contents | Next: Load-Balancing Function Implementation | Previous: Adding New
Algorithms]

Zoltan Developer's Guide: Adding Interface Routines

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_interface.html [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

Zoltan Developer's Guide | Next | Previous

Load-Balancing Function Implementation
The new load-balancing algorithm should be implemented as an ZOLTAN_LB_FN. The type definition
for an ZOLTAN_LB_FN is in lb/lb_const.h and is described below. When the new algorithm is
selected, the LB_Fn field of the Zoltan_Struct is set to point to the ZOLTAN_LB_FN function for the
new algorithm. This pointer is then used in invoking load balancing in Zoltan_LB_Partition.

typedef int ZOLTAN_LB_FN (struct Zoltan_Struct *zz, float *part_sizes, int *num_import,
ZOLTAN_ID_PTR *import_global_ids, ZOLTAN_ID_PTR *import_local_ids, int **import_procs,
int **import_to_parts, int *num_export, ZOLTAN_ID_PTR *export_global_ids,
ZOLTAN_ID_PTR *export_local_ids, int **export_procs, int **export_to_parts);

The ZOLTAN_LB_FN function type describes the arguments passed to a load-balancing function. The
input to the function is a Zoltan_Struct containing pointers to application-registered functions to be used
in the load-balancing algorithm. The remaining arguments are output parameters listing the objects to be
imported or exported to the processor in the new decomposition. The arrays for global and local IDs and
source processors must be allocated by the load-balancing function. The load-balancing function may
return either the import arrays, the export arrays, or both. If no import data is returned, *num_import
must be set to a negative number, and similarly with *num_export. Full support of the RETURN_LISTS
parameter is not required. If RETURN_LISTS is not set to NONE, the new algorithm may return either
import or export lists; the Zoltan interface will then build the lists requested by RETURN_LISTS.

Arguments:
 zz A pointer to the Zoltan_Struct to be used in the load-balancing algorithm.
 part_sizes Input: an array of partition sizes for each weight component. Entry

part_sizes[i*obj_weight_dim+j] contains the user-requested partition size for
partition i with respect to object weight j for i=0,1,...,number of partitions-1, and
j=0,1,...,obj_weight_dim-1. If the application sets parameter OBJ_WEIGHT_DIM,
obj_weight_dim is the set value of OBJ_WEIGHT_DIM; otherwise,
obj_weight_dim is one.

 num_import Upon return, the number of objects to be imported to the processor for the new
decomposition. A negative number indicates that no import data has been
computed and the import arrays should be ignored.

import_global_ids

Upon return, an array of num_import global IDs of objects to be imported to the
processor for the new decomposition. If this array is non-null, it must be allocated
by Zoltan_Special_Malloc.

Zoltan Developer's Guide: Adding Load-Balancing Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_lb.html (1 of 2) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM

 import_local_ids Upon return, an array of num_import local IDs of objects to be imported to the
processor for the new decomposition. If this array is non-null, it must be allocated
by Zoltan_Special_Malloc.

 import_procs Upon return, an array of size num_import containing the processor IDs of
processors owning (in the old decomposition) the objects to be imported for the
new decomposition. If this array is non-null, it must be allocated by
Zoltan_Special_Malloc.

 import_to_parts Upon return, an array of size num_import containing the partition IDs of partitions
to which objects will be imported in the NEW decomposition. If this array is
non-null, it must be allocated by Zoltan_Special_Malloc.

 num_export Upon return, the number of objects to be exported from the processor for the new
decomposition. A negative number indicates that no export data has been
computed and the export arrays should be ignored.

 export_global_ids Upon return, an array of num_export global IDs of objects to be exported from the
processor for the new decomposition. If this array is non-null, it must be allocated
by Zoltan_Special_Malloc.

 export_local_ids Upon return, an array of num_export local IDs of objects to be exported from the
processor for the new decomposition. If this array is non-null, it must be allocated
by Zoltan_Special_Malloc.

 export_procs Upon return, an array of size num_export containing the processor IDs of
processors owning (in the old decomposition) the objects to be exported for the
new decomposition. If this array is non-null, it must be allocated by
Zoltan_Special_Malloc.

 export_to_parts Upon return, an array of size num_export containing the partition IDs of partitions
to which the objects will be exported for the new decomposition. If this array is
non-null, it must be allocated by Zoltan_Special_Malloc.

Returned Value:
 int Error code.

[Table of Contents | Next: Data Structures | Previous: Load-Balancing Interface Routines]

Zoltan Developer's Guide: Adding Load-Balancing Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_lb.html (2 of 2) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide | Next | Previous

Data Structures
The main data structures for the algorithm should be pointed to by the LB.Data_Structure field of the
Zoltan_Struct. This requirement allows reuse of data structures from one invocation of the new
load-balancing algorithm to the next. It also prevents the use of global data structures for the algorithm so
that multiple instances of the algorithm may be used (i.e., the same algorithm can be used for multiple
Zoltan_Struct structures). An example showing the construction of data structures for the Recursive
Coordinate Bisection (RCB) algorithm is included in the figure below.

/* Allocate RCB data structure for this Zoltan structure.
 * If the previous data structure still exists, free the Dots
first;
 * the other fields can be reused.
 */
if (zz->LB.Data_Structure == NULL) {
 rcb = (RCB_STRUCT *) ZOLTAN_MALLOC(sizeof(RCB_STRUCT));
 zz->LB.Data_Structure = (void *) rcb;
 rcb->Tree_Ptr = (struct rcb_tree *)
 ZOLTAN_MALLOC(zz->Num_Proc*sizeof(struct
rcb_tree));
 rcb->Box = (struct rcb_box *) ZOLTAN_MALLOC(sizeof(struct
rcb_box));
}
else {
 rcb = (RCB_STRUCT *) zz->LB.Data_Structure;
 ZOLTAN_FREE(&(rcb->Dots));
}

Example demonstrating allocation of data structures for the RCB algorithm. (Taken from
rcb/rcb_util.c.)

The data needed for the algorithm is collected through calls to the query functions registered by the
application. Algorithms should test the query function pointers for NULL and report errors when needed
functions are not registered. The appropriate query functions can be called to build the algorithm's data
structures up front, or they can be called during the algorithm's execution to gather data only as it is
needed. The figure below shows how the Dots data structure needed by RCB is built. The call to
zz->Get_Num_Obj invokes an ZOLTAN_NUM_OBJ_FN query function to determine the number of
objects on the processor. Space for the Dots data structure is allocated through calls to
ZOLTAN_MALLOC, ZOLTAN_MALLOC_GID_ARRAY, and
ZOLTAN_MALLOC_LID_ARRAY. The Dots information is obtained through a call to the Zoltan
service function Zoltan_Get_Obj_List; this function calls either an ZOLTAN_OBJ_LIST_FN or an

Zoltan Developer's Guide: Adding Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (1 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN

ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair to get the object IDs and weights. The
data for each Dot is set in the function initialize_dot, which includes calls to zz->Get_Geom, an
ZOLTAN_GEOM_FN query function.

/*
 * Allocate space for objects. Allow extra space
 * for objects that are imported to the processor.
 */

*num_obj = zz->Get_Num_Obj(zz->Get_Num_Obj_Data, &ierr);
if (ierr) {
 ZOLTAN_PRINT_ERROR(zz->Proc, yo,
 "Error returned from Get_Num_Obj.");
 return(ierr);
}

*max_obj = (int)(1.5 * *num_obj) + 1;
*global_ids = ZOLTAN_MALLOC_GID_ARRAY(zz, (*max_obj));
*local_ids = ZOLTAN_MALLOC_LID_ARRAY(zz, (*max_obj));
*dots = (struct Dot_Struct *)
 ZOLTAN_MALLOC((*max_obj)*sizeof(struct Dot_Struct));

if (!(*global_ids) || (zz->Num_LID && !(*local_ids)) ||
!(*dots)) {
 ZOLTAN_PRINT_ERROR(zz->Proc, yo, "Insufficient memory.");
 return(ZOLTAN_MEMERR);
}

if (*num_obj > 0) {

 if (wgtflag) {

 /*
 * Allocate space for object weights.
 */

 objs_wgt = (float *)
ZOLTAN_MALLOC((*num_obj)*sizeof(float));
 if (!objs_wgt) {
 ZOLTAN_PRINT_ERROR(zz->Proc, yo, "Insufficient
memory.");
 return(ZOLTAN_MEMERR);
 }
 for (i = 0; i < *num_obj; i++) objs_wgt[i] = 0.;

Zoltan Developer's Guide: Adding Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (2 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

 }

 /*
 * Get list of objects' IDs and weights.
 */

 Zoltan_Get_Obj_List(zz, *global_ids, *local_ids, wgtflag,
 objs_wgt, &ierr);
 if (ierr) {
 ZOLTAN_PRINT_ERROR(zz->Proc, yo,
 "Error returned from
Zoltan_Get_Obj_List.");
 ZOLTAN_FREE(&objs_wgt);
 return(ierr);
 }

 ierr = initialize_dot(zz, *global_ids, *local_ids, *dots,
 *num_obj, wgtflag, objs_wgt);
 if (ierr == ZOLTAN_FATAL || ierr == ZOLTAN_MEMERR) {
 ZOLTAN_PRINT_ERROR(zz->Proc, yo,
 "Error returned from initialize_dot.");
 ZOLTAN_FREE(&objs_wgt);
 return(ierr);
 }

 ZOLTAN_FREE(&objs_wgt);
}

Example demonstrating how data structures are built for the RCB algorithm. (Taken from
rcb/shared.c.)

The data structures pointed to by zz->LB.Data_Structure will be freed at some point, and may be copied.

A function that frees these structures and resets zz->LB.Data_Structure to NULL should be written. The
function should be called when the load-balancing algorithm exits, either normally or due to an error
condition. The function Zoltan_RCB_Free_Structure in rcb/rcb_util.c may be used as an example.

If your algorithm uses the KEEP_CUTS parameter, a function that copies one zz->LB.Data_Structure to
another is required. This is particularly important for C++, which may create temporary objects at
runtime by invoking a copy operator (which will call your copy function). It is a convenience for C
applications, which may wish to copy one Zoltan_Struct to another. See the function
Zoltan_RCB_Copy_Structure in rcb/rcb_util.c for an example.

[Table of Contents | Next: Memory Management | Previous: Load-Balancing Function
Implementation]

Zoltan Developer's Guide: Adding Data Structures

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (3 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html

Zoltan Developer's Guide | Next | Previous

Memory Management in Zoltan Algorithms
Zoltan uses a memory management package to simplify debugging of memory problems. It is strongly
recommended that algorithm developers use the routines in this package, such as ZOLTAN_MALLOC
, ZOLTAN_CALLOC and ZOLTAN_FREE, instead of the standard C routines for most memory
management.

Macros that simplify the allocation of global and local identifiers (IDs) are defined in zz/zz_id_const.h.
These macros are described in the ID Data Types section. The macros include error checking for the
allocations and, thus, their use is highly recommended.

When a dynamic structure needs to be returned to the application, special memory allocation routines are
needed. For example, the import and export lists of data to migrate are returned to an application from
Zoltan_LB_Partition and Zoltan_Invert_Lists. There are two special routines for managing memory
for such situations, called Zoltan_Special_Malloc and Zoltan_Special_Free. Algorithms must use these
functions to maintain compatibility with both C and Fortran90 applications; these special routines
manage memory in a way that is compatible with both languages.

Some load-balancing algorithms may contain persistent data structures, that is, data structures that are
preserved between calls to the load-balancing routine. The Zoltan_Struct structure contains a field
LB.Data_Structure for this purpose, allowing multiple Zoltan structures to preserve their own
decomposition data. The developer should write a function that frees this data structure. Use
Zoltan_RCB_Free_Structure as an example.

int Zoltan_Special_Malloc(struct Zoltan_Struct *zz, void **array, int size,
ZOLTAN_SPECIAL_MALLOC_TYPEtype);

The Zoltan_Special_Malloc routine allocates memory to be returned to the application by Zoltan (e.g.,
the result arrays of Zoltan_LB_Partition and Zoltan_Invert_Lists). Returned memory must be
allocated by Zoltan_Special_Malloc to insure it is allocated by the same language as the application.
Memory allocated by Zoltan_Special_Malloc must be deallocated by Zoltan_Special_Free.

Arguments:
 zz The Zoltan structure currently in use.
 array Upon return, a pointer to the allocated space. Usually of type int** or

ZOLTAN_ID_PTR*.
 size The number of elements (not bytes) to be allocated.
 type The type of array to allocate. Must be one of

ZOLTAN_SPECIAL_MALLOC_INT, ZOLTAN_SPECIAL_MALLOC_GID
or ZOLTAN_SPECIAL_MALLOC_LID for processor numbers, global IDs and
local IDs, respectively.

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_memory.html (1 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Calloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists

Returned Value:
 int 1 if the allocation succeeded; 0 if it failed.
Example:

ierr = Zoltan_Special_Malloc(zz, (void **)import_gid,
 num_import,

ZOLTAN_SPECIAL_MALLOC_GID);
Allocates an array with num_import global IDs and returns a pointer to the
allocated space in import_gid.

int Zoltan_Special_Free(struct Zoltan_Struct *zz, void **array,
ZOLTAN_SPECIAL_MALLOC_TYPE type);

Zoltan_Special_Free frees memory allocated by Zoltan_Special_Malloc. The array pointer is set to
NULL upon return.

Arguments:
 zz The Zoltan structure currently in use.
 array The array to be freed. Upon return, the pointer is set to NULL.
 type The type of the array. Must be one of ZOLTAN_SPECIAL_MALLOC_INT,

ZOLTAN_SPECIAL_MALLOC_GID or
ZOLTAN_SPECIAL_MALLOC_LID for processor numbers, global IDs and
local IDs, respectively.

Returned Value:
 int 1 if the deallocation succeeded; 0 if it failed.
Example:

ierr = Zoltan_Special_Free(zz, (void **)import_gid,
 ZOLTAN_SPECIAL_MALLOC_GID);
Frees the global IDs array import_gid and sets it to NULL.

[Table of Contents | Next: Parameters | Previous: Data Structures]

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_memory.html (2 of 2) [8/4/2006 9:21:10 AM]

Zoltan Developer's Guide | Next | Previous

Adding new parameters
All parameters in Zoltan should be set and accessed through the parameter setting routines. To add a new
parameter to an existing method, you need to do the following:

In the source code for the desired method, search for the place where the static array of parameters
is defined. It will look something like: static PARAM_VARS Method_params[] = { ... }. Add a
line with the name of the new parameter, a pointer to the variable you want to associate (usually
NULL), and its type.

●

In the method source code, bind the parameter to a local variable through Zoltan_Bind_Param.
Make sure you do this before Zoltan_Assign_Param_Vals is invoked.

●

Update the parameter function for the method in question. This routine is typically called
Zoltan_Method_Set_Param. This routine checks if a given string is a valid parameter for that
method. It may also verify the values.

●

When you add a new method to Zoltan, you also need to:

Write a parameter function for your method that checks whether a given string and value is a valid
parameter pair for your method. See Zoltan_RCB_Set_Param in rcb/rcb.c for an example.

●

Let your method access the parameters via Zoltan_Bind_Param and
Zoltan_Assign_Param_Vals.

●

Change the parameter function array in params/set_params.c to include your parameter function.
Simply add a new entry to the static array that looks like: static ZOLTAN_SET_PARAM_FN *
Param_func[] = {...}.

●

Make sure your method uses the key parameters in Zoltan correctly.●

One useful convention is to put your method routine and your corresponding parameter function in the
same source file. This way you can define the parameters in a static array. This convention eliminates
the risk of bugs caused by duplicate declarations (that are, incorrectly, not identical).

[Table of Contents | Next: Partition Remapping | Previous: Memory Management]

Zoltan Developer's Guide: Adding Parameters

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_params.html [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters

Zoltan Developer's Guide | Next | Previous

Partition Remapping
Partition remapping can be incorporated into load-balancing algorithms. The partition remapping
algorithm works as follows:

After partitioning within an ZOLTAN_LB_FN but before import or export lists are built, the
partitioning algorithm calls Zoltan_LB_Remap.

●

Zoltan_LB_Remap builds a bipartite graph based on local import or export information
(depending on which is available in the partitioning algorithm). Vertices of the graph are processor
or partition numbers used in the old (input to the partitioner) and new (computed by the
partitioner) decompositions. Edges connect old and new vertices; edge weight for edge eij is the
number of objects in old partition i that are also in new partition j. The bipartite graph is stored as a
hypergraph, so that Zoltan's hypergraph matching routines may be applied.

●

Zoltan_LB_Remap gathers the local hypergraph edges onto each processor and performs a serial
matching of the vertices. This matching defines the remapping.

●

Zoltan_LB_Remap remaps the input processor and partition information to reflect the remapping
and returns the result to the application. It also builds array zz->LB.Remap that is used in other
functions (e.g., Zoltan_LB_Box_PP_Assign and Zoltan_LB_Point_PP_Assign).

●

Using the remapping information returned from Zoltan_LB_Remap, the partitioning algorithm
builds the import or export lists to return to the application. Note: if the partition algorithm builds
import lists, data may have to be moved to appropriate processors before building import lists to
reflect the remapping; see rcb/shared.c for an example.

●

int Zoltan_LB_Remap (struct Zoltan_Struct *zz, int *new_map, int num_obj, int *procs,
int *old_parts, int *new_parts, int export_list_flag);

Zoltan_LB_Remap remaps computed partition (or processor) numbers in an attempt to maximize the
amount of data that does not have to be migrated to the new decomposition. It is incorporated directly
into partitioning algorithms, and should be called after the new decomposition is computed but before
return lists (import or export lists) are created. Zoltan_LB_Remap should be invoked when Zoltan
parameter REMAP is one. Even when REMAP is one, remapping is not done under a number of
conditions; these conditions are listed with the description of REMAP.

Arguments:
 zz A pointer to the Zoltan_Struct used in the partitioning algorithm.
 new_map Upon return, a flag indicating whether remapping was actually done. Remapping is

not done under a number of conditions (described with parameter REMAP) or
when the computed remap gives a worse or equivalent result than the
decomposition computed by the partitioning algorithm.

Zoltan Developer's Guide: Partition Remapping

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_remap.html (1 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_PP_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_PP_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP

 num_obj Input: the number of objects the processor knows about after computing the
decomposition. If the partitioning algorithm computes export lists, num_obj is the
number of objects stored on the processor; if it computes import lists, num_obj is
the number of objects that will be stored on the processor in the new
decomposition.

 procs Upon input: an array of size num_obj containing processor assignments for the
objects; if export_list_flag == 1, procs contains processor assignments in the NEW
decomposition (computed by the partitioner); otherwise, procs contains processor
assignments in the OLD decomposition (input by the application). Upon return,
procs contains remapped processor assignments for the NEW decomposition,
regardless of the value of export_list_flag.

 old_parts Upon input: an array of size num_obj containing partition assignments for the
objects in the OLD decomposition (input by the application).

 new_parts Upon input: an array of size num_obj containing partition assignments for the
objects in the NEW decomposition (computed by the partitioning algorithm). Upon
return: new_parts contains remapped partition assignments in the NEW
decomposition.

 export_list_flag Flag indicating whether the partitioning algorithm computes export lists or import
lists. The procedure for building the bipartite graph depends on whether the
partitioning algorithm knows export or import information.

Returned Value:
 int Error code.

[Table of Contents | Next: Migration Tools | Previous: Adding new parameters]

Zoltan Developer's Guide: Partition Remapping

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_remap.html (2 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide | Next | Previous

Migration Tools
The migration tools in the Zoltan library perform communication necessary for data migration in the
application. The routine Zoltan_Migrate calls application-registered packing routines to gather data to
be sent to other processors. It sends the data using the unstructured communication package. It then calls
application-registered unpacking routines for each imported object to add received data to the processor's
data structures. See the Zoltan User's Guide for more details on the use of and interface to the migration
tools.

In future releases, the migration tools will be updated to use MPI data types to support heterogeneous
computing architectures.

[Table of Contents | Next: FORTRAN Interface | Previous: Partition Remapping]

Zoltan Developer's Guide: Migration Tools

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_mig.html [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide | Next | Previous

FORTRAN Interface
With any change to the user API of Zoltan, the Fortran interface should be modified to reflect the change.
This section contains information about the implementation of the Fortran interface which should cover
most situations.

Structures
Modifications to an existing Zoltan interface function
Removing a Zoltan interface function
Adding a new Zoltan interface function
Query functions
Enumerated types and defined constants

If you have questions or need assistance, contact william.mitchell@nist.gov.

If changes are made to functions that are called by zdrive, then the changes should also be made to
zfdrive. Changes to the Fortran interface can be tested by building and running zfdrive, if the changes are
in functions called by zfdrive. The zfdrive program works the same way as zdrive except that it is
restricted to the Chaco examples and simpler input files.

Any changes in the interface should also be reflected in the Fortran API definitions in the Zoltan User's
Guide.

Structures

All structures in the API have a corresponding user-defined type in the Fortran interface. If a new
structure is added, then modifications will be required to fort/fwrap.fpp and fort/cwrap.c. In these files,
search for Zoltan_Struct and "do like it does."

An explanation of how structures are handled may help. The Fortran user-defined type for the structure
simply contains the address of the structure, i.e., the C pointer returned by a call to create the structure.
Note that the user does not have access to the components of the structure, and can only pass the
structure to functions. Within the Fortran structure, the address is stored in a variable of
type(Zoltan_PTR), which is a character string containing one character for each byte of the address.
This gives the best guarantee of portability under the Fortran and C standards. Also, to insure portability
of passing character strings, the character string is converted to an array of integers before passing it
between Fortran and C. The process of doing this is most easily seen by looking at Zoltan_Destroy,
which has little else to clutter the code.

Modifications to an existing Zoltan interface function

If the argument list or return type of a user-callable function in Zoltan changes, the same changes must
be made in the Fortran interface routines. This involves changes in two files: fort/fwrap.fpp and
fort/cwrap.c. In these files, search for the function name with the prefix Zoltan_ omitted, and modify the

Zoltan Developer's Guide: FORTRAN Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (1 of 3) [8/4/2006 9:21:11 AM]

mailto:william.mitchell@nist.gov
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Destroy

argument list, argument declarations, return type, and call to the C library function as appropriate. When
adding a new argument, if there is not already an argument of the same type, look at another function
that does have an argument of that type for guidance.

Removing a Zoltan interface function

If a user callable function is removed from the Zoltan library, edit fort/fwrap.fpp and fort/cwrap.c to
remove all references to that function.

Adding a new Zoltan interface function

Adding a new function involves changes to the two files fort/fwrap.fpp and fort/cwrap.c. Perhaps the
easiest way to add a new function to these files is to pick some existing function, search for all
occurrences of it, and use that code as a guide for the implementation of the interface for the new
function. Zoltan_LB_Point_Assign is a nice minimal function to use as an example. Use a case
insensitive search on the name of the function without the Zoltan_LB_ prefix, for example
point_assign.

Here are the items in fwrap.fpp:

public statement: The name of the function should be included in the list of public entities.●

interface for the C wrapper: Copy one of these and modify the function name, argument list and
declarations for the new function. The name is of the form Zfw_LB_Point_Assign (fw stands for
Fortran wrapper).

●

generic interface: This assigns the function name to be a generic name for one or more module
procedures.

●

module procedure(s): These are the Fortran-side wrapper functions. Usually there is one module
procedure of the form Zf90_LB_Point_Assign. If one argument can have more than one type
passed to it (for example, it is type void in the C interface), then there must be one module
procedure for each type that can be passed. These are distinguished by appending a digit to the end
of the module procedure name. If n arguments can have more than one type, then n digits are
appended. See Zoltan_LB_Free_Part for example. Generally the module procedure just calls the
C-side wrapper function, but in some cases it may need to coerce data to a different type (e.g.,
Zoltan_Struct), or may actually do real work (e.g., Zoltan_LB_Free_Part).

●

Here are the items in cwrap.c:

name mangling: These are macros to convert the function name from the case sensitive C name
(for example, Zfw_LB_Point_Assign) to the mangled name produced by the Fortran compiler.
There are four of these for each function:

lowercase (zfw_lb_point_assign),❍

uppercase (ZFW_LB_POINT_ASSIGN),❍

lowercase with underscore (zfw_lb_point_assign_), and❍

lower case with double underscore (zfw_point_assign__ but the second underscore is
appended only if the name already contains an underscore, which will always be the case for

❍

●

Zoltan Developer's Guide: FORTRAN Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (2 of 3) [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part

names starting with Zfw_).

C-side wrapper function: Usually this just calls the Zoltan library function after coercing the form
of the data (for example, constructing the pointer to Zoltan_Struct and call-by-reference to
call-by-value conversions).

●

Query functions

If a query function is added, deleted or changed, modifications must be made to fort/fwrap.fpp and
fort/cwrap.c, similar to the modifications for interface functions, and possibly also include/zoltan.h and
zz/zz_const.h.

Here are the places query functions appear in fwrap.fpp:

public statement for the ZOLTAN_FN_TYPE argument: These are identical to the C enumerated
type.

●

definition of the ZOLTAN_FN_TYPE arguments: There are two groups of these, one containing
subroutines (void functions) and one containing functions (int functions). Put the new symbol in
the right category. The value assigned to the new symbol must agree exactly with where the
symbol appears in the order of the enumerated type.

●

Here are the places query functions appear in cwrap.c:

reverse wrappers: These are the query functions that are actually called by the Zoltan library
routines when the query function was registered from Fortran. They are just wrappers to call the
registered Fortran routine, coercing argument types as necessary. Look at
Zoltan_Num_Edges_Fort_Wrapper for an example.

●

Zfw_Set_Fn: This has a switch based on the value of the ZOLTAN_FN_TYPE argument to set
the Fortran query function and wrapper in the Zoltan_Struct.

●

In zz/zz_const.h, if a new field is added to the structures for a new query function, it should be added in
both C and Fortran forms. In include/zoltan.h, if a new typedef for a query function is added, it should be
added in both C and Fortran forms. See these files for examples.

Enumerated types and defined constants

Enumerated types and defined constants that the application uses as the value for an arguments must be
placed in fwrap.fpp with the same value. See ZOLTAN_OK for an example.

[Table of Contents | Next: C++ Interface | Previous: Migration Tools]

Zoltan Developer's Guide: FORTRAN Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (3 of 3) [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide | Next | Previous

C++ Interface
As with the Fortran interface just described, any change to the user API of Zoltan should be reflected in
the C++ interface. This section explains the conventions used in the C++ interface, which you will want
to follow when you modify or expand it.

Classes
Programming Conventions

Namespaces
Class names
Method names
Const methods
Declaration of method parameters
Copy constructor, copy operator

Keeping the C++ interface up-to-date

Classes

The C language Zoltan library already observes the principles of object oriented program design. Each
sub function of Zoltan (load balancing, timing, etc.) has a data structure associated with it. This data
structure maintains all the state required for one instance of that sub function. Each request of the library
for some operation requires that data structure.

The classes in the Zoltan C++ library follow the structure just described. Each class is defined in a header
file and encapsulates a Zoltan data structure and the functions that operate on that structure. A C++
application wishing to use a feature of Zoltan, would include the feature's header file in it's source, and
link with the Zoltan C library.

The C language load balancing data stucture (Zoltan_Struct) and the C functions that operate on it are
accessed through the C++ Zoltan class, defined in zoltan_cpp.h.

The communication package is encapsulated the Zoltan_Comm class defined in zoltan_comm_cpp.h.
Again, to use the communication utility of Zoltan from a C++ program, include zoltan_comm_cpp.h and
use the C++ methods defined there.

The C++ Zoltan timer class is called Zoltan_Timer_Object and is defined in zoltan_timer_cpp.h.

The distributed directory utility of Zoltan is encapsulated in the class Zoltan_DD defined in
zoltan_dd_cpp.h

Zoltan Developer's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (1 of 3) [8/4/2006 9:21:12 AM]

Programming Conventions

When modifying the interface to Zoltan , you will want to modify the appropriate C++ header file
accordingly. This section describes the conventions to follow to maintain a consistent and correct library
interface for the C++ user of Zoltan.

Namespaces

In order to maintain portability across platforms, there is no Zoltan namespace. Many C++ compilers do
not support namespaces at this time. The name of each Zoltan class begins with Zoltan_, and hopefully
this will never clash with another namespace.

Class names

Class names are Zoltan_ followed by text indicating the sub function of Zoltan that is encapsulated by
the class.

Method names

Method names are derived from the C library function names in such a way that the name will be
obvious to a person familiar with the C library. We remove the beginning of the C library name, the part
that identifies the subset of the Zoltan library that the function is part of, and keep the last part of the C
library name, the part that describes what the function does. For example the C function
Zoltan_LB_Partition becomes the C++ method LB_Partition in the class Zoltan and C function
Zoltan_Comm_Create becomes the C++ method Create in the class Zoltan_Comm.

Const methods

All class methods which can be declared const, because they do not modify the object, should be
declared const. This allows C++ programmers to call these methods on their const objects.

Declaration of method parameters

Parameters that are not changed in the method should be declared const. This can get complicated, but it
helps to read declarations from right to left. const int * & p says p is a reference to a pointer to a const
int and means the method will not change the value pointed to by p. On the other hand int * const & p
says that p is a reference to a const pointer to int so the method will not change the pointer.

Variables that are passed by value in a C function will be passed by const reference in the C++ method.
This is semantically the same, but it is more efficient, and it will work with temporary variables created
by a compiler.

If a C function takes a pointer to a single built-in type (not an aggregate type), the associated C++
method will take a reference variable. If a C function takes a pointer to a pointer, the C++ function will
take a pointer reference. The references are more efficient, and it is the behavior a C++ programmer
expects. A pointer to an array remains a pointer to an array.

C function parameter C++ method parameter method's const behavior

Zoltan Developer's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (2 of 3) [8/4/2006 9:21:12 AM]

int val const int &val won't change value

int *singlep
int &singlep
const int &singlep

may change value
won't change value

int **singlep

int *&singlep
const int * &p
int *const &p
const int * const &p

may change pointer or value
won't change value
won't change pointer to value
won't change anything

int *arrayp
int *arrayp
const int * arrayp

may change array contents
won't change array contents

If a C function takes a pointer to an array of char, the associated C++ method will take a string object.

C function parameter C++ method parameter

char *fname std::string &fname

In all honesty, it is tedious to carefully apply const'ness in parameter declarations, and we did not do it
consistently throughout the C++ wrapping of Zoltan. Please feel free to add const declarations where
they belong, and try to use them correctly if you add or modify Zoltan C++ methods.

Copy constructor, copy operator

Each class should have a copy constructor and a copy operator.

Keeping the C++ interface up-to-date

Here we provide a checklist of things to be done when the C interface to the Zoltan library is changed:

If a new major component is added to Zoltan, create a C++ class for that component in a new
header file, using the programming conventions described above.

●

If functions are added or removed, or their parameter lists are changed, then update the header file
defining the class that contains those functions.

●

When Zoltan data structures are changed, be sure to change the C functions that copy the data
structure. (They contain Copy in their name.) Correct copying is more important in C++, where
the compiler may generate new temporary objects, than it is in C.

●

If you change the C++ API, be sure to change:

zCPPdrive, the test program for the Zoltan C++ library❍

the C++ examples in the Examples directory❍

the method prototypes in the Zoltan User's Guide.❍

●

[Table of Contents | Next: References | Previous: FORTRAN Interface]

Zoltan Developer's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (3 of 3) [8/4/2006 9:21:12 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide | Next | Previous

References
M. J. Berger and S. H. Bokhari. "A partitioning strategy for nonuniform problems on
multiprocessors." IEEE Trans. Computers, C-36 (1987), 570-580.

1.

K. Devine, B. Hendrickson, M. St.John, E. Boman, and C. Vaughan. "Zoltan: A Dynamic
Load-Balancing Library for Parallel Applications, User's Guide." Sandia National Laboratories
Tech. Rep. SAND99-1377, Albuquerque, NM, 1999.

2.

H. C. Edwards. A Parallel Infrastructure For Scalable Adaptive Finite Element Methods and Its
Application To Least Squares C^(inf) Collocation. Ph.D. Dissertation, University of Texas at
Austin, May, 1997.

3.

B. Hendrickson and K. Devine. "Dynamic Load Balancing in Computational Mechanics." Comp.
Meth. Appl. Mech. Engrg., 184 (2000) 484-500.

4.

B. Hendrickson and R. Leland. ``The Chaco User's Guide, version 2.0.'' Sandia National
Laboratories Tech. Rep. SAND94-2692, Albuquerque, NM, 1994.
http://www.cs.sandia.gov/CRF/chac.html

5.

G. Karypis and V. Kumar. ``ParMETIS: Parallel graph partitioning and sparse matrix ordering
library.'' Tech. Rep. 97-060, Dept. of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

6.

C. Walshaw. "Parallel Jostle Library Interface: Version 1.1.7." Tech. Rep., Univ. of Greenwich,
London, 1995. http://www.gre.ac.uk/jostle

7.

[Table of Contents | Next: Using Test Driver | Previous: C++ Interface]

Zoltan Developer's Guide: References

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_refs.html [8/4/2006 9:21:12 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle

Zoltan Developer's Guide | Next | Previous

Appendix: Using the Test Drivers: zdrive,
zCPPdrive and zfdrive

Introduction

In order to facilitate development and testing of the Zoltan library, simple driver programs, zdrive (C),
zCPPdrive (C++) and zfdrive (Fortran90), are included with the library distribution. The concept behind
the drivers is to read in mesh or graph information from files, run Zoltan, and then output the new
assignments for each processor to another file. The test drivers zdrive and zCPPdrive read
ExodusII/NemesisI parallel FEM files and Chaco input files. Parallel NemesisI files can be created from
ExodusII or Genesis file using the NemesisI utilities nem_slice and nem_spread. The Fortran90 program
zfdrive reads only Chaco input files.

Source code for zdrive is in the driver and ch directories of the Zoltan distribution. Source code for
zfdrive is in the fdriver directory. The source code for zCPPdrive is also in driver, and uses some of the
same C source files (in driver and ch) that zdrive uses.

To compile the test drivers, use the following commands:

gmake [options] zdrive

gmake [options] zCPPdrive

gmake YES_FORTRAN=1 [options] zfdrive

where the options are described below.

Options to gmake:

ZOLTAN_ARCH=<platform>

Specify the target architecture. A corresponding file,
Utilities/Config/Config.<platform>, containing environment definitions
for <platform>, must be created in the Utilities/Config directory.

The drivers are placed in the Obj_<platform> directory.

Running the Test Drivers

The test drivers are run using an input command file. A fully commented example of this file and the
possible options can be found in zdrive.inp. The default name for the command file is zdrive.inp, and the
drivers will look for this file in the execution directory if an alternate name is not given on the command
line. If another filename is being used for the command file, it should be specified as the first argument
on the command line. (Note: zfdrive cannot read a command line argument; its input file must be named
zdrive.inp.)

For an example of a simple input file, see the figure below. In this problem, the method being used for
dynamic load balancing is RCB. Input data is read from Chaco input files simple.graph and
simple.coords. Zoltan's DEBUG_LEVEL parameter is set to 3; default values of all other parameters are

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html (1 of 2) [8/4/2006 9:21:12 AM]

http://www.cs.sandia.gov/CRF/chac.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

used. (Note: zfdrive can read only a simplified version of the input file. See the zfdrive notes in zdrive.inp
for more details.)

Decomposition method = rcb
Zoltan Parameters = Debug_Level=3
File Type = Chaco
File Name = simple
Parallel Disk Info = number=0

Example zdrive.inp file

The zdrive programs creates ascii files named "file_name.out.p.n", where file_name is the file name
specified in zdrive.inp, p is the number of processors on which zdrive was run, and n=0,1,...,p-1 is the
processor by which the file was created. (For zfdrive, the files are named "file_name.fout.p.n".) These
files are in the same directory where the input graph file was located for that processor. Each file
contains a list of global ids for the elements that are assigned to that processor after running Zoltan. The
input decomposition can also be written in this format to files "file_name.in.p.n"; see "zdrive debug
level" in zdrive.inp for more details.

Decompositions for 2D problems can be written to files that can be plotted by gnuplot. See "gnuplot
output" in zdrive.inp for more information. Decompositions for 3D problems can be viewed after the test
driver has finished by running the graphical tools vtk_view or vtk_write described next.

Adding New Algorithms

The driver has been set up in such a way that testing new algorithms that have been added to Zoltan is
relatively simple. The method that is in the input file is passed directly to Zoltan. Thus, this string must
be the same string that the parameter LB_METHOD is expecting.

[Table of Contents | Next: Visualizing Geometric Partitions |
Previous: References]

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html (2 of 2) [8/4/2006 9:21:12 AM]

http://www.gnuplot.org/
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

##
Zoltan Library for Parallel Applications
Copyright (c) 2000,2001,2002, Sandia National Laboratories.
This document is released under the GNU Lesser General Public License.
For more info, see the README file in the top-level Zoltan directory. #
##
##
CVS File Information
$RCSfile: zdrive.inp,v $
$Author: kddevin $
$Date: 2005/04/01 18:16:41 $
$Revision: 1.30 $
##
#
EXAMPLE OF zdrive.inp INPUT FILE FOR zdrive AND zfdrive.
#
##
GENERAL NOTES
#
1) Any line beginning with a "#" is considered a comment and will be
ignored by the file parser.
#
2) The order of the lines IS NOT significant.
#
3) Any lines that are optional are marked as such in this file. Unless
otherwise noted a line is required to exist in any input file.
#
4) The case of words IS NOT significant, e.g., "file" IS equivalent
to "FILE" or "File", etc.
#
5) The amount of blank space in between words IS significant. Each
word should only be separated by a single space.
#
6) Blank lines are ignored.
#
#
##

#+++
Decomposition Method = <method>
#
This line is used to specify the algorithm that Zoltan will use
for load balancing. Currently, the following methods that are acceptable:
rcb - Reverse Coordinate Bisection
octpart - Octree/Space Filling Curve
parmetis - ParMETIS graph partitioning
jostle - Jostle graph partitioning
reftree - Refinement tree partitioning

#---
Decomposition Method = rcb

#+++
Zoltan Parameters = <options>
#
This line is OPTIONAL. If it is not included, no user-defined parameters
will be passed to Zoltan.
#
This line is used to to specify parameter values to overwrite the default
parameter values used in Zoltan. These parameters will be passed to Zoltan

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (1 of 9) [8/4/2006 9:22:12 AM]

through calls to Zoltan_Set_Param(). Parameters are set by entries consisting
of pairs of strings "<parameter string>=<value string>".
The <parameter string> should be a string that is recognized by the
particular load-balancing method being used.
The parameter entries should be separated by commas.
When many parameters must be specified, multiple
"Zoltan Parameters" lines may be included in the input file.
NOTE: The Fortran90 driver zfdrive can read only one parameter per line.
#---
Zoltan Parameters = DEBUG_LEVEL=3
Zoltan Parameters = RCB_REUSE=0

#+++
File Type = <file type><,chaco options>
#
This line is OPTIONAL. If it is not included, then it is assumed that
the file type is parallel nemesis.
#
This line contains tells which format the file is in. The current
file types for this line are:
NemesisI - parallel ExodusII/NemesisI files (1 per processor)
Chaco - Chaco graph and/or geometry file(s)
#
For NemesisI input, the initial distribution of data is given in the
Nemesis files. For Chaco input, however, an initial decomposition is
imposed by the zdrive. Two initial distribution methods are provided.
The method to be used can be specified in the chaco options:
initial distribution = <option>
where <option> is
linear -- gives the first n/p objects to proc 0, the
next n/p objects to proc 1, etc.
cyclic -- assigns the objects to processors as one would
deal cards; i.e., gives the first object to proc 0,
the second object to proc 1, ..., the pth object to
proc (p-1),the (p+1)th object to proc 0, the (p+2)th
object to proc 1, etc.
file -- reads an initial distribution from the input file
<filename>.assign, where File Name is specified by
the "File Name" command line below.
owner -- for vertices, same as "linear." For hyperedge, send a
copy of a hyperedge to each processor owning one of its
vertices. (Multiple processors may then store each
hyperedge.)
If an initial distribution is not specified, the default is linear.
#
A second Chaco option is to distribute the objects over a subset
of the processors, not all processors. The syntax for this is:
initial procs = k
where k is an integer between 1 and the number of processors.
The objects will be evenly distributed among the k first
processors, using the distribution method optionally specified by
the "initial distribution" option.
#
Example:
File Type = chaco, initial distribution = cyclic, initial procs = 2
will give proc 0 objects 1, 3, 5, ... and proc 1 objects 2, 4, 6, ...
while procs 2 and higher get no objects.
NOTE: The Fortran90 driver zfdrive does not read NemesisI files.
NOTE: The Fortran90 driver zfdrive does not accept any Chaco options.
#---
File Type = NemesisI

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (2 of 9) [8/4/2006 9:22:12 AM]

#+++
File Name = <filename>
#
This line contains the filename for the input finite element mesh.
#
If the file type is NemesisI then this name refers to the base name
of the parallel ExodusII files that contain the results. The base
name is the parallel filename without the trailing .<# proc>.<file #>
on it. This file must contain the Nemesis global information.
#
If the file type is Chaco, this name refers to the base name of the
Chaco files containing graph and/or coordinates information. The
file <filename>.graph will be read for the Chaco graph information;
The file <filename>.coords will be read for Chaco geometry information.
The optional file <filename>.assign may be read for an initial decomposition
by specifying "initial distribution=file" on the "File Type" input line.
For more information about the format of these files, see
the Chaco user's guide.
#---
File Name = testa.par

#+++
Parallel Disk Info = <options>
#
This line is OPTIONAL. If this line is left blank, then it is assumed
that there is no parallel disk information, and all of the files are
in a single directory. This line is used only for Nemesis files.
#
This line gives all of the information about the parallel file system
being used. There are a number of options that can be used with it,
although for most cases only a couple will be needed. The options are:
#
number=<integer> - this is the number of parallel disks that the
results files are spread over. This number must
be specified, and must be first in the options
list. If zero (0) is specified, then all of the
files should be in the root directory specified
below.
list={list} - OPTIONAL, If the disks are not sequential, then a
list of disk numbers can be given. This list should
be enclosed in brackets "{}", and the disk numbers
can be seperated by any of the following comma,
blank space, tab, or semicolon.
offset=<integer> - OPTIONAL, This is the offset from zero that the
disk numbers begin with. If no number is specified,
this defaults to 1. This option is ignored if
"list" is specified.
zeros - OPTIONAL, This specifies that leading zeros are
used in the parallel file naming convention. For
example, on the Paragon, the file name for the
first pfs disk is "/pfs/tmp/io_01/". If this is
specified, then the default is not to have leading
zeros in the path name, such as on the teraflop
machine "/pfs/tmp_1/".
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Parallel Disk Info = number=4,zeros

#+++

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (3 of 9) [8/4/2006 9:22:12 AM]

Parallel file location = <options>
#
This line is OPTIONAL, only if the above line is excluded as well, or
the number of raids is specified as zero (0). If this line is excluded,
then the root directory is set to the execution directory, ".", and all
files should be in that directory. This line is used only for Nemesis
files.
#
This line gives all of the information about where the parallel files are
located. There are only two options for this line, and both must be
specified. The options are:
root=<root directory name>
This line is used to specify what the name of the root directory is
on the target machine. This can be any valid root directory
name. For example, if one is running on an SGI workstation and
using the "tflop" numbering scheme then you could use something
similar to "/usr/tmp/pio_" in this field so that files would be
written to root directories named:
/usr/tmp/pio_1
/usr/tmp/pio_2
.
.
.
/usr/tmp/pio_<Parallel Disk Info, number>
#
subdir=<subdirectory name>
This line specifies the name of the subdirectory, under the root
directory, where files are to be written. This is tacked onto
the end of the "root" after an appropriate integer is added to
"root". Continuing with the example given for "root", if "subdir"
had a value of "run1/input" files would be written to directories
named:
/usr/tmp/pio_1/run1/input/
/usr/tmp/pio_1/run1/input/
.
.
.
/usr/tmp/pio_<Parallel Disk Info, number>/run1/input/
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Parallel File Location = root=/pfs/io_, subdir=mmstjohn

#---
Zdrive debug level = <integer>
#
This line is optional. It sets a debug level within zdrive (not within
Zoltan) that determines what output is written to stdout at runtime.
The currently defined values are listed below. For a given debug level
value i, all debug output for levels <= i is printed.
#
0 -- No debug output is produced.
1 -- Evaluation of the initial and final partition is done
through calls to driver_eval and Zoltan_LB_Eval.
2 -- Function call traces through major driver functions are
printed.
3 -- Generate output files of initial distribution.
Debug Chaco input files.
4 -- Entire distributed mesh (elements, adjacencies, communication
maps, etc.) is printed. This output is done serially and can
be big and slow.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (4 of 9) [8/4/2006 9:22:12 AM]

#
Default value is 1.
#---
Zdrive debug level = 1

#---
text output = <integer>
#
This line is optional. If the integer specified is greater than zero,
zdrive produces files listing the partition and processor assignment of
each object. When "text output = 1," P files are generated, where P is
the number of processors used for the run. Files have suffix ".out.P.N",
where P is the number of processors and N = 0,...,P-1 is the processor that
generated the particular file.
#
Default value is 1.
#---
text output = 1

#---
gnuplot output = <integer>
#
This line is optional. If the integer specified is greater than zero,
zdrive produces files that can be plotted using gnuplot. Each processor
generates files containing its decomposition; these files are named
similarly to the standard output filenames generated by zdrive but they
include a "gnu" field. A file containing the gnuplot commands to actually
plot the decomposition is also generated; this file has a ".gnuload" suffix.
To plot the results, start gnuplot; then type
load "filename.gnuload"

The decomposition can be based on processor assignment or partition
assignment. See zdrive input line "plot partitions".
#
For Chaco input files, edges are not drawn between neighboring subdomains (
as Chaco input is balanced with respect to graph nodes). Data style
"linespoints" is used; this style can be changed using gnuplot's
"set data style ..." command.
#
In addition, processor assignments are written to the parallel Nemesis files
to be viewed by other graphics packages (avs, mustafa, blot, etc.). Note
that the parallel Nemesis files must have space allocated for at least one
elemental variable; this allocation is done by nem_spread.
#
Gnuplot capability currently works only for 2D problems.
#
Default value is 0.
#---
gnuplot output = 0

#---
nemesis output = <integer>
#
This line is optional. If the integer specified is greater than zero,
zdrive writes subdomain assignment information to parallel nemesis files.
These files match the input nemesis file names, but contain a ".blot" suffix.
The SEACAS utility nem_join can combine these files into a single Exodus file
for plotting by blot, avs, mustafa, etc. Note that the input parallel
Nemesis files must have space allocated for at least one
elemental variable; this allocation is done by nem_spread.
#

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (5 of 9) [8/4/2006 9:22:12 AM]

The decomposition can be based on processor assignment or partition
assignment. See zdrive input line "plot partitions".
#
This option does nothing for Chaco input files.
#
Default value is 0.
#---
nemesis output = 0

#---
plot partitions = <integer>
#
This line is optional. If the integer specified is greater than zero,
zdrive writes partition assignments to the gnuplot or nemesis output files;
one file per partition is generated.
Otherwise, zdrive writes processor assignments to the gnuplot or nemesis
output files, with one file per processor generated.
#
See zdrive input lines "gnuplot output" and "nemesis output".
#
Default value is 0 (processor assignments written).
#---
plot partitions = 0

#---
print mesh info file = <integer>
#
This line is optional. If the integer specified is greater than zero,
zdrive produces files describing the mesh connectivity. Each processor
generates a file containing its vertices (with coordinates) and elements
(with vertex connectivity); these files are named
similarly to the standard output filenames generated by zdrive but they
include a ".mesh" suffix.

Default value is 0.
#---
print mesh info file = 0

#---
Chaco input assignment inverse = <integer>
#
This line is optional. It sets the IN_ASSIGN_INV flag, indicating that
the "inverse" Chaco assignment format should be used if a Chaco assignment
file is read for the initial decomposition. If this flag is 0, the assignment
file lists, for each vertex, the processor to which it is assigned. If this
flag is 1, the assignment file includes, for each processor, the number of
vertices assigned to the processor followed by a list of those vertices.
See the Chaco User's guide for a more detailed description of this parameter.
#
Default value is 0.
#---
Chaco input assignment inverse = 0

#---
Number of Iterations = <integer>
#
This line is optional. It indicates the number of time the load-balancing
method should be run on the input data. The original input data is passed
to the method for each invocation.
Multiple iterations are useful primarily for testing the RCB_REUSE parameter.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (6 of 9) [8/4/2006 9:22:12 AM]

Default value is 1.
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Number of Iterations = 1

#---
zdrive action = <integer>
#
This line is optional. It indicates the action the driver should take,
typically load-balancing or ordering. Valid values are:

0 -- No action.
1 -- Load balance.
2 -- Order.
3 -- First load balance, then order.
#
Default value is 1 (load balance).
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
zdrive action = 1

#---
Test Drops = <integer>
#
This line signals that zdrive should exercise the box- and point-assign
capability of Zoltan. Note that the partitioning method must support
box- and point-drop, and appropriate parameters (e.g., Keep_Cuts) must also
be passed to Zoltan; otherwise, an error is returned from the box- and
point-assign functions.
#
Default value is 0.
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Test Drops = 0

#---
Test DDirectory = <integer>
#
This line signals that zdrive should exercise the Distributed Directory
utility of Zoltan. Comparisons between zdrive-generated communication maps
and DDirectory-generated communication maps are done. If a difference is
found, a diagnostic message containing "DDirectory Test" is printed as
output from zdrive.
#
Default value is 0.
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Test DDirectory = 0

#---
Test Null Import Lists = <integer>
#
This line signals that zdrive should test Zoltan's capability to accept
NULL import lists to Zoltan_Help_Migrate. It allows the driver to pass NULL
import lists. This flag's value should not affect the output of zdrive.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (7 of 9) [8/4/2006 9:22:12 AM]

#
Default value is 0.
#
NOTE: The Fortran90 driver zfdrive ignores this input line.
#---
Test Null Import Lists = 0

#---
Test Multi Callbacks = <integer>
#
This line signals that zdrive should test the list-based (MULTI) callback
functions. If this line is set to 1, zdrive registers list-based callback
functions. Otherwise, callbacks on individual functions are registered.
This flag's value should not affect the output of zdrive.
#
Default value is 0.
#---
Test Multi Callbacks = 0

#---
Test Local Partitions = <integer>
#
This line signals that zdrive should test Zoltan using various values
of the NUM_LOCAL_PARTITIONS parameter and/or nonuniform partition sizes.
While setting NUM_LOCAL_PARTITIONS using a "Zoltan Parameter" above
would make all processors have the same number of local partitions,
this flag allows different processors to have different values for
NUM_LOCAL_PARTITIONS.
Valid values are integers from 0 to 7.
0: NUM_LOCAL_PARTITIONS is not set (unless specified as a
"Zoltan Parameter" above).
1: Each processor sets NUM_LOCAL_PARTITIONS to its processor number;
e.g., processor 0 requests zero local partitions; processor 1
requests 1 local partition, etc.
2: Each odd-numbered processor sets NUM_LOCAL_PARTITIONS to its
processor number; even-numbered processors do not set
NUM_LOCAL_PARTITIONS.
3: One partition per proc, but variable partition sizes.
Only set partition sizes for upper half of procs
(using Zoltan_LB_Set_Part_Sizes and global partition numbers).
4: Variable number of partitions per proc, and variable
partition sizes. Proc i requests i partitions, each
of size 1/i.
5: One partition per proc, but variable partition sizes.
Same as case 3, except all sizes are increased by one to
avoid possible zero-sized partitions.
6: One partition per proc, but variable partition sizes.
When nprocs >= 6, zero-sized partitions on processors >= 2.
(This case is of particular interest for HSFC.)
7: One partition per proc, but variable partition sizes.
When nprocs >= 6, zero-sized partitions on processors <= 3.
(This case is of particular interest for HSFC.)

Default value is 0.
#---
Test Local Partitions = 0

#---
Test Generate Files = <integer>
#
This line signals that zdrive should test Zoltan using Zoltan_Generate_Files

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (8 of 9) [8/4/2006 9:22:12 AM]

to produce output files that describe the geometry, graph, or hypergraph
used in the load-balancing. Such files may be useful for debugging.
#
0: Do not generate files.
1: Generate files.
#
Default value is 0.
#---
Test Generate Files = 0

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (9 of 9) [8/4/2006 9:22:12 AM]

Zoltan Developer's Guide | Next | Previous

Appendix: Visualization of Geometric Partitionings
Graphical images of partitioned meshes can help you to understand the geometric partitioning algorithms of Zoltan
and to debug new or existing algorithms. The following sections describe methods for visualizing the partitionings
computed by the test drivers.

2D problems with gnuplot

To view the result of a 2D decomposition performed by the test driver, use the "gnuplot output" option of the test
driver input file, as described in zdrive.inp. The test driver will write a file that can be loaded into gnuplot. The result
for the test mesh in directory ch_film2, partitioned into six regions with RCB, is something like this:

[gnuplot 2D view]

Zoltan Developer's Guide: Visualization of Geometric Partitionings

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (1 of 4) [8/4/2006 9:21:13 AM]

http://www.gnuplot.org/

3D problems with vtk_view

3D visualization requires downloading and compiling the Visualization Toolkit (VTK) library (version 5.0 or later).
You can then use the Zoltan top level Makefile to build the vtk_view application found in the util directory of Zoltan.
Build details can be found in the Config.generic file in Utilities/Config. Note that you will have to download and
build CMake, the makefile generator used by VTK, before you can build VTK.

vtk_view is a parallel MPI program. It does not need to be run with the same number of processes with which you ran
zdrive. You can choose the number of processes based on the size of the input mesh you will be visualizing, and the
computational load of rendering it to an image at interactive rates.

If you run vtk_view in the directory in which you ran the test driver, the following will happen:

vtk_view will read zdrive.inp, or another input parameter file if you specify a different file on the command
line.

●

It will read in the same input Chaco or Exodus II mesh that the test driver read in.●

It will read in the file_name.out.p.n files that the test driver wrote listing the partition assigned to every global
ID.

●

It will open a window on your display, showing the input mesh. For Chaco files, the mesh vertices will be
colored by the partition into which Zoltan placed them. For Exodus II files, the mesh elements will be so
colored. A scalar bar in the window indicates the mapping from colors to partition numbers. A caption
describes the input file name, the decomposition method, the Zoltan parameter settings, and so on. You can
use your mouse to rotate the volume, pan and zoom in and out.

●

The example below shows how vtk_view displays the mesh in the test directory ch_brack2_3 after it has been
partitioned with HSFC across 5 processes.

Zoltan Developer's Guide: Visualization of Geometric Partitionings

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (2 of 4) [8/4/2006 9:21:13 AM]

http://www.vtk.org/
file:///www.cmake.org
http://www.vtk.org/

[vtk_view 3D view]

If no test driver output files are found, vtk_view will display the mesh without partition IDs.

There are a few additional options that can be added to the test driver input file, that are specifically for vtk_view.

zdrive count = <number> the number of file_name.out.p.n files, also the value of p

image height = <number> number of pixels in height of image (default is 300)

image width = <number> number of pixels in width of image (300)

omit caption = <1 or 0> do not print default caption in window if "1" (0)

omit scalar bar = <1 or 0> do not print scalar bar in window if "1" (0)

add caption = <text of caption> display indicated text in the window (no caption)

The zdrive count option may be required if you have more than one set of test driver output files in the directory.
Otherwise, vtk_view will look for files of the form file_name.out.p.n for any value p. Note that since the window may
be resized with the mouse, you may not need image height and image width unless you must have a very specific
window size. Also note that if you ran the Fortan test driver zfdrive, you will need to rename the output files from
file_name.fout.p.n to file_name.out.p.n.

Zoltan Developer's Guide: Visualization of Geometric Partitionings

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (3 of 4) [8/4/2006 9:21:13 AM]

Off-screen rendering with vtk_write

In some situations it is not possible or not convenient to open a window on a display. In that case, you can compile
util/vtk_view.cpp with the flag OUTPUT_TO_FILE and it will create a program that renders the image to a file
instead of opening a window on a display. (The Zoltan top level Makefile does exactly this when you use the
vtk_write target.)

Note that while vtk_view is built with OpenGL and VTK, vtk_write must be built with Mesa GL and a version of the
VTK libraries that you have compiled with special Mesa flags and with the Mesa header files. This is because
OpenGL implementations are not in general capable of off-screen rendering, and Mesa GL is. The Config.generic
file in Utilities/Config describes in detail how to build Mesa and then VTK for off-screen rendering.

vtk_write goes through the same steps that vtk_view does, except at the end it writes one or more image files instead
of opening a window on your display. The images begin with a camera focused on the mesh, pointing in the direction
of the negative Z-axis. The positive Y-axis is the "up" direction, and we use a right-handed coordinate system. (So
the X-axis is pointing to the right.) The camera can revolve around the mesh in 1 degree increments.

The zdrive count, image width, and image height options listed above also apply to vtk_write. In addition, you can
use these options to govern the output images.

output format = <format name> choices are tiff, png, jpeg, ps and bmp (default is tiff)

output name = <file name> base name of image file or files (outfile)

output frame start = <number> first frame, between 0 and 360 (0)

output frame stop = <number> last frame, between 0 and 360 (0)

output frame stride = <number> the difference in degrees from one frame to the next (1)

output view up = <x y z> the direction of "up" as camera points at mesh (0 1 0)

Other file formats

vtk_view was written to post-process zdrive runs, so it only reads Chaco or Exodus II/Nemesis meshes. If you are
working with a different mesh-based file format, it is still possible that you could use vtk_view or vtk_write to view
the partitions assigned to your mesh by some application using the Zoltan library. VTK at this point in time has
readers for many different file formats. If VTK has a reader for your format, then modify the read_mesh function in
util/vtk_view.cpp to use that reader.

You can then hard-code vtk_view to read your file, or you can modify read_cmd_file in driver/dr_input.c to accept a
specification of your file type in addition to Chaco and Nemesis. If you do the latter you can create a zdrive-style
input file in which to specify your file name and other visualization parameters.

Finally, you need to create text files listing each global ID you supplied to Zoltan, followed by the partition ID
assigned by Zoltan, with only one global ID/partition ID pair per line. Name this file or files using the conventions
used by the test drivers.

[Table of Contents | Next: Using the Test Script | Previous: Using the Test Drivers]

Zoltan Developer's Guide: Visualization of Geometric Partitionings

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (4 of 4) [8/4/2006 9:21:13 AM]

file:///www.vtk.org
file:///www.mesa3d.org
file:///www.vtk.org
file:///www.vtk.org

Zoltan Developer's Guide | Next | Previous

Appendix: Using the test script test_zoltan
The purpose of the Zoltan test script is to run the test driver zdrive (or zfdrive) on a set of test problems to
verify that the Zoltan library works correctly. The script compares the output of actual runs with
precomputed output. The assumption is that if the outputs are identical, then the current implementation
is is likely to be correct. Small differences may occur depending on the architectures used; developers
should examine the output and use their judgement in determining its correctness. It is strongly
recommended that developers run test_zoltan to verify correctness before committing changes to existing
code!

How to run test_zoltan

First make sure you have compiled the driver zdrive (or zfdrive). Then go to the Zoltan directory
Zoltan/tests and type test_zoltan with suitable options as described below. This will run the test script in
interactive mode. The output from the driver will be sent to stdout and stderrstdout and stderr with a
summary of results. The summary of results is also saved in a log file. If an error occured, look at the log
file to find out what went wrong. The script currently assumes that runs are deterministic and
reproducible across all architectures, which is not necessarily true. Hence false alarms may occur.

Syntax

 test_zoltan [-arch arch-type] [-cmd command] [other options as listed below]

It is required to use either the -arch or the -cmd option. The other arguments are optional.

Options:
-arch arch-type The architecture on which the driver is to run. For a list of currently supported

architectures, type test_zoltan with no arguments.
-cmd command The command is the command that the script uses to launch the driver. One

must include an option to specify the number of processors as part of the
command. Use quotes appropriately; for example, -cmd 'mpirun -np'. Default
settings have been provided for all the supported architectures.

-logfile filename The name of the log file. The default is test_zoltan.log. If an old log file
exists, it will be moved to test_zoltan.log.old.

-no_parmetis Do not run any ParMETIS methods.
-no_nemesis Do not run test problems in Nemesis format.
-no_chaco Do not run test problems in Chaco format.

-yes_fortran Run the Fortran90 driver zfdrive instead of zdrive.

The default behavior is to run zdrive all methods on all types of input format.

Zoltan Developer's Guide: Running test_zoltan

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_test_script.html (1 of 2) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
http://www.cs.sandia.gov/CRF/chac.html

Test problems

The test problems are included in subdirectories of the Zoltan/test directory. Problems using Chaco input
files are in subdirectories ch_*; problems using Nemesis input files are in subdirectories nem_*. Please
see the README files located in each test directory for more details on these test problems.

Load balancing methods

Many different load-balancing methods are currently tested in test_zoltan. Input files for the methods are
found in the test problem subdirectories. The input files are named zdrive.inp.<method>, where
<method> indicates which load-balancing method is passed to Zoltan. To run only a subset of the
methods, edit the test_zoltan script manually; searching for "rcb" shows which lines of the script must be
changed.

Number of processors

The script test_zoltan runs each test problem on a predetermined number of processors, currently ranging
from 3 to 9.

[Table of Contents | Next: RCB | Previous: Visualization of Geometric Partitionings]

Zoltan Developer's Guide: Running test_zoltan

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_test_script.html (2 of 2) [8/4/2006 9:21:14 AM]

http://www.cs.sandia.gov/CRF/chac.html

Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Coordinate Bisection (RCB)

Outline of Algorithm

The implementation of Recursive Coordinate Bisection (RCB) in Zoltan is due to Steve Plimpton of
Sandia National Laboratories and was modified by Matt St. John and Courtenay Vaughan. In this
implementation of RCB, the parallel computer is first divided into two pieces and then the computational
domain is divided into two pieces such that the proportion of work in each piece is the same as the
proportion of computational power. The division of the parallel machine is done by a subroutine which is
part of the support for heterogenous architectures that is being built into the Zoltan library. This process
is repeated recursively on each subdomain and its associated part of the computer. Each of these
divisions are done with a cutting plane that is orthogonal to one of the coordinate axes.

At each of these stages, each subdomain of processors and the objects that are contained on those
processors are divided into two sets based on which side of the cutting plane each object is on. Either or
both of these sets may be empty. On each processor, the set of objects which are on the same side of the
cut as the processor are retained by the processor, while the other objects are sent to processors on the
other side of the cut. In order to minimize the maximum memory usage in each set of processors, the
objects that are being sent to each set of processors are distributed such that each each processor in a set
has about the same number of objects after the objects from the other set of processors are sent. In the
case when a processor has more objects that it will retain than the average number of objects that the rest
of the processors have in its set, then that processor will not receive any objects. Thus each processor
may send and receive objects from several (or no) processors in the other set. The process of determining
which outgoing objects are sent to which processors is determined in the subroutine
Zoltan_Create_Proc_List. Once this new distribution of objects is determined, the unstructured
communication package in Zoltan is used to determine which processors are going to receive which
objects and actually move the objects.

For applications that wish to add more objects to the decomposition at a later time (e.g., through
Zoltan_LB_Box_Assign or Zoltan_LB_Point_Assign), information to do this can be retained during
the decomposition phase. This information is kept if the parameter KEEP_CUTS is set during the
decomposition (see the RCB section in the Zoltan User's Guide). This information about the
decomposition can be thought of as a tree with the nodes which have children representing the cut
information and the nodes with no children representing processors. An object is dropped through the
tree starting with the root node and uses the cut information at each node it encounters to determine
which subtree it traverses. When it reaches a terminal node, the node contains the processor number that
the object belongs to. The information to construct the tree is saved during the decomposition. At each
step in the decomposition, when each set is divided into two sets, the set with the lowest numbered
processor is designated to be the left set and the information about the cut is stored in the lowest
numbered processor in the other set of processors which is the right set. As a result of this process, each
processor will store information for, at most, one cut, since once a processor stores information about a

Zoltan Developer's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcb.html (1 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

cut, by being the lowest numbered processor in the right set, it will always be in a left set after each
subsequent cut since it will be the lowest numbered processor in the set being cut and the set it is put into
will be the left set. The processor which stores the cut information also stores the root node as its parent.
After the end of the division process, all of the information is collected onto all of the processors. The
parent information is then used to establish the leaf information for the parent. When this information is
gathered, the tree structure is stored in arrays with the array position determined by the processor number
that was storing the information. There is an array which stores the position of the cut information for the
left set and one for the right set as well as arrays for the cut information. Given that the lowest numbered
processor after a cut is in the left set, the cut information is stored in the right set, and there is one fewer
cut than the total number of processors, processor 0 has no cut information, so the 0 position of the right
set array is empty and is used to store the position in the array that the first cut is stored. When this
information is used to process an object, array position 0 in the right set array is used to determine the
array position of the first cut. From there, which side of the cut the object is on is determined and that
information is used to determine which cut to test the object against next. This process is repeated
recursively until a terminal node is encountered which contains the processor number that the object
belongs to.

When the parameter RCB_REUSE is specified, the RCB algorithm attempts to use information from a
previous RCB decomposition to generate an "initial guess" at the new decomposition. For problems that
change little between invocations of RCB, using RCB_REUSE can reduce the amount of data movement
in RCB, improving the performance of the algorithm. When RCB_REUSE is true,the coordinates of all
objects obtained through query functions are passed through Zoltan_LB_Point_Assign to determine
their processor assignment in the previous RCB decomposition. The information for the objects is then
sent to the new processor assignments using the unstructured communication utilities to generate an
initial condition matching the output of the previous RCB decomposition. The normal RCB algorithm is
then applied to this new initial condition.

Data Structure Definitions

There are three major data structures in RCB and they are defined in rcb/rcb.h and rcb/shared.h. The
points which are being load balanced are represented as a structure Dot_Struct which contains the
location of the point, its weight, and its originating processor number. The nodes on the decomposition
tree are represented by the structure rcb_tree which contains the position of the cut, the dimension that
the cut is perpendicular to, and the node's parent and two children (if they exist) in the tree. The structure
RCB_Struct is the RCB data structure which holds pointers to all of the other data structures needed for
RCB. It contains an array of Dot_Struct to represent the points being load balanced, global and local IDs
for the points, and an array of rcb_tree (whose length is the number of processors) which contains the
decomposition tree.

Parameters

The parameters used by RCB and their default values are described in the RCB section of the Zoltan
User's Guide. These can be set by use of the Zoltan_RCB_Set_Param subroutine in the file rcb/rcb.c.

Zoltan Developer's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcb.html (2 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

When the parameter REDUCE_DIMENSIONS is specified, the RCB algorithm will perform a lower
dimensional partitioning if the geometry is found to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for RCB is Zoltan_RCB in the file rcb/rcb.c.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous: Using the Test Script]

Zoltan Developer's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcb.html (3 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html

Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Inertial Bisection (RIB)

Outline of Algorithm

The implementation of Recursive Inertial Bisection (RIB) in Zoltan is due due to Bruce Hendrickson and
Robert Leland of Sandia National Laboratories for use in Chaco and was modified by Courtenay
Vaughan. RIB is an algorithm similar to RCB (see the appendix on RCB for a description of RCB) in
that it uses the coordinates of the objects to be balanced to do the load balancing. Similarly to RCB, the
domain is recursively divided into two pieces until the number of subdomains needed is reached. In each
stage of the division, the direction of the principle axis of the domain to be divided is calculated by
determining an eigenvector of the inertial matrix. This direction vector is used to define a normal to a
plane which is used to divide the domain into two pieces. This process is repeated until the desired
number of subdomains is reached.

The communication of objects being divided is handled by the same routine as is used by RCB. For
applications which wish to add more objects to the decomposition at a later time (e.g., through
Zoltan_LB_Box_Assign or Zoltan_LB_Point_Assign), information to do this can be retained during
the decomposition phase. This information is kept if the parameter KEEP_CUTS is set during the
decomposition. The process is similar to that used for RCB, but the information kept is different. For
each RIB cut, the center of mass of the subdomain which is cut, the direction vector, and a distance from
the center of mass to the cutting plane have to be saved.

Data Structure Definitions

There are three major data structures in RIB and they are defined in rcb/rib.h and rcb/shared.h. The
points which are being load balanced are represented as a structure Dot_Struct which contains the
location of the point, its weight, and the originating processor's number. The nodes on the decomposition
tree are represented by the structure rib_tree which contains the position of the cut, the center of mass of
the subdomain which is being cut, the direction vector of the principle axis of the subdomain, and the
node's parent and two children (if they exist) in the tree. The structure RIB_Struct is the RIB data
structure which holds pointers to all of the other data structures needed for RIB. It contains an array of
Dot_Struct to represent the points being load balanced, global and local IDs of the points, an array of
rib_tree (whose length is the number of processors) which contains the decomposition tree, and the
dimension of the problem.

Parameters

The parameters used by RIB and their default values are described in the RIB section of the Zoltan
User's Guide. These can be set by use of the Zoltan_RIB_Set_Param subroutine in the file rcb/rib.c.

Zoltan Developer's Guide: RIB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rib.html (1 of 2) [8/4/2006 9:21:14 AM]

http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

When the parameter REDUCE_DIMENSIONS is specified, the RIB algorithm will perform a lower
dimensional partitioning if the geometry is found to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for RIB is Zoltan_RIB in the file rcb/rib.c.

[Table of Contents | Next: ParMETIS and Jostle | Previous: Recursive Coordinate Bisection (RCB)]

Zoltan Developer's Guide: RIB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rib.html (2 of 2) [8/4/2006 9:21:15 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html

Zoltan Developer's Guide | Next | Previous

Appendix: ParMETIS and Jostle

Overview of structure (algorithm)

This part of Zoltan provides an interface to various graph-based load-balancing algorithms. Currently
two libraries are supported: ParMETIS and Jostle. Each of these libraries contain several algorithms.

Interface algorithm

The structure of the code is as follows: Each package (ParMETIS, Jostle) has its own wrapper routine
that performs initialization and sets parameters. The main routine is Zoltan_ParMetis_Jostle, which
constructs an appropriate graph data structure using Zoltan's query functions. After the graph structure
has been constructed, the appropriate library is called and the import/export list is created and returned.

Please note that ParMETIS and Jostle are not integral parts of Zoltan. These libraries must be obtained
and installed separately. (ParMETIS may be bundled with Zoltan, but it is an independent package
developed at Univ. of Minnesota.) Zoltan merely provides an interface to these libraries.

The most complex task in the interface code is the construction of the graph data structure. This structure
is described in the next section. The routine uses the Zoltan query functions to get a list of objects and
edges on each processor. Each object has a unique global ID which is mapped into a unique (global)
number between 1 and n, where n is the total number of objects. The construction of the local
(on-processor) part of the graph is straightforward. When an edge goes between objects that reside on
different processors, global communication is required. We use Zoltan's unstructured communication
library for this. A hash function (Zoltan_Hash) is used to efficiently map global IDs to integers. The
graph construction algorithm has parallel complexity O(maxj {nj+mj+p}), where nj is the number of
objects on processor j, mj is the number of edges on processor j, and p is the number of processors.

One other feature of the interface code should be mentioned. While Zoltan allows objects and edges to
have real (float) weights, both ParMETIS and Jostle currently require integer weights. Therefore, Zoltan
first checks if the object weights are integers. If not, the weights are automatically scaled and rounded to
integers. The scaling is performed such that the weights become large integers, subject to the constraint
that the sum of (any component of) the weights is less than a large constant MAX_WGT_SUM <
INT_MAX. The scaled weights are rounded up to the nearest integer to ensure that nonzero weights
never become zero. Note that for multidimensional weights, each weight component is scaled
independently. (The source code is written such that this scaling is simple to change.)

Currently Zoltan constructs and discards the entire graph structure every time a graph-based method
(ParMETIS or Jostle) is called. Incremental update of the graph structure may be supported in the future.

The graph construction code in Zoltan_ParMetis_Jostle can also be used to interface with other
graph-based algorithms. Please contact the Zoltan developers if you have a parallel partitioning or
load-balancing code and would like assistance with interfacing it to Zoltan.

Zoltan Developer's Guide: ParMETIS/Jostle

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_parmetis.html (1 of 2) [8/4/2006 9:21:15 AM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
mailto:zoltan@cs.sandia.gov

Algorithms used in ParMETIS and Jostle libraries

There are two main types of algorithms used in ParMETIS and Jostle. The first is multilevel graph
partitioning. The main idea is to take a large graph and construct a sequence of smaller and simpler
graphs that in some sense approximate the original graph. When the graph is sufficiently small it is
partitioned using some other method. This smallest graph and the corresponding partition is then
propagated back through all the levels to the original graph. A popular local refinement strategy known
as Kernighan-Lin is employed at some or every level.

The second main strategy is diffusion. This method assumes that an initial partition (balance) is given,
and load balance is achieved by repeatedly moving objects (nodes) from partitions (processors) that have
too heavy load to neighboring partitions (processors) with too small load.

For further details about the algorithms in a specific library, please refer to the documentation that is
distributed with that library.

Data structures

We use the ParMETIS parallel graph structure. This is implemented using 5 arrays:

vtxdist: gives the distribution of the objects (vertices) to processors1.

xadj: indices (pointers) to the adjncy array2.

adjncy: neighbor lists3.

adjwgt: edge weights4.

vwgt: vertex (object) weights5.

The vtxdist array is duplicated on all processors, while the other arrays are local.
For more details, see the ParMETIS User's Guide.

Parameters

Zoltan supports the most common parameters in ParMETIS and Jostle. These parameters are parsed in
the package-specific wrapper routine (Zoltan_ParMetis or Zoltan_Jostle) and later passed on to the
desired library via Zoltan_ParMetis_Jostle.

In addition, Zoltan has one graph parameter of its own: CHECK_GRAPH. This parameter is set in
Zoltan_ParMetis_Jostle and specifies the amount of verification that is performed on the constructed
graph. For example, it is required that the graph is symmetric and that the weights are non-negative.

Main routine

The main routine is Zoltan_ParMetis_Jostle but it should always be accessed through either
Zoltan_ParMetis or Zoltan_Jostle.

[Table of Contents | Next: Hypergraph Partitioning | Previous: Recursive Inertial Bisection (RIB)]

Zoltan Developer's Guide: ParMETIS/Jostle

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_parmetis.html (2 of 2) [8/4/2006 9:21:15 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide | Next | Previous

Appendix: Hypergraph Partitioning
Hypergraph partitioning is a useful partitioning and load balancing method when connectivity data is
available. It can be viewed as a more sophisticated alternative to the traditional graph partitioning.

A hypergraph consists of vertices and hyperedges. A hyperedge connects one or more vertices. A graph
is a special case of a hypergraph where each edge has size two (two vertices). The hypergraph model is
well suited to parallel computing, where vertices correspond to data objects and hyperedges represent the
communication requirements. The basic partitioning problem is to partition the vertices into k
approximately equal sets such that the number of cut hyperedges is minimized. Most partitioners
(including Zoltan-PHG) allows a more general model where both vertices and hyperedges can be
assigned weights. It has been shown that the hypergraph model gives a more accurate representation of
communication cost (volume) than the graph model. In particular, for sparse matrix-vector
multiplication, the hypergraph model exactly represents communication volume. Sparse matrices can be
partitioned either along rows or columns; in the row-net model the columns are vertices and each row
corresponds to an hyperedge, while in the column-net model the roles of vertices and hyperedges are
reversed.

Zoltan contains a native parallel hypergraph partitioner, called PHG (Parallel HyperGraph partitioner). In
addition, Zoltan provides access to PaToH, a serial hypergraph partitioner. Note that PaToH is not part of
Zoltan and should be obtained separately from the PaToH web site. Zoltan-PHG is a fully parallel
multilevel hypergraph partitioner. For further technical description, see [Devine et al, 2006].

Algorithm:

The algorithm used is multilevel hypergraph partitioning. For coarsening, several versions of inner
product (heavy connectivity) matching are available. The refinement is based on Fiduccia-Mattheysis
(FM) but in parallel it is only an approximation.

Parallel implementation:

A novel feature of our parallel implementation is that we use a 2D distribution of the hypergraph. That is,
each processor owns partial data about some vertices and some hyperedges. The processors are logically
organized in a 2D grid as well. Most communication is limited to either a processor row or column. This
design should allow for good scalability on large number of processors.

Data structures:

The hypergraph is the most important data structure. This is stored as a compressed sparse matrix. Note
that in parallel, each processor owns a local part of the global hypergraph (a submatrix of the whole
matrix). The hypergraph data type is struct HGraph, and contains information like number of vertices,
hyperedges, pins, compressed storage of all pins, optional vertex and edge weights, pointers to relevant
communicators, and more. One cryptic notation needs an explanation: The arrays hindex, hvertex are
used to look up vertex info given a hyperedge, and vindex, vedge are used to look up hyperedge info

Zoltan Developer's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (1 of 4) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_alg_reftree.html
http://bmi.osu.edu/%7Eumit/software.htm
http://bmi.osu.edu/%7Eumit/software.htm
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_refs.html#hypergraph-ipdps06

given a vertex. Essentially, we store the hypergraph as a sparse matrix in both CSR and CSC formats.
This doubles the memory cost but gives better performance.

Parameters:

In the User's Guide, only the most eessential parameters have been documented. There are several other
parameters, intended for developers and perhaps expert "power" users. We give a complete list of all
parameters below. Note that these parameters may change in future versions!

Method String: HYPERGRAPH
Parameters:
 HYPERGRAPH_PACKAGE PHG (parallel) or PaToH (serial)

 CHECK_HYPERGRAPH
Check if input data is valid. (Slows performance;intended
for debugging.)

 PHG_OUTPUT_LEVEL Level of verbosity; 0 is silent.
 PHG_FINAL_OUTPUT Print stats about final partitioning? (0/1)

 PHG_NPROC_VERTEX
Desired number of processes in the vertex direction (for 2D
internal layout)

 PHG_NPROC_HEDGE
Desired number of processes in the hyperedge direction (for
2D internal layout)

 PHG_COARSENING_METHOD The method to use in matching/coarsening; currently these
are available.
ipm - inner product matching (a.k.a. heavy connectivity
matching)
c-ipm - column ipm; faster method based on ipm within
processor columns
a-ipm - alternate between fast method (l-ipm) and ipm
l-ipm - local ipm on each processor. Fastest option but
often gives poor quality.
h-ipm - hybrid ipm that uses partial c-ipm followed by ipm
on each level

 PHG_COARSENING_LIMIT Number of vertices at which to stop coarsening.

 PHG_VERTEX_VISIT_ORDER

Ordering of vertices in greedy matching scheme:
0 - random
1 - natural order (as given by the query functions)
2 - increasing vertex weights
3 - increasing vertex degree
4 - increasing vertex degree, weighted by pins

 PHG_EDGE_SCALING

Scale edge weights by some function of size of the
hyperedges:
0 - no scaling
1 - scale by 1/(size-1) [absorption scaling]
2 - scale by 2/((size*size-1)) [clique scaling]

Zoltan Developer's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (2 of 4) [8/4/2006 9:21:16 AM]

 PHG_VERTEX_SCALING

Variations in "inner product" similarity metric (for
matching):
0 - Euclidean inner product: <x,y>
1 - cosine similarity: <x,y>/(|x|*|y|)
2 - <x,y>/(|x|^2 * |y|^2)
3 - scale by sqrt of vertex weights
4 - scale by vertex weights

 PHG_COARSEPARTITION_METHOD Method to partition the coarsest (smallest) hypergraph;
typically done in serial:
random - random
linear - linear (natural) order
greedy - greedy method based on minimizing cuts
auto - automatically select from the above methods (in
parallel, the processes will do different methods)

 PHG_REFINEMENT_METHOD
Refinement algorithm:
 fm - two-way approximate FM
none - no refinement

 PHG_REFINEMENT_LOOP_LIMIT
Loop limit in FM refinement. Higher number means more
refinement.

PHG_REFINEMENT_MAX_NEG_MOVE

Maximum number of negative moves allowed in FM.

 PHG_BAL_TOL_ADJUSTMENT Controls how the balance tolerance is adjusted at each level
of bisection.

 PHG_RANDOMIZE_INPUT
Randomize layout of vertices and hyperedges in internal
parallel 2D layout? (0/1)

 PHG_EDGE_WEIGHT_OPERATION

Operation to be applied to edge weights supplied by
different processes for the same hyperedge:
add - the hyperedge weight will be the sum of the supplied
weights
max - the hyperedge weight will be the maximum of the
supplied weights
error - if the hyperedge weights are not equal, Zoltan will
flag an error, otherwise the hyperedge weight will be the
value returned by the processes

 EDGE_SIZE_THRESHOLD Ignore hyperedges greater than this fraction times number
of vertices.

 PATOH_ALLOC_POOL0
Memory allocation for PaToH; see the PaToH manual for
details.

 PATOH_ALLOC_POOL1
Memory allocation for PaToH; see the PaToH manual for
details.

Default values:
HYPERGRAPH_PACKAGE = PHG
CHECK_HYPERGRAPH = 0
PHG_OUTPUT_LEVEL=0

Zoltan Developer's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (3 of 4) [8/4/2006 9:21:16 AM]

PHG_FINAL_OUTPUT=0
PHG_REDUCTION_METHOD=ipm
PHG_REDUCTION_LIMIT=100
PHG_VERTEX_VISIT_ORDER=0
PHG_EDGE_SCALING=0
PHG_VERTEX_SCALING=0
PHG_COARSEPARTITION_METHOD=greedy
PHG_REFINEMENT_METHOD=fm
PHG_REFINEMENT_LOOP_LIMIT=10
PHG_REFINEMENT_MAX_NEG_MOVE=100
PHG_BAL_TOL_ADJUSTMENT=0.7
PHG_RANDOMIZE_INPUT=0
PHG_EDGE_WEIGHT_OPERATION=max
EDGE_SIZE_THRESHOLD=0.25
PATOH_ALLOC_POOL0=0
PATOH_ALLOC_POOL1=0

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
pair
ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN

Optional Query Functions:
ZOLTAN_HG_SIZE_EDGE_WTS_FN
ZOLTAN_HG_EDGE_WTS_FN

It is possible to provide the graph query functions instead of the hypergraph queries, though this is not
recommended. If only graph query functions are registered, Zoltan will automatically create a
hypergraph from the graph, but some information (specifically, edge weights) will be lost.

[Table of Contents | Next: Refinement Tree Partitioning | Previous: ParMetis]

Zoltan Developer's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (4 of 4) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_SIZE_CS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_CS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_SIZE_EDGE_WTS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_EDGE_WTS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug.html

Zoltan Developer's Guide | Next | Previous

Appendix: Refinement Tree

Overview of structure (algorithm)

The refinement tree based partitioning algorithm was developed and implemented by William Mitchell
of the National Institute of Standards and Technology. It is similar to the Octree method except that it
uses a tree representation of the refinement history instead of a geometry based octree. The method
generates a space filling curve which is cut into K appropriately-sized pieces to define contiguous
partitions, where the size of a piece is the sum of the weights of the elements in that piece. K, the number
of partitions, is not necessarily equal to P, the number of processors. It is an appropriate load balancing
method for grids that are generated by adaptive refinement when the refinement history is available. This
implementation consists of two phases: the construction of the refinement tree, and the definition of the
partitions.

Refinement Tree Construction

The refinement tree consists of a root node and one node for each element in the refinement history. The
children of the root node are the elements of the initial coarse grid. The children of all other nodes are the
elements that were formed when the parent element was refined. Upon first invocation, the refinement
tree is initialized. This creates the root node and initializes a hash table that maps global IDs into nodes
of the refinement tree. It also queries the user for the elements of the initial grid and creates the children
of the root node. Unless the user provides the order through which to traverse the elements of the initial
grid, a path is determined through the initial elements along with the "in" vertex and "out" vertex of each
element, i.e., the vertices through which the path passes to move from one element to the next. This path
can be determined by a Hilbert space filling curve, Sierpinski space filling curve (triangles only), or an
algorithm that attempts to make connected partitions (connectivity is guaranteed for triangles and
tetrahedra). The refinement tree is required to have all initial coarse grid elements, not just those that
reside on the processor. However, this requirement is not imposed on the user; a communication step fills
in the elements from other processors. This much of the tree persists throughout execution of the
program. The remainder of the tree is reconstructed on each invocation of the refinement tree partitioner.
The remainder of the tree is built through a tree traversal. At each node, the user is queried for the
children of the corresponding element. If there are no children, the user is queried for the weight of the
element. If there are children, the order of the children is determined such that a tree traversal produces a
space filling curve. The user indicates what type of refinement was used to produce the children
(bisection of triangles, quadrasection of quadrilaterals, etc.). For each supported type of refinement, a
template based ordering is imposed. The template also maintains an "in" and "out" vertex for each
element which are used by the template to determine the beginning and end of the space filling curve
through the children. If the refinement is not among the types supported by templates, an exhaustive
search is performed to find an appropriate order, unless the user provides the order.

Partition algorithm

The algorithm that determines the partitions uses four traversals of the refinement tree. The first two

Zoltan Developer's Guide: Refinement Tree

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_reftree.html (1 of 2) [8/4/2006 9:21:16 AM]

http://math.nist.gov/~mitchell

traversals sum the weights in the tree. In the first traversal, each node gets the sum of the weights of all
the descendant nodes that are assigned to this processor. The processors then exchange information to fill
in the partial sums for the leaf elements that are not owned by this processor. (Note that an unowned leaf
on one processor may be the root of a large subtree on another processor.) The second traversal
completes the summation of the weights. The root now has the sum of all the weights, which, in
conjunction with an array of relative partition sizes, determines the desired weight of each partition.
Currently the array of partition sizes are all equal, but in the future the array will be input to reflect
heterogeneity in the system. The third traversal determines the partitioning by adding subtrees to a
partition until the size of the partition meets the desired weight, and counts the number of elements to be
exported. Finally, the fourth traversal constructs the export list.

Data structures

The implementation of the refinement tree algorithm uses three data structures which are contained in
reftree/reftree.h. Zoltan_Reftree_data_struct is the structure pointed to by zz->LB.Data_Structure. It
contains a pointer to the refinement tree root and a pointer to the hash table. Zoltan_Reftree_hash_node
is an entry in the hash table. It consists of a global ID, a pointer to a refinement tree node, and a "next"
pointer from which linked lists at each table entry are constructed to handle collisions.
Zoltan_Reftree_Struct is a node of the refinement tree. It contains the global ID, local ID, pointers to the
children, weight and summed weights, vertices of the element, "in" and "out" vertex, a flag to indicate if
this element is assigned to this processor, and the new partition number.

Parameters

There are two parameters. REFTREE_HASH_SIZE determines the size of the hash table.
REFTREE_INITPATH determines which algorithm to use to find a path through the initial elements.
Both are set by Zoltan_Reftree_Set_Param in the file reftree/reftree_build.c.

Main routine

The main routine is Zoltan_Reftree_Part in file reftree/reftree_part.c.

[Table of Contents | Next: Hilbert Space-Filling Curve (HSFC) | Previous: Hypergraph Partitioning]

Zoltan Developer's Guide: Refinement Tree

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_reftree.html (2 of 2) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html

Zoltan Developer's Guide | Next | Previous

Appendix: Hilbert Space Filling Curve (HSFC)

Outline of Algorithm

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in Octree and on the
BSFC partitioning implementation by Andrew C. Bauer, Department of Engineering, State University of
New York at Buffalo, as his summer project at SNL in 2001. Please refer to the corresponding section in
the Zoltan User's guide, Hilbert Space Filling Curve (HSFC), for information about how to use this
module and its parameters. Note: the partitioning, point assign and box assign functions in this code
module can be trivially extended to any space filling curve for which we have a state table definition of
the curve.

First, the weights and inverse Hilbert coordinates for each object are determined. If the objects do not
have weights, unit weights are assigned. If the objects have multiple weights, only the first weight is
currently used. The smallest axis-aligned box is found that contains all of the objects using their two or
three dimensional spatial coordinates. This bounding box is slightly expanded to ensure that all objects
are strictly interior to the boundary surface. The bounding box is necessary in order to calculate the
inverse Hilbert Space Filling curve coordinate. The bounding box is used to scale the problem
coordinates into the [0,1]^d unit volume (d represents the number of dimensions in the problem space.)
The inverse Hilbert coordinate is calculated and stored as a double precision floating point value for each
object. This code works on problems with one, two or three dimensions (the 1-D Inverse Hilbert
coordinate is simply the problem coordinate itself, after the bounding box scaling.)

The algorithm seeks to cut the unit interval into P segments containing equal weights of objects
associated to the segments by their inverse Hilbert coordinates. The code allows a user vector to specify
the desired fraction of the total weight to be assigned to each interval. Note, a zero weight fraction
prevents any object being assigned to the corresponding interval. The unit interval is divided into N bins,
N=k(P-1)+1, where k is a small positive constant.) Each bin has an left and right endpoint specifying the
half-open interval [l,r) associated with the bin. The bins form a non-overlapping cover of [0,1] with the
right endpoint of the last bin forced to include 1. The bins are of equal size on the first loop. (Hence each
interval or part of the partition is a collection of bins.)

For each loop, an MPI_Allreduce call is made to globally sum the weights in each bin. This call also
determines the maximum and minimum (inverse Hilbert) coordinate found in each bin. A greedy
algorithm sums the weights of the bins from left to right until the next bin would cause an overflow for
the current partition. This results in new partition of P intervals. The location of each cut (just before an
"overflowing" bin) and the size of its "overflowing" bin are saved. The "overflowing" bin's maximum
and minimum are compared to determine if the bin can be practically subdivided. (If the bin's maximum
and minimum coordinates are too close relative to double precision resolution, the bin can not be
practically subdivided.) If at least one bin can be further refined, then looping will continue. In order to
prevent a systematic bias, the greedy algorithm is assumed to exactly satisfy the weight required by each
partition.

Zoltan Developer's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (1 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html

Before starting the next loop, the P intervals are again divided into N bins. The P-1 "overflow" bins are
each subdivided into k-1 equal bins. The intervals before and after these new bins determine the
remaining bins. This process maintains a fixed number of bins. No bin is "privileged." Specifically, any
bin is subject to later refinement, as necessary, on future loops.

The loop terminates when there is no need to further divide any "overflow" bin. A slightly different
greedy algorithm is used to determine the final partition of P intervals from the N bins. In this case, when
the next bin would cause an overflow, the tolerance is computed for both underfilling (excluding this last
bin) and overfilling (including the last bin). The tolerance closest to the target tolerance is used to select
the dividing point. The tolerance obtained at each dividing point is compared to the user's specified
tolerance. An error is returned if the user's tolerance is not satisfied at any cut. After each cut is made, a
correction is calculated as the ratio of the actual weight to the target weight used up to this point. This
correction is made to the target weight for the next partition. This correction fixes the subsequent
partitions when a "massive" weight object is on the border of a cut and its assignment creates an
excessive imbalance.

Generally, the number of loops is small (proportional to log(number of objects)). A maximum of
MAX_LOOPS is used to prevent an infinite looping condition. A user-defined function is used in the
MPI_Allreduce call in order to simultaneously determine the sum, maximum, and minimum of each bin.
The message length in the MPI_Allreduce is proportional to the P, the number of partitions.

Note, when a bin is encountered that satisfies more than two partitions, that bin is refined into a multiple
of k-1 intervals which maintains a total of N bins.

Hilbert Transformations

The HSFC now uses table driven logic to convert from spatial coordinates (2 or 3 dimensions) (the
Inverse Hilbert functions) and from the unit interval into spatial coordinates (Hilbert functions). In each
case there are two associated tables: the data table and the state table. In all cases, the table logic can be
extended to any required precision. Currently, the precision is determined for compatibility with the the
double precision used in the partitioning algorithm.

The inverse transformation is computed by taking the highest order bit from each spatial coordinate and
packing them together as 2 or 3 bits (as appropriate to the dimensionality) in the order xyz (or xy) where
x is the highest bit in the word. The initial state is 0. The data table lookup finds the value at the column
indexed by the xyz word and the row 0 (corresponding to the initial state value.) This data are the 3 (or 2)
starting bits of the Hilbert coordinate. The next state value is found by looking up the corresponding
element of the state table (xyz column and row 0.)

The table procedure continues to loop (using loop counter i, for example) until the required precision is
reached. At loop i, the ith bits from each spatial dimension are packed together as the xyz column index.
The data table lookup finds the element at column xyz and the row determined by the last state table
value. This is appended to the Hilbert coordinate. The state table is used to find the next state value at the
element corresponding to the xyz column and row equal to the last state value.

The inverse transformation is analogous. Here the 3 (or 2 in the 2-d case) bits of the Hilbert coordinate

Zoltan Developer's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (2 of 5) [8/4/2006 9:21:17 AM]

are extracted into a word. This word is the column index into the data table and the state value is the row.
This word found in the data table is interpreted as the packed xyz bits for the spatial coordinates. These
bits are extracted for each dimension and appended to that dimension's coordinate. The corresponding
state table is used to find the next row (state) used in the next loop.

Point Assign

The user can use Zoltan_LB_Point_Assign to add a new point to the appropriate partition. The
bounding box coordinates, the final partition, and other related information are maintained after
partitioning if the KEEP_CUTS parameter is set by the user. The KEEP_CUTS parameter must be set by
the user for Point Assign! The extended bounded box is used to compute the new point's inverse Hilbert
coordinate. Then the routine performs a binary search on the final partition to determine the partition
(interval) which includes the point. The routine returns the partition number assigned to that interval.

The Point Assign function now works for any point in space, even if the point is outside the original
bounding box. If the point is outside the bounding box, it is first scaled using the same equations that
scale the interior points into the unit volume. The point is projected onto the unit volume. For each
spatial dimension, if the scaled coordinate is less than zero, it is replace by zero. If it is greater than one,
it is replaced by one. Otherwise the scaled coordinate is directly used.

Box Assign

The user can use Zoltan_LB_Box_Assign to determine the partitions whose corresponding subdomains
intersect the user's query box. Although very different in implementation, the papers by Lawder and King
("Querying Multi- dimensional Data Index Using the Hilbert Space-Filling Curve", 2000, etc.) were the
original inspiration for this algorithm. The Zoltan_HSFC_Box_Assign routine primarily scales the user
query region and determines its intersection with the Hilbert's bounding box. Points exterior to the
bounding box get projected along the coordinate axis onto the bounding box. A fuzzy region is built
around query points and lines to create the boxes required for the search. It also handles the trivial
one-dimensional case. Otherwise it repeatedly calls the 2d and 3d query functions using the next highest
partition's left end point to start the search. These query routines return the next point on the Hilbert
curve to enter the query region. A binary search finds the partition associated with this point. The query
functions are called one more time than the number of partitions that have points interior to the query
region.

The query functions decompose the unit square (or cube) level by level like the Octree method. Each
level divides the remaining region into quadrants (or octets in 3d). At each level, the quadrant with the
smallest inverse Hilbert coordinate (that is, occurring first along the Hilbert curve) whose inverse Hilbert
coordinate is equal or larger than the starting inverse Hilbert coordinate and which intersects with query
region is selected. Thus, each level calculates the next 2 bits (3 bits in 3d) of the inverse Hilbert
coordinate of the next point to enter the query region. No more than once per call to the query function,
the function may backtrack to a nearest previous level that has another quadrant that intersects the query
region and has a higher Hilbert coordinate.

Zoltan Developer's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (3 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign

In order to determine the intersection with the query region, the next 2 bits (3 in 3 dimensions) of the
Hilbert transformation are also computed (by table lookup) at each level for the quadrant being tested.
These bits are compared to the the bits resulting from the intersection of the query region with the region
determined by the spatial coordinates computed to the precision of the previous levels.

If the user query box has any side (edge) that is "too small" (effectively degenerate in some dimension),
it is replaced by a minimum value and the corresponding vertex coordinates are symmetrically expanded.
This is refered to as a "fuzzy" region.

This function requires the KEEP_CUTS parameter to be set by the user. The Box Assign function now
works for any box in space, even if it has regions outside the original bounding box. The box vertices are
scaled and projected exactly like the points in the Point Assign function described above. However, to
allow the search to use a proper volumn, projected points, lines, and planes are converted to a usable
volume by the fuzzy region process described above.

This algorithm will work for any space filling curve. All that is necessary is to provide the tables
(derieved from the curve's state transition diagram) in place of the Hilbert Space Filling Curve tables.

Data Structure Definitions

The data structures are defined in hsfc/hsfc.h. The objects being load balanced are represented by the
Dots Structure which holds the objects spacial coordinates, the corresponding inverse Hilbert coordinate,
the processor owning the object, and the object's weight(s). The Partition structure holds the left and
right endpoints of the interval represented by this element of the partition and the index to the processor
owning this element of the partition. The structure HSFC_Data holds the "persistant" data needed by the
point assign and box assign routines. This includes the bounding box, the number of loops necessary for
load balancing, the number of dimensions for the problem, a pointer to the function that returns the
inverse Hilbert Space-Filling Curve coordinate, and the final Partition structure contents.

Parameters

The parameters used by HSFC and their default values are described in the HSFC section of the Zoltan
User's Guide. These can be set by use of the Zoltan_HSFC_Set_Param subroutine in the file
hsfc/hsfc.c.

When the parameter REDUCE_DIMENSIONS is specified, the HSFC algorithm will perform a lower
dimensional partitioning if the geometry is found to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for HSFC is Zoltan_HSFC in the file hsfc/hsfc.c.

Zoltan Developer's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (4 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html

[Table of Contents | Next: Handling Degenerate Geometries | Previous: Refinement Tree]

Zoltan Developer's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (5 of 5) [8/4/2006 9:21:17 AM]

Zoltan Developer's Guide | Previous

Appendix: Handling Degenerate Geometries
The geometry processed by one of the geometric methods RCB, RIB, or HSFC may be degenerate. By
this we mean it may have 3-dimensional coordinates but be essentially flat, or it may have 3 or
2-dimensional coordinates but be essentially a line in space. If we treat the geometry as a lower
dimensional object for the purpose of partitioning, the result may be a more natural partitioning (one the
user would have expected) and a faster run time.

The caller may set the REDUCE_DIMENSIONS parameter to TRUE in any of the three geometric
methods if they want Zoltan to check for a degenerate condition and do a lower dimensional partitioning
if such a condition if found. They may set the DEGENERATE_RATIO to specify how flat or thin a
geometry must be to be considered degenerate.

Outline of Algorithm

All three geometric methods call Zoltan_Get_Coordinates to obtain the problem coordinates. If
REDUCE_DIMENSIONS is TRUE, we check in this function to see if the geometry is degenerate. If it
is, we transform the coordinates to the lower dimensional space, flag that the problem is now lower
dimensional, and return the transformed coordinates. The RCB, RIB, or HSFC calculation is performed
on the new coordinates in the lower dimensional space.

If KEEP_CUTS is TRUE, the transformation is saved so that in Zoltan_LB_Box_Assign or
Zoltan_LB_Point_Assign the coordinates can be transformed before the assignment is calculated. If
RCB_REUSE is TRUE in the RCB method, the transformation is also saved. On re-partitioning, we can
do some simple tests to see if the degeneracy condition has changed before completely re-calculating the
coordinate transformation.

To determine if the geometry is degenerate, we calculate the same inertial matrix that is calculated for
RIB, except that we ignore vertex weights. The 3 orthogonal eigenvectors of the inertial matrix describe
the three primary directions of the geometry. The bounding box oriented in these directions is tested for
degeneracy. In particular (for a 3 dimensional geometry) if the length of the longest side divided by the
length of the shortest side exceeds the DEGENERATE_RATIO, we consider the geometry to be flat. If
in addition, the length longest side divided by the length of the middle side exceeds the
DEGENERATE_RATIO, we consider the geometry to be essentially a line.

If a 3 dimensional geometry is determined to be flat, we transform coordinates to a coordinate system
where the XY plane corresponds to the oriented bounding box, and project all coordinates to that plane.
These X,Y coordinates are returned to the partitioning algorithm, which performs a two dimensional
partitioning. Similarly if the geometry is very thin, we transform coordinates to a coordinate system with
the X axis going through the bounding box in it's principal direction, and project all points to that axis.
Then a 1 dimensional partitioning is performed.

There is a small problem in calculating Zoltan_LB_Box_Assign when the partitioning was performed
on transformed geometry. The caller provides the box vertices in problem coordinates, but the

Zoltan Developer's Guide: Degenerate Geometries

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_degenerate.html (1 of 2) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign

partitioning was calculated in transformed coordinates. When the vertices are transformed, they are in
general no longer the vertices of an axis-aligned box in the new coordinate system. The Box_Assign
calculation requires an axis-aligned box, and so we use the bounding box of the transformed vertices.
The resulting list of processes or partitions intersecting the box may therefore contain some processes or
partitions which actually do not intersect the box in problem coordinates, however it will not omit any.

Data Structure Definitions

The transformation is stored in a Zoltan_Transform_Struct structure which is defined in zz/zz_const.h.
It is saved as part of the algorithm specific information stored in the LB.Data_Structure field of the
Zoltan_Struct. The flag that indicates whether the geometry was found to be degenerate is the
Target_Dim field of this structure.

To use the degenerate geometry detection capability from a new geometric method, you would add a
Zoltan_Transform_Struct structure to the algorithm specific data structure, add code to
Zoltan_Get_Coordinates to look for it, and check the Target_Dim field on return to see if the problem
dimension was reduced. You would also need to include the coordinate transformation in your
Box_Assign and Point_Assign functionality.

[Table of Contents | Previous: Hibert Space Filling Curve (HSFC)]

Zoltan Developer's Guide: Degenerate Geometries

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_degenerate.html (2 of 2) [8/4/2006 9:21:17 AM]

	Local Disk
	Zoltan Developer's Guide
	Zoltan Developer's Guide: Introduction
	Zoltan Developer's Guide: Philosophy
	Zoltan Developer's Guide: Coding Principles
	Zoltan Quality Program
	Zoltan Developer's Guide: Distribution
	Zoltan Developer's Guide: CVS
	Zoltan Developer's Guide: Directory Layout
	Zoltan Developer's Guide: Compilation
	Zoltan Developer's Guide: Load-Balancing
	Zoltan Developer's Guide: Load-Balancing Interface
	Zoltan Developer's Guide: Data Types
	Zoltan Developer's Guide: Load Balancing Data Structures
	Zoltan Developer's Guide: Services
	Zoltan Developer's Guide: Parameter Setting Routines
	Zoltan Developer's Guide: Parallel Routines
	Zoltan Developer's Guide: Object List function
	Zoltan Developer's Guide: Hash function
	Zoltan Developer's Guide: Timing Routines
	Zoltan Developer's Guide: Debugging Services
	Zoltan Developer's Guide: Adding Algorithms
	Zoltan Developer's Guide: Adding Interface Routines
	Zoltan Developer's Guide: Adding Load-Balancing Functions
	Zoltan Developer's Guide: Adding Data Structures
	Zoltan Developer's Guide: Adding Algorithms: How to handle memory
	Zoltan Developer's Guide: Adding Parameters
	Zoltan Developer's Guide: Partition Remapping
	Zoltan Developer's Guide: Migration Tools
	Zoltan Developer's Guide: FORTRAN Interface
	Zoltan Developer's Guide: C++ Interface
	Zoltan Developer's Guide: References
	Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive
	Zoltan Developer's Guide: Visualization of Geometric Partitionings
	Zoltan Developer's Guide: Running test_zoltan
	Zoltan Developer's Guide: RCB
	Zoltan Developer's Guide: RIB
	Zoltan Developer's Guide: ParMETIS/Jostle
	Zoltan Developer's Guide: Hypergraph Partitioning
	Zoltan Developer's Guide: Refinement Tree
	Zoltan Developer's Guide: HSFC
	Zoltan Developer's Guide: Degenerate Geometries

	zdriveinp.pdf
	Local Disk
	file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

