Actual source code: baijfact12.c
1: /*$Id: baijfact12.c,v 1.17 2001/08/31 16:22:11 bsmith Exp $*/
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include src/mat/impls/baij/seq/baij.h
6: #include src/vec/vecimpl.h
7: #include src/inline/ilu.h
9: int MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering(Mat A,Mat *B)
10: {
11: /*
12: Default Version for when blocks are 4 by 4 Using natural ordering
13: */
14: Mat C = *B;
15: Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
16: int ierr,i,j,n = a->mbs,*bi = b->i,*bj = b->j;
17: int *ajtmpold,*ajtmp,nz,row;
18: int *diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj;
19: MatScalar *pv,*v,*rtmp,*pc,*w,*x;
20: MatScalar p1,p2,p3,p4,m1,m2,m3,m4,m5,m6,m7,m8,m9,x1,x2,x3,x4;
21: MatScalar p5,p6,p7,p8,p9,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16;
22: MatScalar p10,p11,p12,p13,p14,p15,p16,m10,m11,m12;
23: MatScalar m13,m14,m15,m16;
24: MatScalar *ba = b->a,*aa = a->a;
27: PetscMalloc(16*(n+1)*sizeof(MatScalar),&rtmp);
29: for (i=0; i<n; i++) {
30: nz = bi[i+1] - bi[i];
31: ajtmp = bj + bi[i];
32: for (j=0; j<nz; j++) {
33: x = rtmp+16*ajtmp[j];
34: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
35: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = 0.0;
36: }
37: /* load in initial (unfactored row) */
38: nz = ai[i+1] - ai[i];
39: ajtmpold = aj + ai[i];
40: v = aa + 16*ai[i];
41: for (j=0; j<nz; j++) {
42: x = rtmp+16*ajtmpold[j];
43: x[0] = v[0]; x[1] = v[1]; x[2] = v[2]; x[3] = v[3];
44: x[4] = v[4]; x[5] = v[5]; x[6] = v[6]; x[7] = v[7]; x[8] = v[8];
45: x[9] = v[9]; x[10] = v[10]; x[11] = v[11]; x[12] = v[12]; x[13] = v[13];
46: x[14] = v[14]; x[15] = v[15];
47: v += 16;
48: }
49: row = *ajtmp++;
50: while (row < i) {
51: pc = rtmp + 16*row;
52: p1 = pc[0]; p2 = pc[1]; p3 = pc[2]; p4 = pc[3];
53: p5 = pc[4]; p6 = pc[5]; p7 = pc[6]; p8 = pc[7]; p9 = pc[8];
54: p10 = pc[9]; p11 = pc[10]; p12 = pc[11]; p13 = pc[12]; p14 = pc[13];
55: p15 = pc[14]; p16 = pc[15];
56: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 ||
57: p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 ||
58: p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0
59: || p16 != 0.0) {
60: pv = ba + 16*diag_offset[row];
61: pj = bj + diag_offset[row] + 1;
62: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
63: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7]; x9 = pv[8];
64: x10 = pv[9]; x11 = pv[10]; x12 = pv[11]; x13 = pv[12]; x14 = pv[13];
65: x15 = pv[14]; x16 = pv[15];
66: pc[0] = m1 = p1*x1 + p5*x2 + p9*x3 + p13*x4;
67: pc[1] = m2 = p2*x1 + p6*x2 + p10*x3 + p14*x4;
68: pc[2] = m3 = p3*x1 + p7*x2 + p11*x3 + p15*x4;
69: pc[3] = m4 = p4*x1 + p8*x2 + p12*x3 + p16*x4;
71: pc[4] = m5 = p1*x5 + p5*x6 + p9*x7 + p13*x8;
72: pc[5] = m6 = p2*x5 + p6*x6 + p10*x7 + p14*x8;
73: pc[6] = m7 = p3*x5 + p7*x6 + p11*x7 + p15*x8;
74: pc[7] = m8 = p4*x5 + p8*x6 + p12*x7 + p16*x8;
76: pc[8] = m9 = p1*x9 + p5*x10 + p9*x11 + p13*x12;
77: pc[9] = m10 = p2*x9 + p6*x10 + p10*x11 + p14*x12;
78: pc[10] = m11 = p3*x9 + p7*x10 + p11*x11 + p15*x12;
79: pc[11] = m12 = p4*x9 + p8*x10 + p12*x11 + p16*x12;
81: pc[12] = m13 = p1*x13 + p5*x14 + p9*x15 + p13*x16;
82: pc[13] = m14 = p2*x13 + p6*x14 + p10*x15 + p14*x16;
83: pc[14] = m15 = p3*x13 + p7*x14 + p11*x15 + p15*x16;
84: pc[15] = m16 = p4*x13 + p8*x14 + p12*x15 + p16*x16;
85: nz = bi[row+1] - diag_offset[row] - 1;
86: pv += 16;
87: for (j=0; j<nz; j++) {
88: x1 = pv[0]; x2 = pv[1]; x3 = pv[2]; x4 = pv[3];
89: x5 = pv[4]; x6 = pv[5]; x7 = pv[6]; x8 = pv[7]; x9 = pv[8];
90: x10 = pv[9]; x11 = pv[10]; x12 = pv[11]; x13 = pv[12];
91: x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
92: x = rtmp + 16*pj[j];
93: x[0] -= m1*x1 + m5*x2 + m9*x3 + m13*x4;
94: x[1] -= m2*x1 + m6*x2 + m10*x3 + m14*x4;
95: x[2] -= m3*x1 + m7*x2 + m11*x3 + m15*x4;
96: x[3] -= m4*x1 + m8*x2 + m12*x3 + m16*x4;
98: x[4] -= m1*x5 + m5*x6 + m9*x7 + m13*x8;
99: x[5] -= m2*x5 + m6*x6 + m10*x7 + m14*x8;
100: x[6] -= m3*x5 + m7*x6 + m11*x7 + m15*x8;
101: x[7] -= m4*x5 + m8*x6 + m12*x7 + m16*x8;
103: x[8] -= m1*x9 + m5*x10 + m9*x11 + m13*x12;
104: x[9] -= m2*x9 + m6*x10 + m10*x11 + m14*x12;
105: x[10] -= m3*x9 + m7*x10 + m11*x11 + m15*x12;
106: x[11] -= m4*x9 + m8*x10 + m12*x11 + m16*x12;
108: x[12] -= m1*x13 + m5*x14 + m9*x15 + m13*x16;
109: x[13] -= m2*x13 + m6*x14 + m10*x15 + m14*x16;
110: x[14] -= m3*x13 + m7*x14 + m11*x15 + m15*x16;
111: x[15] -= m4*x13 + m8*x14 + m12*x15 + m16*x16;
113: pv += 16;
114: }
115: PetscLogFlops(128*nz+112);
116: }
117: row = *ajtmp++;
118: }
119: /* finished row so stick it into b->a */
120: pv = ba + 16*bi[i];
121: pj = bj + bi[i];
122: nz = bi[i+1] - bi[i];
123: for (j=0; j<nz; j++) {
124: x = rtmp+16*pj[j];
125: pv[0] = x[0]; pv[1] = x[1]; pv[2] = x[2]; pv[3] = x[3];
126: pv[4] = x[4]; pv[5] = x[5]; pv[6] = x[6]; pv[7] = x[7]; pv[8] = x[8];
127: pv[9] = x[9]; pv[10] = x[10]; pv[11] = x[11]; pv[12] = x[12];
128: pv[13] = x[13]; pv[14] = x[14]; pv[15] = x[15];
129: pv += 16;
130: }
131: /* invert diagonal block */
132: w = ba + 16*diag_offset[i];
133: Kernel_A_gets_inverse_A_4(w);
134: }
136: PetscFree(rtmp);
137: C->factor = FACTOR_LU;
138: C->assembled = PETSC_TRUE;
139: PetscLogFlops(1.3333*64*b->mbs); /* from inverting diagonal blocks */
140: return(0);
141: }
144: #if defined(PETSC_HAVE_SSE)
146: #include PETSC_HAVE_SSE
148: /* SSE Version for when blocks are 4 by 4 Using natural ordering */
149: int MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering_SSE(Mat A,Mat *B)
150: {
151: Mat C = *B;
152: Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
153: int ierr,i,j,n = a->mbs,*bi = b->i,*bj = b->j;
154: int *ajtmpold,*ajtmp,nz,row;
155: int *diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj;
156: MatScalar *pv,*v,*rtmp,*pc,*w,*x;
157: MatScalar *ba = b->a,*aa = a->a;
158: int nonzero=0;
161: SSE_SCOPE_BEGIN;
163: PetscMalloc(16*(n+1)*sizeof(MatScalar),&rtmp);
164: for (i=0; i<n; i++) {
165: nz = bi[i+1] - bi[i];
166: ajtmp = bj + bi[i];
167: /* zero out the 4x4 block accumulators */
168: /* zero out one register */
169: XOR_PS(XMM7,XMM7);
170: for (j=0; j<nz; j++) {
171: x = rtmp+16*ajtmp[j];
172: SSE_INLINE_BEGIN_1(x)
173: /* Copy zero register to memory locations */
174: /* Note: on future SSE architectures, STORE might be more efficient than STOREL/H */
175: SSE_STOREL_PS(SSE_ARG_1,FLOAT_0,XMM7)
176: SSE_STOREH_PS(SSE_ARG_1,FLOAT_2,XMM7)
177: SSE_STOREL_PS(SSE_ARG_1,FLOAT_4,XMM7)
178: SSE_STOREH_PS(SSE_ARG_1,FLOAT_6,XMM7)
179: SSE_STOREL_PS(SSE_ARG_1,FLOAT_8,XMM7)
180: SSE_STOREH_PS(SSE_ARG_1,FLOAT_10,XMM7)
181: SSE_STOREL_PS(SSE_ARG_1,FLOAT_12,XMM7)
182: SSE_STOREH_PS(SSE_ARG_1,FLOAT_14,XMM7)
183: SSE_INLINE_END_1;
184: }
185: /* load in initial (unfactored row) */
186: nz = ai[i+1] - ai[i];
187: ajtmpold = aj + ai[i];
188: v = aa + 16*ai[i];
189: for (j=0; j<nz; j++) {
190: x = rtmp+16*ajtmpold[j];
191: /* Copy v block into x block */
192: SSE_INLINE_BEGIN_2(v,x)
193: /* Note: on future SSE architectures, STORE might be more efficient than STOREL/H */
194: SSE_LOADL_PS(SSE_ARG_1,FLOAT_0,XMM0)
195: SSE_STOREL_PS(SSE_ARG_2,FLOAT_0,XMM0)
197: SSE_LOADH_PS(SSE_ARG_1,FLOAT_2,XMM1)
198: SSE_STOREH_PS(SSE_ARG_2,FLOAT_2,XMM1)
200: SSE_LOADL_PS(SSE_ARG_1,FLOAT_4,XMM2)
201: SSE_STOREL_PS(SSE_ARG_2,FLOAT_4,XMM2)
203: SSE_LOADH_PS(SSE_ARG_1,FLOAT_6,XMM3)
204: SSE_STOREH_PS(SSE_ARG_2,FLOAT_6,XMM3)
206: SSE_LOADL_PS(SSE_ARG_1,FLOAT_8,XMM4)
207: SSE_STOREL_PS(SSE_ARG_2,FLOAT_8,XMM4)
209: SSE_LOADH_PS(SSE_ARG_1,FLOAT_10,XMM5)
210: SSE_STOREH_PS(SSE_ARG_2,FLOAT_10,XMM5)
212: SSE_LOADL_PS(SSE_ARG_1,FLOAT_12,XMM6)
213: SSE_STOREL_PS(SSE_ARG_2,FLOAT_12,XMM6)
215: SSE_LOADH_PS(SSE_ARG_1,FLOAT_14,XMM0)
216: SSE_STOREH_PS(SSE_ARG_2,FLOAT_14,XMM0)
217: SSE_INLINE_END_2;
219: v += 16;
220: }
221: row = *ajtmp++;
222: while (row < i) {
223: pc = rtmp + 16*row;
224: SSE_INLINE_BEGIN_1(pc)
225: /* Load block from lower triangle */
226: /* Note: on future SSE architectures, STORE might be more efficient than STOREL/H */
227: SSE_LOADL_PS(SSE_ARG_1,FLOAT_0,XMM0)
228: SSE_LOADH_PS(SSE_ARG_1,FLOAT_2,XMM0)
230: SSE_LOADL_PS(SSE_ARG_1,FLOAT_4,XMM1)
231: SSE_LOADH_PS(SSE_ARG_1,FLOAT_6,XMM1)
233: SSE_LOADL_PS(SSE_ARG_1,FLOAT_8,XMM2)
234: SSE_LOADH_PS(SSE_ARG_1,FLOAT_10,XMM2)
236: SSE_LOADL_PS(SSE_ARG_1,FLOAT_12,XMM3)
237: SSE_LOADH_PS(SSE_ARG_1,FLOAT_14,XMM3)
239: /* Compare block to zero block */
241: SSE_COPY_PS(XMM4,XMM7)
242: SSE_CMPNEQ_PS(XMM4,XMM0)
244: SSE_COPY_PS(XMM5,XMM7)
245: SSE_CMPNEQ_PS(XMM5,XMM1)
247: SSE_COPY_PS(XMM6,XMM7)
248: SSE_CMPNEQ_PS(XMM6,XMM2)
250: SSE_CMPNEQ_PS(XMM7,XMM3)
252: /* Reduce the comparisons to one SSE register */
253: SSE_OR_PS(XMM6,XMM7)
254: SSE_OR_PS(XMM5,XMM4)
255: SSE_OR_PS(XMM5,XMM6)
256: SSE_INLINE_END_1;
258: /* Reduce the one SSE register to an integer register for branching */
259: /* Note: Since nonzero is an int, there is no INLINE block version of this call */
260: MOVEMASK(nonzero,XMM5);
262: /* If block is nonzero ... */
263: if (nonzero) {
264: pv = ba + 16*diag_offset[row];
265: PREFETCH_L1(&pv[16]);
266: pj = bj + diag_offset[row] + 1;
268: /* Form Multiplier, one column at a time (Matrix-Matrix Product) */
269: /* L_ij^(k+1) = L_ij^(k)*inv(L_jj^(k)) */
270: /* but the diagonal was inverted already */
271: /* and, L_ij^(k) is already loaded into registers XMM0-XMM3 columnwise */
273: SSE_INLINE_BEGIN_2(pv,pc)
274: /* Column 0, product is accumulated in XMM4 */
275: SSE_LOAD_SS(SSE_ARG_1,FLOAT_0,XMM4)
276: SSE_SHUFFLE(XMM4,XMM4,0x00)
277: SSE_MULT_PS(XMM4,XMM0)
279: SSE_LOAD_SS(SSE_ARG_1,FLOAT_1,XMM5)
280: SSE_SHUFFLE(XMM5,XMM5,0x00)
281: SSE_MULT_PS(XMM5,XMM1)
282: SSE_ADD_PS(XMM4,XMM5)
284: SSE_LOAD_SS(SSE_ARG_1,FLOAT_2,XMM6)
285: SSE_SHUFFLE(XMM6,XMM6,0x00)
286: SSE_MULT_PS(XMM6,XMM2)
287: SSE_ADD_PS(XMM4,XMM6)
289: SSE_LOAD_SS(SSE_ARG_1,FLOAT_3,XMM7)
290: SSE_SHUFFLE(XMM7,XMM7,0x00)
291: SSE_MULT_PS(XMM7,XMM3)
292: SSE_ADD_PS(XMM4,XMM7)
294: SSE_STOREL_PS(SSE_ARG_2,FLOAT_0,XMM4)
295: SSE_STOREH_PS(SSE_ARG_2,FLOAT_2,XMM4)
297: /* Column 1, product is accumulated in XMM5 */
298: SSE_LOAD_SS(SSE_ARG_1,FLOAT_4,XMM5)
299: SSE_SHUFFLE(XMM5,XMM5,0x00)
300: SSE_MULT_PS(XMM5,XMM0)
302: SSE_LOAD_SS(SSE_ARG_1,FLOAT_5,XMM6)
303: SSE_SHUFFLE(XMM6,XMM6,0x00)
304: SSE_MULT_PS(XMM6,XMM1)
305: SSE_ADD_PS(XMM5,XMM6)
307: SSE_LOAD_SS(SSE_ARG_1,FLOAT_6,XMM7)
308: SSE_SHUFFLE(XMM7,XMM7,0x00)
309: SSE_MULT_PS(XMM7,XMM2)
310: SSE_ADD_PS(XMM5,XMM7)
312: SSE_LOAD_SS(SSE_ARG_1,FLOAT_7,XMM6)
313: SSE_SHUFFLE(XMM6,XMM6,0x00)
314: SSE_MULT_PS(XMM6,XMM3)
315: SSE_ADD_PS(XMM5,XMM6)
317: SSE_STOREL_PS(SSE_ARG_2,FLOAT_4,XMM5)
318: SSE_STOREH_PS(SSE_ARG_2,FLOAT_6,XMM5)
320: SSE_PREFETCH_L1(SSE_ARG_1,FLOAT_24)
322: /* Column 2, product is accumulated in XMM6 */
323: SSE_LOAD_SS(SSE_ARG_1,FLOAT_8,XMM6)
324: SSE_SHUFFLE(XMM6,XMM6,0x00)
325: SSE_MULT_PS(XMM6,XMM0)
327: SSE_LOAD_SS(SSE_ARG_1,FLOAT_9,XMM7)
328: SSE_SHUFFLE(XMM7,XMM7,0x00)
329: SSE_MULT_PS(XMM7,XMM1)
330: SSE_ADD_PS(XMM6,XMM7)
332: SSE_LOAD_SS(SSE_ARG_1,FLOAT_10,XMM7)
333: SSE_SHUFFLE(XMM7,XMM7,0x00)
334: SSE_MULT_PS(XMM7,XMM2)
335: SSE_ADD_PS(XMM6,XMM7)
337: SSE_LOAD_SS(SSE_ARG_1,FLOAT_11,XMM7)
338: SSE_SHUFFLE(XMM7,XMM7,0x00)
339: SSE_MULT_PS(XMM7,XMM3)
340: SSE_ADD_PS(XMM6,XMM7)
341:
342: SSE_STOREL_PS(SSE_ARG_2,FLOAT_8,XMM6)
343: SSE_STOREH_PS(SSE_ARG_2,FLOAT_10,XMM6)
345: /* Note: For the last column, we no longer need to preserve XMM0->XMM3 */
346: /* Column 3, product is accumulated in XMM0 */
347: SSE_LOAD_SS(SSE_ARG_1,FLOAT_12,XMM7)
348: SSE_SHUFFLE(XMM7,XMM7,0x00)
349: SSE_MULT_PS(XMM0,XMM7)
351: SSE_LOAD_SS(SSE_ARG_1,FLOAT_13,XMM7)
352: SSE_SHUFFLE(XMM7,XMM7,0x00)
353: SSE_MULT_PS(XMM1,XMM7)
354: SSE_ADD_PS(XMM0,XMM1)
356: SSE_LOAD_SS(SSE_ARG_1,FLOAT_14,XMM1)
357: SSE_SHUFFLE(XMM1,XMM1,0x00)
358: SSE_MULT_PS(XMM1,XMM2)
359: SSE_ADD_PS(XMM0,XMM1)
361: SSE_LOAD_SS(SSE_ARG_1,FLOAT_15,XMM7)
362: SSE_SHUFFLE(XMM7,XMM7,0x00)
363: SSE_MULT_PS(XMM3,XMM7)
364: SSE_ADD_PS(XMM0,XMM3)
366: SSE_STOREL_PS(SSE_ARG_2,FLOAT_12,XMM0)
367: SSE_STOREH_PS(SSE_ARG_2,FLOAT_14,XMM0)
369: /* Simplify Bookkeeping -- Completely Unnecessary Instructions */
370: /* This is code to be maintained and read by humans afterall. */
371: /* Copy Multiplier Col 3 into XMM3 */
372: SSE_COPY_PS(XMM3,XMM0)
373: /* Copy Multiplier Col 2 into XMM2 */
374: SSE_COPY_PS(XMM2,XMM6)
375: /* Copy Multiplier Col 1 into XMM1 */
376: SSE_COPY_PS(XMM1,XMM5)
377: /* Copy Multiplier Col 0 into XMM0 */
378: SSE_COPY_PS(XMM0,XMM4)
379: SSE_INLINE_END_2;
381: /* Update the row: */
382: nz = bi[row+1] - diag_offset[row] - 1;
383: pv += 16;
384: for (j=0; j<nz; j++) {
385: PREFETCH_L1(&pv[16]);
386: x = rtmp + 16*pj[j];
388: /* X:=X-M*PV, One column at a time */
389: /* Note: M is already loaded columnwise into registers XMM0-XMM3 */
390: SSE_INLINE_BEGIN_2(x,pv)
391: /* Load First Column of X*/
392: SSE_LOADL_PS(SSE_ARG_1,FLOAT_0,XMM4)
393: SSE_LOADH_PS(SSE_ARG_1,FLOAT_2,XMM4)
395: /* Matrix-Vector Product: */
396: SSE_LOAD_SS(SSE_ARG_2,FLOAT_0,XMM5)
397: SSE_SHUFFLE(XMM5,XMM5,0x00)
398: SSE_MULT_PS(XMM5,XMM0)
399: SSE_SUB_PS(XMM4,XMM5)
401: SSE_LOAD_SS(SSE_ARG_2,FLOAT_1,XMM6)
402: SSE_SHUFFLE(XMM6,XMM6,0x00)
403: SSE_MULT_PS(XMM6,XMM1)
404: SSE_SUB_PS(XMM4,XMM6)
406: SSE_LOAD_SS(SSE_ARG_2,FLOAT_2,XMM7)
407: SSE_SHUFFLE(XMM7,XMM7,0x00)
408: SSE_MULT_PS(XMM7,XMM2)
409: SSE_SUB_PS(XMM4,XMM7)
411: SSE_LOAD_SS(SSE_ARG_2,FLOAT_3,XMM5)
412: SSE_SHUFFLE(XMM5,XMM5,0x00)
413: SSE_MULT_PS(XMM5,XMM3)
414: SSE_SUB_PS(XMM4,XMM5)
416: SSE_STOREL_PS(SSE_ARG_1,FLOAT_0,XMM4)
417: SSE_STOREH_PS(SSE_ARG_1,FLOAT_2,XMM4)
419: /* Second Column */
420: SSE_LOADL_PS(SSE_ARG_1,FLOAT_4,XMM5)
421: SSE_LOADH_PS(SSE_ARG_1,FLOAT_6,XMM5)
423: /* Matrix-Vector Product: */
424: SSE_LOAD_SS(SSE_ARG_2,FLOAT_4,XMM6)
425: SSE_SHUFFLE(XMM6,XMM6,0x00)
426: SSE_MULT_PS(XMM6,XMM0)
427: SSE_SUB_PS(XMM5,XMM6)
429: SSE_LOAD_SS(SSE_ARG_2,FLOAT_5,XMM7)
430: SSE_SHUFFLE(XMM7,XMM7,0x00)
431: SSE_MULT_PS(XMM7,XMM1)
432: SSE_SUB_PS(XMM5,XMM7)
434: SSE_LOAD_SS(SSE_ARG_2,FLOAT_6,XMM4)
435: SSE_SHUFFLE(XMM4,XMM4,0x00)
436: SSE_MULT_PS(XMM4,XMM2)
437: SSE_SUB_PS(XMM5,XMM4)
439: SSE_LOAD_SS(SSE_ARG_2,FLOAT_7,XMM6)
440: SSE_SHUFFLE(XMM6,XMM6,0x00)
441: SSE_MULT_PS(XMM6,XMM3)
442: SSE_SUB_PS(XMM5,XMM6)
443:
444: SSE_STOREL_PS(SSE_ARG_1,FLOAT_4,XMM5)
445: SSE_STOREH_PS(SSE_ARG_1,FLOAT_6,XMM5)
447: SSE_PREFETCH_L1(SSE_ARG_2,FLOAT_24)
449: /* Third Column */
450: SSE_LOADL_PS(SSE_ARG_1,FLOAT_8,XMM6)
451: SSE_LOADH_PS(SSE_ARG_1,FLOAT_10,XMM6)
453: /* Matrix-Vector Product: */
454: SSE_LOAD_SS(SSE_ARG_2,FLOAT_8,XMM7)
455: SSE_SHUFFLE(XMM7,XMM7,0x00)
456: SSE_MULT_PS(XMM7,XMM0)
457: SSE_SUB_PS(XMM6,XMM7)
459: SSE_LOAD_SS(SSE_ARG_2,FLOAT_9,XMM4)
460: SSE_SHUFFLE(XMM4,XMM4,0x00)
461: SSE_MULT_PS(XMM4,XMM1)
462: SSE_SUB_PS(XMM6,XMM4)
464: SSE_LOAD_SS(SSE_ARG_2,FLOAT_10,XMM5)
465: SSE_SHUFFLE(XMM5,XMM5,0x00)
466: SSE_MULT_PS(XMM5,XMM2)
467: SSE_SUB_PS(XMM6,XMM5)
469: SSE_LOAD_SS(SSE_ARG_2,FLOAT_11,XMM7)
470: SSE_SHUFFLE(XMM7,XMM7,0x00)
471: SSE_MULT_PS(XMM7,XMM3)
472: SSE_SUB_PS(XMM6,XMM7)
473:
474: SSE_STOREL_PS(SSE_ARG_1,FLOAT_8,XMM6)
475: SSE_STOREH_PS(SSE_ARG_1,FLOAT_10,XMM6)
476:
477: /* Fourth Column */
478: SSE_LOADL_PS(SSE_ARG_1,FLOAT_12,XMM4)
479: SSE_LOADH_PS(SSE_ARG_1,FLOAT_14,XMM4)
481: /* Matrix-Vector Product: */
482: SSE_LOAD_SS(SSE_ARG_2,FLOAT_12,XMM5)
483: SSE_SHUFFLE(XMM5,XMM5,0x00)
484: SSE_MULT_PS(XMM5,XMM0)
485: SSE_SUB_PS(XMM4,XMM5)
487: SSE_LOAD_SS(SSE_ARG_2,FLOAT_13,XMM6)
488: SSE_SHUFFLE(XMM6,XMM6,0x00)
489: SSE_MULT_PS(XMM6,XMM1)
490: SSE_SUB_PS(XMM4,XMM6)
492: SSE_LOAD_SS(SSE_ARG_2,FLOAT_14,XMM7)
493: SSE_SHUFFLE(XMM7,XMM7,0x00)
494: SSE_MULT_PS(XMM7,XMM2)
495: SSE_SUB_PS(XMM4,XMM7)
497: SSE_LOAD_SS(SSE_ARG_2,FLOAT_15,XMM5)
498: SSE_SHUFFLE(XMM5,XMM5,0x00)
499: SSE_MULT_PS(XMM5,XMM3)
500: SSE_SUB_PS(XMM4,XMM5)
501:
502: SSE_STOREL_PS(SSE_ARG_1,FLOAT_12,XMM4)
503: SSE_STOREH_PS(SSE_ARG_1,FLOAT_14,XMM4)
504: SSE_INLINE_END_2;
505: pv += 16;
506: }
507: PetscLogFlops(128*nz+112);
508: }
509: row = *ajtmp++;
510: }
511: /* finished row so stick it into b->a */
512: pv = ba + 16*bi[i];
513: pj = bj + bi[i];
514: nz = bi[i+1] - bi[i];
516: /* Copy x block back into pv block */
517: for (j=0; j<nz; j++) {
518: x = rtmp+16*pj[j];
520: SSE_INLINE_BEGIN_2(x,pv)
521: /* Note: on future SSE architectures, STORE might be more efficient than STOREL/H */
522: SSE_LOADL_PS(SSE_ARG_1,FLOAT_0,XMM1)
523: SSE_STOREL_PS(SSE_ARG_2,FLOAT_0,XMM1)
525: SSE_LOADH_PS(SSE_ARG_1,FLOAT_2,XMM2)
526: SSE_STOREH_PS(SSE_ARG_2,FLOAT_2,XMM2)
528: SSE_LOADL_PS(SSE_ARG_1,FLOAT_4,XMM3)
529: SSE_STOREL_PS(SSE_ARG_2,FLOAT_4,XMM3)
531: SSE_LOADH_PS(SSE_ARG_1,FLOAT_6,XMM4)
532: SSE_STOREH_PS(SSE_ARG_2,FLOAT_6,XMM4)
534: SSE_LOADL_PS(SSE_ARG_1,FLOAT_8,XMM5)
535: SSE_STOREL_PS(SSE_ARG_2,FLOAT_8,XMM5)
537: SSE_LOADH_PS(SSE_ARG_1,FLOAT_10,XMM6)
538: SSE_STOREH_PS(SSE_ARG_2,FLOAT_10,XMM6)
540: SSE_LOADL_PS(SSE_ARG_1,FLOAT_12,XMM7)
541: SSE_STOREL_PS(SSE_ARG_2,FLOAT_12,XMM7)
543: SSE_LOADH_PS(SSE_ARG_1,FLOAT_14,XMM0)
544: SSE_STOREH_PS(SSE_ARG_2,FLOAT_14,XMM0)
545: SSE_INLINE_END_2;
546: pv += 16;
547: }
548: /* invert diagonal block */
549: w = ba + 16*diag_offset[i];
550: Kernel_A_gets_inverse_A_4_SSE(w);
551: /* Note: Using Kramer's rule, flop count below might be infairly high or low? */
552: }
554: PetscFree(rtmp);
555: C->factor = FACTOR_LU;
556: C->assembled = PETSC_TRUE;
557: PetscLogFlops(1.3333*64*b->mbs);
558: /* Flop Count from inverting diagonal blocks */
559: SSE_SCOPE_END;
560: return(0);
561: }
563: #endif