
PDF Version
of User's

Guide

Zoltan Home
Page

Zoltan
Developer's

Guide

How to Cite
Zoltan

Zoltan:
Data-Management Services for
Parallel Applications

User's Guide

The Zoltan Team
Sandia National Laboratories:
Erik Boman
Karen Devine
Lee Ann Fisk
Robert Heaphy
Bruce Hendrickson
Courtenay Vaughan

Ohio State University
Umit Catalyurek
Doruk Bozdag

National Institute of Standards and Technology
William F. Mitchell

Zoltan User's Guide, Version 2.01

Introduction

Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Zoltan Release Notes

Using the Zoltan Library

System Requirements
Data Types for Object IDs
Building the Library
Testing the Library
Building Applications

Zoltan User's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html (1 of 3) [8/4/2006 9:15:14 AM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/ug.pdf
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://bmi.osu.edu/personnel/detail.cfm?id=29
http://math.nist.gov/~mitchell

Zoltan Interface Functions

Error Codes
General Zoltan Interface Functions
Load-Balancing Functions
Functions for Adding Items to a Decomposition
Migration Functions
Ordering Functions
Coloring Functions

Application-Registered Query Functions

General Zoltan Query Functions
Migration Query Functions

Zoltan Parameters and Output Levels

General Parameters
Debugging Levels

Load-Balancing Algorithms

Load-Balancing Parameters
Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve (HSFC) Partitioning
Refinement Tree Based Partitioning
ParMETIS (graph partitioning and repartitioning)
Jostle (more graph partitioning; limited support)
Hypergraph partitioning
Octree/Space-Filling Curve (SFC) Partitioning

Ordering Algorithms

Nested Dissection by METIS/ParMETIS

Coloring Algorithms

Parallel Coloring

Data Services and Utilities

Building Utilities

Zoltan User's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html (2 of 3) [8/4/2006 9:15:14 AM]

Dynamic Memory Management
Unstructured Communication
Distributed Data Directories

Examples of Library Usage

General Usage
Load-Balancing
Migration
Query Functions

FORTRAN Interface

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System-Specific Remarks

C++ Interface

Backward Compatibility with Earlier Versions of Zoltan

References

Index of Interface and Query Functions

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU Lesser
General Public License (LGPL). See the README file in the main Zoltan
directory for more information.

[Zoltan Home Page | Next: Introduction]

Zoltan User's Guide

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html (3 of 3) [8/4/2006 9:15:14 AM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html

Zoltan User's Guide | Next | Previous

Introduction
Project Motivation
The Zoltan Toolkit
Terminology
Zoltan Design

Project Motivation
Over the past decade, parallel computers have been used with great success in many scientific
simulations. While differing in their numerical methods and details of implementation, most applications
successfully parallelized to date are "static" applications. Their data structures and memory usage do not
change during the course of the computation. Their inter-processor communication patterns are
predictable and non-varying. And their processor workloads are predictable and roughly constant
throughout the simulation. Traditional finite difference and finite element methods are examples of
widely used static applications.

However, increasing use of "dynamic" simulation techniques is creating new challenges for developers
of parallel software. For example, adaptive finite element methods refine localized regions the mesh
and/or adjust the order of the approximation on individual elements to obtain a desired accuracy in the
numerical solution. As a result, memory must be allocated dynamically to allow creation of new
elements or degrees of freedom. Communication patterns can vary as refinement creates new element
neighbors. And localized refinement can cause severe processor load imbalance as elemental and
processor work loads change throughout a simulation.

Particle simulations and crash simulations are other examples of dynamic applications. In particle
simulations, scalable parallel performance depends upon a good assignment of particles to processors;
grouping physically close particles within a single processor reduces inter-processor communication.
Similarly, in crash simulations, assignment of physically close surfaces to a single processor enables
efficient parallel contact search. In both cases, data structures and communication patterns change as
particles and surfaces move. Re-partitioning of the particles or surfaces is needed to maintain geometric
locality of objects within processors.

We developed the Zoltan library to simplilfy many of the difficulties arising in dynamic applications.
Zoltan is a collection of data management services for unstructured, adaptive and dynamic applications.
It includes a suite of parallel partitioning algorithms, data migration tools, distributed data directories,
unstructured communication services, and dynamic memory management tools. Zoltan's data-structure
neutral design allows it to be used by a variety of applications without imposing restrictions on
application data structures. Its object-based interface provides a simple and inexpensive way for
application developers to use the library and researchers to make new capabilities available under a
common interface.

Zoltan User's Guide: Introduction

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_intro.html (1 of 4) [8/4/2006 9:15:16 AM]

The Zoltan Toolkit
The Zoltan Library contains a number of tools that simplify the development and improve the
performance of parallel, unstructured and adaptive applications. The library is organized as a toolkit, so
that application developers can use as little or as much of the library as desired. The major packages in
Zoltan are listed below.

A suite of dynamic load balancing and parallel repartitioning algorithms; switching between
algorithms is easy, allowing straightforward comparisons of algorithms in applications.

●

Data migration tools for moving data from old partitions to new one.●

Distributed data directories: scalable (in memory and computation) algorithms for locating needed
off-processor data.

●

An unstructured communication package that insulates users from the details of message sends and
receives.

●

Dynamic memory management tools that greatly simplify dynamic memory debugging on
state-of-the-art parallel computers.

●

A sample application zdrive. It allows algorithm developers to test changes to Zoltan without
having to run Zoltan in a large application code. Application developers can use the zdrive code to
see examples of function calls to Zoltan and the implementation of query functions.

●

Terminology
Our design of Zoltan does not restrict it to any particular type of application. Rather, Zoltan operates on
uniquely identifiable data items that we call objects. For example, in finite element applications, objects
might be elements or nodes of the mesh. In particle applications, objects might be particles. In linear
solvers, objects might be matrix rows.

Each object must have a unique global identifier (ID) represented as an array of unsigned integers.
Common choices include global numbers of elements (nodes, particles, rows, and so on) that already
exist in many applications, or a structure consisting of an owning processor number and the object's
local-memory index. Objects might also have local (to a processor) IDs that do not have to be unique
globally. Local IDs such as addresses or local-array indices of objects can improve the performance (and
convenience) of Zoltan's interface to applications.

We use a simple example to illustrate the above terminology. In the figure below, a simple finite element
mesh is presented.

Zoltan User's Guide: Introduction

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_intro.html (2 of 4) [8/4/2006 9:15:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html

The blue and yellow shading indicates the mesh is partitioned for two processors. An application must
provide information about the current mesh and partition to Zoltan. If, for example, the application wants
Zoltan to perform operations on the elements of the mesh, it must provide information about the elements
when Zoltan asks for object information.

In this example, the elements have unique numbers assigned to them, as shown by the numbers in the
elements. These unique numbers can be used as global IDs in Zoltan. In addition, on each processor,
local numbering information may be available. For instance, the elements owned by a processor may be
stored in arrays in the processor's memory. An element's local array index may be provided to Zoltan as a
local ID.

For geometric algorithms, the application must provide coordinate information to Zoltan. In this
example, the coordinates of the mid-point of an element are used.

For graph-based algorithms, information about the connectivity of the objects must be provided to
Zoltan. In this example, the application may consider elements connected if they share a face. The
connections between elements, or edges of the connectivity graph, are shown in red. Connectivity
information is passed to Zoltan by specifying a neighbor list for an object. The neighbor list consists of
the global IDs of neighboring objects and the processor(s) currently owning those objects.

The table below summarizes the information provided to Zoltan by an application for this finite element
mesh. Information about the objects includes their global and local IDs, geometry data, and graph data.

Object IDs Geometry Data Graph Data
Processor Global Local (coordinates) Neighbor Global ID List Neighbor Processor List

Blue 1 0 (0.8,2.9) 2 Blue
2 1 (1.7,2.9) 1,3 Blue,Blue
3 2 (2.5,2.9) 2,4 Blue,Yellow

Yellow 4 0 (2.0,2.1) 3,5 Blue,Yellow
5 1 (1.1,1.0) 4,6 Yellow,Yellow
6 2 (0.5,0.2) 5,7 Yellow,Yellow

Zoltan User's Guide: Introduction

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_intro.html (3 of 4) [8/4/2006 9:15:16 AM]

7 3 (1.3,0.2) 6,8 Yellow,Yellow
8 4 (2.1,0.2) 7 Yellow

Zoltan Design
To make Zoltan easy to use, we do not impose any particular data structure on an application, nor do we
require an application to build a particular data structure for Zoltan. Instead, Zoltan uses a callback
function interface, in which Zoltan queries the application for needed data. The application must provide
simple functions that answer these queries.

To keep the application interface simple, we use a small set of callback functions and make them easy to
write by requesting only information that is easily accessible to applications. For example, the most basic
partitioning algorithms require only four callback functions. These functions return the number of objects
owned by a processor, a list of weights and IDs for owned objects, the problem's dimensionality, and a
given object's coordinates. More sophisticated graph-based partitioning algorithms require only two
additional callback functions, which return the number of edges per object and edge lists for objects.

[Table of Contents | Next: Zoltan Release Notes | Previous: Table of Contents]

Zoltan User's Guide: Introduction

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_intro.html (4 of 4) [8/4/2006 9:15:16 AM]

Zoltan User's Guide | Next | Previous

Release Notes
Release notes are available for the following releases of Zoltan:

Zoltan Release v2.01
Zoltan Release v2.0
Zoltan Release v1.54
Zoltan Release v1.53
Zoltan Release v1.52
Zoltan Release v1.5
Zoltan Release v1.3

Zoltan Release Notes v2.01
Zoltan v2.01 includes enhancements to version 2.0.

F90 interface fixes to comply with standard F90 (e.g., shortened variable names and continuation
lines). The hypergraph callback function names have changed, but C and C++ compatibility with
v2.0 is maintained.

●

Performance improvement to initial building of hypergraphs from application data.●

Major bug fix for dense-edge removal in parallel hypergraph method; partitioning of hypergraphs
with edges containing more than 25% of the vertices was affected by this bug.

●

Minor fixes to parallel hypergraph code.●

Zoltan Release Notes v2.0
Zoltan v2.0 includes several major additions:

Parallel hypergraph partitioning.●

Parallel graph coloring, both distance-1 and distance-2.●

Multicriteria geometric partitioning (RCB).●

C++ interface.●

Zoltan Release Notes v1.54
Some versions of MPICH have a bug in MPI_Reduce_scatter; they can report errors with
MPI_TYPE_INDEXED. In Zoltan v1.54's unstructured communication package, calls to
MPI_Reduce_scatter have been replaced with separate calls to MPI_Reduce and MPI_Scatter.

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (1 of 6) [8/4/2006 9:15:17 AM]

Zoltan Release Notes v1.53
Zoltan v1.53 includes the following new capabilities:

Portability to BSD Unix and Mac OS X was added.●

Averaging of RCB and RIB cuts was added; see Zoltan parameter AVERAGE_CUTS.●

A new function Zoltan_RCB_Box returns information about subdomain bounding boxes in RCB
decompositions.

●

F90 interface to Zoltan_Order was added.●

Warnings that load-imbalance tolerance was not met are no longer printed when DEBUG_LEVEL
== 0.

●

Minor bugs were addressed.●

Zoltan Release Notes v1.52
Zoltan v1.52 includes the following new capabilities:

List-based graph callback functions ZOLTAN_NUM_EDGES_MULTI_FN and
ZOLTAN_EDGE_LIST_MULTI_FN were added to mirror support and performance given by the
list-based geometric function ZOLTAN_GEOM_MULTI_FN.

●

Support for ParMETIS v3.1 was added.●

Minor bugs were addressed.●

Zoltan Release Notes v1.5
This section describes improvements to Zoltan in Version 1.5. Every attempt was made to keep Zoltan
v1.3 backwardly compatible with previous versions. Users of previous versions of Zoltan should refer to
the Backward Compatibility Notes.

Short descriptions of the following features are included below; follow the links for more details.

Partition remapping
Unequal Numbers of Partitions and Processors
Non-Uniform Partition Sizes
Zoltan Interface Updated
Robust HSFC Box Assign
Matrix Ordering
Performance Improvements
Bug Fixes

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (2 of 6) [8/4/2006 9:15:17 AM]

Partition Remapping

During partitioning, Zoltan v1.5 can renumber partitions so that the input and output partitions have
greater overlap (and, thus, lower data-migration costs). This remapping is controlled by Zoltan parameter
REMAP. Experiments have shown that using this parameter can greatly reduce data migration costs.

Unequal Numbers of Partitions and Processors

Zoltan v1.5 can be used to generate k partitions on p processors, where k is not equal to p. Function
Zoltan_LB_Partition (replacing Zoltan_LB_Balance) can generate arbitrary numbers of partitions on
the given processors. The number of desired partitions is set with parameters
NUM_GLOBAL_PARTITIONS or NUM_LOCAL_PARTITIONS. Both partition and processor
information are returned by Zoltan_LB_Partition, Zoltan_LB_Box_PP_Assign, and
Zoltan_LB_Point_PP_Assign. New Zoltan query functions ZOLTAN_PARTITION_FN and
ZOLTAN_PARTITION_MULTI_FN return objects' partition information to Zoltan.
Zoltan_LB_Balance can still be used for k equal to p.

Non-Uniform Partition Sizes

Partition sizes for local and global partitions can be specified using Zoltan_LB_Set_Part_Sizes,
allowing non-uniformly sized partitions to be generated by Zoltan's partitioning algorithms.

Zoltan Interface Updated

To support the concept of partitions separate from processors, many new interface functions were added
to Zoltan v1.5 (e.g., Zoltan_LB_Partition and Zoltan_Migrate). These functions mimic previous
Zoltan functions (e.g., Zoltan_LB_Balance and Zoltan_Help_Migrate, respectively), but include both
partition and processor information. Both the new and old interface functions work in Zoltan v1.5. See
the notes on Backward Compatibility.

Robust HSFC Box Assign

Function Zoltan_LB_Box_PP_Assign now works for the Hilbert Space-Filling Curve algorithm
(HSFC), in addition to the RCB and RIB algorithms supported in previous versions of Zoltan.
Zoltan_LB_Point_PP_Assign continues to work for HSFC, RCB and RIB.

Matrix Ordering

Zoltan v1.5 contains a matrix-ordering interface Zoltan_Order to ParMETIS' matrix-ordering functions.
New graph-based matrix-ordering algorithms can be easily added behind this interface.

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (3 of 6) [8/4/2006 9:15:17 AM]

Performance Improvements

Many performance improvements were added to Zoltan v1.5.

List-based callback functions have been added to Zoltan (ZOLTAN_GEOM_MULTI_FN,
ZOLTAN_PARTITION_MULTI_FN, ZOLTAN_OBJ_SIZE_MULTI_FN,
ZOLTAN_PACK_OBJ_MULTI_FN, and ZOLTAN_UNPACK_OBJ_MULTI_FN); these
functions allow entire lists of data to be passed from the application to Zoltan, replacing per-object
callbacks.

●

Zoltan_Migrate now can accept either import lists, export lists, or both. It is no longer necessary
to call Zoltan_Invert_Lists or Zoltan_Compute_Destinations to get appropriate input for
Zoltan_Migrate.

●

Zoltan v1.5 contains performance improvements within individual algorithms. We recommend
users upgrade to the latest version.

●

Bug Fixes

Bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are
encouraged to upgrade.

Zoltan Release Notes v1.3
This section describes improvements to Zoltan in Version 1.3. Every attempt was made to keep Zoltan
v1.3 backwardly compatible with previous versions. Users of previous versions of Zoltan should refer to
the Backward Compatibility Notes.

Short descriptions of the following features are included below; follow the links for more details.

More Data Services
New Hilbert Space-Filling Curve Partitioning
Support for Structured-Grid Partitioning
Support for ParMETIS v3.0
Performance Improvements
Zoltan Interface Updated
Improved Test Suite
Bug Fixes

More Data Services

Zoltan's mission has been widened beyond its original focus on dynamic load-balancing algorithms. Now
Zoltan also provides data management services to parallel, unstructured, and adaptive computations.
Several packages of parallel data services have been added and made available to application developers.

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (4 of 6) [8/4/2006 9:15:17 AM]

These services include the following:

An unstructured communication package that simplifies complicated communication by insulating
applications from the details of message sends and receives.

●

A distributed data directory that allows applications to efficiently (in memory and time) locate
off-processor data.

●

A dynamic memory management package that simplifies debugging of memory allocation
problems on state-of-the-art parallel computers.

●

New Hilbert Space-Filling Curve Partitioning

Zoltan now includes a fast, efficient implementation of Hilbert Space-Filling Curve (HSFC) partitioning.
This geometric method also includes support for Zoltan_LB_Box_Assign and Zoltan_LB_Point_Assign
functions.

Support for Structured-Grid Partitioning

Zoltan's Recursive Coordinate Bisection (RCB) partitioning algorithm has been enhanced to allow
generation of strictly rectilinear subdomains. This capability can be used for partitioning of grids for
structured-grid applications. See parameter RCB_RECTILINEAR_BLOCKS.

Support for ParMETIS v3.0

In addition to providing interfaces to ParMETIS v2.0 and PJostle, Zoltan now provides an interfaces
ParMETIS v3.0. Full support of ParMETIS v3.0's multiconstraint and multiobjective partitioning is
included.

Performance Improvements

Performance of Zoltan's partitioning algorithms has been improved through a number of code
optimizations and new features. In addition, user parameter RETURN_LISTS can be used to specify
which returned arguments are computed by Zoltan_LB_Balance, allowing reduced work in partitioning.
In the Recursive Coordinate Bisection (RCB) partitioning algorithm, user parameters allow cut directions
to be locked in an attempt to minimize data movement; see parameters RCB_LOCK_DIRECTIONS and
RCB_SET_DIRECTIONS.

Zoltan Interface Updated

Zoltan has adopted a more modular design, making it easier to use by applications and easier to modify
by algorithm developers. Names in the Zoltan interface and code are tied more closely to their
functionality. Full backward compatibility is supported for users of previous versions of Zoltan.

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (5 of 6) [8/4/2006 9:15:17 AM]

Improved Test Suite

The Zoltan test suite has been improved, with more tests providing greater code coverage and
platform-specific answer files accounting for differences due to computer architectures.

Bug Fixes

Some bug fixes were made to Zoltan's algorithms and interface. Users of previous versions of Zoltan are
encouraged to upgrade.

[Table of Contents | Next: Using the Zoltan Library | Previous: Introduction]

Zoltan User's Guide: Release Notes

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_release.html (6 of 6) [8/4/2006 9:15:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_test_script.html

Zoltan User's Guide | Next | Previous

Using the Zoltan library
This section contains information needed to use the Zoltan library with applications:

System requirements.
Data types for global and local IDs.
Instructions for building the Zoltan library.
Instructions for building applications that use Zoltan.

System Requirements

Zoltan was designed to run on parallel computers and clusters of workstations. In order to build and use
Zoltan, you will need:

ANSI C compiler.●

MPI library for message passing (version 1.1 or higher), such as MPICH or LAM.●

A Unix-like operating system (e.g., Linux or Solaris) and gmake (GNU Make) are recommended
to build the library.

●

A Fortran90 compatible compiler is required if you wish to use Zoltan with Fortran applications.●

Zoltan has been tested on a variety of platforms, including Linux, Solaris, Irix, and the ASCI Red
Teraflop machine. If you wish to use Zoltan on a non-Unix operating system, for example Windows NT
or 2000, you will have to port Zoltan yourself.

Data Types for Object IDs

Application query functions and application callable library functions use global and local identifiers
(IDs) for objects. All objects to be used in load balancing must have unique global IDs. Zoltan stores an
ID as an array of unsigned integers. The number of entries in these arrays can be set using the
NUM_GID_ENTRIES and NUM_LID_ENTRIES parameters; by default, one unsigned integer
represents an ID. Applications may use whatever format is most convenient to store their IDs; the IDs
can then be converted to and from Zoltan's ID format in the application-registered query functions.

The following type definitions are defined in include/zoltan_types.h; they can be used by an application
for memory allocation, MPI communication, and as arguments to load-balancing interface functions and
application-registered query functions.

typedef unsigned int ZOLTAN_ID_TYPE;
typedef ZOLTAN_ID_TYPE *ZOLTAN_ID_PTR;
#define ZOLTAN_ID_MPI_TYPE MPI_UNSIGNED

In the Fortran interface, IDs are passed as arrays of integers since unsigned integers are not supported in
Fortran. See the description of the Fortran interface for more details.

The local IDs passed to Zoltan are not used by the library; they are provided for the convenience of the

Zoltan User's Guide: Library Usage

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html (1 of 4) [8/4/2006 9:15:18 AM]

http://www-unix.mcs.anl.gov/mpi/
http://www.sandia.gov/ASCI/Red/

application and can contain any information desired by the application. For instance, local array indices
for objects may be passed as local IDs, enabling direct access to object data in the query function
routines. See the application-registered query functions for more details. The source code distribution
contains an example application zdrive in which global IDs are integers and local IDs are local array
indices. One may choose not to use local ids at all, in which case NUM_LID_ENTRIES may be set to
zero.

Some Zoltan routines (e.g., Zoltan_LB_Partition and Zoltan_Invert_Lists) allocate arrays of type
ZOLTAN_ID_PTR and return them to the application. Others (e.g., Zoltan_Order and
Zoltan_DD_Find) require the application to allocate memory for IDs. Memory for IDs can be allocated
as follows:

ZOLTAN_ID_PTR gids;
int num_gids, int num_gid_entries;
gids = (ZOLTAN_ID_PTR) ZOLTAN_MALLOC(num_gids *
num_gid_entries * sizeof(ZOLTAN_ID_TYPE);

The system call malloc may be used instead of ZOLTAN_MALLOC.

Building the Zoltan Library

The Zoltan library is implemented in ANSI C and can be compiled with any ANSI C compiler.
Makefiles are included with the source code; these makefiles require the GNU Make (gmake) utility. The
top-level Makefile defines targets for the Zoltan library, test driver programs in C, C++ and Fortran90,
and two graphical utilities useful for visualization of geometric partitions. (The test drivers and utilities
are primarily intended for use by developers.) This Makefile need not be edited to build Zoltan. Instead,
environment-specific definitions are specified in the configuration file,
Utilities/Config/Config.<platform>, where <platform> specifies the particular platform for which Zoltan
is being built. Paths to compilers, include files, and libraries are defined in this file and are then read by
the top-level Makefile. Examples of configuration files for Solaris, Sandia's ASCI Red (tflop) computer,
SGI workstations, and PCs running Linux are included in the Utilities/Config subdirectory. A
well-commented version of the configuration file, Utilities/Config/Config.generic, is also included; this
file can be used as a template for new environment-specific files. The variables in these files should be
edited to reflect the new system's environment.

The command for building Zoltan is shown below:

gmake [options] zoltan

where the options that may be specified are listed below.

Options to gmake:
 ZOLTAN_ARCH=<platform> Specify the target architecture for the Zoltan library. A corresponding

file, Utilities/Config/Config.<platform>, containing environment
definitions for <platform>, must be created in the Utilities/Config
directory.

Zoltan User's Guide: Library Usage

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html (2 of 4) [8/4/2006 9:15:18 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html

 YES_FORTRAN=1 Include Fortran support in the Zoltan library. By default, the Zoltan
library is built without the interface that allows use from Fortran
applications. If this option is specified, the Fortran interface is
compiled and included in the library. Use of this option requires that a
Fortran 90 (or 95, or later) compiler is available.

As an alternative to typing the options on the gmake command line, they may be set as environment
variables; e.g., if you are using a C-shell (csh or tcsh), type

setenv ZOLTAN_ARCH <platform>

or if you are using a Bourne-type shell (e.g., sh or bash), type

ZOLTAN_ARCH = <platform>; export ZOLTAN_ARCH

The resulting library libzoltan.a, object files, and dependency files are stored in the directory
Obj_<platform>.

Testing the Zoltan Library

The examples directory contains simple C and C++ examples which use the Zoltan library. The Makefile
in this directory has three targets:

gmake ZOLTAN_ARCH=<platform> C_Examples

This builds simple C language examples that use the Zoltan library to perform load balancing.

gmake ZOLTAN_ARCH=<platform> CPP_Examples

This builds simple C++ language examples that use the Zoltan library to perform load balancing.
To build C++ applications, define CPPC to point to your C++ compiler in the Config.<platform>
file.

gmake ZOLTAN_ARCH=<platform> all

Build both C and C++ examples. Don't forget to define CPPC in your Config.<platform> file.

Some of these examples make use of a small library of support routines found in the examples/lib
directory. These routines create simple test meshes of varying sizes, perform error checking across the
parallel application, and define Zoltan call backs.

The "right" answer for these tests depends on the number of processes with which you run the tests. In
general, if they compile successfully, run quickly (in seconds), and produce reasonable looking output,
then you have been successful in building Zoltan.

Building Applications that use Zoltan

The C library interface is described in the include file include/zoltan.h; this file should be included in all
C application source files that call Zoltan library routines.

The C++ interface to Zoltan is implemented in header files which define classes that wrap the Zoltan C
library. The file include/zoltan_cpp.h defines the Zoltan class which encapsulates a load balancing data
structure and the Zoltan load balancing functions which operate upon it. Include this header file instead
in your C++ application. Note that C++ applications should call the C function Zoltan_Initialize before

Zoltan User's Guide: Library Usage

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html (3 of 4) [8/4/2006 9:15:18 AM]

creating a Zoltan object.

Fortran applications must USE module zoltan and specify Zoltan/Obj_<platform> as a directory to be
searched for module information files.

The C, C++ or Fortran application should then be linked with the Zoltan library (built with Fortran
support in the Fortran case) and its utility libraries by including

-lzoltan

in the linking command for the application. Communication within Zoltan is performed through MPI, so
appropriate MPI libraries must be linked with the application. Third-party libraries, such as ParMETIS
and Jostle, must be also be linked with the application if they were included in compilation of the Zoltan
library. (A courtesy copy of ParMETIS is included with the Zoltan distribution; Jostle must be obtained
directly from http://www.gre.ac.uk/~jjg01/.)

For applications that used versions of Zoltan before Zoltan v.1.3, only minor updates to the application
build process are needed; see the section on backward compatibility of Zoltan.

[Table of Contents | Next: Zoltan Interface Functions | Previous: Zoltan Release Notes]

Zoltan User's Guide: Library Usage

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html (4 of 4) [8/4/2006 9:15:18 AM]

http://www.gre.ac.uk/~jjg01/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/~jjg01/
http://www.gre.ac.uk/~jjg01/

Zoltan User's Guide | Next | Previous

Zoltan Interface Functions
An application calls a series of dynamic load-balancing library functions to initialize the load balancer,
perform load balancing and migrate data. This section describes the syntax of each type of interface
function:

General Zoltan Interface Functions
Load-Balancing Interface Functions
Functions for Augmenting a Decomposition
Migration Interface Functions

Examples of the calling sequences for initialization, load-balancing, and data migration are included in
the Initialization, Load-Balancing, and Migration sections, respectively, of the Examples of Library
Usage.

Error Codes
All interface functions, with the exception of Zoltan_Create, return an error code to the application. The
possible return codes are defined in include/zoltan_types.h and Fortran module zoltan, and are listed in
the table below.

Note: Robust error handling in parallel has not yet been achieved in Zoltan. When a processor returns
from Zoltan due to an error condition, other processors do not necessarily return the same condition. In
fact, other processors may not know that the original processor has returned from Zoltan, and may wait
indefinitely in a communication routine (e.g., waiting for a message from the original processor that is
not sent due to the error condition). The parallel error-handling capabilities of Zoltan will be improved
in future releases.

ZOLTAN_OK Function returned without warnings or errors.
ZOLTAN_WARN Function returned with warnings. The application will probably be able

to continue to run.
ZOLTAN_FATAL A fatal error occured within the Zoltan library.
ZOLTAN_MEMERR An error occurred while allocating memory. When this error occurs, the

library frees any allocated memory and returns control to the
application. If the application then wants to try to use another, less
memory-intensive algorithm, it can do so.

Return codes defined in include/zoltan_types.h.

Naming conventions

Zoltan User's Guide: Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html (1 of 2) [8/4/2006 9:15:18 AM]

The C, Fortran and C++ interfaces follow consistent naming conventions, as illustrated in the following
table.

C and Fortran C++
Partitioning and migration
functions
example: perform partitioning
example: assign a point to a
partition

Zoltan_function()
Zoltan_LB_Partition()
Zoltan_LB_Point_Assign()

Zoltan::function()
Zoltan::LB_Partition()
Zoltan::LB_Point_Assign()

Unstructured communication
example: perform communication

Zoltan_Comm_function
Zoltan_Comm_Do()

Zoltan_Comm::function
Zoltan_Comm::Do()

Distributed data
example: find objects in a remote
process

Zoltan_DD_function
Zoltan_DD_Find()

Zoltan_DD::function
Zoltan_DD::Find()

Timers
example: print timing results

Zoltan_Timer_function
Zoltan_Timer_Print()

Zoltan_Timer::function
Zoltan_Timer::Print()

In particular, the C++ Zoltan class represents a load balancing instance and the methods that operate on
it. The method name is identical to the part of the C and Fortran function name that indicates the function
performed. A C++ Zoltan_Comm object represents an instance of unstructured communication, a C++
Zoltan_DD object represents a distributed directory, and a C++ Zoltan_Timer object is a timer. Their
method names are derived similarly.

[Table of Contents | Next: Initialization Functions | Previous: Using the Library]

Zoltan User's Guide: Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html (2 of 2) [8/4/2006 9:15:18 AM]

Zoltan User's Guide | Next | Previous

General Interface Functions
Functions used to initialize and manipulate Zoltan's data structures are described below:

Zoltan_Initialize
Zoltan_Create
Zoltan_Copy
Zoltan_Copy_To
Zoltan_Set_Param
Zoltan_Set_Param_Vec
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Destroy

C and C++: int Zoltan_Initialize (
 int argc,
 char **argv,
 float *ver);

FORTRAN: FUNCTION Zoltan_Initialize(argc, argv, ver)
INTEGER(Zoltan_INT) :: Zoltan_Initialize
INTEGER(Zoltan_INT), INTENT(IN), OPTIONAL :: argc
CHARACTER(LEN=*), DIMENSION(*), INTENT(IN), OPTIONAL :: argv
REAL(Zoltan_FLOAT), INTENT(OUT) :: ver

The Zoltan_Initialize function initializes MPI for Zoltan. If the application uses MPI, this function
should be called after calling MPI_Init. If the application does not use MPI, this function calls MPI_Init
for use by Zoltan. This function is called with the argc and argv command-line arguments from the main
program, which are used if Zoltan_Initialize calls MPI_Init. From C, if MPI_Init has already been
called, the argc and argv arguments may have any value because their values will be ignored. From
Fortran, if one of argc or argv is omitted, they must both be omitted. If they are omitted, ver does NOT
have to be passed as a keyword argument.

Zoltan_Initialize returns the Zoltan version number so that users can verify which version of the library
their application is linked to.

C++ applications should call the C Zoltan_Initialize function before using the C++ interface to the
Zoltan library.

Arguments:
 argc The number of command-line arguments to the application.
 argv An array of strings containing the command-line arguments to the application.
 ver Upon return, the version number of the library.

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (1 of 7) [8/4/2006 9:15:19 AM]

Returned Value:
 int Error code.

C: struct Zoltan_Struct *Zoltan_Create (
 MPI_Comm communicator);

FORTRAN: FUNCTION Zoltan_Create(communicator)
TYPE(Zoltan_Struct), pointer :: Zoltan_Create
INTEGER, INTENT(IN) :: communicator

C++: Zoltan (
 const MPI_Comm &communicator = MPI_COMM_WORLD);

The Zoltan_Create function allocates memory for storage of information to be used by Zoltan and sets
the default values for the information. The pointer returned by this function is passed to many subsequent
functions. An application may allocate more than one Zoltan_Struct data structure; for example, an
application may use several Zoltan_Struct structures if, say, it uses different decompositions with
different load-balancing techniques.

In the C++ interface to Zoltan, the Zoltan class represents a Zoltan load balancing data structure and the
functions that operate on it. It is the constructor which allocates an instance of a Zoltan object. It has no
return value.

Arguments:
 communicator The MPI communicator to be used for this Zoltan structure. Only those processors

included in the communicator participate in Zoltan functions. If all processors are
to participate, communicator should be MPI_COMM_WORLD .

Returned Value:
 struct
Zoltan_Struct *

Pointer to memory for storage of Zoltan information. If an error occurs, NULL will
be returned in C, or the result will be a nullified pointer in Fortran. Any error that
occurs in this function is assumed to be fatal.

C: struct Zoltan_Struct *Zoltan_Copy (
 Zoltan_Struct *from);

FORTRAN: FUNCTION Zoltan_Copy(from)
TYPE(Zoltan_Struct), pointer :: Zoltan_Copy
TYPE(Zoltan_Struct), INTENT(IN) :: from

C++: Zoltan (
 const Zoltan &zz);

The Zoltan_Copy function creates a new Zoltan_Struct and copies the state of the existing
Zoltan_Struct, which it has been passed, to the new structure. It returns the new Zoltan_Struct.

There is no direct interface to Zoltan_Copy from C++. Rather, the Zoltan copy constructor invokes the
C library Zoltan_Copy program.

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (2 of 7) [8/4/2006 9:15:19 AM]

Arguments:
 from A pointer to the Zoltan_Struct that is to be copied.
Returned Value:
 struct
Zoltan_Struct * Pointer to a new Zoltan_Struct, which is now a copy of from.

C: int Zoltan_Copy_To (
 Zoltan_Struct *to,
 Zoltan_Struct *from);

FORTRAN: FUNCTION Zoltan_Copy_To(to, from)
INTEGER(Zoltan_INT) :: Zoltan_Copy_To
TYPE(Zoltan_Struct), INTENT(IN) :: to
TYPE(Zoltan_Struct), INTENT(IN) :: from

C++: Zoltan & operator= (
 const Zoltan &zz);

The Zoltan_Copy_To function copies one Zoltan_Struct to another, after first freeing any memory
used by the target Zoltan_Struct and re-initializing it.

The C++ interface to the Zoltan_Copy_To function is through the Zoltan copy operator, which invokes
the C library Zoltan_Copy_To program.

Arguments:
 to A pointer to an existing Zoltan_Struct, the target of the copy.
 from A pointer to an existing Zoltan_Struct, the source of the copy.
Returned Value:
 int 0 on success and 1 on failure.

C: int Zoltan_Set_Param (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val);

FORTRAN: FUNCTION Zoltan_Set_Param(zz, param_name, new_val)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value

C++: int Zoltan::Set_Param (
 const std::string ¶m_name,
 const std::string &new_value);

Zoltan_Set_Param is used to alter the value of one of the parameters used by Zoltan. All Zoltan

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (3 of 7) [8/4/2006 9:15:19 AM]

parameters have reasonable default values, but this routine allows a user to provide alternative values if
desired.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 param_name A string containing the name of the parameter to be altered. Note that the string is

case-insensitive. Also, different Zoltan structures can have different parameter
values.

 new_val A string containing the new value for the parameter. Example strings include
"3.154", "True", "7" or anything appropriate for the parameter being set. As above,
the string is case-insensitive.

Returned Value:
 int Error code.

C: int Zoltan_Set_Param_Vec (
 struct Zoltan_Struct *zz,
 char *param_name,
 char *new_val,
 int index);

FORTRAN: FUNCTION Zoltan_Set_Param_Vec(zz, param_name, new_val, index)
INTEGER(Zoltan_INT) :: Zoltan_Set_Param_Vec
TYPE(Zoltan_Struct), INTENT(IN) :: zz
CHARACTER(LEN=*), INTENT(IN) :: param_name, new_value
INTEGER(Zoltan_INT), INTENT(IN) :: index

C++: int Zoltan::Set_Param_Vec (
 const std::string ¶m_name,
 const std::string &new_val,
 const int &index);

Zoltan_Set_Param_Vec is used to alter the value of a vector parameter in Zoltan. A vector parameter is
a parameter that has one name but contains multiple values. These values are referenced by their indices,
usually starting at 0. Each entry (component) may have a different value. This routine sets a single entry
(component) of a vector parameter. If you want all entries (components) of a vector parameter to have
the same value, set the parameter using Zoltan_Set_Param as if it were a scalar parameter. If one only
sets the values of a subset of the indices for a vector parameter, the remaining entries will have the
default value for that particular parameter.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 param_name A string containing the name of the parameter to be altered. Note that the string is

case-insensitive. Also, different Zoltan structures can have different parameter
values.

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (4 of 7) [8/4/2006 9:15:19 AM]

 new_val A string containing the new value for the parameter. Example strings include
"3.154", "True", "7" or anything appropriate for the parameter being set. As above,
the string is case-insensitive.

 index The index of the entry of the vector parameter to be set. The default in Zoltan is
that the first entry in a vector has index 0 (C-style indexing).

Returned Value:
 int Error code.

C: int Zoltan_Set_Fn (
 struct Zoltan_Struct *zz,
 ZOLTAN_FN_TYPE fn_type,
 void (*fn_ptr)(),
 void *data);

FORTRAN: FUNCTION Zoltan_Set_Fn(zz, fn_type, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
TYPE(ZOLTAN_FN_TYPE), INTENT(IN) :: fn_type
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

C++: int Zoltan::Set_Fn (
 const ZOLTAN_FN_TYPE &fn_type,
 void (*fn_ptr)(),
 void *data = 0);

Zoltan_Set_Fn registers an application-supplied query function in the Zoltan structure. All types of
query functions can be registered through calls to Zoltan_Set_Fn. To register functions while
maintaining strict type-checking of the fn_ptr argument, use Zoltan_Set_<zoltan_fn_type>_Fn.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 fn_type The type of function being registered; see Application-Registered Query Functions

for possible function types.
 fn_ptr A pointer to the application-supplied query function being registered.
 data A pointer to user defined data that will be passed, as an argument, to the function

pointed to by fn_ptr. In C it may be NULL. In Fortran it may be omitted.
Returned Value:
 int Error code.

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (5 of 7) [8/4/2006 9:15:19 AM]

C: int Zoltan_Set_<zoltan_fn_type>_Fn (
 struct Zoltan_Struct *zz,
 <zoltan_fn_type> (*fn_ptr)(),
 void *data);

FORTRAN: FUNCTION Zoltan_Set_<zoltan_fn_type>_Fn(zz, fn_ptr, data)
INTEGER(Zoltan_INT) :: Zoltan_Set_<zoltan_fn_type>_Fn
TYPE(Zoltan_Struct), INTENT(IN) :: zz
EXTERNAL :: fn_ptr
<type-data>, OPTIONAL :: data

An interface block for fn_ptr is included in the FUNCTION definition so that strict
type-checking of the registered query function can be done.

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

C++: int Zoltan::Set_<zoltan_fn_type>_Fn (
 <zoltan_fn_type> (*fn_ptr)(),
 void *data = 0);

The interface functions Zoltan_Set_<zoltan_fn_type>_Fn, where <zoltan_fn_type> is one of the query
function types, register specific types of application-supplied query functions in the Zoltan structure. One
interface function exists for each type of query function. For example, Zoltan_Set_Num_Geom_Fn
registers a query function of type ZOLTAN_NUM_GEOM_FN. Each query function has an associated
Zoltan_Set_<zoltan_fn_type>_Fn. A complete list of these functions is included in include/zoltan.h.

Query functions can be registered using either Zoltan_Set_Fn or Zoltan_Set_<zoltan_fn_type>_Fn.
Zoltan_Set_<zoltan_fn_type>_Fn provides strict type checking of the fn_ptr argument; the argument's
type is specified for each Zoltan_Set_<zoltan_fn_type>_Fn. Zoltan_Set_Fn does not provide this strict
type checking, as the pointer to the registered function is cast to a void pointer.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 fn_ptr A pointer to the application-supplied query function being registered. The type of

the pointer matches <zoltan_fn_type> in the name
Zoltan_Set_<zoltan_fn_type>_Fn.

 data A pointer to user defined data that will be passed, as an argument, to the function
pointed to by fn_ptr. In C it may be NULL. In Fortran it may be omitted.

Returned Value:
 int Error code.
Example:

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (6 of 7) [8/4/2006 9:15:19 AM]

The interface function
 int Zoltan_Set_Geom_Fn(struct Zoltan_Struct *zz, ZOLTAN_GEOM_FN
(*fn_ptr)(),
 void *data);
registers an ZOLTAN_GEOM_FN query function.

C: void Zoltan_Destroy (
 struct Zoltan_Struct **zz);

FORTRAN: SUBROUTINE Zoltan_Destroy(zz)
TYPE(Zoltan_Struct), POINTER :: zz

C++: ~Zoltan ();

Zoltan_Destroy frees the memory associated with a Zoltan structure and sets the structure to NULL in C
or nullifies the structure in Fortran. Note that Zoltan_Destroy does not deallocate the import and export
arrays returned from Zoltan (e.g., the arrays returned from Zoltan_LB_Partition); these arrays can be
deallocated through a separate call to Zoltan_LB_Free_Part.

There is no explicit Destroy method in the C++ interface. The Zoltan object is destroyed when the
destructor executes.

As a side effect, Zoltan_Destroy (and the C++ Zoltan destructor) frees the MPI communicator that had
been allocated for the structure. So it is important that the application does not call MPI_Finalize before
it calls Zoltan_Destroy or before the destructor executes.

Arguments:
 zz A pointer to the address of the Zoltan structure, created by Zoltan_Create, to be

destroyed.

[Table of Contents | Next: Load-Balancing Functions | Previous: Zoltan Interface Functions]

Zoltan User's Guide: General Zoltan Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html (7 of 7) [8/4/2006 9:15:19 AM]

Zoltan User's Guide | Next | Previous

Load-Balancing Functions
The following functions are the load-balancing interface functions in the Zoltan library; their descriptions
are included below.

Zoltan_LB_Partition
Zoltan_LB_Set_Part_Sizes
Zoltan_LB_Eval
Zoltan_LB_Free_Part

For backward compatibility with previous versions of Zoltan, the following functions are also
maintained. These functions are applicable only when the number of partitions to be generated is equal to
the number of processors on which the partitions are computed. That is, these functions assume
"partitions" and "processors" are synonymous.

Zoltan_LB_Balance
Zoltan_LB_Free_Data

Descriptions of algorithm-specific interface functions are included with the documentation of their
associated algorithms. Algorithm-specific functions include:

Zoltan_RCB_Box

C: int Zoltan_LB_Partition (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int **import_to_part,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs,
 int **export_to_part);

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (1 of 9) [8/4/2006 9:15:21 AM]

FORTRAN: FUNCTION Zoltan_LB_Partition(zz, changes, num_gid_entries, num_lid_entries,
num_import, import_global_ids, import_local_ids, import_procs, import_to_part,
num_export, export_global_ids, export_local_ids, export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Partition
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

C++: int Zoltan::LB_Partition (
 int &changes,
 int &num_gid_entries,
 int &num_lid_entries,
 int &num_import,
 ZOLTAN_ID_PTR &import_global_ids,
 ZOLTAN_ID_PTR &import_local_ids,
 int * &import_procs,
 int * &import_to_part,
 int &num_export,
 ZOLTAN_ID_PTR &export_global_ids,
 ZOLTAN_ID_PTR &export_local_ids,
 int * &export_procs,
 int * &export_to_part);

Zoltan_LB_Partition invokes the load-balancing routine specified by the LB_METHOD parameter. The
number of partitions it generates is specified by the NUM_GLOBAL_PARTITIONS or
NUM_LOCAL_PARTITIONS parameters. Results of the partitioning are returned in lists of objects to be
imported into and exported from partitions on this processor. Objects are included in these lists if either
their partition assignment or their processor assignment is changed by the new decomposition. If an
application requests multiple partitions on a single processor, these lists may include objects whose
partition assignment is changing, but whose processor assignment is unchanged.

Returned arrays are allocated in Zoltan; applications should not allocate these arrays before calling
Zoltan_LB_Partition. The arrays are later freed through calls to Zoltan_LB_Free_Part.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this

invocation of the load-balancing routine.

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (2 of 9) [8/4/2006 9:15:21 AM]

 changes Set to 1 or .TRUE. if the decomposition was changed by the load-balancing
method; 0 or .FALSE. otherwise.

 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This
value is the maximum value over all processors of the parameter
NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This
value is the maximum value over all processors of the parameter
NUM_LID_ENTRIES.

 num_import Upon return, the number of objects that are newly assigned to this processor or to
partitions on this processor (i.e., the number of objects being imported from
different partitions to partitions on this processor). If the value returned is -1, no
import information has been returned and all import arrays below are NULL. (The
RETURN_LISTS parameter determines whether import lists are returned).

import_global_ids

Upon return, an array of num_import global IDs of objects to be imported to
partitions on this processor.
(size = num_import * num_gid_entries)

 import_local_ids Upon return, an array of num_import local IDs of objects to be imported to
partitions on this processor.
(size = num_import * num_lid_entries)

 import_procs Upon return, an array of size num_import listing the processor IDs of the
processors that owned the imported objects in the previous decomposition (i.e., the
source processors).

 import_to_part Upon return, an array of size num_import listing the partitions to which the
imported objects are being imported.

 num_export Upon return, this value of this count and the following lists depends on the value of
the RETURN_LISTS parameter:

It is the count of objects on this processor that are newly assigned to other
processors or to other partitions on this processor, if RETURN_LISTS is
"EXPORT" or "EXPORT AND IMPORT".

●

It is the count of all objects on this processor, if RETURN_LISTS is
"PARTITION ASSIGNMENTS".

●

It is -1 if the value of RETURN_LISTS indicates that either no lists are to be
returned, or only import lists are to be returned. If the value returned is -1,
no export information has been returned and all export arrays below are
NULL .

●

 export_global_ids Upon return, an array of num_export global IDs of objects to be exported from
partitions on this processor (if RETURN_LISTS is equal to "EXPORT" or
"EXPORT AND IMPORT"), or an array of num_export global IDs for every
object on this processor (if RETURN_LISTS is equal to "PARTITION
ASSIGNMENTS"), .
(size = num_export * num_gid_entries)

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (3 of 9) [8/4/2006 9:15:21 AM]

 export_local_ids Upon return, an array of num_export local IDs associated with the global IDs
returned in export_global_ids
(size = num_export * num_lid_entries)

 export_procs Upon return, an array of size num_export listing the processor ID of the processor
to which each object is now assigned (i.e., the destination processor). If
RETURN_LISTS is equal to "PARTITION ASSIGNMENTS", this list includes all
objects, otherwise it only includes the objects which are moving to a new partition
and/or process.

 export_to_part Upon return, an array of size num_export listing the partitions to which the objects
are assigned under the new partitioning.

Returned Value:
 int Error code.

C: int Zoltan_LB_Set_Part_Sizes (
 struct Zoltan_Struct *zz,
 int global_num,
 int len,
 int *part_ids,
 int *wgt_idx,
 float *part_sizes);

FORTRAN: function Zoltan_LB_Set_Part_Sizes(zz,global_part,len,partids,wgtidx,partsizes)
integer(Zoltan_INT) :: Zoltan_LB_Set_Part_Sizes
type(Zoltan_Struct) INTENT(IN) zz
integer(Zoltan_INT) INTENT(IN) global_part,len,partids(*),wgtidx(*)
real(Zoltan_FLOAT) INTENT(IN) partsizes(*)

C++: int Zoltan::LB_Set_Part_Sizes (
 const int &global_num,
 const int &len,
 int *part_ids,
 int *wgt_idx,
 float *part_sizes);

Zoltan_LB_Set_Part_Sizes is used to specify the desired partition sizes in Zoltan. By default, Zoltan
assumes that all partitions should be of equal size. With Zoltan_LB_Set_Part_Sizes, one can specify
the relative (not absolute) sizes of the partitions. For example, if two partitions are requested and the
desired sizes are 1 and 2, that means that the first partition will be assigned approximately one third of
the total load. If the sizes were instead given as 1/3 and 2/3, respectively, the result would be exactly the
same. Note that if there are multiple weights per object, one can (must) specify the partition size for each
weight dimension independently.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (4 of 9) [8/4/2006 9:15:21 AM]

 global_num Set to 1 if global partition numbers are given, 0 otherwise (local partition
numbers).

 len Length of the next three input arrays.

 part_ids
Array of partition numbers, either global or local. (Partition numbers are integers
starting from 0.)

 vwgt_idx Array of weight indices (between 0 and OBJ_WEIGHT_DIM-1). This array should
contain all zeros when there is only one weight per object.

 part_sizes Relative values for partition sizes; part_sizes[i] is the desired relative size of the
vwgt_idx[i]'th weight of partition part_ids[i].

Returned Value:
 int Error code.

C: int Zoltan_LB_Eval (
 struct Zoltan_Struct *zz,
 int print_stats,
 int *nobj,
 float *obj_wgt,
 int *ncuts,
 float *cut_wgt,
 int *nboundary,
 int *nadj);

FORTRAN: FUNCTION Zoltan_LB_Eval(zz, print_stats, nobj, obj_wgt, ncuts, cut_wgt,
nboundary, nadj)
INTEGER(Zoltan_INT) :: Zoltan_LB_Eval
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(IN) :: print_stats
INTEGER(Zoltan_INT), INTENT(OUT), OPTIONAL :: nobj, ncuts, nboundary, nadj
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(vwgt_dim), OPTIONAL ::
obj_wgt
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(ewgt_dim), OPTIONAL ::
cut_wgt

C++: int Zoltan::LB_Eval (
 const int &print_stats,
 int *nobj,
 float * const obj_wgt,
 int *ncuts,
 float * const cut_wgt,
 int *nboundary,
 int *nadj);

Zoltan_LB_Eval evaluates the quality of a decomposition. Some quality metrics are available only if the
graph query functions have been registered. Zoltan_LB_Eval may either print a summary of the results
to stdout or return the results in the output parameters. NOTE: The interface to this function may change
in future versions of Zoltan. Users are discouraged from relying on the output arguments from

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (5 of 9) [8/4/2006 9:15:21 AM]

Zoltan_LB_Eval.

Arguments:
 zz Pointer to the Zoltan structure.
 print_stats If print_stats>0 (.TRUE. in Fortran), print a summary (max, min, and sum) of the

quality metrics to stdout.
 nobj Upon return, the number of objects on this processor.
 obj_wgt Upon return, an array (of dimension OBJ_WEIGHT_DIM) containing the sum of

object weights on this processor.
 ncuts Upon return, the number of (communication) edge cuts for this processor.
 cut_wgt Upon return, an array (of dimension EDGE_WEIGHT_DIM) of cut weights for

this processor.
 nboundary Upon return, the number of boundary objects on this processor.
 nadj Upon return, the number of adjacent processors as defined by the communication

graph.

Returned Value:
 int Error code.
Query functions:
 Required: ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN

 Optional: ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

An output parameter is returned only if the input value of that parameter was not NULL. The rationale
for this feature is that if one wishes just to print the evaluation results, one can simply set all (or some of)
the output parameters to NULL in the function call. From Fortran, one may omit one or more of the
optional output parameters.

Note that the sum of ncuts over all processors is actually twice the number of edges cut in the graph
(because each edge is counted twice). The same principle holds for cut_wgt.

There are a few improvements in Zoltan_LB_Eval in Zoltan version 1.5 (or higher). First, the balance
data are computed with respect to both processors and partitions (if applicable). Second, the desired
partition sizes (as set by Zoltan_LB_Set_Partition_Sizes) are taken into account when computing the
imbalance.

Known bug: If a partition is spread across several processors, the computed cut information (ncuts and
cut_wgt) may be incorrect (too high).

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (6 of 9) [8/4/2006 9:15:21 AM]

C: int Zoltan_LB_Free_Part (
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int **procs,
 int **to_part);

FORTRAN: FUNCTION Zoltan_LB_Free_Part(global_ids, local_ids, procs, to_part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Part
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: procs, to_part

C++: int Zoltan::LB_Free_Part (
 ZOLTAN_ID_PTR *global_ids,
 ZOLTAN_ID_PTR *local_ids,
 int **procs,
 int **to_part);

Zoltan_LB_Free_Part frees the memory allocated by Zoltan to return the results of
Zoltan_LB_Partition or Zoltan_Invert_Lists. Memory pointed to by the arguments is freed and the
arguments are set to NULL in C and C++ or nullified in Fortran. NULL arguments may be passed to
Zoltan_LB_Free_Part. Note that this function does not destroy the Zoltan data structure itself; it is
deallocated through a call to Zoltan_Destroy in C and Fortran and by the object destructor in C++.

Arguments:
 global_ids An array containing the global IDs of objects.
 local_ids An array containing the local IDs of objects.
 procs An array containing processor IDs.
 to_part An array containing partition numbers.
Returned Value:
 int Error code.

C: int Zoltan_LB_Balance (
 struct Zoltan_Struct *zz,
 int *changes,
 int *num_gid_entries,
 int *num_lid_entries,
 int *num_import,
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 int *num_export,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (7 of 9) [8/4/2006 9:15:21 AM]

 int **export_procs);
FORTRAN: FUNCTION Zoltan_LB_Balance(zz, changes, num_gid_entries, num_lid_entries,

num_import, import_global_ids, import_local_ids, import_procs, num_export,
export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Balance
TYPE(Zoltan_Struct), INTENT(IN) :: zz
LOGICAL, INTENT(OUT) :: changes
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Balance is a wrapper around Zoltan_LB_Partition that excludes the partition assignment
results. Zoltan_LB_Balance assumes the number of partitions is equal to the number of processors; thus,
the partition assignment is equivalent to the processor assignment. Results of the partitioning are returned
in lists of objects to be imported and exported. These arrays are allocated in Zoltan; applications should
not allocate these arrays before calling Zoltan_LB_Balance. The arrays are later freed through calls to
Zoltan_LB_Free_Data or Zoltan_LB_Free_Part.

Arguments:
All arguments are analogous to those in Zoltan_LB_Partition.
Partition-assignment arguments import_to_part and export_to_part are not
included, as processor and partitions numbers are considered to be the same in
Zoltan_LB_Balance.

Returned Value:
 int Error code.

C: int Zoltan_LB_Free_Data (
 ZOLTAN_ID_PTR *import_global_ids,
 ZOLTAN_ID_PTR *import_local_ids,
 int **import_procs,
 ZOLTAN_ID_PTR *export_global_ids,
 ZOLTAN_ID_PTR *export_local_ids,
 int **export_procs);

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (8 of 9) [8/4/2006 9:15:21 AM]

FORTRAN: FUNCTION Zoltan_LB_Free_Data(import_global_ids, import_local_ids,
import_procs, export_global_ids, export_local_ids, export_procs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Free_Data
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_LB_Free_Data frees the memory allocated by the Zoltan to return the results of
Zoltan_LB_Balance or Zoltan_Compute_Destinations. Memory pointed to by the arguments is freed
and the arguments are set to NULL in C or nullified in Fortran. NULL arguments may be passed to
Zoltan_LB_Free_Data. Note that this function does not destroy the Zoltan data structure itself; it is
deallocated through a call to Zoltan_Destroy.

Arguments:

import_global_ids

The array containing the global IDs of objects imported to this processor.

 import_local_ids The array containing the local IDs of objects imported to this processor.
 import_procs The array containing the processor IDs of the processors that owned the imported

objects in the previous decomposition (i.e., the source processors).

export_global_ids

The array containing the global IDs of objects exported from this processor.

 export_local_ids The array containing the local IDs of objects exported from this processor.
 export_procs The array containing the processor IDs of processors that own the exported objects

in the new decomposition (i.e., the destination processors).
Returned Value:
 int Error code.

[Table of Contents | Next: Functions for Augmenting a Decomposition | Previous: Initialization
Functions]

Zoltan User's Guide: Load-Balancing Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html (9 of 9) [8/4/2006 9:15:21 AM]

Zoltan User's Guide | Next | Previous

Functions for Augmenting a Decomposition
The following functions support the addition of new items to an existing decomposition. Given a
decomposition, they determine to which processor(s) a new item should be assigned. Currently, they
work in conjunction with only the RCB, RIB, and HSFC algorithms.

Zoltan_LB_Point_PP_Assign
Zoltan_LB_Box_PP_Assign

For backward compatibility with previous versions of Zoltan, the following functions are also
maintained. These functions are applicable only when the number of partitions to be generated is equal to
the number of processors on which the partitions are computed. That is, these functions assume
"partitions" and "processors" are synonymous.

Zoltan_LB_Point_Assign
Zoltan_LB_Box_Assign

C: int Zoltan_LB_Point_PP_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc,
 int * part);

FORTRAN: FUNCTION Zoltan_LB_Point_PP_Assign(zz, coords, proc, part)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc
INTEGER(Zoltan_INT), INTENT(OUT) :: part

C++: int Zoltan::LB_Point_PP_Assign (
 double * const coords,
 int & proc,
 int & part);

Zoltan_LB_Point_PP_Assign is used to determine to which processor and partition a new point should
be assigned. It is applicable only to geometrically generated decompositions (RCB, RIB, and HSFC). If
the parameter KEEP_CUTS is set to TRUE, then the sequence of cuts that define the decomposition is
saved. Given a new geometric point, the processor and partition which own it can be determined.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 coords The (x,y) or (x,y,z) coordinates of the point being assigned.
 proc Upon return, the ID of the processor to which the point should belong.
 part Upon return, the ID of the partition to which the point should belong.

Zoltan User's Guide: Augmenting a Decomposition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html (1 of 4) [8/4/2006 9:15:22 AM]

Returned Value:
 int Error code.

C: int Zoltan_LB_Box_PP_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs,
 int *parts,
 int *numparts);

FORTRAN: FUNCTION Zoltan_LB_Box_PP_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax,
procs, numprocs, parts, numparts)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_PP_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::parts
INTEGER(Zoltan_INT), INTENT(OUT) :: numparts

C++: int Zoltan::LB_Box_PP_Assign (
 const double & xmin,
 const double & ymin,
 const double & zmin,
 const double & xmax,
 const double & ymax,
 const double & zmax,
 int * const procs,
 int & numprocs,
 int * const parts,
 int & numparts);

In many settings, it is useful to know which processors and partitions might need to know about an
extended geometric object. Zoltan_LB_Box_PP_Assign addresses this problem. Given a geometric
decomposition of space (currently only RCB, RIB, and HSFC are supported), and given an axis-aligned
box around the geometric object, Zoltan_LB_Box_PP_Assign determines which processors and
partitions own geometry that intersects the box. To use this routine, the parameter KEEP_CUTS must be
set to TRUE when the decomposition is generated. This parameter will cause the sequence of geometric
cuts to be saved, which is necessary for Zoltan_LB_Box_PP_Assign to do its job.

Note that if the parameter REDUCE_DIMENSIONS was set to TRUE and the geometry was

Zoltan User's Guide: Augmenting a Decomposition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html (2 of 4) [8/4/2006 9:15:22 AM]

determined to be degenerate when decomposition was calculated, then the calculation was performed on
transformed coordinates. This means that Zoltan_LB_Box_PP_Assign must transform the supplied
bounding box accordingly. The transformed vertices are bounded again, and the partition intersections
are calculated in the transformed space on this new bounding box. The impact of this is that
Zoltan_LB_Box_PP_Assign may return partitions not actually intersecting the original bounding box,
but it will not omit any partitions intersecting the original bounding box.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 xmin, ymin, zmin The coordinates of the lower extent of the bounding box around the object. If the

geometry is two-dimensional, the z value is ignored.
 xmax, ymax, zmax The coordinates of the upper extent of the bounding box around the object. If the

geometry is two-dimensional, the z value is ignored.
 procs The list of processors intersecting the box are returned starting at this address. Note

that it is the responsibility of the calling routine to ensure that there is sufficient
space for the return list.

 numprocs Upon return, this value contains the number of processors that intersect the box
(i.e. the number of entries placed in the procs list).

 parts The list of partitions intersecting the box are returned starting at this address. Note
that it is the responsibility of the calling routine to ensure that there is sufficient
space for the return list.

 numparts Upon return, this value contains the number of partitions that intersect the box (i.e.
the number of entries placed in the parts list).

Returned Value:
 int Error code.

C: int Zoltan_LB_Point_Assign (
 struct Zoltan_Struct * zz,
 double * coords,
 int * proc);

FORTRAN: FUNCTION Zoltan_LB_Point_Assign(zz, coords, proc)
INTEGER(Zoltan_INT) :: Zoltan_LB_Point_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), DIMENSION(*), INTENT(IN) :: coords
INTEGER(Zoltan_INT), INTENT(OUT) :: proc

Zoltan_LB_Point_Assign is is a wrapper around Zoltan_LB_Point_PP_Assign that excludes the
partition assignment results. Zoltan_LB_Point_Assign assumes the number of partitions is equal to the
number of processors; thus, the partition assignment is equivalent to the processor assignment.

Arguments:

Zoltan User's Guide: Augmenting a Decomposition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html (3 of 4) [8/4/2006 9:15:22 AM]

All arguments are analogous to those in Zoltan_LB_Point_PP_Assign.
Partition-assignment argument part is not included, as processor and partitions
numbers are considered to be the same in Zoltan_LB_Point_Assign.

Returned Value:
 int Error code.

C: int Zoltan_LB_Box_Assign (
 struct Zoltan_Struct * zz,
 double xmin,
 double ymin,
 double zmin,
 double xmax,
 double ymax,
 double zmax,
 int *procs,
 int *numprocs);

FORTRAN: FUNCTION Zoltan_LB_Box_Assign(zz, xmin, ymin, zmin, xmax, ymax, zmax, procs,
numprocs)
INTEGER(Zoltan_INT) :: Zoltan_LB_Box_Assign
TYPE(Zoltan_Struct), INTENT(IN) :: zz
REAL(Zoltan_DOUBLE), INTENT(IN) :: xmin, ymin, zmin, xmax, ymax, zmax
INTEGER(Zoltan_INT), DIMENSION(*), INTENT(OUT) ::procs
INTEGER(Zoltan_INT), INTENT(OUT) :: numprocs

Zoltan_LB_Box_Assign is a wrapper around Zoltan_LB_Box_PP_Assign that excludes the partition
assignment results. Zoltan_LB_Box_Assign assumes the number of partitions is equal to the number of
processors; thus, the partition assignment is equivalent to the processor assignment.

Arguments:
All arguments are analogous to those in Zoltan_LB_Box_PP_Assign.
Partition-assignment arguments parts and numparts are not included, as processor
and partitions numbers are considered to be the same in Zoltan_LB_Box_Assign.

Returned Value:
 int Error code.

[Table of Contents | Next: Migration Functions | Previous: Load-Balancing Functions]

Zoltan User's Guide: Augmenting a Decomposition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html (4 of 4) [8/4/2006 9:15:22 AM]

 Zoltan User's Guide | Next | Previous

Migration Functions
Zoltan's migration functions transfer object data to the processors in a new decomposition. Data to be
transferred is specified through the import/export lists returned by Zoltan_LB_Partition (or
Zoltan_LB_Balance). Alternatively, users may specify their own import/export lists.

The migration functions can migrate objects based on their new partition assignments and/or their new
processor assignments. Behavior is determined by the MIGRATE_ONLY_PROC_CHANGES
parameter.

If requested, Zoltan can automatically transfer an application's data between processors to realize a new
decomposition. This functionality will be performed as part of the call to Zoltan_LB_Partition (or
Zoltan_LB_Balance) if the AUTO_MIGRATE parameter is set to TRUE (nonzero) via a call to
Zoltan_Set_Param. This approach is effective for when the data to be moved is relatively simple. For
more complicated data movement, the application can leave AUTO_MIGRATE FALSE and call
Zoltan_Migrate (or Zoltan_Help_Migrate) itself. In either case, routines to pack and unpack object
data must be provided by the application. See the Migration Examples for examples with and without
auto-migration.

The following functions are the migration interface functions. Their detailed descriptions can be found
below.

Zoltan_Invert_Lists
Zoltan_Migrate

The following functions are maintained for backward compatibility with previous versions of Zoltan.
These functions are applicable only when the number of partitions to be generated is equal to the number
of processors on which the partitions are computed. That is, these functions assume "partitions" and
"processors" are synonymous.

Zoltan_Compute_Destinations
Zoltan_Help_Migrate

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (1 of 9) [8/4/2006 9:15:23 AM]

C: int Zoltan_Invert_Lists (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *known_to_part,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs,
 int **found_to_part);

FORTRAN: FUNCTION Zoltan_Invert_Lists(zz, num_known, known_global_ids,
known_local_ids, known_procs, known_to_part, num_found, found_global_ids,
found_local_ids, found_procs, found_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Invert_Lists
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids,
found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids,
found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_to_part, found_to_part

C++: int Zoltan::Invert_Lists (
 const int & num_known,
 ZOLTAN_ID_PTR const known_global_ids,
 ZOLTAN_ID_PTR const known_local_ids,
 int * const known_procs,
 int * const known_to_part,
 int &num_found,
 ZOLTAN_ID_PTR &found_global_ids,
 ZOLTAN_ID_PTR &found_local_ids,
 int * &found_procs,
 int * &found_to_part);

Zoltan_Invert_Lists computes inverse communication maps useful for migrating data. It can be used in
two ways:

Given a list of known off-processor objects to be received by a processor,
compute a list of local objects to be sent by the processor to other processors; or

●

Given a list of known local objects to be sent by a processor to other processors,
compute a list of off-processor objects to be received by the processor.

●

For example, if each processor knows which objects it will import from other processors,

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (2 of 9) [8/4/2006 9:15:23 AM]

Zoltan_Invert_Lists computes the list of objects each processor needs to export to other processors. If,
instead, each processor knows which objects it will export to other processors, Zoltan_Invert_Lists
computes the list of objects each processor will import from other processors. The computed lists are
allocated in Zoltan; they should not be allocated by the application before calling Zoltan_Invert_Lists.
These lists can be freed through a call to Zoltan_LB_Free_Part.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this

invocation of the migration routine.
 num_known The number of known objects to be received (sent) by this processor.
 known_global_ids An array of num_known global IDs of known objects to be received (sent) by this

processor.
(size = num_known * NUM_GID_ENTRIES)

 known_local_ids An array of num_known local IDs of known objects to be received (sent) by this
processor.
(size = num_known * NUM_LID_ENTRIES)

 known_procs An array of size num_known listing the processor IDs of the processors that the
known objects will be received from (sent to).

 known_to_part An array of size num_known listing the partition numbers of the partitions that the
known objects will be assigned to.

 num_found Upon return, the number of objects that must be sent to (received from) other
processors.

 found_global_ids Upon return, an array of num_found global IDs of objects to be sent (received) by
this processor.
(size = num_found * NUM_GID_ENTRIES)

 found_local_ids Upon return, an array of num_found local IDs of objects to be sent (received) by
this processor.
(size = num_found * NUM_LID_ENTRIES)

 found_procs Upon return, an array of size num_found listing the processor IDs of processors
that the found objects will be sent to (received from).

 found_to_part An array of size num_found listing the partition numbers of the partitions that the
found objects will be assigned to.

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES)
should be set using Zoltan_Set_Param before calling Zoltan_Invert_Lists. All processors must have the
same values for these two parameters.

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (3 of 9) [8/4/2006 9:15:23 AM]

C: int Zoltan_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part);

FORTRAN: FUNCTION Zoltan_Migrate(zz, num_import, import_global_ids, import_local_ids,
import_procs, import_to_part, num_export, export_global_ids, export_local_ids,
export_procs, export_to_part)
INTEGER(Zoltan_INT) :: Zoltan_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_to_part, export_to_part

C++: int Zoltan::Migrate (
 const int & num_import,
 ZOLTAN_ID_PTR const import_global_ids,
 ZOLTAN_ID_PTR const import_local_ids,
 int * const import_procs,
 int * const import_to_part,
 const int & num_export,
 ZOLTAN_ID_PTR const export_global_ids,
 ZOLTAN_ID_PTR const export_local_ids,
 int * const export_procs,
 int * const export_to_part);

Zoltan_Migrate takes lists of objects to be sent to other processors, along with the destinations of those
objects, and performs the operations necessary to send the data associated with those objects to their
destinations. Zoltan_Migrate performs the following operations using the application-registered
functions:

Call ZOLTAN_PRE_MIGRATE_PP_FN_TYPE (if registered)●

For each export object, call ZOLTAN_OBJ_SIZE_FN_TYPE to get object sizes.●

For each export object, call ZOLTAN_PACK_OBJ_FN_TYPE to load communication buffers.●

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (4 of 9) [8/4/2006 9:15:23 AM]

Communicate buffers to destination processors.●

Call ZOLTAN_MID_MIGRATE_PP_FN_TYPE (if registered).●

For each imported object, call ZOLTAN_UNPACK_OBJ_FN_TYPE to move data from the
buffer into the new processor's data structures.

●

Call ZOLTAN_POST_MIGRATE_PP_FN_TYPE (if registered).●

Either export lists or import lists must be specified for Zoltan_Migrate. Both export lists and import lists
may be specified, but both are not required.

If export lists are provided, non-NULL values for input arguments import_global_ids, import_local_ids,
import_procs, and import_to_part are optional. The values must be non-NULL only if no export lists are
provided or if the import lists are used by the application callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN. If all processors pass NULL arguments for the import arrays,
the value of num_import should be -1.

Similarly, if import lists are provided, non-NULL values for input arguments export_global_ids,
export_local_ids, export_procs, and export_to_part are optional. The values must be non-NULL only if
no import lists are provided or if the export lists are used by the application callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN, and
ZOLTAN_POST_MIGRATE_PP_FN. If all processors pass NULL arguments for the export arrays,
the value of num_export should be -1. In this case, Zoltan_Migrate computes the export lists based on
the import lists.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this

invocation of the migration routine.
 num_import The number of objects to be imported to partitions on this processor; these objects

may be stored on other processors or may be moving to new partitions within this
processor.
Use num_import=-1 if all processors do not specify import arrays.

import_global_ids

An array of num_import global IDs of objects to be imported to partitions on this
processor.
(size = num_import * NUM_GID_ENTRIES).
All processors may pass import_global_ids=NULL if export lists are provided and
import_global_ids is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN.

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (5 of 9) [8/4/2006 9:15:23 AM]

 import_local_ids An array of num_import local IDs of objects to be imported to partitions on this
processor.
(size = num_import * NUM_LID_ENTRIES)
All processors may pass import_local_ids=NULL if export lists are provided and
import_local_ids is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 import_procs An array of size num_import listing the processor IDs of objects to be imported to
partitions on this processor (i.e., the source processors).
All processors may pass import_procs=NULL if export lists are provided and
import_procs is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 import_to_part An array of size num_import listing the partitions to which imported objects should
be assigned.
All processors may pass import_to_part=NULL if export lists are provided and
import_to_part is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 num_export The number of objects that were stored on this processor in the previous
decomposition that are assigned to other processors or to different partitions within
this processor in the new decomposition.
Use num_export=-1 if all processors do not specify export arrays.

 export_global_ids An array of num_export global IDs of objects to be exported to new partitions.
(size = num_export * NUM_GID_ENTRIES)
All processors may pass export_global_ids=NULL if import lists are provided and
export_global_ids is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 export_local_ids An array of num_export local IDs of objects to be exported to new partitions.
(size = num_export * NUM_LID_ENTRIES)
All processors may pass export_local_ids=NULL if import lists are provided and
export_local_ids is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

 export_procs An array of size num_export listing the processor IDs to which exported objects
should be assigned (i.e., the destination processors).
All processors may pass export_procs=NULL if import lists are provided and
export_procs is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (6 of 9) [8/4/2006 9:15:23 AM]

 export_to_part An array of size num_export listing the partitions to which exported objects should
be assigned.
All processors may pass export_to_part=NULL if import lists are provided and
export_to_part is not needed by callback functions
ZOLTAN_PRE_MIGRATE_PP_FN, ZOLTAN_MID_MIGRATE_PP_FN,
and ZOLTAN_POST_MIGRATE_PP_FN .

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES)
should be set using Zoltan_Set_Param before calling Zoltan_Migrate. All processors must have the
same values for these two parameters.

C: int Zoltan_Compute_Destinations (
 struct Zoltan_Struct *zz,
 int num_known,
 ZOLTAN_ID_PTR known_global_ids,
 ZOLTAN_ID_PTR known_local_ids,
 int *known_procs,
 int *num_found,
 ZOLTAN_ID_PTR *found_global_ids,
 ZOLTAN_ID_PTR *found_local_ids,
 int **found_procs);

FORTRAN: FUNCTION Zoltan_Compute_Destinations(zz, num_known, known_global_ids,
known_local_ids, known_procs, num_found, found_global_ids, found_local_ids,
found_procs)
INTEGER(Zoltan_INT) :: Zoltan_Compute_Destinations
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_known
INTEGER(Zoltan_INT), INTENT(OUT) :: num_found
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_global_ids,
found_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_local_ids,
found_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: known_procs, found_procs

Zoltan_Compute_Destinations is a wrapper around Zoltan_Invert_Lists that excludes partition
assignment arrays. It is maintained for backward compatibility with previous versions of Zoltan.

Zoltan_Compute_Destinations assumes the number of partitions is equal to the number of processors.
The computed lists are allocated in Zoltan; they should not be allocated by the application before calling
Zoltan_Compute_Destinations. These lists can be freed through a call to Zoltan_LB_Free_Data or
Zoltan_LB_Free_Part.

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (7 of 9) [8/4/2006 9:15:23 AM]

Arguments:
All arguments are analogous to those in Zoltan_Invert_Lists.
Partition-assignment arrays known_to_part and found_to_part are not included, as
partition and processor numbers are assumed to be the same in
Zoltan_Compute_Destinations.

Returned Value:
 int Error code.

Note that the number of global and local ID entries (NUM_GID_ENTRIES and NUM_LID_ENTRIES)
should be set using Zoltan_Set_Param before calling Zoltan_Compute_Destinations. All processors
must have the same values for these two parameters.

C: int Zoltan_Help_Migrate (
 struct Zoltan_Struct *zz,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs);

FORTRAN: FUNCTION Zoltan_Help_Migrate(zz, num_import, import_global_ids,
import_local_ids, import_procs, num_export, export_global_ids, export_local_ids,
export_procs)
INTEGER(Zoltan_INT) :: Zoltan_Help_Migrate
TYPE(Zoltan_Struct),INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), POINTER, DIMENSION(:) :: import_procs, export_procs

Zoltan_Help_Migrate is a wrapper around Zoltan_Migrate that excludes partition assignment arrays. It
is maintained for backward compatibility with previous versions of Zoltan.

Zoltan_Help_Migrate assumes the number of partitions is equal to the number of processors. It uses
migration pre-, mid-, and post-processing routines ZOLTAN_PRE_MIGRATE_FN_TYPE,
ZOLTAN_MID_MIGRATE_FN_TYPE, and ZOLTAN_POST_MIGRATE_FN_TYPE,
respectively, which also exclude partition assignment arrays.

Arguments:

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (8 of 9) [8/4/2006 9:15:23 AM]

All arguments are analogous to those in Zoltan_Migrate. Partition-assignment
arrays import_to_part and export_to_part are not included, as partition and
processor numbers are assumed to be the same in Zoltan_Help_Migrate.

Returned Value:
 int Error code.

[Table of Contents | Next: Ordering Interface | Previous: Functions for Augmenting a Decomposition]

Zoltan User's Guide: Migration Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html (9 of 9) [8/4/2006 9:15:23 AM]

Zoltan User's Guide | Next | Previous

Ordering Functions
Zoltan provides limited capability for ordering a set of objects, typically given as a graph. The following
functions are the ordering interface functions in the Zoltan library; their descriptions are included below.

Zoltan_Order

C: int Zoltan_Order (
 struct Zoltan_Struct *zz,
 int *num_gid_entries,
 int *num_lid_entries,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *rank,
 int *iperm,
 struct Zoltan_Order_Struct *order_info);

FORTRAN: FUNCTION Zoltan_Order(zz, num_gid_entries, num_lid_entries, num_obj,
global_ids, local_ids, rank, iperm)
INTEGER(Zoltan_INT) :: Zoltan_Order
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(OUT) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj
INTEGER(Zoltan_INT) :: global_ids(*), local_ids(*)
INTEGER(Zoltan_INT) :: rank(*), iperm(*)

C++: int Zoltan::Order (
 int &num_gid_entries,
 int &num_lid_entries,
 const int &num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *rank,
 int *iperm);

Zoltan_Order invokes the ordering routine specified by the ORDER_METHOD parameter. Results of
the ordering are returned in the arrays rank and iperm. rank[i] gives the rank of global_ids[i] in the
computed ordering, while iperm is the inverse permutation of rank, that is, iperm[rank[i]] = i. The
ordering may be either global or local, depending on ORDER_TYPE. The arrays global_ids, local_ids,
rank, and iperm should all be allocated by the application before Zoltan_Order is called. Each array
must have space for (at least) num_obj elements, where num_obj is the number of objects residing on a
processor.

Zoltan User's Guide: Ordering Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_order.html (1 of 2) [8/4/2006 9:15:24 AM]

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this

invocation of the load-balancing routine.
 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This

value is the maximum value over all processors of the parameter
NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This
value is the maximum value over all processors of the parameter
NUM_LID_ENTRIES.

 num_obj Number of objects to order on this processor. At present, num_obj should be the
total number of objects residing on a processor. In future releases, ordering only a
subset of the objects may be permitted.

 global_ids An array of global IDs of objects to be ordered on this processor. (size = num_obj
* num_gid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must
have been allocated before Zoltan_Order is called.

 local_ids [Optional.] An array of local IDs of objects to be ordered on this processor. (size =
num_obj * num_lid_entries)
The array may be uninitialized on input (if REORDER is false), but memory must
have been allocated before Zoltan_Order is called.

 rank Upon return, an array of length num_obj containing the rank of each object in the
computed ordering. When rank[i] = j, that means that the object corresponding to
global_ids[i] is the jth object in the ordering. (This array corresponds directly to
the perm array in METIS and the order array in ParMETIS.) Note that the rank
may refer to either a local or a global ordering, depending on ORDER_TYPE.
Memory for this array must have been allocated before Zoltan_Order is called.

 iperm Upon return, an array of length num_obj containing the inverse permutation of
rank. That is, iperm[rank[i]] = i. In other words, iperm[j] gives the jth object in
the ordering. Memory for this array must have been allocated before
Zoltan_Order is called.

 order_info Upon return, this struct contains additional information about the ordering
produced. This parameter is currently not used and should always be set to NULL.
It is not included in the FORTRAN or C++ interface.

Returned Value:
 int Error code.

[Table of Contents | Next: Coloring Functions | Previous: Migration Functions]

Zoltan User's Guide: Ordering Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_order.html (2 of 2) [8/4/2006 9:15:24 AM]

Zoltan User's Guide | Next | Previous

Coloring Functions
Zoltan provides limited capability for coloring a set of objects, typically given as a graph. In graph
coloring, each vertex is assigned an integer label such that no two adjacent vertices have the same label.
The following functions are the coloring interface functions in the Zoltan library; their descriptions are
included below.

Zoltan_Color

C: int Zoltan_Color (
 struct Zoltan_Struct *zz,
 int *num_gid_entries,
 int *num_lid_entries,
 int num_obj,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *color_exp);

Zoltan_Color invokes the coloring routine and the assigned colors of each object are returned in the
array color_exp. color_exp[i]gives the color of global_ids[i] in the computed coloring. The arrays
global_ids, local_ids,and color_exp should all be allocated by the application before Zoltan_Color is
called. Each array must have space for (at least) num_obj elements, where num_obj is the number of
objects residing on a processor.

Arguments:
 zz Pointer to the Zoltan structure, created by Zoltan_Create, to be used in this

invocation of the load-balancing routine.
 num_gid_entries Upon return, the number of array entries used to describe a single global ID. This

value is the maximum value over all processors of the parameter
NUM_GID_ENTRIES.

 num_lid_entries Upon return, the number of array entries used to describe a single local ID. This
value is the maximum value over all processors of the parameter
NUM_LID_ENTRIES.

 num_obj Number of objects to color on this processor. num_obj should be the total number
of objects residing on a processor.

 global_ids Upon return, an array of global IDs of objects to be colored on this processor. (size
= num_obj * num_gid_entries)
Memory for this array must have been allocated before Zoltan_Color is called.

 local_ids [Optional.] Upon return, an array of local IDs of objects to be colored on this
processor. (size = num_obj * num_lid_entries)
Memory for this array must have been allocated before Zoltan_Color is called.

Zoltan User's Guide: Coloring Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_color.html (1 of 2) [8/4/2006 9:15:24 AM]

 color_exp Upon return, an array of length num_obj containing the colors of objects. That is,
color_exp[i] gives the color of global_ids[i] in the computed coloring. (Colors are
usually positive integers.) Memory for this array must have been allocated before
Zoltan_Color is called.

Returned Value:
 int Error code.

[Table of Contents | Next: Application-Registered Query Functions | Previous: Ordering Functions]

Zoltan User's Guide: Coloring Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_color.html (2 of 2) [8/4/2006 9:15:24 AM]

Zoltan User's Guide | Next | Previous

Application-Registered Query Functions
Zoltan gets information about a processor's objects through calls to query functions. These functions
must be provided by the application. They are "registered" with Zoltan; that is, a pointer to the function is
passed to Zoltan, which can then call that function when its information is needed. Two categories of
query functions are used by the library:

General Zoltan Query Functions
Migration Query Functions

In each category, a variety of query functions can be registered by the user. The query functions have a
function type, describing their purpose. Functions can be registered with a Zoltan structure in two ways:
through calls to Zoltan_Set_Fn or through calls to query-function-specific functions
Zoltan_Set_<zoltan_fn_type>_Fn. When a function is registered through a call to Zoltan_Set_Fn, its
function type is passed in the fn_type argument. When Zoltan_Set_<zoltan_fn_type>_Fn is used to
register functions, the type of the function is implicit in the fn_ptr argument. Each function description
below includes both its function type and function prototype.

Query functions that return information about data objects owned by a processor come in two forms:
list-based functions that return information about a list of objects, and iterator functions that return
information about a single object. Users can provide either version of the query function; they need not
provide both. Zoltan calls the list-based functions with the IDs of all objects needed; this approach often
provides faster performance as it eliminates the overhead of multiple function calls. List-based functions
have the word "MULTI" in their function-type name. If, instead, the application provides iterator
functions, Zoltan calls the iterator function once for each object whose data is needed. This approach,
while slower, allows Zoltan to use less memory for some data.

Some algorithms in Zoltan require that certain query functions be registered by the application; for
example, geometric partitioning algorithms such as Recursive Coordinate Bisection (RCB) require that
either a ZOLTAN_GEOM_FN or a ZOLTAN_GEOM_MULTI_FN be registered. When a default
value is specified below, the query function type is optional; if a function of that type is not registered,
the default values are used. Details of which query functions are required by particular algorithms are
included in the Algorithms section.

Many of the functions have both global and local object identifiers (IDs) in their argument lists. The
global IDs provided by the application must be unique across all processors; they are used for
identification within Zoltan. The local IDs are not used by Zoltan; they are provided for the convenience
of the application and can be anything the application desires. The local IDs can be used by application
query routines to enable direct access to application data. For example, the object with global ID "3295"
may be stored by the application in location "15" of an array in the processor's local memory. Both
global ID "3295" and local ID "15" can be used by the application to describe the object. Then, rather
than searching the array for global ID "3295," the application query routines can subsequently use the
local ID to index directly into the local storage array. See Data Types for Object IDs for a description of
global and local IDs. All of the functions have, as their first argument, a pointer to data that is passed to

Zoltan User's Guide: Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query.html (1 of 2) [8/4/2006 9:15:24 AM]

Zoltan through Zoltan_Set_Fn or Zoltan_Set_<zoltan_fn_type>_Fn. This data is not used by Zoltan. A
different set of data can be supplied for each registered function. For example, if the local ID is an index
into an array of data structures, then the data pointer might point to the head of the data structure array.

As their last argument, all functions have an error code that should be set and returned by the registered
function.

If you are calling the Zoltan library from a C++ application, you may set the query function to be any
class static function or any function defined outside of a class definition. However, it is possible you will
wish to set the query function to be an object method. In that case, you should write a query function that
takes a pointer to the object as it's data field. The query function can then call the object method.

[Table of Contents | Next: Load-Balancing Query Functions | Previous: Coloring Functions]

Zoltan User's Guide: Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query.html (2 of 2) [8/4/2006 9:15:24 AM]

Zoltan User's Guide | Next | Previous

General Zoltan Query Functions
The following registered functions are used by various Zoltan algorithms in the Zoltan library. No single algorithm uses all the query functions;
the algorithm descriptions indicate which query functions are required by individual algorithms.

Object ID Functions

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN
ZOLTAN_FIRST_OBJ_FN
ZOLTAN_NEXT_OBJ_FN
ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN

Geometry-Based Functions

ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

Graph-Based Functions

ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or ZOLTAN_EDGE_LIST_FN

Hypergraph-Based Functions

ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN
ZOLTAN_HG_SIZE_EDGE_WTS_FN
ZOLTAN_HG_EDGE_WTS_FN

Tree-Based Functions

ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_COARSE_OBJ_LIST_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NUM_CHILD_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN

Border Object Functions (currently unused)

ZOLTAN_NUM_BORDER_OBJ_FN
ZOLTAN_BORDER_OBJ_LIST_FN
ZOLTAN_FIRST_BORDER_OBJ_FN
ZOLTAN_NEXT_BORDER_OBJ_FN

Object ID Functions

C and C++: typedef int ZOLTAN_NUM_OBJ_FN (void *data, int *ierr);
FORTRAN: FUNCTION Get_Num_Obj(data, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_OBJ_FN query function returns the number of objects that are currently assigned to the processor.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (1 of 25) [8/4/2006 9:15:31 AM]

Function Type: ZOLTAN_NUM_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects that are assigned to the processor.

C and C++: typedef void ZOLTAN_OBJ_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int wgt_dim, float *obj_wgts, int *ierr);

FORTRAN: SUBROUTINE Get_Obj_List(data, num_gid_entries, num_lid_entries, global_ids,
local_ids, wgt_dim, obj_wgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_OBJ_LIST_FN query function fills two (three if weights are used) arrays with information about the objects currently assigned to
the processor. Both arrays are allocated (and subsequently freed) by Zoltan; their size is determined by a call to a ZOLTAN_NUM_OBJ_FN
query function to get the array size. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query options need not be
provided.

Function Type: ZOLTAN_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_ids Upon return, an array of unique global IDs for all objects assigned to the processor.
 local_ids Upon return, an array of local IDs, the meaning of which can be determined by the

application, for all objects assigned to the processor.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 obj_wgts Upon return, an array of object weights. Weights for object i are stored in

obj_wgts[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, the return value of obj_wgts
is undefined and may be NULL.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_FIRST_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR first_global_id,
ZOLTAN_ID_PTR first_local_id, int wgt_dim, float *first_obj_wgt, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (2 of 25) [8/4/2006 9:15:31 AM]

FORTRAN: FUNCTION Get_First_Obj(data, num_gid_entries, num_lid_entries, first_global_id,
first_local_id, wgt_dim, first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_FIRST_OBJ_FN query function initializes an iteration over objects assigned to the processor. It returns the global and local IDs
of the first object on the processor. Subsequent calls to a ZOLTAN_NEXT_OBJ_FN query function iterate over and return other objects
assigned to the processor. This query-function pair frees the application from having to build an array of objects (as in
ZOLTAN_OBJ_LIST_FN) and allows Zoltan's routines to obtain only as much information about objects as they need. For many algorithms,
either a ZOLTAN_OBJ_LIST_FN query function or a ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must
be registered; however, both query options need not be provided.

Function Type: ZOLTAN_FIRST_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 first_global_id The returned value of the global ID for the first object; the value is ignored if there

are no objects.
 first_local_id The returned value of the local ID for the first object; the value is ignored if there

are no objects.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 first_obj_wgt Upon return, the first object's weights; an array of length wgt_dim. Undefined if

wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If first_global_id and first_local_id contain valid IDs of the first object.
 0 If no objects are available.

C and C++: typedef int ZOLTAN_NEXT_OBJ_FN (void * data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
ZOLTAN_ID_PTR next_global_id, ZOLTAN_ID_PTR next_local_id, int wgt_dim,
float *next_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_Next_Obj(data, num_gid_entries, num_lid_entries, global_id,
local_id, next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (3 of 25) [8/4/2006 9:15:31 AM]

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NEXT_OBJ_FN query function is an iterator function which, when given an object assigned to the processor, returns the next
object assigned to the processor. The first object of the iteration is provided by a ZOLTAN_FIRST_OBJ_FN query function. This
query-function pair frees the application from having to build an array of objects (as in ZOLTAN_OBJ_LIST_FN) and allows Zoltan's
routines to obtain only as much information about objects as they need. For many algorithms, either a ZOLTAN_OBJ_LIST_FN query
function or a ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN query-function pair must be registered; however, both query options
need not be provided.

Function Type: ZOLTAN_NEXT_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the previous object.
 local_id The local ID of the previous object.
 next_global_id The returned value of the global ID for the next object; the value is ignored if there

are no more objects.
 next_local_id The returned value of the local ID for the next object; the value is ignored if there

are no more objects.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 next_obj_wgt Upon return, the next object's weights; an array of length wgt_dim. Undefined if

wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If next_global_id and next_local_id contain valid IDs of the next object.
 0 If no more objects are available.

C and C++: typedef void ZOLTAN_PARTITION_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids,
ZOLTAN_ID_PTR local_ids, int *parts, int *ierr);

FORTRAN: SUBROUTINE Get_Partition_Multi(data, num_gid_entries, num_lid_entries,
num_obj, global_ids, local_ids, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: parts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_MULTI_FN query function returns a list of partitions to which given objects are currently assigned. If a
ZOLTAN_PARTITION_MULTI_FN or ZOLTAN_PARTITION_FN is not registered, Zoltan assumes the partition numbers are the
processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (4 of 25) [8/4/2006 9:15:32 AM]

 num_gid_entries The number of array entries used to describe a single global ID. This value is the
maximum value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the
maximum value over all processors of the parameter NUM_LID_ENTRIES.

 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids The global IDs of the objects for which the partition numbers should be returned.
 local_ids The local IDs of the objects for which the partition numbers should be returned.

 parts
Upon return, an array of partition numbers corresponding to the global and local
IDs.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_PARTITION_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int *ierr);

FORTRAN: FUNCTION Get_Partition(data, num_gid_entries, num_lid_entries, global_id,
local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Partition
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PARTITION_FN query function returns the partition to which a given object is currently assigned. If a
ZOLTAN_PARTITION_FN or ZOLTAN_PARTITION_MULTI_FN is not registered, Zoltan assumes the partition numbers are the
processor number of the owning processor. Valid partition numbers are non-negative integers.

Function Type: ZOLTAN_PARTITION_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object for which the partition number should be returned.
 local_id The local ID of the object for which the partition number should be returned.
 ierr Error code to be set by function.
Returned Value:
 int The partition number for the object identified by global_id and local_id.

Geometry-based Functions

C and C++: typedef int ZOLTAN_NUM_GEOM_FN (void *data, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (5 of 25) [8/4/2006 9:15:32 AM]

FORTRAN: FUNCTION Get_Num_Geom(data, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Geom
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_GEOM_FN query function returns the number of values needed to express the geometry of an object. For example, for a
two-dimensional mesh-based application, (x,y) coordinates are needed to describe an object's geometry; thus the ZOLTAN_NUM_GEOM_FN
query function should return the value of two. For a similar three-dimensional application, the return value should be three.

Function Type: ZOLTAN_NUM_GEOM_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of values needed to express the geometry of an object.

C and C++: typedef void ZOLTAN_GEOM_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids,
ZOLTAN_ID_PTR local_ids, int num_dim, double *geom_vec, int *ierr);

FORTRAN: SUBROUTINE Get_Geom_Multi(data, num_gid_entries, num_lid_entries, num_obj,
global_ids, local_ids, num_dim, geom_vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_obj, num_dim
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_GEOM_MULTI FN query function returns a vector of geometry values for a list of given objects. The geometry vector is
allocated by Zoltan to be of size num_obj * num_dim; its format is described below.

Function Type: ZOLTAN_GEOM_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose geometry values should be returned.
 local_ids Array of local IDs of objects whose geometry values should be returned.
 num_dim Number of coordinate entries per object (typically 1, 2, or 3).
 geom_vec Upon return, an array containing geometry values. For object i (specified by

global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries],
i=0,1,...,num_obj-1), coordinate values should be stored in
geom_vec[i*num_dim:(i+1)*num_dim-1].

 ierr Error code to be set by function.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (6 of 25) [8/4/2006 9:15:32 AM]

C and C++: typedef void ZOLTAN_GEOM_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
double *geom_vec, int *ierr);

FORTRAN: SUBROUTINE Get_Geom(data, num_gid_entries, num_lid_entries, global_id,
local_id, geom_vec, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
REAL(Zoltan_DOUBLE), INTENT(OUT), DIMENSION(*) :: geom_vec
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_GEOM_FN query function returns a vector of geometry values for a given object. The geometry vector is allocated by Zoltan to
be of the size returned by a ZOLTAN_NUM_GEOM_FN query function.

Function Type: ZOLTAN_GEOM_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object whose geometry values should be returned.
 local_id The local ID of the object whose geometry values should be returned.
 geom_vec Upon return, an array containing geometry values.
 ierr Error code to be set by function.

Graph-based Functions

C and C++: typedef void ZOLTAN_NUM_EDGES_MULTI_FN (void *data,
int num_gid_entries, int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids,
ZOLTAN_ID_PTR local_ids, int *num_edges, int *ierr);

FORTRAN: SUBROUTINE Get_Num_Edges_Multi(data, num_gid_entries, num_lid_entries,
num_obj, global_ids, local_ids, num_edges, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT),DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_MULTI_FN query function returns the number of edges in the communication graph of the application for each

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (7 of 25) [8/4/2006 9:15:32 AM]

object in a list of objects. That is, for each object in the global_ids/local_ids arrays, the number of objects with which the given object must
share information is returned.

Function Type: ZOLTAN_NUM_EDGES_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose number of edges should be returned.
 local_ids Array of local IDs of objects whose number of edges should be returned.
 num_edges Upon return, an array containing numbers of edges. For object i (specified by

global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries],
i=0,1,...,num_obj-1), the number of edges should be stored in num_edges[i].

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_NUM_EDGES_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int *ierr);

FORTRAN: FUNCTION Get_Num_Edges(data, num_gid_entries, num_lid_entries, global_id,
local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Edges
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_EDGES_FN query function returns the number of edges for a given object in the communication graph of the application
(i.e., the number of objects with which the given object must share information).

Function Type: ZOLTAN_NUM_EDGES_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object for which the number of edges should be returned.
 local_id The local ID of the object for which the number of edges should be returned.
 ierr Error code to be set by function.
Returned Value:
 int The number of edges for the object identified by global_id and local_id.

C and C++: typedef void ZOLTAN_EDGE_LIST_MULTI_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_obj, ZOLTAN_ID_PTR global_ids,
ZOLTAN_ID_PTR local_ids, int *num_edges, ZOLTAN_ID_PTR nbor_global_id,
int *nbor_procs, int wgt_dim, float *ewgts, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (8 of 25) [8/4/2006 9:15:32 AM]

FORTRAN: SUBROUTINE Get_Edge_List_Multi(data, num_gid_entries, num_lid_entries,
num_obj, global_ids, local_ids, num_edges, nbor_global_id, nbor_procs, wgt_dim,
ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_obj
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_MULTI_FN query function returns lists of global IDs, processor IDs, and optionally edge weights for objects
sharing edges with objects specified in the global_ids input array; objects share edges when they must share information with other objects. The
arrays for the returned neighbor lists are allocated by Zoltan; their size is determined by a calls to ZOLTAN_NUM_EDGES_MULTI_FN or
ZOLTAN_NUM_EDGES_FN query functions.

Function Type: ZOLTAN_EDGE_LIST_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_obj The number of object IDs in arrays global_ids and local_ids.
 global_ids Array of global IDs of objects whose edge lists should be returned.
 local_ids Array of local IDs of objects whose edge lists should be returned.
 num_edges An array containing numbers of edges for each object in global_ids. For object i

(specified by global_ids[i*num_gid_entries] and local_ids[i*num_lid_entries],
i=0,1,...,num_obj-1), the number of edges is stored in num_edges[i].

 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the objects
specified in global_ids. For object i (specified by global_ids[i*num_gid_entries]
and local_ids[i*num_lid_entries], i=0,1,...,num_obj-1), edges are stored in
nbor_global_id[sum*num_gid_entries] to
nbor_global_id[(sum+num_edges[i])*num_gid_entries-1], where sum = the sum
of num_edges[j] for j=0,1,...,i-1.

 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring
objects reside. For neighboring object i (stored in
nbor_global_id[i*num_gid_entries]), the processor owning the neighbor is stored
in nbor_procs[i].

 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights
are not requested. This value is set through the parameter EDGE_WEIGHT_DIM.

 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]
corresponds to the weights for the ith edge. If wgt_dim=0, the return value of
ewgts is undefined and may be NULL.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_EDGE_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs, int wgt_dim, float *ewgts,
int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (9 of 25) [8/4/2006 9:15:32 AM]

FORTRAN: SUBROUTINE Get_Edge_List(data, num_gid_entries, num_lid_entries, global_id,
local_id, nbor_global_id, nbor_procs, wgt_dim, ewgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: nbor_procs
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: ewgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_EDGE_LIST_FN query function returns lists of global IDs, processor IDs, and optionally edge weights for objects sharing an
edge with a given object (i.e., objects that must share information with the given object). The arrays for the returned neighbor lists are allocated
by Zoltan; their size is determined by a call to ZOLTAN_NUM_EDGES_MULTI_FN or ZOLTAN_NUM_EDGES_FN query functions.

Function Type: ZOLTAN_EDGE_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object for which an edge list should be returned.
 local_id The local ID of the object for which an edge list should be returned.
 nbor_global_id Upon return, an array of global IDs of objects sharing edges with the given object.
 nbor_procs Upon return, an array of processor IDs that identifies where the neighboring

objects reside.
 wgt_dim The number of weights associated with an edge (typically 1), or 0 if edge weights

are not requested. This value is set through the parameter EDGE_WEIGHT_DIM.
 ewgts Upon return, an array of edge weights, where ewgts[i*wgt_dim:(i+1)*wgt_dim-1]

corresponds to the weights for the ith edge. If wgt_dim=0, the return value of
ewgts is undefined and may be NULL.

 ierr Error code to be set by function.

Hypergraph-based Functions

C and C++: typedef void ZOLTAN_HG_SIZE_CS_FN (void *data, int *num_lists, int *num_pins,
int *format, int *ierr);

FORTRAN: SUBROUTINE Get_HG_Size_CS(data, num_lists, num_pins, format, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: num_lists
INTEGER(Zoltan_INT), INTENT(OUT) :: num_pins
INTEGER(Zoltan_INT), INTENT(OUT) :: format
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (10 of 25) [8/4/2006 9:15:32 AM]

A hypergraph (which may alternatively be viewed as a sparse matrix)
can be supplied to the Zoltan library in one of two compressed storage
formats. In compressed hyperedge format
(ZOLTAN_COMPRESSED_EDGE) a list of global hyperedge IDs is
provided. Then a single list of the hypergraph pins, is provided. A pin
is the connection between a vertex and a hyperedge (corresponds to a
nonzero in a sparse matrix). Pins do not have separate IDs but are
rather identified by the global ID of the vertex containing the pin, and
implicitly also by the hyperedge ID. An example is provided below.

The other format is compressed vertex
(ZOLTAN_COMPRESSED_VERTEX). In this format a list of vertex
global IDs is provided. Then a list of pins ordered by vertex and then
by hyperedge is provided. The pin ID in this case is the global ID of the
row (or hyperedge) in which the pin appears. In both formats, an array
must be provided pointing to the start in the list of pins where each
row or column begins. Sparse matrix users may think of these two
formats as CSR (compressed sparse row) and CSC (compressed
sparse column) format, respectively.

The point of this query function is to tell Zoltan in which format the
application will supply the hypergraph, how many vertices and
hyperedges there will be, and how many pins. The actual hypergraph
is supplied with a query function of the type
ZOLTAN_HG_CS_FN_TYPE.

This query function is required by all applications using the
hypergraph methods of Zoltan (unless they are using the graph-based
functions with hypergraph code instead).

Function Type: ZOLTAN_HG_SIZE_CS_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_lists Upon return, the number of rows (if using compressed row storage) or columns (if

using compressed column storage) that will be supplied to Zoltan by the
application process.

 num_pins Upon return, the number of pins (matrix non-zeroes) that will be supplied to Zoltan
by the application process.

 format Upon return, the format in which the application process will provide the
hypergraph to Zoltan. The options are ZOLTAN_COMPRESSED_EDGE and
ZOLTAN_COMPRESSED_VERTEX.

 ierr Error code to be set by function.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (11 of 25) [8/4/2006 9:15:32 AM]

C and C++: typedef void ZOLTAN_HG_CS_FN (void *data, int num_gid_entries,
int num_row_or_col, int num_pins, int format, ZOLTAN_ID_PTR vtxedge_GID,
int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID, int *ierr);

FORTRAN: SUBROUTINE Get_HG_CS(data, num_gid_entries, num_row_or_col, num_pins,
format, vtxedge_GID, vtxedge_ptr, pin_GID, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_row_or_col, num_pins,
format
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vtxedge_GID
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vtxedge_ptr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: pin_GID
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_HG_CS_FN returns a hypergraph, in a sparse matrix-like
style. The size and format of the data to be returned must have been
supplied to Zoltan using a ZOLTAN_HG_SIZE_CS_FN_TYPE function.

When a hypergraph is distributed across multiple processes, Zoltan
expects that all processes share a consistent global numbering
scheme for hyperedges and vertices. Also, no two processes should
return the same pin (matrix non-zero) in this query function.

This query function is required by all applications using the
hypergraph methods of Zoltan (unless they are using the graph-based
functions with hypergraph code instead).

Function Type: ZOLTAN_HG_CS_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_vtx_edge The number of global IDs that is expected to appear on return in vtxedge_GID.
 num_pins The number of pins that is expected to appear on return in pin_GID.
 format If format is ZOLTAN_COMPRESSED_EDGE, Zoltan expects that row

(hyperedge) global IDs will be returned in vtxedge_GID, and that column (vertex)
global IDs will be returned in pin_GIDs. If it is
ZOLTAN_COMPRESSED_VERTEX, then column global IDs are expected to
be returned in vtxedge_GID and row global IDs are expected to be returned in
pin_GIDs.

 vtxedge_GID Upon return, a list of num_row_or_col global IDs.
 vtxedge_ptr Upon return, this array contains num_row_or_col integers. The integer in the i'th

array element is the index in array pin_GID where the pins for the i'th row (if
format is ZOLTAN_COMPRESSED_EDGE) or i'th column (if format is
ZOLTAN_COMPRESSED_VERTEX) begins. Array indices begin at zero.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (12 of 25) [8/4/2006 9:15:32 AM]

 pin_GID Upon return, a list of num_pins global IDs. This is the list of the pins (or matrix
non-zeros) contained in the rows or columns listed in vtxedge_GID.

 ierr Error code to be set by function.

Example

vertex
hyperedge 10 20 30 40 50

1 0 0 1 1 0
2 0 1 1 0 0
3 1 0 0 0 1

Compressed hyperedge storage:

vtxedge_GID = {1, 2, 3}
vtxedge_ptr = {0, 2, 4}
pin_GID = {30, 40, 20, 30, 10, 50}

Compressed vertex storage:

vtxedge_GID = {10, 20, 30, 40, 50}
vtxedge_ptr = {0, 1, 2, 4, 5}
pin_GID = {3, 2, 1, 2, 1, 3}

C and C++: typedef void ZOLTAN_HG_SIZE_EDGE_WTS_FN (void *data, int *num_edges,
int *ierr);

FORTRAN: SUBROUTINE Get_HG_Size_Edge_Wts(data, num_edges, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: num_edges
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_HG_SIZE_EDGE_WTS_FN returns the number of
hyperedges for which a process will supply edge weights. The number
of weights per hyperedge was supplied by the application with the
EDGE_WEIGHT_DIM parameter. The actual edge weights will be
supplied with a ZOLTAN_HG_EDGE_WTS_FN_TYPE function.

This query function is not required. If no hyperedge weights are
supplied, Zoltan will assume every hyperedge has weight 1.0.

Function Type: ZOLTAN_HG_SIZE_EDGE_WTS_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_edges Upon return, the number of hyperedges for which edge weights will be supplied.
 ierr Error code to be set by function.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (13 of 25) [8/4/2006 9:15:32 AM]

C and C++: typedef void ZOLTAN_HG_EDGE_WTS_FN (void *data, int num_gid_entries,
int num_lid_entries, int num_edges, int edge_weight_dim,
ZOLTAN_ID_PTR edge_GID, ZOLTAN_ID_PTR edge_LID, float *edge_weight,
int *ierr);

FORTRAN: SUBROUTINE Get_HG_Edge_Wts(data, num_gid_entries, num_lid_entries,
num_edges, edge_weight_dim, edge_GID, edge_LID, edge_weight, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries,
num_edges, edge_weight_dim
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: edge_GID
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: edge_LID
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: edge_weight
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_HG_EDGE_WTS_FN returns edges weights for a set of
hypergraph edges. The number of weights supplied for each
hyperedge should equal the value of the EDGE_WEIGHT_DIM
parameter. In the case of a hypergraph which is distributed across
multiple processes, if more than one process supplies edge weights
for the same hyperedge, the different edge weights will be resolved
according to the value of the PHG_EDGE_WEIGHT_OPERATION
parameter.

This query function is not required. If no hyperedge weights are
supplied, Zoltan will assume every hyperedge has weight 1.0.

Function Type: ZOLTAN_HG_SIZE_EDGE_WTS_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_edges The number of hyperedges for which edge weights should be supplied in the

edge_weight array.
 edge_weight_dim The number of weights which should be supplied for each hyperedge. This is also

the value of the EDGE_WEIGHT_DIM parameter.
 edge_GID Upon return, this array should contain the global IDs of the num_edges hyperedges

for which the application is supplying edge weights.
 edge_LID Upon return, this array can optionally contain the local IDs of the num_edges

hyperedges for which the application is supplying edge weights.
 edge_weight Upon return, this array should contain the weights for each edge listed in the

edge_GID. If edge_weight_dim is greater than one, all weights for one hyperedge
are listed before the weights for the next hyperedge are listed.

 ierr Error code to be set by function.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (14 of 25) [8/4/2006 9:15:32 AM]

Tree-based Functions

C and C++: typedef int ZOLTAN_NUM_COARSE_OBJ_FN (void *data, int *ierr);
FORTRAN: FUNCTION Get_Num_Coarse_Obj(data, ierr)

INTEGER(Zoltan_INT) :: Get_Num_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_COARSE_OBJ_FN query function returns the
number of objects (elements) in the initial coarse grid.

Function Type: ZOLTAN_NUM_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects in the coarse grid.

C and C++: typedef void ZOLTAN_COARSE_OBJ_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
int *assigned, int *num_vert, ZOLTAN_ID_PTR vertices, int *in_order,
ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: SUBROUTINE Get_Coarse_Obj_List(data, num_gid_entries, num_lid_entries,
global_ids, local_ids, assigned, num_vert, vertices, in_order, in_vertex, out_vertex,
ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert,
vertices, in_vertex, out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: in_order, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_COARSE_OBJ_LIST_FN query function returns lists of
global IDs, local IDs, vertices, and order information for all objects
(elements) of the initial coarse grid. The vertices are designated by a
global ID such that if two elements share a vertex then the same ID

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (15 of 25) [8/4/2006 9:15:32 AM]

designates that vertex in both elements and on all processors. The
user may choose to provide the order in which the elements should be
traversed or have Zoltan determine the order. If the user provides the
order, then entry and exit vertices for a path through the elements may
also be provided. The arrays for the returned values are allocated by
Zoltan; their size is determined by a call to a
ZOLTAN_NUM_COARSE_OBJ_FN query function.

Function Type: ZOLTAN_COARSE_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_ids Upon return, an array of global IDs of all objects in the coarse grid.
 local_ids Upon return, an array of local IDs of all objects in the coarse grid.
 assigned Upon return, an array of integers indicating whether or not each object is currently

assigned to this processor. A value of 1 indicates it is assigned to this processor; a
value of 0 indicates it is assigned to some other processor. For elements that have
been refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, an array containing the number of vertices for each object.
 vertices Upon return, an array of global IDs of the vertices of each object. If the number of

vertices for objects 0 through i-1 is N, then the vertices for object i are in
vertices[N*num_gid_entries: (N+num_vert[i])*num_gid_entries]

 in_order Upon return, 1 if the user is providing the objects in the order in which they should
be traversed, or 0 if Zoltan should determine the order.

 in_vertex Upon return, an array of global IDs of the vertices through which to enter each
element in the user provided traversal. It is required only if the user is providing
the order for the coarse grid objects (i.e., in_order==1) and allowing Zoltan to
select the order of the children in at least one invocation of
ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each
element in the user provided traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C and C++: typedef int ZOLTAN_FIRST_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int *assigned, int *num_vert, ZOLTAN_ID_PTR vertices, int *in_order,
ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: FUNCTION Get_First_Coarse_Obj(data, num_gid_entries, num_lid_entries,
global_id, local_id, assigned, num_vert, vertices, in_order, in_vertex, out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_First_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vert, in_order, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex,
out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (16 of 25) [8/4/2006 9:15:32 AM]

on Fortran query functions for an explanation.

A ZOLTAN_FIRST_COARSE_OBJ_FN query function initializes an
iteration over the objects of the initial coarse grid. It returns the global
ID, local ID, vertices, and order information for the first object
(element) of the initial coarse grid. Subsequent calls to a
ZOLTAN_NEXT_COARSE_OBJ_FN iterate over and return other
objects from the coarse grid. The vertices are designated by a global
ID such that if two elements share a vertex then the same ID
designates that vertex in both elements and on all processors. The
user may choose to provide the order in which the elements should be
traversed, or have Zoltan determine the order. If the user provides the
order, then entry and exit vertices for a path through the elements may
also be provided.

Function Type: ZOLTAN_FIRST_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_ids Upon return, the global ID of the first object in the coarse grid.
 local_ids Upon return, the local ID of the first object in the coarse grid.
 assigned Upon return, an integer indicating whether or not this object is currently assigned

to this processor. A value of 1 indicates it is assigned to this processor; a value of 0
indicates it is assigned to some other processor. For elements that have been
refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.
 vertices Upon return, an array of global IDs of the vertices of this object.
 in_order Upon return, 1 if the user is providing the objects in the order in which they should

be traversed, or 0 if Zoltan should determine the order.
 in_vertex Upon return, the vertex through which to enter this element in the user provided

traversal. It is required only if the user is providing the order for the coarse grid
objects (i.e., in_order==1) and allowing Zoltan to select the order of the children in
at least one invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided
traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.
Returned Value:
 1 If global_id and local_id contain valid IDs of the first object in the coarse grid.
 0 If no coarse grid is available.

C and C++: typedef int ZOLTAN_NEXT_COARSE_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
ZOLTAN_ID_PTR next_global_id, ZOLTAN_ID_PTR next_local_id, int *assigned,
int *num_vert, ZOLTAN_ID_PTR vertices, ZOLTAN_ID_PTR in_vertex,
ZOLTAN_ID_PTR out_vertex, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (17 of 25) [8/4/2006 9:15:32 AM]

FORTRAN: FUNCTION Get_Next_Coarse_Obj(data, num_gid_entries, num_lid_entries, global_id,
local_id, next_global_id, next_local_id, assigned, num_vert, vertices, in_vertex,
out_vertex, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Coarse_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: assigned, num_vertex, ierr
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: vertices, in_vertex,
out_vertex

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NEXT_COARSE_OBJ_FN query function is an iterator
function that returns the next object in the initial coarse grid. The first
object of the iteration is provided by a
ZOLTAN_FIRST_COARSE_OBJ_FN query function.

Function Type: ZOLTAN_NEXT_COARSE_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the previous object in the coarse grid.
 local_id The local ID of the previous object in the coarse grid.
 next_global_id Upon return, the global ID of the next object in the coarse grid.
 next_local_id Upon return, the local ID of the next object in the coarse grid.
 assigned Upon return, an integer indicating whether or not this object is currently assigned

to this processor. A value of 1 indicates it is assigned to this processor; a value of 0
indicates it is assigned to some other processor. For elements that have been
refined, it is ignored unless weights are assigned to interior nodes of the tree.

 num_vert Upon return, the number of vertices for this object.
 vertices Upon return, an array of global IDs of the vertices of this object.
 in_vertex Upon return, the vertex through which to enter this element in the user provided

traversal. It is required only if the user is providing the order for the coarse grid
objects (i.e., in_order==1) and allowing Zoltan to select the order of the children in
at least one invocation of ZOLTAN_CHILD_LIST_FN.

 out_vertex Upon return, the vertex through which to exit this element in the user provided
traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.
Returned Value:
 1 If global_id and local_id contain valid IDs of the next object in the coarse grid.
 0 If no more objects are available.

C and C++: typedef int ZOLTAN_NUM_CHILD_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (18 of 25) [8/4/2006 9:15:33 AM]

FORTRAN: FUNCTION Get_Num_Child(data, num_gid_entries, num_lid_entries, global_id,
local_id, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Child
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_CHILD_FN query function returns the number of
children of the element with the given global and local IDs. If the
element has not been refined, the number of children is 0.

Function Type: ZOLTAN_NUM_CHILD_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object for which the number of children is requested.
 local_id The local ID of the object for which the number of children is requested.
 ierr Error code to be set by function.
Returned Value:
 int The number of children.

C and C++: typedef void ZOLTAN_CHILD_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR parent_gid, ZOLTAN_ID_PTR parent_lid,
ZOLTAN_ID_PTR child_gids, ZOLTAN_ID_PTR child_lids, int *assigned,
int *num_vert, ZOLTAN_ID_PTR vertices, ZOLTAN_REF_TYPE *ref_type,
ZOLTAN_ID_PTR in_vertex, ZOLTAN_ID_PTR out_vertex, int *ierr);

FORTRAN: SUBROUTINE Get_Child_List(data, num_gid_entries, num_lid_entries, parent_gid,
parent_lid, child_gids, child_lids, assigned, num_vert, vertices, ref_type, in_vertex,
out_vertex, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_gid
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: parent_lid
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_gids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: child_lids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: assigned, num_vert,
vertices, in_vertex, out_vertex
INTEGER(Zoltan_INT), INTENT(OUT) :: ref_type, ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_CHILD_LIST_FN query function returns lists of global IDs,

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (19 of 25) [8/4/2006 9:15:33 AM]

local IDs, vertices, and order information for all children of a refined
element. The vertices are designated by a global ID such that if two
elements share a vertex then the same ID designates that vertex in
both elements and on all processors. The user may choose to provide
the order in which the children should be traversed, or have Zoltan
determine the order based on the type of element refinement used to
create the children. If the user provides the order, then entry and exit
vertices for a path through the elements may also be provided. The
arrays for the returned values are allocated by Zoltan; their size is
determined by a call to a ZOLTAN_NUM_CHILD_FN query function.

Function Type: ZOLTAN_CHILD_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 parent_gid The global ID of the object whose children are requested.
 parent_lid The local ID of the object whose children are requested.
 child_gids Upon return, an array of global IDs of all children of this object.
 child_lids Upon return, an array of local IDs of all children of this object.
 assigned Upon return, an array of integers indicating whether or not each child is currently

assigned to this processor. A value of 1 indicates it is assigned to this processor; a
value of 0 indicates it is assigned to some other processor. For children that have
been further refined, it is ignored unless weights are assigned to interior nodes of
the tree.

 num_vert Upon return, an array containing the number of vertices for each object.
 vertices Upon return, an array of global IDs of the vertices of each object. If the number of

vertices for objects 0 through i-1 is N, then the vertices for object i are in
vertices[N*num_gid_entries: (N+num_vert[i])*num_gid_entries]

 ref_type Upon return, a value indicating what type of refinement was used to create the
children. This determines how the children will be ordered. The values currently
supported are:
 ZOLTAN_TRI_BISECT Bisection of triangles.
 ZOLTAN_QUAD_QUAD Quadrasection of quadrilaterals.
 ZOLTAN_HEX3D_OCT Octasection of hexahedra.
 ZOLTAN_OTHER_REF All other forms of refinement.
 ZOLTAN_IN_ORDER Traverse the children in the order in which they are
provided.

 in_vertex Upon return, an array of global IDs of the vertex through which to enter each
element in the user provided traversal. It is required only if the user is providing
the order for the children of this element (i.e., ref_type==ZOLTAN_IN_ORDER)
but does not provide the order for the children of at least one of those children.

 out_vertex Upon return, an array of global IDs of the vertex through which to exit each
element in the user provided traversal. The same provisions hold as for in_vertex.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_CHILD_WEIGHT_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int wgt_dim, float *obj_wgt, int *ierr);

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (20 of 25) [8/4/2006 9:15:33 AM]

FORTRAN: SUBROUTINE Get_Child_Weight(data, num_gid_entries, num_lid_entries, global_id,
local_id, wgt_dim, obj_wgt, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_CHILD_WEIGHT_FN query function returns the weight of
an object. Interior nodes of the refinement tree as well as the leaves
are allowed to have weights.

Function Type: ZOLTAN_CHILD_WEIGHT_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object whose weight is requested.
 local_id The local ID of the object whose weight is requested.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 obj_wgt Upon return, an array containing the object's weights. If wgt_dim=0, the return

value of obj_wgts is undefined and may be NULL.
 ierr Error code to be set by function.

Border Object Functions (currently not used)

C: typedef int ZOLTAN_NUM_BORDER_OBJ_FN (void *data, int nbor_proc,
int *ierr);

FORTRAN: FUNCTION Get_Num_Border_Obj(data, nbor_proc, ierr)
INTEGER(Zoltan_INT) :: Get_Num_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NUM_BORDER_OBJ_FN query function returns the
number of objects sharing a processor subdomain border (in the
communication graph of the application) with a given processor.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (21 of 25) [8/4/2006 9:15:33 AM]

Function Type: ZOLTAN_NUM_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 nbor_proc The processor ID of the processor for which the number of border objects should

be returned.
 ierr Error code to be set by function.
Returned Value:
 int The number of objects sharing a processor subdomain border with processor

nbor_proc.

C: typedef void ZOLTAN_BORDER_OBJ_LIST_FN (void *data, int num_gid_entries,
int num_lid_entries, int nbor_proc, ZOLTAN_ID_PTR global_ids,
ZOLTAN_ID_PTR local_ids, int wgt_dim, float *obj_wgts, int *ierr);

FORTRAN: SUBROUTINE Get_Border_Obj_List(data, num_gid_entries, num_lid_entries,
nbor_proc, global_ids, local_ids, wgt_dim, obj_wgts, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: obj_wgts
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_BORDER_OBJ_LIST_FN query function fills two arrays
with information about the objects currently assigned to the processor
that share a processor subdomain border (in the communication graph
of the application) with a given processor. Both arrays are allocated
(and subsequently freed) by Zoltan; their size is determined by a call to
a ZOLTAN_NUM_BORDER_OBJ_FN query function to get the array
size. For certain Zoltan algorithms, either a
ZOLTAN_BORDER_OBJ_LIST_FN query function or a
ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN
query-function pair must be registered; however, both query options
need not be provided.

Function Type: ZOLTAN_BORDER_OBJ_LIST_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 nbor_proc The processor ID of the processor for which border objects should be returned.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (22 of 25) [8/4/2006 9:15:33 AM]

 global_ids Upon return, an array of unique global IDs for all objects assigned to the processor
that share a subdomain border with nbor_proc.

 local_ids Upon return, an array of local IDs, the meaning of which can be determined by the
application, for all objects assigned to the processor that share a subdomain border
with nbor_proc.

 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are
not requested. This value is set through the parameter OBJ_WEIGHT_DIM.

 obj_wgts Upon return, an array of object weights. Weights for object i are stored in
obj_wgts[(i-1)*wgt_dim:i*wgt_dim-1]. If wgt_dim=0, obj_wgts is undefined and
may be NULL.

 ierr Error code to be set by function.

C: typedef int ZOLTAN_FIRST_BORDER_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, int nbor_proc, ZOLTAN_ID_PTR first_global_id,
ZOLTAN_ID_PTR first_local_id, int wgt_dim, float *first_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_First_Border_Obj(data, num_gid_entries, num_lid_entries,
nbor_proc, first_global_id, first_local_id, wgt_dim, first_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_First_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: first_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: first_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_FIRST_BORDER_OBJ_FN query function initializes an
iteration over objects assigned to the processor that share a
processor subdomain border with a given processor. It returns the
global and local IDs of the first object on the processor along the
specified subdomain border. Subsequent calls to a
ZOLTAN_NEXT_BORDER_OBJ_FN query function iterate over and
return other objects along the requested subdomain border. This
query-function pair frees the application from having to build an array
of objects (as in ZOLTAN_BORDER_OBJ_LIST_FN) and allows Zoltan
to obtain only as much information about objects as it needs. For
some algorithms, either a ZOLTAN_BORDER_OBJ_LIST_FN query
function or a
ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN
query-function pair must be registered; however, both query options
need not be provided.

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (23 of 25) [8/4/2006 9:15:33 AM]

Function Type: ZOLTAN_FIRST_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 nbor_proc The processor ID of the processor for which border objects should be returned.
 first_global_id The returned value of the global ID for the first object; the value is ignored if there

are no objects along the border.
 first_local_id The returned value of the local ID for the first object; the value is ignored if there

are no objects along the border.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 first_obj_wgt Upon return, the first object's weights; an array of size wgt_dim. Undefined if

wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If first_global_id and first_local_id contain valid IDs of the first object along the

processor border.
 0 If no objects are available along this processor border.

C: typedef int ZOLTAN_NEXT_BORDER_OBJ_FN (void *data, int num_gid_entries,
int num_lid_entries, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
int nbor_proc, ZOLTAN_ID_PTR next_global_id, ZOLTAN_ID_PTR next_local_id,
int wgt_dim, float *next_obj_wgt, int *ierr);

FORTRAN: FUNCTION Get_Next_Border_Obj(data, num_gid_entries, num_lid_entries, global_id,
local_id, nbor_proc, next_global_id, next_local_id, wgt_dim, next_obj_wgt, ierr)
INTEGER(Zoltan_INT) :: Get_Next_Border_Obj
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: nbor_proc
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_global_id
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: next_local_id
INTEGER(Zoltan_INT), INTENT(IN) :: wgt_dim
REAL(Zoltan_FLOAT), INTENT(OUT), DIMENSION(*) :: next_obj_wgt
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_NEXT_BORDER_OBJ_FN query function is an iterator
function which, when given an object assigned to the processor and a
neighboring processor ID, returns the next object assigned to the
processor that shares a subdomain border with the neighboring
processor. The first object of the iteration is provided by a
ZOLTAN_FIRST_BORDER_OBJ_FN query function. This
query-function pair frees the application from having to build an array
of objects (as in ZOLTAN_BORDER_OBJ_LIST_FN) and allows Zoltan

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (24 of 25) [8/4/2006 9:15:33 AM]

to obtain only as much information about objects as it needs. For
some algorithms, either a ZOLTAN_BORDER_OBJ_LIST_FN query
function or a
ZOLTAN_FIRST_BORDER_OBJ_FN/ZOLTAN_NEXT_BORDER_OBJ_FN
query-function pair must be registered; however, both query options
need not be provided.

Function Type: ZOLTAN_NEXT_BORDER_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the previous object.
 local_id The local ID of the previous object.
 nbor_proc The processor ID of the processor for which border objects should be returned.
 next_global_id The returned value of the global ID for the next object; the value is ignored if there

are no more objects along the border.
 next_local_id The returned value of the local ID for the next object; the value is ignored if there

are no more objects along the border.
 wgt_dim The number of weights associated with an object (typically 1), or 0 if weights are

not requested. This value is set through the parameter OBJ_WEIGHT_DIM.
 next_obj_wgt Upon return, the weights for the next object; an array of size wgt_dim. Undefined

if wgt_dim=0.
 ierr Error code to be set by function.
Returned Value:
 1 If next_global_id and next_local_id contain valid IDs of the next object along the

processor border.
 0 If no more objects are available along this processor border.

[Table of Contents | Next: Migration Query Functions | Previous:
Application-Registered Query Functions]

Zoltan User's Guide: General Zoltan Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html (25 of 25) [8/4/2006 9:15:33 AM]

Zoltan User's Guide | Next | Previous

Migration Query Functions
The following query functions must be registered to use any of the migration tools described in
Migration Functions:

ZOLTAN_OBJ_SIZE_FN or ZOLTAN_OBJ_SIZE_MULTI_FN
ZOLTAN_PACK_OBJ_FN or ZOLTAN_PACK_OBJ_MULTI_FN
ZOLTAN_UNPACK_OBJ_FN or ZOLTAN_UNPACK_OBJ_MULTI_FN

The "MULTI_" versions of the packing/unpacking functions take lists of IDs as input and pack/unpack
data for all objects in the lists. Only one function of each type must be provided (e.g., either a
ZOLTAN_PACK_OBJ_FN or ZOLTAN_PACK_OBJ_MULTI_FN, but not both).

Optional, additional query functions for migration may also be registered; these functions are called at
the beginning, middle, and end of migration in Zoltan_Migrate.

ZOLTAN_PRE_MIGRATE_PP_FN
ZOLTAN_MID_MIGRATE_PP_FN
ZOLTAN_POST_MIGRATE_PP_FN

For backward compatibility with previous versions of Zoltan, the following functions may be used with
Zoltan_Help_Migrate.

ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_POST_MIGRATE_FN

C and C++: typedef int ZOLTAN_OBJ_SIZE_FN(
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (1 of 17) [8/4/2006 9:15:36 AM]

FORTRAN: FUNCTION Obj_Size(data, num_gid_entries, num_lid_entries, global_id, local_id,
ierr)
INTEGER(Zoltan_INT) :: Obj_Size
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id, local_id
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_FN query function returns the size (in bytes) of the data buffer that is needed
to pack all of a single object's data.

Function Type: ZOLTAN_OBJ_SIZE_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id Pointer to the global ID of the object.
 local_id Pointer to the local ID of the object.
 ierr Error code to be set by function.
Returned Value:
 int The size (in bytes) of the required data buffer.

C and C++: typedef void ZOLTAN_OBJ_SIZE_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *sizes,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (2 of 17) [8/4/2006 9:15:36 AM]

FORTRAN: SUBROUTINE Obj_Size_Multi(data, num_gid_entries, num_lid_entries, num_ids,
global_ids, local_ids, sizes, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids, local_ids
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_OBJ_SIZE_MULTI_FN query function is the multiple-ID version of
ZOLTAN_OBJ_SIZE_FN. For a list of objects, it returns the per-objects sizes (in bytes) of the data
buffers needed to pack object data.

Function Type: ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_ids The number of objects whose sizes are to be returned.

 global_ids
An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 local_ids
An array of local IDs of the objects. The ID for the i-th object begins in
local_ids[i*num_lid_entries].

 sizes Upon return, array of sizes (in bytes) for each object in the ID lists.
 ierr Error code to be set by function.
Returned Value:
 int The size (in bytes) of the required data buffer.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (3 of 17) [8/4/2006 9:15:37 AM]

C and C++: typedef void ZOLTAN_PACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 ZOLTAN_ID_PTR global_id,
 ZOLTAN_ID_PTR local_id,
 int dest,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj(data, num_gid_entries, num_lid_entries, global_id, local_id,
dest, size, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_id
INTEGER(Zoltan_INT), INTENT(IN) :: dest, size
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_FN query function allows the application to tell Zoltan how to copy all
needed data for a given object into a communication buffer. The object's data can then be sent to another
processor as part of data migration. It may also perform other operations, such as removing the object
from the processor's data structure. This routine is called by Zoltan_Migrate for each object to be sent to
another processor.

Function Type: ZOLTAN_PACK_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 global_id The global ID of the object for which data should be copied into the

communication buffer.
 local_id The local ID of the object for which data should be copied into the communication

buffer.
 dest The destination partition (i.e., the partition to which the object is being sent)

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (4 of 17) [8/4/2006 9:15:37 AM]

 size The size (in bytes) of the communication buffer for the specified object (as
returned by the ZOLTAN_OBJ_SIZE_FN query function).

 buf The starting address of the communication buffer into which the object's data
should be packed.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_PACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 ZOLTAN_ID_PTR local_ids,
 int *dest,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Pack_Obj_Multi(data, num_gid_entries, num_lid_entries, num_ids,
global_ids, local_ids, dest, sizes, idx, buf, ierr)
<type-data>, INTENT(IN) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries, num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: dest
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(OUT), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PACK_OBJ_MULTI_FN query function is the multiple-ID version of a
ZOLTAN_PACK_OBJ_FN. It allows the application to tell Zoltan how to copy all needed data for a
given list of objects into a communication buffer.

Function Type: ZOLTAN_PACK_OBJ_FN_MULTI_TYPE
Arguments:
 data Pointer to user-defined data.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (5 of 17) [8/4/2006 9:15:37 AM]

 num_gid_entries The number of array entries used to describe a single global ID. This value is the
maximum value over all processors of the parameter NUM_GID_ENTRIES.

 num_lid_entries The number of array entries used to describe a single local ID. This value is the
maximum value over all processors of the parameter NUM_LID_ENTRIES.

 num_ids The number of objects to be packed.

 global_ids
An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 local_ids
An array of local IDs of the objects. The ID for the i-th object begins in
local_ids[i*num_lid_entries].

 dest An array of destination partition numbers (i.e., the partitions to which the objects
are being sent)

 sizes An array containing the per-object sizes (in bytes) of the communication buffer for
each object.

 idx For each object, an index into the buf array giving the starting location of that
object's data. Data for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ...,
buf[idx[i]+sizes[i]-1]. Because Zoltan adds some tag information to packed data,
idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer into which the objects' data should be
packed.

 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_UNPACK_OBJ_FN (
 void *data,
 int num_gid_entries,
 ZOLTAN_ID_PTR global_id,
 int size,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Unpack_Obj(data, num_gid_entries, global_id, size, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_id
INTEGER(Zoltan_INT), INTENT(IN) :: size
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_FN query function allows the application to tell Zoltan how to copy all
needed data for a given object from a communication buffer into the application's data structure. This
operation is needed as the final step of importing objects during data migration. The query function may

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (6 of 17) [8/4/2006 9:15:37 AM]

also perform other computation, such as building request lists for related data. This routine is called by
Zoltan_Migrate for each object to be received by the processor. (Note: a local ID for the object is not
included in this function, as the local ID is local to the exporting, not the importing, processor.)

Function Type: ZOLTAN_UNPACK_OBJ_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 global_id The global ID of the object whose data has been received in the communication

buffer.
 size The size (in bytes) of the object's data in the communication buffer.
 buf The starting address of the communication buffer for this object.
 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_UNPACK_OBJ_MULTI_FN (
 void *data,
 int num_gid_entries,
 int num_ids,
 ZOLTAN_ID_PTR global_ids,
 int *sizes,
 int *idx,
 char *buf,
 int *ierr);

FORTRAN: SUBROUTINE Unpack_Obj_Multi(data, num_gid_entries, num_ids, global_ids, sizes,
idx, buf, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: sizes
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: idx
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: buf
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_UNPACK_OBJ_MULTI_FN query function is the multiple-ID version of a
ZOLTAN_UNPACK_OBJ_FN. It allows the application to tell Zoltan how to copy all needed data for
a given list of objects from a communication buffer into the application's data structure.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (7 of 17) [8/4/2006 9:15:37 AM]

Function Type: ZOLTAN_UNPACK_OBJ_MULTI_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_ids The number of objects to be unpacked.

 global_ids
An array of global IDs of the objects. The ID for the i-th object begins in
global_ids[i*num_gid_entries].

 sizes An array containing the per-object sizes (in bytes) of the communication buffer for
each object.

 idx For each object, an index into the buf array giving the starting location of that
object's data. Data for the i-th object are stored in buf[idx[i]], buf[idx[i]+1], ...,
buf[idx[i]+sizes[i]-1]. Because Zoltan adds some tag information to packed data,
idx[i] != sum[j=0,i-1](sizes[j]).

 buf The address of the communication buffer from which data is unpacked.
 ierr Error code to be set by function.

C and C++: typedef void ZOLTAN_PRE_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (8 of 17) [8/4/2006 9:15:37 AM]

FORTRAN: SUBROUTINE Pre_Migrate_PP(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, import_to_part, num_export,
export_global_ids, export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part,
export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_PP_FN query function performs any pre-processing desired by the
application. If it is registered, it is called at the beginning of the Zoltan_Migrate routine. The arguments
passed to Zoltan_Migrate are made available for use in the pre-processing routine.

Function Type: ZOLTAN_PRE_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_import The number of objects that will be received by this processor.

import_global_ids

An array of num_import global IDs of objects to be received by this processor.
This array may be NULL, as the processor does not necessarily need to know
which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This
array may be NULL, as the processor does not necessarily need to know which
objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors.
This array may be NULL, as the processor does not necessarily need to know
which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be
imported. This array may be NULL, as the processor does not necessarily need to
know from which objects it will receive.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (9 of 17) [8/4/2006 9:15:37 AM]

 num_export The number of objects that will be sent from this processor to other processors.
 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No pre-processing is done if a ZOLTAN_PRE_MIGRATE_PP_FN is not
registered.

C and C++: typedef void ZOLTAN_MID_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Mid_Migrate_PP(data, num_gid_entries, num_lid_entries,
num_import, import_global_ids, import_local_ids, import_procs, import_to_part,
num_export, export_global_ids, export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part,
export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (10 of 17) [8/4/2006 9:15:37 AM]

on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_PP_FN query function performs any processing desired by the
application between the packing and unpacking of objects being migrated. If it is registered, it is called
after export objects are packed in Zoltan_Migrate; imported objects are unpacked after the
ZOLTAN_MID_MIGRATE_PP_FN query function is called. The arguments passed to
Zoltan_Migrate are made available for use in the processing routine.

,
Function Type: ZOLTAN_MID_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.
 num_lid_entries The number of array entries used to describe a single local ID. This value is the

maximum value over all processors of the parameter NUM_LID_ENTRIES.
 num_import The number of objects that will be received by this processor.

import_global_ids

An array of num_import global IDs of objects to be received by this processor.
This array may be NULL, as the processor does not necessarily need to know
which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This
array may be NULL, as the processor does not necessarily need to know which
objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors.
This array may be NULL, as the processor does not necessarily need to know
which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be
imported. This array may be NULL, as the processor does not necessarily need to
know from which objects it will receive.

 num_export The number of objects that will be sent from this processor to other processors.
 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No processing is done if a ZOLTAN_MID_MIGRATE_PP_FN is not registered.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (11 of 17) [8/4/2006 9:15:37 AM]

C and C++: typedef void ZOLTAN_POST_MIGRATE_PP_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int *import_to_part,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *export_to_part,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate_PP(data, num_gid_entries, num_lid_entries,
num_import, import_global_ids, import_local_ids, import_procs, import_to_part,
num_export, export_global_ids, export_local_ids, export_procs, export_to_part, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_to_part,
export_to_part
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_PP_FN query function performs any post-processing desired by the
application. If it is registered, it is called at the end of the Zoltan_Migrate routine. The arguments
passed to Zoltan_Migrate are made available for use in the post-processing routine.

Function Type: ZOLTAN_POST_MIGRATE_PP_FN_TYPE
Arguments:
 data Pointer to user-defined data.
 num_gid_entries The number of array entries used to describe a single global ID. This value is the

maximum value over all processors of the parameter NUM_GID_ENTRIES.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (12 of 17) [8/4/2006 9:15:37 AM]

 num_lid_entries The number of array entries used to describe a single local ID. This value is the
maximum value over all processors of the parameter NUM_LID_ENTRIES.

 num_import The number of objects that will be received by this processor.

import_global_ids

An array of num_import global IDs of objects to be received by this processor.
This array may be NULL, as the processor does not necessarily need to know
which objects it will receive.

 import_local_ids An array of num_import local IDs of objects to be received by this processor. This
array may be NULL, as the processor does not necessarily need to know which
objects it will receive.

 import_procs An array of size num_import listing the processor IDs of the source processors.
This array may be NULL, as the processor does not necessarily need to know
which objects is will receive.

 import_to_part An array of size num_import listing the partitions to which objects will be
imported. This array may be NULL, as the processor does not necessarily need to
know from which objects it will receive.

 num_export The number of objects that will be sent from this processor to other processors.
 export_global_ids An array of num_export global IDs of objects to be sent from this processor.
 export_local_ids An array of num_export local IDs of objects to be sent from this processor.
 export_procs An array of size num_export listing the processor IDs of the destination processors.
 export_to_part An array of size num_export listing the partitions to which objects will be sent.
 ierr Error code to be set by function.
Default:

No post-processing is done if a ZOLTAN_POST_MIGRATE_PP_FN is not
registered.

C: typedef void ZOLTAN_PRE_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (13 of 17) [8/4/2006 9:15:37 AM]

FORTRAN: SUBROUTINE Pre_Migrate(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids,
export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_PRE_MIGRATE_FN query function performs any pre-processing desired by applications
using Zoltan_Help_Migrate. Its function is analogous to ZOLTAN_PRE_MIGRATE_PP_FN, but it
cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_PRE_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_PRE_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not
included, as processor and partitions numbers are considered to be the same in
Zoltan_Help_Migrate.

Default:
No pre-processing is done if a ZOLTAN_PRE_MIGRATE_FN is not registered.

C: typedef void ZOLTAN_MID_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (14 of 17) [8/4/2006 9:15:37 AM]

 int *ierr);
FORTRAN: SUBROUTINE Mid_Migrate(data, num_gid_entries, num_lid_entries, num_import,

import_global_ids, import_local_ids, import_procs, num_export, export_global_ids,
export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_MID_MIGRATE_FN query function performs any mid-migration processing desired by
applications using Zoltan_Help_Migrate. Its function is analogous to
ZOLTAN_MID_MIGRATE_PP_FN, but it cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_MID_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_MID_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not
included, as processor and partitions numbers are considered to be the same in
Zoltan_Help_Migrate.

Default:
No processing is done if a ZOLTAN_MID_MIGRATE_FN is not registered.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (15 of 17) [8/4/2006 9:15:37 AM]

C: typedef void ZOLTAN_POST_MIGRATE_FN (
 void *data,
 int num_gid_entries,
 int num_lid_entries,
 int num_import,
 ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids,
 int *import_procs,
 int num_export,
 ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids,
 int *export_procs,
 int *ierr);

FORTRAN: SUBROUTINE Post_Migrate(data, num_gid_entries, num_lid_entries, num_import,
import_global_ids, import_local_ids, import_procs, num_export, export_global_ids,
export_local_ids, export_procs, ierr)
<type-data>, INTENT(INOUT) :: data
INTEGER(Zoltan_INT), INTENT(IN) :: num_gid_entries, num_lid_entries
INTEGER(Zoltan_INT), INTENT(IN) :: num_import, num_export
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_global_ids,
export_global_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_local_ids,
export_local_ids
INTEGER(Zoltan_INT), INTENT(IN), DIMENSION(*) :: import_procs, export_procs
INTEGER(Zoltan_INT), INTENT(OUT) :: ierr

<type-data> can be any of INTEGER(Zoltan_INT), DIMENSION(*) or
REAL(Zoltan_FLOAT), DIMENSION(*) or REAL(Zoltan_DOUBLE),
DIMENSION(*) or TYPE(Zoltan_User_Data_x) where x is 1, 2, 3 or 4. See the section
on Fortran query functions for an explanation.

A ZOLTAN_POST_MIGRATE_FN query function performs any post-processing desired by
applications using Zoltan_Help_Migrate. Its function is analogous to
ZOLTAN_POST_MIGRATE_PP_FN, but it cannot be used with Zoltan_Migrate.

Function Type: ZOLTAN_POST_MIGRATE_FN_TYPE
Arguments:

All arguments are analogous to those in ZOLTAN_POST_MIGRATE_PP_FN.
Partition-assignment arguments import_to_part and export_to_part are not
included, as processor and partitions numbers are considered to be the same in
Zoltan_Help_Migrate.

Default:
No post-processing is done if a ZOLTAN_POST_MIGRATE_FN is not
registered.

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (16 of 17) [8/4/2006 9:15:37 AM]

[Table of Contents | Next: Zoltan Parameters and Output Levels | Previous: Load-Balancing Query
Functions]

Zoltan User's Guide: Migration Query Functions

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html (17 of 17) [8/4/2006 9:15:37 AM]

Zoltan User's Guide | Next | Previous

Zoltan Parameters and Output Levels
The behavior of Zoltan is controlled by several parameters and debugging-output levels. These
parameters can be set by calls to Zoltan_Set_Param. Reasonable default values for all parameters are
specified by Zoltan. Many of the parameters are specific to individual algorithms, and are listed in the
descriptions of those algorithms. However, the parameters below have meaning across the entire library.

General Parameters

The following parameters apply to the entire Zoltan library. While reasonable default values for all
parameters are specified by Zoltan, applications can change these values through calls to
Zoltan_Set_Param.

Parameters:
 NUM_GID_ENTRIES The number of unsigned integers that should be used to represent a global

identifier (ID). Values greater than zero are accepted.
 NUM_LID_ENTRIES The number of unsigned integers that should be used to represent a local

identifier (ID). Values greater than or equal to zero are accepted.
 DEBUG_LEVEL An integer indicating how much debugging information is printed by

Zoltan. Higher values of DEBUG_LEVEL produce more output and
potentially slow down Zoltan's computations. The least output is produced
when DEBUG_LEVEL= 0. DEBUG_LEVEL primarily controls Zoltan's
behavior; most algorithms have their own parameters to control their output
level. Values used within Zoltan are listed below.
Note: Because some debugging levels use processor synchronization, all
processors should use the same value of DEBUG_LEVEL.

 DEBUG_PROCESSOR Processor number from which trace output should be printed when
DEBUG_LEVEL is 5.

 DEBUG_MEMORY Integer indicating the amount of low-level debugging information about
memory-allocation should be kept by Zoltan's Memory Management
utilities. Valid values are 0, 1, 2, and 3.

 OBJ_WEIGHT_DIM The number of weights associated with an object. If this parameter is zero,
all objects have equal weight. Some algorithms may not support multiple
(multidimensional) weights.

 EDGE_WEIGHT_DIM The number of weights associated with an edge. If this parameter is zero, all
edges have equal weight. Many algorithms do not support multiple
(multidimensional) weights.

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html (1 of 3) [8/4/2006 9:15:39 AM]

 TIMER The timer with which you wish to measure time. Valid choices are wall
(based on MPI_Wtime), cpu (based on the ANSI C library function clock),
and user. The resolution may be poor, as low as 1/60th of a second,
depending upon your platform.

 USE_MACHINE_DESC Currently unused; will be used when heterogeneous computers are
supported.

 MACHINE_DESC_FILE Currently unused; will be used when heterogeneous computers are
supported.

Default Values:
NUM_GID_ENTRIES = 1
NUM_LID_ENTRIES = 1
DEBUG_LEVEL = 1
DEBUG_PROCESSOR = 0
DEBUG_MEMORY = 1
OBJ_WEIGHT_DIM = 0
EDGE_WEIGHT_DIM = 0
TIMER = wall
USE_MACHINE_DESC = 0
MACHINE_DESC_FILE = /etc/local/Zoltan_Machine_Desc

Debugging Levels in Zoltan

The DEBUG_LEVEL parameter determines how much debugging information is printed to stdout by
Zoltan. It is set by a call to Zoltan_Set_Param. Higher values of DEBUG_LEVEL produce more
output and can slow down Zoltan's computations, especially when the output is printed by one processor
at a time. The least output is produced when DEBUG_LEVEL = 0.

Descriptions of the output produced by Zoltan for each value of DEBUG_LEVEL are included below.
For a given DEBUG_LEVEL value n, all output for values less than or equal to n is produced.

Some high debugging levels use processor synchronization to force processors to write one-at-a-time.
For example, when DEBUG_LEVEL is greater than or equal to eight, each processor writes its list in turn
so that the lists from all processors are not jumbled together in the output. This synchronization requires
all processors to use the same value of DEBUG_LEVEL.

DEBUG_LEVEL Output Produced
 0 Quiet mode; no output unless an error or warning is produced.
 1 Values of all parameters set by Zoltan_Set_Param and used by Zoltan.
 2 Timing information for Zoltan's main routines.
 3 Timing information within Zoltan's algorithms (support by algorithms is optional).
 4
 5 Trace information (enter/exit) for major Zoltan interface routines (printed by the

processor specified by the DEBUG_PROCESSOR parameter).

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html (2 of 3) [8/4/2006 9:15:39 AM]

 6 Trace information (enter/exit) for major Zoltan interface routines (printed by all
processors).

 7 More detailed trace information in major Zoltan interface routines.
 8 List of objects to be imported to and exported from each processor. ¹
 9
 10 Maximum debug output; may include algorithm-specific output. ¹
¹ Output may be serialized; that is, one processor may have to complete its output before the next
processor is allowed to begin its output. This serialization is not scalable and can significantly
increase execution time on large number of processors.

[Table of Contents | Next: Load-Balancing Algorithms | Previous: Migration Query Functions]

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html (3 of 3) [8/4/2006 9:15:39 AM]

Zoltan User's Guide | Next | Previous

Load-Balancing Algorithms
The following dynamic load-balancing algorithms are currently included in the Zoltan library:

Recursive Coordinate Bisection (RCB)
Recursive Inertial Bisection (RIB)
Hilbert Space-Filling Curve (HSFC)
Refinement Tree Based Partitioning (REFTREE)
Graph partitioning: ParMETIS (GRAPH or PARMETIS)
Graph partitioning: Jostle (JOSTLE)
Hypergraph partitioning: PHG (HYPERGRAPH or PHG)
Octree Partitioning (OCTPART)

The parenthetical string is the parameter value for LB_METHOD parameter; the parameter is set through
a call to Zoltan_Set_Param.

For further analysis and discussion of the algorithms, see [Hendrickson and Devine].

Load-Balancing Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each
load-balancing method is controlled by parameters specific to partitioning which are also set by calls to
Zoltan_Set_Param. Many of these parameters are specific to individual partitioning algorithms, and are
listed in the descriptions of the individual algorithms. However, several have meaning across multiple
partitioning algorithms. These load-balancing parameters are described below. Unless indicated
otherwise, these parameters apply to both Zoltan_LB_Partition and Zoltan_LB_Balance.

If any processor sets this parameter, NUM_LOCAL_PARTITIONS is assumed to be zero on processors
not setting this parameter.

Parameters:

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html (1 of 3) [8/4/2006 9:15:39 AM]

 LB_METHOD The load-balancing algorithm used by Zoltan is specified by
this parameter. Valid values are

"RCB" (for recursive coordinate bisection),
"RIB" (for recursive inertial bisection),
"HSFC" (for Hilbert space-filling curve
partitioning),
"GRAPH" or "PARMETIS" (for any of the
methods in the ParMETIS library),
"JOSTLE" (for any of the methods in the Jostle
library),
"HYPERGRAPH" or "PHG" (for hypergraph
partitioning),
"OCTPART" (for octree partitioning),
"REFTREE" (for refinement tree based
partitioning), and
"NONE" (for no load-balancing).

 NUM_GLOBAL_PARTITIONS The total number of partitions to be generated by a call to
Zoltan_LB_Partition. Integer values greater than zero are
accepted. Not valid for Zoltan_LB_Balance.

 NUM_LOCAL_PARTITIONS The number of partitions to be generated on this processor by a
call to Zoltan_LB_Partition. Integer values greater than or
equal to zero are accepted. Not valid for Zoltan_LB_Balance.

 RETURN_LISTS The lists returned by calls to Zoltan_LB_Partition or
Zoltan_LB_Balance. Valid values are

"IMPORT", to return only information about
objects to be imported to a processor
"EXPORT", to return only information about
objects to be exported from a processor
"ALL", or "IMPORT AND EXPORT" (or any
string with both "IMPORT" and "EXPORT" in it)
to return both import and export information
"PARTITION ASSIGNMENTS" (or any string
with "PARTITION" in it) to return the new
process and partition assignment of every local
object, including those not being exported.
"NONE", to return neither import nor export
information

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html (2 of 3) [8/4/2006 9:15:39 AM]

 REMAP Within Zoltan_LB_Partition or Zoltan_LB_Balance,
renumber partitions to maximize overlap between the old
decomposition and the new decomposition (to reduce data
movement from old to new decompositions). Valid values are
"0" (no remapping) or "1" (remapping). Requests for
remapping are ignored when, in the new decomposition, a
partition is spread across multiple processors or partition sizes
are specified using Zoltan_LB_Set_Part_Sizes.

 IMBALANCE_TOL The amount of load imbalance the partitioning algorithm
should deem acceptable. The load on each processor is
computed as the sum of the weights of objects it is assigned.
The imbalance is then computed as the maximum load divided
by the average load. An value for IMBALANCE_TOL of 1.2
indicates that 20% imbalance is OK; that is, the maximum over
the average shouldn't exceed 1.2.

 MIGRATE_ONLY_PROC_CHANGES If this value is set to TRUE (non-zero), Zoltan's migration
functions will migrate only objects moving to new processors.
They will not migrate objects for which only the partition
number has changed; the objects' processor numbers must
change as well. If this value is set to FALSE (zero), Zoltan's
migration functions will migrate all objects with new partition
or processor assignments.

 AUTO_MIGRATE If this value is set to TRUE (non-zero), Zoltan will
automatically perform the data migration during calls to
Zoltan_LB_Partition or Zoltan_LB_Balance. A full
discussion of automatic migration can be found in the
description of the migration interface functions.

Default Values:
LB_METHOD = RCB
NUM_GLOBAL_PARTITIONS = Number of processors
specified in Zoltan_Create.
NUM_LOCAL_PARTITIONS = 1
RETURN_LISTS = ALL
REMAP = 1
IMBALANCE_TOL = 1.1
MIGRATE_ONLY_PROC_CHANGES = 1
AUTO_MIGRATE = FALSE

[Table of Contents | Next: Recursive Coordinate Bisection (RCB) | Previous: Zoltan Parameters and
Output Levels]

Zoltan User's Guide: Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html (3 of 3) [8/4/2006 9:15:39 AM]

Zoltan User's Guide | Next | Previous

Recursive Coordinate Bisection (RCB)
An implementation of Recursive Coordinate Bisection (RCB) due to Steve Plimpton of Sandia National
Laboratories is included in Zoltan. RCB was first proposed as a static load-balancing algorithm by
Berger and Bokhari, but is attractive as a dynamic load-balancing algorithm because it implicitly
produces incremental partitions. In RCB, the computational domain is first divided into two regions by a
cutting plane orthogonal to one of the coordinate axes so that half the work load is in each of the
sub-regions. The splitting direction is determined by computing in which coordinate direction the set of
objects is most elongated, based upon the geometric locations of the objects. The sub-regions are then
further divided by recursive application of the same splitting algorithm until the number of sub-regions
equals the number of processors. Although this algorithm was first devised to cut into a number of sets
which is a power of two, the set sizes in a particular cut needn't be equal. By adjusting the partition sizes
appropriately, any number of equally-sized sets can be created. If the parallel machine has processors
with different speeds, sets with nonuniform sizes can also be easily generated. The Zoltan
implementation of RCB has several parameters which can be modified by the Zoltan_Set_Param
function. A recent feature is that RCB allows multiple weights; that is, one can balance with respect to
several load criteria simultaneously. Note that there is no guarantee that a desired load balance tolerance
can be achieved using RCB, especially in the multiconstraint case.

Information about the sub-regions generated by RCB can be obtained by an application through calls to
Zoltan_RCB_Box. This function is not required to perform load balancing; it only provides auxiliary
information to an application.

Method String: RCB
Parameters:
 RCB_OVERALLOC The amount by which to over-allocate temporary storage arrays for

objects within the RCB algorithm when additional storage is due to
changes in processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RCB_REUSE Flag to indicate whether to use previous cuts as initial guesses for
the current RCB invocation.
0 = don't use previous cuts; 1 = use previous cuts.

 RCB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the
routine produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

Zoltan User's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html (1 of 4) [8/4/2006 9:15:40 AM]

 KEEP_CUTS Should information about the cuts determining the RCB
decomposition be retained? It costs a bit of time to do so, but this
information is necessary if application wants to add more objects to
the decomposition via calls to Zoltan_LB_Point_PP_Assign or to
Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 AVERAGE_CUTS When set to one, coordinates of RCB cutting planes are computed to
be the average of the coordinates of the closest object on each side
of the cut. Otherwise, coordinates of cutting planes may equal those
of one of the closest objects.
0 = don't average cuts; 1 = average cuts.

 RCB_LOCK_DIRECTIONS Flag that determines whether the order of the directions of the cuts
is kept constant after they are determined the first time RCB is
called.
0 = don't lock directions; 1 = lock directions.

 RCB_SET_DIRECTIONS If this flag is set, the order of cuts is changed so that all of the cuts
in any direction are done as a group. The number of cuts in each
direction is determined and then the value of the parameter is used
to determine the order that those cuts are made in. When 1D and 2D
problems are partitioned, the directions corresponding to unused
dimensions are ignored.
0 = don't order cuts; 1 = xyz; 2 = xzy; 3 = yzx; 4 = yxz; 5 = zxy; 6 =
zyx;

 RCB_RECTILINEAR_BLOCKS Flag controlling the shape of the resulting regions. If this option is
specified, then when a cut is made, all of the dots located on the cut
are moved to the same side of the cut. The resulting regions are then
rectilinear. When these dots are treated as a group, then the resulting
load balance may not be as good as when the group of dots is split
by the cut.
0 = move dots individually; 1 = move dots in groups.

 REDUCE_DIMENSIONS When a 3 dimensional geometry is almost flat, it may make more
sense to treat it as a 2 dimensional geometry when applying the
RCB algorithm. In this case, a 2 dimensional RCB calculation is
applied to a plane that corresponds with the geometry. (This results
in cuts that, while still orthogonal, may no longer be axis aligned.) If
this parameter is set to 1, a 3 dimensional geometry will be treated
as 2 dimensional if it is very flat, or 1 dimensional if it is very thin.
A 2 dimensional geometry will be treated as 1 dimensional if it is
very thin.

 DEGENERATE_RATIO If the REDUCE_DIMENSIONS parameter is set, then this
parameter determines when a geometry is considered to be
degenerate. A bounding box which is oriented to the geometry is
constructed, and the lengths of its sides are tested against a ratio of 1
: DEGENERATE_RATIO.

Zoltan User's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html (2 of 4) [8/4/2006 9:15:40 AM]

 RCB_RECOMPUTE_BOX Flag indicating whether the bounding box of set of partitions is
recomputed at each level of recursion. By default, the longest
direction of the bounding box is cut during bisection. Recomputing
the bounding box at each level of recursion can produce more
effective cut directions for unusually shaped geometries; the
computation does, however, take additional time and
communication, and may cause cut directions to vary from one
invocation of RCB to the next.
0 = don't recompute the bounding box; 1 = recompute the box.

 OBJ_WEIGHTS_COMPARABLE In the multiconstraint case, are the object weights comparable? Do
they have the same units and is the scaling meaningful? For
example, if the jth weight corresponds to the expected time in phase
j (measured in seconds), set this parameter to 1. (0 = incomparable,
1 = comparable)

 RCB_MULTICRITERIA_NORM Norm used in multicriteria algorithm; this determines how to
balance the different weight constraints. Valid values are 1,2, and 3.
Roughly, if the weights correspond to different phases, then the
value 1 (1-norm) tries to minimize the total time (sum over all
phases) while the value 3 (max-norm) attempts to minimize the
worst imbalance in any phase. The 2-norm does something in
between. Try a different value if you're not happy with the balance.

 RCB_MAX_ASPECT_RATIO Maximum allowed ratio between the largest and smallest side of a
subdomain. Must be > 1.

Default:
RCB_OVERALLOC = 1.0
RCB_REUSE = 0
RCB_OUTPUT_LEVEL = 0
CHECK_GEOM = 1
KEEP_CUTS = 0
AVERAGE_CUTS = 0
RCB_LOCK_DIRECTIONS = 0
REDUCE_DIMENSIONS = 0
DEGENERATE_RATIO = 10
RCB_SET_DIRECTIONS = 0
RCB_RECTILINEAR_BLOCKS = 0
RCB_RECOMPUTE_BOX = 0
OBJ_WEIGHTS_COMPARABLE = 0
RCB_MULTICRITERIA_NORM = 1
RCB_MAX_ASPECT_RATIO = 10

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

Zoltan User's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html (3 of 4) [8/4/2006 9:15:40 AM]

ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

C: int Zoltan_RCB_Box (
 struct Zoltan_Struct * zz,
 int part,
 int *ndim,
 double *xmin,
 double *ymin,
 double *zmin,
 double *xmax,
 double *ymax,
 double *zmax);

FORTRAN: FUNCTION Zoltan_RCB_Box(zz, part,ndim, xmin, ymin, zmin, xmax, ymax, zmax)
INTEGER(Zoltan_INT) :: Zoltan_RCB_Box
TYPE(Zoltan_Struct), INTENT(IN) :: zz
INTEGER(Zoltan_INT), INTENT(IN) :: part
INTEGER(Zoltan_INT), INTENT(OUT) :: ndim
REAL(Zoltan_DOUBLE), INTENT(OUT) :: xmin, ymin, zmin, xmax, ymax, zmax

In many settings, it is useful to know a partition's bounding box generated by RCB. This bounding box
describes the region of space assigned to a given partition. Given an RCB decomposition of space and a
partition number, Zoltan_RCB_Box returns the lower and upper corners of the region of space assigned
to the partition. To use this routine, the parameter KEEP_CUTS must be set to TRUE when the
decomposition is generated. This parameter will cause the sequence of geometric cuts to be saved, which
is necessary for Zoltan_RCB_Box to do its job.

Arguments:
 zz Pointer to the Zoltan structure created by Zoltan_Create.
 part Partition number of partition for which the bounding box should be returned.
 ndim Upon return, the number of dimensions in the partitioned geometry.
 xmin, ymin, zmin Upon return, the coordinates of the lower extent of bounding box for the partition.

If the geometry is two-dimensional, zmin is -DBL_MAX. If the geometry is
one-dimensional, ymin is -DBL_MAX.

 xmax, ymax, zmax Upon return, the coordinates of the upper extent of bounding box for the partition.
If the geometry is two-dimensional, zmax is DBL_MAX. If the geometry is
one-dimensional, ymax is DBL_MAX.

Returned Value:
 int Error code.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous: Load-Balancing Algorithms]

Zoltan User's Guide: RCB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html (4 of 4) [8/4/2006 9:15:40 AM]

Zoltan User's Guide | Next | Previous

Recursive Inertial Bisection (RIB)
An implementation of Recursive Inertial Bisection (RIB) is included in Zoltan. RIB was proposed as a
load-balancing algorithm by Williams and later studied by Taylor and Nour-Omid, but its origin is
unclear. RIB is similar to RCB in that it divides the domain based on the location of the objects being
partitioned by use of cutting planes. In RIB, the computational domain is first divided into two regions
by a cutting plane orthogonal to the longest direction of the domain so that half the work load is in each
of the sub-regions. The sub-regions are then further divided by recursive application of the same splitting
algorithm until the number of sub-regions equals the number of processors. Although this algorithm was
first devised to cut into a number of sets which is a power of two, the set sizes in a particular cut needn't
be equal. By adjusting the partition sizes appropriately, any number of equally-sized sets can be created.
If the parallel machine has processors with different speeds, sets with nonuniform sizes can also be easily
generated. The Zoltan implementation of RIB has several parameters which can be modified by the
Zoltan_Set_Param function.

Method String: RIB
Parameters:
 RIB_OVERALLOC The amount by which to over-allocate temporary storage arrays for objects

within the RIB algorithm when additional storage is due to changes in
processor assignments.
1.0 = no extra storage allocated; 1.5 = 50% extra storage; etc.

 RIB_OUTPUT_LEVEL Flag controlling the amount of timing and diagnostic output the routine
produces.
0 = no output; 1 = print summary; 2 = print data for each processor.

 CHECK_GEOM Flag controlling the invocation of input and output error checking.
0 = don't do checking; 1 = do checking.

 KEEP_CUTS Should information about the cuts determining the RIB decomposition be
retained? It costs a bit of time to do so, but this information is necessary if
application wants to add more objects to the decomposition via calls to
Zoltan_LB_Point_PP_Assign or to Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 AVERAGE_CUTS When set to one, coordinates of RIB cutting planes are computed to be the
average of the coordinates of the closest object on each side of the cut.
Otherwise, coordinates of cutting planes may equal those of one of the closest
objects.
0 = don't average cuts; 1 = average cuts.

Zoltan User's Guide: RIB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html (1 of 2) [8/4/2006 9:15:41 AM]

REDUCE_DIMENSIONS

When a 3 dimensional geometry is almost flat, it may make more sense to
treat it as a 2 dimensional geometry when applying the RIB algorithm.
(Coordinate values in the omitted direction are ignored for the purposes of
partitioning.) If this parameter is set to 1, a 3 dimensional geometry will be
treated as 2 dimensional if it is very flat, or 1 dimensional if it is very thin. A
2 dimensional geometry will be treated as 1 dimensional if it is very thin.

DEGENERATE_RATIO

If the REDUCE_DIMENSIONS parameter is set, then this parameter
determines when a geometry is considered to be degenerate. A bounding box
which is oriented to the geometry is constructed, and the lengths of its sides
are tested against a ratio of 1 : DEGENERATE_RATIO.

Default:
RIB_OVERALLOC = 1.0
RIB_OUTPUT_LEVEL = 0
CHECK_GEOM = 1
KEEP_CUTS = 0
AVERAGE_CUTS = 0
REDUCE_DIMENSIONS = 0
DEGENERATE_RATIO = 10

Required Query
Functions:

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Hilbert Space-Filling Curve Partitioning | Previous: Recursive Coordinate
Bisection (RCB)]

Zoltan User's Guide: RIB

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html (2 of 2) [8/4/2006 9:15:41 AM]

Zoltan User's Guide | Next | Previous

Hilbert Space Filling Curve (HSFC)
The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensions into the
interval [0,1]. The Hilbert functions that map [0, 1] to normal spatial coordinates are also provided. (The
one-dimensional inverse Hilbert curve is defined here as the identity function, f(x)=x for all x.)

The HSFC partitioning algorithm seeks to divide [0,1] into P intervals each containing the same weight
of objects associated to these intervals by their inverse Hilbert coordinates. N bins are created (where N >
P) to partition [0,1]. The weights in each bin are summed across all processors. A greedy algorithm sums
the bins (from left to right) placing a cut when the desired weight for current partition interval is
achieved. This process is repeated as needed to improve partitioning tolerance by a technique that
maintains the same total number of bins but refines the bins previously containing a cut.

HSFC returns an warning if the final imbalance exceeds the user specified tolerance.

This code implements both the point assign and box assign functionality. The point assign determines an
appropriate partition (associated with a specific group of processors) for a new point. The box assign
determines the list of processors whose associated subdomains intersect the given box. In order to use
either of these routines, the user parameter KEEP_CUTS must be turned on. Both point assign and box
assign now work for points or boxes anywhere in space even if they are exterior to the original bounding
box. If a partition is empty (due to the partition being assigned zero work), it is not included in the list of
partitions returned by box assign. Note: the original box assign algorithm was not rigorous and may have
missed partitions. This version is both rigorous and fast.

The Zoltan implementation of HSFC has one parameter that can be modified by the Zoltan_Set_Param
function.

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in the Octree partitioner
and on the BSFC partitioning implementation by Andrew C. Bauer, Department of Engineering, State
University of New York at Buffalo, as his summer project at SNL in 2001. The box assign algorithm is
loosely based on the papers by Lawder referenced both in the developers guide and the code itself.
NOTE: This code can be trivially extended to any space filling curve by providing the tables
implementing the curve's state transition diagram. The only dependance on the curve is through the tables
and the box assign algorithm will work for all space filling curves (if we have their tables.)

Please refer to the Zoltan Developers Guide, Appendix: Hilbert Space Filling Curve (HSFC) for more
detailed information about these algorithms.

Method String: HSFC
Parameters:

Zoltan User's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html (1 of 2) [8/4/2006 9:15:41 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html

 KEEP_CUTS Information about cuts and bounding box is necessary if the application
wants to add more objects to the decomposition via calls to
Zoltan_LB_Point_PP_Assign or to Zoltan_LB_Box_PP_Assign.
0 = don't keep cuts; 1 = keep cuts.

 REDUCE_DIMENSIONS When a 3 dimensional geometry is almost flat, it may make more sense to
treat it as a 2 dimensional geometry when applying the HSFC algorithm.
(Coordinate values in the omitted direction are ignored for the purposes of
partitioning.) If this parameter is set to 1, a 3 dimensional geometry will
be treated as 2 dimensional if is very flat, or 1 dimensional if it very thin.
And a 2 dimensional geometry will be treated as 1 dimensional if it is very
thin. Turning this parameter on removes the possibility that disconnected
partitions will appear on the surface of a flat 3 dimensional object.

 DEGENERATE_RATIO If the REDUCE_DIMENSIONS parameter is set, then this parameter
determines when a geometry is considered to be flat. A bounding box
which is oriented to the geometry is constructed, and the lengths of it's
sides are tested against a ratio of 1 : DEGENERATE_RATIO.

Default:
KEEP_CUTS = 0
REDUCE_DIMENSIONS = 0
DEGENERATE_RATIO = 10

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Refinement Tree Partitioning | Previous: Recursive Inertial Bisection]

Zoltan User's Guide: HSFC

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html (2 of 2) [8/4/2006 9:15:41 AM]

Zoltan User's Guide | Next | Previous

Refinement Tree Partitioning (REFTREE)
The refinement tree based partitioning method is due to William Mitchell of the National Institute of
Standards and Technology [Mitchell]. It is closely related to the Octree and Space-Filling Curve methods,
except it uses the tree that represents the adaptive refinement process that created the grid. This tree is
constructed through the tree-based query functions.

Each node of the refinement tree corresponds to an element that occurred during the grid refinement process.
The first level of the tree (the children of the root of the tree) corresponds to the initial coarse grid, one tree
node per initial element. It is assumed that the initial coarse grid does not change through the execution of
the program, except that the local IDs, assignment of elements to processors, and weights can change. If any
other aspect of the coarse grid changes, then the Zoltan structure should be destroyed and recreated. The
children of a node in the tree correspond to the elements that were created when the corresponding element
was refined. The children are ordered such that a traversal of the tree creates a space-filling curve within
each initial element. If the initial elements can be ordered with a contiguous path through them, then the
traversal creates a space-filling curve through all the elements. Each element has a designated "in" vertex
and "out" vertex, with the out vertex of one element being the same as the in vertex of the next element in
the path, in other words the path goes through a vertex to move from one element to the next (and does not
go out the same vertex it came in).

The user may allow Zoltan to determine the order of the coarse grid elements, or may specify the order,
which might be faster or produce a better path. If Zoltan determines the order, the user can select between an
order that will produce connected partitions, an order based on a Hilbert Space Filling Curve, or an order
based on a Sierpinski Space Filling Curve. See the parameter REFTREE_INITPATH below. If the user
provides the order, then the in/out vertices must also be supplied. Similarly, the user may specify the order
and in/out vertices of the child elements, or allow Zoltan to determine them. If the user knows how to
provide a good ordering for the children, this may be significantly faster than the default general algorithm.
However, accelerated forms of the ordering algorithm are provided for certain types of refinement schemes
and should be used in those cases. See ZOLTAN_CHILD_LIST_FN. If the user always specifies the order,
then the vertices and in/out vertices are not used and do not have to be provided.

Weights are assigned to the nodes of the tree. These weights need not be only on the leaves (the elements of
the final grid), but can also be on interior nodes (for example, to represent work on coarse grids of a
multigrid algorithm). The default weights are 1.0 at the leaves and 0.0 at the interior nodes, which produces
a partition based on the number of elements in each partition. An initial tree traversal is used to sum the
weights, and a second traversal to cut the space-filling curve into appropriately-sized pieces and assign
elements to partitions. The number of partitions is not necessarily equal to the number of processors.

The following limitations should be removed in the future.

● For multicomponent weights, only the first component is used.

● Heterogeneous architectures are not supported, in the sense that the computational load is equally divided
over the processors. A vector of relative partition sizes is used to determine the weight assigned to each
partition, but they are currently all equal. In the future they should be input to reflect heterogeneity.

Zoltan User's Guide: Refinement Tree Based Partition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html (1 of 2) [8/4/2006 9:15:41 AM]

Method String: REFTREE
Parameters:

REFTREE_HASH_SIZE

The size of the hash table to map from global IDs to refinement tree nodes. Larger
values require more memory but may reduce search time.

Default:
REFTREE_HASH_SIZE = 16384

REFTREE_INITPATH

Determines the method for finding an order of the elements in the initial grid.
"SIERPINSKI" uses a Sierpinski Space Filling Curve and is most appropriate for
grids consisting of triangles. It is currently limited to 2D.
"HILBERT" uses a Hilbert Space Filling Curve and is most appropriate for grids
consisting of quadralaterals or hexahedra.
"CONNECTED" attempts to produce connected partitions (guaranteed for
triangles and tetrahedra), however they tend to be stringy, i.e., less compact than
the SFC methods. It is most appropriate when connected partitions are required.
An invalid character string will invoke the default method.

Default:
REFTREE_INITPATH = "SIERPINSKI" if the grid contains only triangles
REFTREE_INITPATH = "HILBERT" otherwise

NOTE: In Zoltan versions 1.53 and earlier the default was "CONNECTED". To
reproduce old results, use REFTREE_INITPATH = "CONNECTED".

Required Query
Functions:

ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_COARSE_OBJ_LIST_FN or
ZOLTAN_FIRST_COARSE_OBJ_FN/ZOLTAN_NEXT_COARSE_OBJ_FN
pair
ZOLTAN_NUM_CHILD_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN
The following functions are needed only if the order of the initial elements will be
determined by a space filling curve method:
ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_FN or ZOLTAN_GEOM_MULTI_FN

[Table of Contents | Next: ParMETIS | Previous: Hilbert Space-Filling Curve Partitioning]

Zoltan User's Guide: Refinement Tree Based Partition

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html (2 of 2) [8/4/2006 9:15:41 AM]

Zoltan User's Guide | Next | Previous

Note: See also hypergraph partitioning.

Graph partitioning: ParMETIS
ParMETIS is a parallel library for graph partitioning (for static load balancing) and repartitioning (for
dynamic load balancing) developed at the University of Minnesota by Karypis, Schloegel and Kumar
[Karypis and Kumar]. ParMETIS is therefore strictly speaking not a method but rather a collection of
methods. In the Zoltan context, ParMETIS is a method with many sub-methods. Zoltan provides an
interface to all the ParMETIS (sub-)methods. The user selects which ParMETIS method to use through
the parameter PARMETIS_METHOD. Most of the ParMETIS methods are based on either multilevel
Kernighan-Lin partitioning or a diffusion algorithm. The names of the ParMETIS methods used by
Zoltan are identical to those in the ParMETIS library. For further information about the various
ParMETIS methods and parameters, please consult the ParMETIS User's Guide.

Graph partitioning is a useful abstraction for load balancing. The main idea is to represent the
computational application as a weighted graph. The nodes or vertices in the graph correspond to objects
in Zoltan. Each object may have a weight that normally represents the amount of computation. The
edges or arcs in the graph usually correspond to communication costs. In graph partitioning, the problem
is to find a partitioning of the graph (that is, each vertex is assigned to one out of k possible sets called
partitions) that minimizes the cut size (weight) subject to the partitions having approximately equal size
(weight). In repartitioning, it is assumed that a partitioning already exists. The problem is to find a good
partitioning that is also "similar" in some sense to the existing partitioning. This keeps the migration cost
low. All the problems described above are NP-hard so no efficient exact algorithm is known. We remark
that in Zoltan 1.*, the number of partitions is always the same as the number of MPI processes (which is
normally equal to the number of processors).

We give only a brief summary of the various ParMETIS methods here; for more details see the
ParMETIS documentation. The methods fall into three categories:

Part* - Perform graph partitioning without consideration of the initial distribution.1.

AdaptiveRepart (ParMETIS 3) and Repart* (ParMETIS 2) - Incremental algorithms with small
migration cost.

2.

Refine* - Refines a given partitioning (balance). Can be applied multiple times to reduce the
communication cost (cut weight) if desired.

3.

As a rule of thumb, use one of the Part* methods if you have a poor initial balance and you are willing to
spend some time doing migration. One such case is static load balancing; that is, you need to balance
only once. Use AdaptiveRepart or the Repart* methods when you have a reasonably good load balance
that you wish to update incrementally. These methods are well suited for dynamic load balancing (for
example, adaptive mesh refinement). A reasonable strategy is to call PartKway once to obtain a good
initial balance and later update this balance using AdaptiveRepart (Repart* in ParMetis 2.0).

Zoltan is currently compatible with ParMETIS versions 3.1 and 2.0. There is no guarantee that Zoltan
will work correctly if you have a different version of ParMETIS on your computer. (ParMETIS 3.0 will
work with Zoltan in most cases, but is not officially supported. ParMETIS 3.1 is highly recommended.

Zoltan User's Guide: ParMETIS Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (1 of 3) [8/4/2006 9:15:42 AM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

The 2.0 version will soon become obsolete and may not be supported in future Zoltan versions.) The
ParMETIS source code can be obtained from the ParMETIS home page. As a courtesy service, a recent,
compatible version of the ParMETIS source code is distributed with Zoltan. However, ParMETIS is a
completely separate library. If you do not wish to install ParMETIS, it is possible to compile Zoltan
without any references to ParMETIS (when you 'make' Zoltan, comment out the PARMETIS_LIBPATH
variable in the configuration file Utilities/Config/Config.<platform>).

Note that Zoltan ignores the imbalance tolerance parameter IMBALANCE_TOL when ParMETIS 2.0 is
used (the default value 1.05 is used), while IMBALANCE_TOL works correctly with ParMETIS 3.0.
Zoltan supports the multiconstraint feature of ParMETIS 3 through multiple object weights (see
OBJ_WEIGHT_DIM).

The graph given to Zoltan/ParMETIS must be symmetric. Any self edges (loops) will be ignored.
Multiple edges between a pair of vertices is not allowed. All weights must be non-negative. The graph
does not have to be connected.

Method String: GRAPH or PARMETIS
Parameters:
 PARMETIS_METHOD The ParMETIS method to be used; currently nine are available.

PartKway - multilevel Kernighan-Lin partitioning
PartGeom - space filling curves (coordinate based)
PartGeomKway - hybrid method based on PartKway and PartGeom
(needs both graph data and coordinates)
AdaptiveRepart - adaptive repartitioning (only in ParMETIS 3.0 and
higher)
RepartLDiffusion - diffusion algorithm (local)
RepartGDiffusion - diffusion algorithm (global)
RepartRemap - multilevel partioning with remap seeking to
minimize migration cost
RepartMLRemap - similar to RepartRemap but with additional
multilevel refinement
RefineKway - refine the current partitioning (balance)
The method names are case insensitive.

 PARMETIS_OUTPUT_LEVEL Amount of output the load-balancing algorithm should produce.
0 = no output, 1 = print timing info. Turning on more bits displays
more information (for example, 3=1+2, 5=1+4, 7=1+2+4).

 PARMETIS_COARSE_ALG
Coarse algorithm for PartKway. 1 = serial, 2 = parallel. (ParMETIS
2 only)

 PARMETIS_SEED Random seed for ParMETIS.
 PARMETIS_ITR Ratio of interprocessor communication time to redistribution time.

A high value will emphasize reducing the edge cut, while a small
value will try to keep the change in the new partition (distribution)
small. This parameter is only used by AdaptiveRepart. A value of
between 100 and 1000 is good for most problems.

Zoltan User's Guide: ParMETIS Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (2 of 3) [8/4/2006 9:15:42 AM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/

 USE_OBJ_SIZE Use (or not use) the available information about object sizes to
estimate migration cost. This parameter is currently only relevant
for AdaptiveRepart.

 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 =
on-processor checking, 2 = full checking. (CHECK_GRAPH==2 is
very slow and should be used only during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects
(vertices) of roughly equal size to each processor before calling the
partitioner. 0 = don't scatter; 1 = scatter only if all objects are on a
single processor; 2 = scatter if at least one processor owns no
objects (recommended to avoid a bug in ParMETIS 2.0); 3 = always
scatter.

Default values:
PARMETIS_METHOD = RepartGDiffusion
PARMETIS_OUTPUT_LEVEL = 0
PARMETIS_COARSE_ALG = 2
PARMETIS_SEED = 15
PARMETIS_ITR = 100
USE_OBJ_SIZE = 1
CHECK_GRAPH = 1
SCATTER_GRAPH = 1

Required Query Functions:
For all submethods: ZOLTAN_NUM_OBJ_FN

ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair

Only PartGeom & PartGeomKway: ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

All but PartGeom: ZOLTAN_NUM_EDGES_MULTI_FN or
ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or
ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Jostle | Previous: Refinement Tree Partitioning]

Zoltan User's Guide: ParMETIS Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html (3 of 3) [8/4/2006 9:15:42 AM]

Zoltan User's Guide | Next | Previous

Graph partitioning: Jostle
Jostle is a library for graph (mesh) partitioning and load balancing developed at the University of
Greenwich, London, UK, by Chris Walshaw [Jostle, Walshaw]. The parallel version of Jostle is
sometimes called pjostle. In the Zoltan context, the name Jostle always refers to the parallel version of
the library. The main algorithm used in Jostle is based on multilevel graph partitioning, and a
diffusion-type method is available for repartitioning. Hence the Jostle library is very similar to
ParMETIS. See the ParMETIS section for a brief description of graph partitioning as a model for load
balancing.

At present, only the most common Jostle options are supported by Zoltan. These are briefly described
below. For further details, see the documentation available from the Jostle home page. Other options may
be added to Zoltan upon request.

Note that Jostle is not distributed with Zoltan. If you wish to use Jostle within Zoltan, you must first
obtain a license for Parallel Jostle and install it on your system. The license is currently free for academic
use. Zoltan has been tested only with parallel Jostle version 1.2.* and may be incompatible with other
versions. Zoltan offers only limited support for Jostle and this may be discontinued in the future.

Method String: JOSTLE
Parameters:
 JOSTLE_OUTPUT_LEVEL Amount of output Jostle should produce. (integer)
 JOSTLE_THRESHOLD Threshold at which the graph contraction phase is stopped.

(integer)
 JOSTLE_GATHER_THRESHOLD Duplicate coarse graph on all processors when there are fewer than

this number of nodes. (integer)
 JOSTLE_MATCHING Matching algorithm for graph contraction. (Valid values are

"local" and "global".)
 JOSTLE_REDUCTION When reduction is turned off, Jostle performs a diffusion-type

algorithm instead of multilevel graph partitioning. (Valid values
are "on" and "off".)

 JOSTLE_CONNECT Make a disconnected graph connected before partitioning. (Valid
values are "on" and "off".)

 CHECK_GRAPH Level of error checking for graph input: 0 = no checking, 1 =
on-processor checking, 2 = full checking. (CHECK_GRAPH==2
is very slow and should be used only during debugging).

 SCATTER_GRAPH Scatter graph data by distributing contiguous chunks of objects
(vertices) of roughly equal size to each processor before calling
the partitioner. 0 = don't scatter; 1 = scatter only if all objects are
on a single processor; 2 = scatter if at least one processor owns no
objects; 3 = always scatter.

Default values: See the Jostle documentation. See our ParMETIS section for the
last two parameters.

Zoltan User's Guide: Jostle Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html (1 of 2) [8/4/2006 9:15:43 AM]

http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_EDGES_MULTI_FN or
ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_FN or
ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Hypergraph Partitioning | Previous: ParMETIS]

Zoltan User's Guide: Jostle Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html (2 of 2) [8/4/2006 9:15:43 AM]

Zoltan User's Guide | Next | Previous

Hypergraph Partitioning
Hypergraph partitioning is a useful partitioning and load balancing method when connectivity data is
available. It can be viewed as a more sophisticated alternative to the traditional graph partitioning.

A hypergraph consists of vertices and hyperedges. A hyperedge connects one or more vertices. A graph
is a special case of a hypergraph where each edge has size two (two vertices). The hypergraph model is
well suited to parallel computing, where vertices correspond to data objects and hyperedges represent the
communication requirements. The basic partitioning problem is to partition the vertices into k
approximately equal sets such that the number of cut hyperedges is minimized. Most partitioners
(including Zoltan-PHG) allows a more general model where both vertices and hyperedges can be
assigned weights. It has been shown that the hypergraph model gives a more accurate representation of
communication cost (volume) than the graph model. In particular, for sparse matrix-vector
multiplication, the hypergraph model exactly represents communication volume. Sparse matrices can be
partitioned either along rows or columns; in the row-net model the columns are vertices and each row
corresponds to an hyperedge, while in the column-net model the roles of vertices and hyperedges are
reversed.

Zoltan contains a native parallel hypergraph partitioner, called PHG (Parallel HyperGraph partitioner). In
addition, Zoltan provides access to PaToH, a serial hypergraph partitioner. Note that PaToH is not part of
Zoltan and should be obtained separately from the PaToH web site. Zoltan-PHG is a fully parallel
multilevel hypergraph partitioner. For further technical description, see [Devine et al, 2006].

Planned future features (currently not supported):

Fixed vertices●

Repartitioning (to reduce migration cost)●

Multiconstraint partitioning●

2-dimensional (sparse matrix) partitioning●

For applications that already use Zoltan to do graph partitioning, it is fairly easy to upgrade to
hypergraph partitioning. See the section graph vs. hypergraph partitioning.

Method String: HYPERGRAPH
Parameters:
 HYPERGRAPH_PACKAGE PHG (parallel) or PaToH (serial)
 PHG_OUTPUT_LEVEL Level of verbosity; 0 is silent.

 CHECK_HYPERGRAPH
Check that the query functions return valid input data; 0 or 1.
(This slows performance; intended for

 (CHECK_GRAPH) debugging.)

Zoltan User's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_phg.html (1 of 3) [8/4/2006 9:15:43 AM]

http://bmi.osu.edu/%7Eumit/software.htm
http://bmi.osu.edu/%7Eumit/software.htm
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_graph_vs_hg.html

 PHG_COARSENING_METHOD The method to use in the matching/coarsening phase:
ipm - inner product matching (a.k.a. heavy connectivity
matching); gives best quality.
l-ipm - local ipm on each processor. Faster but usually gives
poorer quality.
a-ipm - alternate between ipm and l-ipm. (A compromise
between speed and quality.)
none - no coarsening

PHG_COARSEPARTITION_METHOD

Method to partition the coarsest (smallest) hypergraph;
typically done in serial:
random - random
linear - linear assignment of the vertices (ordered by the user
query function)
greedy - greedy method based on minimizing cuts
auto - automatically select from the above methods (in
parallel, the processes will do different methods)

 PHG_REFINEMENT_METHOD
Refinement algorithm:
fm - approximate Fiduccia-Mattheyses (FM)
no - no refinement

 PHG_REFINEMENT_QUALITY

Knob to control the trade-off between run time and quality. 1
is the recommended (default) setting, >1 gives more
refinement (higher quality partitions but longer run time),
while <1 gives less refinement (and poorer quality).

 PHG_RANDOMIZE_INPUT

Randomize layout of vertices and hyperedges in internal
parallel 2D layout?
Setting this parameter to 1 often reduces Zoltan-PHG
execution time.

 PHG_EDGE_WEIGHT_OPERATION

Operation to be applied to edge weights supplied by different
processes for the same hyperedge:
add - the hyperedge weight will be the sum of the supplied
weights
max - the hyperedge weight will be the maximum of the
supplied weights
error - if the hyperedge weights are not equal, Zoltan will flag
an error, otherwise the hyperedge weight will be the value
returned by the processes

 PHG_EDGE_SIZE_THRESHOLD Ignore hyperedges greater than this fraction times number of
vertices.

 ADD_OBJ_WEIGHT

Add implicit vertex (object) weight. This will be in addition to
the user-defined weights. (Note: Multi-weight partitioning is
not yet supported, so currently only use this option with
obj_weight_dim=0.) Valid values:
"none"
"unit" or "vertices"
"pins" or "nonzeros" or "vertex degree"

Zoltan User's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_phg.html (2 of 3) [8/4/2006 9:15:43 AM]

Default values:
HYPERGRAPH_PACKAGE = PHG
CHECK_HYPERGRAPH=0
PHG_OUTPUT_LEVEL=0
PHG_COARSENING_METHOD=ipm
PHG_COARSEPARTITION_METHOD=auto
PHG_REFINEMENT_METHOD=fm
PHG_REFINEMENT_QUALITY=1
PHG_RANDOMIZE_INPUT=0
PHG_EDGE_WEIGHT_OPERATION=max
PHG_EDGE_SIZE_THRESHOLD=0.25
ADD_OBJ_WEIGHT=none

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN
pair
ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN

Optional Query Functions:
ZOLTAN_HG_SIZE_EDGE_WTS_FN
ZOLTAN_HG_EDGE_WTS_FN

It is possible to provide the graph query functions instead of the hypergraph queries, though this is not
recommended. If only graph query functions are registered, Zoltan will automatically create a
hypergraph from the graph, but this is not equivalent to graph partitioning. In particular, the edge weights
will not be accurate.

[Table of Contents | Next: Octree | Previous: Jostle]

Zoltan User's Guide: Hypergraph Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_phg.html (3 of 3) [8/4/2006 9:15:43 AM]

Zoltan User's Guide | Next | Previous

Octree Partitioning (OCTPART)
The Octree Partitioning algorithm is based upon work in load balancing for parallel mesh generation at
Rensselaer Polytechnic Institute [Flaherty, Loy et al.]. It was implemented in Zoltan by Luis Gervasio,
Department of Computer Science, Rensselaer Polytechnic Institute, as his summer project in 1998
[Gervasio]. An octree is a spatial decomposition of the computational domain in which the root of the
tree, representing the entire domain, is recursively divided by two in each coordinate direction
(producing eight or four "child" octants in 3D or 2D, respectively) until each subregion holds at most an
application-specified number of objects. These subregions are represented by the leaves of the octree.
The octree data structure is widely used in mesh generation and adaptive mesh refinement [Baehmann et
al., Shephard and Georges]. The octree resulting from such a spatial decomposition of the domain can be
used to partition an application's work [Edwards, Pilkington and Baden, Warren and Salmon]. To
partition an octree, a traversal of the tree is used to define a global ordering on the leaves of the octree.
This global ordering is often referred to as a Space-Filling Curve (SFC). The leaves of the octree can be
easily assigned to processors in a manner which equally distributes work by assigning slices of the
ordered list to processors. Different tree-traversal algorithms produce different global orderings or SFCs,
with some SFCs having better connectivity and partition quality properties than others. Currently,
Morton Indexing (i.e., Z-curve), Grey Code, and Hilbert SFCs are supported. Morton Indexing and Grey
Code SFCs are the simplest (and currently, the fastest) of the SFC algorithms, but they produce
lower-quality partitions than the Hilbert SFC.

Method String: OCTPART
Parameters:
 OCT_DIM Specifies whether the 2D or 3D Octree algorithms should be used. The 3D

algorithms can be used for 2D problems, but much memory will be wasted
to allow for a non-existent third dimension. Similarly, a 2D algorithm can
be used for 3D surface meshes provided that the surface can be projected
to the xy-plane without overlapping points.
2 = use 2D algorithm; 3 = use 3D algorithm.

 OCT_METHOD The SFC to be used.
0 = Morton Indexing; 1 = Grey Code; 2 = Hilbert.

 OCT_MINOBJECTS The minimum number of objects to allow in a leaf octant of the octree.
These objects will be assigned as a group to a processor, so this parameter
helps define the granularity of the load-balancing problem. Values greater
than or equal to one are allowable.

 OCT_MAXOBJECTS The maximum number of objects to allow in a leaf octant of the octree.
These objects will be assigned as a group to a processor, so this parameter
helps define the granularity of the load-balancing problem. Values greater
than or equal to one are allowable.

Zoltan User's Guide: Octree Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_oct.html (1 of 2) [8/4/2006 9:15:44 AM]

 OCT_OUTPUT_LEVEL Amount of output the load-balancing algorithm should produce.
0 = no statistics; 1 = statistics summary; 2 = debugging information; 3 =
data for generating plots.

Default:
OCT_DIM = 3
OCT_METHOD = 2
OCT_MINOBJECTS = 10
OCT_MAXOBJECTS = 40
OCT_OUTPUT_LEVEL = 0

Required Query Functions:
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_MULTI_FN or ZOLTAN_GEOM_FN

[Table of Contents | Next: Ordering | Previous: Hypergraph Partitioning]

Zoltan User's Guide: Octree Partitioning

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_oct.html (2 of 2) [8/4/2006 9:15:44 AM]

Zoltan User's Guide | Next | Previous

Ordering Algorithms
The following graph ordering algorithms are currently included in the Zoltan library:

Nested dissection by METIS/ParMETIS (NODEND)

The parenthetical string is the parameter value for ORDER_METHOD parameter; the parameter is set
through a call to Zoltan_Set_Param.

Ordering Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each
ordering method is controlled by parameters specific to ordering which are also set by calls to
Zoltan_Set_Param. Many of these parameters are specific to individual ordering algorithms, and are
listed in the descriptions of the individual algorithms. However, several have meaning across multiple
ordering algorithms. These parameters are described below.

Parameters:
 ORDER_METHOD The order algorithm used by Zoltan is specified by this parameter. Valid

values are

"NODEND" (for nodal nested dissection by ParMETIS or
METIS),
"METIS" (same as NODEND with ORDER_TYPE = local),
"PARMETIS" (same as NODEND with ORDER_TYPE =
global), and
"NONE" (for no load-balancing).

 ORDER_TYPE "LOCAL" or "GLOBAL". If LOCAL is selected, then each processor
constructs a local (sub-)graph. All inter-processor edges are simply ignored.
The ordering arrays returned, rank and iperm, are local permutation vectors in
this case.

ORDER_START_INDEX The start index for the permutation vectors rank and iperm. Valid values are 0
and 1.

 REORDER If this value is set to TRUE (non-zero), Zoltan assumes that the lists of local
and global ids are given as input to Zoltan_Order. Otherwise, the id lists will
be populated by Zoltan_Order. The permutation of the ids will be the one
produced by calling the query functions.

Default Values:
ORDER_METHOD = NODEND
ORDER_TYPE = GLOBAL
ORDER_START_INDEX = 0
REORDER = FALSE

Zoltan User's Guide: Ordering Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_order.html (1 of 2) [8/4/2006 9:15:44 AM]

[Table of Contents | Next: Nested dissection by ParMETIS | Previous: Octtree Algorithm]

Zoltan User's Guide: Ordering Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_order.html (2 of 2) [8/4/2006 9:15:44 AM]

Zoltan User's Guide | Next | Previous

Nested Dissection by METIS/ParMETIS
Nested Dissection (ND) is a popular method to compute fill-reducing orderings for sparse matrices. It
can also be used for other ordering purposes. The algorithm recursively finds a separator (bisector) in a
graph, orders the nodes in the two subsets first, and nodes in the separator last. In METIS/ParMETIS, the
recursion is stopped when the graph is smaller than a certain size, and some version of minimum degree
ordering is applied to the remaining graph.

METIS computes a local ordering of the objects on each processor, while ParMETIS performs a global
ordering of all the objects. ParMETIS currently (versions 2.0 and 3.0) requires that the number of
processors is a power of two.

The generic name for this method is NODEND. If GRAPH_TYPE=GLOBAL ParMETIS is called, but if
it is LOCAL, METIS is called. Alternatively, the user can simply set ORDER_METHOD to METIS or
PARMETIS.

Order_Method
String: NODEND or METIS or PARMETIS

Parameters:
 See ParMETIS. Note that the PARMETIS options are ignored when METIS is called.
Required Query
Functions:

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Coloring Algorithms | Previous: Ordering Algorithms]

Zoltan User's Guide: Nested Dissection by ParMETIS

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_order_parmetis.html [8/4/2006 9:15:44 AM]

Zoltan User's Guide | Next | Previous

Coloring Algorithms
The following coloring algorithms are currently included in the Zoltan library:

Parallel Coloring

Coloring Parameters

While the overall behavior of Zoltan is controlled by general Zoltan parameters, the behavior of each
coloring method is controlled by parameters specific to coloring which are also set by calls to
Zoltan_Set_Param. These parameters are described below.

Parameters:
 DISTANCE The maximum distance between two objects that should not get the same color

is specified by this parameter. Valid values are "1" (for distance-1 coloring)
and "2" (for distance-2 coloring).

 SUPERSTEP_SIZE Number of local objects to be colored on each processor before exchanging
color information. SUPERSTEP_SIZE should be greater than 0.

 COMM_PATTERN Valid values are "S" (synchronous) and "A" (asynchronous). If synchronous
communication is selected, processors are forced to wait for the color
information from all other processors to be received before proceeding with
coloring of the next SUPERSTEP_SIZE number of local objects. If
asynchronous communication is selected, there is no such restriction.

 COLOR_ORDER Valid values are "I" (internal first), "B" (boundary first) and "U" (unordered).
If "I" is selected, each processor colors its internal objects before boundary
objects. If "B" is selected, each processor colors its boundary objects first. If
"U" is selected, there is no such distinction between internal and boundary
objects. "U" is not implemented for distance-2 coloring.

 COLORING_METHOD Currently only "F" (first-fit) is implemented. By using "F", the smallest
available color that will not cause a conflict is assigned to the object that is
being colored.

Default Values:
DISTANCE = 1
SUPERSTEP_SIZE = 100
COMM_PATTERN = S
COLOR_ORDER = I
COLORING_METHOD = F

[Table of Contents | Next: Parallel Coloring | Previous: Nested Dissection by ParMETIS]

Zoltan User's Guide: Coloring Algorithms

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_color.html [8/4/2006 9:15:45 AM]

Zoltan User's Guide | Next | Previous

Parallel Coloring
The parallel coloring algorithm in Zoltan is based on the work of Boman et al. for distance-1 coloring
and Bozdag et al. for distance-2 coloring. It was implemented in Zoltan by Doruk Bozdag and Umit
Catalyurek, Department of Biomedical Informatics, Ohio State University. Distance-1 coloring algorithm
is an iterative data parallel algorithm that proceeds in two-phased rounds. In the first phase, processors
concurrently color the vertices assigned to them. Adjacent vertices colored in the same parallel step of
this phase may result in inconsistencies. In the second phase, processors concurrently check the validity
of the colors assigned to their respective vertices and identify a set of vertices that needs to be re-colored
in the next round to resolve the detected inconsistencies. The algorithm terminates when every vertex has
been colored correctly. To reduce communication frequency, the coloring phase is further decomposed
into computation and communication sub-phases. In a communication sub-phase processors exchange
recent color information. During a computation sub-phase, a number of vertices determined by the
SUPERSTEP_SIZE parameter, rather than a single vertex, is colored based on currently available color
information. With an appropriate choice of a value for SUPERSTEP_SIZE, the number of ensuing
conflicts can be kept low while at the same time preventing the runtime from being dominated by the
sending of a large number of small messages. The distance-2 graph coloring problem aims at partitioning
the vertex set of a graph into the fewest sets consisting of vertices pairwise at distance greater than two
from each other. The algorithm is an extension of the parallel distance-1 coloring algorithm.

Parameters:
 See Coloring
Algorithms.
Required Query
Functions:

ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN or
ZOLTAN_FIRST_OBJ_FN/ZOLTAN_NEXT_OBJ_FN pair
ZOLTAN_NUM_EDGES_MULTI_F N or ZOLTAN_NUM_EDGES_FN
ZOLTAN_EDGE_LIST_MULTI_F N or ZOLTAN_EDGE_LIST_FN

[Table of Contents | Next: Data Services and Utilities | Previous: Coloring Algorithms]

Zoltan User's Guide: Parallel Coloring

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_color_parallel.html [8/4/2006 9:15:45 AM]

Zoltan User's Guide | Next | Previous

Data Services and Utilities
Within Zoltan, several utilities are provided to simplify both application development and development
of new algorithms in the library. They are separate from the Zoltan library so that applications can use
them independently of Zoltan, if desired. They are compiled separately from Zoltan and can be archived
in separate libraries. Instructions for building the utilities and applications using them are included
below; individual library names are listed in the following documentation for each package.

The packages available are listed below.

Memory Management Utilities
Unstructured Communication Utilities
Distributed Directory Utility

Building Utilities
The utilities provided with Zoltan have their own Makefiles and can be built separately from Zoltan. If
the user builds the Zoltan library, the utility libraries are built automatically and copied to the appropriate
Zoltan/Obj_<platform> directory, where <platform> is specified through the ZOLTAN_ARCH
environment variable. Zoltan and the utilities share the Utilities/Config/Config.<platform> files
specifying compilation paths for various architectures. If, however, a user wishes to use these utilities
without using Zoltan, he must build the libraries separately.

The structure and use of Makefiles for the utilities are similar to Zoltan's makefiles; a top-level makefile
includes rules for building each utility's library. Object files and the utility libraries are stored in a
subdirectory Obj_<platform>, where <platform> is a target architecture supported with a
Utilities/Config/Config.<platform> file. The command for compiling a particular utility follows:

gmake ZOLTAN_ARCH=<platform> <library_name>

where <library_name> is the name of the utility library, and <platform> is the target architecture
(corresponding to Utilities/Config/Config.<platform>). The <library_name> for each utility is included
in the following documentation for the utilities.

Building Applications
The utilities are designed so that they can easily be used separately from Zoltan in applications. To
enable type-checking of arguments, the function-prototypes file for a utility should be included in all
application source code files that directly access the utility. The application must also link with the
appropriate utility library (and any other libraries on which the utility depends). Library and
function-prototype file names for each utility are listed in the following documentation for the utilities.

Zoltan User's Guide: Data Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util.html (1 of 2) [8/4/2006 9:15:45 AM]

[Table of Contents | Next: Memory Management Utilities | Previous: Parallel Coloring]

Zoltan User's Guide: Data Services

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util.html (2 of 2) [8/4/2006 9:15:45 AM]

Zoltan User's Guide | Next | Previous

Memory Management Utilities
This package consists of wrappers around the standard C memory allocation and deallocation routines
which add error-checking and debugging capabilities. These routines are packaged separately from
Zoltan to allow their independent use in other applications. A Fortran90 interface is not yet available.
C++ programmers can include the header file "zoltan_mem.h" and use the C functions. This header file,
and in fact all of Zoltan's C language header files, are surrounded by an extern "C" {} declaration to
prevent name mangling when compiled with a C++ compiler.

Source code location: Utilities/Memory
Function prototypes file: Utilities/Memory/zoltan_mem.h or

include/zoltan_mem.h
Library name: libzoltan_mem.a
Other libraries used by this library: libmpi.a. (See note below.)
Routines:

Zoltan_Array_Alloc: Allocates arrays of dimension n, n=0,1,...,4
Zoltan_Malloc: Wrapper for system malloc.
Zoltan_Calloc: Wrapper for system calloc.
Zoltan_Realloc: Wrapper for system realloc.
Zoltan_Free: Frees memory and sets the pointer to NULL.
Zoltan_Memory_Debug: Sets the debug level used by the memory utilities; see the
description below.
Zoltan_Memory_Stats: Prints memory debugging statistics, such as memory leak
information.
Zoltan_Memory_Usage: Returns user-specified information about memory usage (i.e.
maximum memory used, total memory currently allocated).

Use in Zoltan:
The memory management utility routines are used extensively in Zoltan and in some
individual algorithms. Zoltan developers use these routines directly for most memory
management, taking advantage of the error checking and debugging capabilities of the
library.

Rather than call Zoltan_Memory_Debug directly, applications using Zoltan can set the
DEBUG_MEMORY parameter used by this utility through calls to Zoltan_Set_Param.

Note on MPI usage:
MPI is used only to obtain the processor number (through a call to MPI_Comm_rank) for
print statements and error messages. If an application does not link with MPI, the memory
utilities should be compiled with -DZOLTAN_NO_MPI; all output will then appear to be
from processor zero, even if it is actually from other processors.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (1 of 6) [8/4/2006 9:15:47 AM]

double *Zoltan_Array_Alloc(char * file, int line, int n, int d1, int d2, ..., int dn, int size);

The Zoltan_Array_Alloc routine dynamically allocates an array of dimension n, n = 0, 1, ..., 4 with size
(d1 x d2 x ... x dn). It is intended to be used for 2, 3 and 4 dimensional arrays; Zoltan_Malloc should be
used for the simpler cases. The memory allocated by Zoltan_Array_Alloc is contiguous, and can be
freed by a single call to Zoltan_Free.

Arguments:
 file A string containing the name of the file calling the function. The __FILE__ macro

can be passed as this argument. This argument is useful for debugging memory
allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be
passed as this argument. This argument is useful for debugging memory allocation
problems.

 n The number of dimensions in the array to be allocated. Valid values are 0, 1, 2, 3,
or 4.

 d1, d2, ..., dn The size of each dimension to be allocated. One argument is included for each
dimension.

 size The size (in bytes) of the data objects to be stored in the array.
Returned Value:
 double * A pointer to the starting address of the n-dimensional array, or NULL if the

allocation fails.
Example:

int ** x = (int **) Zoltan_Array_Alloc (__FILE__ , __LINE__ , 2, 5, 6, sizeof
(int));
Allocates a two-dimensional, 5x6-element array of integers.

double *Zoltan_Malloc(int n, char * file , int line);

The Zoltan_Malloc function is a wrapper around the standard C malloc routine. It allocates a block of
memory of size n bytes. The principle advantage of using the wrapper is that it allows memory leaks to
be tracked via the DEBUG_MEMORY variable (set in Zoltan_Memory_Debug).

A macro ZOLTAN_MALLOC is defined in zoltan_mem.h. It takes the argument n, and adds the
__FILE__ and __LINE__ macros to the argument list of the Zoltan_Malloc call:

#define ZOLTAN_MALLOC(n) Zoltan_Malloc((n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file
and line information in each memory allocation call.

Arguments:
 n The size (in bytes) of the memory-allocation request.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (2 of 6) [8/4/2006 9:15:47 AM]

 file A string containing the name of the file calling the function. The __FILE__ macro
can be passed as this argument. This argument is useful for debugging memory
allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be
passed as this argument. This argument is useful for debugging memory allocation
problems.

Returned Value:
 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0

or the routine is unsuccessful.
Example:

struct Zoltan_Struct *b = (struct Zoltan_Struct *)
ZOLTAN_MALLOC(sizeof(struct Zoltan_Struct));
Allocates memory for one Zoltan_Struct data structure.

double *Zoltan_Calloc(int num, int size, char * file, int line);

The Zoltan_Calloc function is a wrapper around the standard C calloc routine. It allocates a block of
memory of size num * size bytes and initializes the memory to zeros. The principle advantage of using
the wrapper is that it allows memory leaks to be tracked via the DEBUG_MEMORY variable (set in
Zoltan_Set_Memory_Debug).

A macro ZOLTAN_CALLOC is defined in zoltan_mem.h. It takes the arguments num and size, and
adds the __FILE__ and __LINE__ macros to the argument list of the Zoltan_Calloc call:

#define ZOLTAN_CALLOC(num, size) Zoltan_Calloc((num), (size), __FILE__,
__LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file
and line information in each memory allocation call.

Arguments:
 num The number of elements of the following size to allocate.
 size The size of each element. Hence, the total allocation is num * size bytes.
 file A string containing the name of the file calling the function. The __FILE__ macro

can be passed as this argument. This argument is useful for debugging memory
allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be
passed as this argument. This argument is useful for debugging memory allocation
problems.

Returned Value:
 double * A pointer to the starting address of memory allocated. NULL is returned if n = 0

or the routine is unsuccessful.
Example:

int *b = (int *) ZOLTAN_CALLOC(10, sizeof(int));
Allocates memory for 10 integers and initializes the memory to zeros.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (3 of 6) [8/4/2006 9:15:47 AM]

double *Zoltan_Realloc(void *ptr, int n, char *file, int line);

The Zoltan_Realloc function is a "safe" version of realloc. It changes the size of the object pointed to by
ptr to n bytes. The contents of ptr are unchanged up to a minimum of the old and new sizes. Error tests
ensuring that n is a positive number and that space is available to be allocated are performed.

A macro ZOLTAN_REALLOC is defined in zoltan_mem.h. It takes the arguments ptr and n, and adds
the __FILE__ and __LINE__ macros to the argument list of the Zoltan_Realloc call:

#define ZOLTAN_REALLOC(ptr, n) Zoltan_Realloc((ptr), (n), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file
and line information in each memory allocation call.

Arguments:
 ptr Pointer to allocated memory to be re-sized.
 n The size (in bytes) of the memory-allocation request.
 file A string containing the name of the file calling the function. The __FILE__ macro

can be passed as this argument. This argument is useful for debugging memory
allocation problems.

 line The line number within file of the call to the function. The __LINE__ macro can be
passed as this argument. This argument is useful for debugging memory allocation
problems.

Returned Value:
 double * A pointer to the starting address of memory allocated. If the routine is

unsuccessful, NULL is returned and *ptr is unchanged.
Example:

int n = sizeof(struct Zoltan_Struct);
int *b = (int *) ZOLTAN_MALLOC (n));
b = (int *) ZOLTAN_REALLOC (b, 2*n);
Reallocates memory for b from length n to length 2*n.

void Zoltan_Free(void **ptr, char * file , int line);

The Zoltan_Free function calls the system's "free" function for the memory pointed to by *ptr. Note that
the argument to this routine has an extra level of indirection when compared to the standard C "free" call.
This allows the pointer being freed to be set to NULL, which can help find errors in which a pointer is
used after it is deallocated. Error checking is performed to prevent attempts to free NULL pointers. When
Zoltan_Free is used with the DEBUG_MEMORY options (set in Zoltan_Memory_Debug), it can help
identify memory leaks.

A macro ZOLTAN_FREE is defined in zoltan_mem.h. It takes the argument ptr, and adds the
__FILE__ and __LINE__ macros to the argument list of the Zoltan_Free call:

#define ZOLTAN_FREE(ptr) Zoltan_Free((void **)(ptr), __FILE__, __LINE__)

Using this macro, the developer gains the file and line debugging information without having to type file
and line information in each memory allocation call.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (4 of 6) [8/4/2006 9:15:47 AM]

Arguments:
 ptr Address of a pointer to the memory to be freed. Upon return, ptr is set to NULL.
Example:

ZOLTAN_FREE(& x);
Frees memory associated with the variable x; upon return, x is NULL.

Debugging Memory Errors

One important reason to use the memory-management utilities' wrappers around the system memory
routines is to facilitate debugging of memory problems. Various amounts of information can about
memory allocation and deallocation are stored, depending on the debug level set through a call to
Zoltan_Memory_Debug. This information is printed either when an error or warning occurs, or when
Zoltan_Memory_Stats is called. We have found values of one and two to be very helpful in our
development efforts. The routine Zoltan_Memory_Usage can be called to return user-specified
information about memory utilization to the user's program.

void Zoltan_Memory_Debug(int new_level);

The Zoltan_Memory_Debug function sets the level of memory debugging to be used.

Arguments:
 new_level Integer indicating the amount of debugging to use. Valid options include:

0 -- No debugging.
1 -- The number of calls to Zoltan_Malloc and Zoltan_Free are
tallied, and can be printed by a call to Zoltan_Memory_Stats.
2 -- A list of all calls to Zoltan_Malloc which have not yet been freed
is kept. This list is printed by Zoltan_Memory_Stats (useful for
detecting memory leaks). Any calls to Zoltan_Free with addresses
not in this list trigger warning messages. (Note that allocations that
occurred prior to setting the debug level to 2 will not be in this list and
thus can generate spurious warnings.)
3 -- Information about each allocation is printed as it happens.

Default:
Memory debug level is 1.

void Zoltan_Memory_Stats();

The Zoltan_Memory_Stats function prints information about memory allocation and deallocation. The
amount of information printed is determined by the debug level set through a call to
Zoltan_Memory_Debug.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (5 of 6) [8/4/2006 9:15:47 AM]

Arguments:
None.

int Zoltan_Memory_Usage(int type);

The Zoltan_Memory_Usage function returns information about memory utilization. The memory debug
level (set through a call to Zoltan_Set_Memory_Debug) must be at least 2 for this function to return
non-zero values.

Arguments:
 type Integer to request type of information required. These integers are defined in

zoltan_mem.h. Valid options include:

ZOLTAN_MEM_STAT_TOTAL -- The function will return the
current total memory allocated via Zoltan's memory allocation
routines.
ZOLTAN_MEM_STAT_MAXIMUM -- The function will return the
maximum total memory allocated via Zoltan's memory allocation
routines up to this point.

Default:
type = ZOLTAN_MEM_STAT_MAXIMUM

Returned Value:
 int The number in bytes of the specific requested memory statistic.
Example:

total = Zoltan_Memory_Usage (ZOLTAN_MEM_STAT_TOTAL);

[Table of Contents | Next: Unstructured Communication Utilities | Previous: Utilities]

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html (6 of 6) [8/4/2006 9:15:47 AM]

 Zoltan User's Guide | Next | Previous

Unstructured Communication Utilities
The unstructured communication package provides a simple interface for doing complicated patterns of
point-to-point communication, such as those associated with data remapping. This package consists of a
few simple functions which create or modify communication plans, perform communication, and destroy
communication plans upon completion. The package is descended from software first developed by
Steve Plimpton and Bruce Hendrickson, and has proved useful in a variety of different applications. For
this reason, it is maintained as a separate library and can be used independently from Zoltan.

In a prototypical usage of the unstructured communication package each processor has some objects to
send to other processors, but no processor knows what messages it will receive. A call to
Zoltan_Comm_Create produces a data structure called a communication plan which encapsulates the
basic information about the communication operation. The plan does not know anything about the types
of objects being transferred, only the number of them. So the same plan can be used repeatedly to
transfer different types of data as long as the number of objects in the transfers remains the same. The
actual size of objects isn't specified until the call to Zoltan_Comm_Do which performs the data transfer.

The plan which is produced by Zoltan_Comm_Create assumes that all the objects are of the same size.
If this is not true, then a call to Zoltan_Comm_Resize can specify the actual size of each object, and the
plan is augmented appropriately. Zoltan_Comm_Resize can be invoked repeatedly on the same plan to
specify varying sizes for different data transfer operations.

Although a friendlier interface may be added in the future, for now the data to be sent must be passed to
Zoltan_Comm_Do as a packed buffer in which the objects are stored consecutively. This probably
requires the application to pull the data out of native data structures and place in into the buffer. The
destination of each object is specified by the proclist argument to Zoltan_Comm_Create. Some
flexibility is supported by allowing proclist to contain negative values, indicating that the corresponding
objects are not to be sent. The communication operations allow for any object to be sent to any
destination processor. However, if the objects are grouped in such a way that all those being sent to a
particular processor are consecutive, the time and memory of an additional copy is avoided.

Function Zoltan_Comm_Do_Reverse reverses the communication plan to send back messages to the
originators.

To allow overlap between communication and processing, POST and WAIT variants of
Zoltan_Comm_Do and Zoltan_Comm_Do_Reverse are provided. Communication is initiated by the
POST function (Zoltan_Comm_Do_Post or Zoltan_Comm_Do_Reverse_Post); incoming messages
are posted and outgoing messages are sent. Then the user can continue processing. After the processing is
complete, the corresponding WAIT function (Zoltan_Comm_Do_Wait or
Zoltan_Comm_Do_Reverse_Wait) is called to wait for all incoming messages to be received. For
convenience, these functions use the same calling arguments as Zoltan_Comm_Do and
Zoltan_Comm_Do_Reverse.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (1 of 10) [8/4/2006 9:15:49 AM]

All the functions in the unstructured communication library return integer error codes identical to those
used by Zoltan.

The C++ interface to the unstructured communication utility is found in the zoltan_comm_cpp.h header
file which defines the Zoltan_Comm class.

A Fortran90 interface is not yet available.

Source code location: Utilities/Communication
C Function prototypes file: Utilities/Communication/zoltan_comm.h
C++ class definition: Utilities/Communication/zoltan_comm_cpp.h
Library name: libzoltan_comm.a
Other libraries used by this library: libmpi.a, libzoltan_mem.a.
High Level Routines:

Zoltan_Comm_Create: computes a communication plan for sending objects to
destination processors.
Zoltan_Comm_Do: uses a communication plan to send data objects to destination
processors. The POST and WAIT variants are
 Zoltan_Comm_Do_Post and
 Zoltan_Comm_Do_Wait.
Zoltan_Comm_Do_Reverse: performs the reverse (opposite) communication of
Zoltan_Comm_Do. The POST and WAIT variants are
 Zoltan_Comm_Do_Reverse_Post and
 Zoltan_Comm_Do_Reverse_Wait.
Zoltan_Comm_Resize: augments the plan to allow objects to be of variable sizes.
Zoltan_Comm_Copy: create a new communication plan and copy an existing one to it.
Zoltan_Comm_Copy_To: copy one existing communication plan to another.
Zoltan_Comm_Destroy: free memory associated with a communication plan.

Low Level Routines:
Zoltan_Comm_Exchange_Sizes: updates the sizes of the messages each processor will
receive.
Zoltan_Comm_Invert_Map: given a set of messages each processor wants to send,
determines the set of messages each processor needs to receive.
Zoltan_Comm_Sort_Ints: sorts an array of integer values.
Zoltan_Comm_Info: returns information about a communication plan.
Zoltan_Comm_Invert_Plan: given a communication plan, converts the plan into a plan
for the reverse communication.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (2 of 10) [8/4/2006 9:15:49 AM]

Use in Zoltan:
The Zoltan library uses the unstructured communication package in its migration tools and
in some of the load-balancing algorithms. For example, in Zoltan_Migrate,
Zoltan_Comm_Create is used to develop a communication map for sending objects to be
exported to their new destination processors. The sizes of the exported objects are obtained
and the communication map is augmented with a call to Zoltan_Comm_Resize. The data
for the objects is packed into a communication buffer and sent to the other processors
through a call to Zoltan_Comm_Do. After the received objects are unpacked, the
communication plan is no longer needed, and it is deallocated by a call to
Zoltan_Comm_Destroy. Zoltan developers use the package whenever possible, as
improvements made to the package (for example, support for heterogeneous architectures)
automatically propagate to the algorithms.

C:
int Zoltan_Comm_Create(struct Zoltan_Comm_Obj **plan, int nsend, int *proclist, MPI_Comm
comm, int tag, int *nreturn);
C++:
Zoltan_Comm(const int & nsend, int *proclist, const MPI_Comm & comm, const int & tag, int
*nreturn);
 or
Zoltan_Comm();
Zoltan_Comm::Create(const int & nsend, int *proclist, const MPI_Comm & comm, const int & tag,
int *nreturn);

The Zoltan_Comm_Create function sets up the communication plan in the unstructured communication
package. Its input is a count of objects to be sent to other processors, a list of the processors to which the
objects should be sent (repetitions are allowed), and an MPI communicator and tag. It allocates and
builds a communication plan that describes to which processors data will be sent and from which
processors data will be received. It also computes the amount of data to be sent to and received from each
processor. It returns the number of objects to be received by the processor and a pointer to the
communication plan it created. The communication plan is then used by calls to Zoltan_Comm_Do to
perform the actual communication.

Arguments:
 plan A pointer to the communication plan created by Zoltan_Comm_Create.
 nsend The number of objects to be sent to other processors.
 proclist An array of size nsend of destination processor numbers for each of the objects to

be sent.
 comm The MPI communicator for the unstructured communication.
 tag A tag for MPI communication.
 nreturn Upon return, the number of objects to be received by the processor.
Returned Value:
 int Error code.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (3 of 10) [8/4/2006 9:15:49 AM]

In the C++ interface to the communication utility, the communication plan is represented by a
Zoltan_Comm object. It is created when the Zoltan_Comm constructor executes. There are two
constructors. The first one listed above uses parameters to initialize the plan. The second constructor
does not, but the plan can subsequently be initialized with a call to Zoltan_Comm::Create().

C:
int Zoltan_Comm_Do(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char
*recvbuf);
int Zoltan_Comm_Do_Post(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char
*recvbuf);
int Zoltan_Comm_Do_Wait(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes, char
*recvbuf);
C++:
int Zoltan_Comm::Do(const int & tag, char *send_data, const int & nbytes, char *recvbuf);
int Zoltan_Comm::Do_Post(const int & tag, char *send_data, const int & nbytes, char *recvbuf);
int Zoltan_Comm::Do_Wait(const int & tag, char *send_data, const int & nbytes, char *recvbuf);

The Zoltan_Comm_Do function performs the communication described in a communication plan built
by Zoltan_Comm_Create. Using the plan, it takes a buffer of object data to be sent and the size (in
bytes) of each object's data in that buffer and sends the data to other processors. Zoltan_Comm_Do also
receives object data from other processors and stores it in a receive buffer. The receive buffer must be
allocated by the code calling Zoltan_Comm_Do using the number of received objects returned by
Zoltan_Comm_Create or Zoltan_Comm_Resize. If the objects have variable sizes, then
Zoltan_Comm_Resize must be called before Zoltan_Comm_Do.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create.
 tag An MPI message tag.
 send_data A buffer filled with object data to be sent to other processors.
 nbytes The size (in bytes) of the data for one object, or the scale factor if the objects have

variable sizes. (See Zoltan_Comm_Resize for more details.)
 recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
 int Error code.

C:
int Zoltan_Comm_Do_Reverse(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int nbytes,
int *sizes, char *recvbuf);
int Zoltan_Comm_Do_Reverse_Post(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int
nbytes, int *sizes, char *recvbuf);
int Zoltan_Comm_Do_Reverse_Wait(struct Zoltan_Comm_Obj *plan, int tag, char *send_data, int
nbytes, int *sizes, char *recvbuf);
C++:

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (4 of 10) [8/4/2006 9:15:49 AM]

int Zoltan_Comm::Do_Reverse(const int & tag, char *send_data, const int & nbytes, int *sizes, char
*recvbuf);
int Zoltan_Comm::Do_Reverse_Post(const int & tag, char *send_data, const int & nbytes, int *sizes,
char *recvbuf);
int Zoltan_Comm::Do_Reverse_Wait(const int & tag, char *send_data, const int & nbytes, int *sizes,
char *recvbuf);

The Zoltan_Comm_Do_Reverse function performs communication based on a communication plan
built by Zoltan_Comm_Create. But unlike Zoltan_Comm_Do, this routine performs the reverse of the
communication pattern. Specifically, all sends in the plan are treated as receives and vice versa.
Zoltan_Comm_Do_Reverse is particularly well suited to return updated data objects to their originating
processors when the objects were initially transferred via Zoltan_Comm_Do.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create.
 tag An MPI message tag to be used by this routine.
 send_data A buffer filled with object data to be sent to other processors.
 nbytes The size (in bytes) of the data associated with an object, or the scale factor if the

objects have variable sizes.
 sizes If not NULL, this input array specifies the size of all the data objects being

transferred. This argument is passed directly to Zoltan_Comm_Resize. This array
has length equal to the nsend value passed to Zoltan_Comm_Create. But note
that for Zoltan_Comm_Do_Reverse this array describes the sizes of the values
being received, not sent.

 recvbuf Upon return, a buffer filled with object data received from other processors.
Returned Value:
 int Error code.

C:
int Zoltan_Comm_Resize(struct Zoltan_Comm_Obj *plan, int *sizes, int tag , int *total_recv_size);
C++:
int Zoltan_Comm::Resize(int *sizes, const int & tag , int *total_recv_size);

If the objects being communicated are of variable sizes, then the plan produced by
Zoltan_Comm_Create is incomplete. This routine allows the plan to be augmented to allow for variable
sizes. Zoltan_Comm_Resize can be invoked repeatedly on the same plan to specify different object
sizes associated with different data transfers.

Arguments:
 plan A communication plan built by Zoltan_Comm_Create.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (5 of 10) [8/4/2006 9:15:49 AM]

 sizes An input array of length equal to the nsend argument in the call to
Zoltan_Comm_Create which generated the plan. Each entry in the array is the
size of the corresponding object to be sent. If sizes is NULL (on all processors), the
objects are considered to be the same size. Note that the true size of a message will
be scaled by the nbytes argument to Zoltan_Comm_Do.

 tag A message tag to be used for communication within this routine, based upon the
communicator in plan.

 total_recv_size Sum of the sizes of the incoming messages. To get the actual size (in bytes), you
need to scale by the nbytes argument to Zoltan_Comm_Do.

Returned Value:
 int Error code.

C: struct Zoltan_Comm_Obj *Zoltan_Comm_Copy(struct Zoltan_Comm_Obj *plan);
C++: Zoltan_Comm(const Zoltan_Comm &plan);

Zoltan_Comm_Copy creates a new Zoltan_Comm_Obj structure and copies the existing plan to it. The
corresponding C++ method is the Zoltan_Comm copy constructor.

Arguments:
 plan A pointer to the communication plan to be copied to the new Zoltan_Comm_Obj

structure.
Returned Value:
 struct
Zoltan_Comm_Obj
*

the newly created plan, or NULL on error.

C: int Zoltan_Comm_Copy_To(struct Zoltan_Comm_Obj **to, struct Zoltan_Comm_Obj *from);
C++: Zoltan_Comm & operator= (const Zoltan_Comm &plan);

Zoltan_Comm_Copy_To copies one existing communication plan to another. The corresponding C++
method is the Zoltan_Comm copy operator.

Arguments:
 to A pointer to a pointer to the communication plan that will be copied to. We destroy

the plan first, and set the pointer to the plan to NULL, before proceeding with the
copy.

 from A pointer the communication plan that we will make a copy of.
Returned Value:
 int Error code

C: int Zoltan_Comm_Destroy(struct Zoltan_Comm_Obj **plan);
C++: ~Zoltan_Comm();

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (6 of 10) [8/4/2006 9:15:49 AM]

The Zoltan_Comm_Destroy function frees all memory associated with a communication plan created
by Zoltan_Comm_Create. The C++ Zoltan_Comm object does not have an explicit Destroy method. It
is deallocated when it's destructor is called.

Arguments:
 plan A pointer to a communication plan built by Zoltan_Comm_Create. Upon return,

plan is set to NULL.
Returned Value:
 int Error code.

C:
int Zoltan_Comm_Exchange_Sizes(int *sizes_to, int *procs_to, int nsends, int self_msg, int
*sizes_from, int *procs_from, int nrecvs, int *total_recv_size, int my_proc, int tag, MPI_Comm comm);
C++:
static int Zoltan_Comm::Exchange_Sizes(int *sizes_to, int *procs_to, const int & nsends, const int &
self_msg, int *sizes_from, int *procs_from, const int & nrecvs, int *total_recv_size, const int & my_proc,
const int & tag, const MPI_Comm & comm);

This routine is used by Zoltan_Comm_Resize to update the sizes of the messages each processor is
expecting to receive. The processors already know who will send them messages, but if variable sized
objects are being communicated, then the sizes of the messages are recomputed and exchanged via this
routine.

Arguments:
 sizes_to Input array with the size of each message to be sent. Note that the actual number of

bytes in the message is the product of this value and the nbytes argument to
Zoltan_Comm_Do.

 procs_to Input array with the destination processor for each of the messages to be sent.
 nsends Input argument with the number of messages to be sent. (Length of the procs_to

array.)
 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0)

within the procs_to and lengths_to arrays.
 sizes_from Returned array with the size of each message that will be received. Note that the

actual number of bytes in the message is the product of this value and the nbytes
argument to Zoltan_Comm_Do.

 procs_from Returned array of processors from which data will be received.
 nrecvs Returned value with number of messages to be received. (length of procs_from

array.)
 total_recv_size The total size of all the messages to be received. As above, the actual number of

bytes will be scaled by the nbytes argument to Zoltan_Comm_Do.
 my_proc The processor's ID in the comm communicator.
 tag A message tag which can be used by this routine.
 comm MPI Communicator for the processor numbering in the procs arrays.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (7 of 10) [8/4/2006 9:15:49 AM]

Returned Value:
 int Error code.

C:
int Zoltan_Comm_Invert_Map(int *lengths_to, int * procs_to, int nsends, int self_msg, int **
lengths_from, int ** procs_from, int * nrecvs, int my_proc, int nprocs, int out_of_mem, int tag,
MPI_Comm comm);
C++:
static int Zoltan_Comm::Invert_Map(int *lengths_to, int * procs_to, const int & nsends, const int &
self_msg, int * & lengths_from, int * & procs_from, int & nrecvs, const int & my_proc, const int &
nprocs, const int & out_of_mem, const int & tag, const MPI_Comm & comm);

The Zoltan_Comm_Invert_Map function is a low level communication routine. It is useful when a
processor knows to whom it needs to send data, but not from whom it needs to receive data. Each
processor provides to this routine a set of lengths and destinations for the messages it wants to send. The
routine then returns the set of lengths and origins for the messages a processor will receive. Note that by
inverting the interpretation of to and from in these arguments, the routine can be used to do the opposite:
knowing how much data to receive and from which processors, it can compute how much data to send
and to which processors.

Arguments:
 lengths_to Input array with the number of values in each of the messages to be sent. Note that

the actual size of each value is not specified until the Zoltan_Comm_Do routine is
invoked.

 procs_to Input array with the destination processor for each of the messages to be sent.
 nsends Input argument with the number of messages to be sent. (Length of the lengths_to

and procs_to arrays.)
 self_msg Input argument indicating whether a processor has data for itself (=1) or not (=0)

within the procs_to and lengths_to arrays.
 lengths_from Returned array with lengths of messages to be received.
 procs_from Returned array of processors from which data will be received.
 nrecvs Returned value with number of messages to be received (lengths of lengths_from

and procs_from arrays).
 my_proc The processor's ID in the comm communicator.
 nprocs Number of processors in the comm communicator.
 out_of_mem Since it has a barrier operation, this routine is a convenient time to tell all the

processors that one of them is out of memory. This input argument is 0 if the
processor is OK, and 1 if the processor has failed in a malloc call. All the
processors will return with a code of COMM_MEMERR if any of them is out of
memory.

 tag A message tag which can be used by this routine.
 comm MPI Communicator for the processor numbering in the procs arrays.
Returned Value:
 int Error code.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (8 of 10) [8/4/2006 9:15:49 AM]

int Zoltan_Comm_Sort_Ints(int *vals_sort, int *vals_other, int nvals);

As its name suggests, the Zoltan_Comm_Sort_Ints function sorts a set of integers via the quicksort
algorithm. The integers are reordered from lowest to highest, and a second array of integers is reordered
in the same fashion. This second array can be used to return the permutation associated with the sort
operation. There is no C++ interface to this function. You can use the C function instead.

Arguments:
 vals_sort The array of integers to be sorted. This array is permuted into sorted order.
 vals_other Another array of integers which is permuted identically to vals_sort.
 nvals The number of values in the two integer arrays.
Returned Value:
 int Error code.

C:
int Zoltan_Comm_Info(struct Zoltan_Comm_Obj *plan, int *nsends, int *send_procs, int
*send_lengths, int *send_nvals, int *send_max_size, int *send_list, int *nrecvs, int *recv_procs, int
*recv_lengths, int *recv_nvals, int *recv_total_size, int *recv_list, int *self_msg);
C++:
int Zoltan_Comm::Info(int *nsends, int *send_procs, int *send_lengths, int *send_nvals, int
*send_max_size, int *send_list, int *nrecvs, int *recv_procs, int *recv_lengths, int *recv_nvals, int
*recv_total_size, int *recv_list, int *self_msg) const;

Zoltan_Comm_Info returns information about a communication plan. All arguments, except the plan
itself, may be NULL; values are returned only for non-NULL arguments.

Arguments:
 plan Communication data structure created by Zoltan_Comm_Create.
 nsends Upon return, the number of processors to which messages are sent; does not

include self-messages.
 send_procs Upon return, a list of processors to which messages are sent; self-messages are

included.
 send_lengths Upon return, the number of values to be sent to each processor in send_procs.
 send_nvals Upon return, the total number of values to send.
 send_max_size Upon return, the maximum size of a message to be sent; does not include

self-messages.
 send_list Upon return, the processor assignment of each value to be sent.
 nrecvs Upon return, the number of processors from which to receive messages; does not

include self-messages.
 recv_procs Upon return, a list of processors from which messages are received; includes

self-messages.
 recv_lengths Upon return, the number of values to be received from each processor in

recv_procs.

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (9 of 10) [8/4/2006 9:15:49 AM]

 recv_nvals Upon return, the total number of values to receive.
 recv_total_size Upon return, the total size of items to be received.
 recv_list Upon return, the processor assignments of each value to be received.
 self_msg Upon return, the number of self-messages.
Returned Value:
 int Error code.

C: int Zoltan_Comm_Invert_Plan(struct Zoltan_Comm_Obj **plan);
C++: int Zoltan_Comm::Invert_Plan();

Given a communication plan, Zoltan_Comm_Invert_Plan alters the plan to make it the plan for the
reverse communication. Information in the input plan is replaced by information for the
reverse-communication plan. All receives in the reverse-communication plan are blocked; thus, using the
inverted plan does not produce the same results as Zoltan_Comm_Do_Reverse. If an error occurs
within Zoltan_Comm_Invert_Plan, the original plan is returned unaltered.

Arguments:
 plan Communication data structure created by Zoltan_Comm_Create; the contents of

this plan are irretrievably modified by Zoltan_Comm_Invert_Plan.
Returned Value:
 int Error code.

[Table of Contents | Next: Distributed Directory Utility | Previous: Memory Management Utilities]

Zoltan User's Guide: Communication Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html (10 of 10) [8/4/2006 9:15:49 AM]

Zoltan Users's Guide | Next | Previous

Distributed Directory Utility
The owner (i.e. the processor number) of any computational object is subject to change during load
balancing. An application may use this directory utility to manage its objects' locations. A distributed
directory balances the load (in terms of memory and processing time) and avoids the bottle neck of a
centralized directory design.

This distributed directory module may be used alone or in conjunction with Zoltan's load balancing
capability and memory and communication services. The user should note that external names
(subroutines, etc.) which prefaced by Zoltan_DD_ are reserved when using this module.

The user initially creates an empty distributed directory using Zoltan_DD_Create. Then global ID (GID)
information is added to the directory using Zoltan_DD_Update. The directory maintains the GID's basic
information: local ID (optional), partition (optional), arbitrary user data (optional), and the current data
owner. Zoltan_DD_Update is also called after data migration or refinements. Zoltan_DD_Find returns
the directory information for a list of GIDs. A selected list of GIDs may be removed from the directory
by Zoltan_DD_Remove. When the user has finished using the directory, its memory is returned to the
system by Zoltan_DD_Destroy.

An object is known by its GID. Hashing provides very fast lookup for the information associated with a
GID in a two step process. The first hash of the GID yields the processor number owning the directory
entry for that GID. The directory entry owner remains constant even if the object (GID) migrates in time.
Second, a different hash algorithm of the GID looks up the associated information in directory
processor's hash table. The user may optionally register their own (first) hash function to take advantage
of their knowledge of their GID naming scheme and the GID's neighboring processors. See the
documentation for Zoltan_DD_Set_Hash_Fn for more information. If no user hash function is registered,
Zoltan's Zoltan_Hash will be used. This module's design was strongly influenced by the paper
"Communication Support for Adaptive Computation" by Pinar and Hendrickson.

Some users number their GIDs by giving the first "n" GIDs to processor 0, the next "n" GIDs to
processor 1, and so forth. The function Zoltan_DD_Set_Neighbor_Hash_Fn1 will provide efficient
directory communication when these GIDs stay close to their origin. The function
Zoltan_DD_Set_Neighbor_Hash_Fn2 allows the specification of ranges of GIDs to each processor for
more flexibility. The source code for DD_Set_Neighbor_Hash_Fn1 and DD_Set_Neighbor_Hash_Fn2
provide examples of how a user can create their own "hash" functions taking advantage of their own GID
naming convention.

The routine Zoltan_DD_Print will print the contents of the directory. The companion routine
Zoltan_DD_Stats prints out a summary of the hash table size, number of linked lists, and the length of
the longest linked list. This may be useful when the user creates their own hash functions.

The C++ interface to this utility is defined in the header file zoltan_dd_cpp.h as the class Zoltan_DD. A
single Zoltan_DD object represents a distributed directory.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (1 of 8) [8/4/2006 9:15:50 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_hash.html

A Fortran90 interface is not yet available.

Source code location: Utilities/DDirectory
C Function prototypes file: Utilities/DDirectory/zoltan_dd.h
C++ class definition: Utilities/DDirectory/zoltan_dd_cpp.h
Library name: libzoltan_dd.a
Other libraries used by this library: libmpi.a, libzoltan_mem.a, libzoltan_comm.a
Routines:

Zoltan_DD_Create: Allocates memory and initializes the directory.
Zoltan_DD_Copy: Allocates a new directory structure and copies an existing one to it.
Zoltan_DD_Copy_To: Copies one directory structure to another.
Zoltan_DD_Destroy: Terminate the directory and frees its memory.
Zoltan_DD_Update: Adds or updates GIDs' directory information.
Zoltan_DD_Find: Returns GIDs' information (owner, local ID, etc.)
Zoltan_DD_Remove: Eliminates selected GIDs from the directory.
Zoltan_DD_Stats: Provides statistics about hash table & linked lists.
Zoltan_DD_Print: Displays the contents (GIDs, etc) of each directory.
Zoltan_DD_Set_Hash_Fn: Registers a user's optional hash function.
Zoltan_DD_Set_Neighbor_Hash_Fn1: Hash function with constant number of GIDs per
processor.
Zoltan_DD_Set_Neighbor_Hash_Fn2: Hash function with variable number of GID's per
processor.

Data Stuctures:

struct Zoltan_DD_Struct: State & storage used by all DD routines. Users should not
modify any internal values in this structure. Users should only pass the address of this
structure to the other routines in this package.

C:
int Zoltan_DD_Create (struct Zoltan_DD_Struct **dd, MPI_Comm comm, int num_gid_entries, int
num_lid_entries, int user_length, int table_length, int debug_level);
C++:
Zoltan_DD(const MPI_Comm & comm, const int & num_gid_entries, const int & num_lid_entries,
const int & user_length, const int & table_length, const int & debug_level);
 or
Zoltan_DD();
Zoltan_DD::Create(const MPI_Comm & comm, const int & num_gid_entries, const int &
num_lid_entries, const int & user_length, const int & table_length, const int & debug_level);

Zoltan_DD_Create allocates and initializes memory for the Zoltan_DD_Struct structure. It must be
called before any other distributed directory routines. MPI must be initialized prior to calling this routine.

The Zoltan_DD_Struct must be passed to all other distributed directory routines. The MPI Comm
argument designates the processors used for the distributed directory. The MPI Comm argument is

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (2 of 8) [8/4/2006 9:15:50 AM]

duplicated and stored for later use.

The user can set the debug level argument in the Zoltan_DD_Create to determine the module's response
to multiple updates for any GID within one update cycle. If the argument is set to 0, all multiple updates
are ignored (but the last determines the directory information.) If the argument is set to 1, an error is
returned if the multiple updates represent different owners for the same GID. If the debug level is 2, an
error return and an error message are generated if multiple updates represent different owners for the
same GID. If the level is 3, an error return and an error message are generated for a multiple update even
if the updates represent the same owner for a GID.

Arguments:
 dd Structure maintains directory state and hash table.
 comm MPI comm duplicated and stored specifying directory processors.
 num_gid_entries Length of GID.
 num_lid_entries Length of local ID or zero to ignore local IDs.
 user_length Length of user defined data field (optional, may be zero).
 table_length Length of hash table (zero forces default value).
 debug_level Legal values range in [0,3]. Sets response to various error conditions where 3 is the

most verbose.
Returned Value:
 int Error code.

In the C++ interface, the distributed directory is represented by a Zoltan_DD object. It is created when
the Zoltan_DD constructor executes. There are two constructors. The first one listed above uses
parameters to initialize the distributed directory. The second constructor does not, but it can subsequently
be initialized with a call to Zoltan_DD::Create().

C: struct Zoltan_DD_Struct *Zoltan_DD_Copy (struct Zoltan_DD_Struct *from);
C++: Zoltan_DD(const Zoltan_DD &dd);

This routine creates a new distributed directory structure and copies an existing one to it. The
corresponding routine in the C++ library is the Zoltan_DD copy constructor.

Arguments:
 from The existing directory structure which will be copied to the new one.
Returned Value:
 struct
Zoltan_DD_Struct *

The newly created directory structure.

C: int Zoltan_DD_Copy_To (struct Zoltan_DD_Struct **to, struct Zoltan_DD_Struct *from);
C++: Zoltan_DD & operator=(const Zoltan_DD &dd);

This routine copies one distributed directory structure to another. The corresponding method in the C++
library is the Zoltan_DD class copy operator.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (3 of 8) [8/4/2006 9:15:50 AM]

Arguments:
 to A pointer to a pointer to the target structure. The structure will be destroyed and

the pointer set to NULL before proceeding with the copy.
 from A pointer to the source structure. The contents of this structure will be copied to

the target structure.
Returned Value:
 int Error code.

C: void Zoltan_DD_Destroy (struct Zoltan_DD_Struct **dd);
C++: ~Zoltan_DD();

This routine frees all memory allocated for the distributed directory. No calls to any distributed directory
functions using this Zoltan_DD_Struct are permitted after calling this routine. MPI is necessary for this
routine only to free the previously saved MPI comm.

Arguments:
 dd Directory structure to be deallocated.
Returned Value:
 void NONE

There is no explicit Destroy method in the C++ Zoltan_DD class. The object is deallocated when it's
destructor is called.

C:
int Zoltan_DD_Update (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid,
ZOLTAN_ID_PTR user, int *partition, int count);
C++:
int Zoltan_DD::Update(ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR user, int
*partition, const int & count);

Zoltan_DD_Update takes a list of GIDs and corresponding lists of optional local IDs, optional user data,
and optional partitions. This routine updates the information for existing directory entries or creates a
new entry (filled with given data) if a GID is not found. NULL lists should be passed for optional
arguments not desired. This function should be called initially and whenever objects are migrated to keep
the distributed directory current.

The user can set the debug level argument in Zoltan_DD_Create to determine the module's response to
multiple updates for any GID within one update cycle.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs to update (in).
 lid List of corresponding local IDs (optional) (in).
 user List of corresponding user data (optional) (in).

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (4 of 8) [8/4/2006 9:15:50 AM]

 partition List of corresponding partitions (optional) (in).
 count Number of GIDs in update list.
Returned Value:
 int Error code.

C:
int Zoltan_DD_Find (Zoltan_DD_DDirectory *dd, ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid,
ZOLTAN_ID_PTR data, int *partition, int count, int *owner);
C++:
int Zoltan_DD::Find(ZOLTAN_ID_PTR gid, ZOLTAN_ID_PTR lid, ZOLTAN_ID_PTR data, int
*partition, const int & count, int *owner) const;

Given a list of GIDs, Zoltan_DD_Find returns corresponding lists of the GIDs' owners, local IDs,
partitions, and optional user data. NULL lists must be provided for optional information not being used.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs whose information is requested.
 lid Corresponding list of local IDs (optional) (out).
 data Corresponding list of user data (optional) (out).
 partition Corresponding list of partitions (optional) (out).
 count Count of GIDs in above list.
 owner Corresponding list of data owners (out).
Returned Value:
 int Error code.

C:
int Zoltan_DD_Remove (struct Zoltan_DD_Struct *dd, ZOLTAN_ID_PTR gid, int count);
C++:
int Zoltan_DD::Remove(ZOLTAN_ID_PTR gid, const int & count);

Zoltan_DD_Remove takes a list of GIDs and removes all of their information from the distributed
directory.

Arguments:
 dd Distributed directory structure state information.
 gid List of GIDs to eliminate from the directory.
 count Number of GIDs to be removed.
Returned Value:
 int Error code.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (5 of 8) [8/4/2006 9:15:50 AM]

C:
void Zoltan_DD_Set_Hash_Fn (struct Zoltan_DD_Struct *dd, unsigned int (*hash)
(ZOLTAN_ID_PTR, int, unsigned int));
C++:
void Zoltan_DD::Set_Hash_Fn(unsigned int (*hash) (ZOLTAN_ID_PTR, int, unsigned int));

Enables the user to register a new hash function for the distributed directory. (If this routine is not called,
the default hash function Zoltan_Hash will be used automatically.) This hash function determines which
processor maintains the distributed directory entry for a given GID. Inexperienced users do not need this
routine.

Experienced users may elect to create their own hash function based on their knowledge of their GID
naming scheme. The user's hash function must have calling arguments compatible with Zoltan_Hash.
Consider that a user has defined a hash function, myhash, as

 unsigned int myhash(ZOLTAN_ID_PTR gid, int length, unsigned int naverage)
 {
 return *gid / naverage ; /* GID length assumed to be 1 ; naverage = total_GIDS/nproc */
 }

Then the call to register this hash function is:
 Zoltan_DD_Set_Hash (myhash) ;

NOTE: This hash function might group the gid's directory information near the gid's owning processor's
neighborhood, for an appropriate naming scheme.

Arguments:
 dd Distributed directory structure state information.
 hash Name of user's hash function.
Returned Value:
 void NONE

C:
void Zoltan_DD_Stats (struct Zoltan_DD_Struct *dd);
C++:
void Zoltan_DD::Stats() const;

This routine prints out summary information about the local distributed directory. It includes the hash
table length, number of GIDs stored in the local directory, the number of linked lists, and the length of
the longest linked list. The debug level (set by an argument to Zoltan_DD_Create controls this routine's
verbosity.

Arguments:
 dd Distributed directory structure for state information
Returned Value:
 void NONE

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (6 of 8) [8/4/2006 9:15:50 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_hash.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_hash.html

int Zoltan_DD_Set_Neighbor_Hash_Fn1 (struct Zoltan_DD_Struct *dd, int size);

This routine associates the first size GIDs to proc 0, the next size to proc 1, etc. It assumes the GIDs are
consecutive numbers. It assumes that GIDs primarily stay near their original owner. The GID length is
assumed to be 1. GIDs outside of the range are evenly distributed among the processors via
modulo(number of processors). This is a model for the user to develop their own similar routine.

Arguments:
 dd Distributed directory structure state information.
 size Number of consecutive GIDs associated with a processor.
Returned Value:
 int Error code.

int Zoltan_DD_Set_Neighbor_Hash_Fn2 (struct Zoltan_DD_Struct *dd, int *proc, int *low, int *high,
int n);

This routine allows the user to specify a beginning and ending GID "numbers" per directory processor. It
assumes that GIDs primarily stay near their original owner. It requires that the numbers of high, low, &
proc entries are all n. It assumes the GID length is 1. It is a model for the user to develop their own
similar routine. Users should note the registration of a cleanup routine to free local static memory when
the distributed directory is destroyed. GIDs outside the range specified by high and low lists are evenly
distributed among the processors via modulo (number of processors).

Arguments:
 dd Distributed directory structure state information.
 proc List of processor ids labeling for corresponding high, low value.
 low List of low GID limits corresponding to proc list.
 high List of high GID limits corresponding to proc list.
 n Number of elements in the above lists. Should be number of processors!
Returned Value:
 int Error code.

C: int Zoltan_DD_Print (struct Zoltan_DD_Struct *dd);
C++: int Zoltan_DD::Print () const;

This utility displays (to stdout) the entire contents of the distributed directory at one line per GID.

Arguments:
 dd Distributed directory structure state information.
Returned Value:
 int Error code.

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (7 of 8) [8/4/2006 9:15:50 AM]

User's Notes

Because Zoltan places no restrictions on the content or length of GIDs, hashing does not guarantee a
balanced distribution of objects in the distributed directory. Note also, the worst case behavior of a hash
table lookup is very bad (essentially becoming a linear search). Fortunately, the average behavior is very
good! The user may specify their own hash function via Zoltan_DD_Set_Hash_Fn to improve
performance.

This software module is built on top of the Zoltan Communications functions for efficiency.
Improvements to the communications library will automatically benefit the distributed directory.

FUTURE:

The C99 capability for variable length arrays would significantly simplify many of these
following routines. (It eliminates the malloc/free calls for temporary storage. This helps
prevent memory leaks.) Other C99 features may also improve code readability. The "inline"
capability can potentially improve performance.

The distributed directory should be implemented via threads. However, MPI is not fully
thread aware, yet.

[Table of Contents | Next: Examples of Zoltan Usage | Previous: Unstructured Communication
Utilities]

Zoltan User's Guide: Memory Management Utilities

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html (8 of 8) [8/4/2006 9:15:50 AM]

Zoltan User's Guide | Next | Previous

Examples of Zoltan Usage
Examples for each part of the Zoltan library are provided:

General use of Zoltan
Load-balancing calling sequence
Data migration calling sequences
Query functions for a simple application

[Table of Contents | Next: General Usage Example | Previous: Distributed Data Directories]

Zoltan User's Guide: Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples.html [8/4/2006 9:15:51 AM]

Zoltan User's Guide | Next | Previous

General Usage Example
An example of general Zoltan usage is included below. This is a C language example. Similar C++
examples may be found in the examples directory.

In this example, Zoltan_Initialize is called using the argc and argv arguments to the main program.
Then a pointer to a Zoltan structure is returned by the call to Zoltan_Create. In this example, all
processors will be used by Zoltan, as MPI_COMM_WORLD is passed to Zoltan_Create as the
communicator.

Several application query functions are then registered with Zoltan through calls to Zoltan_Set_Fn.
Parameters are set through calls to Zoltan_Set_Param. The application then performs in computations,
including making calls to Zoltan functions and utilities.

Before its execution ends, the application frees memory used by Zoltan by calling Zoltan_Destroy.

/* Initialize the Zoltan library */
struct Zoltan_Struct *zz;
float version;
...
Zoltan_Initialize(argc, argv, &version);
zz = Zoltan_Create(MPI_COMM_WORLD);

/* Register query functions. */
Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE,
 (void (*)()) user_return_dimension, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE,
 (void (*)()) user_return_num_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, NULL);

/* Set some Zoltan parameters. */
Zoltan_Set_Param(zz, "debug_level", "4");

/* Perform application computations, call Zoltan, etc. */
...

/* Free Zoltan data structure before ending application. */
Zoltan_Destroy (&zz);

Typical calling sequence for general usage of the Zoltan library.

Zoltan User's Guide: General Usage Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_init.html (1 of 2) [8/4/2006 9:15:51 AM]

! Initialize the Zoltan library
type(Zoltan_Struct), pointer :: zz
real(Zoltan_FLOAT) version
integer(Zoltan_INT) ierr
...
ierr = Zoltan_Initialize(version) ! without argc and argv
zz => Zoltan_Create(MPI_COMM_WORLD)

! Register load-balancing query functions.
! omit data = C NULL
ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE,
user_return_dimension)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
user_return_coords)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE,
user_return_num_node)
ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
user_return_owned_nodes)

! Set some Zoltan parameters.
ierr = Zoltan_Set_Param(zz, "debug_level", "4")

! Perform application computations, call Zoltan, etc.
...

! Free Zoltan data structure before ending application.
call Zoltan_Destroy(zz)

Fortran version of general usage example.

[Table of Contents | Next: Load-Balancing Example | Previous: Examples of Library Usage]

Zoltan User's Guide: General Usage Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_init.html (2 of 2) [8/4/2006 9:15:51 AM]

Zoltan User's Guide | Next | Previous

Load-Balancing Example
An example of the typical calling sequence for load balancing using Zoltan in a finite element application
is shown in the figure below. An application first selects a load-balancing algorithm by setting the
LB_METHOD parameter with Zoltan_Set_Param. Next, other parameter values are set by calls to
Zoltan_Set_Param. After some computation, load balancing is invoked by calling
Zoltan_LB_Partition. The results of the load balancing include the number of nodes to be imported and
exported to the processor, lists of global and local IDs of the imported and exported nodes, and source
and destination processors of the imported and exported nodes. A returned argument of
Zoltan_LB_Partition is tested to see whether the new decomposition differs from the old one. If the
decompositions differ, some sort of data migration is needed to establish the new decomposition; the
details of migration are not shown in this figure but will be addressed in the migration examples. After
the data migration is completed, the arrays of information about imported and exported nodes returned by
Zoltan_LB_Partition are freed by a call to Zoltan_LB_Free_Part.

char *lb_method;
int new, num_imp, num_exp, *imp_procs, *exp_procs;
int *imp_to_part, *exp_to_part;
int num_gid_entries, num_lid_entries;
ZOLTAN_ID_PTR imp_global_ids, exp_global_ids;
ZOLTAN_ID_PTR imp_local_ids, exp_local_ids;

/* Set load-balancing method. */
read_load_balancing_info_from_input_file(&lb_method);
Zoltan_Set_Param(zz, "LB_METHOD", lb_method);

/* Reset some load-balancing parameters. */
Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE");

/* Perform computations */
...
/* Perform load balancing */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,

&num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,

&num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);
if (new)
 perform_data_migration(...);

/* Free memory allocated for load-balancing results by Zoltan

Zoltan User's Guide: Load-Balancing Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_lb.html (1 of 3) [8/4/2006 9:15:52 AM]

library */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs,
&imp_to_part);
Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs,
&exp_to_part);
...

Typical calling sequence for performing load balancing with the Zoltan library.

character(len=3) lb_method
logical new
integer(Zoltan_INT) num_imp, num_exp
integer(Zoltan_INT) num_gid_entries, num_lid_entries
integer(Zoltan_INT), pointer :: imp_procs(:), exp_procs(:)
integer(Zoltan_INT), pointer :: imp_global_ids(:),
exp_global_ids(:) ! global IDs
integer(Zoltan_INT), pointer :: imp_local_ids(:),
exp_local_ids(:) ! local IDs
integer(Zoltan_INT) ierr

! Set load-balancing method.
lb_method = "RCB"
ierr = Zoltan_Set_Param(zz, "LB_METHOD", lb_method)

! Reset some load-balancing parameters
ierr = Zoltan_Set_Param(zz, "RCB_Reuse", "TRUE")

! Perform computations
...
! Perform load balancing
ierr =
Zoltan_LB_Partition(zz,new,num_gid_entries,num_lid_entries, &
 num_imp,imp_global_ids,imp_local_ids, &
 imp_procs,imp_to_part, &
 num_exp,exp_global_ids,exp_local_ids, &
 exp_procs,exp_to_part)
if (new) then
 perform_data_migration(...)
endif

! Free memory allocated for load-balancing results by Zoltan
library
ierr = Zoltan_LB_Free_Part(imp_global_ids, imp_local_ids,
imp_procs, imp_to_part);
ierr = Zoltan_LB_Free_Part(exp_global_ids, exp_local_ids,

Zoltan User's Guide: Load-Balancing Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_lb.html (2 of 3) [8/4/2006 9:15:52 AM]

exp_procs, exp_to_part);
...

Fortran version of the load-balancing example.

[Table of Contents | Next: Migration Examples | Previous: General Usage Example]

Zoltan User's Guide: Load-Balancing Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_lb.html (3 of 3) [8/4/2006 9:15:52 AM]

Zoltan User's Guide | Next | Previous

Migration Examples
Data migration using Zoltan's migration tools can be accomplished in two different ways:

auto-migration, or
user-guided migration.

The choice of migration method depends upon the complexity of the application's data. For some applications, only the
objects used in balancing must be migrated; no auxiliary data structures must be moved. Particle simulations are
examples of such applications; load balancing is based on the number of particles per processor, and only the particles
and their data must be moved to establish the new decomposition. For such applications, Zoltan's auto-migration tools
can be used. Other applications, such as finite element methods, perform load balancing on, say, the nodes of the finite
element mesh, but nodes that are moved to new processors also need to have their connected elements moved to the new
processors, and migrated elements may also need "ghost" nodes (i.e., copies of nodes assigned to other processors) to
satisfy their connectivity requirements on the new processor. This complex data migration requires a more
user-controlled approach to data migration than the auto-migration capabilities Zoltan can provide.

Auto-Migration Example
In the figure below, an example of the load-balancing calling sequence for a particle simulation using Zoltan's
auto-migration tools is shown. The application requests auto-migration by turning on the AUTO_MIGRATE option
through a call to Zoltan_Set_Param and registers functions to pack and unpack a particle's data. During the call to
Zoltan_LB_Partition, Zoltan computes the new decomposition and, using calls to the packing and unpacking query
functions, automatically migrates particles to their new processors. The application then frees the arrays returned by
Zoltan_LB_Partition and can continue computation without having to perform any additional operations for data
migration.

/* Tell Zoltan to automatically migrate data for the application.
*/
Zoltan_Set_Param(zz, "AUTO_MIGRATE", "TRUE");

/* Register additional functions for packing and unpacking data
*/
/* by migration tools. */
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) user_return_particle_data_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) user_pack_particle_data, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) user_unpack_particle_data, NULL);
...
/* Perform computations */
...
/* Perform load balancing AND automatic data migration! */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,

&num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,

Zoltan User's Guide: Migration Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_mig.html (1 of 3) [8/4/2006 9:15:52 AM]

&num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Free memory allocated for load-balancing results by Zoltan */
Zoltan_LB_Free_Part(&imp_global_ids, &imp_local_ids, &imp_procs,
&imp_to_part);
Zoltan_LB_Free_Part(&exp_global_ids, &exp_local_ids, &exp_procs,
&exp_to_part);
...

Typical calling sequence for using the migration tools' auto-migration capability with the dynamic
load-balancing tools.

User-Guided Migration Example
In the following figure, an example of user-guided migration using Zoltan's migration tools for a finite element
application is shown. Several migration steps are needed to completely rebuild the application's data structures for the
new decomposition. On each processor, newly imported nodes need copies of elements containing those nodes. Newly
imported elements, then, need copies of "ghost" nodes, nodes that are in the element but are assigned to other processors.
Each of these entities (nodes, elements, and ghost nodes) can be migrated in separate migration steps using the functions
provided in the migration tools. First, the assignment of nodes to processors returned by Zoltan_LB_Partition is
established. Query functions that pack and unpack nodes are registered and Zoltan_Migrate is called using the nodal
decomposition returned from Zoltan_LB_Partition. Zoltan_Migrate packs the nodes to be exported, sends them to
other processors, and unpacks nodes received by a processor. The packing routine migrate_node_pack includes with each
node a list of the element IDs for elements containing that node. The unpacking routine migrate_node_unpack examines
the list of element IDs and builds a list of requests for elements the processor needs but does not already store. At the end
of the nodal migration, each processor has a list of element IDs for elements that it needs to support imported nodes but
does not already store. Through a call to Zoltan_Invert_Lists, each processor computes the list of elements it has to
send to other processors to satisfy their element requests. Packing and unpacking routines for elements are registered, and
Zoltan_Migrate is again used to move element data to new processors. Requests for ghost nodes can be built within the
element packing and unpacking routines, and calls to Zoltan_Invert_Lists and Zoltan_Migrate, with node packing and
unpacking, satisfy requests for ghost nodes. In all three phases of migration, the migration tools handle communication;
the application is responsible only for packing and unpacking data and for building the appropriate request lists.

/* Assume Zoltan returns a decomposition of the */
/* nodes of a finite element mesh. */
Zoltan_LB_Partition(zz,&new,&num_gid_entries,&num_lid_entries,
 &num_imp,&imp_global_ids,&imp_local_ids,&imp_procs,&imp_to_part,
 &num_exp,&exp_global_ids,&exp_local_ids,&exp_procs,&exp_to_part);

/* Migrate the nodes as directed by the results of Zoltan_LB_Partition. */
/* While unpacking nodes, build list of requests for elements needed */
/* to support the imported nodes.*/
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) migrate_node_size, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) migrate_pack_node, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) migrate_unpack_node, NULL);

Zoltan User's Guide: Migration Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_mig.html (2 of 3) [8/4/2006 9:15:52 AM]

Zoltan_Migrate(zz,num_import,imp_global_ids,imp_local_ids,imp_procs,imp_to_part,
 num_export,exp_global_ids,exp_local_ids,exp_procs,exp_to_part);

/* Prepare for migration of requested elements. */
Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) migrate_pack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) migrate_unpack_element, NULL);
Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) migrate_element_size, NULL);

/* From the request lists, a processor knows which elements it needs */
/* to support the imported nodes; it must compute which elements to */
/* send to other processors. */
Zoltan_Invert_Lists(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,
 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Requests_to_Part,
 &num_tmp_exp, &tmp_exp_global_ids,
 &tmp_exp_local_ids, &tmp_exp_procs, &tmp_exp_to_part);

/* Processor now knows which elements to send to other processors. */
/* Send the requested elements. While unpacking elements, build */
/* request lists for "ghost" nodes needed by the imported elements. */
Zoltan_Migrate(zz, Num_Elt_Requests, Elt_Requests_Global_IDs,
 Elt_Requests_Local_IDs, Elt_Requests_Procs, Elt_Request_to_Part,
 num_tmp_exp_objs, tmp_exp_global_ids,
 tmp_exp_local_ids, tmp_exp_procs, tmp_exp_to_part);

/* Repeat process for "ghost" nodes. */
...

Typical calling sequence for user-guided use of the migration tools in Zoltan.

[Table of Contents | Next: Query-Function Examples | Previous: Load-Balancing Example]

Zoltan User's Guide: Migration Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_mig.html (3 of 3) [8/4/2006 9:15:52 AM]

Zoltan User's Guide | Next | Previous

Query-Function Examples
Examples of query functions provided by a simple application are included below. The general-interface
examples include a simple implementation of ZOLTAN_GEOM_FN and ZOLTAN_OBJ_LIST_FN
query functions and variants of the simple implementation that exploit local identifiers and data pointers.
Migration examples for packing and unpacking objects are also included. Robust error checking is not
included in the routines; application developers should include more explicit error checking in their
query functions.

General Interface Examples

Basic example
User-defined data pointer

Migration Examples

Packing and unpacking functions

All the examples use a mesh data structure consisting of nodes in the mesh. these nodes are the objects
passed to Zoltan. A node is described by its 3D coordinates and a global ID number that is unique across
all processors. The type definitions for the mesh and node data structures used in the examples are
included below.

/* Node data structure. */
/* A node consists of its 3D coordinates and */
/* an ID number that is unique across all processors. */
struct Node_Type {
 double Coordinates[3];
 int Global_ID_Num;
};

/* Mesh data structure. */
/* Mesh consists of an array of nodes and */
/* the number of nodes owned by the processor. */
struct Mesh_Type {
 struct Node_Type Nodes[MAX_NODES];
 int Number_Owned;
};

Data types for the query-function examples.

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (1 of 10) [8/4/2006 9:15:54 AM]

! Node data structure.
! A node consists of its 3D coordinates and
! an ID number that is unique across all processors.
type Node_Type
 real(Zoltan_DOUBLE) :: Coordinates(3)
 integer(Zoltan_INT) :: Global_ID_Num
end type Node_Type

! Mesh data structure.
! Mesh consists of an array of nodes and
! the number of nodes owned by the processor.
type Mesh_Type
 type(Node_Type) :: Nodes(MAX_NODES)
 integer(Zoltan_INT) :: Number_Owned
end type Mesh_Type

Data types for the Fortran query-function examples.

General Interface Query Function Examples

In the following examples, ZOLTAN_OBJ_LIST_FN and ZOLTAN_GEOM_FN query functions are
implemented for an application using the mesh and node data structures described above. The nodes are
the objects passed to Zoltan.

Through a call to Zoltan_Set_Fn, the function user_return_owned_nodes is registered as the
ZOLTAN_OBJ_LIST_FN query function. It returns global and local identifiers for each node owned
by a processor.

The function user_return_coords is registered as a ZOLTAN_GEOM_FN query function. Given the
global and local identifiers for a node, this function returns the node's coordinates. All the examples
exploit the local identifier to quickly locate nodal data. If such an identifier is not available in an
application, a search using the global identifier can be performed.

The Basic Example includes the simplest implementation of the query routines. In the query routines, it
uses global application data structures and a local numbering scheme for the local identifiers. The
User-Defined Data Pointer Example uses only local application data structures; this model is useful if the
application does not have global data structures or if objects from more than one data structure are to be
passed to Zoltan. Differences between the latter example and the Basic Example are shown in red.

Basic Example

In the simplest example, the query functions access the application data through a global data structure
(Mesh) representing the mesh. In the calls to Zoltan_Set_Fn, no pointers to application data are
registered with the query function (i.e., the data pointer is not used). A node's local identifier is an

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (2 of 10) [8/4/2006 9:15:54 AM]

integer representing the index in the Mesh.Nodes array of the node. The local identifier is set to the
index's value in user_return_owned_nodes. It is used to access the global Mesh.Nodes array in
user_return_coords.

/* in application's program file */
#include "zoltan.h"

/* Declare a global Mesh data structure. */
struct Mesh_Type Mesh;

main()
{
...
 /* Indicate that local and global IDs are one integer
each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, NULL);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < Mesh.Number_Owned; i++){
 global_ids[i*num_gid_entries] =
Mesh.Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

void user_return_coords(void *data,

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (3 of 10) [8/4/2006 9:15:54 AM]

 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 double *geom_vec, int *ierr)
{
 /* use local_id to index into the Nodes array. */
 geom_vec[0] = Mesh.Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = Mesh.Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = Mesh.Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions (simplest implementation).

! in application's program file

module Global_Mesh_Data
! Declare a global Mesh data structure.
 type(Mesh_Type) :: Mesh
end module

program query_example_1
use zoltan
...
 ! Indicate that local and global IDs are one integer
each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Do not register a data pointer with the functions;
 ! the global Mesh data structure will be used.
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
user_return_coords)
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
user_return_owned_nodes)
...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries,

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (4 of 10) [8/4/2006 9:15:54 AM]

num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*),
local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i
 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, num_gid_entries,
num_lid_entries, &
 global_id, local_id, geom_vec, ierr)
use zoltan
use Global_Mesh_Data
integer(Zoltan_INT) :: data(1) ! dummy declaration, do not use
integer(Zoltan_INT), intent(in) :: num_gid_entries,
num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)
integer(Zoltan_INT), intent(out) :: ierr
 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK
end subroutine

Fortran example of general interface query functions (simplest implementation).

User-Defined Data Pointer Example

In this example, the address of a local mesh data structure is registered with the query functions for use
by those functions. This change eliminates the need for a global mesh data structure in the application.
The address of the local data structure is included as an argument in calls to Zoltan_Set_Fn. This
address is then used in user_return_owned_nodes and user_return_coords to provide data for these
routines. It is cast to the Mesh_Type data type and accessed with local identifiers as in the Basic
Example. Differences between this example and the Basic Example are shown in red.

This model is useful when the application does not have a global data structure that can be accessed by
the query functions. It can also be used for operations on different data structures. For example, if an
application had more than one mesh, load balancing could be performed separately on each mesh without

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (5 of 10) [8/4/2006 9:15:54 AM]

having different query routines for each mesh. Calls to Zoltan_Set_Fn would define which mesh should
be balanced, and the query routines would access the mesh currently designated by the Zoltan_Set_Fn
calls.

/* in application's program file */
#include "zoltan.h"

main()
{
/* declare a local mesh data structure. */
struct Mesh_Type mesh;
...
 /* Indicate that local and global IDs are one integer
each. */
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 /* Register query functions. */
 /* Register the address of mesh as the data pointer. */
 Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
 (void (*)()) user_return_coords, &mesh);
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 (void (*)()) user_return_owned_nodes, &mesh);
...
}

void user_return_owned_nodes(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < ptr->Number_Owned; i++) {
 global_ids[i*num_gid_entries] =
ptr->Nodes[i].Global_ID_Num;
 local_ids[i*num_lid_entries] = i;
 }
 *ierr = ZOLTAN_OK;
}

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (6 of 10) [8/4/2006 9:15:54 AM]

void user_return_coords(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 double *geom_vec, int *ierr)
{

/* cast data pointer to type Mesh_Type. */
struct Mesh_Type *ptr = (struct Mesh_Type *) data;

 /* use local_id to address the requested node. */
 geom_vec[0] = ptr->Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = ptr->Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = ptr->Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Example of general interface query functions using the application-defined data pointer.

/* included in file zoltan_user_data.f90 */
! User defined data type as wrapper for Mesh
type Zoltan_User_Data_1
 type(Mesh_type), pointer :: ptr
end type Zoltan_User_Data_1

! in application's program file

program query_example_3
use zoltan
! declare a local mesh data structure and a User_Data to point
to it.
type(Mesh_Type), target :: mesh
type(Zoltan_User_Data_1) data
...
 ! Indicate that local and global IDs are one integer
each.
 ierr = Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 ierr = Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");

 ! Register query functions.
 ! Use the User_Data variable to pass the mesh data
 data%ptr => mesh
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_FN_TYPE,
user_return_coords, data)
 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE,
 user_return_owned_nodes, data)

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (7 of 10) [8/4/2006 9:15:54 AM]

...
end program

subroutine user_return_owned_nodes(data, &
 num_gid_entries, num_lid_entries, &
 global_ids, local_ids, wgt_dim, obj_wgts, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries,
num_lid_entries
integer(Zoltan_INT), intent(out) :: global_ids(*),
local_ids(*)
integer(Zoltan_INT), intent(in) :: wgt_dim
real(Zoltan_FLOAT), intent(out) :: obj_wgts(*)
integer(Zoltan_INT), intent(out) :: ierr
integer i
type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! return global node numbers as global_ids.
 ! return index into Nodes array for local_ids.
 do i = 1, Mesh%Number_Owned
 global_ids(1+(i-1)*num_gid_entries) = &
 Mesh%Nodes(i)%Global_ID_Num
 local_ids(1+(i-1)*num_lid_entries) = i
 end do
 ierr = ZOLTAN_OK
end subroutine

subroutine user_return_coords(data, global_id, local_id, &
 geom_vec, ierr)
use zoltan
type(Zoltan_User_Data_1) :: data
integer(Zoltan_INT), intent(in) :: num_gid_entries,
num_lid_entries
integer(Zoltan_INT), intent(in) :: global_id(*), local_id(*)
real(Zoltan_DOUBLE), intent(out) :: geom_vec(*)
integer(Zoltan_INT), intent(out) :: ierr
type(Mesh_Type), pointer :: Mesh

 ! extract the mesh from the User_Data argument
 Mesh => data%ptr

 ! use local_id to index into the Nodes array.
 geom_vec(1:3) = Mesh%Nodes(local_id(1))%Coordinates
 ierr = ZOLTAN_OK

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (8 of 10) [8/4/2006 9:15:54 AM]

end subroutine

Fortran example of general interface query functions using the application-defined data
pointer.

Migration Examples

Packing and Unpacking Data

Simple migration query functions for the Basic Example are included below. These functions are used
by the migration tools to move nodes among the processors. The functions user_size_node,
user_pack_node, and user_unpack_node are registered through calls to Zoltan_Set_Fn. Query function
user_size_node returns the size (in bytes) of data representing a single node. Query function
user_pack_node copies a given node's data into the communication buffer buf. Query function
user_unpack_node copies a data for one node from the communication buffer buf into the Mesh.Nodes
array on its new processor.

These query routines are simple because the application does not dynamically allocate memory for each
node. Such dynamic allocation would have to be accounted for in the ZOLTAN_OBJ_SIZE_FN,
ZOLTAN_PACK_OBJ_FN, and ZOLTAN_UNPACK_OBJ_FN routines.

main()
{
...
 /* Register migration query functions. */
 /* Do not register a data pointer with the functions; */
 /* the global Mesh data structure will be used. */
 Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_FN_TYPE,
 (void (*)()) user_size_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_PACK_OBJ_FN_TYPE,
 (void (*)()) user_pack_node, NULL);
 Zoltan_Set_Fn(zz, ZOLTAN_UNPACK_OBJ_FN_TYPE,
 (void (*)()) user_unpack_node, NULL);
...
}

int user_size_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id, int
*ierr)
{
/* Return the size of data associated with one node. */
/* This case is simple because all nodes have the same size.
*/
 *ierr = ZOLTAN_OK;

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (9 of 10) [8/4/2006 9:15:54 AM]

 return(sizeof(struct Node_Type));
}

void user_pack_node(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int dest_proc, int size, char *buf, int *ierr)
{
/* Copy the specified node's data into buffer buf. */
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 node_buf->Coordinates[0] =
Mesh.Nodes[local_id[0]].Coordinates[0];
 node_buf->Coordinates[1] =
Mesh.Nodes[local_id[0]].Coordinates[1];
 node_buf->Coordinates[2] =
Mesh.Nodes[local_id[0]].Coordinates[2];
 node_buf->Global_ID_Num =
Mesh.Nodes[local_id[0]].Global_ID_Num;
}

void user_unpack_node(void *data, int num_gid_entries,
 ZOLTAN_ID_PTR global_id, int size,
 char *buf, int *ierr)
{
/* Copy the node data in buf into the Mesh data structure. */
int i;
struct Node_Type *node_buf = (struct Node_Type *) buf;

 *ierr = ZOLTAN_OK;
 i = Mesh.Number_Owned;
 Mesh.Number_Owned = Mesh.Number_Owned + 1;
 Mesh.Nodes[i].Coordinates[0] = node_buf->Coordinates[0];
 Mesh.Nodes[i].Coordinates[1] = node_buf->Coordinates[1];
 Mesh.Nodes[i].Coordinates[2] = node_buf->Coordinates[2];
 Mesh.Nodes[i].Global_ID_Num = node_buf->Global_ID_Num;
}

Example of migration query functions for the Basic Example.

[Table of Contents | Next: FORTRAN Interface | Previous: Migration Examples]

Zoltan User's Guide: Query-Functon Examples

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_examples_query.html (10 of 10) [8/4/2006 9:15:54 AM]

Zoltan User's Guide | Next | Previous

FORTRAN Interface
The Fortran interface for Zoltan is a Fortran 90 interface designed similar to the Fortran 90 Bindings for
OpenGL [Mitchell]. There is no FORTRAN 77 interface; however, FORTRAN 77 applications can use
Zoltan by adding only a few Fortran 90 statements, which are fully explained in the section on
FORTRAN 77, provided that vendor-specific extensions are not heavily used in the application. This
section describes how to build the Fortran interface into the Zoltan library, how to call Zoltan from
Fortran applications, and how to compile Fortran applications that use Zoltan. Note that the capitalization
used in this section is for clarity and need not be adhered to in the application code, since Fortran is case
insensitive.

Compiling Zoltan
Compiling Applications
FORTRAN API
FORTRAN 77
System Specific Remarks

[Table of Contents | Next: FORTRAN--Compiling Zoltan | Previous: Query-Function Examples

Zoltan User's Guide: FORTRAN Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran.html [8/4/2006 9:15:55 AM]

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Zoltan
To include the Fortran interface in the Zoltan library, use the YES_FORTRAN parameter in the make
statement; for example

gmake YES_FORTRAN=1 ZOLTAN_ARCH=<platform> zoltan

Before compiling the library, make sure that the application's zoltan_user_data.f90 has been placed in the
Zoltan/fort/ directory.

[Table of Contents | Next: FORTRAN--Compiling Applications | Previous: FORTRAN Interface]

Zoltan User's Guide: FORTRAN -- Compiling Zoltan

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_zoltan.html [8/4/2006 9:15:55 AM]

Zoltan User's Guide | Next | Previous

FORTRAN: Compiling Applications
To compile a Fortran application using the Zoltan library, the module information files must be made
available to most compilers during the compilation phase. Module information files are files generated
by the compiler to provide module information to program units that USE the module. They usually have
suffixes like .mod or .M. The module information files for the modules in the Zoltan library are located in
the Obj_<platform> subdirectory. Most Fortran 90 compilers have a compile line flag to specify
directories to be searched for module information files, typically "-I"; check the documentation for your
compiler. If your compiler does not have such a flag, you will have to copy the module information files
to the directory of the application (or use symbolic links).

The Fortran interface is built into the same library file as the rest of Zoltan, which is found during the
compiler link phase with -lzoltan. Thus an example compilation line would be

f90 -I<path to Zoltan>/Obj_<platform> application.f90 -lzoltan

[Table of Contents | Next: FORTRAN API | Previous: FORTRAN--Compiling Zoltan

Zoltan User's Guide: FORTRAN--Compiling Applications

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_apps.html [8/4/2006 9:15:55 AM]

Zoltan User's Guide | Next | Previous

FORTRAN API
The Fortran interface for each Zoltan Interface Function and Application-Registered Query Function is
given along with the C interface. This section contains some general information about the design and
use of the Fortran interface.

Names
Zoltan module
Numeric types
Structures
Global and local IDs
Query function data

Names

All procedure, variable, defined constant and structure names are identical to those in the C interface,
except that in Fortran they are case insensitive (either upper or lower case letters can be used).

Zoltan module

MODULE zoltan provides access to all entities in Zoltan that are of use to the application, including kind
type parameters, named constants, procedures, and derived types. Any program unit (e.g., main program,
module, external subroutine) that needs access to an entity from Zoltan must contain the statement

USE zoltan

near the beginning.

Numeric types

The correspondence between Fortran and C numeric types is achieved through the use of kind type
parameters. In most cases, the default kind for a Fortran type will match the corresponding C type, but
this is not guaranteed. To insure portability of the application code, it is highly recommended that the
following kind type parameters be used in the declaration of all variables and constants that will be
passed to a Zoltan procedure:

C Fortran
int INTEGER(KIND=Zoltan_INT)
float REAL(KIND=Zoltan_FLOAT)
double REAL(KIND=Zoltan_DOUBLE)

Note that "KIND=" is optional in declaration statements. The kind number for constants can be attached

Zoltan User's Guide: FORTRAN API

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_api.html (1 of 3) [8/4/2006 9:15:56 AM]

to the constant, e.g., 1.0_Zoltan_DOUBLE.

Structures

For any struct in the C interface to Zoltan, e.g. Zoltan_Struct, there is a corresponding derived type in
the Fortran interface. Variables of this type are declared as demonstrated below:

TYPE(Zoltan_Struct) :: zz

In the Fortran interface, the internal components of the derived type are PRIVATE and not accessible to
the application. However, the application simply passes these variables around, and never needs to access
the internal components.

Global and local IDs

While the C implementation uses arrays of unsigned integers to represent global and local IDs, the
Fortran interface uses arrays of integers, as unsigned integers are not available in Fortran. Thus, each ID
is represented as an array (possibly of size 1) of integers. Applications that use other data types for their
IDs can convert between their data types and Zoltan's in the application-registered query functions.

Query function data

Zoltan_Set_Fn allows the application to pass a pointer to data that will subsequently be passed to the
query function being registered. From Fortran this is an optional argument, or can be one of several
types. In the simplest cases, an intrinsic array containing the data will be sufficient. For these cases, data
can be an assumed size array of type INTEGER(Zoltan_INT), REAL(Zoltan_FLOAT) or
REAL(Zoltan_DOUBLE). When the argument is omitted in the call to the registration function, a data
argument will still be passed to the query function. This should be declared as an assumed size array of
type INTEGER(Zoltan_INT) and never used.

For more complicated situations, the application may need to pass data in a user-defined type. The strong
type checking of Fortran does not allow passing an arbitrary type without modifying the Fortran interface
for each desired type. So the Fortran interface provides a type to be used for this purpose,
Zoltan_User_Data_1. Since different types of data may need to be passed to different query functions,
four such types are provided, using the numerals 1, 2, 3 and 4 as the last character in the name of the
type. These types are defined by the application in zoltan_user_data.f90. If not needed, they must be
defined, but can be almost empty as in fort/zoltan_user_data.f90.

The application may use these types in any appropriate way. If desired, it can define these types to
contain the application's data and use the type throughout the application. But it is anticipated that in
most cases, the desired type already exists in the application, and the Zoltan_User_Data_x types will be
used as "wrapper types," containing one or more pointers to the existing types. For example,

TYPE mesh

! an existing data type with whatever defines a mesh

END TYPE mesh

Zoltan User's Guide: FORTRAN API

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_api.html (2 of 3) [8/4/2006 9:15:56 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html#Zoltan_Struct

TYPE Zoltan_User_Data_2

TYPE(mesh), POINTER :: ptr

END TYPE Zoltan_User_Data_2

The application would then set the pointer to the data before calling Zoltan_Set_Fn:

TYPE(mesh) :: meshdata
TYPE(Zoltan_User_Data_2) :: query_data
TYPE(Zoltan_Struct) :: zz
INTEGER(Zoltan_INT), EXTERNAL :: num_obj_func ! not required for module procedures

query_data%ptr => meshdata
ierr = Zoltan_Set_Fn(zz,ZOLTAN_NUM_OBJ_FN_TYPE,num_obj_func,query_data)

Note that the existing data type must be available when Zoltan_User_Data_x is defined. Therefore it
must be defined either in zoltan_user_data.f90 or in a module that is compiled before
zoltan_user_data.f90 and USEd by MODULE zoltan_user_data. For an example that uses a wrapper
type, see fdriver/zoltan_user_data.f90.

[Table of Contents | Next: FORTRAN 77 | Previous: FORTRAN--Compiling Applications

Zoltan User's Guide: FORTRAN API

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_api.html (3 of 3) [8/4/2006 9:15:56 AM]

Zoltan User's Guide | Next | Previous

FORTRAN 77
There is no FORTRAN 77 interface for Zoltan; however, an existing FORTRAN 77 application can be
compiled by a Fortran 90 compiler provided it does not use vendor specific extensions (unless the same
extensions are supported by the Fortran 90 compiler), and the application can use Zoltan's Fortran 90
interface with a minimal amount of Fortran 90 additions. This section provides details of the Fortran 90
code that must be added.

When building the Zoltan library, use the file fort/zoltan_user_data.f90 for zoltan_user_data.f90. This
assumes that DATA in a call to ZOLTAN_SET_FN is either omitted (you can omit arguments that are
labeled OPTIONAL in the Fortran API) or an array of type INTEGER, REAL or DOUBLE PRECISION
(REAL*4 and REAL*8 might be acceptable). If a more complicated set of data is required (for example,
two arrays), then it should be made available to the query functions through COMMON blocks.

To get access to the interface, each program unit (main program, subroutine or function) that calls a
Zoltan routine must begin with the statement

USE ZOLTAN

and this should be the first statement after the program, subroutine or function statement (before the
declarations).

The pointer to the Zoltan structure returned by ZOLTAN_CREATE should be declared as

TYPE(ZOLTAN_STRUCT), POINTER :: ZZ

(you can use a name other than ZZ if you wish).

To create the structure, use a pointer assignment statement with the call to ZOLTAN_CREATE:

ZZ => ZOLTAN_CREATE(COMMUNICATOR)

Note that the assignment operator is "=>". If ZZ is used in more than one procedure, then put it in a
COMMON block. It cannot be passed as an argument unless the procedure interfaces are made
"explicit." (Let's not go there.)

The eight import and export arrays passed to ZOLTAN_LB_PARTITION (and other procedures) must
be pointers. They should be declared as, for example,

INTEGER, POINTER :: IMPORT_GLOBAL_IDS(:)

Note that the double colon after POINTER is required, and the dimension must be declared as "(:)" with
a colon. Like ZZ, if they are used in more than one procedure, pass them through a COMMON block, not
as an argument.

Except in the unlikely event that the default kinds of intrinsic types do not match the C intrinsic types,
you do not have to use the kind type parameters Zoltan_INT, etc. It is also not necessary to include the
INTENT attribute in the declarations of the query functions, so they can be simplified to, for example,

SUBROUTINE GET_OBJ_LIST(DATA, GLOBAL_IDS, LOCAL_IDS, WGT_DIM,
OBJ_WGTS, IERR)

Zoltan User's Guide: FORTRAN 77

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_77.html (1 of 2) [8/4/2006 9:15:56 AM]

INTEGER DATA(*),GLOBAL_IDS(*),LOCAL_IDS(*),WGT_DIM,IERR
REAL OBJ_WGTS(*)

to be more consistent with a FORTRAN 77 style.

[Table of Contents | Next: FORTRAN--System-Specific Remarks | Previous: FORTRAN API

Zoltan User's Guide: FORTRAN 77

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_77.html (2 of 2) [8/4/2006 9:15:56 AM]

Zoltan User's Guide | Next | Previous

FORTRAN: System-Specific Remarks
System-specific details of the FORTRAN interface are included below.

The mention of specific products, trademarks, or brand names is for purposes of
identification only. Such mention is not to be interpreted in any way as an endoresement
or certification of such products or brands by the National Institute of Standards and
Technology or Sandia National Laboratories. All trademarks mentioned herein belong to
their respective owners.

MPICH
Pacific Sierra
NASoftware

MPICH

As of version 1.1.2, the MPICH implementation of MPI is not completely "Fortran 90 friendly." Only
one problem was encountered during our tests: the reliance on command line arguments. MPICH uses
command line arguments during the start-up process, even if the application does not. Command line
arguments are not standard in Fortran, so although most compilers offer it as an extension, each compiler
has its own method of handling them. The problem arises when one Fortran compiler is specified during
the build of MPICH and another Fortran compiler is used for the application. This should not be a
problem on systems where there is only one Fortran compiler, or where multiple Fortran compilers are
compatible (for example, FORTRAN 77 and Fortran 90 compilers from the same vendor). If your
program can get past the call to MPI_Init, then you do not have this problem.

To solve this problem, build MPICH in such a way that it does not include the routines for iargc and
getarg (I have been able to do this by using the -f95nag flag when configuring MPICH), and then
provide your own versions of them when you link the application. Some versions of these routines are
provided in fdriver/farg_*.

Pacific Sierra

Pacific Sierra Research (PSR) Vastf90 is not currently supported due to bugs in the compiler with no
known workarounds. It is not known when or if this compiler will be supported.

NASoftware

N.A.Software FortranPlus is not currently supported due to problems with the query functions. We
anticipate that this problem can be overcome, and support will be added soon.

[Table of Contents | Next: C++ Interface | Previous: FORTRAN 77

Zoltan User's Guide: FORTRAN--System-Specific Remarks

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran_sys.html [8/4/2006 9:15:57 AM]

Zoltan User's Guide | Next | Previous

C++ Interface
The C++ interface to the Zoltan library is contained in the header files listed below. Each header file
defines one class. Each class represents a Zoltan data structure and the functions that operate on that data
structure. The class methods in the header files call functions in the Zoltan C library. So to use the C++
interface from your application, include the appropriate header file and link with the Zoltan C library.

header file class

include/zoltan_cpp.h Zoltan, representing a load balancing instance

Utilities/Communication/zoltan_comm_cpp.h
Zoltan_Comm, representing an unstructured
communication instance

Utilities/DDirectory/zoltan_dd_cpp.h
Zoltan_DD, representing a distributed directory
instance

Utilities/Timer/zoltan_timer_cpp.h Zoltan_Timer, representing a timer instance

More detailed information about the interface may be found in the Zoltan Developer's Guide.

Simple examples of the use of the interface may be found in the examples/CPP directory. A more
complete example is the test driver zCPPdrive. The source code for this test driver is in the driver
directory.

A note on declaring application registered query functions from a C++ application may be found in the
section titled Application-Registered Query Functions.

Two peculiarities of the wrapping of Zoltan with C++ classes are mentioned here:

You must call the C language function Zoltan_Initialize before using the C++ interface to the
Zoltan library. This function should only be called once. Due to design choices, the C++ interface
maintains no global state that is independent of any instantiated objects, so it does not know if the
function has been called or not. Therefore, the C++ wrappers do not call Zoltan_Initialize for you.

1.

It is preferable to allocate Zoltan objects dynamically so you can explicitly delete them before
your application exits. (Zoltan objects allocated instead on the stack will be deleted automatically
at the completion of the scope in which they were created.) The reason is that the Zoltan
destructor calls Zoltan_Destroy(), which makes an MPI call to free the communicator in use by the
Zoltan object. However the MPI destructor may have been called before the Zoltan destructor. In
this case you would receive an error while your application is exiting.

2.

This second point is illustrated in the good and bad example below.

Zoltan User's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_cpp.html (1 of 3) [8/4/2006 9:15:57 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html

int main(int argc, char *argv[])
{
 MPI::Init(argc, argv);
 int rank = MPI::COMM_WORLD.Get_rank();
 int size = MPI::COMM_WORLD.Get_size();

 //Initialize the Zoltan library with a C language call
 float version;
 Zoltan_Initialize(argc, argv, &version);

 //Dynamically create Zoltan object.
 Zoltan *zz = new Zoltan(MPI::COMM_WORLD);
 zz->Set_Param("LB_METHOD", "RCB");

 //Several lines of code would follow, working with zz

 //Explicitly delete the Zoltan object
 delete zz;
 MPI::Finalize();
 }

Good example, Zoltan object is dynamically allocated and explicity deleted before exit.

int main(int argc, char *argv[])
{
Zoltan zz;

 MPI::Init(argc, argv);
 int rank = MPI::COMM_WORLD.Get_rank();
 int size = MPI::COMM_WORLD.Get_size();

 //Initialize the Zoltan library with a C language call
 float version;
 Zoltan_Initialize(argc, argv, &version);

 zz.Set_Param("LB_METHOD", "RCB");

 //Several lines of code would follow, working with zz

 MPI::Finalize();
 }

Bad example, the MPI destructor may execute before the Zoltan destructor at process exit.

Zoltan User's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_cpp.html (2 of 3) [8/4/2006 9:15:57 AM]

[Table of Contents | Next: Backward Compatibility | Previous: FORTRAN: System-Specific
Remarks Examples

Zoltan User's Guide: C++ Interface

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_cpp.html (3 of 3) [8/4/2006 9:15:57 AM]

Zoltan User's Guide | Next | Previous

Backward Compatibility with Previous Versions of
Zoltan
As new features have been added to Zoltan, backward compatibility with previous versions of Zoltan has
been maintained. Thus, users of previous versions of Zoltan can upgrade to a new version without
changing their application source code. Modifications to application source code are needed only if the
applications use new Zoltan functionality.

Enhancements to the Zoltan interface are described below.

Versions 1.5 and higher
Versions 1.3 and higher

Backward Compatibility: Versions 1.5 and higher
The ability to generate more partitions than processors was added to Zoltan in version 1.5. Thus, Zoltan's
partitioning and migration routines were enhanced to return and use both partition assignments and
processor assignments. New interface and query functions were added to support this additional
information. All former Zoltan parameters apply to the new functions as they did to the old; new
parameters NUM_GLOBAL_PARTITIONS and NUM_LOCAL_PARTITIONS apply only to the new
functions.

The table below lists the Zoltan function that uses both partition and processor information, along with
the analogous function that returns only processor information. Applications requiring only one partition
per processor can use either version of the functions.

Function with Partition and Processor info (v1.5
and higher)

Function with only Processor info (v1.3 and
higher)

Zoltan_LB_Partition Zoltan_LB_Balance

Zoltan_LB_Point_PP_Assign Zoltan_LB_Point_Assign

Zoltan_LB_Box_PP_Assign Zoltan_LB_Box_Assign

Zoltan_Invert_Lists Zoltan_Compute_Destinations

Zoltan_Migrate Zoltan_Help_Migrate

ZOLTAN_PRE_MIGRATE_PP_FN ZOLTAN_PRE_MIGRATE_FN

ZOLTAN_MID_MIGRATE_PP_FN ZOLTAN_MID_MIGRATE_FN

ZOLTAN_POST_MIGRATE_PP_FN ZOLTAN_POST_MIGRATE_FN

Zoltan User's Guide: Backward Compatilibity

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_backward.html (1 of 4) [8/4/2006 9:15:58 AM]

To continue using the v1.3 partition functions, no changes to C or Fortran90 applications are needed.
Zoltan interfaces from versions earlier than 1.3 are also still supported (see below), requiring no changes
to application programs.

To use the new v1.5 partitioning functions:

C users must include file zoltan.h in their applications and edit their applications to use the
appropriate new functions.

●

Fortran90 users must put user-defined data types in zoltan_user_data.f90 and edit their
applications to use the appropriate new functions. The new partitioning functions do not work with
user-defined data types in lb_user_const.f90.

●

Backward Compatibility: Versions 1.3 and higher
Versions of Zoltan before version 1.3 used a different naming convention for the Zoltan interface and
query functions. All functions in Zoltan v.1.3 and above are prefixed with Zoltan_; earlier versions were
prefixed with LB_.

Zoltan versions 1.3 and above maintain backward compatibility with the earlier Zoltan interface.
Thus, applications that used earlier versions of Zoltan can continue using Zoltan without changing their
source code.

Only two changes are needed to build the application with Zoltan v.1.3 and higher:

All Zoltan include files are now in directory Zoltan/include. Thus, application include paths must
point to this directory.
(Previously, include files were in Zoltan/lb.)

●

Applications link with Zoltan now by specifying only -lzoltan.
(Previously, applications had to link with -lzoltan -lzoltan_comm -lzoltan_mem.)

●

While it is not necessary for application developers to modify their source code to use Zoltan v.1.3 and
above, those who want to update their source code should do the following in their application source
files:

Replace Zoltan calls and constants (LB_*) with new names. The new names can be found through
the index below.

●

C programs: Include file zoltan.h instead of lbi_const.h.●

F90 programs: Put user-defined data types in file zoltan_user_data.f90 instead of
lb_user_const.f90.

●

Backward Compatilibity Index for Interface and Query Functions

Name in Earlier Zoltan Versions Name in Zoltan Version 1.3 and higher

LB_BORDER_OBJ_LIST_FN ZOLTAN_BORDER_OBJ_LIST_FN

Zoltan User's Guide: Backward Compatilibity

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_backward.html (2 of 4) [8/4/2006 9:15:58 AM]

LB_Balance Zoltan_LB_Balance

LB_Box_Assign Zoltan_LB_Box_Assign

LB_CHILD_LIST_FN ZOLTAN_CHILD_LIST_FN

LB_CHILD_WEIGHT_FN ZOLTAN_CHILD_WEIGHT_FN

LB_COARSE_OBJ_LIST_FN ZOLTAN_COARSE_OBJ_LIST_FN

LB_Compute_Destinations Zoltan_Compute_Destinations

LB_Create Zoltan_Create

LB_Destroy Zoltan_Destroy

LB_EDGE_LIST_FN ZOLTAN_EDGE_LIST_FN

LB_Eval Zoltan_LB_Eval

LB_FIRST_BORDER_OBJ_FN ZOLTAN_FIRST_BORDER_OBJ_FN

LB_FIRST_COARSE_OBJ_FN ZOLTAN_FIRST_COARSE_OBJ_FN

LB_FIRST_OBJ_FN ZOLTAN_FIRST_OBJ_FN

LB_Free_Data Zoltan_LB_Free_Data

LB_GEOM_FN ZOLTAN_GEOM_FN

LB_Help_Migrate Zoltan_Help_Migrate

LB_Initialize Zoltan_Initialize

LB_MID_MIGRATE_FN ZOLTAN_MID_MIGRATE_FN

LB_NEXT_BORDER_OBJ_FN ZOLTAN_NEXT_BORDER_OBJ_FN

LB_NEXT_COARSE_OBJ_FN ZOLTAN_NEXT_COARSE_OBJ_FN

LB_NEXT_OBJ_FN ZOLTAN_NEXT_OBJ_FN

LB_NUM_BORDER_OBJ_FN ZOLTAN_NUM_BORDER_OBJ_FN

LB_NUM_CHILD_FN ZOLTAN_NUM_CHILD_FN

LB_NUM_COARSE_OBJ_FN ZOLTAN_NUM_COARSE_OBJ_FN

LB_NUM_EDGES_FN ZOLTAN_NUM_EDGES_FN

Zoltan User's Guide: Backward Compatilibity

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_backward.html (3 of 4) [8/4/2006 9:15:58 AM]

LB_NUM_GEOM_FN ZOLTAN_NUM_GEOM_FN

LB_NUM_OBJ_FN ZOLTAN_NUM_OBJ_FN

LB_OBJ_LIST_FN ZOLTAN_OBJ_LIST_FN

LB_OBJ_SIZE_FN ZOLTAN_OBJ_SIZE_FN

LB_PACK_OBJ_FN ZOLTAN_PACK_OBJ_FN

LB_POST_MIGRATE_FN ZOLTAN_POST_MIGRATE_FN

LB_PRE_MIGRATE_FN ZOLTAN_PRE_MIGRATE_FN

LB_Point_Assign Zoltan_LB_Point_Assign

LB_Set_Fn Zoltan_Set_Fn

LB_Set_<lb_fn_type>_Fn Zoltan_Set_<zoltan_fn_type>_Fn

LB_Set_Method Zoltan_Set_Param with parameter LB_METHOD

LB_Set_Param Zoltan_Set_Param

LB_UNPACK_OBJ_FN ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Next: References | Previous: C++ Interface]

Zoltan User's Guide: Backward Compatilibity

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_backward.html (4 of 4) [8/4/2006 9:15:58 AM]

Zoltan User's Guide | Next | Previous

References
"ALEGRA -- A Framework for Large Strain Rate Physics."
http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html

1.

S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton and C. Vaughan.
"Transient Solid Dynamics Simulations on the Sandia/Intel Teraflop Computer." Proceedings of
SC'97, San Jose, CA, November, 1997. (Finalist for the Gordon Bell Prize.) U. Catalyurek and C.
Aykanat, "Hypergraph-partitioning-based decomposition for parallel sparse matrix vector
multiplication", IEEE Trans. Parallel Dist. Systems, v. 10, no. 7, (1999) pp. 673--693.

2.

P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. "Robust geometrically based
automatic two-dimensional mesh generation." Intl. J. Numer. Meths. Engrg., 24 (1987) 1043-1078.

3.

E.G. Boman, D. Bozdag, U. Catalyurek, A.H. Gebremedhin and F. Manne. "A Scalable Parallel
Graph Coloring Algorithm for Distributed Memory Computers". Proceedings of Euro-Par'05,
Lisbon, Portugal, August, 2005.

4.

D. Bozdag, U. Catalyurek, A.H. Gebremedhin, F. Manne, E.G. Boman and F. Ozguner. "A Parallel
Distance-2 Graph Coloring Algorithm for Distributed Memory Computers". Proceedings of
HPCC'05, Sorrento, Italy, September, 2005.

5.

M. Berger and S. Bokhari. "A partitioning strategy for nonuniform problems on multiprocessors."
IEEE Trans. Computers, C-36 (1987) 570-580.

6.

K.D. Devine, E.G. Boman, R. Heaphy, R.H. Bisseling, U.V. Catalyurek. "Parallel Hypergraph
Partitioning for Scientific Computing", Proc. of IPDPS'06, Rhodos, Greece, April 2006.

7.

K. Devine, G. Hennigan, S. Hutchinson, A. Salinger, J. Shadid, and R. Tuminaro. "High
Performance MP Unstructured Finite Element Simulation of Chemically Reacting Flows."
Proceedings of SC'97, San Jose, CA, November, 1997. (Finalist for the Gordon Bell Prize.)

8.

H.C. Edwards. A parallel infrastructure for scalable adaptive finite element methods and its
application to least squares C^(inf) collocation. Ph.D. Dissertation, Univ. of Texas at Austin,
May, 1997.

9.

J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco and L. Ziantz. "Adaptive local
refinement with octree load-balancing for the parallel solution of three-dimensional conservation
laws." J. Parallel Distrib. Comput., 47 (1998) 139-152.

10.

L. Gervasio. "Final Report." Summer project report, Internal Memo, Department 9103, Sandia
National Laboratories, August, 1998.

11.

B. Hendrickson and K. Devine. "Dynamic load balancing in computational mechanics." Comp.
Meth. Appl. Mech. Engrg., v. 184 (#2-4), p. 485-500, 2000.

12.

B. Hendrickson and T.G. Kolda. "Partitioning rectangular and structurally nonsymmetric sparse
matrices for parallel computation", SIAM J. on Sci. Comp., v. 21, no. 6, 2001, pp. 2048-2072.

13.

B. Hendrickson and R. Leland. "The Chaco user's guide, version 2.0." Tech. Rep. SAND 94-2692,
Sandia National Laboratories, Albuquerque, NM, October, 1994.
http://www.cs.sandia.gov/CRF/chac.html

14.

Zoltan User's Guide: References

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_refs.html (1 of 2) [8/4/2006 9:15:58 AM]

http://sherpa.sandia.gov/9231home/alegra/alegra-frame.html
http://www.cs.sandia.gov/CRF/chac.html

G. Karypis and V. Kumar. "ParMETIS: Parallel graph partitioning and sparse matrix ordering
library." Tech. Rep. 97-060, Department of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

15.

R. Loy. Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. Ph. D. Dissertation, Dept. of Computer Science, Rensselaer
Polytechnic Institute, May 1998.

16.

S. Mitchell and S. Vavasis. "Quality mesh generation in three dimensions." Proc. 8th ACM
Symposium on Computational Geometry, ACM (1992) 212-221.

17.

W. F. Mitchell. "A Fortran 90 Interface for OpenGL: Revised January 1998" NISTIR 6134 (1998).
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz

18.

W. F. Mitchell. "The K-way Refinement Tree Partitioning Method for Adaptive Grids."
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz

19.

"MPSalsa: Massively Parallel Numerical Methods for Advanced Simulation of Chemically
Reacting Flows." http://www.cs.sandia.gov/CRF/MPSalsa/

20.

A. Patra and J. T. Oden. "Problem decomposition for adaptive hp-finite element methods." J.
Computing Systems in Engrg., 6 (1995).

21.

J. Pilkington and S. Baden. "Partitioning with space-filling curves." Tech. Rep. CS94-349, Dept.
of Computer Science and Engineering, Univ. of California, San Diego, CA, 1994.

22.

M. Shephard and M. Georges. "Automatic three-dimensional mesh generation by the finite octree
technique." Intl. J. Numer. Meths. Engrg., 32 (1991) 709-749.

23.

V. E. Taylor and B. Nour-Omid. "A Study of the Factorization Fill-in for a Parallel
Implementation of the Finite Element Method." Intl. J. Numer. Meths. Engrg., 37 (1994)
3809-3823.

24.

C. Walshaw. "JOSTLE mesh partitioning software", http://www.gre.ac.uk/jostle/25.

C. Walshaw, M. Cross, and M. Everett. "Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes", J. Par. Dist. Comp., 47(2) 102-108, 1997.

26.

M. Warren and J. Salmon. "A parallel hashed octree n-body algorithm." Proc. Supercomputing
`93, Portland, OR, November 1993.

27.

R. D. Williams. "Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency, Practice, and Experience, 3(5), 457-481, 1991.

28.

[Table of Contents | Next: Index of Interface and Query Functions | Previous: Backward
Compatibility]

Zoltan User's Guide: References

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_refs.html (2 of 2) [8/4/2006 9:15:58 AM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://math.nist.gov/~mitchell/papers/nistir6134.ps.gz
http://math.nist.gov/~mitchell/papers/parcomp.ps.gz
http://www.cs.sandia.gov/CRF/MPSalsa/
http://www.gre.ac.uk/jostle/

Zoltan User's Guide | Previous

Index of Interface and Query Functions

ZOLTAN_BORDER_OBJ_LIST_FN
ZOLTAN_CHILD_LIST_FN
ZOLTAN_CHILD_WEIGHT_FN
ZOLTAN_COARSE_OBJ_LIST_FN
Zoltan_Color
Zoltan_Compute_Destinations
Zoltan_Create
Zoltan_Destroy
ZOLTAN_EDGE_LIST_FN
ZOLTAN_EDGE_LIST_MULTI_FN
ZOLTAN_FIRST_BORDER_OBJ_FN
ZOLTAN_FIRST_COARSE_OBJ_FN
ZOLTAN_FIRST_OBJ_FN
ZOLTAN_GEOM_FN
ZOLTAN_GEOM_MULTI_FN
Zoltan_Help_Migrate
Zoltan_Initialize
Zoltan_Invert_Lists
Zoltan_LB_Balance
Zoltan_LB_Box_Assign
Zoltan_LB_Box_PP_Assign
Zoltan_LB_Eval
Zoltan_LB_Free_Data
Zoltan_LB_Partition
Zoltan_LB_Point_Assign
Zoltan_LB_Point_PP_Assign
Zoltan_LB_Set_Part_Sizes
ZOLTAN_MID_MIGRATE_FN
ZOLTAN_MID_MIGRATE_PP_FN
Zoltan_Migrate
ZOLTAN_NEXT_BORDER_OBJ_FN
ZOLTAN_NEXT_COARSE_OBJ_FN
ZOLTAN_NEXT_OBJ_FN
ZOLTAN_NUM_BORDER_OBJ_FN
ZOLTAN_NUM_CHILD_FN

Zoltan User's Guide: Index

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_index.html (1 of 2) [8/4/2006 9:15:59 AM]

ZOLTAN_NUM_COARSE_OBJ_FN
ZOLTAN_NUM_EDGES_FN
ZOLTAN_NUM_EDGES_MULTI_FN
ZOLTAN_NUM_GEOM_FN
ZOLTAN_NUM_OBJ_FN
ZOLTAN_OBJ_LIST_FN
ZOLTAN_OBJ_SIZE_FN
Zoltan_Order
ZOLTAN_PACK_OBJ_FN
ZOLTAN_PARTITION_FN
ZOLTAN_PARTITION_MULTI_FN
ZOLTAN_POST_MIGRATE_FN
ZOLTAN_POST_MIGRATE_PP_FN
ZOLTAN_PRE_MIGRATE_FN
ZOLTAN_PRE_MIGRATE_PP_FN
Zoltan_RCB_Box
Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn
Zoltan_Set_Param
ZOLTAN_UNPACK_OBJ_FN

[Table of Contents | Previous: References | Zoltan Home Page]

Zoltan User's Guide: Index

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_index.html (2 of 2) [8/4/2006 9:15:59 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html

	Local Disk
	Zoltan User's Guide
	Zoltan User's Guide: Introduction
	Zoltan User's Guide: Release Notes
	Zoltan User's Guide: Library Usage
	Zoltan User's Guide: Interface
	Zoltan User's Guide: General Zoltan Interface
	Zoltan User's Guide: Load-Balancing Interface
	Zoltan User's Guide: Augmenting a Decomposition
	Zoltan User's Guide: Migration Interface
	Zoltan User's Guide: Ordering Interface
	Zoltan User's Guide: Coloring Interface
	Zoltan User's Guide: Query Functions
	Zoltan User's Guide: General Zoltan Query Functions
	Zoltan User's Guide: Migration Query Functions
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: Algorithms
	Zoltan User's Guide: RCB
	Zoltan User's Guide: RIB
	Zoltan User's Guide: HSFC
	Zoltan User's Guide: Refinement Tree Based Partition
	Zoltan User's Guide: ParMETIS Interface
	Zoltan User's Guide: Jostle Interface
	Zoltan User's Guide: Hypergraph Partitioning
	Zoltan User's Guide: Octree Partitioning
	Zoltan User's Guide: Ordering Algorithms
	Zoltan User's Guide: Nested Dissection by ParMETIS
	Zoltan User's Guide: Coloring Algorithms
	Zoltan User's Guide: Parallel Coloring
	Zoltan User's Guide: Data Services
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Communication Utilities
	Zoltan User's Guide: Memory Management Utilities
	Zoltan User's Guide: Examples
	Zoltan User's Guide: General Usage Examples
	Zoltan User's Guide: Load-Balancing Examples
	Zoltan User's Guide: Migration Examples
	Zoltan User's Guide: Query-Functon Examples
	Zoltan User's Guide: FORTRAN Interface
	Zoltan User's Guide: FORTRAN -- Compiling Zoltan
	Zoltan User's Guide: FORTRAN--Compiling Applications
	Zoltan User's Guide: FORTRAN API
	Zoltan User's Guide: FORTRAN 77
	Zoltan User's Guide: FORTRAN--System-Specific Remarks
	Zoltan User's Guide: C++ Interface
	Zoltan User's Guide: Backward Compatilibity
	Zoltan User's Guide: References
	Zoltan User's Guide: Index

