Actual source code: da3.c
1: /*$Id: da3.c,v 1.136 2001/09/07 20:12:17 bsmith Exp $*/
3: /*
4: Code for manipulating distributed regular 3d arrays in parallel.
5: File created by Peter Mell 7/14/95
6: */
8: #include src/dm/da/daimpl.h
10: #if defined (PETSC_HAVE_AMS)
11: EXTERN_C_BEGIN
12: EXTERN int AMSSetFieldBlock_DA(AMS_Memory,char *,Vec);
13: EXTERN_C_END
14: #endif
16: int DAView_3d(DA da,PetscViewer viewer)
17: {
18: int rank,ierr;
19: PetscTruth isascii,isdraw,isbinary;
22: MPI_Comm_rank(da->comm,&rank);
24: PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_ASCII,&isascii);
25: PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_DRAW,&isdraw);
26: PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_BINARY,&isbinary);
27: if (isascii) {
28: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %d N %d P %d m %d n %d p %d w %d s %dn",
29: rank,da->M,da->N,da->P,da->m,da->n,da->p,da->w,da->s);
30: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %d %d, Y range of indices: %d %d, Z range of indices: %d %dn",
31: da->xs,da->xe,da->ys,da->ye,da->zs,da->ze);
32: #if !defined(PETSC_USE_COMPLEX)
33: if (da->coordinates) {
34: int last;
35: PetscReal *coors;
36: VecGetArray(da->coordinates,&coors);
37: VecGetLocalSize(da->coordinates,&last);
38: last = last - 3;
39: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %gn",
40: coors[0],coors[1],coors[2],coors[last],coors[last+1],coors[last+2]);
41: VecRestoreArray(da->coordinates,&coors);
42: }
43: #endif
44: PetscViewerFlush(viewer);
45: } else if (isdraw) {
46: PetscDraw draw;
47: PetscReal ymin = -1.0,ymax = (PetscReal)da->N;
48: PetscReal xmin = -1.0,xmax = (PetscReal)((da->M+2)*da->P),x,y,ycoord,xcoord;
49: int k,plane,base,*idx;
50: char node[10];
51: PetscTruth isnull;
53: PetscViewerDrawGetDraw(viewer,0,&draw);
54: PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
55: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
56: PetscDrawSynchronizedClear(draw);
58: /* first processor draw all node lines */
59: if (!rank) {
60: for (k=0; k<da->P; k++) {
61: ymin = 0.0; ymax = (PetscReal)(da->N - 1);
62: for (xmin=(PetscReal)(k*(da->M+1)); xmin<(PetscReal)(da->M+(k*(da->M+1))); xmin++) {
63: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
64: }
65:
66: xmin = (PetscReal)(k*(da->M+1)); xmax = xmin + (PetscReal)(da->M - 1);
67: for (ymin=0; ymin<(PetscReal)da->N; ymin++) {
68: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
69: }
70: }
71: }
72: PetscDrawSynchronizedFlush(draw);
73: PetscDrawPause(draw);
75: for (k=0; k<da->P; k++) { /*Go through and draw for each plane*/
76: if ((k >= da->zs) && (k < da->ze)) {
77: /* draw my box */
78: ymin = da->ys;
79: ymax = da->ye - 1;
80: xmin = da->xs/da->w + (da->M+1)*k;
81: xmax =(da->xe-1)/da->w + (da->M+1)*k;
83: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
84: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
85: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
86: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
88: xmin = da->xs/da->w;
89: xmax =(da->xe-1)/da->w;
91: /* put in numbers*/
92: base = (da->base+(da->xe-da->xs)*(da->ye-da->ys)*(k-da->zs))/da->w;
94: /* Identify which processor owns the box */
95: sprintf(node,"%d",rank);
96: PetscDrawString(draw,xmin+(da->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
98: for (y=ymin; y<=ymax; y++) {
99: for (x=xmin+(da->M+1)*k; x<=xmax+(da->M+1)*k; x++) {
100: sprintf(node,"%d",base++);
101: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
102: }
103: }
104:
105: }
106: }
107: PetscDrawSynchronizedFlush(draw);
108: PetscDrawPause(draw);
110: for (k=0-da->s; k<da->P+da->s; k++) {
111: /* Go through and draw for each plane */
112: if ((k >= da->Zs) && (k < da->Ze)) {
113:
114: /* overlay ghost numbers, useful for error checking */
115: base = (da->Xe-da->Xs)*(da->Ye-da->Ys)*(k-da->Zs); idx = da->idx;
116: plane=k;
117: /* Keep z wrap around points on the dradrawg */
118: if (k<0) { plane=da->P+k; }
119: if (k>=da->P) { plane=k-da->P; }
120: ymin = da->Ys; ymax = da->Ye;
121: xmin = (da->M+1)*plane*da->w;
122: xmax = (da->M+1)*plane*da->w+da->M*da->w;
123: for (y=ymin; y<ymax; y++) {
124: for (x=xmin+da->Xs; x<xmin+da->Xe; x+=da->w) {
125: sprintf(node,"%d",idx[base]/da->w);
126: ycoord = y;
127: /*Keep y wrap around points on drawing */
128: if (y<0) { ycoord = da->N+y; }
130: if (y>=da->N) { ycoord = y-da->N; }
131: xcoord = x; /* Keep x wrap points on drawing */
133: if (x<xmin) { xcoord = xmax - (xmin-x); }
134: if (x>=xmax) { xcoord = xmin + (x-xmax); }
135: PetscDrawString(draw,xcoord/da->w,ycoord,PETSC_DRAW_BLUE,node);
136: base+=da->w;
137: }
138: }
139: }
140: }
141: PetscDrawSynchronizedFlush(draw);
142: PetscDrawPause(draw);
143: } else if (isbinary) {
144: DAView_Binary(da,viewer);
145: } else {
146: SETERRQ1(1,"Viewer type %s not supported for DA 3d",((PetscObject)viewer)->type_name);
147: }
148: return(0);
149: }
151: EXTERN int DAPublish_Petsc(PetscObject);
153: /*@C
154: DACreate3d - Creates an object that will manage the communication of three-dimensional
155: regular array data that is distributed across some processors.
157: Collective on MPI_Comm
159: Input Parameters:
160: + comm - MPI communicator
161: . wrap - type of periodicity the array should have, if any. Use one
162: of DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, DA_XYPERIODIC, DA_XYZPERIODIC, DA_XZPERIODIC, or DA_YZPERIODIC.
163: . stencil_type - Type of stencil (DA_STENCIL_STAR or DA_STENCIL_BOX)
164: . M,N,P - global dimension in each direction of the array
165: . m,n,p - corresponding number of processors in each dimension
166: (or PETSC_DECIDE to have calculated)
167: . dof - number of degrees of freedom per node
168: . lx, ly, lz - arrays containing the number of nodes in each cell along
169: the x, y, and z coordinates, or PETSC_NULL. If non-null, these
170: must be of length as m,n,p and the corresponding
171: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
172: the ly[] must n, sum of the lz[] must be P
173: - s - stencil width
175: Output Parameter:
176: . inra - the resulting distributed array object
178: Options Database Key:
179: + -da_view - Calls DAView() at the conclusion of DACreate3d()
180: . -da_grid_x <nx> - number of grid points in x direction, if M < 0
181: . -da_grid_y <ny> - number of grid points in y direction, if N < 0
182: . -da_grid_z <nz> - number of grid points in z direction, if P < 0
183: - -da_noao - do not compute natural to PETSc ordering object
185: Level: beginner
187: Notes:
188: If you are having problems with running out of memory than run with the option -da_noao
190: The stencil type DA_STENCIL_STAR with width 1 corresponds to the
191: standard 7-pt stencil, while DA_STENCIL_BOX with width 1 denotes
192: the standard 27-pt stencil.
194: The array data itself is NOT stored in the DA, it is stored in Vec objects;
195: The appropriate vector objects can be obtained with calls to DACreateGlobalVector()
196: and DACreateLocalVector() and calls to VecDuplicate() if more are needed.
198: .keywords: distributed array, create, three-dimensional
200: .seealso: DADestroy(), DAView(), DACreate1d(), DACreate2d(), DAGlobalToLocalBegin(),
201: DAGlobalToLocalEnd(), DALocalToGlobal(), DALocalToLocalBegin(), DALocalToLocalEnd(),
202: DAGetInfo(), DACreateGlobalVector(), DACreateLocalVector(), DACreateNaturalVector(), DALoad(), DAView()
204: @*/
205: int DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,int M,
206: int N,int P,int m,int n,int p,int dof,int s,int *lx,int *ly,int *lz,DA *inra)
207: {
208: int rank,size,ierr,start,end,pm;
209: int xs,xe,ys,ye,zs,ze,x,y,z,Xs,Xe,Ys,Ye,Zs,Ze;
210: int left,up,down,bottom,top,i,j,k,*idx,nn,*flx = 0,*fly = 0,*flz = 0;
211: int n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
212: int n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
213: int *bases,*ldims,x_t,y_t,z_t,s_t,base,count,s_x,s_y,s_z;
214: int *gA,*gB,*gAall,*gBall,ict,ldim,gdim,tM = M,tN = N,tP = P;
215: int sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
216: int sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
217: int sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0,refine_x = 2, refine_y = 2, refine_z = 2;
218: PetscTruth flg1,flg2;
219: DA da;
220: Vec local,global;
221: VecScatter ltog,gtol;
222: IS to,from;
226: *inra = 0;
227: #ifndef PETSC_USE_DYNAMIC_LIBRARIES
228: DMInitializePackage(PETSC_NULL);
229: #endif
231: if (dof < 1) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Must have 1 or more degrees of freedom per node: %d",dof);
232: if (s < 0) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Stencil width cannot be negative: %d",s);
234: PetscOptionsBegin(comm,PETSC_NULL,"3d DA Options","DA");
235: if (M < 0){
236: tM = -M;
237: PetscOptionsInt("-da_grid_x","Number of grid points in x direction","DACreate3d",tM,&tM,PETSC_NULL);
238: }
239: if (N < 0){
240: tN = -N;
241: PetscOptionsInt("-da_grid_y","Number of grid points in y direction","DACreate3d",tN,&tN,PETSC_NULL);
242: }
243: if (P < 0){
244: tP = -P;
245: PetscOptionsInt("-da_grid_z","Number of grid points in z direction","DACreate3d",tP,&tP,PETSC_NULL);
246: }
247: PetscOptionsInt("-da_processors_x","Number of processors in x direction","DACreate3d",m,&m,PETSC_NULL);
248: PetscOptionsInt("-da_processors_y","Number of processors in y direction","DACreate3d",n,&n,PETSC_NULL);
249: PetscOptionsInt("-da_processors_z","Number of processors in z direction","DACreate3d",p,&p,PETSC_NULL);
250: PetscOptionsInt("-da_refine_x","Refinement ratio in x direction","DACreate3d",refine_x,&refine_x,PETSC_NULL);
251: PetscOptionsInt("-da_refine_y","Refinement ratio in y direction","DACreate3d",refine_y,&refine_y,PETSC_NULL);
252: PetscOptionsInt("-da_refine_z","Refinement ratio in z direction","DACreate3d",refine_z,&refine_z,PETSC_NULL);
253: PetscOptionsEnd();
254: M = tM; N = tN; P = tP;
256: PetscHeaderCreate(da,_p_DA,struct _DAOps,DA_COOKIE,0,"DA",comm,DADestroy,DAView);
257: da->bops->publish = DAPublish_Petsc;
258: da->ops->createglobalvector = DACreateGlobalVector;
259: da->ops->getinterpolation = DAGetInterpolation;
260: da->ops->getcoloring = DAGetColoring;
261: da->ops->getmatrix = DAGetMatrix;
262: da->ops->refine = DARefine;
264: PetscLogObjectCreate(da);
265: PetscLogObjectMemory(da,sizeof(struct _p_DA));
266: da->dim = 3;
267: da->interptype = DA_Q1;
268: da->gtog1 = 0;
269: da->refine_x = refine_x;
270: da->refine_y = refine_y;
271: da->refine_z = refine_z;
272: PetscMalloc(dof*sizeof(char*),&da->fieldname);
273: PetscMemzero(da->fieldname,dof*sizeof(char*));
275: MPI_Comm_size(comm,&size);
276: MPI_Comm_rank(comm,&rank);
278: if (m != PETSC_DECIDE) {
279: if (m < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %d",m);}
280: else if (m > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %d %d",m,size);}
281: }
282: if (n != PETSC_DECIDE) {
283: if (n < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %d",n);}
284: else if (n > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %d %d",n,size);}
285: }
286: if (p != PETSC_DECIDE) {
287: if (p < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %d",p);}
288: else if (p > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %d %d",p,size);}
289: }
291: /* Partition the array among the processors */
292: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
293: m = size/(n*p);
294: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
295: n = size/(m*p);
296: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
297: p = size/(m*n);
298: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
299: /* try for squarish distribution */
300: m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
301: if (!m) m = 1;
302: while (m > 0) {
303: n = size/(m*p);
304: if (m*n*p == size) break;
305: m--;
306: }
307: if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %d",p);
308: if (M > N && m < n) {int _m = m; m = n; n = _m;}
309: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
310: /* try for squarish distribution */
311: m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
312: if (!m) m = 1;
313: while (m > 0) {
314: p = size/(m*n);
315: if (m*n*p == size) break;
316: m--;
317: }
318: if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %d",n);
319: if (M > P && m < p) {int _m = m; m = p; p = _m;}
320: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
321: /* try for squarish distribution */
322: n = (int)(0.5 + sqrt(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
323: if (!n) n = 1;
324: while (n > 0) {
325: p = size/(m*n);
326: if (m*n*p == size) break;
327: n--;
328: }
329: if (!n) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %d",n);
330: if (N > P && n < p) {int _n = n; n = p; p = _n;}
331: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
332: /* try for squarish distribution */
333: n = (int)(0.5 + pow(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),1./3.));
334: if (!n) n = 1;
335: while (n > 0) {
336: pm = size/n;
337: if (n*pm == size) break;
338: n--;
339: }
340: if (!n) n = 1;
341: m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
342: if (!m) m = 1;
343: while (m > 0) {
344: p = size/(m*n);
345: if (m*n*p == size) break;
346: m--;
347: }
348: if (M > P && m < p) {int _m = m; m = p; p = _m;}
349: } else if (m*n*p != size) SETERRQ(PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
351: if (m*n*p != size) SETERRQ(PETSC_ERR_PLIB,"Could not find good partition");
352: if (M < m) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %d %d",M,m);
353: if (N < n) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %d %d",N,n);
354: if (P < p) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %d %d",P,p);
356: PetscOptionsHasName(PETSC_NULL,"-da_partition_nodes_at_end",&flg2);
357: /*
358: Determine locally owned region
359: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
360: */
361: if (lx) { /* user decided distribution */
362: x = lx[rank % m];
363: xs = 0;
364: for (i=0; i<(rank%m); i++) { xs += lx[i];}
365: if (x < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Column width is too thin for stencil! %d %d",x,s);
366: } else if (flg2) {
367: SETERRQ(PETSC_ERR_SUP,"-da_partition_nodes_at_end not supported");
368: } else { /* Normal PETSc distribution */
369: x = M/m + ((M % m) > (rank % m));
370: if (x < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Column width is too thin for stencil! %d %d",x,s);
371: if ((M % m) > (rank % m)) { xs = (rank % m)*x; }
372: else { xs = (M % m)*(x+1) + ((rank % m)-(M % m))*x; }
373: PetscMalloc(m*sizeof(int),&lx);
374: flx = lx;
375: for (i=0; i<m; i++) {
376: lx[i] = M/m + ((M % m) > (i % m));
377: }
378: }
379: if (ly) { /* user decided distribution */
380: y = ly[(rank % (m*n))/m];
381: if (y < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Row width is too thin for stencil! %d %d",y,s);
382: ys = 0;
383: for (i=0; i<(rank % (m*n))/m; i++) { ys += ly[i];}
384: } else if (flg2) {
385: SETERRQ(PETSC_ERR_SUP,"-da_partition_nodes_at_end not supported");
386: } else { /* Normal PETSc distribution */
387: y = N/n + ((N % n) > ((rank % (m*n)) /m));
388: if (y < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Row width is too thin for stencil! %d %d",y,s);
389: if ((N % n) > ((rank % (m*n)) /m)) {ys = ((rank % (m*n))/m)*y;}
390: else {ys = (N % n)*(y+1) + (((rank % (m*n))/m)-(N % n))*y;}
391: PetscMalloc(n*sizeof(int),&ly);
392: fly = ly;
393: for (i=0; i<n; i++) {
394: ly[i] = N/n + ((N % n) > (i % n));
395: }
396: }
397: if (lz) { /* user decided distribution */
398: z = lz[rank/(m*n)];
399: if (z < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Plane width is too thin for stencil! %d %d",z,s);
400: zs = 0;
401: for (i=0; i<(rank/(m*n)); i++) { zs += lz[i];}
402: } else if (flg2) {
403: SETERRQ(PETSC_ERR_SUP,"-da_partition_nodes_at_end not supported");
404: } else { /* Normal PETSc distribution */
405: z = P/p + ((P % p) > (rank / (m*n)));
406: if (z < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Plane width is too thin for stencil! %d %d",z,s);
407: if ((P % p) > (rank / (m*n))) {zs = (rank/(m*n))*z;}
408: else {zs = (P % p)*(z+1) + ((rank/(m*n))-(P % p))*z;}
409: PetscMalloc(p*sizeof(int),&lz);
410: flz = lz;
411: for (i=0; i<p; i++) {
412: lz[i] = P/p + ((P % p) > (i % p));
413: }
414: }
415: ye = ys + y;
416: xe = xs + x;
417: ze = zs + z;
419: /* determine ghost region */
420: /* Assume No Periodicity */
421: if (xs-s > 0) Xs = xs - s; else Xs = 0;
422: if (ys-s > 0) Ys = ys - s; else Ys = 0;
423: if (zs-s > 0) Zs = zs - s; else Zs = 0;
424: if (xe+s <= M) Xe = xe + s; else Xe = M;
425: if (ye+s <= N) Ye = ye + s; else Ye = N;
426: if (ze+s <= P) Ze = ze + s; else Ze = P;
428: /* X Periodic */
429: if (DAXPeriodic(wrap)){
430: Xs = xs - s;
431: Xe = xe + s;
432: }
434: /* Y Periodic */
435: if (DAYPeriodic(wrap)){
436: Ys = ys - s;
437: Ye = ye + s;
438: }
440: /* Z Periodic */
441: if (DAZPeriodic(wrap)){
442: Zs = zs - s;
443: Ze = ze + s;
444: }
446: /* Resize all X parameters to reflect w */
447: x *= dof;
448: xs *= dof;
449: xe *= dof;
450: Xs *= dof;
451: Xe *= dof;
452: s_x = s*dof;
453: s_y = s;
454: s_z = s;
456: /* determine starting point of each processor */
457: nn = x*y*z;
458: ierr = PetscMalloc((2*size+1)*sizeof(int),&bases);
459: ldims = (int*)(bases+size+1);
460: ierr = MPI_Allgather(&nn,1,MPI_INT,ldims,1,MPI_INT,comm);
461: bases[0] = 0;
462: for (i=1; i<=size; i++) {
463: bases[i] = ldims[i-1];
464: }
465: for (i=1; i<=size; i++) {
466: bases[i] += bases[i-1];
467: }
469: /* allocate the base parallel and sequential vectors */
470: VecCreateMPI(comm,x*y*z,PETSC_DECIDE,&global);
471: VecSetBlockSize(global,dof);
472: VecCreateSeq(MPI_COMM_SELF,(Xe-Xs)*(Ye-Ys)*(Ze-Zs),&local);
473: VecSetBlockSize(local,dof);
475: /* generate appropriate vector scatters */
476: /* local to global inserts non-ghost point region into global */
477: VecGetOwnershipRange(global,&start,&end);
478: ISCreateStride(comm,x*y*z,start,1,&to);
480: left = xs - Xs;
481: bottom = ys - Ys; top = bottom + y;
482: down = zs - Zs; up = down + z;
483: count = x*(top-bottom)*(up-down);
484: PetscMalloc(count*sizeof(int),&idx);
485: count = 0;
486: for (i=down; i<up; i++) {
487: for (j=bottom; j<top; j++) {
488: for (k=0; k<x; k++) {
489: idx[count++] = (left+j*(Xe-Xs))+i*(Xe-Xs)*(Ye-Ys) + k;
490: }
491: }
492: }
493: ISCreateGeneral(comm,count,idx,&from);
494: PetscFree(idx);
496: VecScatterCreate(local,from,global,to,<og);
497: PetscLogObjectParent(da,to);
498: PetscLogObjectParent(da,from);
499: PetscLogObjectParent(da,ltog);
500: ISDestroy(from);
501: ISDestroy(to);
503: /* global to local must include ghost points */
504: if (stencil_type == DA_STENCIL_BOX) {
505: ISCreateStride(comm,(Xe-Xs)*(Ye-Ys)*(Ze-Zs),0,1,&to);
506: } else {
507: /* This is way ugly! We need to list the funny cross type region */
508: /* the bottom chunck */
509: left = xs - Xs;
510: bottom = ys - Ys; top = bottom + y;
511: down = zs - Zs; up = down + z;
512: count = down*(top-bottom)*x +
513: (up-down)*(bottom*x + (top-bottom)*(Xe-Xs) + (Ye-Ys-top)*x) +
514: (Ze-Zs-up)*(top-bottom)*x;
515: PetscMalloc(count*sizeof(int),&idx);
516: count = 0;
517: for (i=0; i<down; i++) {
518: for (j=bottom; j<top; j++) {
519: for (k=0; k<x; k++) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
520: }
521: }
522: /* the middle piece */
523: for (i=down; i<up; i++) {
524: /* front */
525: for (j=0; j<bottom; j++) {
526: for (k=0; k<x; k++) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
527: }
528: /* middle */
529: for (j=bottom; j<top; j++) {
530: for (k=0; k<Xe-Xs; k++) idx[count++] = j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
531: }
532: /* back */
533: for (j=top; j<Ye-Ys; j++) {
534: for (k=0; k<x; k++) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
535: }
536: }
537: /* the top piece */
538: for (i=up; i<Ze-Zs; i++) {
539: for (j=bottom; j<top; j++) {
540: for (k=0; k<x; k++) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
541: }
542: }
543: ISCreateGeneral(comm,count,idx,&to);
544: PetscFree(idx);
545: }
547: /* determine who lies on each side of use stored in n24 n25 n26
548: n21 n22 n23
549: n18 n19 n20
551: n15 n16 n17
552: n12 n14
553: n9 n10 n11
555: n6 n7 n8
556: n3 n4 n5
557: n0 n1 n2
558: */
559:
560: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
561:
562: /* Assume Nodes are Internal to the Cube */
563:
564: n0 = rank - m*n - m - 1;
565: n1 = rank - m*n - m;
566: n2 = rank - m*n - m + 1;
567: n3 = rank - m*n -1;
568: n4 = rank - m*n;
569: n5 = rank - m*n + 1;
570: n6 = rank - m*n + m - 1;
571: n7 = rank - m*n + m;
572: n8 = rank - m*n + m + 1;
574: n9 = rank - m - 1;
575: n10 = rank - m;
576: n11 = rank - m + 1;
577: n12 = rank - 1;
578: n14 = rank + 1;
579: n15 = rank + m - 1;
580: n16 = rank + m;
581: n17 = rank + m + 1;
583: n18 = rank + m*n - m - 1;
584: n19 = rank + m*n - m;
585: n20 = rank + m*n - m + 1;
586: n21 = rank + m*n - 1;
587: n22 = rank + m*n;
588: n23 = rank + m*n + 1;
589: n24 = rank + m*n + m - 1;
590: n25 = rank + m*n + m;
591: n26 = rank + m*n + m + 1;
593: /* Assume Pieces are on Faces of Cube */
595: if (xs == 0) { /* First assume not corner or edge */
596: n0 = rank -1 - (m*n);
597: n3 = rank + m -1 - (m*n);
598: n6 = rank + 2*m -1 - (m*n);
599: n9 = rank -1;
600: n12 = rank + m -1;
601: n15 = rank + 2*m -1;
602: n18 = rank -1 + (m*n);
603: n21 = rank + m -1 + (m*n);
604: n24 = rank + 2*m -1 + (m*n);
605: }
607: if (xe == M*dof) { /* First assume not corner or edge */
608: n2 = rank -2*m +1 - (m*n);
609: n5 = rank - m +1 - (m*n);
610: n8 = rank +1 - (m*n);
611: n11 = rank -2*m +1;
612: n14 = rank - m +1;
613: n17 = rank +1;
614: n20 = rank -2*m +1 + (m*n);
615: n23 = rank - m +1 + (m*n);
616: n26 = rank +1 + (m*n);
617: }
619: if (ys==0) { /* First assume not corner or edge */
620: n0 = rank + m * (n-1) -1 - (m*n);
621: n1 = rank + m * (n-1) - (m*n);
622: n2 = rank + m * (n-1) +1 - (m*n);
623: n9 = rank + m * (n-1) -1;
624: n10 = rank + m * (n-1);
625: n11 = rank + m * (n-1) +1;
626: n18 = rank + m * (n-1) -1 + (m*n);
627: n19 = rank + m * (n-1) + (m*n);
628: n20 = rank + m * (n-1) +1 + (m*n);
629: }
631: if (ye == N) { /* First assume not corner or edge */
632: n6 = rank - m * (n-1) -1 - (m*n);
633: n7 = rank - m * (n-1) - (m*n);
634: n8 = rank - m * (n-1) +1 - (m*n);
635: n15 = rank - m * (n-1) -1;
636: n16 = rank - m * (n-1);
637: n17 = rank - m * (n-1) +1;
638: n24 = rank - m * (n-1) -1 + (m*n);
639: n25 = rank - m * (n-1) + (m*n);
640: n26 = rank - m * (n-1) +1 + (m*n);
641: }
642:
643: if (zs == 0) { /* First assume not corner or edge */
644: n0 = size - (m*n) + rank - m - 1;
645: n1 = size - (m*n) + rank - m;
646: n2 = size - (m*n) + rank - m + 1;
647: n3 = size - (m*n) + rank - 1;
648: n4 = size - (m*n) + rank;
649: n5 = size - (m*n) + rank + 1;
650: n6 = size - (m*n) + rank + m - 1;
651: n7 = size - (m*n) + rank + m ;
652: n8 = size - (m*n) + rank + m + 1;
653: }
655: if (ze == P) { /* First assume not corner or edge */
656: n18 = (m*n) - (size-rank) - m - 1;
657: n19 = (m*n) - (size-rank) - m;
658: n20 = (m*n) - (size-rank) - m + 1;
659: n21 = (m*n) - (size-rank) - 1;
660: n22 = (m*n) - (size-rank);
661: n23 = (m*n) - (size-rank) + 1;
662: n24 = (m*n) - (size-rank) + m - 1;
663: n25 = (m*n) - (size-rank) + m;
664: n26 = (m*n) - (size-rank) + m + 1;
665: }
667: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
668: n0 = size - m*n + rank + m-1 - m;
669: n3 = size - m*n + rank + m-1;
670: n6 = size - m*n + rank + m-1 + m;
671: }
672:
673: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
674: n18 = m*n - (size - rank) + m-1 - m;
675: n21 = m*n - (size - rank) + m-1;
676: n24 = m*n - (size - rank) + m-1 + m;
677: }
679: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
680: n0 = rank + m*n -1 - m*n;
681: n9 = rank + m*n -1;
682: n18 = rank + m*n -1 + m*n;
683: }
685: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
686: n6 = rank - m*(n-1) + m-1 - m*n;
687: n15 = rank - m*(n-1) + m-1;
688: n24 = rank - m*(n-1) + m-1 + m*n;
689: }
691: if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
692: n2 = size - (m*n-rank) - (m-1) - m;
693: n5 = size - (m*n-rank) - (m-1);
694: n8 = size - (m*n-rank) - (m-1) + m;
695: }
697: if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
698: n20 = m*n - (size - rank) - (m-1) - m;
699: n23 = m*n - (size - rank) - (m-1);
700: n26 = m*n - (size - rank) - (m-1) + m;
701: }
703: if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
704: n2 = rank + m*(n-1) - (m-1) - m*n;
705: n11 = rank + m*(n-1) - (m-1);
706: n20 = rank + m*(n-1) - (m-1) + m*n;
707: }
709: if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
710: n8 = rank - m*n +1 - m*n;
711: n17 = rank - m*n +1;
712: n26 = rank - m*n +1 + m*n;
713: }
715: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
716: n0 = size - m + rank -1;
717: n1 = size - m + rank;
718: n2 = size - m + rank +1;
719: }
721: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
722: n18 = m*n - (size - rank) + m*(n-1) -1;
723: n19 = m*n - (size - rank) + m*(n-1);
724: n20 = m*n - (size - rank) + m*(n-1) +1;
725: }
727: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
728: n6 = size - (m*n-rank) - m * (n-1) -1;
729: n7 = size - (m*n-rank) - m * (n-1);
730: n8 = size - (m*n-rank) - m * (n-1) +1;
731: }
733: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
734: n24 = rank - (size-m) -1;
735: n25 = rank - (size-m);
736: n26 = rank - (size-m) +1;
737: }
739: /* Check for Corners */
740: if ((xs==0) && (ys==0) && (zs==0)) { n0 = size -1;}
741: if ((xs==0) && (ys==0) && (ze==P)) { n18 = m*n-1;}
742: if ((xs==0) && (ye==N) && (zs==0)) { n6 = (size-1)-m*(n-1);}
743: if ((xs==0) && (ye==N) && (ze==P)) { n24 = m-1;}
744: if ((xe==M*dof) && (ys==0) && (zs==0)) { n2 = size-m;}
745: if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
746: if ((xe==M*dof) && (ye==N) && (zs==0)) { n8 = size-m*n;}
747: if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}
749: /* Check for when not X,Y, and Z Periodic */
751: /* If not X periodic */
752: if ((wrap != DA_XPERIODIC) && (wrap != DA_XYPERIODIC) &&
753: (wrap != DA_XZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
754: if (xs==0) {n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;}
755: if (xe==M*dof) {n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
756: }
758: /* If not Y periodic */
759: if ((wrap != DA_YPERIODIC) && (wrap != DA_XYPERIODIC) &&
760: (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
761: if (ys==0) {n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;}
762: if (ye==N) {n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
763: }
765: /* If not Z periodic */
766: if ((wrap != DA_ZPERIODIC) && (wrap != DA_XZPERIODIC) &&
767: (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
768: if (zs==0) {n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;}
769: if (ze==P) {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
770: }
772: /* If star stencil then delete the corner neighbors */
773: if (stencil_type == DA_STENCIL_STAR) {
774: /* save information about corner neighbors */
775: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
776: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
777: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
778: sn26 = n26;
779: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 =
780: n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
781: }
784: PetscMalloc((Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(int),&idx);
785: PetscLogObjectMemory(da,(Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(int));
787: nn = 0;
789: /* Bottom Level */
790: for (k=0; k<s_z; k++) {
791: for (i=1; i<=s_y; i++) {
792: if (n0 >= 0) { /* left below */
793: x_t = lx[n0 % m]*dof;
794: y_t = ly[(n0 % (m*n))/m];
795: z_t = lz[n0 / (m*n)];
796: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
797: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
798: }
799: if (n1 >= 0) { /* directly below */
800: x_t = x;
801: y_t = ly[(n1 % (m*n))/m];
802: z_t = lz[n1 / (m*n)];
803: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
804: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
805: }
806: if (n2 >= 0) { /* right below */
807: x_t = lx[n2 % m]*dof;
808: y_t = ly[(n2 % (m*n))/m];
809: z_t = lz[n2 / (m*n)];
810: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
811: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
812: }
813: }
815: for (i=0; i<y; i++) {
816: if (n3 >= 0) { /* directly left */
817: x_t = lx[n3 % m]*dof;
818: y_t = y;
819: z_t = lz[n3 / (m*n)];
820: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
821: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
822: }
824: if (n4 >= 0) { /* middle */
825: x_t = x;
826: y_t = y;
827: z_t = lz[n4 / (m*n)];
828: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
829: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
830: }
832: if (n5 >= 0) { /* directly right */
833: x_t = lx[n5 % m]*dof;
834: y_t = y;
835: z_t = lz[n5 / (m*n)];
836: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
837: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
838: }
839: }
841: for (i=1; i<=s_y; i++) {
842: if (n6 >= 0) { /* left above */
843: x_t = lx[n6 % m]*dof;
844: y_t = ly[(n6 % (m*n))/m];
845: z_t = lz[n6 / (m*n)];
846: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
847: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
848: }
849: if (n7 >= 0) { /* directly above */
850: x_t = x;
851: y_t = ly[(n7 % (m*n))/m];
852: z_t = lz[n7 / (m*n)];
853: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
854: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
855: }
856: if (n8 >= 0) { /* right above */
857: x_t = lx[n8 % m]*dof;
858: y_t = ly[(n8 % (m*n))/m];
859: z_t = lz[n8 / (m*n)];
860: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
861: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
862: }
863: }
864: }
866: /* Middle Level */
867: for (k=0; k<z; k++) {
868: for (i=1; i<=s_y; i++) {
869: if (n9 >= 0) { /* left below */
870: x_t = lx[n9 % m]*dof;
871: y_t = ly[(n9 % (m*n))/m];
872: /* z_t = z; */
873: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
874: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
875: }
876: if (n10 >= 0) { /* directly below */
877: x_t = x;
878: y_t = ly[(n10 % (m*n))/m];
879: /* z_t = z; */
880: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
881: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
882: }
883: if (n11 >= 0) { /* right below */
884: x_t = lx[n11 % m]*dof;
885: y_t = ly[(n11 % (m*n))/m];
886: /* z_t = z; */
887: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
888: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
889: }
890: }
892: for (i=0; i<y; i++) {
893: if (n12 >= 0) { /* directly left */
894: x_t = lx[n12 % m]*dof;
895: y_t = y;
896: /* z_t = z; */
897: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
898: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
899: }
901: /* Interior */
902: s_t = bases[rank] + i*x + k*x*y;
903: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
905: if (n14 >= 0) { /* directly right */
906: x_t = lx[n14 % m]*dof;
907: y_t = y;
908: /* z_t = z; */
909: s_t = bases[n14] + i*x_t + k*x_t*y_t;
910: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
911: }
912: }
914: for (i=1; i<=s_y; i++) {
915: if (n15 >= 0) { /* left above */
916: x_t = lx[n15 % m]*dof;
917: y_t = ly[(n15 % (m*n))/m];
918: /* z_t = z; */
919: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
920: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
921: }
922: if (n16 >= 0) { /* directly above */
923: x_t = x;
924: y_t = ly[(n16 % (m*n))/m];
925: /* z_t = z; */
926: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
927: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
928: }
929: if (n17 >= 0) { /* right above */
930: x_t = lx[n17 % m]*dof;
931: y_t = ly[(n17 % (m*n))/m];
932: /* z_t = z; */
933: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
934: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
935: }
936: }
937: }
938:
939: /* Upper Level */
940: for (k=0; k<s_z; k++) {
941: for (i=1; i<=s_y; i++) {
942: if (n18 >= 0) { /* left below */
943: x_t = lx[n18 % m]*dof;
944: y_t = ly[(n18 % (m*n))/m];
945: /* z_t = lz[n18 / (m*n)]; */
946: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
947: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
948: }
949: if (n19 >= 0) { /* directly below */
950: x_t = x;
951: y_t = ly[(n19 % (m*n))/m];
952: /* z_t = lz[n19 / (m*n)]; */
953: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
954: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
955: }
956: if (n20 >= 0) { /* right below */
957: x_t = lx[n20 % m]*dof;
958: y_t = ly[(n20 % (m*n))/m];
959: /* z_t = lz[n20 / (m*n)]; */
960: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
961: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
962: }
963: }
965: for (i=0; i<y; i++) {
966: if (n21 >= 0) { /* directly left */
967: x_t = lx[n21 % m]*dof;
968: y_t = y;
969: /* z_t = lz[n21 / (m*n)]; */
970: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
971: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
972: }
974: if (n22 >= 0) { /* middle */
975: x_t = x;
976: y_t = y;
977: /* z_t = lz[n22 / (m*n)]; */
978: s_t = bases[n22] + i*x_t + k*x_t*y_t;
979: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
980: }
982: if (n23 >= 0) { /* directly right */
983: x_t = lx[n23 % m]*dof;
984: y_t = y;
985: /* z_t = lz[n23 / (m*n)]; */
986: s_t = bases[n23] + i*x_t + k*x_t*y_t;
987: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
988: }
989: }
991: for (i=1; i<=s_y; i++) {
992: if (n24 >= 0) { /* left above */
993: x_t = lx[n24 % m]*dof;
994: y_t = ly[(n24 % (m*n))/m];
995: /* z_t = lz[n24 / (m*n)]; */
996: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
997: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
998: }
999: if (n25 >= 0) { /* directly above */
1000: x_t = x;
1001: y_t = ly[(n25 % (m*n))/m];
1002: /* z_t = lz[n25 / (m*n)]; */
1003: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1004: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1005: }
1006: if (n26 >= 0) { /* right above */
1007: x_t = lx[n26 % m]*dof;
1008: y_t = ly[(n26 % (m*n))/m];
1009: /* z_t = lz[n26 / (m*n)]; */
1010: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1011: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1012: }
1013: }
1014: }
1015: base = bases[rank];
1016: ISCreateGeneral(comm,nn,idx,&from);
1017: VecScatterCreate(global,from,local,to,>ol);
1018: PetscLogObjectParent(da,gtol);
1019: PetscLogObjectParent(da,to);
1020: PetscLogObjectParent(da,from);
1021: ISDestroy(to);
1022: ISDestroy(from);
1023: da->stencil_type = stencil_type;
1024: da->M = M; da->N = N; da->P = P;
1025: da->m = m; da->n = n; da->p = p;
1026: da->w = dof; da->s = s;
1027: da->xs = xs; da->xe = xe; da->ys = ys; da->ye = ye; da->zs = zs; da->ze = ze;
1028: da->Xs = Xs; da->Xe = Xe; da->Ys = Ys; da->Ye = Ye; da->Zs = Zs; da->Ze = Ze;
1030: PetscLogObjectParent(da,global);
1031: PetscLogObjectParent(da,local);
1033: if (stencil_type == DA_STENCIL_STAR) {
1034: /*
1035: Recompute the local to global mappings, this time keeping the
1036: information about the cross corner processor numbers.
1037: */
1038: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
1039: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1040: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1041: n26 = sn26;
1043: nn = 0;
1045: /* Bottom Level */
1046: for (k=0; k<s_z; k++) {
1047: for (i=1; i<=s_y; i++) {
1048: if (n0 >= 0) { /* left below */
1049: x_t = lx[n0 % m]*dof;
1050: y_t = ly[(n0 % (m*n))/m];
1051: z_t = lz[n0 / (m*n)];
1052: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1053: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1054: }
1055: if (n1 >= 0) { /* directly below */
1056: x_t = x;
1057: y_t = ly[(n1 % (m*n))/m];
1058: z_t = lz[n1 / (m*n)];
1059: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1060: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1061: }
1062: if (n2 >= 0) { /* right below */
1063: x_t = lx[n2 % m]*dof;
1064: y_t = ly[(n2 % (m*n))/m];
1065: z_t = lz[n2 / (m*n)];
1066: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1067: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1068: }
1069: }
1071: for (i=0; i<y; i++) {
1072: if (n3 >= 0) { /* directly left */
1073: x_t = lx[n3 % m]*dof;
1074: y_t = y;
1075: z_t = lz[n3 / (m*n)];
1076: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1077: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1078: }
1080: if (n4 >= 0) { /* middle */
1081: x_t = x;
1082: y_t = y;
1083: z_t = lz[n4 / (m*n)];
1084: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1085: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1086: }
1088: if (n5 >= 0) { /* directly right */
1089: x_t = lx[n5 % m]*dof;
1090: y_t = y;
1091: z_t = lz[n5 / (m*n)];
1092: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1093: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1094: }
1095: }
1097: for (i=1; i<=s_y; i++) {
1098: if (n6 >= 0) { /* left above */
1099: x_t = lx[n6 % m]*dof;
1100: y_t = ly[(n6 % (m*n))/m];
1101: z_t = lz[n6 / (m*n)];
1102: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1103: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1104: }
1105: if (n7 >= 0) { /* directly above */
1106: x_t = x;
1107: y_t = ly[(n7 % (m*n))/m];
1108: z_t = lz[n7 / (m*n)];
1109: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1110: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1111: }
1112: if (n8 >= 0) { /* right above */
1113: x_t = lx[n8 % m]*dof;
1114: y_t = ly[(n8 % (m*n))/m];
1115: z_t = lz[n8 / (m*n)];
1116: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1117: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1118: }
1119: }
1120: }
1122: /* Middle Level */
1123: for (k=0; k<z; k++) {
1124: for (i=1; i<=s_y; i++) {
1125: if (n9 >= 0) { /* left below */
1126: x_t = lx[n9 % m]*dof;
1127: y_t = ly[(n9 % (m*n))/m];
1128: /* z_t = z; */
1129: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1130: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1131: }
1132: if (n10 >= 0) { /* directly below */
1133: x_t = x;
1134: y_t = ly[(n10 % (m*n))/m];
1135: /* z_t = z; */
1136: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1137: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1138: }
1139: if (n11 >= 0) { /* right below */
1140: x_t = lx[n11 % m]*dof;
1141: y_t = ly[(n11 % (m*n))/m];
1142: /* z_t = z; */
1143: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1144: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1145: }
1146: }
1148: for (i=0; i<y; i++) {
1149: if (n12 >= 0) { /* directly left */
1150: x_t = lx[n12 % m]*dof;
1151: y_t = y;
1152: /* z_t = z; */
1153: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1154: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1155: }
1157: /* Interior */
1158: s_t = bases[rank] + i*x + k*x*y;
1159: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
1161: if (n14 >= 0) { /* directly right */
1162: x_t = lx[n14 % m]*dof;
1163: y_t = y;
1164: /* z_t = z; */
1165: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1166: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1167: }
1168: }
1170: for (i=1; i<=s_y; i++) {
1171: if (n15 >= 0) { /* left above */
1172: x_t = lx[n15 % m]*dof;
1173: y_t = ly[(n15 % (m*n))/m];
1174: /* z_t = z; */
1175: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1176: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1177: }
1178: if (n16 >= 0) { /* directly above */
1179: x_t = x;
1180: y_t = ly[(n16 % (m*n))/m];
1181: /* z_t = z; */
1182: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1183: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1184: }
1185: if (n17 >= 0) { /* right above */
1186: x_t = lx[n17 % m]*dof;
1187: y_t = ly[(n17 % (m*n))/m];
1188: /* z_t = z; */
1189: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1190: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1191: }
1192: }
1193: }
1194:
1195: /* Upper Level */
1196: for (k=0; k<s_z; k++) {
1197: for (i=1; i<=s_y; i++) {
1198: if (n18 >= 0) { /* left below */
1199: x_t = lx[n18 % m]*dof;
1200: y_t = ly[(n18 % (m*n))/m];
1201: /* z_t = lz[n18 / (m*n)]; */
1202: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1203: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1204: }
1205: if (n19 >= 0) { /* directly below */
1206: x_t = x;
1207: y_t = ly[(n19 % (m*n))/m];
1208: /* z_t = lz[n19 / (m*n)]; */
1209: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1210: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1211: }
1212: if (n20 >= 0) { /* right below */
1213: x_t = lx[n20 % m]*dof;
1214: y_t = ly[(n20 % (m*n))/m];
1215: /* z_t = lz[n20 / (m*n)]; */
1216: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1217: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1218: }
1219: }
1221: for (i=0; i<y; i++) {
1222: if (n21 >= 0) { /* directly left */
1223: x_t = lx[n21 % m]*dof;
1224: y_t = y;
1225: /* z_t = lz[n21 / (m*n)]; */
1226: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1227: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1228: }
1230: if (n22 >= 0) { /* middle */
1231: x_t = x;
1232: y_t = y;
1233: /* z_t = lz[n22 / (m*n)]; */
1234: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1235: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1236: }
1238: if (n23 >= 0) { /* directly right */
1239: x_t = lx[n23 % m]*dof;
1240: y_t = y;
1241: /* z_t = lz[n23 / (m*n)]; */
1242: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1243: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1244: }
1245: }
1247: for (i=1; i<=s_y; i++) {
1248: if (n24 >= 0) { /* left above */
1249: x_t = lx[n24 % m]*dof;
1250: y_t = ly[(n24 % (m*n))/m];
1251: /* z_t = lz[n24 / (m*n)]; */
1252: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1253: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1254: }
1255: if (n25 >= 0) { /* directly above */
1256: x_t = x;
1257: y_t = ly[(n25 % (m*n))/m];
1258: /* z_t = lz[n25 / (m*n)]; */
1259: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1260: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1261: }
1262: if (n26 >= 0) { /* right above */
1263: x_t = lx[n26 % m]*dof;
1264: y_t = ly[(n26 % (m*n))/m];
1265: /* z_t = lz[n26 / (m*n)]; */
1266: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1267: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1268: }
1269: }
1270: }
1271: }
1272: da->global = global;
1273: da->local = local;
1274: da->gtol = gtol;
1275: da->ltog = ltog;
1276: da->idx = idx;
1277: da->Nl = nn;
1278: da->base = base;
1279: da->ops->view = DAView_3d;
1280: da->wrap = wrap;
1281: *inra = da;
1283: /*
1284: Set the local to global ordering in the global vector, this allows use
1285: of VecSetValuesLocal().
1286: */
1287: ierr = ISLocalToGlobalMappingCreate(comm,nn,idx,&da->ltogmap);
1288: ierr = VecSetLocalToGlobalMapping(da->global,da->ltogmap);
1289: ISLocalToGlobalMappingBlock(da->ltogmap,da->w,&da->ltogmapb);
1290: VecSetLocalToGlobalMappingBlock(da->global,da->ltogmapb);
1291: PetscLogObjectParent(da,da->ltogmap);
1293: /* redo idx to include "missing" ghost points */
1294: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
1295:
1296: /* Assume Nodes are Internal to the Cube */
1297:
1298: n0 = rank - m*n - m - 1;
1299: n1 = rank - m*n - m;
1300: n2 = rank - m*n - m + 1;
1301: n3 = rank - m*n -1;
1302: n4 = rank - m*n;
1303: n5 = rank - m*n + 1;
1304: n6 = rank - m*n + m - 1;
1305: n7 = rank - m*n + m;
1306: n8 = rank - m*n + m + 1;
1308: n9 = rank - m - 1;
1309: n10 = rank - m;
1310: n11 = rank - m + 1;
1311: n12 = rank - 1;
1312: n14 = rank + 1;
1313: n15 = rank + m - 1;
1314: n16 = rank + m;
1315: n17 = rank + m + 1;
1317: n18 = rank + m*n - m - 1;
1318: n19 = rank + m*n - m;
1319: n20 = rank + m*n - m + 1;
1320: n21 = rank + m*n - 1;
1321: n22 = rank + m*n;
1322: n23 = rank + m*n + 1;
1323: n24 = rank + m*n + m - 1;
1324: n25 = rank + m*n + m;
1325: n26 = rank + m*n + m + 1;
1327: /* Assume Pieces are on Faces of Cube */
1329: if (xs == 0) { /* First assume not corner or edge */
1330: n0 = rank -1 - (m*n);
1331: n3 = rank + m -1 - (m*n);
1332: n6 = rank + 2*m -1 - (m*n);
1333: n9 = rank -1;
1334: n12 = rank + m -1;
1335: n15 = rank + 2*m -1;
1336: n18 = rank -1 + (m*n);
1337: n21 = rank + m -1 + (m*n);
1338: n24 = rank + 2*m -1 + (m*n);
1339: }
1341: if (xe == M*dof) { /* First assume not corner or edge */
1342: n2 = rank -2*m +1 - (m*n);
1343: n5 = rank - m +1 - (m*n);
1344: n8 = rank +1 - (m*n);
1345: n11 = rank -2*m +1;
1346: n14 = rank - m +1;
1347: n17 = rank +1;
1348: n20 = rank -2*m +1 + (m*n);
1349: n23 = rank - m +1 + (m*n);
1350: n26 = rank +1 + (m*n);
1351: }
1353: if (ys==0) { /* First assume not corner or edge */
1354: n0 = rank + m * (n-1) -1 - (m*n);
1355: n1 = rank + m * (n-1) - (m*n);
1356: n2 = rank + m * (n-1) +1 - (m*n);
1357: n9 = rank + m * (n-1) -1;
1358: n10 = rank + m * (n-1);
1359: n11 = rank + m * (n-1) +1;
1360: n18 = rank + m * (n-1) -1 + (m*n);
1361: n19 = rank + m * (n-1) + (m*n);
1362: n20 = rank + m * (n-1) +1 + (m*n);
1363: }
1365: if (ye == N) { /* First assume not corner or edge */
1366: n6 = rank - m * (n-1) -1 - (m*n);
1367: n7 = rank - m * (n-1) - (m*n);
1368: n8 = rank - m * (n-1) +1 - (m*n);
1369: n15 = rank - m * (n-1) -1;
1370: n16 = rank - m * (n-1);
1371: n17 = rank - m * (n-1) +1;
1372: n24 = rank - m * (n-1) -1 + (m*n);
1373: n25 = rank - m * (n-1) + (m*n);
1374: n26 = rank - m * (n-1) +1 + (m*n);
1375: }
1376:
1377: if (zs == 0) { /* First assume not corner or edge */
1378: n0 = size - (m*n) + rank - m - 1;
1379: n1 = size - (m*n) + rank - m;
1380: n2 = size - (m*n) + rank - m + 1;
1381: n3 = size - (m*n) + rank - 1;
1382: n4 = size - (m*n) + rank;
1383: n5 = size - (m*n) + rank + 1;
1384: n6 = size - (m*n) + rank + m - 1;
1385: n7 = size - (m*n) + rank + m ;
1386: n8 = size - (m*n) + rank + m + 1;
1387: }
1389: if (ze == P) { /* First assume not corner or edge */
1390: n18 = (m*n) - (size-rank) - m - 1;
1391: n19 = (m*n) - (size-rank) - m;
1392: n20 = (m*n) - (size-rank) - m + 1;
1393: n21 = (m*n) - (size-rank) - 1;
1394: n22 = (m*n) - (size-rank);
1395: n23 = (m*n) - (size-rank) + 1;
1396: n24 = (m*n) - (size-rank) + m - 1;
1397: n25 = (m*n) - (size-rank) + m;
1398: n26 = (m*n) - (size-rank) + m + 1;
1399: }
1401: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
1402: n0 = size - m*n + rank + m-1 - m;
1403: n3 = size - m*n + rank + m-1;
1404: n6 = size - m*n + rank + m-1 + m;
1405: }
1406:
1407: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
1408: n18 = m*n - (size - rank) + m-1 - m;
1409: n21 = m*n - (size - rank) + m-1;
1410: n24 = m*n - (size - rank) + m-1 + m;
1411: }
1413: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
1414: n0 = rank + m*n -1 - m*n;
1415: n9 = rank + m*n -1;
1416: n18 = rank + m*n -1 + m*n;
1417: }
1419: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
1420: n6 = rank - m*(n-1) + m-1 - m*n;
1421: n15 = rank - m*(n-1) + m-1;
1422: n24 = rank - m*(n-1) + m-1 + m*n;
1423: }
1425: if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
1426: n2 = size - (m*n-rank) - (m-1) - m;
1427: n5 = size - (m*n-rank) - (m-1);
1428: n8 = size - (m*n-rank) - (m-1) + m;
1429: }
1431: if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
1432: n20 = m*n - (size - rank) - (m-1) - m;
1433: n23 = m*n - (size - rank) - (m-1);
1434: n26 = m*n - (size - rank) - (m-1) + m;
1435: }
1437: if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
1438: n2 = rank + m*(n-1) - (m-1) - m*n;
1439: n11 = rank + m*(n-1) - (m-1);
1440: n20 = rank + m*(n-1) - (m-1) + m*n;
1441: }
1443: if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
1444: n8 = rank - m*n +1 - m*n;
1445: n17 = rank - m*n +1;
1446: n26 = rank - m*n +1 + m*n;
1447: }
1449: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
1450: n0 = size - m + rank -1;
1451: n1 = size - m + rank;
1452: n2 = size - m + rank +1;
1453: }
1455: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
1456: n18 = m*n - (size - rank) + m*(n-1) -1;
1457: n19 = m*n - (size - rank) + m*(n-1);
1458: n20 = m*n - (size - rank) + m*(n-1) +1;
1459: }
1461: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
1462: n6 = size - (m*n-rank) - m * (n-1) -1;
1463: n7 = size - (m*n-rank) - m * (n-1);
1464: n8 = size - (m*n-rank) - m * (n-1) +1;
1465: }
1467: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
1468: n24 = rank - (size-m) -1;
1469: n25 = rank - (size-m);
1470: n26 = rank - (size-m) +1;
1471: }
1473: /* Check for Corners */
1474: if ((xs==0) && (ys==0) && (zs==0)) { n0 = size -1;}
1475: if ((xs==0) && (ys==0) && (ze==P)) { n18 = m*n-1;}
1476: if ((xs==0) && (ye==N) && (zs==0)) { n6 = (size-1)-m*(n-1);}
1477: if ((xs==0) && (ye==N) && (ze==P)) { n24 = m-1;}
1478: if ((xe==M*dof) && (ys==0) && (zs==0)) { n2 = size-m;}
1479: if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
1480: if ((xe==M*dof) && (ye==N) && (zs==0)) { n8 = size-m*n;}
1481: if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}
1483: /* Check for when not X,Y, and Z Periodic */
1485: /* If not X periodic */
1486: if (!DAXPeriodic(wrap)){
1487: if (xs==0) {n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;}
1488: if (xe==M*dof) {n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
1489: }
1491: /* If not Y periodic */
1492: if (!DAYPeriodic(wrap)){
1493: if (ys==0) {n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;}
1494: if (ye==N) {n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
1495: }
1497: /* If not Z periodic */
1498: if (!DAZPeriodic(wrap)){
1499: if (zs==0) {n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;}
1500: if (ze==P) {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
1501: }
1503: nn = 0;
1505: /* Bottom Level */
1506: for (k=0; k<s_z; k++) {
1507: for (i=1; i<=s_y; i++) {
1508: if (n0 >= 0) { /* left below */
1509: x_t = lx[n0 % m]*dof;
1510: y_t = ly[(n0 % (m*n))/m];
1511: z_t = lz[n0 / (m*n)];
1512: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t -s_x - (s_z-k-1)*x_t*y_t;
1513: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1514: }
1515: if (n1 >= 0) { /* directly below */
1516: x_t = x;
1517: y_t = ly[(n1 % (m*n))/m];
1518: z_t = lz[n1 / (m*n)];
1519: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1520: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1521: }
1522: if (n2 >= 0) { /* right below */
1523: x_t = lx[n2 % m]*dof;
1524: y_t = ly[(n2 % (m*n))/m];
1525: z_t = lz[n2 / (m*n)];
1526: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1527: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1528: }
1529: }
1531: for (i=0; i<y; i++) {
1532: if (n3 >= 0) { /* directly left */
1533: x_t = lx[n3 % m]*dof;
1534: y_t = y;
1535: z_t = lz[n3 / (m*n)];
1536: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1537: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1538: }
1540: if (n4 >= 0) { /* middle */
1541: x_t = x;
1542: y_t = y;
1543: z_t = lz[n4 / (m*n)];
1544: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1545: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1546: }
1548: if (n5 >= 0) { /* directly right */
1549: x_t = lx[n5 % m]*dof;
1550: y_t = y;
1551: z_t = lz[n5 / (m*n)];
1552: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1553: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1554: }
1555: }
1557: for (i=1; i<=s_y; i++) {
1558: if (n6 >= 0) { /* left above */
1559: x_t = lx[n6 % m]*dof;
1560: y_t = ly[(n6 % (m*n))/m];
1561: z_t = lz[n6 / (m*n)];
1562: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1563: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1564: }
1565: if (n7 >= 0) { /* directly above */
1566: x_t = x;
1567: y_t = ly[(n7 % (m*n))/m];
1568: z_t = lz[n7 / (m*n)];
1569: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1570: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1571: }
1572: if (n8 >= 0) { /* right above */
1573: x_t = lx[n8 % m]*dof;
1574: y_t = ly[(n8 % (m*n))/m];
1575: z_t = lz[n8 / (m*n)];
1576: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1577: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1578: }
1579: }
1580: }
1582: /* Middle Level */
1583: for (k=0; k<z; k++) {
1584: for (i=1; i<=s_y; i++) {
1585: if (n9 >= 0) { /* left below */
1586: x_t = lx[n9 % m]*dof;
1587: y_t = ly[(n9 % (m*n))/m];
1588: /* z_t = z; */
1589: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1590: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1591: }
1592: if (n10 >= 0) { /* directly below */
1593: x_t = x;
1594: y_t = ly[(n10 % (m*n))/m];
1595: /* z_t = z; */
1596: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1597: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1598: }
1599: if (n11 >= 0) { /* right below */
1600: x_t = lx[n11 % m]*dof;
1601: y_t = ly[(n11 % (m*n))/m];
1602: /* z_t = z; */
1603: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1604: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1605: }
1606: }
1608: for (i=0; i<y; i++) {
1609: if (n12 >= 0) { /* directly left */
1610: x_t = lx[n12 % m]*dof;
1611: y_t = y;
1612: /* z_t = z; */
1613: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1614: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1615: }
1617: /* Interior */
1618: s_t = bases[rank] + i*x + k*x*y;
1619: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
1621: if (n14 >= 0) { /* directly right */
1622: x_t = lx[n14 % m]*dof;
1623: y_t = y;
1624: /* z_t = z; */
1625: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1626: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1627: }
1628: }
1630: for (i=1; i<=s_y; i++) {
1631: if (n15 >= 0) { /* left above */
1632: x_t = lx[n15 % m]*dof;
1633: y_t = ly[(n15 % (m*n))/m];
1634: /* z_t = z; */
1635: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1636: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1637: }
1638: if (n16 >= 0) { /* directly above */
1639: x_t = x;
1640: y_t = ly[(n16 % (m*n))/m];
1641: /* z_t = z; */
1642: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1643: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1644: }
1645: if (n17 >= 0) { /* right above */
1646: x_t = lx[n17 % m]*dof;
1647: y_t = ly[(n17 % (m*n))/m];
1648: /* z_t = z; */
1649: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1650: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1651: }
1652: }
1653: }
1654:
1655: /* Upper Level */
1656: for (k=0; k<s_z; k++) {
1657: for (i=1; i<=s_y; i++) {
1658: if (n18 >= 0) { /* left below */
1659: x_t = lx[n18 % m]*dof;
1660: y_t = ly[(n18 % (m*n))/m];
1661: /* z_t = lz[n18 / (m*n)]; */
1662: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1663: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1664: }
1665: if (n19 >= 0) { /* directly below */
1666: x_t = x;
1667: y_t = ly[(n19 % (m*n))/m];
1668: /* z_t = lz[n19 / (m*n)]; */
1669: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1670: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1671: }
1672: if (n20 >= 0) { /* right belodof */
1673: x_t = lx[n20 % m]*dof;
1674: y_t = ly[(n20 % (m*n))/m];
1675: /* z_t = lz[n20 / (m*n)]; */
1676: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1677: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1678: }
1679: }
1681: for (i=0; i<y; i++) {
1682: if (n21 >= 0) { /* directly left */
1683: x_t = lx[n21 % m]*dof;
1684: y_t = y;
1685: /* z_t = lz[n21 / (m*n)]; */
1686: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1687: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1688: }
1690: if (n22 >= 0) { /* middle */
1691: x_t = x;
1692: y_t = y;
1693: /* z_t = lz[n22 / (m*n)]; */
1694: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1695: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1696: }
1698: if (n23 >= 0) { /* directly right */
1699: x_t = lx[n23 % m]*dof;
1700: y_t = y;
1701: /* z_t = lz[n23 / (m*n)]; */
1702: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1703: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1704: }
1705: }
1707: for (i=1; i<=s_y; i++) {
1708: if (n24 >= 0) { /* left above */
1709: x_t = lx[n24 % m]*dof;
1710: y_t = ly[(n24 % (m*n))/m];
1711: /* z_t = lz[n24 / (m*n)]; */
1712: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1713: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1714: }
1715: if (n25 >= 0) { /* directly above */
1716: x_t = x;
1717: y_t = ly[(n25 % (m*n))/m];
1718: /* z_t = lz[n25 / (m*n)]; */
1719: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1720: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1721: }
1722: if (n26 >= 0) { /* right above */
1723: x_t = lx[n26 % m]*dof;
1724: y_t = ly[(n26 % (m*n))/m];
1725: /* z_t = lz[n26 / (m*n)]; */
1726: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1727: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1728: }
1729: }
1730: }
1732: /* construct the local to local scatter context */
1733: /*
1734: We simply remap the values in the from part of
1735: global to local to read from an array with the ghost values
1736: rather then from the plan array.
1737: */
1738: VecScatterCopy(gtol,&da->ltol);
1739: PetscLogObjectParent(da,da->ltol);
1740: left = xs - Xs;
1741: bottom = ys - Ys; top = bottom + y;
1742: down = zs - Zs; up = down + z;
1743: count = x*(top-bottom)*(up-down);
1744: PetscMalloc(count*sizeof(int),&idx);
1745: count = 0;
1746: for (i=down; i<up; i++) {
1747: for (j=bottom; j<top; j++) {
1748: for (k=0; k<x; k++) {
1749: idx[count++] = (left+j*(Xe-Xs))+i*(Xe-Xs)*(Ye-Ys) + k;
1750: }
1751: }
1752: }
1753: VecScatterRemap(da->ltol,idx,PETSC_NULL);
1754: PetscFree(idx);
1757: /*
1758: Build the natural ordering to PETSc ordering mappings.
1759: */
1760: PetscOptionsHasName(PETSC_NULL,"-da_noao",&flg1);
1761: if (!flg1) {
1762: IS ispetsc,isnatural;
1763: int *lidx,lict = 0;
1764: int Nlocal = (da->xe-da->xs)*(da->ye-da->ys)*(da->ze-da->zs);
1766: ISCreateStride(comm,Nlocal,da->base,1,&ispetsc);
1768: PetscMalloc(Nlocal*sizeof(int),&lidx);
1769: for (k=zs; k<ze; k++) {
1770: for (j=ys; j<ye; j++) {
1771: for (i=xs; i<xe; i++) {
1772: lidx[lict++] = i + j*M*dof + k*M*N*dof;
1773: }
1774: }
1775: }
1776: ISCreateGeneral(comm,Nlocal,lidx,&isnatural);
1777: PetscFree(lidx);
1779: AOCreateBasicIS(isnatural,ispetsc,&da->ao);
1780: PetscLogObjectParent(da,da->ao);
1781: ISDestroy(ispetsc);
1782: ISDestroy(isnatural);
1783: } else {
1784: da->ao = PETSC_NULL;
1785: }
1787: if (!flx) {
1788: PetscMalloc(m*sizeof(int),&flx);
1789: PetscMemcpy(flx,lx,m*sizeof(int));
1790: }
1791: if (!fly) {
1792: PetscMalloc(n*sizeof(int),&fly);
1793: PetscMemcpy(fly,ly,n*sizeof(int));
1794: }
1795: if (!flz) {
1796: PetscMalloc(p*sizeof(int),&flz);
1797: PetscMemcpy(flz,lz,p*sizeof(int));
1798: }
1799: da->lx = flx;
1800: da->ly = fly;
1801: da->lz = flz;
1803: /*
1804: Note the following will be removed soon. Since the functionality
1805: is replaced by the above. */
1807: /* Construct the mapping from current global ordering to global
1808: ordering that would be used if only 1 processor were employed.
1809: This mapping is intended only for internal use by discrete
1810: function and matrix viewers.
1812: Note: At this point, x has already been adjusted for multiple
1813: degrees of freedom per node.
1814: */
1815: ldim = x*y*z;
1816: VecGetSize(global,&gdim);
1817: PetscMalloc(gdim*sizeof(int),&da->gtog1);
1818: PetscLogObjectMemory(da,gdim*sizeof(int));
1819: PetscMalloc((2*(gdim+ldim))*sizeof(int),&gA);
1820: gB = (int *)(gA + ldim);
1821: gAall = (int *)(gB + ldim);
1822: gBall = (int *)(gAall + gdim);
1823: /* Compute local parts of global orderings */
1824: ict = 0;
1825: for (k=zs; k<ze; k++) {
1826: for (j=ys; j<ye; j++) {
1827: for (i=xs; i<xe; i++) {
1828: /* gA = global number for 1 proc; gB = current global number */
1829: gA[ict] = i + j*M*dof + k*M*N*dof;
1830: gB[ict] = start + ict;
1831: ict++;
1832: }
1833: }
1834: }
1835: /* Broadcast the orderings */
1836: MPI_Allgatherv(gA,ldim,MPI_INT,gAall,ldims,bases,MPI_INT,comm);
1837: MPI_Allgatherv(gB,ldim,MPI_INT,gBall,ldims,bases,MPI_INT,comm);
1838: for (i=0; i<gdim; i++) da->gtog1[gBall[i]] = gAall[i];
1839: PetscFree(gA);
1840: PetscFree(bases);
1842: PetscOptionsHasName(PETSC_NULL,"-da_view",&flg1);
1843: if (flg1) {DAView(da,PETSC_VIEWER_STDOUT_(da->comm));}
1844: PetscOptionsHasName(PETSC_NULL,"-da_view_draw",&flg1);
1845: if (flg1) {DAView(da,PETSC_VIEWER_DRAW_(da->comm));}
1846: PetscOptionsHasName(PETSC_NULL,"-help",&flg1);
1847: if (flg1) {DAPrintHelp(da);}
1848: PetscPublishAll(da);
1850: #if defined(PETSC_HAVE_AMS)
1851: PetscObjectComposeFunctionDynamic((PetscObject)global,"AMSSetFieldBlock_C",
1852: "AMSSetFieldBlock_DA",AMSSetFieldBlock_DA);
1853: PetscObjectComposeFunctionDynamic((PetscObject)local,"AMSSetFieldBlock_C",
1854: "AMSSetFieldBlock_DA",AMSSetFieldBlock_DA);
1855: if (((PetscObject)global)->amem > -1) {
1856: AMSSetFieldBlock_DA(((PetscObject)global)->amem,"values",global);
1857: }
1858: #endif
1859: VecSetOperation(global,VECOP_VIEW,(void(*)(void))VecView_MPI_DA);
1860: VecSetOperation(global,VECOP_LOADINTOVECTOR,(void(*)(void))VecLoadIntoVector_Binary_DA);
1861: return(0);
1862: }