Zoltan Developer's Guide

5) Sandia Zoltan:

% | National i
sty Data-Management Services for
About Sandia Parallel Applications
Capabilities
PRDQTAME Developer's Guide
Contacting Us
News and Events
Search The Zoltan Team
Home Sandia National L aboratories:
T PDE VVersion | Erik Boman
Karen Devine
Lee Ann Fisk
Robert Heaphy
Bruce Hendrickson
Courtenay Vaughan

Ohio State University
Umit Catalyurek

Doruk Bozdag

National Institute of Standards and Technology
William F. Mitchell

Zoltan Developer's Guide, Version 2.01

Introduction and General Principles

Philosophy of Zoltan
Coding Principlesin Zoltan

Includefiles

Global Variables

Function Names

Parallel Communication

Memory Management

Errors, Warnings and Return Codes

Zoltan Quality Assurance

Zoltan Distribution

CVS

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (1 of 3) [8/4/2006 9:20:56 AM]

http://www.sandia.gov/Main.html
http://www.sandia.gov/Main.html
http://www.sandia.gov/search.html
http://www.sandia.gov/News.htm
http://www.sandia.gov/Contacting.htm
http://www.sandia.gov/Working.htm
http://www.sandia.gov/Solution.htm
http://www.sandia.gov/About.htm
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
http://www.cs.sandia.gov/~kddevin/Zoltan_pdf/dev.pdf
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan_cite.html
http://www-sccm.stanford.edu/~boman/
http://www.cs.sandia.gov/~kddevin
http://www.cs.sandia.gov/~bahendr
http://bmi.osu.edu/personnel/detail.cfm?id=29
http://math.nist.gov/~mitchell

Zoltan Developer's Guide

Layout of Directories
Compilation and Makefiles

Zoltan Interface and Data Structures

| nterface Functions
ID Data Types
Data Structures

Services (to simplify new algorithm development)

Parameter Setting Routines

Parallel Computing Routines

Common Functions for Querying Applications
Hash Function

Timing Routines

Debugqging Services

Adding New Load-Balancing Algorithms to Zoltan

L oad-Balancing I nterface Routines

L oad-Balancing Function |mplementation
Data Structures

Memory Management

Parameters

Partition Remapping

Migration Tools

FORTRAN Interface

C++ Interface

References

Appendix: Using the Test Drivers zdrive, zCPPdrive and zfdrive

| ntroduction
Running the Test Drivers
Adding New Algorithms

Appendix: Visualization of Geometric Partitionings

2D problems with gnuplot

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (2 of 3) [8/4/2006 9:20:56 AM]

Zoltan Developer's Guide

3D problems with vtk view

Off-screen rendering with vtk write

Other file formats

Appendix:

Using the Test Script test zoltan

Appendix:

Recursive Coordinate Bisection (RCB)

Appendix:

Recursive Inertial Bisection (RIB)

Appendix:

Graph Partitioning (ParMETIS and Jostle)

Appendix:

Hypergraph Partitioning (PHG)

Appendix:

Refinement Tree

Appendix:

Hilbert Space Filling Curve (HSFC)

Appendix:

Handling Degenerate Geometries

Copyright (c) 2000,2001,2002, Sandia National Laboratories.
The Zoltan Library and its documentation are released under the GNU L esser

General Public License (LGPL). Seethe README filein the main Zoltan

directory for more information.

[Zoltan Home Page | Next: Introduction and General Principles]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev.html (3 of 3) [8/4/2006 9:20:56 AM]

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html

Zoltan Developer's Guide: Introduction

Zoltan Developer's Guide | Next | Previous

Introduction and General Principles

The goal of the Zoltan project is to design a general-purpose tool for parallel data management for
unstructured, dynamic applications. Thistool includes a suite of load-balancing algorithms, an
unstructured communication package, distributed data directories, and dynamic debugging tools that can
be used by avariety of applications. It will, thus, be used by many application developers and be added
to by many algorithm developers. Software projects of this scale need general guidelines and principles
so that the code produced is easily maintained and added to. We have tried to keep restrictions on
developersto aminimum. However, we do require that a few coding practices be followed. These
guidelines are described in the following sections:

Philosophy of Zoltan
Coding Principlesin Zoltan
Zoltan Quality Assurance

[Table of Contents | Next: Philosophy of Zoltan | Previous:. Table of Contents]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro.html [8/4/2006 9:20:58 AM]

Zoltan Developer's Guide: Philosophy
Zoltan Developer's Guide | Next | Previous

Philosophy of Zoltan

The Zoltan library is designed to be a general-purpose tool-kit providing a variety of paralel data
management services to awide range of scientific applications (see the Zoltan User's Guide). To enable
general use of the library, the library does not directly access the data structures of an application.
Instead, the library obtains information it needs through an object-oriented interface between Zoltan and
the application. Thisinterface uses call-back query functions to gather information. An application
developer must write and register these query functions before using Zoltan. The intent, however, is that
the number and complexity of these query functions are low, allowing applications to easily interface
with the library. In addition, new agorithm devel opment would use the same query functions as previous
algorithms, enabling applications to use new algorithms without changes to the query functions.

In developing new algorithms for Zoltan, the developer must write the code that calls the query functions
to build the needed data structures for the algorithm. However, the application need not change its query
functions. Thus, new algorithms can be added to the library and used by an application with minimal
effort on the part of the application developer.

[Table of Contents | Next: Coding Principles | Previous. Introduction]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_philosophy.html [8/4/2006 9:20:58 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Coding Principles

Zoltan Developer's Guide | Next | Previous

Coding Principles in Zoltan

Includefiles

Global Variables

Function Names

Parallel Communication

Memory Management

Errors, Warnings and Return Codes

Include files

Include files should be used for function prototypes, macro definitions, and data structure definitions.
The convention used is that external function prototypes and data structure definitions required by more
than one module are stored in include filesnamed * _const.h (e.qg., zZ/zz_const.h). Include files with static
function prototypes or static data structure definitions (i.e., files that are included in only one module) are
named *.h (e.g., rcb/rcb.h).

The include file include/zoltan.h contains the Zoltan interface; it should be included by C application
source files that call Zoltan. C++ applications that use the C++ interface should include
include/zoltan cpp.h instead.

Theincludefile zz/'zz_const.h describes the principle Zoltan data structures. As these data structures are
used heavily by the algorithmsin Zoltan, zz/zz_const.h should be included in most source files of Zoltan.

Every Zoltan C language header file should be surrounded with an extern " C" {} declaration. The
declaration must occur after every other #include statement, and before all function declarations. This
declaration tells a C++ compiler not to mangle the names of functions declared in that header file.

#i f ndef _ EXAMPLE H
#define _ EXAMPLE H

#i ncl ude "npi . h"
#i ncl ude "zoltan_types. h"
#i ncl ude "zol tan_align. h"

#i fdef _ cpl uspl us
extern "C' {
#endi f

int funcl(int a, int b);
doubl e dfunc(int a, int b, int c);

#i fdef __ cpl usplus
} /* closing bracket for extern "C' */

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (1 of 3) [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide: Coding Principles

#endi f

#endi f /* _ EXAMPLE H */

Example of C language header file with extern " C"

If an #include statement appears after the opening of the extern " C" {} declaration, the included file
may cause mpi.h or some other system header file to be processed. When compiling with a C++
compiler, this usually leads to compile errors because the function names in some of those headers are
supposed to be mangled.

It should not be necessary to use the declaration in al header files, but rather only in header files that are
used in C++ applications. But experience has taught us that you never know what header fileswill end up
being included, and that one that is not included now, may be included in the future when someone adds
an #include statement to afile. To save someone the effort later on of figuring out why their C++
compilation isfailing, please include the extern " C" {} declaration in every header file, even if at this
point in time you do not believe it will ever be included in the compilation of a C++ application.

Global variables

The use of global variablesis highly discouraged in Zoltan. In limited cases, static global variables can
be tolerated within a source file of an algorithm. However, developers should keep in mind that several
Zoltan structures may be used by an application, with each structure using the same algorithm. Thus,
global variables set by one invocation of aroutine may be reset by other invocations, causing errorsin
the algorithms. Global variable names may also conflict with variables used elsewhere in the library or
application, causing unintended side-effects and complicating debugging. For greatest robustness,
developers are asked NOT to use global variablesin their algorithms. See Data Structures for ideas on

avoiding the use of global variables.

Function Names

In order to avoid name conflicts with applications and other libraries, all non-static functions should be
prepended with Zoltan_. Moreover, function names should, in general, include their module names;
e.g., Zoltan_HSFC_Box_Assign is part of the HSFC module of Zoltan. As a general rule, each new
word in afunction name should be capitalized (for example, Zoltan_Invert_Lists). Static Zoltan
functions do not have to follow these rules.

Parallel Communication

All communication in the Zoltan library should be performed through MPI communication routines. The
MPI interface was chosen to enable portability to many different platforms. It will be especially
important as the code is extended to heterogeneous computing systems.

Some useful communication utilities are provided within the library to perform unstructured

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (2 of 3) [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide: Coding Principles

communication and synchronization. See Unstructured Communication Utilities and Parallel Computing.

Memory Management

It is strongly suggested that all memory allocation in the library is handled using the functions supplied
in UtilitiessMemory. Use of these functions will make debugging and maintenance of the library much
easier asthelibrary getslarger. See Memory Management Utilities for more information on these

utilities.

For memory that is returned by Zoltan to an application, however, special memory allocation functions
must be used to maintain compatibility with both C and Fortran90 applications. See Memory

Management in Zoltan Algorithms for more information.

One of the few datatypes specified for use in the Zoltan interfaceisthe ZOLTAN ID PTR type used
for global and local object identifiers (IDs). Macros simplifying and providing error checking for ID
allocation and manipulation are provided.

Errors, Warnings, and Return Codes

If an error or warning occurs in the Zoltan library, a message should be printed to stderr (using one of the
printing macros below), all memory alocated in the current function should be freed, and an error code
should be returned. The Zoltan library should never "exit"; control should always be returned to the
application with an error code. The error codes are defined in include/zoltan_types.h.

Currently, this philosophy is not strictly followed in all portions of Zoltan. Efforts are underway to bring
existing code up-to-date, and to follow thisrule in al future development.

ZOLTAN_PRINT_ERROR(int processor _number, char *function_name, char * message)
ZOLTAN_PRINT_WARN(int processor_number, char *function_name, char * message)

Macros for printing error and warning messages in Zoltan. The macros are defined in
Utilities/shared/zoltan_util.h.

Arguments:
processor_number The processor's rank in the Zoltan communicator. The value -1 can be used if the
rank is not available.
function_name A string containing the name of the function in which the error or warning
occurred.
message A string containing the error or warning message.

[Table of Contents | Next: Zoltan Quality Assurance | Previous. Philosophy]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_coding.html (3 of 3) [8/4/2006 9:20:59 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Quality Program

Zoltan Developer's Guide | Next | Previous

Zoltan Quality Assurance

This document describes the Software Quality Assurance (SQA) policies and procedures used in the
Zoltan project. Zoltan developers at Sandia and under contract to Sandia are required to follow these
software development policies.

Quality Poalicy

Quality Definition

Classification of Defects

Release Policy

Software Quality Tools

Software Quality Processes

Quality Policy

The Zoltan project has been funded by avariety of DOE programs (MICS, CSRF, ASC, and LDRD).
Thus, Zoltan is simultaneously under the umbrella of multiple quality programs including that of the
Accelerated Strategic Computing Initiative (ASC). Fortunately, all of these quality programs derive from
the DOE/AL Quality Criteria (QC-1). Therefore, the Zoltan project is committed to a program of quality
Improvement targeting the QC-1 standard. The Zoltan team leader is the owner of the Zoltan quality
program.

The entire delivered Zoltan product will be considered a*class A" program under ASC program
guidelines. Modules created before the ASC guidelines had no formal QA program and will lack ASC
SQA artifacts (objective evidence).

The Zoltan team shall participate in all ASC reporting processes as directed by ASC management. The
Zoltan team will evaluate new practices to reflect ASC Program Office process revisions. FY 2004
money has been committed for quality improvement.

Research software will follow the guidelines of QC-1 which allow specific relaxations in the QA rigor
for research activities.

Quality Definition
The Zoltan project accepts the following definition of quality: "the totality of characteristics of a product

or service that bear on its ability to satisfy stated or implied needs." Thisis known as the "fitness for use"
definition of quality (ANSI/ASQC A8402-1994).

Classification of Defects

The Zoltan project accepts the following system of classification of defects:

Critical: A defect that could lead to loss of life, significant environmental damage, or
substantial financial loss.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqge.html (1 of 3) [8/4/2006 9:20:59 AM]

Zoltan Quality Program

Major: A non critical defect that significantly impacts Zoltan's fitness for use.
Minor: A (non critical, non major) defect that reasonably impacts Zoltan's fitness for use.
Incidental: Any other defect which does not reasonably reduce Zoltan's fitness for use.

Release Policy

Only the Zoltan team leader may authorize arelease. The Zoltan team leader shall not release software
with any known critical or major defects. User registration shall allow the Zoltan team to notify all
Sandia and ASC users and recall their defective software if acritical or mgjor defect is discovered after
release. The Zoltan team leader may determine that it is acceptable to release software with known minor
or incidental defects.

Software Quality Tools

Because of the small scale of the Zoltan Project, only afew, simple tools are required for use by
developers:

CVS. maintains code, documentation, meeting notes, emails, and QA program artifacts;,
Purify, PureCoverage, Quantify (Rational): for code testing, coverage measurements, and
performance analysis;

Bugzilla: tracks bugs and requests for changes and enhancements (deployment in FY 2004);
Mailman: creates email lists to automatically notify users by area(s) of interest (deployment
in FY 2004);

Quality Function Deployment (QFD): tracks user requirements through implementation
and testing (phased-in deployment in FY 2004 in which one pilot project will use QFD);

M akefiles. ensures proper compilation and linking for all supported platforms;

Zoltan Test Script: runsintegration, regression, release and acceptance testing; and
Kanban: Team Leader's white board displays al outstanding issues, schedules, and
assignments.

Software Quality Processes

The Zoltan's software quality process defines how work may be performed, including process ownership,
authorization to perform, activities and their sequence (if sequencing is required), process instructions,
metrics, and checklists (with places to identify who performed each activity). The only source for a
processis Zoltan's CV S repository. Currently the following processes are defined:

M eeting: defines the process of calling and documenting meetings;

Development: (not currently used) defines the software devel opment process including
requirements, design, implementation, testing, reviews, and approvals;

Request: defines the process of capturing user requests for new features,

Requirement: the process of capturing user comments that may become requirements after
review and approval;

Review: defines the materials reviewed prior to acceptance for Zoltan release; and

Release: defines the release process including testing requirements and creation of the

rel ease product;

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqe.html (2 of 3) [8/4/2006 9:20:59 AM]

Zoltan Quality Program

A Zoltan developer initiates a process by obtaining the current CVS version of the process, renaming it to
reflect its usage, and committing the renamed process back into CV S in an appropriate directory (on the
same day to ensure that it is the current version). As a policy, the process may continue under this
committed version even if its original processis later superceded. After one or more activities are
completed, the renamed process is updated to reflect the results and committed back to CV'S (with
appropriate comments.) A process is completed when all required activities are completed including

reviews and approvals (as necessary), and committed to CVS. The final CVS comment should indicate
that the process is complete.

[Table of Contents | Next: Zoltan Distribution | Previous. Coding Principlesin Zoltan]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_intro_sqge.html (3 of 3) [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide: Distribution

Zoltan Developer's Guide | Next | Previous

Zoltan Distribution

The organization of the Zoltan software distribution is described in the following sections. Full
pathnames are specific to Sandia's 980 SON LAN.

CV S (source code control)

Layout of Directories

Compilation and M akefiles

[Table of Contents | Next: CVS | Previous. Zoltan Quality Assurance]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist.html [8/4/2006 9:20:59 AM]

Zoltan Developer's Guide: CVS
Zoltan Developer's Guide | Next | Previous

CVS

The source code and documentation for the Zoltan library is maintained under the Concurrent Versions
System (CVS) software. CV S alows multiple devel opersto edit their own copies of the software and
merges updated versions with the developers own versions.

On Sandia's 980 SON LAN, CVSis accessed through the following path:
/Net/local/gnu/bin/cvs for Sun workstations running Solaris.

Developers must set the CVSROOT environment variable to the repository directory:
setenv CVSROOT username@software.sandia.gov:/space/CV S-Zoltan

where username is the devel oper's username on the CV S server software.sandia.gov. To get aworking
copy of the Zoltan software, the CV S check-out facility is used:

cvs checkout -P Zoltan

Other useful CVS commands update a devel oper's working directory, merging the developer's changes
with those in the repository:

cvs update
and check into the repository a developer's changes.
cvs commit
The UNIX man page for cvs contains information on these and other useful CV'S commands.

[Table of Contents | Next: Layout of Directories | Previous. Zoltan Distribution]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_cvs.html [8/4/2006 9:21:00 AM]

Zoltan Developer's Guide: Directory Layout

Zoltan Developer's Guide | Next | Previous

Layout of Directories

The source code is organized into several subdirectories within the Zoltan main directory. General
interface routines are stored in a single directory. Communication and memory allocation utilities
avallable to all algorithms are in separate directories. Each |oad-balancing method (or family of methods)
should be stored in its own directory. In addition, a courtesy copy of the ParMETIS graph-partitioning

package isincluded in the top-level directory ParMETIS.

In the following table, the source-code directories currently in the Zoltan directory are listed and

described.
| Directory | Description
zz Genera Interface definitions, Zoltan data structure definitions, interface
functions and functions related to the interface See Interface Functions, |ID
Data Types, and Data Structures.
Ib L oad-Balancing interface routines, and load-balancing data structure
definitions.
all Special memory allocation functions for memory returned by Zoltan to an
application.
par Parallel computing routines.
param Routines for changing parameter values at runtime.
parmetis Routines to access the ParMETIS and Jostle partitioning libraries.
rch Recursive Coordinate Bisection (RCB) and Recursive Inertial Bisection
(RIB) agorithms.
hsfc Hilbert Space-Filling Curve partitioning algorithm.
|bsfc |Binned Space-Filling Curve partitioning algorithm.
oct Rensselaer Polytechnic Institute's octree partitioning algorithms.
William Mitchell's Refinement Tree Partitioning algorithm and refinement
reftree
tree data structure.
timer Timing routines.
ch Routines to read Chaco input files and build graphs for the driver program
zdrive.
Iha |Routines to support heterogeneous architectures.
fort Fortran (F90) interface for Zoltan.
|Uti|iti&/shared |S| mple functions and utilities shared by Zoltan and other Zoltan Utilities.
UtilitiessMemory Memory management utilities
UtilitiesCommunication |Unstructured communication utilities

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_dir.html (1 of 2) [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_oct.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_fortran.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html

Zoltan Developer's Guide: Directory Layout

Utilities/DDirectory Distributed Data Directory utilities

Utilities/Config Platform-specific makefile definitions for compiler, library and include-file
paths.

driver Test driver programs, zdrive and zCPPdrive.

fdriver Fortran90 version of the test driver program.

lexamples |Simple examples written in C and C++ that use Zoltan.

docs/Zoltan _html Zoltan documentation and home page.

docs/Zoltan_html/ug_html |(User's guidein HTML format.

docs/Zoltan_html/dev_html |Developer's guidein HTML format.

|docs/Zoltan_pdf |PDF versions of the Zoltan User's Guide and Developer's Guide.

docs/internal |SQA documents for the Zoltan project.

The directory structure of the Zoltan distribution.

[Table of Contents | Next: Compilation | Previous: CV

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_dir.html (2 of 2) [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_dd.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/Zoltan.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Compilation

Zoltan Developer's Guide | Next | Previous

Compilation and Makefiles

The Zoltan distribution includes a main (top-level) Makefile with targets for the Zoltan library, the test
driver programs, and some graphical tools. When the library is compiled for a specific target platform, A,
the top-level Makefile obtains platform-specific values for platform A from the configuration file
Utilities/Config/Config.A. Thisfile should be edited to reflect the environment of the target platform A.
A subdirectory, Obj_A, is created, and Makefile sub is copied into that directory for use by gmake.

New source code files are added to the Zoltan Makefiles in two ways. Files added to existing directories
are added to the sourcefileslisted in the "<directory_name>_ CSRC" and "<directory_name>_ INC"
variables in Zoltan/Makefile, where <directory _name> corresponds to the existing Zoltan directory
name; the files will then be included in the compilation of Zoltan. For new source code files in new
directories, new variables "<directory name> CSRC" and "<directory name>_ INC" should be added
to Zoltan/Makefile. These variables should aso beincluded in the "ZOLTAN_CSRC" variable and in the
zscript target. The variables"ALL_CSRC" and "ALL_INC" can be used as examples.

New algorithms can be added as separate libraries with which Zoltan may link. The implementation of
the ParMETIS interface in Zoltan can serve as an example. Within the Utilities/Config files, pathnames
for the new libraries and their include files can be specified. Within Zoltan/Makefile, tests should be
added for the definition of these paths. If they are defined, appropriate information should be added to
the THIRD_PARTY _LIBS, THIRD PARTY_LIBPATH, and THIRD_PARTY_INCPATH variablesin
Zoltan/Makefile.

[Table of Contents | Next: Zoltan Interface and Data Structures | Previous. Layout of Directories]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_dist_compile.html [8/4/2006 9:21:00 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide: Load-Balancing
Zoltan Developer's Guide | Next | Previous

Zoltan Interface and Data Structures

The interface functions, data types and data structures for the Zoltan library are described in the
following sections:

Interface Functions (files defining the interface)

ID Data Types (descriptions of datatypes used for global and local identifiers)

Data Structures (Zoltan data structures for storing information registered by an application)

[Table of Contents | Next: Interface Functions | Previous. Compilation]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb.html [8/4/2006 9:21:01 AM]

Zoltan Developer's Guide: Load-Balancing Interface

Zoltan Developer's Guide | Next | Previous

Interface Functions

The interface to the Zoltan library is defined in the file include/zoltan.h. Thisfile should be included in
application programs that use Zoltan. It is also included in zz/zz_const.h, which should be included by
most Zoltan files to provide access to the Zoltan data structures described bel ow.

In include/zoltan.h, the enumerated type ZOLTAN_FN_TY PE defines the application query function
types(e.g., ZOLTAN NUM OBJ FN TYPE and ZOLTAN OBJ LIST FN TYPE). Theinterface

guery routines (e.g., ZOLTAN NUM OBJ FNand ZOLTAN OBJ LIST FN) and their argument

lists are defined as C type definitions (typedef). These type definitions are used by the application
developer to implement the query functions needed for the application to use Zoltan.

Prototypes for the Zoltan interface functions (e.g., Zoltan LB Partition and Zoltan Migrate) are also

included in include/zoltan.h. Interface functions are called by the application to register functions, select
aload-bal ancing method, invoke load balancing and migrate data.

The interface to the C++ version of the Zoltan library isin the file include/zoltan_cpp.h. Thisfile defines
the Zoltan class, representing aZoltan Struct data structure and the functions which operate upon it.

The conventions used to wrap C library functions as C++ library functions are described in the chapter
C++ Interface. A C++ program that uses Zoltan includes include/zoltan_cpp.h instead of

include/zoltan.h.

For more detailed information on Zoltan's query and interface functions, please see the Zoltan User's
Guide.

[Table of Contents | Next: ID DataTypes | Previous. Zoltan Interface and Data Structures]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_interface.html [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: Data Types

Zoltan Developer's Guide | Next | Previous

ID Data Types

Within Zoltan, objects are identified by a global identification (ID) value provided by the application.
Thisglobal ID must be unique across all processors. The application may also provide alocal 1D value
that it can use for faster location of objects within its own data structure. For example, local array indices
to objects data may be provided asthe local 1Ds; these indices can then be used to directly access datain
the query functions. Zoltan does not use these local 1Ds, but since it must pass them to the application in
the interface query functions, it must store them with the objects data. 1D datatypes and macros for
manipulating 1Ds are described below.

IDs and Arrays of 1Ds
Allocating IDs
Common Operations on 1Ds

IDs and Arrays of IDs

Zoltan stores each global and local ID as an array of unsigned integers. Arrays of |Ds are passed to the
application as a one-dimensional array of unsigned integers with size number_of IDs*

number_of entries per ID. A type definition ZOLTAN ID PTR (ininclude/zoltan_types.h) pointsto
an ID or array of IDs. The number of array entries per ID can be set by the application using the
NUM_GID ENTRIESand NUM_LID_ENTRIES parameters.

Allocating IDs

Macros that ssimplify the allocation of global and local I1Ds are described in the table below. These
macros provide consistent, easy-to-use memory allocation with error checking and, thus, their useis
highly recommended. Each macro returns NULL if either amemory error occurs or the number of IDs
requested is zero.

ZOLTAN ID PTRZOLTAN_MALLOC_GID(struct Allocates and returns a pointer to a

Zoltan_Struct * zz); single global 1D.

ZOLTAN ID PTRZOLTAN_MALLOC _LID(struct Allocates and returns a pointer to a

Zoltan_Struct *z2); single local ID.

ZOLTAN ID PTR Allocates and returns a pointer to an

ZOLTAN_MALLOC_GID_ARRAY (struct Zoltan_Struct *zz, |array of n global I1Ds, where the

int n); index into the array for the ith global
IDisi*NUM_GID ENTRIES.

ZOLTAN ID PTR Allocates and returns a pointer to an

ZOLTAN_MALLOC_LID ARRAY (struct Zoltan Struct *zz, |array of nlocal IDs, where the

int n); index into the array for theith local
IDisi*NUM LID ENTRIES.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_types.html (1 of 2) [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide: Data Types

ZOLTAN ID PTR

ZOLTAN_REALLOC_GID ARRAY (struct Zoltan Struct *zz,

Reallocates and returns a pointer to
an array of n global IDs, replacing

ZOLTAN ID PTR ptr, int n);

the current array pointed to by ptr.

ZOLTAN ID PTR

ZOLTAN_REALLOC_LID_ARRAY (struct Zoltan Struct *zz,

Reallocates and returns a pointer to
an array of nlocal IDs, replacing

ZOLTAN ID PTR ptr, int n);

the current array pointed to by ptr.

Common Operations on IDs

In addition, macros are defined for common operations on global and local IDs. These macros include
error checking when appropriate and account for different values of NUM_GID ENTRIES and

NUM LID ENTRIES. Use of these macrosimproves code robustness and simplifies code maintenance;

their useis highly recommended.

void ZOLTAN_INIT_GID(struct Zoltan Struct * zz,
ZOLTAN ID PTRid);

Initializes all entries of the global 1D id to
zero; id must be allocated before calling
ZOLTAN_INIT_GID.

void ZOLTAN_INIT_LID(struct Zoltan_Struct *zz,
ZOLTAN ID PTRd);

Initializes all entries of thelocal ID id to
zero; id must be alocated before calling
ZOLTAN_INIT_LID.

void ZOLTAN_SET_GID(struct Zoltan Struct *zz,
ZOLTAN ID PTRtgt, ZOLTAN ID PTR src);

Copiestheglobal ID srcinto the global 1D
tgt. Both src and tgt must be allocated
before calling ZOLTAN_SET LID.

void ZOLTAN_SET LID(struct Zoltan Struct *zz,
ZOLTAN ID PTRtgt, ZOLTAN ID PTR sr0);

Copiesthelocal ID srcinto theloca 1D
tgt. Both src and tgt must be allocated
before calling ZOLTAN_SET _LID.

intZOLTAN_EQ_GID(struct Zoltan_Struct * zz,
ZOLTAN ID PTRa, ZOLTAN ID PTR b);

Returns TRUE if global ID aisequal to
global ID b.

void ZOLTAN_PRINT_GID(struct Zoltan Struct *zz,
ZOLTAN ID PTRd);

Prints all entries of asingle global 1D id.

void ZOLTAN_PRINT _LID(struct Zoltan_Struct * zz,
ZOLTAN ID PTRid);

Prints all entries of asinglelocal ID id.

[Table of Contents | Next: Data Structures | Previous: |nterface Functions]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_types.html (2 of 2) [8/4/2006 9:21:01 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs

Zoltan Developer's Guide: Load Balancing Data Structures

Zoltan Developer's Guide | Next | Previous

Data Structures

The Zoltan_Struct data structure is the main data structure for interfacing between Zoltan and the
application. The application creates an Zoltan_Struct data structure through acall to Zoltan Create.

Fields of the data structure are then set through calls from the application to interface routines such as
Zoltan Set Param and Zoltan Set Fn. Thefields of the Zoltan_Struct data structure are listed and

described in the table below. See the Zoltan User's Guide for descriptions of the function typesused in
the Zoltan_Struct.

A Zoltan_Struct data structure zz is passed from the application to Zoltan in the call to

Zoltan LB Partition. This data structure is passed to the individual oad-balancing routines. The
zz->LB.Data_Structure pointer field should point to the main data structures of the particular
|oad-balancing algorithm so that the data structures may be preserved for future calls to

Zoltan LB Partition and so that separate instances of the same |oad-balancing algorithm (with different

Zoltan_Struct structures) can be used by the application.

] Fieldsof Zoltan_Struct] Description

MPI_Comm Communicator The MPI communicator to be used by the
Zoltan structure; set by Zoltan Create.

int Proc The rank of the processor within
Communicator; setin Zoltan Create.

int Num_Proc The number of processorsin Communicator;
setin Zoltan Create.

int Num_GID The number of array entries used to

represent aglobal ID. Set viaacall to
Zoltan Set Param for

NUM_GID _ENTRIES.

int Num_LID The number of array entries used to

represent alocal ID. Setviaacall to

Zoltan Set Param for

NUM LID ENTRIES.

int Debug_L evel A flag indicating the amount of debugging
information that should be printed by
Zoltan.

int Fortran A flag indicating whether or not the

structure was created by acall from Fortran.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (1 of 11) [8/4/2006 9:21:03 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

Zoltan Developer's Guide: Load Balancing Data Structures

PARAM_LIST * Params

A linked list of string pairs. Thefirstitemin
each pair isthe name of a modifiable
parameter. The second string is the new
value the parameter should adopt. These
string pairs are read upon invocation of a
Zoltan algorithm and the appropriate
parameter changes are made. This design
allowsfor different Zoltan structures to have
different parameter settings.

int Deterministic

Flag indicating whether algorithms used
should be forced to be deterministic; used to
obtain completely reproducible results. Set
viaacall to Zoltan Set Param for

DETERMINISTIC.

int Obj_Weight_Dim

Number of weights per object. Setviaa
call to Zoltan Set Param for

OBJ WEIGHT DIM.

int Edge Weight Dim

For graph algorithms, number of weights per
edge. Set viaacall to Zoltan Set Param

for EDGE_WEIGHT _DIM.

int Timer

Timer type that is currently active. Set viaa
call to Zoltan Set Param for TIMER.

ZOLTAN NUM EDGES FN *
Get_Num_Edges

A pointer to an application-registered
function that returns the number of edges
associated with a given object. Set in
Zoltan Set Fn or

Zoltan Set Num Edges Fn.

void *Get_Num_Edges Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num Edges. Setin Zoltan Set Fn or

Zoltan Set Num Edges Fn.

ZOLTAN EDGE LIST FN * Get Edge List

A pointer to an application-registered
function that returns a given object's
neighbors along its edges. Set in
Zoltan Set Fn or

Zoltan Set Edge List Fn.

void *Get_Edge List Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Edge List. Setin Zoltan Set Fn or

Zoltan Set Edge List Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (2 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#DETERMINISTIC
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#EDGE_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_EDGES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_EDGE_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

ZOLTAN NUM GEOM FN * A pointer to an application-registered

Get Num Geom function that returns the number of geometry
- values needed to describe the positions of
objects. Set in Zoltan Set Fn or

Zoltan Set Num Geom Fn.

void *Get_Num_Geom Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_ Num _Geom. Setin Zoltan Set Fn or

Zoltan Set Num Geom Fn.

ZOLTAN GEOM FN * Get_Geom A pointer to an application-registered
function that returns a given object's
geometry information (e.g., coordinates). Set
in Zoltan Set Fn or

Zoltan Set Geom Fn.

void *Get_ Geom Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Geom. Setin Zoltan Set Fn or

Zoltan Set Geom Fn.

ZOLTAN NUM OBJ FN * Get_ Num_Obj A pointer to an application-registered
function that returns the number of objects
assigned to the processor before load
balancing. Setin Zoltan Set Fn or

Zoltan Set Num Obj Fn.

void *Get_Num_Obj Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num _Obj. Setin Zoltan Set Fn or

Zoltan Set Num Obj Fn.

ZOLTAN OBJ LIST FN* Get_Obj_List A pointer to an application-registered
function that returns arrays of objects
assigned to the processor before load
balancing. Setin Zoltan Set Fn or

Zoltan Set Obj List Fn.

void *Get_Obj_List Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Obj_List. Setin Zoltan Set Fn or

Zoltan Set Obj List Fn.

ZOLTAN FIRST OBJ FN * Get_First Obj |A pointer to an application-registered
function that returns the first object assigned
to the processor before load balancing. Used
with Get_Next_Obj as an iterator over all
objects. Set in Zoltan Set Fn or

Zoltan Set First Obj Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (3 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Get_First_Obj_Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First Obj. Setin Zoltan Set Fn or

Zoltan Set First Obj Fn.

ZOLTAN NEXT OBJ FN* Get_ Next Obj |A pointer to an application-registered
function that, given an object assigned to the
processor, returns the next object assigned to
the processor before load balancing. Used
with Get_First_Obj as an iterator over all
objects. Set in Zoltan Set Fn or

Zoltan Set Next Obj Fn.

void *Get_Next_Obj Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next_Obj. Setin Zoltan Set Fn or

Zoltan Set Next Obj Fn.

ZOLTAN NUM BORDER OBJ FN * A pointer to an application-registered
Get_Num Border Obj function that returns the number of objects
sharing a subdomain border with agiven
processor. Set in Zoltan Set Fn or

Zoltan Set Num Border Obj Fn.

void *Get_Num Border_Obj Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num _Border_Obj. Set in
Zoltan Set Fn or

Zoltan Set Num Border Obj Fn.

ZOLTAN BORDER OBJ LIST FN * A pointer to an application-registered
Get_Border_Obj_List function that returns arrays of objects that
share a subdomain border with agiven
processor. Set in Zoltan Set Fn or

Zoltan Set Border Obj List Fn.

void *Get_Border_Obj_List Data A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Border_Obj_List. Setin
Zoltan Set Fn or

Zoltan Set Border Obj List Fn.

ZOLTAN FIRST BORDER OBJ FN * A pointer to an application-registered
Get_First_Border_Obj function that returns the first object sharing
a subdomain border with a given processor.
Used with Get_Next_Border _Obj as an
iterator over objects along borders. Set in
Zoltan Set Fn or

Zoltan Set First Border Obj Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (4 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_BORDER_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Get_First Border_Obj_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First Border Obj. Setin

Zoltan Set Fn or

Zoltan Set First Border Obj Fn.

ZOLTAN NEXT BORDER OBJ FN *
Get_Next_Border Obj

A pointer to an application-registered
function that, given an object, returns the
next object sharing a subdomain border with
agiven processor. Used with
Get_First_Border_Obj as an iterator over
objects along borders. Setin Zoltan Set Fn

or Zoltan Set Next Border Obj Fn.

void *Get_Next_Border Obj Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next Border Obj. Setin
Zoltan Set Fn or

Zoltan Set Next Border Obj Fn.

ZOLTAN NUM COARSE OBJ FN *
Get_Num _Coarse Obj

A pointer to an application-registered
function that returns the number of objects
intheinitial coarse grid. Set in

Zoltan Set Fn or

Zoltan Set Num Coarse Obj Fn.

void *Get_Num_Coarse Obj_ Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_ Num Coarse Obj. Setin
Zoltan Set Fn or

Zoltan Set Num Coarse Obj Fn.

ZOLTAN COARSE OBJ LIST FN*
Get_Coarse Obj_List

A pointer to an application-registered
function that returns arrays of objectsin the
initial coarse grid. Setin Zoltan Set Fn or

Zoltan Set Coarse Obj List Fn.

void *Get_Coarse Obj_List Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Coarse Obj List. Setin

Zoltan Set Fn or

Zoltan Set Coarse Obj List Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (5 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_BORDER_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_COARSE_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

ZOLTAN FIRST COARSE OBJ FN *
Get_First_Coarse_Obj

A pointer to an application-registered
function that returns the first object of the
initial coarse grid. Used with
Get_Next_Coarse Obj as an iterator over all
objectsin the coarse grid. Set in
Zoltan Set Fn or

Zoltan Set First Coarse Obj Fn.

void *Get_First Coarse Obj Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_First Coarse Obj. Setin

Zoltan Set Fn or

Zoltan Set First Coarse Obj Fn.

ZOLTAN NEXT COARSE OBJ FN *
Get_Next_Coarse Obj

A pointer to an application-registered
function that, given an object in the initial
coarse grid, returns the next object in the
coarse grid. Used with
Get_First_Coarse Obj as an iterator over all
objectsin the coarse grid. Set in
Zoltan Set Fn or

Zoltan Set Next Coarse Obj Fn.

void *Get_Next Coarse Obj Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Next_Coarse Obj. Setin

Zoltan Set Fn or

Zoltan Set Next Coarse Obj Fn.

ZOLTAN NUM CHILD FN *
Get_Num _Child

A pointer to an application-registered
function that returns the number of
refinement children of an object. Set in
Zoltan Set Fn or

Zoltan Set Num Child Fn.

void *Get_Num_Child _Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Num _Child. Setin Zoltan Set Fn or

Zoltan Set Num Child Fn.

ZOLTAN _CHILD LIST EN* Get_Child_List

A pointer to an application-registered
function that returns arrays of objects that
are refinement children of a given object.
SetinZoltan Set Fn or

Zoltan Set Child List Fn.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (6 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_COARSE_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_CHILD_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Get_Child_List_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Child _List. Setin Zoltan Set Fn or

Zoltan Set Child List Fn.

ZOLTAN CHILD WEIGHT FN *
Get_Child Weight

A pointer to an application-registered
function that returns the weight of an object.
Setin Zoltan Set Fnor

Zoltan Set Child Weight Fn.

void *Get_Child Weight_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_Child Weight. Setin Zoltan Set Fn or

Zoltan Set Child Weight Fn.

ZOLTAN OBJ SIZE FN * Get Obj Sze

A pointer to an application-registered
function that returns the size (in bytes) of
data objects to be migrated. Called by
Zoltan Migrate. SetinZoltan Set Fn or

Zoltan Set Obj Size Fn.

void *Get_Obj_Sze Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Get_ Obj_Sze. SetinZoltan Set Fnor

Zoltan Set Obj Size Fn.

ZOLTAN PACK_OBJ FN * Pack_Obj

A pointer to an application-registered
function that packs all datafor agiven
object into a communication buffer provided
by the migration tools in preparation for
data-migration communication. Called by
Zoltan Migrate for each object to be

exported. Setin Zoltan Set Fn or
Zoltan Set Pack Obj Fn.

void *Pack Obj_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Pack Obj. SetinZoltan Set Fn or

Zoltan Set Pack Obj Fn.

ZOLTAN _UNPACK_OBJ FN * Unpack_Obj

A pointer to an application-registered
function that unpacks all datafor agiven
object from a communication buffer after
the communication for data migration is
completed. Called by Zoltan Migrate for

each imported object. Setin
Zoltan Set Fn or

Zoltan Set Unpack Obj Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (7 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_CHILD_WEIGHT_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_OBJ_SIZE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Unpack Obj Data A pointer to data provided by the user that
will be passed to the function pointed to by
Unpack Obj. Setin Zoltan Set Fn or

Zoltan Set Unpack Obj Fn.

ZOLTAN_LB LB A structure with data used by the
load-balancing tools. See the table below.
ZOLTAN_MIGRATE Migrate A structure with data used by the migration

tools. See the table below.
Fields of the Zoltan_Struct data structure.

Each Zoltan_Struct data structure hasaZOL TAN_L B sub-structure. The ZOLTAN_L B structure
contains data used by the load-balancing tools, including pointers to specific |oad-balancing methods and
|oad-balancing data structures. The fields of the ZOLTAN_L B structure are listed and described inin
the following table.

| Fieldsof ZOLTAN LB | Description

void * Data_Structure The data structure used by the selected
load-balancing algorithm; this pointer is
cast by the algorithm to the appropriate
datatype.

double Imbalance_Tol The degree of load balance which is
considered acceptable. Set viaacall to
Zoltan Set Param for

IMBALANCE TOL.
int Num_Global _Parts The total number of partitions to be

generated. Set viaacall to
Zoltan Set Param for

NUM GLOBAL PARTITIONSor

through summeation of
NUM_LOCAL_PARTITIONS

parameters.

int Num_Local Parts The number of partitions to be generated
on this processor. Set viaacall to
Zoltan Set Param for

NUM LOCAL PARTITIONS or
(roughly) through division of the

NUM GLOBAL PARTITIONS
parameter by the number of processors.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (8 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#IMBALANCE_TOL
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_LOCAL_PARTITIONS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#NUM_GLOBAL_PARTITIONS

Zoltan Developer's Guide: Load Balancing Data Structures

int Return_Lists

A flag indicating whether the application
wants import and/or export lists returned
by Zoltan LB Partition. Set viaacall to

Zoltan Set Param for RETURN LISTS.

ZOLTAN_LB_METHOD Method

An enumerated type designating which
load-bal ancing algorithm should be used
with this Zoltan structure; set viaacall to
Zoltan Set Param for LB METHOD.

LB_FN* LB Fn

A pointer to the load-balancing function
specified by Method.

ZOLTAN_LB FREE DATA FN
*Free_Structure

Pointer to afunction that frees the
Data_Structure memory.

ZOLTAN_LB POINT_ASSIGN_FN
*Point_Assign

Pointer to the function that performs
Zoltan LB Point_ Assign for the particular

|oad-balancing method.

ZOLTAN_LB BOX_ASSIGN_FN *Box_Assign [Pointer to the function that performs

Zoltan LB Box Assign for the particular
|oad-balancing method.

Fields of the ZOL TAN_L B data structure.

Each Zoltan_Struct datastructurehasaZOLTAN_MIGRATE sub-structure. The
ZOLTAN_MIGRATE structure contains data used by the migration tools, including pointers to pre-

and post-processing routines. These pointers are set through the interface routine Zoltan Set Fn and are
used in Zoltan Migrate. Thefields of the ZOLTAN_MIGRATE structure are listed and described in

in the following table.

| Fieldsof ZOLTAN_MIGRATE

Description

int Auto_Migrate

A flag indicating whether Zoltan should
perform auto-migration for the application. If
true, Zoltan calls Zoltan Migrate to move
objectsto their new processors; if false, data
migration is left to the user. Set in

Zoltan Set Param for AUTO MIGRATE.

ZOLTAN PRE MIGRATE PP FN *
Pre_Migrate PP

A pointer to an application-registered
function that performs pre-processing for
datamigration. The function is called by
Zoltan Migrate before datamigration is

performed. Setin Zoltan Set Fn or
Zoltan Set Pre Migrate PP Fn.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (9 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#AUTO_MIGRATE
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

void *Pre_Migrate PP_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Pre Migrate PP. Setin Zoltan Set Fn or

Zoltan Set Pre Migrate PP Fn.

ZOLTAN MID MIGRATE PP FN*
Mid_Migrate PP

A pointer to an application-registered
function that performs processing between
the packing and unpacking operations in
Zoltan Migrate. Setin Zoltan Set Fn or

Zoltan Set Mid Migrate PP Fn.

void *Mid_Migrate PP_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Mid_Migrate PP. Setin Zoltan Set Fn or

Zoltan Set Mid Migrate PP Fn.

ZOLTAN POST MIGRATE PP FN
*Post_Migrate PP

A pointer to an application-registered
function that performs post-processing for
data migration. The function is called by
Zoltan Migrate after datamigrationis

performed. Setin Zoltan Set Fn or
Zoltan Set Post Migrate PP Fn.

void *Post_Migrate PP_Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Post_Migrate PP. Setin Zoltan Set Fn or

Zoltan Set Post Migrate PP Fn.

ZOLTAN PRE MIGRATE FN *
Pre_Migrate

A pointer to an application-registered
function that performs pre-processing for
datamigration. The function is called by
Zoltan Help Migrate before data migration

isperformed. Set in Zoltan Set Fn or
Zoltan Set Pre Migrate Fn. Maintained

for backward compatibility with Zoltan v1.3
interface.

void *Pre_Migrate Data

A pointer to data provided by the user that
will be passed to the function pointed to by
Pre Migrate. Setin Zoltan Set Fn or

Zoltan Set Pre Migrate Fn.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (10 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_PP_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PRE_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Load Balancing Data Structures

ZOLTAN MID MIGRATE FN * A pointer to an application-registered
Mid_Migrate function that performs processing between

the packing and unpacking operations in
Zoltan Help Migrate. Setin

Zoltan Set Fn or

Zoltan Set Mid Migrate Fn. Maintained
for backward compatibility with Zoltan v1.3
interface.

void *Mid_Migrate Data A pointer to data provided by the user that
will be passed to the function pointed to by
Mid_Migrate. Set in Zoltan Set Fn or

Zoltan Set Mid Migrate Fn.

ZOLTAN POST MIGRATE FN A pointer to an application-registered
*Post_Migrate function that performs post-processing for

data migration. The function is called by
Zoltan Help Migrate after datamigration

isperformed. Set in Zoltan Set Fn or
Zoltan Set Post Migrate Fn. Maintained
for backward compatibility with Zoltan v1.3
interface.

void *Post_Migrate Data A pointer to data provided by the user that
will be passed to the function pointed to by
Post Migrate. SetinZoltan Set Fn or

Zoltan Set Post Migrate Fn.
Fields of the ZOLTAN_MIGRATE data structure.

For each pointer to an application registered function in the Zoltan_Struct and ZOLTAN_MIGRATE
data structures there is also a pointer to a Fortran application registered function, of the form
ZOLTAN_FUNCNAME_FORT_FN *Get_Funcname_Fort. These are for use within the Fortran
interface. The Zoltan routines should invoke the usual application registered function regardless of
whether the Zoltan structure was created from C or Fortran.

[Table of Contents | Next: Services | Previous: |D Data Types]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_lb_structs.html (11 of 11) [8/4/2006 9:21:04 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_MID_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_POST_MIGRATE_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Help_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Fn
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Specific_Fn

Zoltan Developer's Guide: Services

Zoltan Developer's Guide | Next | Previous

Services

Within Zoltan, several services are provided to ssmplify development of new algorithmsin the library.
Each service consists of aroutine or set of routines that is compiled directly into Zoltan. Use of these
services makes debugging easier and provides a uniform look to the algorithmsin thelibrary. The

services available are listed below.

Parameter Setting Routines
Parallel Computing Routines
Object List Function

Hash Function

Timing Routines

Debugging Services

[Table of Contents | Next: Parameter Setting Routines | Previous. Data Structures]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services.html [8/4/2006 9:21:05 AM]

Zoltan Developer's Guide: Parameter Setting Routines

Zoltan Developer's Guide | Next | Previous

Parameter Setting Routines

Zoltan allows applications to change a number of parameter settings at runtime. This facility supports
debugging by, for instance, allowing control over the type and quantity of output. It also allows usersto
modify some of the parameters that characterize the partitioning algorithms. The design of the parameter
setting routines was driven by several considerations. First, we wanted to keep the user interface as
simple as possible. Second, we wanted to allow different Zoltan structures to have different parameter
settings associated with them. This second consideration precluded the use of C's static global variables
(except in afew specia places). The parameter routines described below allow developersto provide
runtime access to any appropriate variables. In some cases, it is appropriate to alow developersto tinker
with parameters that will never be documented for users.

Our solution to parameter setting is to have a single interface routine Zoltan Set Param. This function
calls a set of more domain-specific parameter setting routines, each of which isresponsible for a
domain-specific set of parameters. Assuming there are no errors, the parameter name and new value are
placed in alinked list of new parameters which is maintained by the Zoltan structure. When a
partitioning method isinvoked on a Zoltan structure, it scans through this linked list using the

Zoltan Assign Param Valsfunction, resetting parameter values that are appropriate to the method.

In addition to the method-specific parameters, Zoltan also has a set of so-called key parameters. These
are normally stored in the Zoltan structure and may be accessed by any part of the Zoltan code (including
al the methods). A list of the key parameters currently used in Zoltan can be found in the User's Guide.

The routines that control parameter setting are listed below. Note that these routines have been written to
be as independent of Zoltan as possible. Only afew minor changes would be required to use these
routines as a separate library.

Zoltan Set Param: User interface function that calls a set of method-specific routines.

Zoltan Set Param Vec: Same as Zoltan Set Param, but for vector parameters.

Zoltan Check Param: Routineto check if parameter name and value are OK.

Zoltan Bind Param: Routine to associate a parameter name with a variable.

Zoltan Bind Param Vec: Same as Zoltan Bind Param, but for vector parameters.

Zoltan Assign Param Vals. Scanslist of parameter names & values, setting relevant

parameters accordingly.
Zoltan Free Params. Frees a parameter list.

See dlso: Adding new parametersin Zoltan.

int Zoltan_Set Param(struct Zoltan Struct *zz, char * param_name, char *new_val);

The Zoltan_Set Param function is the user interface for parameter setting. Its principle purposeisto

call a sequence of more domain-specific routines for setting domain-specific parameters (e.g.,
Zoltan_RCB_Set Param). If you are adding algorithms to Zoltan, you must write one of these

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (1 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Parameter Setting Routines

domain-specific parameter routines and modify Zoltan_Set Param to call it. Zoltan_RCB_Set_Param
can serve as atemplate for this task. The arguments to this routine are two strings param_name and
new_val. The domain-specific routines return an integer value with the following meaning.

0 - The parameter name was found, and the value passed all error checks.

1 - The parameter name was not found among the parameters known by the domain-specific
routine.

2 - The parameter name was found, but the value failed the error checking.

3 - Same as 0, but do not add parameter and value to linked list.

Other - More serious error; valueis an error code.

If one of the domain-specific parameter routines returnswith a0, Zoltan_Set Param adds the parameter
and the value (both strings) to alinked list of such pairsthat is pointed to by the Params field of the zz
structure.

Arguments:
zz The Zoltan structure whose parameter value is being modified.
param_name A string containing the name of the parameter being modified. It is automatically
converted to all upper-case letters.
new_val The new value desired for the parameter, expressed as a string.
Returned Value:
int Error code.

int Zoltan_Set Param_Vec(struct Zoltan Struct *zz, char * param_name, char *new_val, int index);

This routine works the same way as Zoltan Set Param, but is used for vector parameters. A vector

parameter is a parameter that in addition to a name also has a set of indices, usually starting at 0. Each
entry (component) may have adifferent value. This routine sets a single entry (component) of a vector
parameter. If you want all entries (components) of a vector parameter to have the same value, set the
parameter using Zoltan Set Param asif it were a scalar parameter.

int Zoltan_Check _Param(char *param _name, char *new_val, PARAM_VARS *params,
PARAM UTYPE *result, int *matched index);

The Zoltan_Check_Param routine simplifies the task of writing your own domain-specific parameter
setting function. Zoltan_Check Param compares the param_name string against alist of strings that
you provide, and if amatch isfound it extracts the new value from the new_val string. See

Zoltan_ RCB_Set Param for an example of how to use this routine.

Arguments:
param_name A capitalized string containing the name of the parameter being modified.
new_val The new value desired for the parameter, expressed as a string.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (2 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parameter Setting Routines

params The data structure (defined in params/params_const.h) describing the
domain-specific parameters to be matched against. The data structure is an array of
items, each of which consists of four fields. Thefirst field isastring that isa
capitalized name of a parameter. The second field is an address that is unused in
Zoltan_Check_Param, butisused in Zoltan Assign Param Vals. Thethird

field is another capitalized string that indicates the type of the parameter from the
first field. Currently supported typesare"INT", "INTEGER", "FLOAT", "REAL",
"DOUBLE", "LONG", "STRING" and "CHAR". It is easy to add additional types
by simple modificationsto Zoltan_Check _Param and

Zoltan Assign Param Vals. Thefourth field is an integer that givesthe

dimension (Iength) of the parameter, if it is avector parameter. Scalar parameters
have dimension 0. The array is terminated by an item consisting of four NULL
fields. See Zoltan_RCB_Set Param for an example of how to set up this data
structure.

result Structure of information returned by Zoltan_Check Param (defined in
params/params_const.h). If param_name matches any of the parameter names
from the first field of the params data structure, Zoltan_Check Param attempts
to decode the value in new_val. The type of the value is determined by the third
field in the params data structure. If the value decodes properly, it isreturned in
result.

matched index If param_name matches, then matched index returns the index into the params
array that corresponds to the matched parameter name. The matched index and
result values allow the developer to check that values being assigned to parameters
arevalid.

Returned Value:
int 0 - param_name found in params data structure and new_val decodes OK.
1 - param_name not found in params data structure.
2 - param_name found in params data structure but new_val doesn't decode

properly.

int Zoltan_Bind_Param (PARAM_VARS *params, char *name, void *var);

Thisroutine is used to associate the name of a parameter in the parameter array params with avariable
pointed to by var.

Note that since the variable to be bound can be of an arbitrary type, the pointer should be cast to avoid
pointer. Zoltan_Bind_Param must be called before Zoltan Assign Param Vals, where the actual

assignment of values takes place.

Arguments:

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (3 of 5) [8/4/2006 9:21:06 AM]

Zoltan Developer's Guide: Parameter Setting Routines

params

name
var

Returned Value:

Int

The data structure describing the domain-specific parameters to be matched
against. The data structure is an array of items, each of which consists of four
fields. Thefirst field isastring that is a capitalized name of a parameter. The
second field isan address that isunused in Zoltan Check Param, but isused in
Zoltan Assign Param Vals. Thethird field is another capitalized string that
indicates the type of the parameter from the first field. Currently supported types
are"INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG", "STRING"
and "CHAR". It is easy to add additional types by simple modifications to
Zoltan Check Param and Zoltan Assign Param Vals. Thefourth field isan

integer that gives the dimension (length) of the parameter, if it isavector
parameter. Scalar parameters have dimension 0. The array is terminated by an item
consisting of four NULL fields.

A capitalized string containing the name of the parameter being modified.

A pointer to the variable you wish to associate with the parameter name name.
The pointer should be type cast to avoid pointer. The user is responsible for
ensuring that the pointer really points to avariable of appropriate type. A NULL
pointer may be used to "unbind" avariable such that it will not be assigned avaue
upon future callsto Zoltan Assign Param Vals.

Error code.

int Zoltan_Bind_Param_Vec(PARAM _VARS *params, char *name, void *var, int dim);

Same as Zoltan_Bind_Param, but for vector parameters. The additional parameter dim givesthe
dimension or length of the vector parameter.

int Zoltan_Assign_Param_Vals(PARAM _LIST *change list, PARAM_VARS *params, int
debug level, int my proc, int debug_proc);

This routine changes parameter values as specified by the list of names and new valueswhich is
associated with a Zoltan structure. To use this routine, parameter values should first be set to their
defaults, and then Zoltan_Assign_Param_Vals should be called to alter the values as appropriate. See
Zoltan_RCB for atemplate.

Arguments:
change list

Thelinked list of parameter names and values which is constructed by
Zoltan Set Param and isafield of an Zoltan Struct data structure (defined in

params/param_const.h).

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (4 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parameter Setting Routines

params The data structure (defined in params/params_const.h) describing the
domain-specific parameters to be matched against. The data structure is an array of
items, each of which consists of threefields. Thefirst field isastring whichisa
capitalized name of a parameter. The second field is an address of the parameter
which should be altered. The third field is another capitalized string which
indicates the type of the parameter being altered. Currently supported types are
"INT", "INTEGER", "FLOAT", "REAL", "DOUBLE", "LONG", "STRING" and
"CHAR". It is easy to add additional types by simple modificationsto
Zoltan Check Param and Zoltan_Assign_Param_Vals. The array is terminated
by an item consisting of three NULL fields.

debug_level Zoltan debug level. (Normally thisis zz->Debug_Level.)

my_proc Processor number. (Normally thisis zz->Proc.)

debug_proc Processor number for debugging. (Normally thisis zz->Debug_Proc.)
Returned Value:

int Error code.

The last three input parameters may seem strange. They are present to support Zoltan's debugging
features. If the parameter utility code is used outside of Zoltan, these parameters may be removed or
simply set these input valuesto zero in the function call.

void Zoltan_Free Params (PARAM _LIST **param list);

This routine frees the parameters in the list pointed to by param list.

Arguments:

param list A pointer to alist (array) of parametersto be freed. PARAM LIST isdefinedin
params/param_const.h.

[Table of Contents | Next: Parallel Computing Routines | Previous. Services|

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_params.html (5 of 5) [8/4/2006 9:21:06 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Parallel Routines

Zoltan Developer's Guide | Next | Previous

Parallel Computing Routines

Parallel computing utilities are described in this section.

Zoltan Print Sync Start/ Zoltan Print Sync End: provide synchronization of
processors for 1/0O (with example).
Zoltan Print Stats: print statistics about a parallel variable.

void Zoltan_Print_Sync_Start(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_Start function is adapted from work of John Shadid for the MPSalsa project at
Sandia National Laboratories. With Zoltan Print Sync End, it provides synchronization so that one
processor in the Zoltan communicator can complete its I/O before the next processor beginsits 1/O. This
synchronization utility is useful for debugging algorithms, asit alows the output from processorsto be
produced in an organized manner. It is, however, a serializing process, and thus, does not scale well to
large number of processors.

Zoltan_Print_Sync_Start should called by each processor in the MPI communicator before the desired
1/O isperformed. Zoltan Print Sync End is called by each processor after the I/O is performed. No
communication can be performed between callsto Zoltan_Print_Sync Start and

Zoltan Print Sync End. Seethe example below for usage of Zoltan_Print_Sync_Start.

Arguments:
communicator ~ The MPI communicator containing all processorsto participate in the
synchronization.
do_print_line A flag indicating whether to print aline of "#" characters before and after the
synchronization block. If do_print_lineis TRUE, alineis printed; nolineis
printed otherwise.

void Zoltan_Print_Sync_End(MPI_Comm communicator, int do_print_line);

The Zoltan_Print_Sync_End function is adapted from work of John Shadid for the MPSalsa project at
Sandia National Laboratories. With Zoltan Print Sync Start, it provides synchronization so that one
processor in the Zoltan communicator can complete its I/O before the next processor beginsits 1/0O. This
synchronization utility is useful for debugging algorithms, as it allows the output from processors to be
produced in an organized manner. It is, however, a serializing process, and thus, does not scale well to
large number of processors.

Zoltan Print Sync Start should called by each processor in the MPI communicator before the desired
1/O is performed. Zoltan_Print_Sync End is called by each processor after the I/O is performed. No

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (1 of 3) [8/4/2006 9:21:06 AM]

Zoltan Developer's Guide: Parallel Routines

communication can be performed between callsto Zoltan Print Sync Start and
Zoltan_Print_Sync_End. See the example below for usage of Zoltan_Print_Sync_End.

Arguments:
communicator ~ The MPlI communicator containing all processors to participate in the
synchronization.
do _print_line A flag indicating whether to print aline of "#" characters before and after the

synchronization block. If do_print_lineis TRUE, alineis printed; nolineis
printed otherwise.

void Zoltan_Print_Stats(MPI_Comm comm, int debug_proc, double X, char * msg);

Zoltan_Print_Statsis avery simple routine that computes the maximum and sum of the variable x over
all processors associated with the MPI communicator comm. It also computes and prints the imbalance of
X, that is, the maximum value divided by the average minus one. If x has the same value on al

processors, the imbalance is zero.

Arguments:
comm The MPI Communicator to be used in maximum and sum operations,
debug_proc The processor from which output should be printed.
X The variable of which one wishesto display statistics.
msg A string that typically describes the meaning of x.

Example Using Zoltan_Print_Sync_Start/Zoltan_Print_Sync_End

if (zz->Debug_Level >= ZOLTAN DEBUG ALL) {
int i;
Zoltan_Print_Sync_Start(zz->Comuni cator, TRUE);
printf("Zoltan: Objects to be exported from Proc %\ n",

zz->Proc);
for (i =0; i < *numexport _objs; i++) {
printf(" oj: ");

ZOLTAN PRINT d D(zz,
& (*export _global _ids)[i1*zz->Num dD]));
printf(" Destination: %d\n",
(*export _procs)[i]);
}
Zoltan_Print _Sync _End(zz->Conmuni cator, TRUE);

}

Example usage of Zoltan Print_Sync_Sart and Zoltan_Print_Sync_End to synchronize output

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (2 of 3) [8/4/2006 9:21:06 AM]

Zoltan Developer's Guide: Parallel Routines

among processors. (Taken from Zoltan_LB_Partition in Ib/Ib_balance.c.)

[Table of Contents | Next: Object List Function | Previous. Parameter Setting Routines]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_parallel.html (3 of 3) [8/4/2006 9:21:06 AM]

Zoltan Developer's Guide: Object List function

Zoltan Developer's Guide | Next | Previous

Common Functions for Querying Applications

Many Zoltan algorithms need to query applications for similar data. The following functions provide
simple, uniform query functionality for algorithm devel opers:

Zoltan Get Obj List
Zoltan Get Coordinates

These functions provide a uniform method of calling the query functions registered by an application.
Their use smplifies new algorithm development and code maintenance. Usage examples are in
rch/shared.c.

Zoltan Get Obj List can be called from any Zoltan algorithm to obtain alist of object IDs, weights,
and partition assignments.

Given alist of object IDs, Zoltan Get Coor dinates can be called from any Zoltan algorithm to obtain a
list of coordinates for those IDs.

Note that, contrary to most Zoltan functions, these functions allocate memory for their return lists.

int Zoltan_Get_Obj_List(
struct Zoltan Struct *zz,
int *num_obj,
ZOLTAN ID PTR *global ids,
ZOLTAN ID PTR *local ids,
int wdim,
float ** objwgts,
int **parts);

Zoltan_Get_Obj_List returns arrays of global and local 1Ds, partition assignments, and object weights
(if OBJ WEIGHT DIM isnot zero) for all objects on a processor. It isaconvenient function that frees

agorithm developers from calling ZOLTAN OBJ LIST FN, ZOLTAN FIRST OBJ FN,
ZOLTAN NEXT OBJ FN, and ZOLTAN PARTITION FN query functions directly.

Arguments:

zz A pointer to the Zoltan structure created by Zoltan Create.

num_obj Upon return, the number of objects.

global ids Upon return, an array of global IDs of objects on the current processor.

local ids Upon return, an array of local IDs of objects on the current processor. NULL is
returned when NUM_LID ENTRIES s zero.

wdim The number of weights associated with an object (typicaly 1), or O if weights are
not requested.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_obijlist.html (1 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide: Object List function

objwgts

parts

Retur ned value:

Required Query
Functions:

Optional Query
Functions:

Upon return, an array of object weights. Weights for object i are stored in
objwgtg[i* wdim:(i+1)*wdim-1], for i=0,1,...,num_obj-1. If wdimis zero, the return
value of objwgts is undefined and may be NULL.

Upon return, an array of partition assignments. Object i is currently in partition

partd[i].

Error code.

ZOLTAN NUM OBJ FN
ZOLTAN OBJ LIST FN or
ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair

ZOLTAN PARTITION FN

int Zoltan_Get_Coordinates(
struct Zoltan Struct *zz,

int num_obyj,

ZOLTAN ID PTR global_ids,

ZOLTAN ID PTR local_ids,

int *num_dim,

double **coords);

Given lists of object IDs, Zoltan_Get_Coor dinates returns the dimensionality of the problem and an
array of coordinates of the objects. It is a convenient function that frees algorithm developers from
calingZOLTAN NUM GEOM FN,ZOLTAN GEOM MULTI FN,and ZOLTAN GEOM FN

guery functions directly.

Arguments:
zz

num_obj
global_ids
local ids

num_dim
coords

Retur ned value:

Required Query
Functions:

A pointer to the Zoltan structure created by Zoltan Create.

The number of objects.

An array of global 1Ds of objects on the current processor.

An array of local 1Ds of objects on the current processor. local _idsis NULL when
NUM LID_ENTRIESis zero.

Upon return, the number of coordinates for each object (typically 1, 2 or 3).

Upon return, an array of coordinates for the objects. Coordinates for object i are
stored in coordgi* num_dim:(i+1)* num_dim-1], for i=0,1,...,num_obj-1.

Error code.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_obijlist.html (2 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_PARTITION_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Create
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Object List function

ZOLTAN NUM GEOM FEN
ZOLTAN GEOM MULTI FNorZOLTAN GEOM FN

[Table of Contents | Next: Hash Function | Previous. Parallel Routines|

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_obijlist.html (3 of 3) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_MULTI_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN

Zoltan Developer's Guide: Hash function

Zoltan Developer's Guide | Next | Previous

Hash Function

Zoltan provides a hash function for global and local 1Ds. The hash function computes a non-negative
integer value in a certain range from an ID.

Zoltan Hash : hash aglobal or local 1D into non-negative integers

unsigned int Zoltan_Hash(ZOLTAN ID PTR key, int num_id_entries, unsigned int n);

Zoltan_Hash computes a hash value for aglobal or local I1D. Note that this hash function has been
optimized for 32-bit integer systems, but should work on any machine. The current implementation uses
asimple multiplicative hash function based on Don Knuth's golden ratio method; see The Art of
Computer Programming, vol. 3.

Arguments:
key A pointer to the ID to be hashed.
num_id entries Thelength of the ID (asgiven by NUM GID ENTRIES or
NUM LID ENTRIES).
n The computed hash value will be between 0 and n-1.
Return Value:
unsigned int The hash value (between 0 and n-1).

[Table of Contents | Next: Timing Routines | Previous. Object List Function]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_hash.html [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Data Types for Object IDs
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_GID_ENTRIES
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#NUM_LID_ENTRIES

Zoltan Developer's Guide: Timing Routines

Zoltan Developer's Guide | Next | Previous

Timing Routines

To assist in performance measurements and profiling, several timing routines are included in the Zoltan
library. The main timer function, Zoltan Time, provides accessto at |least two portable timers. one CPU

clock and one wall clock. On most systems, user time can also be measured.

The routines included in the utility are listed below.

Zoltan Time: Returns the time (in seconds) after some fixed reference point in time.
Zoltan Time Resolution: The resolution of the specified timer.

Currently, the following timers are supported:

o ZOLTAN_TIME_WALL : wall-clock time.
On most systems, thistimer calls MPI_Wtime.

o ZOLTAN_TIME_CPU : cputime.
On most systems, thistimer callsthe ANSI C function clock(). Note that this timer may roll over
at just 71 minutes. Zoltan Time attempts to keep track of the number of roll-overs but this feature

will work only if Zoltan Timeis called at least once during every period between roll-overs.

o ZOLTAN TIME_USER: user time.
On most systems, thistimer calls times(). Note that times() is required by POSIX and iswidely
available, but it isnot required by ANSI C so may be unavailable on some systems. Compile
Zoltan with -DNO_TIMES in this case.
Within Zoltan, it is recommended to select which timer to use by setting the TIMER general parameter
viaZoltan Set Param. The default value of TIMER iswall. Zoltan stores an integer representation of
the selected timing method in zz->Timer. This value should be passed to Zoltan Time, asin
Zoltan Time(zz->Timer).

double Zoltan_Time(int timer);

Zoltan_Time returns the time in seconds, measured from some fixed reference time. Note that the time
Is not synchronized among different processors or processes. The time may be either CPU time or
wall-clock time. The timer is selected through Zoltan Set Param.

Arguments:
timer The timer type (e.g., wall or cpu) represented as an integer. See top of page for a
list of valid values.
Returned Value:
double Thetimein seconds. Thetimeis always positive; a negative value indicates an

error.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_time.html (1 of 2) [8/4/2006 9:21:07 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#TIMER
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Timing Routines

double Zoltan_Time_Resolution(int timer) ;

Zoltan_Time Resolution returns the resolution of the current timer. The returned resolution is alower
bound on the actual resolution.

Arguments:
timer The timer type (e.g., wall or cpu) represented as an integer. See top of page for a
list of valid values.
Returned Value:
double The timer resolution in seconds. If the resolution is unknown, -1 is returned.
Example:

Hereisasimple example for how to use the timer routines:

double tO, t1, t2;

Zoltan_Set Param(zz, "TIMER', "wall");

t0 = Zoltan_Ti nme(zz->Ti ner);

/* code segnent 1 */

tl = Zoltan_Tinme(zz->Ti ner);

/* code segnent 2 */

t2 = Zoltan_Ti me(zz->Ti mer);

/* Print timng results */

Zoltan _Print_Stats(zz->Communi cator, zz->Debug_Proc, t1-t0, "Tine
for part 1:");

Zoltan Print_Stats(zz->Communi cator, zz->Debug Proc, t2-t1, "Tine
for part 2:");

Zoltan Print_Stats(zz->Communi cator, zz->Debug Proc, t2-t0, "Total
time :");

[Table of Contents | Next: Debugging Services| Previous. Hash Function]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_time.html (2 of 2) [8/4/2006 9:21:07 AM]

Zoltan Developer's Guide: Debugging Services

Zoltan Developer's Guide | Next | Previous

Debugging Services

Execution of code for debugging can be controlled by algorithm specific parameters or by the Zoltan key
parameter DEBUG LEVEL. The value of the Debug_Level field of the Zoltan Struct structure can be
tested to determine whether the user desires debugging information. Several constants
(ZOLTAN_DEBUG_*) are defined in zz'zz_const.h; the Debug_Level field should be compared to these
values so that future changes to the debugging levels can be made easily. An exampleisincluded below.

Several macros for common debugging operations are provided. The macros can be used to generate
function trace information, such as when control enters or exits afunction or reaches a certain point in
the execution of afunction.

ZOLTAN TRACE ENTER

ZOLTAN TRACE EXIT

ZOLTAN TRACE DETAIL

These macros produce output depending upon the value of the DEBUG LEVEL parameter set in Zoltan
by acall to Zoltan Set Param. The macros are defined in zz/zz_const.h.

Examples of the use of these macros can be found below and in Ib/Ib_balance.c and rcb/rcb.c.

ZOLTAN_TRACE_ENTER(struct Zoltan Struct *zz, char *function_name);

ZOLTAN_TRACE_ENTER prints to stdout a message stating that a given processor is entering a
function. The call to the macro should be included at the beginning of major functions for which
debugging information is desired. Output includes the processor number and the function name passed
as an argument to the macro. The amount of output produced is controlled by the value of the
DEBUG LEVEL parameter set in Zoltan by acall to Zoltan Set Param.

Arguments:

zz Pointer to a Zoltan structure.

function_name Character string containing the function's name.
Output:

ZOLTAN (Processor #) Entering function_name

ZOLTAN_TRACE_EXIT (struct Zoltan Struct *zz, char *function_name);

ZOLTAN_TRACE_EXIT printsto stdout a message stating that a given processor is exiting a
function. The call to the macro should be included at the end of major functions (and before return
statements) for which debugging information is desired. Output includes the processor number and the
function name passed as an argument to the macro. The amount of output produced is controlled by the
value of the DEBUG LEVEL parameter set in Zoltan by acall to Zoltan Set Param.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (1 of 3) [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Debugging Services

Arguments:

zz Pointer to a Zoltan structure.

function_name Character string containing the function's name.
Output:

ZOLTAN (Processor #) Leaving function_name

ZOLTAN_TRACE_DETAIL (struct Zoltan Struct *zz, char *function_name, char * message);

ZOLTAN_TRACE_DETAIL printsto stdout a message specified by the developer. [t can be used to
indicate how far execution has progressed through aroutine. It can also be used to print values of
variables. See the example below. Output includes the processor number, the function name passed as
an argument to the macro, and a user-defined message passed to the macro. The amount of output
produced is controlled by the value of the DEBUG L EVEL parameter set in Zoltan by acall to

Zoltan Set Param.

Arguments:
zz Pointer to a Zoltan structure.
function name Character string containing the function's name.
message Character string containing a message defined by the devel oper.
Output:
ZOLTAN (Processor #) function_name: message
Example:

An example using the debugging macros in shown below.

#i ncl ude "zol tan. h"

voi d exanpl e(struct Zoltan Struct *zz)
{

char *yo = "exanpl e";

char tnp[80];

int a, b;

ZOLTAN TRACE ENTER(zz, yo0);

a = function_one(zz);

ZOLTAN TRACE DETAI L(zz, yo, "After function_one");
b = function_two(zz);

sprintf(tnmp, "b = % a = %", b, a);

ZOLTAN TRACE DETAIL(zz, yo, tnp);

I f (zz->Debug_Level >= ZO_TAN DEBUG ALL)

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (2 of 3) [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Set_Param

Zoltan Developer's Guide: Debugging Services

printf("Total = %\n", a+b);
ZOLTAN TRACE EXI T(zz, yo0);

[Table of Contents | Next: Adding New Load-Balancing Algorithms| Previous. Timing Routines]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_services_debug.html (3 of 3) [8/4/2006 9:21:08 AM]

Zoltan Developer's Guide: Adding Algorithms

Zoltan Developer's Guide | Next | Previous

Adding New Load-Balancing Algorithms to Zoltan

The Zoltan library is designed so that adding new load-balancing algorithms to the library issimple. In
many cases, existing code can be easily modified to use the interface query functions to build the data
structures needed for the algorithm. The process for adding new algorithms to the library is described
below; more detail is provided at each link.

1.

ok~ 0N

10.

11.

Make sure you follow the Philosophy of Zoltan and the Coding Principlesin Zoltan.

Add the agorithm to the Load-Balancing I nterface Routines.

Use the Data Structures provided by Zoltan.

Implement a L oad-Balancing Function front-end to the algorithm.

Add the Parameters needed by the algorithm. Also make sure that the algorithm uses the General
Parametersin Zoltan properly, in particular Imbalance Tol and Debug L evel.

If necessary, write aroutine to free your dynamically allocated data structures. See tips on memory
management in Zoltan.

If the parameter KEEP_CUTS is defined for your algorithm, write a routine to copy your load
balancing data structure.

Add partition remapping to your algorithm using Zoltan LB Remap.

Update the Fortran and C++ interfaces, if necessary.

Document your new method. The documentation should be written in aformat that can easily be
converted into HTML and PDF. Consider adding a simple application to the examples directory
demonstrating the use of your method.

Please contact the Zoltan team if you would like your method to be distributed with future versions
of Zoltan.

[Table of Contents | Next: Load-Balancing Interface Routines | Previous. Debugging Services|

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add.html [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB Parameters
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_.html

Zoltan Developer's Guide: Adding Interface Routines

Zoltan Developer's Guide | Next | Previous

Load-Balancing Interface Routines

Any new method that you wish to add to the Zoltan library must have an interface that conformsto the
prototype LB FN. Note that the load balancing function may return either import lists, export lists, or
both. All processes must return the same type of list. If import (export) lists are not computed, then the
variable num_import (num_export) must be set to a negative number (typically -1) upon return. Full
support of the RETURN _LISTS parameter is not required. If RETURN LISTSisnot set to NONE, the

new algorithm may return either import or export lists; the Zoltan interface will then build the lists
requested by RETURN LISTS.

A new algorithm must be added to the load-balancing interface for use with parameter LB METHOD.
An entry for the new agorithm must be added to the enumerated type Zoltan_LB_Method in
Ib/Ib_const.h. An external LB _FN prototype for the load-balancing function must also be added to
Ib/Ib_const.h; see the prototype for function Zoltan RCB as an example. A character string describing the
new algorithm should be chosen to be used as the parameter valuefor LB METHOD. In function
Zoltan LB Set LB Method, atest for this string should be added and the Method and LB_Fn fields of
the Zoltan Struct should be set to the new enumerated type value and new load-balancing function
pointer.

[Table of Contents | Next: Load-Balancing Function Implementation | Previous. Adding New
Algorithms]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_interface.html [8/4/2006 9:21:08 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

Zoltan Developer's Guide: Adding Load-Balancing Functions

Zoltan Developer's Guide | Next | Previous

Load-Balancing Function Implementation

The new load-balancing algorithm should be implemented asan ZOLTAN_LB_FN. The type definition
foran ZOLTAN_LB_FNisinlb/lb_const.h and is described below. When the new algorithmis
selected, the LB_Fn field of the Zoltan_Struct is set to point to the ZOLTAN_LB_FN function for the
new algorithm. This pointer is then used in invoking load balancing in Zoltan LB Partition.

typedef int ZOLTAN_LB_FN (struct Zoltan Struct *zz, float * part_sizes, int *num_import,

ZOLTAN ID PTR *import_global _ids, ZOLTAN ID PTR *import_local_ids, int **import_procs,
int **import_to_parts, int *num_export, ZOLTAN ID PTR *export_global ids,

ZOLTAN ID PTR *export_local_ids, int **export_procs, int **export_to_parts);

The ZOLTAN_LB_FN function type describes the arguments passed to aload-balancing function. The
input to the function isa Zoltan Struct containing pointers to application-registered functions to be used
in the load-balancing algorithm. The remaining arguments are output parameters listing the objects to be
imported or exported to the processor in the new decomposition. The arrays for global and local IDs and
source processors must be allocated by the load-balancing function. The load-balancing function may
return either the import arrays, the export arrays, or both. If no import datais returned, * num_import
must be set to a negative number, and similarly with *num_export. Full support of the RETURN LISTS
parameter is not required. If RETURN LISTSisnot set to NONE, the new algorithm may return either

import or export lists, the Zoltan interface will then build the lists requested by RETURN LISTS.

Arguments:
zz A pointer to the Zoltan Struct to be used in the load-balancing agorithm.
part_sizes Input: an array of partition sizes for each weight component. Entry

part_sizegi*obj_weight_dim+j] contains the user-requested partition size for
partition i with respect to object weight j for i=0,1,...,number of partitions-1, and
j=0,1,...,0b]_weight_dim-1. If the application sets parameter OBJ WEIGHT DIM,
obj_weight_dimisthe set value of OBJ WEIGHT DIM; otherwise,
obj_weight_dimisone.
num_import Upon return, the number of objects to be imported to the processor for the new

decomposition. A negative number indicates that no import data has been
computed and the import arrays should be ignored.
Upon return, an array of num_import global I1Ds of objectsto be imported to the

import_global ids processor for the new decomposition. If thisarray is non-null, it must be allocated
by Zoltan Special Malloc.

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_Ib.html (1 of 2) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#RETURN_LISTS
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#OBJ_WEIGHT_DIM

Zoltan Developer's Guide: Adding Load-Balancing Functions

import_local _ids Upon return, an array of num_import local 1Ds of objects to be imported to the
processor for the new decomposition. If this array is non-null, it must be allocated
by Zoltan Special Malloc.

import_procs Upon return, an array of size num_import containing the processor 1Ds of
processors owning (in the old decomposition) the objects to be imported for the
new decomposition. If thisarray is non-null, it must be allocated by
Zoltan Special Malloc.

import_to_parts Upon return, an array of size num_import containing the partition I1Ds of partitions
to which objects will be imported in the NEW decomposition. If thisarray is
non-null, it must be allocated by Zoltan Special Malloc.

num_export Upon return, the number of objects to be exported from the processor for the new
decomposition. A negative number indicates that no export data has been
computed and the export arrays should be ignored.

export_global ids Upon return, an array of num_export global 1Ds of objects to be exported from the
processor for the new decomposition. If thisarray is non-null, it must be allocated
by Zoltan Special Malloc.

export_local _ids Upon return, an array of num_export local 1Ds of objects to be exported from the
processor for the new decomposition. If this array isnon-null, it must be allocated
by Zoltan Special Malloc.

export_procs Upon return, an array of size num_export containing the processor 1Ds of
processors owning (in the old decomposition) the objects to be exported for the
new decomposition. If thisarray isnon-null, it must be allocated by
Zoltan Special Malloc.

export _to parts Upon return, an array of size num_export containing the partition 1Ds of partitions
to which the objects will be exported for the new decomposition. If thisarray is
non-null, it must be allocated by Zoltan Special Malloc.

Returned Value:
int Error code.

[Table of Contents | Next: Data Structures | Previous: Load-Balancing Interface Routines]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_lb.html (2 of 2) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Adding Data Structures

Zoltan Developer's Guide | Next | Previous

Data Structures

The main data structures for the algorithm should be pointed to by the LB.Data_Structure field of the
Zoltan Struct. Thisrequirement allows reuse of data structures from one invocation of the new

|oad-balancing algorithm to the next. It also prevents the use of global data structures for the algorithm so
that multiple instances of the algorithm may be used (i.e., the same algorithm can be used for multiple
Zoltan Struct structures). An example showing the construction of data structures for the Recursive

Coordinate Bisection (RCB) algorithm isincluded in the figure below.

/* Allocate RCB data structure for this Zoltan structure.

* |f the previous data structure still exists, free the Dots
first;

* the other fields can be reused.

*/

If (zz->LB.Data_Structure == NULL) {
rcb = (RCB_STRUCT *) ZOLTAN MALLOC(si zeof (RCB_STRUCT));
zz->LB.Data_Structure = (void *) rcb;
rcb->Tree Ptr = (struct rcb tree *)
ZOLTAN MALLOC(zz->Num Proc*si zeof (struct

rcb _tree));
rcb->Box = (struct rcb_box *) ZOLTAN MALLOC(si zeof (struct
rcb_box));
}
el se {
rcb = (RCB_STRUCT *) zz->LB.Data Structure;
ZOLTAN FREE(&(rcb->Dots));

}

Example demonstrating allocation of data structures for the RCB algorithm. (Taken from
rcb/rcb_util.c.)

The data needed for the algorithm is collected through calls to the query functions registered by the
application. Algorithms should test the query function pointers for NULL and report errors when needed
functions are not registered. The appropriate query functions can be called to build the algorithm's data
structures up front, or they can be called during the algorithm's execution to gather dataonly asitis
needed. The figure below shows how the Dots data structure needed by RCB is built. The call to
zz->Get_Num_Obj invokesan ZOLTAN NUM OBJ FN query function to determine the number of
objects on the processor. Space for the Dots data structure is allocated through calls to

ZOLTAN MALLOC,ZOLTAN MALLOC GID ARRAY, and

ZOLTAN MALLOC LID ARRAY. The Dotsinformation is obtained through acall to the Zoltan
service function Zoltan Get Obj List; thisfunction callseither an ZOLTAN OBJ LIST FN or an

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (1 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN

Zoltan Developer's Guide: Adding Data Structures

ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN pair to get the object IDs and weights. The

datafor each Dot is set in the function initialize_dot, which includes calls to zz->Get_Geom, an
ZOLTAN GEOM FN query function.

/*
* All ocate space for objects. Allow extra space

* for objects that are inported to the processor.
*/
*numobj = zz->CGet _Num bj (zz->Get _Num Cbj Data, &err);
i f (ierr) {
ZOLTAN PRI NT_ERROR(zz->Proc, yo,
"Error returned from Get_Num Qbj.");

return(ierr);

}

*max_obj = (int)(1.5 * *numobj) + 1;
*gl obal _ids = ZOLTAN MALLOC G D ARRAY(zz, (*max_obj));
*local _ids = ZOLTAN MALLOC LID ARRAY(zz, (*max_obj));
*dots = (struct Dot Struct *)
ZOLTAN MALLOC((*max_obj) *si zeof (struct Dot Struct));

if (!'(*global ids) || (zz->Num LID & !(*local _ids)) ||
I'(*dots)) {
ZOLTAN PRI NT_ERROR(zz->Proc, yo, "Insufficient nenory.");
ret urn(ZOLTAN_MENMERR) ;

}
i f (*numobj > 0) {
i f (wgtflag) {
/*
* Allocate space for object weights.
*/

objs wgt = (float *)
ZOLTAN NMALLOC((*num obj) *si zeof (fl oat));
If (!'objs wgt) {
ZOLTAN PRI NT_ERROR(zz->Proc, yo, "lnsufficient
menory.");
return(ZOLTAN MEMERR) ;

}
for (i =0; i < *numobj; 1++) objs wgt[i] = 0.;

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (2 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_lb.html#ZOLTAN_GEOM_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Adding Data Structures

}

/~k

* Cet list of objects' |IDs and weights.

*/

Zoltan_Get Obj List(zz, *global ids, *local ids, wgtfl ag,
objs wgt, & err);

1f (ierr) {
ZOLTAN PRI NT_ERROR(zz->Proc, yo,
“"Error returned from
Zoltan_Get _Obj List.");
ZOLTAN FREE(&obj s _wgt);
return(ierr);

}

lerr = initialize_dot(zz, *global _ids, *local _ids, *dots,
*num obj, wgtflag, objs wgt);

if (ierr == ZOLTAN FATAL || ierr == ZOLTAN MEMERR) {

ZOLTAN PRI NT_ERROR(zz- >Proc, vyo,

"Error returned frominitialize dot.");
ZOLTAN FREE(&obj s_wgt);

return(ierr);

}
ZOLTAN_FREE(&obj s_wgt) ;

}

Example demonstrating how data structures are built for the RCB algorithm. (Taken from
rcb/shared.c.)

The data structures pointed to by zz->LB.Data_Sructure will be freed at some point, and may be copied.

A function that frees these structures and resets zz->LB.Data_Structure to NULL should be written. The
function should be called when the load-balancing algorithm exits, either normally or due to an error
condition. The function Zoltan_RCB_Free Structurein rcb/rch_util.c may be used as an example.

If your algorithm usesthe KEEP_CUTS parameter, a function that copies one zz->LB.Data_Structureto
another isrequired. Thisis particularly important for C++, which may create temporary objects at
runtime by invoking a copy operator (which will call your copy function). It is aconvenience for C
applications, which may wish to copy one Zoltan _Struct to another. See the function
Zoltan_RCB_Copy_Structureinrcb/rcb_util.c for an example.

[Table of Contents | Next: Memory Management | Previous: Load-Balancing Function
| mplementation]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_struct.html (3 of 3) [8/4/2006 9:21:09 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

Zoltan Developer's Guide | Next | Previous

Memory Management in Zoltan Algorithms

Zoltan uses a memory management package to simplify debugging of memory problems. It is strongly
recommended that algorithm developers use the routines in this package, suchas ZOLTAN MALLOC
, ZOLTAN CALLOC and ZOLTAN FREE, instead of the standard C routines for most memory
management.

Macros that simplify the allocation of global and local identifiers (IDs) are defined in zz/zz_id_const.h.
These macros are described in the ID Data Types section. The macros include error checking for the
alocations and, thus, their use is highly recommended.

When a dynamic structure needs to be returned to the application, special memory allocation routines are
needed. For example, the import and export lists of datato migrate are returned to an application from
Zoltan LB Partition and Zoltan Invert Lists. There are two specia routines for managing memory
for such situations, called Zoltan Special Malloc and Zoltan Special Free. Algorithms must use these
functions to maintain compatibility with both C and Fortran90 applications; these specia routines
manage memory in away that is compatible with both languages.

Some | oad-balancing algorithms may contain persistent data structures, that is, data structures that are
preserved between calls to the load-balancing routine. The Zoltan Struct structure containsafield

LB.Data Structure for this purpose, allowing multiple Zoltan structures to preserve their own

decomposition data. The developer should write afunction that frees this data structure. Use
Zoltan_RCB_Free Structureasan example.

int Zoltan_Special_Malloc(struct Zoltan Struct *zz, void **array, int size,
ZOLTAN_SPECIAL_MALLOC_TYPEtype);

The Zoltan_Special_Malloc routine allocates memory to be returned to the application by Zoltan (e.g.,
theresult arrays of Zoltan LB Partition and Zoltan Invert Lists). Returned memory must be
allocated by Zoltan_Special Malloctoinsureit is alocated by the same language as the application.
Memory allocated by Zoltan _Special M alloc must be deallocated by Zoltan Special Free.

Arguments:
zz The Zoltan structure currently in use.
array Upon return, a pointer to the allocated space. Usually of type int** or
ZOLTAN ID PTR*.
size The number of elements (not bytes) to be allocated.
type Thetype of array to allocate. Must be one of

ZOLTAN_SPECIAL MALLOC INT,ZOLTAN_SPECIAL MALLOC GID
or ZOLTAN_SPECIAL_MALLOC LID for processor numbers, global 1Ds and

local 1Ds, respectively.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_memory.html (1 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Malloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Calloc
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_mem.html#Zoltan_Free
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Partition
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Invert_Lists

Zoltan Developer's Guide: Adding Algorithms: How to handle memory

Returned Value:

int 1if the allocation succeeded: O if it failed.
Example:

lerr = Zoltan_Special Ml loc(zz, (void **)inport _gid,
num_i nport,

ZOLTAN _SPECI AL_MALLOC A D);
Allocates an array with num_import global 1Ds and returns a pointer to the
allocated space inimport_gid.

int Zoltan_Special Free(struct Zoltan Struct *zz, void **array,
ZOLTAN_SPECIAL _MALLOC_TYPE type);

Zoltan_Special_Freefrees memory allocated by Zoltan Special Malloc. The array pointer is set to
NULL upon return.

Arguments:
zz The Zoltan structure currently in use.
array The array to be freed. Upon return, the pointer is set to NULL.
type The type of the array. Must be one of ZOLTAN_SPECIAL_MALLOC_INT,
ZOLTAN_SPECIAL _MALLOC GID or
ZOLTAN_SPECIAL_MALLOC_LID for processor numbers, global I1Ds and
local 1Ds, respectively.
Returned Value:
int 1if the deallocation succeeded; O if it failed.
Example:

lerr = Zoltan_Speci al Free(zz, (void **)inport _gid,
ZOLTAN_SPECI AL_MALLOC A D);
Freesthe global IDs array import_gid and setsit to NULL.

[Table of Contents | Next: Parameters | Previous. Data Structures]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_memory.html (2 of 2) [8/4/2006 9:21:10 AM]

Zoltan Developer's Guide: Adding Parameters

Zoltan Developer's Guide | Next | Previous

Adding new parameters

All parametersin Zoltan should be set and accessed through the parameter setting routines. To add a new
parameter to an existing method, you need to do the following:

« Inthe source code for the desired method, search for the place where the static array of parameters
is defined. It will look something like: static PARAM_VARS Method_params[] ={ ...}. Adda
line with the name of the new parameter, a pointer to the variable you want to associate (usually
NULL), and itstype.

« Inthe method source code, bind the parameter to alocal variable through Zoltan Bind Param.
Make sure you do this before Zoltan Assign Param Valsisinvoked.

« Update the parameter function for the method in question. Thisroutineistypically called
Zoltan_Method Set Param. This routine checksif a given string is avalid parameter for that
method. It may also verify the values.

When you add a new method to Zoltan, you also need to:

« Write a parameter function for your method that checks whether a given string and valueisavalid
parameter pair for your method. See Zoltan_ RCB_Set_Param in rcb/rcb.c for an example.

« Let your method access the parameters viaZoltan Bind Param and
Zoltan Assign Param Vals.

« Change the parameter function array in params/set_params.c to include your parameter function.
Simply add a new entry to the static array that looks like: static ZOLTAN SET _PARAM_FN *
Param func[] = {...}.

« Make sure your method uses the key parametersin Zoltan correctly.

One useful convention is to put your method routine and your corresponding parameter function in the
same source file. Thisway you can define the parametersin a static array. This convention eliminates
the risk of bugs caused by duplicate declarations (that are, incorrectly, not identical).

[Table of Contents | Next: Partition Remapping | Previous: Memory Management]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_params.html [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#General_Parameters

Zoltan Developer's Guide: Partition Remapping

Zoltan Developer's Guide | Next | Previous

Partition Remapping

Partition remapping can be incorporated into |oad-balancing algorithms. The partition remapping
algorithm works as follows:

After partitioning withinan ZOLTAN LB FN but before import or export lists are built, the
partitioning algorithm calls Zoltan LB Remap.

Zoltan LB Remap builds a bipartite graph based on local import or export information
(depending on which is available in the partitioning algorithm). Vertices of the graph are processor
or partition numbers used in the old (input to the partitioner) and new (computed by the
partitioner) decompositions. Edges connect old and new vertices; edge weight for edge g; isthe

number of objectsin old partition i that are also in new partition j. The bipartite graph is stored as a
hypergraph, so that Zoltan's hypergraph matching routines may be applied.

Zoltan LB Remap gathersthe local hypergraph edges onto each processor and performs a serial
matching of the vertices. This matching defines the remapping.

Zoltan LB Remap remaps the input processor and partition information to reflect the remapping

and returns the result to the application. It also builds array zz->LB.Remap that is used in other
functions (e.g., Zoltan LB Box PP Assign and Zoltan LB Point PP Assign).

Using the remapping information returned from Zoltan LB Remap, the partitioning algorithm
builds the import or export lists to return to the application. Note: if the partition agorithm builds
import lists, data may have to be moved to appropriate processors before building import liststo
reflect the remapping; see rcb/shared.c for an example.

int Zoltan_LB_Remap (struct Zoltan Struct *zz, int *new_map, int num_obj, int *procs,
int *old_parts, int *new_parts, int export_list_flag);

Zoltan_LB_Remap remaps computed partition (or processor) numbers in an attempt to maximize the
amount of datathat does not have to be migrated to the new decomposition. It isincorporated directly
into partitioning algorithms, and should be called after the new decomposition is computed but before
return lists (import or export lists) are created. Zoltan_L B_Remap should be invoked when Zoltan
parameter REMAP is one. Even when REMAP is one, remapping is not done under a number of

conditions; these conditions are listed with the description of REMAP.

Arguments:
zz A pointer to the Zoltan Struct used in the partitioning algorithm.
new_map Upon return, a flag indicating whether remapping was actually done. Remapping is

not done under a number of conditions (described with parameter REMAP) or

when the computed remap gives aworse or equivalent result than the
decomposition computed by the partitioning algorithm.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_remap.html (1 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_PP_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_PP_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#REMAP

Zoltan Developer's Guide: Partition Remapping

num_obj Input: the number of objects the processor knows about after computing the
decomposition. If the partitioning algorithm computes export lists, num_obj isthe
number of objects stored on the processor; if it computes import lists, num_obj is
the number of objects that will be stored on the processor in the new

decomposition.

procs Upon input: an array of size num_obj containing processor assignments for the
objects; if export_list flag == 1, procs contains processor assignments in the NEW
decomposition (computed by the partitioner); otherwise, procs contains processor
assignments in the OLD decomposition (input by the application). Upon return,
procs contains remapped processor assignments for the NEW decomposition,

regardless of the value of export_list_flag.

old parts Upon input: an array of size num_obj containing partition assignments for the

objects in the OLD decomposition (input by the application).

new_parts Upon input: an array of size num_obj containing partition assignments for the
objects in the NEW decomposition (computed by the partitioning algorithm). Upon
return: new_parts contains remapped partition assignments in the NEW

decomposition.

export_list flag Flag indicating whether the partitioning algorithm computes export lists or import
lists. The procedure for building the bipartite graph depends on whether the

partitioning algorithm knows export or import information.

Returned Value:
int Error code.

[Table of Contents | Next: Migration Tools | Previous. Adding new parameters|

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_add_remap.html (2 of 2) [8/4/2006 9:21:10 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: Migration Tools

Zoltan Developer's Guide | Next | Previous

Migration Tools

The migration toolsin the Zoltan library perform communication necessary for data migration in the
application. The routine Zoltan Migrate calls application-registered packing routines to gather datato

be sent to other processors. It sends the data using the unstructured communication package. It then calls
application-registered unpacking routines for each imported object to add received data to the processor's
data structures. See the Zoltan User's Guide for more details on the use of and interface to the migration
tools.

In future releases, the migration tools will be updated to use MPI data types to support heterogeneous
computing architectures.

[Table of Contents | Next: FORTRAN Interface | Previous. Partition Remapping]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_mig.html [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_mig.html#Zoltan_Migrate
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_PACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_query_mig.html#ZOLTAN_UNPACK_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: FORTRAN Interface
Zoltan Developer's Guide | Next | Previous

FORTRAN Interface

With any change to the user API of Zoltan, the Fortran interface should be modified to reflect the change.
This section contains information about the implementation of the Fortran interface which should cover
most situations.

Structures

Modifications to an existing Zoltan interface function

Removing a Zoltan interface function

Adding anew Zoltan interface function

Query functions

Enumerated types and defined constants

If you have questions or need assistance, contact william.mitchell @nist.gov.

If changes are made to functions that are called by zdrive, then the changes should also be made to
zfdrive. Changes to the Fortran interface can be tested by building and running zfdrive, if the changes are
in functions called by zfdrive. The zfdrive program works the same way as zdrive except that it is
restricted to the Chaco examples and simpler input files.

Any changes in the interface should aso be reflected in the Fortran API definitionsin the Zoltan User's
Guide.

Structures

All structures in the API have a corresponding user-defined type in the Fortran interface. If anew
structure is added, then modifications will be required to fort/fwrap.fpp and fort/cwrap.c. In these files,
search for Zoltan Struct and "do like it does."

An explanation of how structures are handled may help. The Fortran user-defined type for the structure
simply contains the address of the structure, i.e., the C pointer returned by a call to create the structure.
Note that the user does not have access to the components of the structure, and can only pass the
structure to functions. Within the Fortran structure, the address is stored in a variable of
type(Zoltan_PTR), which is a character string containing one character for each byte of the address.
This gives the best guarantee of portability under the Fortran and C standards. Also, to insure portability
of passing character strings, the character string is converted to an array of integers before passing it
between Fortran and C. The process of doing thisis most easily seen by looking at Zoltan Destroy,

which has little else to clutter the code.

Modifications to an existing Zoltan interface function
If the argument list or return type of a user-callable function in Zoltan changes, the same changes must

be made in the Fortran interface routines. Thisinvolves changes in two files: fort/fwrap.fpp and
fort/cwrap.c. In these files, search for the function name with the prefix Zoltan__ omitted, and modify the

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (1 of 3) [8/4/2006 9:21:11 AM]

mailto:william.mitchell@nist.gov
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_init.html#Zoltan_Destroy

Zoltan Developer's Guide: FORTRAN Interface

argument list, argument declarations, return type, and call to the C library function as appropriate. When
adding anew argument, if there is not already an argument of the same type, look at another function
that does have an argument of that type for guidance.

Removing a Zoltan interface function

If auser callable function is removed from the Zoltan library, edit fort/fwrap.fpp and fort/cwrap.c to
remove al referencesto that function.

Adding a new Zoltan interface function

Adding a new function involves changes to the two files fort/fwrap.fpp and fort/cwrap.c. Perhaps the
easiest way to add a new function to these filesisto pick some existing function, search for all
occurrences of it, and use that code as a guide for the implementation of the interface for the new
function. Zoltan LB Point Assign isanice minimal function to use as an example. Use a case

insensitive search on the name of the function without the Zoltan_LB__ prefix, for example
point_assign.

Here are the itemsin fwrap.fpp:
« public statement: The name of the function should be included in the list of public entities.

« interface for the C wrapper: Copy one of these and modify the function name, argument list and
declarations for the new function. The nameis of theform Zfw_LB_Point_Assign (fw stands for
Fortran wrapper).

« generic interface: This assigns the function name to be a generic name for one or more module
procedures.

« module procedure(s): These are the Fortran-side wrapper functions. Usually there is one module
procedure of the form Zf90 LB _Point_Assign. If one argument can have more than one type
passed to it (for example, it istype void in the C interface), then there must be one module
procedure for each type that can be passed. These are distinguished by appending adigit to the end
of the module procedure name. If n arguments can have more than one type, then n digits are
appended. See Zoltan LB Free Part for example. Generally the module procedure just calls the

C-side wrapper function, but in some cases it may need to coerce data to a different type (e.g.,
Zoltan Struct), or may actually do real work (e.g., Zoltan LB Free Part).

Here are theitemsin cwrap.c:

« name mangling: These are macros to convert the function name from the case sensitive C name
(for example, Zfw_L B_Point_Assign) to the mangled name produced by the Fortran compiler.
There are four of these for each function:

0 lowercase (zfw_Ib_point_assign),

0 uppercase (ZFW_LB_POINT_ASSIGN),

o lowercase with underscore (zfw_|b_point_assign), and
g

lower case with double underscore (zZfw_point_assign__ but the second underscoreis
appended only if the name aready contains an underscore, which will always be the case for

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (2 of 3) [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_lb.html#Zoltan_LB_Free_Part

Zoltan Developer's Guide: FORTRAN Interface
names starting with Zfw_).

o C-sidewrapper function: Usually thisjust calls the Zoltan library function after coercing the form
of the data (for example, constructing the pointer to Zoltan Struct and call-by-reference to

call-by-value conversions).

Query functions

If aquery function is added, deleted or changed, modifications must be made to fort/fwrap.fpp and
fort/cwrap.c, similar to the modifications for interface functions, and possibly also include/zoltan.h and
zz/zz_const.h.

Here are the places query functions appear in fwrap.fpp:
« public statement for the ZOLTAN FN TYPE argument: These are identical to the C enumerated
type.
o definition of the ZOLTAN FN TYPE arguments: There are two groups of these, one containing

subroutines (void functions) and one containing functions (int functions). Put the new symbol in
the right category. The value assigned to the new symbol must agree exactly with where the
symbol appears in the order of the enumerated type.

Here are the places query functions appear in cwrap.c:

» reversewrappers: These are the query functions that are actually called by the Zoltan library
routines when the query function was registered from Fortran. They are just wrappersto call the
registered Fortran routine, coercing argument types as necessary. Look at
Zoltan_Num_Edges Fort_Wrapper for an example.

o Zfw_Set Fn: This hasaswitch based on the value of the ZOLTAN FN TYPE argument to set
the Fortran query function and wrapper in the Zoltan Struct.
In zz/zz_const.h, if anew field is added to the structures for anew query function, it should be added in

both C and Fortran forms. In include/zoltan.h, if a new typedef for a query function is added, it should be
added in both C and Fortran forms. See these files for examples.

Enumerated types and defined constants

Enumerated types and defined constants that the application uses as the value for an arguments must be
placed in fwrap.fpp with the same value. See ZOLTAN_ OK for an example.

[Table of Contents | Next: C++ Interface | Previous. Migration Tools]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_fortran.html (3 of 3) [8/4/2006 9:21:11 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface.html#Error Codes

Zoltan Developer's Guide: C++ Interface

Zoltan Developer's Guide | Next | Previous

C++ Interface

Aswith the Fortran interface just described, any change to the user API of Zoltan should be reflected in
the C++ interface. This section explains the conventions used in the C++ interface, which you will want
to follow when you modify or expand it.

Classes

Programming Conventions

Na aces

Class names

Method names

Const methods

Declaration of method parameters
Copy constructor, copy operator

K eeping the C++ interface up-to-date

Classes

The C language Zoltan library already observes the principles of object oriented program design. Each
sub function of Zoltan (load balancing, timing, etc.) has a data structure associated with it. This data
structure maintains all the state required for one instance of that sub function. Each request of the library
for some operation requires that data structure.

The classesin the Zoltan C++ library follow the structure just described. Each classis defined in a header
file and encapsulates a Zoltan data structure and the functions that operate on that structure. A C++
application wishing to use a feature of Zoltan, would include the feature's header file in it's source, and
link with the Zoltan C library.

The C language |oad balancing data stucture (Zoltan Struct) and the C functions that operate on it are
accessed through the C++ Zoltan class, defined in zoltan_cpp.h.

The communication package is encapsulated the Zoltan_Comm class defined in zoltan_comm_cpp.h.
Again, to use the communication utility of Zoltan from a C++ program, include zoltan_comm_cpp.h and
use the C++ methods defined there.

The C++ Zoltan timer classis called Zoltan_Timer_Object and is defined in zoltan_timer_cpp.h.

The distributed directory utility of Zoltan is encapsulated in the class Zoltan_DD defined in
zoltan_dd _cpp.h

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (1 of 3) [8/4/2006 9:21:12 AM]

Zoltan Developer's Guide: C++ Interface

Programming Conventions

When modifying the interface to Zoltan , you will want to modify the appropriate C++ header file
accordingly. This section describes the conventions to follow to maintain a consistent and correct library
interface for the C++ user of Zoltan.

Namespaces

In order to maintain portability across platforms, there is no Zoltan namespace. Many C++ compilers do
not support namespaces at this time. The name of each Zoltan class begins with Zoltan_, and hopefully
thiswill never clash with another namespace.

Class names

Class names are Zoltan_ followed by text indicating the sub function of Zoltan that is encapsulated by
the class.

Method names

Method names are derived from the C library function names in such away that the name will be
obviousto a person familiar with the C library. We remove the beginning of the C library name, the part
that identifies the subset of the Zoltan library that the function is part of, and keep the last part of the C
library name, the part that describes what the function does. For example the C function
Zoltan_LB_Partition becomes the C++ method LB_Partition in the class Zoltan and C function
Zoltan_Comm_Create becomes the C++ method Create in the class Zoltan_Comm.

Const methods

All class methods which can be declared const, because they do not modify the object, should be
declared const. This allows C++ programmers to call these methods on their const objects.

Declaration of method parameters

Parameters that are not changed in the method should be declared const. This can get complicated, but it
helps to read declarations from right to left. const int * & p saysp isareference to a pointer to a const
int and means the method will not change the value pointed to by p. On the other hand int * const & p
saysthat p isareference to a const pointer to int so the method will not change the pointer.

Variables that are passed by value in a C function will be passed by const reference in the C++ method.
Thisis semantically the same, but it is more efficient, and it will work with temporary variables created
by acompiler.

If a C function takes a pointer to a single built-in type (not an aggregate type), the associated C++
method will take areference variable. If a C function takes a pointer to a pointer, the C++ function will
take a pointer reference. The references are more efficient, and it is the behavior a C++ programmer
expects. A pointer to an array remains a pointer to an array.

C function parameter C++ method parameter method's const behavior

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (2 of 3) [8/4/2006 9:21:12 AM]

Zoltan Developer's Guide: C++ Interface

int val const int &val won't change value

o int &singlep may change value

Int *singlep const int &singlep won't change value
int *&singlep may change pointer or value

int **sinal constint* &p won't change value

giep int *const &p won't change pointer to value

const int * const &p won't change anything

int *arr int *arrayp may change array contents

AP constint * arrayp won't change array contents

If a C function takes a pointer to an array of char, the associated C++ method will take a string object.
C function parameter C++ method parameter

char *fname std::string & fname

In all honesty, it istedious to carefully apply const'ness in parameter declarations, and we did not do it
consistently throughout the C++ wrapping of Zoltan. Please feel free to add const declarations where
they belong, and try to use them correctly if you add or modify Zoltan C++ methods.

Copy constructor, copy operator

Each class should have a copy constructor and a copy operator.

Keeping the C++ interface up-to-date

Here we provide a checklist of things to be done when the C interface to the Zoltan library is changed:

« If anew maor component is added to Zoltan, create a C++ class for that component in a new
header file, using the programming conventions described above.

« If functions are added or removed, or their parameter lists are changed, then update the header file
defining the class that contains those functions.

« When Zoltan data structures are changed, be sure to change the C functions that copy the data
structure. (They contain Copy in their name.) Correct copying is more important in C++, where
the compiler may generate new temporary objects, thanitisin C.

« If you change the C++ API, be sure to change:
0 zCPPdrive, the test program for the Zoltan C++ library
o the C++ examplesin the Examples directory
0 the method prototypes in the Zoltan User's Guide.

[Table of Contents | Next: References | Previous. FORTRAN Interface]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_cpp.html (3 of 3) [8/4/2006 9:21:12 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: References

Zoltan Developer's Guide | Next | Previous

References

1. M. J. Berger and S. H. Bokhari. "A partitioning strategy for nonuniform problems on
multiprocessors.” |EEE Trans. Computers, C-36 (1987), 570-580.

2. K. Devine, B. Hendrickson, M. St.John, E. Boman, and C. Vaughan. "Zoltan: A Dynamic
Load-Balancing Library for Parallel Applications, User's Guide." Sandia National Laboratories
Tech. Rep. SAND99-1377, Albuquerque, NM, 1999,

3. H. C. Edwards. A Parallel Infrastructure For Scalable Adaptive Finite Element Methods and Its

Application To Least Squares C(inf) Collocation. Ph.D. Dissertation, University of Texas at
Austin, May, 1997.

4. B. Hendrickson and K. Devine. "Dynamic Load Balancing in Computational Mechanics." Comp.
Meth. Appl. Mech. Engrg., 184 (2000) 484-500.

5. B. Hendrickson and R. Leland. " The Chaco User's Guide, version 2.0." Sandia National
Laboratories Tech. Rep. SAND94-2692, Albuguerque, NM, 1994.
http://www.cs.sandia.gov/CRF/chac.html

6. G. Karypisand V. Kumar. ~"ParMETIS: Parallel graph partitioning and sparse matrix ordering
library." Tech. Rep. 97-060, Dept. of Computer Science, Univ. of Minnesota, 1997.
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

7. C. Walshaw. "Pardlel Jostle Library Interface: Version 1.1.7." Tech. Rep., Univ. of Greenwich,
London, 1995. http://www.gre.ac.uk/jostle

[Table of Contents | Next: Using Test Driver | Previous. C++ Interface]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_refs.html [8/4/2006 9:21:12 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
http://www.cs.sandia.gov/CRF/chac.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

Zoltan Developer's Guide | Next | Previous

Appendix: Using the Test Drivers: zdrive,
zCPPdrive and zfdrive

Introduction

In order to facilitate development and testing of the Zoltan library, smple driver programs, zdrive (C),
zCPPdrive (C++) and Zfdrive (Fortran90), are included with the library distribution. The concept behind
the driversisto read in mesh or graph information from files, run Zoltan, and then output the new
assignments for each processor to another file. The test drivers zdrive and zZCPPdrive read
ExoduslI/Nemesisl paralel FEM files and Chaco input files. Parallel Nemesisl files can be created from

Exodusl| or Genesisfile using the Nemesis| utilitiesnem _slice and nem_spread. The Fortran90 program
Zfdrive reads only Chaco input files.

Source code for zdrive isin the driver and ch directories of the Zoltan distribution. Source code for
Ztdriveisin the fdriver directory. The source code for zCPPdrive isaso in driver, and uses some of the
same C source files (in driver and ch) that zdrive uses.

To compile the test drivers, use the following commands:
gmake [options] zdrive
gmake [options] zCPPdrive
gmake YES FORTRAN=1 [optiong| zfdrive
where the options are described below.

Optionsto gmake:
Specify the target architecture. A corresponding file,
ZOLTAN_ARCH=<platform> Utilities/Config/Config.< platform>, containing environment definitions

for <platform>, must be created in the Utilities/Config directory.
The drivers are placed in the Obj_<platform> directory.

Running the Test Drivers

The test drivers are run using an input command file. A fully commented example of thisfile and the
possible options can be found in zdrive.inp. The default name for the command file is zdrive.inp, and the

driverswill look for thisfile in the execution directory if an alternate name is not given on the command
line. If another filename is being used for the command file, it should be specified as the first argument
on the command line. (Note: zfdrive cannot read a command line argument; its input file must be named
zdrive.inp.)

For an example of asimpleinput file, see the figure below. In this problem, the method being used for
dynamic load balancing is RCB. Input datais read from Chaco input files simple.graph and
simple.coords. Zoltan's DEBUG LEVEL parameter is set to 3; default values of all other parameters are

file://[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html (1 of 2) [8/4/2006 9:21:12 AM]

http://www.cs.sandia.gov/CRF/chac.html
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_usage.html#Building the Library
http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_param.html#Debug Levels in Zoltan

Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive

used. (Note: zfdrive can read only asimplified version of the input file. See the zfdrive notesin zdrive.inp
for more details.)

Deconposition nethod = rcb

Zol tan Paraneters = Debug_Level =3
File Type = Chaco

Fil e Nane = sinple
Parallel Disk Info = nunber =0

Example zdrive.inp file

The zdrive programs creates ascii files named "file_name.out.p.n", where file_name is the file name
specified in zdrive.inp, p is the number of processors on which zdrive was run, and n=0,1,...,p-1 isthe
processor by which the file was created. (For zfdrive, the files are named "file_name.fout.p.n".) These
files are in the same directory where the input graph file was located for that processor. Each file
contains alist of global ids for the elements that are assigned to that processor after running Zoltan. The
input decomposition can also be written in this format to files "file_name.in.p.n"; see "zdrive debug
level" in zdrive.inp for more details.

Decompositions for 2D problems can be written to files that can be plotted by gnuplot. See "gnupl ot
output” in zdrive.inp for more information. Decompositions for 3D problems can be viewed after the test
driver has finished by running the graphical tools vtk view or vtk _write described next.

Adding New Algorithms

The driver has been set up in such away that testing new algorithms that have been added to Zoltan is
relatively ssmple. The method that isin the input file is passed directly to Zoltan. Thus, this string must
be the same string that the parameter LB METHOD is expecting.

[Table of Contents | Next: Visualizing Geometric Partitions |
Previous: References]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_driver.html (2 of 2) [8/4/2006 9:21:12 AM]

http://www.gnuplot.org/
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg.html#LB_METHOD

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp
BHUHHBHBHH B H IR B H R BB BB B R B AR R R A R R R R

Zoltan Library for Parallel Applications
Copyright (c) 2000, 2001, 2002, Sandi a National Laboratories.
This docunent is released under the GNU Lesser Ceneral Public License.
For nmore info, see the README file in the top-level Zoltan directory.

HHBHERHBHE R H AR R R R R R R R R R R R
BB HERHB R R R R R R R R R R R R
CVS File Informati on

$RCSfile: zdrive.inp,v $

$Aut hor: kddevin $

$Dat e: 2005/ 04/01 18:16:41 $

$Revision: 1.30 $

HHHHERHBH R H AR R R R R R R R R R R R R
#

EXAMPLE OF zdrive.inp INPUT FILE FOR zdrive AND zfdrive.

#

HHHHERHBHE BB R R R R R R R R R R R R
CGENERAL NOTES

F*

1) Any line beginning with a "#" is considered a conment and will be
ignored by the file parser.

2) The order of the lines IS NOT significant.

3) Any lines that are optional are marked as such in this file. Unless
otherwise noted a line is required to exist in any input file.

to "FILE" or "File", etc

5) The anount of bl ank space in between words IS significant. Each
word should only be separated by a single space.

#
#
#
#
#
#
#
#
#
4) The case of words IS NOT significant, e.g., "file" IS equival ent
#
#
#
#
#
6) Blank |ines are ignored.

#

#

#

BHAHBHBHHEHBHBHBHBHBH BH BB H B H B H B R B B H B R BB BH#

e L
Deconposition Method = <net hod>

This line is used to specify the algorithmthat Zoltan will use
for load bal ancing. Currently, the follow ng nethods that are acceptabl e:
rcb - Reverse Coordi nate Bisection
octpart - Cctree/ Space Filling Curve
parnmetis - Par METIS graph partitioning
jostle - Jostle graph partitioning
reftree - Refinenment tree partitioning

Deconposi ti on Met hod =rcb

HHIFHFHFHHHR

L e
Zoltan Paraneters = <options>

This line is OPTIONAL. If it is not included, no user-defined paraneters
will be passed to Zoltan

This line is used to to specify paraneter values to overwite the default

#
#
#
#
#
paranmeter values used in Zoltan. These paranmeters will be passed to Zoltan

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (1 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

through calls to Zoltan_Set Paran(). Paraneters are set by entries consisting
of pairs of strings "<paranmeter string>=<val ue string>"

The <paraneter string> should be a string that is recognized by the
particul ar | oad-bal anci ng nmet hod bei ng used.

The paraneter entries should be separated by commas.

When many paraneters nust be specified, nmultiple

"Zoltan Paraneters" lines may be included in the input file.

NOTE: The Fortran90 driver zfdrive can read only one paraneter per |ine.
Zoltan Paraneters DEBUG LEVEL=3
Zoltan Paraneters RCB_REUSE=0

HHIFHFEHFHHREH

e L
File Type = <file type><,chaco options>

This line is OPTIONAL. If it is not included, then it is assuned that
the file type is parallel nenesis.

This Iine contains tells which format the file is in. The current

file types for this line are:
Nenesi sl - parallel Exodusll|/Nenesisl files (1 per processor)
Chaco - Chaco graph and/or geonetry file(s)

For Nenesisl input, the initial distribution of data is given in the
Nenesis files. For Chaco input, however, an initial deconpositionis
i nposed by the zdrive. Two initial distribution nethods are provided.
The nmethod to be used can be specified in the chaco options:

initial distribution = <option>
where <option> is

linear -- gives the first n/p objects to proc 0, the
next n/p objects to proc 1, etc.

cyclic -- assigns the objects to processors as one woul d
deal cards; i.e., gives the first object to proc O,
the second object to proc 1, ..., the pth object to

proc (p-1),the (p+1)th object to proc 0, the (p+2)th
object to proc 1, etc.

file -- reads an initial distribution fromthe input file
<fil ename>. assign, where File Nane is specified by
the "File Nanme" command |ine bel ow

owner -- for vertices, sanme as "linear." For hyperedge, send a
copy of a hyperedge to each processor owning one of its
vertices. (Miltiple processors may then store each
hyper edge.)

If an initial distribution is not specified, the default is linear.

A second Chaco option is to distribute the objects over a subset

of the processors, not all processors. The syntax for this is:
initial procs = k

where k is an integer between 1 and the nunber of processors.

The objects will be evenly distributed anong the k first

processors, using the distribution nethod optionally specified by

the "initial distribution" option.

Exanpl e:
File Type = chaco, initial distribution = cyclic, initial procs = 2
will give proc 0 objects 1, 3, 5, ... and proc 1 objects 2, 4, 6,
while procs 2 and hi gher get no objects.
NOTE: The Fortran90 driver zfdrive does not read Nenesisl files.
NOTE: The Fortran90 driver zfdrive does not accept any Chaco options.

ile Type = Nenesi sl

TMHFEHFHFHFHFHFFHHFHFHFHHFHFHFHFHFHFEHFHFEHFHFHFEHFHFEHFEHFFEFEHFHRFEHFEHFFEFEHFHEHR

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (2 of 9) [8/4/2006 9:22:12 AM]

#

#

HHEIFHHFHFHFHFHFHFFHFHFHFEHFHFHHEFEHFHEFEHFHFEFEHFHEFEHFHREHE

THHHHHFHFHFHFRFHRFEHEEREREHR

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

+4+++++ A
File Name = <fil enane>

This line contains the filename for the input finite el enent nesh

If the file type is Nenmesisl then this nane refers to the base nane
of the parallel Exodusll files that contain the results. The base
nane is the parallel filename without the trailing .<# proc>. <file #>
onit. This file nmust contain the Nenmesis global information

If the file type is Chaco, this nane refers to the base nane of the

Chaco files containing graph and/ or coordinates information. The

file <filenanme>.graph will be read for the Chaco graph infornmation

The file <fil enane>. coords will be read for Chaco geonetry information

The optional file <filenanme>.assign may be read for an initial deconposition
by specifying "initial distribution=file" on the "File Type" input line.

For nore informati on about the format of these files, see

the Chaco user's guide.

il e Nane = testa. par

L L L a a o
Parall el Disk Info = <options>

This line is OPTIONAL. If this line is left blank, then it is assuned
that there is no parallel disk information, and all of the files are
in asingle directory. This line is used only for Nenesis files.

This line gives all of the information about the parallel file system
bei ng used. There are a nunber of options that can be used with it,
al t hough for nost cases only a couple will be needed. The options are:

nunber=<integer> - this is the nunmber of parallel disks that the
results files are spread over. This nunber nust
be specified, and nmust be first in the options
list. If zero (0) is specified, then all of the
files should be in the root directory specified
bel ow.

list={list} - OPTIONAL, If the disks are not sequential, then a

list of disk nunbers can be given. This |ist should

be enclosed in brackets "{}", and the di sk nunbers
can be seperated by any of the followi ng comm,

bl ank space, tab, or senicol on

OPTIONAL, This is the offset fromzero that the

di sk nunbers begin with. If no nunber is specified,

this defaults to 1. This option is ignored if

"list" is specified.

Zer os - OPTIONAL, This specifies that |eading zeros are
used in the parallel file namng convention. For
exanpl e, on the Paragon, the file name for the
first pfs disk is "/pfs/tnp/io 01/". If this is
specified, then the default is not to have | eading
zeros in the path nane, such as on the teraflop
machine "/pfs/tnmp_1/".

of f set =<i nt eger >

NOTE: The Fortran90 driver zfdrive ignores this input line.

Ho o o o o o o e meeea o
Parall el Disk Info = nunber =4, zer os

L

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (3 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

Parallel file location = <options>

This line is OPTIONAL, only if the above line is excluded as well, or
the number of raids is specified as zero (0). If this Iine is excluded,
then the root directory is set to the execution directory, ".", and al

files should be in that directory. This line is used only for Nenesis
files.

This line gives all of the information about where the parallel files are
| ocated. There are only two options for this line, and both nust be
specified. The options are:
root =<root directory nane>
This line is used to specify what the nane of the root directory is
on the target nachine. This can be any valid root directory
nane. For example, if one is running on an SA@ workstation and
using the "tfl op" nunbering schenme then you coul d use sonethi ng
simlar to "/usr/tnp/pio " inthis field so that files would be
witten to root directories naned:
fusr/tmp/pio_1
fusr/tnmp/pio 2

/usr/tnp)pio_<ParaIIeI Di sk I nfo, nunber>

subdi r =<subdi rect ory nane>
This |ine specifies the nane of the subdirectory, under the root
directory, where files are to be witten. This is tacked onto
the end of the "root" after an appropriate integer is added to

"root". Continuing with the exanple given for "root", if "subdir"
had a value of "runl/input" files would be witten to directories
named:

{fusr/tnp/pio_1/runl/input/
{fusr/tnmp/pio_1/runl/input/

/usr/tnp)pio_<ParaIIeI Di sk I nfo, nunber>/runl/i nput/

HFHEHIFHFHFFHFHFHFHFHFHFEHFFHFEHFHFEHFHFHHEFEHFHEHFHFEFEHFHFEHF S

NOTE: The Fortran90 driver zfdrive ignores this input line.

Parallel File Locaiion = rootoipfslio., subdirzmmtjonn
F e o o o o o e o o e e e o o e e o e e e e e e e e e e e e e e e meee oo
Zdrive debug | evel = <integer>

z This line is optional. It sets a debug level within zdrive (not within

Zoltan) that determ nes what output is witten to stdout at runtine.
The currently defined values are listed below. For a given debug |evel

value i, all debug output for levels <=1 is printed.

#

0 -- No debug output is produced.

1 -- Evaluation of the initial and final partition is done

through calls to driver_eval and Zoltan LB Eval.

2 -- Function call traces through major driver functions are

printed.

3 -- Generate output files of initial distribution

Debug Chaco input files.

4 -- Entire distributed nesh (el enents, adjacencies, comrunication
maps, etc.) is printed. This output is done serially and can
be big and sl ow.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (4 of 9) [8/4/2006 9:22:12 AM]

#
#

z

HHIFHHFHFFEHEHFHRH

t

HHEIFHFHFHHHFHFHHFHFHFEHFEHFHEHFHFEFEHFHEFEHFHS

g

HHEIFHHFHFHFHFHR

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

Default value is 1.
drive debug level =1

text output = <integer>

This line is optional. |If the integer specified is greater than zero,
zdrive produces files listing the partition and processor assignment of
each object. Wen "text output = 1," P files are generated, where P is
the nunmber of processors used for the run. Files have suffix ".out.P.N',
where P is the nunber of processors and N=0,...,P-1 is the processor that
generated the particular file.

Default value is 1.

ext output =1

gnhupl ot out put = <integer>

This line is optional. |If the integer specified is greater than zero,
zdrive produces files that can be plotted using gnuplot. Each processor
generates files containing its deconposition; these files are naned
simlarly to the standard output filenanes generated by zdrive but they
include a "gnu" field. A file containing the gnuplot commands to actually
pl ot the deconposition is also generated; this file has a ".gnul oad" suffi x.
To plot the results, start gnuplot; then type

| oad "fil ename. gnul oad"

The deconposition can be based on processor assignnent or partition
assignnent. See zdrive input line "plot partitions".

For Chaco input files, edges are not drawn between nei ghboring subdonmai ns (
as Chaco input is balanced with respect to graph nodes). Data style
"linespoints" is used; this style can be changed using gnhuplot's

"set data style ..." conmand.

In addition, processor assignnents are witten to the parallel Nenesis files
to be viewed by other graphics packages (avs, nustafa, blot, etc.). Note
that the parallel Nenmesis files nust have space allocated for at |east one
el enental variable; this allocation is done by nem spread.

Gnupl ot capability currently works only for 2D probl ens.

Def ault value is O.

nupl ot output = 0

nenesi s output = <integer>

This line is optional. |If the integer specified is greater than zero,

zdrive wites subdomai n assignment information to parallel nenmesis files.
These files match the input nenesis file nanes, but contain a ".blot" suffix.
The SEACAS utility nemjoin can conbine these files into a single Exodus file
for plotting by blot, avs, nustafa, etc. Note that the input parallel
Nenesis files nmust have space allocated for at |east one

el enmental variable; this allocation is done by nem spread.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (5 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

The deconposition can be based on processor assignnent or partition
assignnent. See zdrive input line "plot partitions".

This option does nothing for Chaco input files.

Def ault value is O.

HFHIFHHFHH

nenesis output = 0

pl ot partitions = <integer>

This line is optional. |If the integer specified is greater than zero,
zdrive wites partition assignments to the gnuplot or nenesis output files;
one file per partition is generated.

O herwi se, zdrive wites processor assignments to the gnuplot or nenesis
output files, with one file per processor generated.

See zdrive input lines "gnuplot output" and "nenesis output".

Default value is O (processor assignnents witten).

HHIFHHFHFHEFEHFHHHH

print mesh info file = <integer>

This line is optional. |If the integer specified is greater than zero,
zdrive produces files describing the nesh connectivity. Each processor
generates a file containing its vertices (with coordinates) and el enents
(W th vertex connectivity); these files are naned

simlarly to the standard output filenanes generated by zdrive but they

HHIFHHFHFHEHEHFHRH

include a ".nmesh" suffix.
Default value is O.
print nmesh info file =0
Chaco input assignnent inverse = <integer>
This line is optional. It sets the IN ASSIGN INV flag, indicating that
the "inverse" Chaco assignnent format should be used if a Chaco assi gnnent
file is read for the initial deconposition. |If this flag is 0, the assignnment
file lists, for each vertex, the processor to which it is assigned. If this

flag is 1, the assignnent file includes, for each processor, the nunber of
vertices assigned to the processor followed by a |ist of those vertices.
See the Chaco User's guide for a nore detail ed description of this paraneter.

Def ault value is O.

Chaco i nput assignnment inverse = 0

HHIFHHFHFHEFEHFHFHHR

Nunber of Iterations = <integer>

net hod shoul d be run on the input data. The original input data is passed
to the nethod for each invocation

#

#

#

This line is optional. It indicates the nunber of time the | oad-bal ancing

#

#

Multiple iterations are useful primarily for testing the RCB_REUSE paraneter.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (6 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

#
Default value is 1.

NOTE: The Fortran90 driver zfdrive ignores this input line.

Nunber of Iterations =1

Default value is 1 (load bal ance).

NOTE: The Fortran90 driver zfdrive ignores this input |ine.

zdrive action = <integer>

#

This line is optional. It indicates the action the driver should take,
typically | oad-balancing or ordering. Valid val ues are:

#

0 -- No action.

1 -- Load bal ance.

2 -- Oder.

3 -- First | oad bal ance, then order.

#

#

#

#

#

zdrive action =1

Test Drops = <integer>

#
#
#
This line signals that zdrive should exercise the box- and point-assign

capability of Zoltan. Note that the partitioning nmethod nmust support

box- and point-drop, and appropriate paraneters (e.g., Keep Cuts) nust also
be passed to Zoltan; otherwise, an error is returned fromthe box- and

poi nt-assign functions.

#

#

#

#

#

Def ault value is O.

NOTE: The Fortran90 driver zfdrive ignores this input |ine.

He m s e o
Test DDirectory = <integer>

#

This line signals that zdrive should exercise the Distributed Directory

utility of Zoltan. Conparisons between zdrive-generated comuni cati on nmaps
and DDirectory-generated comuni cati on naps are done. |If a difference is

found, a diaghostic nessage containing "DDirectory Test" is printed as

output from zdrive

#

Default value is O.

#

NOTE: The Fortran90 driver zfdrive ignores this input line.

He m s e m e o
Test DDirectory = 0

He m o m e m e o
Test Null Inport Lists = <integer>

#

This line signhals that zdrive should test Zoltan's capability to accept
NULL inport lists to Zoltan Help Mgrate. It allows the driver to pass NULL
inmport lists. This flag's value should not affect the output of zdrive.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (7 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

#
Default value is O.

NOTE: The Fortran90 driver zfdrive ignores this input line.

Test Null Inport Lists =0

Test Multi Call backs = <integer>

This line signals that zdrive should test the |ist-based (MILTI) call back
functions. |If this line is set to 1, zdrive registers |ist-based call back
functions. Oherw se, callbacks on individual functions are registered.
This flag's value should not affect the output of zdrive.

Def ault value is O.

Test Multi Call backs = 0

HHEIFHFHFHHHR

Test Local Partitions = <integer>

This line signals that zdrive should test Zoltan using various val ues

of the NUM LOCAL_PARTI TI ONS par anet er and/ or nonuni form partition sizes.
Wil e setting NUM LOCAL_PARTI TIONS using a "Zoltan Paraneter" above
woul d make all processors have the sane nunber of |ocal partitions,

this flag allows different processors to have different val ues for
NUM_LOCAL_PARTI TI ONS

Valid values are integers fromO to 7

0: NUM LOCAL_PARTITIONS is not set (unless specified as a
"Zoltan Paraneter" above).

1: Each processor sets NUM LOCAL PARTITIONS to its processor nunber;
e.g., processor 0 requests zero |local partitions; processor 1
requests 1 local partition, etc.

2: Each odd-nunbered processor sets NUM LOCAL PARTITIONS to its
processor nunber; even-nunbered processors do not set
NUM_LOCAL_PARTI TI ONS

3: One partition per proc, but variable partition sizes.

Only set partition sizes for upper half of procs
(using Zoltan LB Set Part_ Sizes and gl obal partition nunbers).

4: Variabl e nunmber of partitions per proc, and variable
partition sizes. Proc i requests i partitions, each
of size 1/i.

5: One partition per proc, but variable partition sizes.

Same as case 3, except all sizes are increased by one to
avoi d possible zero-sized partitions.

6: One partition per proc, but variable partition sizes.

When nprocs >= 6, zero-sized partitions on processors >= 2.
(This case is of particular interest for HSFC.)

7: One partition per proc, but variable partition sizes.

When nprocs >= 6, zero-sized partitions on processors <= 3.
(This case is of particular interest for HSFC.)

HHEIFHHFHFHFHHFHFEHFHFHFEHFHFEHFEHFFFEHFHEHFEHFHEEHFHFEHFR

Default value is O.

Test Local Partitions =0

Test Generate Files = <integer>
#
This line signhals that zdrive should test Zoltan using Zoltan_Generate Files

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (8 of 9) [8/4/2006 9:22:12 AM]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp
to produce output files that describe the geonetry, graph, or hypergraph
used in the | oad-bal ancing. Such files nay be useful for debuggi ng.

0: Do not generate fil es.
1. Cenerate files.

HHHH*

Default value is O.

Test Generate Files = 0

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp (9 of 9) [8/4/2006 9:22:12 AM]

Zoltan Developer's Guide: Visualization of Geometric Partitionings

Zoltan Developer's Guide | Next | Previous

Appendix: Visualization of Geometric Partitionings

Graphical images of partitioned meshes can help you to understand the geometric partitioning algorithms of Zoltan
and to debug new or existing algorithms. The following sections describe methods for visualizing the partitionings
computed by the test drivers.

2D problems with gnuplot

To view the result of a 2D decomposition performed by the test driver, use the "gnuplot output™ option of the test
driver input file, as described in zdrive.inp. The test driver will write afile that can be loaded into gnuplot. The result
for the test mesh in directory ch_film2, partitioned into six regions with RCB, is something like this:

[gnuplot 2D view]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (1 of 4) [8/4/2006 9:21:13 AM]

http://www.gnuplot.org/

Zoltan Developer's Guide: Visualization of Geometric Partitionings

3D problems with vtk _view

3D visualization requires downloading and compiling the Visualization Toolkit (VTK) library (version 5.0 or later).
Y ou can then use the Zoltan top level Makefile to build the vtk_view application found in the util directory of Zoltan.
Build details can be found in the Config.generic file in Utilities’'Config. Note that you will have to download and
build CMake, the makefile generator used by VTK, before you can build VTK.

vtk view isaparallel MPI program. It does not need to be run with the same number of processes with which you ran
zdrive. Y ou can choose the number of processes based on the size of the input mesh you will be visualizing, and the
computational load of rendering it to an image at interactive rates.

If you run vtk_view in the directory in which you ran the test driver, the following will happen:
« vtk view will read zdrive.inp, or another input parameter file if you specify a different file on the command
line.
« It will read in the same input Chaco or Exodus |1 mesh that the test driver read in.

« Itwill read in the file_name.out.p.n files that the test driver wrote listing the partition assigned to every global
ID.

« It will open awindow on your display, showing the input mesh. For Chaco files, the mesh vertices will be
colored by the partition into which Zoltan placed them. For Exodus I1 files, the mesh elements will be so
colored. A scalar bar in the window indicates the mapping from colors to partition numbers. A caption
describes the input file name, the decomposition method, the Zoltan parameter settings, and so on. Y ou can
use your mouse to rotate the volume, pan and zoom in and out.

The example below shows how vtk view displays the mesh in the test directory ch_brack2 3 after it has been
partitioned with HSFC across 5 processes.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (2 of 4) [8/4/2006 9:21:13 AM]

http://www.vtk.org/
file:///www.cmake.org
http://www.vtk.org/

Zoltan Developer's Guide: Visualization of Geometric Partitionings

[vtk_view 3D view]

If no test driver output files are found, vtk_view will display the mesh without partition IDs.
There are afew additional options that can be added to the test driver input file, that are specifically for vtk_view.

zdrive count = <number> the number of file_name.out.p.n files, also the value of p
image height = <number> number of pixelsin height of image (default is 300)
image width = <number> number of pixelsin width of image (300)

omit caption = <1 or 0> do not print default caption in window if "1" (0)

omit scalar bar = <1 or 0> do not print scalar bar in window if "1" (0)

add caption = <text of caption> display indicated text in the window (no caption)

The zdrive count option may be required if you have more than one set of test driver output filesin the directory.
Otherwise, vtk_view will look for files of the form file_name.out.p.n for any value p. Note that since the window may
be resized with the mouse, you may not need image height and image width unless you must have avery specific
window size. Also note that if you ran the Fortan test driver zfdrive, you will need to rename the output files from
file_name.fout.p.n to file_name.out.p.n.

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (3 of 4) [8/4/2006 9:21:13 AM]

Zoltan Developer's Guide: Visualization of Geometric Partitionings

Off-screen rendering with vtk_write

In some situations it is not possible or not convenient to open awindow on adisplay. In that case, you can compile
util/vtk_view.cpp with the flag OUTPUT_TO_FILE and it will create a program that renders the image to afile
instead of opening awindow on adisplay. (The Zoltan top level Makefile does exactly this when you use the
vtk_write target.)

Note that while vtk_view is built with OpenGL and VTK, vtk _write must be built with Mesa GL and a version of the
VTK libraries that you have compiled with special Mesa flags and with the Mesa header files. Thisis because

OpenGL implementations are not in general capable of off-screen rendering, and Mesa GL is. The Config.generic
filein Utilities/Config describes in detail how to build Mesa and then VTK for off-screen rendering.

vtk_write goes through the same steps that vtk _view does, except at the end it writes one or more image files instead
of opening awindow on your display. The images begin with a camera focused on the mesh, pointing in the direction
of the negative Z-axis. The positive Y -axisisthe "up" direction, and we use a right-handed coordinate system. (So
the X-axisis pointing to the right.) The camera can revolve around the mesh in 1 degree increments.

The zdrive count, image width, and image height options listed above also apply to vtk write. In addition, you can
use these options to govern the output images.

output format = <format name> choices are tiff, png, jpeg, ps and bmp (default istiff)
output name = <file name> base name of image file or files (outfile)

output frame start = <number> first frame, between 0 and 360 (0)

output frame stop = <number> last frame, between 0 and 360 (0)

output frame stride = <number> the difference in degrees from one frame to the next (1)

output view up = <xy z> the direction of "up" as camera points at mesh (0 1 0)

Other file formats

vtk_view was written to post-process zdrive runs, so it only reads Chaco or Exodus I1/Nemesis meshes. If you are
working with adifferent mesh-based file format, it is still possible that you could use vtk view or vtk_write to view
the partitions assigned to your mesh by some application using the Zoltan library. VTK at this point in time has
readers for many different file formats. If VTK has areader for your format, then modify the read_mesh function in
util/vtk_view.cpp to use that reader.

Y ou can then hard-code vtk view to read your file, or you can modify read cmd filein driver/dr_input.c to accept a
specification of your file type in addition to Chaco and Nemesis. If you do the latter you can create a zdrive-style

input file in which to specify your file name and other visualization parameters.

Finally, you need to create text files listing each global ID you supplied to Zoltan, followed by the partition ID
assigned by Zoltan, with only one global ID/partition ID pair per line. Name thisfile or files using the conventions
used by the test drivers.

[Table of Contents | Next: Using the Test Script | Previous: Using the Test Drivers)

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_view.html (4 of 4) [8/4/2006 9:21:13 AM]

file:///www.vtk.org
file:///www.mesa3d.org
file:///www.vtk.org
file:///www.vtk.org

Zoltan Developer's Guide: Running test_zoltan

Zoltan Developer's Guide | Next | Previous

Appendix: Using the test script test_zoltan

The purpose of the Zoltan test script isto run the test driver zdrive (or zfdrive) on a set of test problemsto

verify that the Zoltan library works correctly. The script compares the output of actual runs with
precomputed output. The assumption isthat if the outputs are identical, then the current implementation
Isislikely to be correct. Small differences may occur depending on the architectures used; developers
should examine the output and use their judgement in determining its correctness. It is strongly
recommended that developers run test_zoltan to verify correctness before committing changes to existing
code!

How to run test_zoltan

First make sure you have compiled the driver zdrive (or zfdrive). Then go to the Zoltan directory

Zoltan/tests and type test_zoltan with suitable options as described below. Thiswill run the test script in
interactive mode. The output from the driver will be sent to stdout and stderrstdout and stderr with a
summary of results. The summary of resultsisalso saved in alog file. If an error occured, look at the log
file to find out what went wrong. The script currently assumes that runs are deterministic and
reproducible across all architectures, which is not necessarily true. Hence false alarms may occur.

Syntax

test_zoltan [-arch arch-type] [-cmd command] [other options as listed below]

It isrequired to use either the -arch or the -cmd option. The other arguments are optional .

Options:

-arch arch-type The architecture on which the driver isto run. For alist of currently supported
architectures, type test_zoltan with no arguments.

-cmd command The command is the command that the script uses to launch the driver. One
must include an option to specify the number of processors as part of the
command. Use quotes appropriately; for example, -cmd 'mpirun -np'. Default
settings have been provided for all the supported architectures.

-logfile filename The name of the log file. The default istest_zoltan.log. If an old log file
exists, it will be moved to test_zoltan.log.old.

-nN0_parmetis Do not run any ParMETIS methods.

-n0_nemesis Do not run test problemsin Nemesis format.

-no_chaco Do not run test problemsin Chaco format.

-yes fortran Run the Fortran90 driver zfdrive instead of zdrive.

The default behavior isto run zdrive al methods on all types of input format.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_test_script.html (1 of 2) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
http://www.cs.sandia.gov/CRF/chac.html

Zoltan Developer's Guide: Running test_zoltan

Test problems

The test problems are included in subdirectories of the Zoltan/test directory. Problems using Chaco input

files arein subdirectories ch_*; problems using Nemesis input files are in subdirectoriesnem *. Please
see the README files located in each test directory for more details on these test problems.

Load balancing methods

Many different load-balancing methods are currently tested in test_zoltan. Input files for the methods are
found in the test problem subdirectories. The input files are named zdrive.inp.<method>, where
<method> indicates which load-balancing method is passed to Zoltan. To run only a subset of the
methods, edit the test_zoltan script manually; searching for "rch" shows which lines of the script must be
changed.

Number of processors

The script test_zoltan runs each test problem on a predetermined number of processors, currently ranging
from 310 9.

[Table of Contents | Next: RCB | Previous. Visualization of Geometric Partitionings]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_test_script.html (2 of 2) [8/4/2006 9:21:14 AM]

http://www.cs.sandia.gov/CRF/chac.html

Zoltan Developer's Guide: RCB
Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Coordinate Bisection (RCB)

Outline of Algorithm

The implementation of Recursive Coordinate Bisection (RCB) in Zoltan is due to Steve Plimpton of
Sandia National Laboratories and was modified by Matt St. John and Courtenay Vaughan. In this
implementation of RCB, the parallel computer isfirst divided into two pieces and then the computational
domain is divided into two pieces such that the proportion of work in each piece is the same as the
proportion of computational power. The division of the parallel machine is done by a subroutine which is
part of the support for heterogenous architectures that is being built into the Zoltan library. This process
Is repeated recursively on each subdomain and its associated part of the computer. Each of these
divisions are done with a cutting plane that is orthogonal to one of the coordinate axes.

At each of these stages, each subdomain of processors and the objects that are contained on those
processors are divided into two sets based on which side of the cutting plane each object is on. Either or
both of these sets may be empty. On each processor, the set of objects which are on the same side of the
cut asthe processor are retained by the processor, while the other objects are sent to processors on the
other side of the cut. In order to minimize the maximum memory usage in each set of processors, the
objects that are being sent to each set of processors are distributed such that each each processor in a set
has about the same number of objects after the objects from the other set of processors are sent. In the
case when a processor has more objects that it will retain than the average number of objects that the rest
of the processors havein its set, then that processor will not receive any objects. Thus each processor
may send and receive objects from several (or no) processors in the other set. The process of determining
which outgoing objects are sent to which processors is determined in the subroutine

Zoltan_Create Proc_List. Once this new distribution of objects is determined, the unstructur ed

communication package in Zoltan is used to determine which processors are going to receive which
objects and actually move the objects.

For applications that wish to add more objects to the decomposition at alater time (e.g., through
Zoltan LB Box Assign or Zoltan LB Point Assign), information to do this can be retained during

the decomposition phase. Thisinformation is kept if the parameter KEEP CUTS s set during the
decomposition (see the RCB section in the Zoltan User's Guide). Thisinformation about the

decomposition can be thought of as a tree with the nodes which have children representing the cut
information and the nodes with no children representing processors. An object is dropped through the
tree starting with the root node and uses the cut information at each node it encounters to determine
which subtree it traverses. When it reaches a terminal node, the node contains the processor number that
the object belongs to. The information to construct the tree is saved during the decomposition. At each
step in the decomposition, when each set is divided into two sets, the set with the lowest numbered
processor is designated to be the left set and the information about the cut is stored in the lowest
numbered processor in the other set of processors which isthe right set. As aresult of this process, each
processor will store information for, at most, one cut, since once a processor stores information about a

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcb.html (1 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: RCB

cut, by being the lowest numbered processor in the right set, it will always be in aleft set after each
subsequent cut since it will be the lowest numbered processor in the set being cut and the set it is put into
will be the left set. The processor which stores the cut information also stores the root node as its parent.
After the end of the division process, al of the information is collected onto all of the processors. The
parent information is then used to establish the leaf information for the parent. When thisinformation is
gathered, the tree structure is stored in arrays with the array position determined by the processor number
that was storing the information. There is an array which stores the position of the cut information for the
left set and one for the right set as well as arrays for the cut information. Given that the lowest numbered
processor after acut isin the left set, the cut information is stored in the right set, and there is one fewer
cut than the total number of processors, processor 0 has no cut information, so the O position of the right
set array isempty and is used to store the position in the array that the first cut is stored. When this
information is used to process an object, array position O in the right set array is used to determine the
array position of the first cut. From there, which side of the cut the object is on is determined and that
information is used to determine which cut to test the object against next. This processis repeated
recursively until aterminal node is encountered which contains the processor number that the object
belongs to.

When the parameter RCB_REUSE is specified, the RCB algorithm attempts to use information from a

previous RCB decomposition to generate an "initial guess' at the new decomposition. For problems that
change little between invocations of RCB, using RCB_REUSE can reduce the amount of data movement

in RCB, improving the performance of the algorithm. When RCB_REUSE is true,the coordinates of all
obj ects obtained through query functions are passed through Zoltan LB Point Assign to determine
their processor assignment in the previous RCB decomposition. The information for the objectsis then
sent to the new processor assignments using the unstructured communication utilities to generate an
initial condition matching the output of the previous RCB decomposition. The norma RCB algorithmis
then applied to this new initial condition.

Data Structure Definitions

There are three major data structuresin RCB and they are defined in rcb/rcb.h and rcb/shared.h. The
points which are being load balanced are represented as a structure Dot Sruct which contains the
location of the point, its weight, and its originating processor number. The nodes on the decomposition
tree are represented by the structure rcb_tree which contains the position of the cut, the dimension that
the cut is perpendicular to, and the node's parent and two children (if they exist) in the tree. The structure
RCB_Struct isthe RCB data structure which holds pointers to all of the other data structures needed for
RCB. It contains an array of Dot_Struct to represent the points being load balanced, global and local IDs
for the points, and an array of rcb_tree (whose length is the number of processors) which contains the
decomposition tree.

Parameters

The parameters used by RCB and their default values are described in the RCB section of the Zoltan
User's Guide. These can be set by use of the Zoltan RCB_Set Param subroutine in the file rcb/rcb.c.

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcb.html (2 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_util_comm.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: RCB

When the parameter REDUCE DIMENSIONS is specified, the RCB agorithm will perform alower

dimensional partitioning if the geometry isfound to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for RCB is Zoltan_RCB in thefile rcb/rcb.c.

[Table of Contents | Next: Recursive Inertial Bisection (RIB) | Previous: Using the Test Script]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rcbh.html (3 of 3) [8/4/2006 9:21:14 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rcb.html

Zoltan Developer's Guide: RIB

Zoltan Developer's Guide | Next | Previous

Appendix: Recursive Inertial Bisection (RIB)

Outline of Algorithm

The implementation of Recursive Inertial Bisection (RIB) in Zoltan is due due to Bruce Hendrickson and
Robert Leland of Sandia National Laboratories for use in Chaco and was modified by Courtenay
Vaughan. RIB is an algorithm similar to RCB (see the appendix on RCB for a description of RCB) in
that it uses the coordinates of the objects to be balanced to do the load balancing. Similarly to RCB, the
domain is recursively divided into two pieces until the number of subdomains needed is reached. In each
stage of the division, the direction of the principle axis of the domain to be divided is calculated by
determining an eigenvector of the inertial matrix. This direction vector is used to define anormal to a
plane which is used to divide the domain into two pieces. This process is repeated until the desired
number of subdomainsis reached.

The communication of objects being divided is handled by the same routine as is used by RCB. For
applications which wish to add more objects to the decomposition at a later time (e.g., through

Zoltan LB Box Assign or Zoltan LB Point Assign), information to do this can be retained during
the decomposition phase. Thisinformation is kept if the parameter KEEP_CUTS is set during the
decomposition. The processis similar to that used for RCB, but the information kept is different. For
each RIB cut, the center of mass of the subdomain which is cut, the direction vector, and a distance from
the center of mass to the cutting plane have to be saved.

Data Structure Definitions

There are three major data structures in RIB and they are defined in rcb/rib.h and rcb/shared.h. The
points which are being load balanced are represented as a structure Dot Struct which contains the
location of the point, its weight, and the originating processor's number. The nodes on the decomposition
tree are represented by the structure rib_tree which contains the position of the cut, the center of mass of
the subdomain which is being cut, the direction vector of the principle axis of the subdomain, and the
node's parent and two children (if they exist) in the tree. The structure RIB_Struct isthe RIB data
structure which holds pointers to al of the other data structures needed for RIB. It contains an array of
Dot_Struct to represent the points being load balanced, global and local IDs of the points, an array of
rib_tree (whose length is the number of processors) which contains the decomposition tree, and the
dimension of the problem.

Parameters

The parameters used by RIB and their default values are described in the RIB section of the Zoltan
User's Guide. These can be set by use of the Zoltan_RIB_Set Param subroutine in the file rcb/rib.c.

file://[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rib.html (1 of 2) [8/4/2006 9:21:14 AM]

http://www.cs.sandia.gov/CRF/chac.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html

Zoltan Developer's Guide: RIB

When the parameter REDUCE DIMENSIONS is specified, the RIB algorithm will perform alower

dimensional partitioning if the geometry isfound to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for RIB is Zoltan_RIB in thefilercb/rib.c.

[Table of Contents | Next: ParMETIS and Jostle | Previous. Recursive Coordinate Bisection (RCB)]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_rib.html (2 of 2) [8/4/2006 9:21:15 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_rib.html

Zoltan Developer's Guide: ParMETIS/Jostle
Zoltan Developer's Guide | Next | Previous

Appendix: ParMETIS and Jostle

Overview of structure (algorithm)

This part of Zoltan provides an interface to various graph-based |oad-balancing algorithms. Currently
two libraries are supported: ParMETIS and Jostle. Each of these libraries contain severa agorithms.

Interface algorithm

The structure of the code is as follows: Each package (ParMETIS, Jostle) has its own wrapper routine
that performsinitialization and sets parameters. The main routine is Zoltan_ParMetis_Jostle, which
constructs an appropriate graph data structure using Zoltan's query functions. After the graph structure
has been constructed, the appropriate library is called and the import/export list is created and returned.

Please note that ParMET|S and Jostle are not integral parts of Zoltan. These libraries must be obtained
and installed separately. (ParMETIS may be bundled with Zoltan, but it is an independent package
developed at Univ. of Minnesota.) Zoltan merely provides an interface to these libraries.

The most complex task in the interface code is the construction of the graph data structure. This structure
Is described in the next section. The routine uses the Zoltan query functionsto get alist of objects and
edges on each processor. Each object has a unique global 1D which is mapped into a unique (global)
number between 1 and n, where n isthe total number of objects. The construction of the local
(on-processor) part of the graph is straightforward. When an edge goes between objects that reside on
different processors, global communication is required. We use Zoltan's unstructured communication
library for this. A hash function (Zoltan Hash) is used to efficiently map global IDsto integers. The
graph construction agorithm has parallel complexity O(max; {n;+m+p}), where n; is the number of

objects on processor j, m; is the number of edges on processor j, and p is the number of processors.

One other feature of the interface code should be mentioned. While Zoltan allows objects and edges to
have real (float) weights, both ParMETIS and Jostle currently require integer weights. Therefore, Zoltan
first checksif the object weights are integers. If not, the weights are automatically scaled and rounded to
integers. The scaling is performed such that the weights become large integers, subject to the constraint
that the sum of (any component of) the weights is less than alarge constant MAX_WGT_SUM <
INT_MAX. The scaled weights are rounded up to the nearest integer to ensure that nonzero weights
never become zero. Note that for multidimensional weights, each weight component is scaled
independently. (The source code is written such that this scaling is ssmple to change.)

Currently Zoltan constructs and discards the entire graph structure every time a graph-based method
(ParMETIS or Jostle) is called. Incremental update of the graph structure may be supported in the future.

The graph construction code in Zoltan_ParMetis_Jostle can also be used to interface with other
graph-based algorithms. Please contact the Zoltan developers if you have a parallel partitioning or

|oad-balancing code and would like assistance with interfacing it to Zoltan.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_parmetis.html (1 of 2) [8/4/2006 9:21:15 AM]

http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_jostle.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www.gre.ac.uk/jostle
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
mailto:zoltan@cs.sandia.gov

Zoltan Developer's Guide: ParMETIS/Jostle

Algorithms used in ParMETIS and Jostle libraries

There are two main types of algorithms used in ParMETIS and Jostle. The first is multilevel graph
partitioning. The main ideaisto take alarge graph and construct a sequence of smaller and simpler
graphs that in some sense approximate the original graph. When the graph is sufficiently small it is
partitioned using some other method. This smallest graph and the corresponding partition is then
propagated back through all the levelsto the original graph. A popular local refinement strategy known
as Kernighan-Lin is employed at some or every level.

The second main strategy is diffusion. This method assumes that an initial partition (balance) is given,
and load balance is achieved by repeatedly moving objects (nodes) from partitions (processors) that have
too heavy load to neighboring partitions (processors) with too small load.

For further details about the algorithms in a specific library, please refer to the documentation that is
distributed with that library.

Data structures

We use the ParMETIS paralel graph structure. Thisisimplemented using 5 arrays:
vixdist: gives the distribution of the objects (vertices) to processors

xadj: indices (pointers) to the adjncy array

adjncy: neighbor lists

adjwgt: edge weights

5. vwgt: vertex (object) weights

The vtxdist array is duplicated on all processors, while the other arrays are local.
For more details, see the ParMETIS User's Guide.

Wb

Parameters

Zoltan supports the most common parametersin ParMETIS and Jostle. These parameters are parsed in
the package-specific wrapper routine (Zoltan_ParMetis or Zoltan_Jostle) and later passed on to the
desired library viaZoltan_ParMetis Jostle.

In addition, Zoltan has one graph parameter of its own: CHECK GRAPH. This parameter isset in

Zoltan_ParMetis Jostle and specifies the amount of verification that is performed on the constructed
graph. For example, it is required that the graph is symmetric and that the weights are non-negative.

Main routine

The mainroutineis Zoltan_ParMetis Jostle but it should always be accessed through either
Zoltan_ParMetisor Zoltan_Jostle.

[Table of Contents | Next: Hypergraph Partitioning | Previous:. Recursive Inertial Bisection (RIB)]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_parmetis.html (2 of 2) [8/4/2006 9:21:15 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_parmetis.html

Zoltan Developer's Guide: Hypergraph Partitioning

Zoltan Developer's Guide | Next | Previous

Appendix: Hypergraph Partitioning

Hypergraph partitioning is a useful partitioning and load balancing method when connectivity datais
available. It can be viewed as a more sophisticated aternative to the traditional graph partitioning.

A hypergraph consists of vertices and hyperedges. A hyperedge connects one or more vertices. A graph
isaspecial case of a hypergraph where each edge has size two (two vertices). The hypergraph model is
well suited to parallel computing, where vertices correspond to data objects and hyperedges represent the
communication requirements. The basic partitioning problem isto partition the vertices into k
approximately equal sets such that the number of cut hyperedges is minimized. Most partitioners
(including Zoltan-PHG) allows a more general model where both vertices and hyperedges can be
assigned weights. It has been shown that the hypergraph model gives a more accurate representation of
communication cost (volume) than the graph model. In particular, for sparse matrix-vector
multiplication, the hypergraph model exactly represents communication volume. Sparse matrices can be
partitioned either along rows or columns; in the row-net model the columns are vertices and each row
corresponds to an hyperedge, while in the column-net model the roles of vertices and hyperedges are
reversed.

Zoltan contains a native parallel hypergraph partitioner, called PHG (Parallel HyperGraph partitioner). In
addition, Zoltan provides access to PaToH, a serial hypergraph partitioner. Note that PaToH is not part of

Zoltan and should be obtained separately from the PaToH web site. Zoltan-PHG isafully parallel
multilevel hypergraph partitioner. For further technical description, see [Devine et al, 2006].

Algorithm:

The agorithm used is multilevel hypergraph partitioning. For coarsening, several versions of inner
product (heavy connectivity) matching are available. The refinement is based on Fiduccia-Mattheysis
(FM) but in paralél it is only an approximation.

Parallel implementation:

A novel feature of our parallel implementation is that we use a 2D distribution of the hypergraph. That is,
each processor owns partial data about some vertices and some hyperedges. The processors are logically

organized in a2D grid aswell. Most communication is limited to either a processor row or column. This

design should allow for good scalability on large number of processors.

Data structures:

The hypergraph is the most important data structure. Thisis stored as a compressed sparse matrix. Note
that in parallel, each processor owns alocal part of the global hypergraph (a submatrix of the whole
matrix). The hypergraph datatypeis struct HGraph, and contains information like number of vertices,
hyperedges, pins, compressed storage of all pins, optional vertex and edge weights, pointersto relevant
communicators, and more. One cryptic notation needs an explanation: The arrays hindex, hvertex are
used to look up vertex info given a hyperedge, and vindex, vedge are used to look up hyperedge info

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (1 of 4) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_alg_parmetis.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_alg_reftree.html
http://bmi.osu.edu/%7Eumit/software.htm
http://bmi.osu.edu/%7Eumit/software.htm
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_refs.html#hypergraph-ipdps06

Zoltan Developer's Guide: Hypergraph Partitioning

given avertex. Essentialy, we store the hypergraph as a sparse matrix in both CSR and CSC formats.
This doubles the memory cost but gives better performance.

Parameters:

In the User's Guide, only the most eessential parameters have been documented. There are severa other
parameters, intended for devel opers and perhaps expert "power” users. We give a complete list of all
parameters below. Note that these parameters may change in future versions!

Method String: HYPERGRAPH
Parameters:
HYPERGRAPH_PACKAGE PHG (paralel) or PaToH (seria)
CHECK HYPERGRAPH Check if in_put dataisvalid. (Slows performance;intended
- for debugging.)
PHG OUTPUT LEVEL Level of verbosity; Ois silent.
PHG _FINAL OUTPUT Print stats about final partitioning? (0/1)

Desired number of processesin the vertex direction (for 2D

internal layout)

PHG NPROC HEDGE Des_ired number of processes in the hyperedge direction (for
— — 2D internal layout)

PHG_COARSENING_METHOD The method to use in matching/coarsening; currently these

are available.

ipm - inner product matching (a.k.a. heavy connectivity

matching)

c-ipm - column ipm; faster method based on ipm within

processor columns

aipm - alternate between fast method (I-ipm) and ipm

|-ipm - local ipm on each processor. Fastest option but

often gives poor quality.

h-ipm - hybrid ipm that uses partial c-ipm followed by ipm

on each level

PHG_NPROC_VERTEX

PHG_COARSENING _LIMIT Number of vertices at which to stop coarsening.
Ordering of verticesin greedy matching scheme:
0 - random
1 - natural order (as given by the query functions)
2 - increasing vertex weights
3 - increasing vertex degree
4 - increasing vertex degree, weighted by pins
Scale edge weights by some function of size of the
hyperedges:
PHG_EDGE_SCALING 0 - no scaling

1-scaleby 1/(size-1) [absorption scaling]

2 - scale by 2/((size*size-1)) [clique scaling]

PHG_VERTEX_VISIT_ORDER

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (2 of 4) [8/4/2006 9:21:16 AM]

Zoltan Developer's Guide: Hypergraph Partitioning

Variationsin "inner product” similarity metric (for
matching):
0 - Euclidean inner product: <x,y>
PHG_VERTEX_SCALING 1 - cosine similarity: <x,y>/(|x[*|y|)
2 - <xy>I(x"2* ly|*2)
3 - scale by sgrt of vertex weights
4 - scale by vertex weights
PHG_COARSEPARTITION_METHOD Method to partition the coarsest (smallest) hypergraph;,
typically donein serial:
random - random
linear - linear (natural) order
greedy - greedy method based on minimizing cuts
auto - automatically select from the above methods (in
parallel, the processes will do different methods)
Refinement algorithm:
PHG_REFINEMENT_METHOD fm - two-way approximate FM
none - no refinement
Loop limit in FM refinement. Higher number means more
refinement.
Maximum number of negative moves allowed in FM.
PHG_REFINEMENT MAX NEG MOVE
PHG BAL TOL _ADJUSTMENT Controls how the balance tolerance is adjusted at each level
of bisection.
Randomize layout of vertices and hyperedges in internal
parallel 2D layout? (0/1)
Operation to be applied to edge weights supplied by
different processes for the same hyperedge:
add - the hyperedge weight will be the sum of the supplied
weights
PHG EDGE WEIGHT _OPERATION max - the hyperedge weight will be the maximum of the
supplied weights
error - if the hyperedge weights are not equal, Zoltan will
flag an error, otherwise the hyperedge weight will be the
value returned by the processes

PHG_REFINEMENT_LOOP_LIMIT

PHG_RANDOMIZE_INPUT

EDGE SIZE THRESHOLD Ignore hyperedges greater than this fraction times number
of vertices.

PATOH_ALLOC_POOLO Ic\l/letearir}(;ry alocation for PaToH; see the PaToH manual for

PATOH_ALLOC_POOL1 g/lete;qzry allocation for PaToH:; see the PaToH manual for

Default values:
HYPERGRAPH_ PACKAGE = PHG
CHECK_HYPERGRAPH =0
PHG OUTPUT LEVEL=0

file:///[E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (3 of 4) [8/4/2006 9:21:16 AM]

Zoltan Developer's Guide: Hypergraph Partitioning

Required Query Functions:

Optional Query Functions:

It is possible to provide the graph query functions instead of the hypergraph queries, though thisis not

PHG_FINAL_OUTPUT=0
PHG_REDUCTION_METHOD=ipm
PHG_REDUCTION_LIMIT=100
PHG_VERTEX_VISIT_ORDER=0
PHG_EDGE_SCALING=0
PHG_VERTEX_SCALING=0
PHG_COARSEPARTITION_METHOD=greedy
PHG_REFINEMENT METHOD=fm
PHG_REFINEMENT LOOP_LIMIT=10
PHG_REFINEMENT MAX_NEG_MOVE=100
PHG BAL_TOL_ADJUSTMENT=0.7
PHG_RANDOMIZE_INPUT=0
PHG_EDGE_WEIGHT OPERATION=max
EDGE_SIZE THRESHOLD=0.25
PATOH_ALLOC_POOL0=0
PATOH_ALLOC_POOL1=0

ZOLTAN NUM OBJ FN

ZOLTAN OBJ LIST FN or

ZOLTAN FIRST OBJ FN/ZOLTAN NEXT OBJ FN

pair
ZOLTAN HG SIZE CS FN
ZOLTAN HG CS FN

ZOLTAN HG SIZE EDGE WTS FN
ZOLTAN HG EDGE WTS FN

recommended. If only graph query functions are registered, Zoltan will automatically create a
hypergraph from the graph, but some information (specifically, edge weights) will be lost.

[Table of Contents | Next: Refinement Tree Partitioning | Previous. ParMetis]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_phg.html (4 of 4) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_NUM_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_OBJ_LIST_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_FIRST_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_NEXT_OBJ_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_SIZE_CS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_CS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_SIZE_EDGE_WTS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug_query_lb.html#ZOLTAN_HG_EDGE_WTS_FN
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/ug.html

Zoltan Developer's Guide: Refinement Tree

Zoltan Developer's Guide | Next | Previous

Appendix: Refinement Tree

Overview of structure (algorithm)

The refinement tree based partitioning algorithm was devel oped and implemented by William Mitchell
of the National Institute of Standards and Technology. It is similar to the Octree method except that it
uses a tree representation of the refinement history instead of a geometry based octree. The method
generates a space filling curve which is cut into K appropriatel y-sized pieces to define contiguous
partitions, where the size of a piece isthe sum of the weights of the elementsin that piece. K, the number
of partitions, is not necessarily equal to P, the number of processors. It is an appropriate |load balancing
method for grids that are generated by adaptive refinement when the refinement history is available. This
implementation consists of two phases: the construction of the refinement tree, and the definition of the
partitions.

Refinement Tree Construction

The refinement tree consists of aroot node and one node for each element in the refinement history. The
children of the root node are the elements of theinitial coarse grid. The children of all other nodes are the
elements that were formed when the parent element was refined. Upon first invocation, the refinement
treeisinitialized. This creates the root node and initializes a hash table that maps global 1Ds into nodes
of the refinement tree. It also queries the user for the elements of the initial grid and creates the children
of the root node. Unless the user provides the order through which to traverse the elements of the initia
grid, apath is determined through the initial elements along with the "in" vertex and "out" vertex of each
element, i.e., the vertices through which the path passes to move from one element to the next. This path
can be determined by a Hilbert space filling curve, Sierpinski space filling curve (triangles only), or an
algorithm that attempts to make connected partitions (connectivity is guaranteed for triangles and
tetrahedra). The refinement tree isrequired to have al initial coarse grid elements, not just those that
reside on the processor. However, this requirement is not imposed on the user; a communication step fills
in the elements from other processors. This much of the tree persists throughout execution of the
program. The remainder of the tree is reconstructed on each invocation of the refinement tree partitioner.
The remainder of the treeis built through atree traversal. At each node, the user is queried for the
children of the corresponding element. If there are no children, the user is queried for the weight of the
element. If there are children, the order of the children is determined such that a tree traversal produces a
space filling curve. The user indicates what type of refinement was used to produce the children
(bisection of triangles, quadrasection of quadrilaterals, etc.). For each supported type of refinement, a
template based ordering isimposed. The template also maintains an "in" and "out" vertex for each
element which are used by the template to determine the beginning and end of the space filling curve
through the children. If the refinement is not among the types supported by templates, an exhaustive
search is performed to find an appropriate order, unless the user provides the order.

Partition algorithm

The algorithm that determines the partitions uses four traversals of the refinement tree. The first two

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_reftree.html (1 of 2) [8/4/2006 9:21:16 AM]

http://math.nist.gov/~mitchell

Zoltan Developer's Guide: Refinement Tree

traversals sum the weightsin the tree. In the first traversal, each node gets the sum of the weights of all
the descendant nodes that are assigned to this processor. The processors then exchange information to fill
in the partial sums for the leaf elements that are not owned by this processor. (Note that an unowned |eaf
on one processor may be the root of alarge subtree on another processor.) The second traversal

compl etes the summation of the weights. The root now has the sum of al the weights, which, in
conjunction with an array of relative partition sizes, determines the desired weight of each partition.
Currently the array of partition sizesare all equal, but in the future the array will be input to reflect
heterogeneity in the system. The third traversal determines the partitioning by adding subtreesto a
partition until the size of the partition meets the desired weight, and counts the number of elements to be
exported. Finally, the fourth traversal constructs the export list.

Data structures

The implementation of the refinement tree algorithm uses three data structures which are contained in
reftree/reftree.h. Zoltan Reftree data struct isthe structure pointed to by zz->LB.Data_Sructure. It
contains a pointer to the refinement tree root and a pointer to the hash table. Zoltan Reftree_hash node
isan entry in the hash table. It consists of aglobal ID, a pointer to arefinement tree node, and a " next"
pointer from which linked lists at each table entry are constructed to handle collisions.
Zoltan_Reftree_Struct is anode of the refinement tree. It contains the global ID, local 1D, pointers to the
children, weight and summed weights, vertices of the element, "in" and "out" vertex, aflag to indicate if
this element is assigned to this processor, and the new partition number.

Parameters

There are two parameters. REFTREE HASH SIZE determines the size of the hash table.
REFTREE INITPATH determines which algorithm to use to find a path through the initial elements.
Both are set by Zoltan_Reftree_Set_Param in the file reftree/reftree_build.c.

Main routine

The main routineis Zoltan_Reftree Part infile reftree/reftree_part.c.

[Table of Contents | Next: Hilbert Space-Filling Curve (HSFC) | Previous. Hypergraph Partitioning]

file:/l/E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_reftree.html (2 of 2) [8/4/2006 9:21:16 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_reftree.html

Zoltan Developer's Guide: HSFC

Zoltan Developer's Guide | Next | Previous

Appendix: Hilbert Space Filling Curve (HSFC)

Outline of Algorithm

This partitioning algorithm is loosely based on the 2D & 3D Hilbert tables used in Octree and on the
BSFC partitioning implementation by Andrew C. Bauer, Department of Engineering, State University of
New York at Buffalo, as his summer project at SNL in 2001. Please refer to the corresponding section in
the Zoltan User's guide, Hilbert Space Filling Curve (HSFC), for information about how to use this
module and its parameters. Note: the partitioning, point assign and box assign functionsin this code
module can be trivially extended to any space filling curve for which we have a state table definition of
the curve.

First, the weights and inverse Hilbert coordinates for each object are determined. If the objects do not
have weights, unit weights are assigned. If the objects have multiple weights, only the first weight is
currently used. The smallest axis-aligned box is found that contains all of the objects using their two or
three dimensional spatial coordinates. This bounding box is slightly expanded to ensure that al objects
are strictly interior to the boundary surface. The bounding box is necessary in order to calculate the
inverse Hilbert Space Filling curve coordinate. The bounding box is used to scale the problem
coordinates into the [0,1]*d unit volume (d represents the number of dimensionsin the problem space.)
The inverse Hilbert coordinate is calculated and stored as a double precision floating point value for each
object. This code works on problems with one, two or three dimensions (the 1-D Inverse Hilbert
coordinate is simply the problem coordinate itself, after the bounding box scaling.)

The agorithm seeks to cut the unit interval into P segments containing equal weights of objects
associated to the segments by their inverse Hilbert coordinates. The code allows a user vector to specify
the desired fraction of the total weight to be assigned to each interval. Note, a zero weight fraction
prevents any object being assigned to the corresponding interval. The unit interval isdivided into N bins,
N=k(P-1)+1, where k isa small positive constant.) Each bin has an left and right endpoint specifying the
half-open interval [1,r) associated with the bin. The bins form a non-overlapping cover of [0,1] with the
right endpoint of the last bin forced to include 1. The bins are of equal size on the first loop. (Hence each
interval or part of the partition is a collection of bins.)

For each loop, an MPI_Allreduce call is made to globally sum the weights in each bin. This call also
determines the maximum and minimum (inverse Hilbert) coordinate found in each bin. A greedy
algorithm sums the weights of the bins from left to right until the next bin would cause an overflow for
the current partition. Thisresults in new partition of P intervals. The location of each cut (just before an
"overflowing" bin) and the size of its"overflowing" bin are saved. The "overflowing" bin's maximum
and minimum are compared to determine if the bin can be practically subdivided. (If the bin's maximum
and minimum coordinates are too close relative to double precision resolution, the bin can not be
practically subdivided.) If at least one bin can be further refined, then looping will continue. In order to
prevent a systematic bias, the greedy algorithm is assumed to exactly satisfy the weight required by each
partition.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (1 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html

Zoltan Developer's Guide: HSFC

Before starting the next loop, the P intervals are again divided into N bins. The P-1 "overflow" bins are
each subdivided into k-1 equal bins. The intervals before and after these new bins determine the
remaining bins. This process maintains a fixed number of bins. No binis"privileged." Specifically, any
bin is subject to later refinement, as necessary, on future loops.

The loop terminates when there is no need to further divide any "overflow" bin. A slightly different
greedy agorithm is used to determine the final partition of P intervals from the N bins. In this case, when
the next bin would cause an overflow, the tolerance is computed for both underfilling (excluding this last
bin) and overfilling (including the last bin). The tolerance closest to the target tolerance is used to select
the dividing point. The tolerance obtained at each dividing point is compared to the user's specified
tolerance. An error isreturned if the user's tolerance is not satisfied at any cut. After each cut is made, a
correction is calculated as the ratio of the actual weight to the target weight used up to this point. This
correction is made to the target weight for the next partition. This correction fixes the subsequent
partitions when a"massive" weight object is on the border of a cut and its assignment creates an
excessive imbalance.

Generally, the number of loopsis small (proportional to log(number of objects)). A maximum of
MAX_LOOPS s used to prevent an infinite looping condition. A user-defined function is used in the
MPI_Allreduce call in order to simultaneously determine the sum, maximum, and minimum of each bin.
The message length in the MPI_Allreduce is proportional to the P, the number of partitions.

Note, when abin is encountered that satisfies more than two partitions, that bin isrefined into amultiple
of k-1 intervals which maintains atotal of N bins.

Hilbert Transformations

The HSFC now uses table driven logic to convert from spatial coordinates (2 or 3 dimensions) (the
Inverse Hilbert functions) and from the unit interval into spatial coordinates (Hilbert functions). In each
case there are two associated tables: the data table and the state table. In al cases, the table logic can be
extended to any required precision. Currently, the precision is determined for compatibility with the the
double precision used in the partitioning algorithm.

The inverse transformation is computed by taking the highest order bit from each spatial coordinate and
packing them together as 2 or 3 bits (as appropriate to the dimensionality) in the order xyz (or xy) where
x isthe highest bit in the word. Theinitia stateis 0. The data table lookup finds the value at the column
indexed by the xyz word and the row 0O (corresponding to the initial state value.) This data are the 3 (or 2)
starting bits of the Hilbert coordinate. The next state value is found by looking up the corresponding
element of the state table (xyz column and row 0.)

The table procedure continues to loop (using loop counter i, for example) until the required precision is
reached. At loop i, theith bits from each spatial dimension are packed together as the xyz column index.
The data table lookup finds the element at column xyz and the row determined by the last state table
value. Thisis appended to the Hilbert coordinate. The state table is used to find the next state value at the
element corresponding to the xyz column and row equal to the last state value.

Theinverse transformation is analogous. Here the 3 (or 2 in the 2-d case) bits of the Hilbert coordinate

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (2 of 5) [8/4/2006 9:21:17 AM]

Zoltan Developer's Guide: HSFC

are extracted into aword. Thisword is the column index into the data table and the state value is the row.
Thisword found in the data table is interpreted as the packed xyz bits for the spatial coordinates. These
bits are extracted for each dimension and appended to that dimension's coordinate. The corresponding
state table is used to find the next row (state) used in the next loop.

Point Assign

The user can use Zoltan LB Point Assign to add a new point to the appropriate partition. The
bounding box coordinates, the final partition, and other related information are maintained after
partitioning if the KEEP_CUTS parameter is set by the user. The KEEP_CUTS parameter must be set by
the user for Point Assign! The extended bounded box is used to compute the new point's inverse Hilbert
coordinate. Then the routine performs a binary search on the final partition to determine the partition
(interval) which includes the point. The routine returns the partition number assigned to that interval.

The Point Assign function now works for any point in space, even if the point is outside the original
bounding box. If the point is outside the bounding box, it isfirst scaled using the same equations that
scale the interior points into the unit volume. The point is projected onto the unit volume. For each
spatial dimension, if the scaled coordinate is less than zero, it isreplace by zero. If it is greater than one,
it isreplaced by one. Otherwise the scaled coordinate is directly used.

Box Assign

The user can use Zoltan LB Box Assign to determine the partitions whose corresponding subdomains
intersect the user's query box. Although very different in implementation, the papers by Lawder and King
("Querying Multi- dimensional Data Index Using the Hilbert Space-Filling Curve", 2000, etc.) were the
origina inspiration for this algorithm. The Zoltan HSFC Box_Assign routine primarily scales the user
guery region and determines its intersection with the Hilbert's bounding box. Points exterior to the
bounding box get projected aong the coordinate axis onto the bounding box. A fuzzy region is built
around query points and lines to create the boxes required for the search. It also handles the trivia
one-dimensional case. Otherwise it repeatedly calls the 2d and 3d query functions using the next highest
partition's left end point to start the search. These query routines return the next point on the Hilbert
curve to enter the query region. A binary search finds the partition associated with this point. The query
functions are called one more time than the number of partitions that have points interior to the query
region.

The query functions decompose the unit square (or cube) level by level like the Octree method. Each
level dividesthe remaining region into quadrants (or octetsin 3d). At each level, the quadrant with the
smallest inverse Hilbert coordinate (that is, occurring first along the Hilbert curve) whose inverse Hilbert
coordinate is equal or larger than the starting inverse Hilbert coordinate and which intersects with query
region is selected. Thus, each level calculates the next 2 bits (3 bits in 3d) of the inverse Hilbert
coordinate of the next point to enter the query region. No more than once per call to the query function,
the function may backtrack to a nearest previous level that has another quadrant that intersects the query
region and has a higher Hilbert coordinate.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (3 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign

Zoltan Developer's Guide: HSFC

In order to determine the intersection with the query region, the next 2 bits (3 in 3 dimensions) of the
Hilbert transformation are also computed (by table lookup) at each level for the quadrant being tested.
These bits are compared to the the bits resulting from the intersection of the query region with the region
determined by the spatial coordinates computed to the precision of the previous levels.

If the user query box has any side (edge) that is "too small" (effectively degenerate in some dimension),
it isreplaced by a minimum value and the corresponding vertex coordinates are symmetrically expanded.
Thisisrefered to as a"fuzzy" region.

This function requires the KEEP_CUTS parameter to be set by the user. The Box Assign function now
works for any box in space, even if it has regions outside the original bounding box. The box vertices are
scaled and projected exactly like the points in the Point Assign function described above. However, to
allow the search to use a proper volumn, projected points, lines, and planes are converted to a usable
volume by the fuzzy region process described above.

This agorithm will work for any space filling curve. All that is necessary is to provide the tables
(derieved from the curve's state transition diagram) in place of the Hilbert Space Filling Curve tables.

Data Structure Definitions

The data structures are defined in hsfc/hsfc.h. The objects being load balanced are represented by the
Dots Structure which holds the objects spacial coordinates, the corresponding inverse Hilbert coordinate,
the processor owning the object, and the object's weight(s). The Partition structure holds the left and
right endpoints of the interval represented by this element of the partition and the index to the processor
owning this element of the partition. The structure HSFC_Data holds the "persistant” data needed by the
point assign and box assign routines. This includes the bounding box, the number of loops necessary for
load balancing, the number of dimensions for the problem, a pointer to the function that returns the
inverse Hilbert Space-Filling Curve coordinate, and the final Partition structure contents.

Parameters

The parameters used by HSFC and their default values are described in the HSFC section of the Zoltan
User's Guide. These can be set by use of the Zoltan HSFC_Set_ Param subroutine in the file
hsfc/hsfc.c.

When the parameter REDUCE DIMENSIONS is specified, the HSFC algorithm will perform alower

dimensional partitioning if the geometry isfound to be degenerate. More information on detecting
degenerate geometries may be found in another section.

Main Routine

The main routine for HSFC is Zoltan_HSFC in the file hsfc/hsfc.c.

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (4 of 5) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug.html
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_alg_hsfc.html

Zoltan Developer's Guide: HSFC

[Table of Contents | Next: Handling Degenerate Geometries | Previous. Refinement Treg]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_hsfc.html (5 of 5) [8/4/2006 9:21:17 AM]

Zoltan Developer's Guide: Degenerate Geometries

Zoltan Developer's Guide | Previous

Appendix: Handling Degenerate Geometries

The geometry processed by one of the geometric methods RCB, RIB, or HSFC may be degenerate. By

this we mean it may have 3-dimensional coordinates but be essentially flat, or it may have 3 or
2-dimensional coordinates but be essentialy alinein space. If we treat the geometry as a lower
dimensional object for the purpose of partitioning, the result may be a more natural partitioning (one the
user would have expected) and a faster run time.

The caller may set the REDUCE_DIMENSIONS parameter to TRUE in any of the three geometric
methods if they want Zoltan to check for a degenerate condition and do alower dimensional partitioning
if such acondition if found. They may set the DEGENERATE_RATIO to specify how flat or thin a
geometry must be to be considered degenerate.

Outline of Algorithm

All three geometric methods call Zoltan Get Coor dinates to obtain the problem coordinates. If

REDUCE_DIMENSIONS is TRUE, we check in this function to see if the geometry is degenerate. If it
IS, we transform the coordinates to the lower dimensional space, flag that the problem is now lower
dimensional, and return the transformed coordinates. The RCB, RIB, or HSFC calculation is performed

on the new coordinates in the lower dimensional space.

If KEEP_CUTSIis TRUE, the transformation is saved so that in Zoltan LB Box Assign or
Zoltan LB Point Assign the coordinates can be transformed before the assignment is calculated. If
RCB_REUSE is TRUE in the RCB method, the transformation is also saved. On re-partitioning, we can

do some simple tests to see if the degeneracy condition has changed before completely re-calculating the
coordinate transformation.

To determine if the geometry is degenerate, we calculate the same inertial matrix that is calculated for
RIB, except that we ignore vertex weights. The 3 orthogonal eigenvectors of the inertial matrix describe
the three primary directions of the geometry. The bounding box oriented in these directionsis tested for
degeneracy. In particular (for a 3 dimensional geometry) if the length of the longest side divided by the
length of the shortest side exceeds the DEGENERATE_RATIO, we consider the geometry to be flat. If
in addition, the length longest side divided by the length of the middle side exceeds the
DEGENERATE_RATIO, we consider the geometry to be essentially aline.

If a3 dimensional geometry is determined to be flat, we transform coordinates to a coordinate system
where the XY plane corresponds to the oriented bounding box, and project all coordinates to that plane.
These X,Y coordinates are returned to the partitioning algorithm, which performs atwo dimensional
partitioning. Similarly if the geometry is very thin, we transform coordinates to a coordinate system with
the X axis going through the bounding box init's principal direction, and project al points to that axis.
Then al dimensional partitioning is performed.

Thereisasmall problem in calculating Zoltan LB Box Assign when the partitioning was performed
on transformed geometry. The caller provides the box verticesin problem coordinates, but the

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_degenerate.html (1 of 2) [8/4/2006 9:21:17 AM]

file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Point_Assign
file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/ug_html/ug_interface_augment.html#Zoltan_LB_Box_Assign

Zoltan Developer's Guide: Degenerate Geometries

partitioning was calculated in transformed coordinates. When the vertices are transformed, they arein
genera no longer the vertices of an axis-aligned box in the new coordinate system. The Box_Assign
calculation requires an axis-aligned box, and so we use the bounding box of the transformed vertices.
The resulting list of processes or partitions intersecting the box may therefore contain some processes or
partitions which actually do not intersect the box in problem coordinates, however it will not omit any.

Data Structure Definitions

The transformation is stored in aZoltan_Transform_Struct structure which is defined in zz/zz_const.h.
It is saved as part of the algorithm specific information stored in the LB.Data Structurefield of the

Zoltan Struct. The flag that indicates whether the geometry was found to be degenerate is the
Target_Dim field of this structure.

To use the degenerate geometry detection capability from a new geometric method, you would add a
Zoltan_Transform_Struct structure to the algorithm specific data structure, add code to
Zoltan_Get_Coordinatesto look for it, and check the Target_Dim field on return to seeif the problem
dimension was reduced. Y ou would also need to include the coordinate transformation in your
Box_Assign and Point_Assign functionality.

[Table of Contents | Previous. Hibert Space Filling Curve (HSFC)]

file:/lIE|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/dev_degenerate.html (2 of 2) [8/4/2006 9:21:17 AM]

	Local Disk
	Zoltan Developer's Guide
	Zoltan Developer's Guide: Introduction
	Zoltan Developer's Guide: Philosophy
	Zoltan Developer's Guide: Coding Principles
	Zoltan Quality Program
	Zoltan Developer's Guide: Distribution
	Zoltan Developer's Guide: CVS
	Zoltan Developer's Guide: Directory Layout
	Zoltan Developer's Guide: Compilation
	Zoltan Developer's Guide: Load-Balancing
	Zoltan Developer's Guide: Load-Balancing Interface
	Zoltan Developer's Guide: Data Types
	Zoltan Developer's Guide: Load Balancing Data Structures
	Zoltan Developer's Guide: Services
	Zoltan Developer's Guide: Parameter Setting Routines
	Zoltan Developer's Guide: Parallel Routines
	Zoltan Developer's Guide: Object List function
	Zoltan Developer's Guide: Hash function
	Zoltan Developer's Guide: Timing Routines
	Zoltan Developer's Guide: Debugging Services
	Zoltan Developer's Guide: Adding Algorithms
	Zoltan Developer's Guide: Adding Interface Routines
	Zoltan Developer's Guide: Adding Load-Balancing Functions
	Zoltan Developer's Guide: Adding Data Structures
	Zoltan Developer's Guide: Adding Algorithms: How to handle memory
	Zoltan Developer's Guide: Adding Parameters
	Zoltan Developer's Guide: Partition Remapping
	Zoltan Developer's Guide: Migration Tools
	Zoltan Developer's Guide: FORTRAN Interface
	Zoltan Developer's Guide: C++ Interface
	Zoltan Developer's Guide: References
	Zoltan Developer's Guide: Using Test Drivers: zdrive and zfdrive
	Zoltan Developer's Guide: Visualization of Geometric Partitionings
	Zoltan Developer's Guide: Running test_zoltan
	Zoltan Developer's Guide: RCB
	Zoltan Developer's Guide: RIB
	Zoltan Developer's Guide: ParMETIS/Jostle
	Zoltan Developer's Guide: Hypergraph Partitioning
	Zoltan Developer's Guide: Refinement Tree
	Zoltan Developer's Guide: HSFC
	Zoltan Developer's Guide: Degenerate Geometries

	zdriveinp.pdf
	Local Disk
	file:///E|/Zoltan_Release/2.01/Zoltan/docs/Zoltan_html/dev_html/zdrive.inp

