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Abstract:

This manual describes the use of PETSc for the numerical solution of partial differential equations and
related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) is a suite of data structures and routines that provide the building blocks for the implemen-
tation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for
all message-passing communication.

PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that
may be used in application codes written in Fortran, C, and C++. PETSc provides many of the mechanisms
needed within parallel application codes, such as parallel matrix and vector assembly routines. The library
is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for
a particular problem. By using techniques of object-oriented programming, PETSc provides enormous
flexibility for users.

PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper
learning curve than a simple subroutine library. In particular, for individuals without some computer science
background or experience programming in C or C++, it may require a significant amount of time to take
full advantage of the features that enable efficient software use. However, the power of the PETSc design
and the algorithms it incorporates may make the efficient implementation of many application codes simpler
than “rolling them” yourself.

• For many simple (or even relatively complicated) tasks a package such as Matlab is often the best tool;
PETSc is not intended for the classes of problems for which effective Matlab code can be written.

• PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential
code. Certainly all parts of a previously sequential code need not be parallelized but the matrix
generation portion must be to expect any kind of reasonable performance. Do not expect to generate
your matrix sequentially and then “use PETSc” to solve the linear system in parallel.

Since PETSc is under continued development, small changes in usage and calling sequences of routines
may occur. PETSc is supported; see the web sitehttp://www.mcs.anl.gov/petsc for information
on contacting support.

A list of publications and web sites that feature work involving PETSc may be found athttp://www.
mcs.anl.gov/petsc/publications . We welcome any additions to these pages.

Getting Information on PETSc:

On-line:
• Manual pages for all routines, including example usagedocs/index.html in the distribution or

http://www.mcs.anl.gov/petsc/docs/

• Troubleshootingdocs/troubleshooting.html in the distribution orhttp://www.mcs.
anl.gov/petsc/docs/

In this manual:
• Basic introduction, page14
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• Assembling vectors, page37; and matrices,50

• Linear solvers, page61

• Nonlinear solvers, page78

• Timestepping (ODE) solvers, page99

• Index, page166
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• LAPACK;
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for small matrix sizes, for block matrix data structures;

• MINPACK - see page97, sequential matrix coloring routines for finite difference Jacobian evalua-
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• SPARSPAK - see page70, matrix reordering routines, converted to C usingf2c ;

• SPARSEKIT2 - see page68, written by Yousef Saad, iludtp(), converted to C usingf2c ; These rou-
tines are copyrighted by Saad under the GNU copyright, see${PETSC_DIR}/src/mat/impls/
aij/seq/ilut.c .

• libtfs - the efficient, parallel direct solver developed by Henry Tufo and Paul Fischer for the direct
solution of a coarse grid problem (a linear system with very few degrees of freedom per processor).
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PETSc interfaces to the following external software:

• ADIC/ADIFOR - automatic differentiation for the computation of sparse Jacobians,http://www.
mcs.anl.gov/adic , http://www.mcs.anl.gov/adifor ,

• AMG - the algebraic multigrid code of John Ruge and Klaus Stueben,http://www.mgnet.org/
mgnet-codes-gmd.html

• BlockSolve95 - see page68, for parallel ICC(0) and ILU(0) preconditioning,http://www.mcs.
anl.gov/blocksolve ,

• DSCPACK - see page76, Domain-Separator Codes for solving sparse symmetric positive-definite sys-
tems, developed by Padma Raghavan,http://www.cse.psu.edu/˜raghavan/Dscpack/ ,

• ESSL - IBM’s math library for fast sparse direct LU factorization,

• Euclid - parallel ILU(k) developed by David Hysom, accessed through the Hypre interface,

• Hypre - the LLNL preconditioner library,http://www.llnl.gov/CASC/hypre

• LUSOL - sparse LU factorization code (part of MINOS) developed by Michael Saunders, Systems
Optimization Laboratory, Stanford University,http://www.sbsi-sol-optimize.com/ ,

• Mathematica - see page??,

• Matlab - see page108,

• MUMPS - see page76, MUltifrontal Massively Parallel sparse direct Solver developed by Patrick
Amestoy, Iain Duff, Jacko Koster, and Jean-Yves L’Excellent,http://www.enseeiht.fr/
lima/apo/MUMPS/credits.html ,

• ParMeTiS - see page58, parallel graph partitioner,http://www-users.cs.umn.edu/˜karypis/
metis/ ,

• PVODE - see page101, parallel ODE integrator,http://www.llnl.gov/CASC/PVODE ,

• SPAI - for parallel sparse approximate inverse preconditiong,http://www.sam.math.ethz.
ch/˜grote/spai/ ,

• SPOOLES - see page76, SParse Object Oriented Linear Equations Solver, developed by Cleve
Ashcraft,http://www.netlib.org/linalg/spooles/spooles.2.2.html ,

• SuperLU and SuperLUDist - see page76, the efficient sparse LU codes developed by Jim Demmel,
Xiaoye S. Li, and John Gilbert,http://www.nersc.gov/˜xiaoye/SuperLU ,

• UMFPACK - see page76, developed by Timothy A. Davis,http://www.cise.ufl.edu/research/
sparse/umfpack/ .

These are all optional packages and do not need to be installed to use PETSc.
PETSc software is developed and maintained with

• Bitkeeper revision control system

• Emacs editor

PETSc documentation has been generated using
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• the text processing tools developed by Bill Gropp

• c2html

• Microsoft Frontpage

• pdflatex

• python
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Chapter 1

Getting Started

The Portable, Extensible Toolkit for Scientific Computation (PETSc) has successfully demonstrated that
the use of modern programming paradigms can ease the development of large-scale scientific application
codes in Fortran, C, and C++. Begun several years ago, the software has evolved into a powerful set of
tools for the numerical solution of partial differential equations and related problems on high-performance
computers. PETSc consists of a variety of libraries (similar to classes in C++), which are discussed in detail
in Parts II and III of the users manual. Each library manipulates a particular family of objects (for instance,
vectors) and the operations one would like to perform on the objects. The objects and operations in PETSc
are derived from our long experiences with scientific computation. Some of the PETSc modules deal with

• index sets, including permutations, for indexing into vectors, renumbering, etc;

• vectors;

• matrices (generally sparse);

• distributed arrays (useful for parallelizing regular grid-based problems);

• Krylov subspace methods;

• preconditioners, including multigrid and sparse direct solvers;

• nonlinear solvers; and

• timesteppers for solving time-dependent (nonlinear) PDEs.

Each consists of an abstract interface (simply a set of calling sequences) and one or more implementations
using particular data structures. Thus, PETSc provides clean and effective codes for the various phases of
solving PDEs, with a uniform approach for each class of problems. This design enables easy comparison
and use of different algorithms (for example, to experiment with different Krylov subspace methods, precon-
ditioners, or truncated Newton methods). Hence, PETSc provides a rich environment for modeling scientific
applications as well as for rapid algorithm design and prototyping. The libraries enable easy customization
and extension of both algorithms and implementations. This approach promotes code reuse and flexibility,
and separates the issues of parallelism from the choice of algorithms. The PETSc infrastructure creates a
foundation for building large-scale applications. It is useful to consider the interrelationships among dif-
ferent pieces of PETSc. Figure1 is a diagram of some of these pieces; Figure2 presents several of the
individual parts in more detail. These figures illustrate the library’s hierarchical organization, which enables
users to employ the level of abstraction that is most appropriate for a particular problem.
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Figure 1: Organization of the PETSc Libraries

1.1 Suggested Reading

The manual is divided into three parts:

• Part I - Introduction to PETSc

• Part II - Programming with PETSc

• Part III - Additional Information

Part I describes the basic procedure for using the PETSc library and presents two simple examples of solving
linear systems with PETSc. This section conveys the typical style used throughout the library and enables
the application programmer to begin using the software immediately. Part I is also distributed separately for
individuals interested in an overview of the PETSc software, excluding the details of library usage. Readers
of this separate distribution of Part I should note that all references within the text to particular chapters and
sections indicate locations in the complete users manual. Part II explains in detail the use of the various
PETSc libraries, such as vectors, matrices, index sets, linear and nonlinear solvers, and graphics. Part III
describes a variety of useful information, including profiling, the options database, viewers, error handling,
makefiles, and some details of PETSc design. PETSc has evolved to become quite a comprehensive package,
and therefore thePETSc Users Manualcan be rather intimidating for new users. We recommend that one
initially read the entire document before proceeding with serious use of PETSc, but bear in mind that PETSc
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can be used efficiently before one understands all of the material presented here. Furthermore, the definitive
reference for any PETSc function is always the online manualpage. Within the PETSc distribution, the

directory${PETSC_DIR}/docs contains all documentation. Manual pages for all PETSc functions can
be accessed on line at

http://www.mcs.anl.gov/petsc/docs/

The manual pages provide hyperlinked indices (organized by both concepts and routine names) to the tutorial
examples and enable easy movement among related topics.

Emacs users may find theetagsoption to be extremely useful for exploring the PETSc source code.
Details of this feature are provided in Section14.8.

The file manual.pdf contains the completePETSc Users Manualin the portable document format
(PDF), whileintro.pdf includes only the introductory segment, Part I. The complete PETSc distribu-
tion, users manual, manual pages, and additional information are also available via the PETSc home page
at http://www.mcs.anl.gov/petsc . The PETSc home page also contains details regarding in-
stallation, new features and changes in recent versions of PETSc, machines that we currently support, a
troubleshooting guide, and a FAQ list for frequently asked questions.Note to Fortran Programmers: In

most of the manual, the examples and calling sequences are given for the C/C++ family of programming
languages. We follow this convention because we recommend that PETSc applications be coded in C or
C++. However, pure Fortran programmers can use most of the functionality of PETSc from Fortran, with
only minor differences in the user interface. Chapter11 provides a discussion of the differences between
using PETSc from Fortran and C, as well as several complete Fortran examples. This chapter also introduces
some routines that support direct use of Fortran90 pointers.

1.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variablePETSC_DIR, indicating the full path
of the PETSc home directory. For example, under the UNIX C shell a command of the form

setenv PETSCDIR $HOME/petsc

can be placed in the user’s.cshrc file. In addition, the user must set the environmental variablePETS
C_ARCHto specify the architecture (e.g., rs6000, solaris, IRIX, etc.) on which PETSc is being used. The
utility ${PETSC_DIR}/bin/petscarch can be used for this purpose. For example,

setenv PETSCARCH ‘$PETSCDIR/bin/petscarch‘

can be placed in a.cshrc file. Thus, even if several machines of different types share the same filesystem,
PETSC_ARCHwill be set correctly when logging into any of them.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing commu-
nication [15]. Thus, to execute PETSc programs, users must know the procedure for beginning MPI jobs
on their selected computer system(s). For instance, when using the MPICH implementation of MPI [9] and
many others, the following command initiates a program that uses eight processors:

mpirun -np 8 petscprogramname petscoptions

PETSc also comes with a script

$PETSCDIR/bin/petscmpirun -np 8 petscprogramname petscoptions
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that uses the information set in${PETSC_DIR}/bmake/${PETSC_ARCH}/packages to automati-
cally use the correctmpirun for your configuration. All PETSc-compliant programs support the use of the
-h or -help option as well as the-v or -version option.

Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option-help .

• -log_summary - summarize the program’s performance

• -fp_trap - stop on floating-point exceptions; for example divide by zero

• -trdump - enable memory tracing; dump list of unfreed memory at conclusion of the run

• -trmalloc - enable memory tracing (by default this is activated for versions of PETSc using
BOPT=g*)

• -start_in_debugger [noxterm,gdb,dbx,xxgdb] [-display name] - start all pro-
cesses in debugger

• -on_error_attach_debugger [noxterm,gdb,dbx,xxgdb] [-display name] - start
debugger only on encountering an error

See Section14.4for more information on debugging PETSc programs.

1.3 Writing PETSc Programs

Most PETSc programs begin with a call to

PetscInitialize (int *argc,char ***argv,char *file,char *help);

which initializes PETSc and MPI. The argumentsargc andargv are the command line arguments deliv-
ered in all C and C++ programs. The argumentfile optionally indicates an alternative name for the PETSc
options file,.petscrc , which resides by default in the user’s home directory. Section14.2provides details
regarding this file and the PETSc options database, which can be used for runtime customization. The final
argument,help , is an optional character string that will be printed if the program is run with the-help
option. In Fortran the initialization command has the form

call PetscInitialize (character(*) file,integer ierr)

PetscInitialize() automatically callsMPI_Init() if MPI has not been not previously initialized.
In certain circumstances in which MPI needs to be initialized directly (or is initialized by some other library),
the user can first callMPI_Init() (or have the other library do it), and then callPetscInitialize() .
By default,PetscInitialize() sets the PETSc “world” communicator, given byPETSC_COMM_WOR
LD, to MPI_COMM_WORLD. For those not familar with MPI, acommunicatoris a way of indicating a
collection of processes that will be involved together in a calculation or communication. Communicators
have the variable typeMPI_Comm. In most cases users can employ the communicatorPETSC_COMM_W
ORLDto indicate all processes in a given run andPETSC_COMM_SELFto indicate a single process. MPI
provides routines for generating new communicators consisting of subsets of processors, though most users
rarely need to use these. The bookUsing MPI, by Lusk, Gropp, and Skjellum [10] provides an excellent
introduction to the concepts in MPI, see also the MPI homepagehttp://www.mcs.anl.gov/mpi/
. Note that PETSc users need not program much message passing directly with MPI, but they must be
familar with the basic concepts of message passing and distributed memory computing. All PETSc routines
return an integer indicating whether an error has occurred during the call. The error code is set to be
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nonzero if an error has been detected; otherwise, it is zero. For the C/C++ interface, the error variable is
the routine’s return value, while for the Fortran version, each PETSc routine has as its final argument an
integer error variable. Error tracebacks are discussed in the following section. All PETSc programs should
call PetscFinalize() as their final (or nearly final) statement, as given below in the C/C++ and Fortran
formats, respectively:

PetscFinalize ();
call PetscFinalize (ierr)

This routine handles options to be called at the conclusion of the program, and callsMPI_Finalize()
if PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or
another software package), the user is responsible for callingMPI_Finalize() .

1.4 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example in Figure3
that solves the one-dimensional Laplacian problem with finite differences. This sequential code, which can
be found in${PETSC_DIR}/src/sles/examples/tutorials/ex1.c , illustrates the solution of
a linear system withSLES, the interface to the preconditioners, Krylov subspace methods, and direct linear
solvers of PETSc. Following the code we highlight a few of the most important parts of this example.

/*$Id: ex1.c,v 1.90 2001/08/07 21:30:54 bsmith Exp $*/

/* Program usage: mpirun ex1 [-help] [all PETSc options] */

static char help[] = "Solves a tridiagonal linear system with SLES.\n\n";

/*T
Concepts: SLESˆsolving a system of linear equations
Processors: 1

T*/

/*
Include "petscsles.h" so that we can use SLES solvers. Note that this file
automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace methods
petscviewer.h - viewers petscpc.h - preconditioners

Note: The corresponding parallel example is ex23.c
*/
#include "petscsles.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **args)
{

Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */
PC pc; /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
PetscReal norm; /* norm of solution error */
int ierr,i,n = 10,col[3],its,size;
PetscScalar neg_one = -1.0,one = 1.0,value[3];
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PetscInitialize(&argc,&args,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/
ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
ierr = PetscObjectSetName((PetscObject) x, "Solution");CHKERRQ(ierr);
ierr = VecSetSizes(x,PETSC_DECIDE,n);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. Since preallocation is not possible via the generic
matrix creation routine MatCreate(), we recommend for practical
problems instead to use the creation routine for a particular matrix
format, e.g.,

MatCreateSeqAIJ() - sequential AIJ (compressed sparse row)
MatCreateSeqBAIJ() - block AIJ

See the matrix chapter of the users manual for details.
*/
ierr = MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

/*
Assemble matrix

*/
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=1; i<n-1; i++) {

col[0] = i-1; col[1] = i; col[2] = i+1;
ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);

}
i = n - 1; col[0] = n - 2; col[1] = n - 1;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0;
ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.

*/
ierr = VecSet(&one,u);CHKERRQ(ierr);
ierr = MatMult(A,u,b);CHKERRQ(ierr);
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/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create the linear solver and set various options

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Create linear solver context
*/
ierr = SLESCreate(PETSC_COMM_WORLD,&sles);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/
ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the SLES context,

we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions();

*/
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SLESSetFromOptions(sles);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Solve linear system
*/
ierr = SLESSolve(sles,b,x,&its);CHKERRQ(ierr);

/*
View solver info; we could instead use the option -sles_view to
print this info to the screen at the conclusion of SLESSolve().

*/
ierr = SLESView(sles,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check solution and clean up

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Check the error
*/
ierr = VecAXPY(&neg_one,u,x);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A, Iterations %d\n",
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norm,its);CHKERRQ(ierr);
/*

Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(u);CHKERRQ(ierr);
ierr = VecDestroy(b);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr);
ierr = SLESDestroy(sles);CHKERRQ(ierr);

/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_summary).
*/
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 3: Example of Uniprocessor PETSc Code

Include Files

The C/C++ include files for PETSc should be used via statements such as

#include ”petscsles.h”

wherepetscsles.h is the include file for theSLES library. Each PETSc program must specify an
include file that corresponds to the highest level PETSc objects needed within the program; all of the
required lower level include files are automatically included within the higher level files. For example,
petscsles.h includespetscmat.h (matrices),petscvec.h (vectors), andpetsc.h (base PETSc
file). The PETSc include files are located in the directory${PETSC_DIR}/include . See Section11.1.1
for a discussion of PETSc include files in Fortran programs.

The Options Database

As shown in Figure3, the user can input control data at run time using the options database. In this example
the commandPetscOptionsGetInt(PETSC_NULL,"-n",&n,&flg); checks whether the user
has provided a command line option to set the value ofn, the problem dimension. If so, the variablen is
set accordingly; otherwise,n remains unchanged. A complete description of the options database may be
found in Section14.2.

Vectors

One creates a new parallel or sequential vector,x , of global dimensionMwith the commands

VecCreate (MPI Commcomm,Vec *x); VecSetSizes (Vec x, int m, int M);

wherecommdenotes the MPI communicator andmis the optional localsize which may bePETSC_DE
CIDE. The type of storage for the vector may be set with either calls toVecSetType() or VecSetF
romOptions() . Additional vectors of the same type can be formed with

VecDuplicate (Vec old,Vec *new);

The commands
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VecSet (PetscScalar *value,Vec x);
VecSetValues (Vec x,int n,int *indices,PetscScalar *values,INSERTVALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value to
each component. More detailed information about PETSc vectors, including their basic operations, scat-
tering/gathering, index sets, and distributed arrays, is discussed in Chapter2. Note the use of the PETSc
variable typePetscScalar in this example. ThePetscScalar is simply defined to bedouble in
C/C++ (or correspondinglydouble precision in Fortran) for versions of PETSc that havenot been
compiled for use with complex numbers. ThePetscScalar data type enables identical code to be used
when the PETSc libraries have been compiled for use with complex numbers. Section14.7discusses the
use of complex numbers in PETSc programs.

Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix,A,
which hasMglobal rows andNglobal columns, with the routine

MatCreate (MPI Commcomm,int m,int n,int M,int N,Mat *A);

where the matrix format can be specified at runtime. The user could alternatively specify each processes’
number of local rows and columns usingmandn. Values can then be set with the command

MatSetValues (Mat A,int m,int *im,int n,int *in,PetscScalar *values,INSERTVALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

MatAssemblyBegin (Mat A,MAT FINAL ASSEMBLY);
MatAssemblyEnd (Mat A,MAT FINAL ASSEMBLY);

Chapter3 discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system,Ax = b , the user can then useSLES to
solve the system with the following sequence of commands:

SLESCreate (MPI Commcomm,SLES *sles);
SLESSetOperators (SLES sles,Mat A,Mat PrecA,MatStructure flag);
SLESSetFromOptions (SLES sles);
SLESSolve (SLES sles,Vec b,Vec x,int *its);
SLESDestroy (SLES sles);

The user first creates theSLES context and sets the operators associated with the system (linear system
matrix and optionally different preconditioning matrix). The user then sets various options for customized
solution, solves the linear system, and finally destroys theSLES context. We emphasize the command
SLESSetFromOptions() , which enables the user to customize the linear solution method at runtime by
using the options database, which is discussed in Section14.2. Through this database, the user not only can
select an iterative method and preconditioner, but also can prescribe the convergence tolerance, set various
monitoring routines, etc. (see, e.g., Figure7). Chapter4 describes in detail theSLES package, including
thePC andKSP packages for preconditioners and Krylov subspace methods.
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Nonlinear Solvers

Most PDE problems of interest are inherently nonlinear. PETSc provides an interface to tackle the nonlinear
problems directly calledSNES. Chapter5 describes the nonlinear solvers in detail. We recommend most
PETSc users work directly withSNES, rather than using PETSc for the linear problem within a nonlinear
solver.

Error Checking

All PETSc routines return an integer indicating whether an error has occurred during the call. The PETSc
macroCHKERRQ(ierr) checks the value ofierr and calls the PETSc error handler upon error detection.
CHKERRQ(ierr) should be used in all subroutines to enable a complete error traceback. In Figure4 we
indicate a traceback generated by error detection within a sample PETSc program. The error occurred on
line 1673 of the file ${PETSC_DIR}/src/mat/impls/aij/seq/aij.c and was caused by trying
to allocate too large an array in memory. The routine was called in the programex3.c on line 71. See
Section11.1.2for details regarding error checking when using the PETSc Fortran interface.

eagle:mpirun -np 1 ex3 -m 10000
PETSC ERROR:MatCreateSeqAIJ () line 1673 in src/mat/impls/aij/seq/aij.c
PETSC ERROR: Out of memory. This could be due to allocating
PETSC ERROR: too large an object or bleeding by not properly
PETSC ERROR: destroying unneeded objects.
PETSC ERROR: Try running with -trdump for more information.
PETSC ERROR:MatCreate () line 99 in src/mat/utils/gcreate.c
PETSC ERROR: main() line 71 in src/sles/examples/tutorials/ex3.c
MPI Abort by user Aborting program !
Aborting program!
p0 28969: p4error: : 1

Figure 4: Example of Error Traceback

When running the debug (BOPT=g compiled) version of the PETSc libraries, it does a great deal of
checking for memory corruption (writing outside of array bounds etc). The macrosCHKMEMQcan be called
anywhere in the code to check the current status of the memory for corruption. By putting several (or many)
of these macros into your code you can usually easily track down in what small segment of your code the
corruption has occured.

Parallel Programming

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interpro-
cessor communication, the user is free to employ MPI routines as needed throughout an application code.
However, by default the user is shielded from many of the details of message passing within PETSc, since
these are hidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc provides
tools such as generalized vector scatters/gathers and distributed arrays to assist in the management of par-
allel data. Recall that the user must specify a communicator upon creation of any PETSc object (such as a
vector, matrix, or solver) to indicate the processors over which the object is to be distributed. For example,
as mentioned above, some commands for matrix, vector, and linear solver creation are:

MatCreate (MPI Commcomm,int M,int N,Mat *A);
VecCreate (MPI Commcomm,Vec *x);
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SLESCreate (MPI Commcomm,SLES *sles);

The creation routines are collective over all processors in the communicator; thus, all processors in the
communicatormustcall the creation routine. In addition, if a sequence of collective routines is being used,
they mustbe called in the same order on each processor. The next example, given in Figure5, illustrates
the solution of a linear system in parallel. This code, corresponding to${PETSC_DIR}/src/sles/
examples/tutorials/ex2.c , handles the two-dimensional Laplacian discretized with finite differ-
ences, where the linear system is again solved withSLES . The code performs the same tasks as the
sequential version within Figure3. Note that the user interface for initiating the program, creating vectors
and matrices, and solving the linear system isexactlythe same for the uniprocessor and multiprocessor ex-
amples. The primary difference between the examples in Figures3 and5 is that each processor forms only
its local part of the matrix and vectors in the parallel case.

/*$Id: ex2.c,v 1.94 2001/08/07 21:30:54 bsmith Exp $*/

/* Program usage: mpirun -np <procs> ex2 [-help] [all PETSc options] */

static char help[] = "Solves a linear system in parallel with SLES.\n\
Input parameters include:\n\

-random_exact_sol : use a random exact solution vector\n\
-view_exact_sol : write exact solution vector to stdout\n\
-m <mesh_x> : number of mesh points in x-direction\n\
-n <mesh_n> : number of mesh points in y-direction\n\n";

/*T
Concepts: SLESˆbasic parallel example;
Concepts: SLESˆLaplacian, 2d
Concepts: Laplacian, 2d
Processors: n

T*/

/*
Include "petscsles.h" so that we can use SLES solvers. Note that this file
automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace methods
petscviewer.h - viewers petscpc.h - preconditioners

*/
#include "petscsles.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **args)
{

Vec x,b,u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
SLES sles; /* linear solver context */
PetscRandom rctx; /* random number generator context */
PetscReal norm; /* norm of solution error */
int i,j,I,J,Istart,Iend,ierr,m = 8,n = 7,its;
PetscTruth flg;
PetscScalar v,one = 1.0,neg_one = -1.0;
KSP ksp;

PetscInitialize(&argc,&args,(char *)0,help);
ierr = PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
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/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*

Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. Since preallocation is not possible via the generic
matrix creation routine MatCreate(), we recommend for practical
problems instead to use the creation routine for a particular matrix
format, e.g.,

MatCreateMPIAIJ() - parallel AIJ (compressed sparse row)
MatCreateMPIBAIJ() - parallel block AIJ

See the matrix chapter of the users manual for details.
*/
ierr = MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,&A);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/
ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

/*
Set matrix elements for the 2-D, five-point stencil in parallel.

- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).

- Always specify global rows and columns of matrix entries.

Note: this uses the less common natural ordering that orders first
all the unknowns for x = h then for x = 2h etc; Hence you see J = I +- n
instead of J = I +- m as you might expect. The more standard ordering
would first do all variables for y = h, then y = 2h etc.

*/
for (I=Istart; I<Iend; I++) {

v = -1.0; i = I/n; j = I - i*n;
if (i>0) {J = I - n; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (i<m-1) {J = I + n; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (j>0) {J = I - 1; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
if (j<n-1) {J = I + 1; ierr = MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES);CHKERRQ(ierr);}
v = 4.0; ierr = MatSetValues(A,1,&I,1,&I,&v,INSERT_VALUES);CHKERRQ(ierr);

}

/*
Assemble matrix, using the 2-step process:

MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.

*/
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
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ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

/*
Create parallel vectors.

- We form 1 vector from scratch and then duplicate as needed.
- When using VecCreate(), VecSetSizes and VecSetFromOptions()

in this example, we specify only the
vector’s global dimension; the parallel partitioning is determined
at runtime.

- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.

- The user can alternatively specify the local vector and matrix
dimensions when more sophisticated partitioning is needed
(replacing the PETSC_DECIDE argument in the VecSetSizes() statement
below).

*/
ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
ierr = VecSetFromOptions(u);CHKERRQ(ierr);
ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
ierr = VecDuplicate(b,&x);CHKERRQ(ierr);

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0; Alternatively, using the runtime option
-random_sol forms a solution vector with random components.

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-random_exact_sol",&flg);CHKERRQ(ierr);
if (flg) {

ierr = PetscRandomCreate(PETSC_COMM_WORLD,RANDOM_DEFAULT,&rctx);CHKERRQ(ierr);
ierr = VecSetRandom(rctx,u);CHKERRQ(ierr);
ierr = PetscRandomDestroy(rctx);CHKERRQ(ierr);

} else {
ierr = VecSet(&one,u);CHKERRQ(ierr);

}
ierr = MatMult(A,u,b);CHKERRQ(ierr);

/*
View the exact solution vector if desired

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-view_exact_sol",&flg);CHKERRQ(ierr);
if (flg) {ierr = VecView(u,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create the linear solver and set various options

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*
Create linear solver context

*/
ierr = SLESCreate(PETSC_COMM_WORLD,&sles);CHKERRQ(ierr);

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/
ierr = SLESSetOperators(sles,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
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/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the SLES context,

we can then directly call any KSP and PC routines to set
various options.

- The following two statements are optional; all of these
parameters could alternatively be specified at runtime via
SLESSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/

ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-2/((m+1)*(n+1)),1.e-50,PETSC_DEFAULT,

PETSC_DEFAULT);CHKERRQ(ierr);

/*
Set runtime options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
SLESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SLESSetFromOptions(sles);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = SLESSolve(sles,b,x,&its);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check solution and clean up

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*
Check the error

*/
ierr = VecAXPY(&neg_one,u,x);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);

/* Scale the norm */
/* norm *= sqrt(1.0/((m+1)*(n+1))); */

/*
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
An alternative is PetscFPrintf(), which prints to a file.

*/
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A iterations %d\n",

norm,its);CHKERRQ(ierr);

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/
ierr = SLESDestroy(sles);CHKERRQ(ierr);
ierr = VecDestroy(u);CHKERRQ(ierr); ierr = VecDestroy(x);CHKERRQ(ierr);
ierr = VecDestroy(b);CHKERRQ(ierr); ierr = MatDestroy(A);CHKERRQ(ierr);
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/*
Always call PetscFinalize() before exiting a program. This routine

- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime

options are chosen (e.g., -log_summary).
*/
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 5: Example of Multiprocessor PETSc Code

Compiling and Running Programs

Figure6 illustrates compiling and running a PETSc program using MPICH. Note that different sites may
have slightly different library and compiler names. See Chapter15 for a discussion about compiling PETSc
programs. Users who are experiencing difficulties linking PETSc programs should refer to the troubleshoot-
ing guide via the PETSc WWW home pagehttp://www.mcs.anl.gov/petsc or given in the file
${PETSC_DIR}/docs/troubleshooting.html .

eagle: make BOPT=g ex2
gcc -pipe -c -I../../../ -I../../..//include
-I/usr/local/mpi/include -I../../..//src -g
-DPETSCUSE DEBUG -DPETSCMALLOC -DPETSCUSE LOG ex1.c
gcc -g -DPETSCUSE DEBUG -DPETSCMALLOC -DPETSCUSE LOG -o ex1 ex1.o
/home/bsmith/petsc/lib/libg/sun4/libpetscsles.a
-L/home/bsmith/petsc/lib/libg/sun4 -lpetscstencil -lpetscgrid -lpetscsles
-lpetscmat -lpetscvec -lpetscsys -lpetscdraw
/usr/local/lapack/lib/lapack.a /usr/local/lapack/lib/blas.a
/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lX11
/usr/local/mpi/lib/sun4/chp4/libmpi.a
/usr/lib/debug/malloc.o /usr/lib/debug/mallocmap.o
/usr/lang/SC1.0.1/libF77.a -lm /usr/lang/SC1.0.1/libm.a -lm
rm -f ex1.o
eagle: mpirun -np 1 ex2
Norm of error 3.6618e-05 iterations 7
eagle:
eagle: mpirun -np 2 ex2
Norm of error 5.34462e-05 iterations 9

Figure 6: Running a PETSc Program

As shown in Figure7, the option -log_summary activates printing of a performance summary,
including times, floating point operation (flop) rates, and message-passing activity. Chapter12 provides
details about profiling, including interpretation of the output data within Figure7. This particular example
involves the solution of a linear system on one processor using GMRES and ILU. The low floating point
operation (flop) rates in this example are due to the fact that the code solved a tiny system. We include this
example merely to demonstrate the ease of extracting performance information.

eagle> mpirun -np 1 ex1 -n 1000 -pc_type ilu -ksp_type gmres -ksp_rtol 1.e-7 -log_summary
-------------------------------- PETSc Performance Summary: ---------------------------
-----------
ex1 on a sun4 named merlin.mcs.anl.gov with 1 processor, by curfman Wed Aug 7 17:24:27 1996
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Max Min Avg Total
Time (sec): 1.150e-01 1.0 1.150e-01
Objects: 1.900e+01 1.0 1.900e+01
Flops: 3.998e+04 1.0 3.998e+04 3.998e+04
Flops/sec: 3.475e+05 1.0 3.475e+05
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00
MPI Messages: 0.000e+00 0.0 0.000e+00 0.000e+00 (lengths)
MPI Reductions: 0.000e+00 0.0
---------------------------------------------------------------------------------------
-----------
Phase Count Time (sec) Flops/sec -- Global -
-

Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R
---------------------------------------------------------------------------------------
-----------
MatMult 2 2.553e-03 1.0 3.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 2 25 0 0 0
MatAssemblyBegin 1 2.193e-05 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
MatAssemblyEnd 1 5.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 4 0 0 0 0
MatGetReordering 1 3.004e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3 0 0 0 0
MatILUFctrSymbol 1 5.719e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 0 0 0
MatLUFactorNumer 1 1.092e-02 1.0 2.7e+05 1.0 0.0e+00 0.0e+00 0.0e+00 9 7 0 0 0
MatSolve 2 4.193e-03 1.0 2.4e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0
MatSetValues 1000 2.461e-02 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 21 0 0 0 0
VecDot 1 60e-04 1.0 9.7e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0
VecNorm 3 5.870e-04 1.0 1.0e+07 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0
VecScale 1 1.640e-04 1.0 6.1e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 3 0 0 0
VecCopy 1 3.101e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
VecSet 3 5.029e-04 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0
VecAXPY 3 8.690e-04 1.0 6.9e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 15 0 0 0
VecMAXPY 1 2.550e-04 1.0 7.8e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 5 0 0 0
SLESSolve 1 1.288e-02 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 11 70 0 0 0
SLESSetUp 1 2.669e-02 1.0 1.1e+05 1.0 0.0e+00 0.0e+00 0.0e+00 23 7 0 0 0
KSPGMRESOrthog 1 1.151e-03 1.0 3.5e+06 1.0 0.0e+00 0.0e+00 0.0e+00 1 10 0 0 0
PCSetUp 1 24e-02 1.0 1.5e+05 1.0 0.0e+00 0.0e+00 0.0e+00 18 7 0 0 0
PCApply 2 4.474e-03 1.0 2.2e+06 1.0 0.0e+00 0.0e+00 0.0e+00 4 25 0 0 0
---------------------------------------------------------------------------------------
----------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants’ Mem.
Index set 3 3 12420 0
Vector 8 8 65728 0
Matrix 2 2 184924 4140
Krylov Solver 1 1 16892 41080
Preconditioner 1 1 0 64872
SLES 1 1 0 122844

Figure 7: Running a PETSc Program with Profiling

Writing Application Codes with PETSc

The examples throughout the library demonstrate the software usage and can serve as templates for devel-
oping custom applications. We suggest that new PETSc users examine programs in the directories

${PETSC_DIR}/src/<library>/examples/tutorials ,

where<library> denotes any of the PETSc libraries (listed in the following section), such assnes or
sles . The manual pages located at
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$PETSCDIR/docs/index.html or
http://www.mcs.anl.gov/petsc/docs/

provide indices (organized by both routine names and concepts) to the tutorial examples. To write a new
application program using PETSc, we suggest the following procedure:

1. Install and test PETSc according to the instructions at the PETSc web site.

2. Copy one of the many PETSc examples in the directory that corresponds to the class of problem of
interest (e.g., for linear solvers, see${PETSC_DIR}/src/sles/examples/tutorials ).

3. Copy the corresponding makefile within the example directory; compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

1.5 Referencing PETSc

When referencing PETSc in a publication please cite the following:

@Unpublished{petsc-home-page,
Author = ”Satish Balay and William D. Gropp and Lois C. McInnes and Barry F. Smith”,
Title = ”PETSc home page”,
Note = ”http://www.mcs.anl.gov/petsc”,
Year = ”2001”}
@TechReport{petsc-manual,
Author = ”Satish Balay and William D. Gropp and Lois C. McInnes and Barry F. Smith”,
Title = ”PETSc Users Manual”,
Number = ”ANL-95/11 - Revision 2.1.5”,
Institution = ”Argonne National Laboratory”,
Year = ”2003”}
@InProceedings{petsc-efficient,
Author = ”Satish Balay and William D. Gropp and Lois C. McInnes and Barry F. Smith”,
Title = ”Efficienct Management of Parallelism in Object Oriented Numerical Software Libraries”,
Booktitle = ”Modern Software Tools in Scientific Computing”,
Editor = ”E. Arge and A. M. Bruaset and H. P. Langtangen”,
Pages = ”163–202”,
Publisher = ”Birkhauser Press”,
Year = ”1997”}

1.6 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. The root direc-
tory of PETSc contains the following directories:

• docs - All documentation for PETSc. The filesmanual.pdf contains the hyperlinked users man-
ual, suitable for printing or on-screen viewering. Includes the subdirectory

- manualpages (on-line manual pages).

• bin - Utilities and short scripts for use with PETSc, including

– petsarch (utility for settingPETSC_ARCHenvironmental variable),
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• bmake - Base PETSc makefile directory. Includes subdirectories for various architectures.

• include - All include files for PETSc that are visible to the user.

• include/finclude - PETSc include files for Fortran programmers using the .F suffix (recom-
mended).

• include/pinclude - Private PETSc include files that shouldnotbe used by application program-
mers.

• src - The source code for all PETSc libraries, which currently includes

– vec - vectors,

∗ is - index sets,

– mat - matrices,

– dm

∗ da - distributed arrays,

∗ ao - application orderings,

– sles - complete linear equations solvers,

∗ ksp - Krylov subspace accelerators,

∗ pc - preconditioners,

– snes - nonlinear solvers

– ts - ODE solvers and timestepping,

– sys - general system-related routines,

∗ plog - PETSc logging and profiling routines,

∗ draw - simple graphics,

– fortran - Fortran interface stubs,

– contrib - contributed modules that use PETSc but are not part of the official PETSc package.
We encourage users who have developed such code that they wish to share with others to let us
know by writing to petsc-maint@mcs.anl.gov.

Each PETSc source code library directory has the following subdirectories:

• examples - Example programs for the component, including

– tutorials - Programs designed to teach users about PETSc. These codes can serve as tem-
plates for the design of custom applicatinos.

– tests - Programs designed for thorough testing of PETSc. As such, these codes are not in-
tended for examination by users.

• interface - The calling sequences for the abstract interface to the component. Code here does not
know about particular implementations.

• impls - Source code for one or more implementations.

• utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.
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33





Chapter 2

Vectors and Distributing Parallel Data

The vector (denoted byVec ) is one of the simplest PETSc objects. Vectors are used to store discrete PDE
solutions, right-hand sides for linear systems, etc. This chapter is organized as follows:

• (Vec ) Sections2.1and2.2- basic usage of vectors

• Section2.3- management of the various numberings of degrees of freedom, vertices, cells, etc.

– (AO) Mapping between different global numberings

– (ISLocalToGlobalMapping ) Mapping between local and global numberings

• (DA) Section2.4- management of structured grids

• (IS , VecScatter ) Section2.5- management of vectors related to unstructured grids

2.1 Creating and Assembling Vectors

PETSc currently provides two basic vector types: sequential and parallel (MPI based). To create a sequential
vector withmcomponents, one can use the command

VecCreateSeq (PETSCCOMM SELF,int m,Vec *x);

To create a parallel vector one can either specify the number of components that will be stored on each
process or let PETSc decide. The command

VecCreateMPI (MPI Commcomm,int m,int M,Vec *x);

creates a vector that is distributed over all processes in the communicator,comm, wherem indicates the
number of components to store on the local process, andMis the total number of vector components. Either
the local or global dimension, but not both, can be set to PETSCDECIDE to indicate that PETSc should
determine it. More generally, one can use the routines

VecCreate (MPI Commcomm,Vec *v);
VecSetSizes (Vec v, int m, int M);
VecSetFromOptions (Vec v);

which automatically generates the appropriate vector type (sequential or parallel) over all processes in
comm. The option-vec_type mpi can be used in conjunction withVecCreate () andVecSetFromO
ptions () to specify the use of MPI vectors even for the uniprocess case. We emphasize that all processes
in commmustcall the vector creation routines, since these routines are collective over all processes in the
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communicator. If you are not familar with MPI communicators, see the discussion in Section1.3 on page
17. In addition, if a sequence ofVecCreateXXX() routines is used, they must be called in the same
order on each process in the communicator. One can assign a single value to all components of a vector with
the command

VecSet (PetscScalar *value,Vec x);

Assigning values to individual components of the vector is more complicated, in order to make it possible
to write efficient parallel code. Assigning a set of components is a two-step process: one first calls

VecSetValues (Vec x,int n,int *indices,PetscScalar *values,INSERTVALUES);

any number of times on any or all of the processes. The argumentn gives the number of components being
set in this insertion. The integer arrayindices contains theglobal component indices, andvalues is the
array of values to be inserted. Any process can set any components of the vector; PETSc insures that they are
automatically stored in the correct location. Once all of the values have been inserted withVecSetValues
(), one must call

VecAssemblyBegin (Vec x);

followed by

VecAssemblyEnd (Vec x);

to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.

Example usage ofVecSetValues () may be found in${PETSC_DIR}/src/vec/examples/
tutorials/ex2.c or ex2f.F . Often, rather than inserting elements in a vector, one may wish to add
values. This process is also done with the command

VecSetValues (Vec x,int n,int *indices,PetscScalar *values,ADD VALUES);

Again one must call the assembly routinesVecAssemblyBegin () andVecAssemblyEnd () after all
of the values have been added. Note that addition and insertion calls toVecSetValues () cannotbe
mixed. Instead, one must add and insert vector elements in phases, with intervening calls to the assembly
routines. This phased assembly procedure overcomes the nondeterministic behavior that would occur if
two different processes generated values for the same location, with one process adding while the other is
inserting its value. (In this case the addition and insertion actions could be performed in either order, thus
resulting in different values at the particular location. Since PETSc does not allow the simultaneous use of
INSERT VALUES and ADD VALUES this nondeterministic behavior will not occur in PETSc.) There is
no routine called VecGetValues(), since we provide an alternative method for extracting some components
of a vector using the vector scatter routines. See Section2.5.2for details; see also below forVecGetArray
(). One can examine a vector with the command

VecView (Vec x,PetscViewer v);

To print the vector to the screen, one can use the viewerPETSC_VIEWER_STDOUT_WORLD, which ensures
that parallel vectors are printed correctly tostdout . To display the vector in an X-window, one can use the
default X-windows viewerPETSC_VIEWER_DRAW_WORLD, or one can create a viewer with the routine
PetscViewerDrawOpenX(). A variety of viewers are discussed further in Section14.3. To create a new
vector of the same format as an existing vector, one uses the command

VecDuplicate (Vec old,Vec *new);
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To create several new vectors of the same format as an existing vector, one uses the command

VecDuplicateVecs (Vec old,int n,Vec **new);

This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Section11.1.6, the Fortran interface forVecDuplicateVecs () differs slightly. When a
vector is no longer needed, it should be destroyed with the command

VecDestroy (Vec x);

To destroy an array of vectors, use the command

VecDestroyVecs (Vec *vecs,int n);

Note that the Fortran interface forVecDestroyVecs () differs slightly, as described in Section11.1.6. It
is also possible to create vectors that use an array provided by the user, rather than having PETSc internally
allocate the array space. Such vectors can be created with the routines

VecCreateSeqWithArray (PETSCCOMM SELF,int n,PetscScalar *array,Vec *V);

and

VecCreateMPIWithArray (MPI Commcomm,int n,int N,PetscScalar *array,Vec *vv);

Note that here one must provide the valuen, it cannot be PETSCDECIDE and the user is responsible for
providing enough space in the array;n*sizeof(PetscScalar) .

2.2 Basic Vector Operations

As listed in Table1, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes. TheNormType
argument toVecNorm () is one of NORM_1, NORM_2, or NORM_INFINITY. The 1-norm is

∑
i |xi|,

the 2-norm is(
∑
i x

2
i )

1/2 and the infinity norm ismaxi |xi|.
For parallel vectors that are distributed across the processes by ranges, it is possible to determine a

process’s local range with the routine

VecGetOwnershipRange (Vec vec,int *low,int *high);

The argumentlow indicates the first component owned by the local process, whilehigh specifiesone
more thanthe last owned by the local process. This command is useful, for instance, in assembling parallel
vectors. On occasion, the user needs to access the actual elements of the vector. The routineVecGetArray
() returns a pointer to the elements local to the process:

VecGetArray (Vec v,PetscScalar **array);

When access to the array is no longer needed, the user should call

VecRestoreArray (Vec v, PetscScalar **array);

Minor differences exist in the Fortran interface forVecGetArray () and VecRestoreArray (), as
discussed in Section11.1.3. It is important to note thatVecGetArray () andVecRestoreArray ()
do not copy the vector elements; they merely give users direct access to the vector elements. Thus, these
routines require essentially no time to call and can be used efficiently. The number of elements stored locally
can be accessed with
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Function Name Operation
VecAXPY(PetscScalar *a,Vec x, Vec y); y = y + a ∗ x
VecAYPX(PetscScalar *a,Vec x, Vec y); y = x+ a ∗ y
VecWAXPY(PetscScalar *a,Vec x,Vec y, Vec w); w = a ∗ x+ y
VecAXPBY(PetscScalar *a,PetscScalar *,Vec x,Vec y); y = a ∗ x+ b ∗ y
VecScale (PetscScalar *a, Vec x); x = a ∗ x
VecDot (Vec x, Vec y, PetscScalar *r); r = x̄′ ∗ y
VecTDot (Vec x, Vec y, PetscScalar *r); r = x′ ∗ y
VecNorm (Vec x,NormType type, double *r); r = ||x||type
VecSum(Vec x, PetscScalar *r); r =

∑
xi

VecCopy (Vec x, Vec y); y = x
VecSwap (Vec x, Vec y); y = x while x = y
VecPointwiseMult (Vec x,Vec y, Vec w); wi = xi ∗ yi
VecPointwiseDivide (Vec x,Vec y, Vec w); wi = xi/yi
VecMDot (int n,Vec x, Vec y[],PetscScalar *r); r[i] = x̄′ ∗ y[i]
VecMTDot (int n,Vec x, Vec y[],PetscScalar *r); r[i] = x′ ∗ y[i]
VecMAXPY(int n, PetscScalar *a,Vec y, Vec x[]); y = y +

∑
i ai ∗ x[i]

VecMax (Vec x, int *idx, double *r); r = maxxi
VecMin (Vec x, int *idx, double *r); r = minxi
VecAbs (Vec x); xi = |xi|
VecReciprocal (Vec x); xi = 1/xi
VecShift (PetscScalar *s,Vec x); xi = s+ xi
VecSet (PetscScalar *alpha,Vec x); xi = α

Table 1: PETSc Vector Operations

VecGetLocalSize (Vec v,int *size );

The global vector length can be determined by

VecGetSize (Vec v,int *size );

In addition toVecDot () andVecMDot () andVecNorm (), PETSc provides split phase versions of these
that allow several independent inner products and/or norms to share the same communication (thus improv-
ing parallel efficiency). For example, one may have code such as

VecDot (Vec x,Vec y,PetscScalar *dot);
VecNorm (Vec x,NormType NORM 2,double *norm2);
VecNorm (Vec x,NormType NORM 1,double *norm1);

This code works fine, the problem is that it performs three seperate parallel communication operations.
Instead one can write

VecDotBegin (Vec x,Vec y,PetscScalar *dot);
VecNormBegin (Vec x,NormType NORM 2,double *norm2);
VecNormBegin (Vec x,NormType NORM 1,double *norm1);
VecDotEnd (Vec x,Vec y,PetscScalar *dot);
VecNormEnd (Vec x,NormType NORM 2,double *norm2);
VecNormEnd (Vec x,NormType NORM 1,double *norm1);
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With this code, the communication is delayed until the first call toVecxxxEnd() at which a single MPI
reduction is used to communicate all the required values. It is required that the calls to theVecxxxEnd()
are performed in the same order as the calls to theVecxxxBegin() ; however if you mistakenly make
the calls in the wrong order PETSc will generate an error, informing you of this. There are two additional
routinesVecTDotBegin () andVecTDotEnd (). Note: these routines use only MPI 1 functionality; so
they do not allow you to overlap computation and communication (assuming no threads are spawned within
a MPI process). Once MPI 2 implementations are more common we’ll improve these routines to allow
overlap of inner product and norm calculations with other calculations. Also currently these routines only
work for the PETSc built in vector types.

2.3 Indexing and Ordering

When writing parallel PDE codes there is extra complexity caused by having multiple ways of indexing
(numbering) and ordering objects such as vertices and degrees of freedom. For example, a grid generator
or partitioner may renumber the nodes, requiring adjustment of the other data structures that refer to these
objects; see Figure9. In addition, local numbering (on a single process) of objects may be different than
the global (cross-process) numbering. PETSc provides a variety of tools that help to manage the mapping
among the various numbering systems. The two most basic are theAO (application ordering), which enables
mapping between different global (cross-process) numbering schemes and theISLocalToGlobalM
apping , which allows mapping between local (on-process) and global (cross-process) numbering.

2.3.1 Application Orderings

In many applications it is desirable to work with one or more “orderings” (or numberings) of degrees of
freedom, cells, nodes, etc. Doing so in a parallel environment is complicated by the fact that each process
cannot keep complete lists of the mappings between different orderings. In addition, the orderings used in
the PETSc linear algebra routines (often contiguous ranges) may not correspond to the “natural” orderings
for the application. PETSc provides certain utility routines that allow one to deal cleanly and efficiently
with the various orderings. To define a new application ordering (called anAO in PETSc), one can call the
routine

AOCreateBasic (MPI Commcomm,int n,const int apordering[],const int petscordering[],AO *ao);

The arraysapordering andpetscordering , respectively, contain a list of integers in the application
ordering and their corresponding mapped values in the PETSc ordering. Each process can provide whatever
subset of the ordering it chooses, but multiple processes should never contribute duplicate values. The
argumentn indicates the number of local contributed values. For example, consider a vector of length five,
where node 0 in the application ordering corresponds to node 3 in the PETSc ordering. In addition, nodes
1, 2, 3, and 4 of the application ordering correspond, respectively, to nodes 2, 1, 4, and 0 of the PETSc
ordering. We can write this correspondence as

0, 1, 2, 3, 4→ 3, 2, 1, 4, 0.

The user can create the PETSc-AO mappings in a number of ways. For example, if using two processes,
one could call

AOCreateBasic (PETSC_COMM_WORLD,2,{0,3},{3,4},&ao);

on the first process and

AOCreateBasic (PETSC_COMM_WORLD,3,{1,2,4},{2,1,0},&ao);
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on the other process. Once the application ordering has been created, it can be used with either of the
commands

AOPetscToApplication (AO ao,int n,int *indices);
AOApplicationToPetsc (AO ao,int n,int *indices);

Upon input, then-dimensional arrayindices specifies the indices to be mapped, while upon output,
indices contains the mapped values. Since we, in general, employ a parallel database for theAO
mappings, it is crucial that all processes that calledAOCreateBasic () also call these routines; these
routinescannotbe called by just a subset of processes in the MPI communicator that was used in the call to
AOCreateBasic (). An alternative routine to create the application ordering,AO, is

AOCreateBasicIS (IS apordering,IS petscordering,AO *ao);

where index sets (see2.5.1are used instead of integer arrays.
The mapping routines

AOPetscToApplicationIS (AO ao,IS indices);
AOApplicationToPetscIS (AO ao,IS indices);

will map index sets (IS objects) between orderings. Both theAOXxxToYyy() and AOXxxToYyyI
S() routines can be used regardless of whether theAO was created with aAOCreateBasic () or
AOCreateBasicIS (). TheAO context should be destroyed withAODestroy(AO ao) and viewed
with AOView(AO ao,PetscViewer viewer) . Although we refer to the two orderings as “PETSc”
and “application” orderings, the user is free to use them both for application orderings and to maintain
relationships among a variety of orderings by employing severalAO contexts. TheAOxxToxx() rou-
tines allow negative entries in the input integer array. These entries are not mapped; they simply remain
unchanged. This functionality enables, for example, mapping neighbor lists that use negative numbers to
indicate nonexistent neighbors due to boundary conditions, etc.

2.3.2 Local to Global Mappings

In many applications one works with a global representation of a vector (usually on a vector obtained with
VecCreateMPI ()) and a local representation of the same vector that includes ghost points required for
local computation. PETSc provides routines to help map indices from a local numbering scheme to the
PETSc global numbering scheme. This is done via the following routines

ISLocalToGlobalMappingCreate (int N,int* globalnum,ISLocalToGlobalMapping * ctx);
ISLocalToGlobalMappingApply (ISLocalToGlobalMapping ctx,int n,int *in,int *out);
ISLocalToGlobalMappingApplyIS (ISLocalToGlobalMapping ctx,IS isin,IS * isout);
ISLocalToGlobalMappingDestroy (ISLocalToGlobalMapping ctx);

HereNdenotes the number of local indices,globalnum contains the global number of each local number,
and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed
to apply the mapping with eitherISLocalToGlobalMappingApply () or ISLocalToGlobalM
appingApplyIS (). Note that theISLocalToGlobalMapping routines serve a different purpose
than theAO routines. In the former case they provide a mapping from a local numbering scheme (including
ghost points) to a global numbering scheme, while in the latter they provide a mapping between two global
numbering schemes. In fact, many applications may use bothAO and ISLocalToGlobalMapping
routines. TheAO routines are first used to map from an application global ordering (that has no relationship
to parallel processing etc.) to the PETSc ordering scheme (where each process has a contiguous set of in-
dices in the numbering). Then in order to perform function or Jacobian evaluations locally on each process,
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one works with a local numbering scheme that includes ghost points. The mapping from this local number-
ing scheme back to the global PETSc numbering can be handled with theISLocalToGlobalMapping
routines. If one is given a list of indices in a global numbering, the routine

ISGlobalToLocalMappingApply (ISLocalToGlobalMapping ctx,
ISGlobalToLocalMappingType type,int nin,int idxin[],int *nout,int idxout[]);

will provide a new list of indices in the local numbering. Again, negative values inidxin are left un-
mapped. But, in addition, iftype is set toIS_GTOLM_MASK, thennout is set tonin and all global
values inidxin that are not represented in the local to global mapping are replaced by -1. Whentype
is set toIS_GTOLM_DROP, the values inidxin that are not represented locally in the mapping are not
included inidxout , so that potentiallynout is smaller thannin . One must pass in an array long enough
to hold all the indices. One can callISGlobalToLocalMappingApply () with idxout equal to
PETSC_NULLto determine the required length (returned innout ) and then allocate the required space and
call ISGlobalToLocalMappingApply() a second time to set the values. Often it is convenient to
set elements into a vector using the local node numbering rather than the global node numbering (e.g., each
process may maintain its own sublist of vertices and elements and number them locally). To set values into
a vector with the local numbering, one must first call

VecSetLocalToGlobalMapping (Vec v,ISLocalToGlobalMapping ctx);

and then call

VecSetValuesLocal (Vec x,int n,const int indices[],constPetscScalar values[],INSERTVALUES);

Now theindices use the local numbering, rather than the global, meaning the entries lie in[0, n) where
n is the localsize of the vector.

2.4 Structured Grids Using Distributed Arrays

Distributed arrays (DAs), which are used in conjunction with PETSc vectors, are intended for use with
logically regular rectangular gridswhen communication of nonlocal data is needed before certain local
computations can occur. PETSc distributed arrays are designed only for the case in which data can be
thought of as being stored in a standard multidimensional array; thus, DAs arenot intended for parallelizing
unstructured grid problems, etc. DAs are intended for communicating vector (field) information; they are
not intended for storing matrices. For example, a typical situation one encounters in solving PDEs in parallel
is that, to evaluate a local function,f(x) , each process requires its local portion of the vectorx as well as
its ghost points (the bordering portions of the vector that are owned by neighboring processes). Figure8
illustrates the ghost points for the seventh process of a two-dimensional, regular parallel grid. Each box
represents a process; the ghost points for the seventh process’s local part of a parallel array are shown in
gray.

2.4.1 Creating Distributed Arrays

The PETScDA object manages the parallel communication required while working with data stored in
regular arrays. The actual data is stored in approriately sized vector objects; theDA object only contains the
parallel data layout information and communication information, however it may be used to create vectors
and matrices with the proper layout. One creates a distributed array communication data structure in two
dimensions with the command

DACreate2d (MPI Commcomm,DAPeriodicType wrap,DAStencilType st,int M,
int N,int m,int n,int dof,int s,int *lx,int *ly,DA *da);
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Figure 8: Ghost Points for Two Stencil Types on the Seventh Process

The argumentsMandN indicate the global numbers of grid points in each direction, whilemandn denote
the process partition in each direction;m*n must equal the number of processes in the MPI communicator,
comm. Instead of specifying the process layout, one may use PETSCDECIDE for mandn so that PETSc
will determine the partition using MPI. The type of periodicity of the array is specified bywrap , which
can beDA_NONPERIODIC(no periodicity),DA_XYPERIODIC(periodic in both x- and y-directions),
DA_XPERIODIC, or DA_YPERIODIC. The argumentdof indicates the number of degrees of freedom
at each array point, ands is the stencil width (i.e., the width of the ghost point region). The optional
arrayslx andly may contain the number of nodes along the x and y axis for each cell, i.e. the dimension
of lx is mand the dimension ofly is n; or PETSC_NULLmay be passed in. Two types of distributed
array communication data structures can be created, as specified byst . Star-type stencils that radiate
outward only in the coordinate directions are indicated byDA_STENCIL_STAR, while box-type stencils
are specified byDA_STENCIL_BOX. For example, for the two-dimensional case,DA_STENCIL_STAR
with width 1 corresponds to the standard 5-point stencil, whileDA_STENCIL_BOXwith width 1 denotes
the standard 9-point stencil. In both instances the ghost points are identical, the only difference being that
with star-type stencils certain ghost points are ignored, decreasing substantially the number of messages
sent. Note that theDA_STENCIL_STARstencils can save interprocess communication in two and three
dimensions. TheseDA stencils have nothing directly to do with any finite difference stencils one might
chose to use for a discretization; they only ensure that the correct values are in place for application of a
user-defined finite difference stencil (or any other discretization technique). The commands for creating
distributed array communication data structures in one and three dimensions are analogous:

DACreate1d (MPI Commcomm,DAPeriodicType wrap,int M,int w,int s,int *lc,DA *inra);
DACreate3d (MPI Commcomm,DAPeriodicType wrap,DAStencilType stencil type,

int M,int N,int P,int m,int n,int p,int w,int s,int *lx,int *ly,int *lz,DA *inra);

DA_ZPERIODIC, DA_XZPERIODIC, DA_YZPERIODIC, and DA_XYZPERIODICare additional op-
tions in three dimensions forDAPeriodicType . The routines to create distributed arrays are collective,
so that all processes in the communicatorcommmust callDACreateXXX() .

2.4.2 Local/Global Vectors and Scatters

EachDA object defines the layout of two vectors: a distributed global vector and a local vector that includes
room for the appropriate ghost points. TheDA object provides information about thesize and layout of
these vectors, but does not internally allocate any associated storage space for field values. Instead, the user
can create vector objects that use theDA layout information with the routines
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DACreateGlobalVector (DA da,Vec *g);
DACreateLocalVector (DA da,Vec *l);

These vectors will generally serve as the building blocks for local and global PDE solutions, etc. If additional
vectors with such layout information are needed in a code, they can be obtained by duplicatingl or g
via VecDuplicate () or VecDuplicateVecs (). We emphasize that a distributed array provides the
information needed to communicate the ghost value information between processes. In most cases, several
different vectors can share the same communication information (or, in other words, can share a givenDA).
The design of theDA object makes this easy, as eachDA operation may operate on vectors of the appropriate
size , as obtained viaDACreateLocalVector () andDACreateGlobalVector () or as produced
by VecDuplicate (). As such, theDA scatter/gather operations (e.g.,DAGlobalToLocalBegin
()) require vector input/output arguments, as discussed below. PETSc currently provides no container for
multiple arrays sharing the same distributed array communication; note, however, that thedof parameter
handles many cases of interest. At certain stages of many applications, there is a need to work on a local
portion of the vector, including the ghost points. This may be done by scattering a global vector into its local
parts by using the two-stage commands

DAGlobalToLocalBegin (DA da,Vec g,InsertMode iora,Vec l);
DAGlobalToLocalEnd (DA da,Vec g,InsertMode iora,Vec l);

which allow the overlap of communication and computation. Since the global and local vectors, given
by g and l , respectively, must be compatible with the distributed array,da , they should be generated
by DACreateGlobalVector () andDACreateLocalVector () (or be duplicates of such a vector
obtained viaVecDuplicate ()). TheInsertMode can be eitherADD_VALUESor INSERT_VALUES.
One can scatter the local patches into the distributed vector with the command

DALocalToGlobal (DA da,Vec l,InsertMode mode,Vec g);

Note that this function is not subdivided into beginning and ending phases, since it is purely local. A third
type of distributed array scatter is from a local vector (including ghost points that contain irrelevant values)
to a local vector with correct ghost point values. This scatter may be done by commands

DALocalToLocalBegin (DA da,Vec l1,InsertMode iora,Vec l2);
DALocalToLocalEnd (DA da,Vec l1,InsertMode iora,Vec l2);

Since both local vectors,l1 and l2 , must be compatible with the distributed array,da , they should be
generated byDACreateLocalVector () (or be duplicates of such vectors obtained viaVecDuplicate
()). TheInsertMode can be eitherADD_VALUESor INSERT_VALUES. It is possible to directly access
the vector scatter contexts (see below) used in the local-to-global (ltog ), global-to-local (gtol ), and local-
to-local (ltol ) scatters with the command

DAGetScatter (DA da,VecScatter *ltog,VecScatter *gtol,VecScatter *ltol);

Most users should not need to use these contexts.

2.4.3 Local (Ghosted) Work Vectors

In most applications the local ghosted vectors are only needed during user “function evaluations”. PETSc
provides an easy light-weight (requiring essentially no CPU time) way to obtain these work vectors and
return them when they are no longer needed. This is done with the routines

DAGetLocalVector (DA da,Vec *l);
.... use the local vector l
DARestoreLocalVector (DA da,Vec *l);
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2.4.4 Accessing the Vector Entries for DA Vectors

PETSc provides an easy way to set values into theDA Vectors and access them using the natural grid
indexing. This is done with the routines

DAVecGetArray (DA da,Vec l,void *array);
... use the array indexing it with 1 or 2 or 3 dimensions
... depending on the dimension of theDA
DAVecRestoreArray (DA da,Vec l,void *array);

wherearray is a multidimensional C array with the same dimension asda . The vector l can be either a
global vector or a local vector. Thearray is accessed using the usualglobal indexing on the entire grid,
but the user mayonly refer to the local and ghost entries of this array as all other entries are undefined. For
example for a scalar problem in two dimensions one could do

PetscScalar **f,**u;
...
DAVecGetArray (DA da,Vec local,(void*)u);
DAVecGetArray (DA da,Vec global,(void*)f);
...
f[i][j] = u[i][j] - ...
...
DAVecRestoreArray (DA da,Vec local,(void*)u);
DAVecRestoreArray (DA da,Vec global,(void*)f);

See${PETSC_DIR}/src/snes/examples/tutorials/ex5.c for a complete example and see
${PETSC_DIR}/src/snes/examples/tutorials/ex19.c for an example for a multi-component
PDE.

2.4.5 Grid Information

The global indices of the lower left corner of the local portion of the array as well as the local arraysize
can be obtained with the commands

DAGetCorners (DA da,int *x,int *y,int *z,int *m,int *n,int *p);
DAGetGhostCorners (DA da,int *x,int *y,int *z,int *m,int *n,int *p);

The first version excludes any ghost points, while the second version includes them. The routineDAGetG
hostCorners () deals with the fact that subarrays along boundaries of the problem domain have ghost
points only on their interior edges, but not on their boundary edges. When either type of stencil is used,DA
_STENCIL_STARor DA_STENCIL_BOX, the local vectors (with the ghost points) represent rectangular
arrays, including the extra corner elements in theDA_STENCIL_STARcase. This configuration provides
simple access to the elements by employing two- (or three-) dimensional indexing. The only difference
between the two cases is that whenDA_STENCIL_STARis used, the extra corner components arenot
scattered between the processes and thus contain undefined values that shouldnot be used. To assemble
global stiffness matrices, one needs either

• the global node number of each local node including the ghost nodes. This number may be determined
by using the command

DAGetGlobalIndices (DA da,int *n,int *idx[]);
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Figure 9: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes)

The output argumentn contains the number of local nodes, including ghost nodes, whileidx contains
a list of lengthn containing the global indices that correspond to the local nodes. Either parameter
may be omitted by passingPETSC_NULL. Note that the Fortran interface differs slightly; see Sec-
tion 11.1.3for details.

• or to set up the vectors and matrices so that their entries may be added using the local numbering.
This is done by first calling

DAGetISLocalToGlobalMapping (DA da,ISLocalToGlobalMapping *map);

followed by

VecSetLocalToGlobalMapping (Vec x,ISLocalToGlobalMapping map);
MatSetLocalToGlobalMapping (Vec x,ISLocalToGlobalMapping map);

Now entries may be added to the vector and matrix using the local numbering andVecSetValuesL
ocal () andMatSetValuesLocal ().

Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, theDA structure provides an
application orderingAO (see Section2.3.1) that maps between the natural ordering on a rectangular grid
and the ordering PETSc uses to parallize. This ordering context can be obtained with the command

DAGetAO(DA da,AO *ao);

In Figure 9 we indicate the orderings for a two-dimensional distributed array, divided among four pro-
cesses. The example${PETSC_DIR}/src/snes/examples/tutorials/ex5.c , illustrates the
use of a distributed array in the solution of a nonlinear problem. The analogous Fortran program is
${PETSC_DIR}/src/snes/examples/tutorials/ex5f.F ; see Chapter5 for a discussion of
the nonlinear solvers.

45

manualpages/DA/DAGetISLocalToGlobalMapping.html##DAGetISLocalToGlobalMapping
manualpages/DA/DA.html##DA
manualpages/IS/ISLocalToGlobalMapping.html##ISLocalToGlobalMapping
manualpages/Vec/VecSetLocalToGlobalMapping.html##VecSetLocalToGlobalMapping
manualpages/Vec/Vec.html##Vec
manualpages/IS/ISLocalToGlobalMapping.html##ISLocalToGlobalMapping
manualpages/Mat/MatSetLocalToGlobalMapping.html##MatSetLocalToGlobalMapping
manualpages/Vec/Vec.html##Vec
manualpages/IS/ISLocalToGlobalMapping.html##ISLocalToGlobalMapping
manualpages/Vec/VecSetValuesLocal.html##VecSetValuesLocal
manualpages/Vec/VecSetValuesLocal.html##VecSetValuesLocal
manualpages/Mat/MatSetValuesLocal.html##MatSetValuesLocal
manualpages/DA/DA.html##DA
manualpages/AO/AO.html##AO
manualpages/DA/DAGetAO.html##DAGetAO
manualpages/DA/DA.html##DA
manualpages/AO/AO.html##AO


2.5 Software for Managing Vectors Related to Unstructured Grids

2.5.1 Index Sets

To facilitate general vector scatters and gathers used, for example, in updating ghost points for problems
defined on unstructured grids, PETSc employs the concept of an index set. An index set, which is a gener-
alization of a set of integer indices, is used to define scatters, gathers, and similar operations on vectors and
matrices.

The following command creates a index set based on a list of integers:

ISCreateGeneral (MPI Commcomm,int n,int *indices,IS *is);

This routine essentially copies then indices passed to it by the integer arrayindices . Thus, the user
should be sure to free the integer arrayindices when it is no longer needed, perhaps directly after the call
to ISCreateGeneral (). The communicator,comm, should consist of all processes that will be using
the IS . Another standard index set is defined by a starting point (first ) and a stride (step ), and can be
created with the command

ISCreateStride (MPI Commcomm,int n,int first,int step,IS *is);

Index sets can be destroyed with the command

ISDestroy (IS is);

On rare occasions the user may need to access information directly from an index set. Several commands
assist in this process:

ISGetSize (IS is,int *size );
ISStrideGetInfo (IS is,int *first,int *stride);
ISGetIndices (IS is,int **indices);

The functionISGetIndices () returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ISRestoreIndices (IS is, int **indices);

should be called to ensure that the system can free the space it may have used to generate the list of indices.
A blocked version of the index sets can be created with the command

ISCreateBlock (MPI Commcomm,int bs,int n,int *indices,IS *is);

This version is used for defining operations in which each element of the index set refers to a block ofbs
vector entries. Related routines analogous to those described above exist as well, includingISBlockGetI
ndices (), ISBlockGetSize (), ISBlockGetBlockSize (), andISBlock (). See the man pages
for details.

2.5.2 Scatters and Gathers

PETSc vectors have full support for general scatters and gathers. One can select any subset of the com-
ponents of a vector to insert or add to any subset of the components of another vector. We refer to these
operations as generalized scatters, though they are actually a combination of scatters and gathers.

To copy selected components from one vector to another, one uses the following set of commands:
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VecScatterCreate (Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);
VecScatterBegin (Vec x,Vec y,INSERT VALUES,SCATTERFORWARD,VecScatter ctx);
VecScatterEnd (Vec x,Vec y,INSERT VALUES,SCATTERFORWARD,VecScatter ctx);
VecScatterDestroy (VecScatter ctx);

Hereix denotes the index set of the first vector, whileiy indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the index
set of the first vector,ix , equal the number in the destination index set,iy , and that the vectors be long
enough to contain all the indices referred to in the index sets. The argumentINSERT_VALUESspecifies
that the vector elements will be inserted into the specified locations of the destination vector, overwriting
any existing values. To add the components, rather than insert them, the user should select the option
ADD_VALUESinstead ofINSERT_VALUES. To perform a conventional gather operation, the user simply
makes the destination index set,iy , be a stride index set with a stride of one. Similarly, a conventional
scatter can be done with an initial (sending) index set consisting of a stride. The scatter rotines are collective
operations (i.e. all processes that own a parallel vectormustcall the scatter routines). When scattering from
a parallel vector to sequential vectors, each process has its own sequential vector that receives values from
locations as indicated in its own index set. Similarly, in scattering from sequential vectors to a parallel vector,
each process has its own sequential vector that makes contributions to the parallel vector.Caution: When
INSERT_VALUESis used, if two different processes contribute different values to the same component in
a parallel vector, either value may end up being inserted. WhenADD_VALUESis used, the correct sum is
added to the correct location. In some cases one may wish to “undo” a scatter, that is perform the scatter
backwards switching the roles of the sender and receiver. This is done by using

VecScatterBegin (Vec y,Vec x,INSERT VALUES,SCATTERREVERSE,VecScatter ctx);
VecScatterEnd (Vec y,Vec x,INSERT VALUES,SCATTERREVERSE,VecScatter ctx);

Note that the roles of the first two arguments to these routines must be swapped whenever theSCATTE
R_REVERSEoption is used. Once aVecScatter object has been created it may be used with any
vectors that have the appropriate parallel data layout. That is, one can callVecScatterBegin () and
VecScatterEnd () with different vectors than used in the call toVecScatterCreate () so long as
they have the same parallel layout (number of elements on each process are the same). Usually, these
“different” vectors would have been obtained via calls toVecDuplicate () from the original vectors used
in the call toVecScatterCreate (). There is no PETSc routine that is the opposite ofVecSetValues
() , that is, VecGetValues(). Instead, the user should create a new vector where the components are to be
stored and perform the appropriate vector scatter. For example, if one desires to obtain the values of the
100th and 200th entries of a parallel vector,p, one could use a code such as that within Figure10. In this
example, the values of the 100th and 200th components are placed in the array values. In this example each
process now has the 100th and 200th component, but obviously each process could gather any elements
it needed, or none by creating an index set with no entries. The scatter comprises two stages, in order to
allow overlap of communication and computation. The introduction of theVecScatter context allows
the communication patterns for the scatter to be computed once and then reused repeatedly. Generally,
even setting up the communication for a scatter requires communication; hence, it is best to reuse such
information when possible.

2.5.3 Scattering Ghost Values

The scatters provide a very general method for managing the communication of required ghost values for
unstructured grid computations. One scatters the global vector into a local “ghosted” work vector, performs
the computation on the local work vectors, and then scatters back into the global solution vector. In the
simplest case this may be written as
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Vec p, x; /* initial vector, destination vector */
VecScatter scatter; /* scatter context */
IS from, to; /* index sets that define the scatter */
PetscScalar *values;
int idx_from[] = {100,200}, idx_to[] = {0,1};
VecCreateSeq (PETSCCOMM SELF,2,&x);
ISCreateGeneral (PETSCCOMM SELF,2,idxfrom,&from);
ISCreateGeneral (PETSCCOMM SELF,2,idxto,&to);
VecScatterCreate (p,from,x,to,&scatter);
VecScatterBegin (p,x,INSERTVALUES,SCATTERFORWARD,scatter);
VecScatterEnd (p,x,INSERTVALUES,SCATTERFORWARD,scatter);
VecGetArray (x,&values);
ISDestroy (from);
ISDestroy (to);
VecScatterDestroy (scatter);

Figure 10: Example Code for Vector Scatters

Function: (InputVec globalin, OutputVec globalout)

VecScatterBegin (Vec globalin,Vec localin,InsertMode INSERT VALUES,
ScatterMode SCATTERFORWARD,VecScatter scatter);

VecScatterEnd (Vec globalin,Vec localin,InsertMode INSERT VALUES,
ScatterMode SCATTERFORWARD,VecScatter scatter);

/* For example, do local calculations from localin to localout*/
VecScatterBegin (Vec localout,Vec globalout,InsertMode ADD VALUES,

ScatterMode SCATTERREVERSE,VecScatter scatter);
VecScatterEnd (Vec localout,Vec globalout,InsertMode ADD VALUES,

ScatterMode SCATTERREVERSE,VecScatter scatter);

2.5.4 Vectors with Locations for Ghost Values

We recommend that application developers skip this section on a first reading. It contains information
about more advanced use of PETSc vectors to improve efficiency slightly. Once an application code is
fully debugged and optimized these techniques can be tried to slightly decrease memory use and improve
computation speed. There are two minor drawbacks to the basic approach described above:

• the extra memory requirement for the local work vector,localin , which duplicates the memory in
globalin , and

• the extra time required to copy the local values fromlocalin to globalin .

An alternative approach is to allocate global vectors with space preallocated for the ghost values; this may
be done with either

VecCreateGhost (MPI Commcomm,int n,int N,int nghost,int *ghosts,Vec *vv)

or

VecCreateGhostWithArray (MPI Commcomm,int n,int N,int nghost,int *ghosts,
PetscScalar *array,Vec *vv)
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Here n is the number of local vector entries,N is the number of global entries (orPETSC_NULL) and
nghost is the number of ghost entries. The arrayghosts is of size nghost and contains the global
vector location for each local ghost location. UsingVecDuplicate () or VecDuplicateVecs () on a
ghosted vector will generate additional ghosted vectors. In many ways a ghosted vector behaves just like any
otherMPI vector created byVecCreateMPI (), the difference is that the ghosted vector has an additional
“local” representation that allows one to access the ghost locations. This is done through the call to

VecGhostGetLocalForm (Vec g,Vec *l);

The vectorl is a sequential representation of the parallel vectorg that shares the same array space (and
hence numerical values); but allows one to access the “ghost” values past “the end of the” array. Note that
one access the entries inl using the local numbering of elements and ghosts, while they are accessed ing
using the global numbering. A common usage of a ghosted vector is given by

VecGhostUpdateBegin (Vec globalin,InsertMode INSERT VALUES,
ScatterMode SCATTERFORWARD);

VecGhostUpdateEnd (Vec globalin,InsertMode INSERT VALUES,
ScatterMode SCATTERFORWARD);

VecGhostGetLocalForm (Vec globalin,Vec *localin);
VecGhostGetLocalForm (Vec globalout,Vec *localout);
/*
Do local calculations from localin to localout
*/
VecGhostRestoreLocalForm (Vec globalin,Vec *localin);
VecGhostRestoreLocalForm (Vec globalout,Vec *localout);
VecGhostUpdateBegin (Vec globalout,InsertMode ADD VALUES,

ScatterMode SCATTERREVERSE);
VecGhostUpdateEnd (Vec globalout,InsertMode ADD VALUES,

ScatterMode SCATTERREVERSE);

The routinesVecGhostUpdateBegin/End() are equivalent to the routinesVecScatterBegin/
End() above except that since they are scattering into the ghost locations, they do not need to copy the
local vector values, which are already in place. In addition, the user does not have to allocate the local
work vector, since the ghosted vector already has allocated slots to contain the ghost values. The input
argumentsINSERT_VALUESandSCATTER_FORWARDcause the ghost values to be correctly updated
from the appropriate process. The argumentsADD_VALUESandSCATTER_REVERSEupdate the “local”
portions of the vector from all the other processes’ ghost values. This would be appropriate, for example,
when performing a finite element assembly of a load vector. Section3.5 discusses the important topic of
partitioning an unstructured grid.
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Chapter 3

Matrices

PETSc provides a variety of matrix implementations because no single matrix format is appropriate for all
problems. Currently we support dense storage and compressed sparse row storage (both sequential and
parallel versions), as well as several specialized formats. Additional formats can be added. This chapter
describes the basics of using PETSc matrices in general (regardless of the particular format chosen) and
discusses tips for efficient use of the several simple uniprocess and parallel matrix types. The use of PETSc
matrices involves the following actions: create a particular type of matrix, insert values into it, process the
matrix, use the matrix for various computations, and finally destroy the matrix. The application code does
not need to know or care about the particular storage formats of the matrices.

3.1 Creating and Assembling Matrices

The simplest routine for forming a PETSc matrix,A, is

MatCreate (MPI Commcomm,int m,int n,int M,int N,Mat *A)

This routine generates a sequential matrix when running one process and a parallel matrix for two or more
processes; the particular matrix format is set by the user via options database commands. The user specifies
either the global matrix dimensions, given byMandNor the local dimensions, given bymandn while PETSc
completely controls memory allocation. This routine facilitates switching among various matrix types, for
example, to determine the format that is most efficient for a certain application. By default,MatCreate ()
employs the sparse AIJ format, which is discussed in detail Section3.1.1. See the manual pages for further
information about available matrix formats. To insert or add entries to a matrix, one can call a variant of
MatSetValues , either

MatSetValues (Mat A,int m,const int idxm[],int n,const int idxn[],constPetscScalar values[],
INSERT VALUES);

or

MatSetValues (Mat A,int m,const int idxm[],int n,const int idxn[],constPetscScalar values[],
ADD VALUES);

This routine inserts or adds a logically dense subblock of dimensionm*n into the matrix. The integer indices
idxm andidxn , respectively, indicate the global row and column numbers to be inserted.MatSetValues
() uses the standard C convention, where the row and column matrix indices begin with zeroregardless
of the storage format employed. The arrayvalues is logically two-dimensional, containing the values
that are to be inserted. By default the values are given in row major order, which is the opposite of the
Fortran convention, meaning that the value to be put in rowidxm[i] and columnidxn[j] is located in
values[i*n+j] . To allow the insertion of values in column major order, one can call the command
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MatSetOption (Mat A,MAT COLUMN ORIENTED);

Warning : Several of the sparse implementations donotcurrently support the column-oriented option. This
notation should not be a mystery to anyone. For example, to insert one matrix into another when using
Matlab, one uses the commandA(im,in) = B; whereim andin contain the indices for the rows and
columns. This action is identical to the calls above toMatSetValues (). When using the block com-
pressed sparse row matrix format (MATSEQBAIJ or MATMPIBAIJ ), one can insert elements more effi-
ciently using the block variant,MatSetValuesBlocked (). The functionMatSetOption () accepts
several other inputs; see the manual page for details. We discuss two of these options, which are related to
the efficiency of the assembly process. To indicate to PETSc that the row (im ) or column (in ) indices set
with MatSetValues () are sorted (in increasing order), one uses the command

MatSetOption (Mat A,MAT ROWSSORTED);

or

MatSetOption (Mat A,MAT COLUMNS SORTED);

Note that these flags indicate the format of the data passed in withMatSetValues (); they do not have
anything to do with how the sparse matrix data is stored internally in PETSc. After the matrix elements have
been inserted or added into the matrix, they must be processed (also called assembled) before they can be
used. The routines for matrix processing are

MatAssemblyBegin (Mat A,MAT FINAL ASSEMBLY);
MatAssemblyEnd (Mat A,MAT FINAL ASSEMBLY);

By placing other code between these two calls, the user can perform computations while messages are in
transit. Calls toMatSetValues () with the INSERT_VALUESand ADD_VALUESoptionscannotbe
mixed without intervening calls to the assembly routines. For such intermediate assembly calls the second
routine argument typically should beMAT_FLUSH_ASSEMBLY, which omits some of the work of the full
assembly process.MAT_FINAL_ASSEMBLYis required only in the last matrix assembly before a matrix is
used. Even though one may insert values into PETSc matrices without regard to which process eventually
stores them, for efficiency reasons we usually recommend generating most entries on the process where they
are destined to be stored. To help the application programmer with this task for matrices that are distributed
across the processes by ranges, the routine

MatGetOwnershipRange (Mat A,int *first row,int *last row);

informs the user that all rows fromfirst_row to last_row-1 (since the value returned inlast_row
is one more than the global index of the last local row) will be stored on the local process. In the sparse
matrix implementations, once the assembly routines have been called, the matrices are compressed and
can be used for matrix-vector multiplication, etc. Inserting new values into the matrix at this point will be
expensive, since it requires copies and possible memory allocation. Thus, whenever possible one should
completely set the values in the matrices before calling the final assembly routines.

If one wishes to repeatedly assemble matrices that retain the same nonzero pattern (such as within a
nonlinear or time-dependent problem), the option

MatSetOption (Mat A,MAT NO NEW NONZEROLOCATIONS);

should be specified after the first matrix has been fully assembled. This option ensures that certain data
structures and communication information will be reused (instead of regenerated) during successive steps,
thereby increasing efficiency. See${PETSC_DIR}/src/sles/examples/tutorials/ex5.c for
a simple example of solving two linear systems that use the same matrix data structure.
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3.1.1 Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the Yale sparse
matrix format or compressed sparse row format, CSR). This section discusses tips forefficientlyusing this
matrix format for large-scale applications. Additional formats (such as block compressed row and block
diagonal storage, which are generally much more efficient for problems with multiple degrees of freedom
per node) are discussed below. Beginning users need not concern themselves initially with such details and
may wish to proceed directly to Section3.2. However, when an application code progresses to the point of
tuning for efficiency and/or generating timing results, it iscrucial to read this information.

Sequential AIJ Sparse Matrices

In the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of correspond-
ing column numbers and an array of pointers to the beginning of each row. Note that the diagonal matrix
entries are stored with the rest of the nonzeros (not separately).

To create a sequential AIJ sparse matrix,A, with mrows andn columns, one uses the command

MatCreateSeqAIJ (PETSCCOMM SELF,int m,int n,int nz,int *nnz,Mat *A);

wherenz or nnz can be used to preallocate matrix memory, as discussed below. The user can setnz=0
and nnz=PETSC_NULLfor PETSc to control all matrix memory allocation. The sequential and paral-
lel AIJ matrix storage formats by default employi-nodes(identical nodes) when possible. We search for
consecutive rows with the same nonzero structure, thereby reusing matrix information for increased effi-
ciency. Related options database keys are-mat_aij_no_inode (do not use inodes) and-mat_aij_
inode_limit <limit> (set inode limit (max limit=5)). Note that problems with a single degree of
freedom per grid node will automatically not use I-nodes. By default the internal data representation for the
AIJ formats employs zero-based indexing. For compatibility with standard Fortran storage, thus enabling
use of external Fortran software packages such as SPARSKIT, the option-mat_aij_oneindex enables
one-based indexing, where the stored row and column indices begin at one, not zero. All user calls to PETSc
routines, regardless of this option, use zero-based indexing.

Preallocation of Memory for Sequential AIJ Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new isintrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate
the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via
MatCreateSeqAIJ() .

One can use the scalarnz to specify the expected number of nonzeros for each row. This is generally
fine if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation, If different rows have very different numbers of nonzeros, one should
attempt to indicate (nearly) the exact number of elements intended for the various rows with the optional
array,nnz of lengthm, wheremis the number of rows, for example

int nnz[m];
nnz[0] =<nonzeros in row 0>
nnz[1] =<nonzeros in row 1>
....
nnz[m-1] =<nonzeros in row m-1>
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In this case, the assembly process will require no additional memory allocations if thennz estimates are
correct. If, however, thennz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency. Using the arraynnz to preallocate memory is especially important for
efficient matrix assembly if the number of nonzeros varies considerably among the rows. One can generally
setnnz either by knowing in advance the problem structure (e.g., the stencil for finite difference problems
on a structured grid) or by precomputing the information by using a segment of code similar to that for the
regular matrix assembly. The overhead of determining thennz array will be quite small compared with
the overhead of the inherently expensive mallocs and moves of data that are needed for dynamic allocation
during matrix assembly. Always guess high if exact value is not known (since extra space is cheaper than
too little). Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows,
one could proceed as follows for finite difference methods:

- Allocate integer arraynnz .
- Loop over grid, counting the expected number of nonzeros for the row(s)

associated with the various grid points.
- Create the sparse matrix viaMatCreateSeqAIJ () or alternative.
- Loop over the grid, generating matrix entries and inserting in matrix viaMatSetValues ().

For (vertex-based) finite element type calculations, an analogous procedure is as follows:

- Allocate integer arraynnz .
- Loop over vertices, computing the number of neighbor vertices, which determines the

number of nonzeros for the corresponding matrix row(s).
- Create the sparse matrix viaMatCreateSeqAIJ () or alternative.
- Loop over elements, generating matrix entries and inserting in matrix viaMatSetValues ().

The-log_info option causes the routinesMatAssemblyBegin () andMatAssemblyEnd () to print
information about the success of the preallocation. Consider the following example for theMATSEQAIJ
matrix format:

MatAssemblyEnd SeqAIJ:Matrixsize 10 X 10; storage space:20 unneeded, 100 used
MatAssemblyEnd SeqAIJ:Number of mallocs duringMatSetValues is 0

The first line indicates that the user preallocated 120 spaces but only 100 were used. The second line
indicates that the user preallocated enough space so that PETSc did not have to internally allocate additional
space (an expensive operation). In the next example the user did not preallocate sufficient space, as indicated
by the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd SeqAIJ:Matrixsize 10 X 10; storage space:47 unneeded, 1000 used
MatAssemblyEnd SeqAIJ:Number of mallocs duringMatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem unusual,
they are actually very efficient because they alleviate the need for dynamic construction of the matrix data
structure, which can be very expensive.

Parallel AIJ Sparse Matrices

Parallel sparse matrices with the AIJ format can be created with the command

MatCreateMPIAIJ (MPI Commcomm,int m,int n,int M,int N,int dnz,
int *d nnz, int onz,int *o nnz,Mat *A);
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A is the newly created matrix, while the argumentsm, M, andN, indicate the number of local rows and
the number of global rows and columns, respectively. In the PETSc partitioning scheme, all the matrix
columns are local andn is the number of columns corresponding to local part of a parallel vector. Either the
local or global parameters can be replaced with PETSCDECIDE, so that PETSc will determine them. The
matrix is stored with a fixed number of rows on each process, given bym, or determined by PETSc ifmis
PETSCDECIDE. If PETSCDECIDE is not used for the argumentsmandn, then the user must ensure that
they are chosen to be compatible with the vectors. To do this, one first considers the matrix-vector product
y = Ax. Themthat is used in the matrix creation routineMatCreateMPIAIJ () must match the local
size used in the vector creation routineVecCreateMPI () for y . Likewise, then used must match that
used as the localsize in VecCreateMPI () for x .

The user must setd_nz=0 , o_nz=0 , d_nnz=PETSC_NULL, ando_nnz=PETSC_NULL for PETSc
to control dynamic allocation of matrix memory space. Analogous tonz andnnz for the routineMatC
reateSeqAIJ (), these arguments optionally specify nonzero information for the diagonal (d_nz and
d_nnz ) and off-diagonal (o_nz ando_nnz ) parts of the matrix. For a square global matrix, we define
each process’s diagonal portion to be its local rows and the corresponding columns (a square submatrix);
each process’s off-diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix).
The rank in the MPI communicator determines the absolute ordering of the blocks. That is, the process
with rank 0 in the communicator given toMatCreateMPIAIJ contains the top rows of the matrix; the
ith process in that communicator contains the ith block of the matrix.

Preallocation of Memory for Parallel AIJ Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix
assembly, as this reduces the number of allocations and copies required. We present an example for three
processes to indicate how this may be done for theMATMPIAIJ matrix format. Consider the 8 by 8 matrix,
which is partitioned by default with three rows on the first process, three on the second and two on the third.

1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34


The “diagonal” submatrix,d, on the first process is given by 1 2 0

0 5 6
9 0 10

 ,

while the “off-diagonal” submatrix,o, matrix is given by 0 3 0 0 4
7 0 0 8 0
11 0 0 12 0

 .

For the first process one could setd_nz to 2 (since each row has 2 nonzeros) or, alternatively, setd_nnz
to {2,2,2}. Theo_nz could be set to 2 since each row of theo matrix has 2 nonzeros, oro_nnz could be
set to{2,2,2}. For the second process thed submatrix is given by 15 16 17

19 20 21
22 23 0

 .
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Thus, one could setd_nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively
one could setd_nnz to {3,3,2}, thereby indicating that the first two rows will have 3 nonzeros while the
third has 2. The correspondingo submatrix for the second process is 13 0 14 0 0

0 18 0 0 0
0 0 0 24 0


so that one could seto_nz to 2 or o_nnz to {2,1,1}. Note that the user never directly works with the

d ando submatrices, except when preallocating storage space as indicated above. Also, the user need not
preallocate exactly the correct amount of space; as long as a sufficiently close estimate is given, the high
efficiency for matrix assembly will remain.

As described above, the option-log_info will print information about the success of preallocation
during matrix assembly. For theMATMPIAIJ format, PETSc will also list the number of elements owned
by on each process that were generated on a different process. For example, the statements

MatAssemblyBegin MPIAIJ:Number of off processor values 10
MatAssemblyBegin MPIAIJ:Number of off processor values 7
MatAssemblyBegin MPIAIJ:Number of off processor values 5

indicate that very few values have been generated on different processes. On the other hand, the statements

MatAssemblyBegin MPIAIJ:Number of off processor values 100000
MatAssemblyBegin MPIAIJ:Number of off processor values 77777

indicate that many values have been generated on the “wrong” processes. This situation can be very inef-
ficient, since the transfer of values to the “correct” process is generally expensive. By using the command
MatGetOwnershipRange () in application codes, the user should be able to generate most entries on
the owning process.Note: It is fine to generate some entries on the “wrong” process. Often this can lead to
cleaner, simpler, less buggy codes. One should never make code overly complicated in order to generate all
values locally. Rather, one should organize the code in such a way thatmostvalues are generated locally.

3.1.2 Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each process stores its entries in a
column-major array in the usual Fortran style. To create a sequential, dense PETSc matrix,A of dimensions
mby n, the user should call

MatCreateSeqDense (PETSCCOMM SELF,int m,int n,PetscScalar *data,Mat *A);

The variabledata enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely setdata to
PETSC_NULLfor PETSc to control matrix memory allocation. To create a parallel, dense matrix,A, the
user should call

MatCreateMPIDense (MPI Commcomm,int m,int n,int M,int N,PetscScalar *data,Mat *A)

The argumentsm, n, M, andN, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Either the local or global parameters can be replaced with PETSCDECIDE, so
that PETSc will determine them. The matrix is stored with a fixed number of rows on each process, given
by m, or determined by PETSc ifmis PETSCDECIDE.

PETSc does not provide parallel dense direct solvers. Our focus is on sparse iterative solvers.
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3.2 Basic Matrix Operations

Table2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more detail
below. The parallel matrix can multiply a vector withn local entries, returning a vector withmlocal entries.
That is, to form the product

MatMult (Mat A,Vec x,Vec y);

the vectorsx andy should be generated with

VecCreateMPI (MPI Commcomm,n,N,&x);
VecCreateMPI (MPI Commcomm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSCDECIDE as the second argument toVecCreateMPI () or usingVecCreate ()), vectors and
matrices of the same dimension are automatically compatible for parallel matrix-vector operations. Along
with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,

MatMultTranspose (Mat A,Vec x,Vec y);

There are also versions that add the result to another vector:

MatMultAdd (Mat A,Vec x,Vec y,Vec w);
MatMultTransposeAdd (Mat A,Vec x,Vec y,Vec w);

These routines, respectively, producew = A ∗ x + y andw = AT ∗ x + y . In C it is legal for the vectors
y andw to be identical. In Fortran, this situation is forbidden by the language standard, but we allow it
anyway. One can print a matrix (sequential or parallel) to the screen with the command

MatView (Mat mat,PETSCVIEWER STDOUT WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero stucture of the matrix into the
default X-window with the command

MatView (Mat mat,PETSCVIEWER DRAW WORLD);

Also one can use

MatView (Mat mat,PetscViewer viewer);

whereviewer was obtained with PetscViewerDrawOpenX(). Additional viewers and options are given in
theMatView () man page and Section14.3. TheNormType argument toMatNorm () is one of NORM_1,
NORM_INFINITY, andNORM_FROBENIUS.

3.3 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create aMat structure without ever actually generating the matrix:

MatCreateShell (MPI Commcomm,int m,int n,int M,int N,void *ctx,Mat *mat);

HereMandNare the global matrix dimensions (rows and columns),mandn are the local matrix dimensions,
and ctx is a pointer to data needed by any user-defined shell matrix operations; the manual page has
additional details about these parameters. Most matrix-free algorithms require only the application of the
linear operator to a vector. To provide this action, the user must write a routine with the calling sequence
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Function Name Operation
MatAXPY (PetscScalar *a,Mat X, Mat Y,MatStructure ); Y = Y + a ∗X
MatMult (Mat A,Vec x, Vec y); y = A ∗ x
MatMultAdd (Mat A,Vec x, Vec y,Vec z); z = y +A ∗ x
MatMultTranspose (Mat A,Vec x, Vec y); y = AT ∗ x
MatMultTransposeAdd (Mat A,Vec x, Vec y,Vec z); z = y +AT ∗ x
MatNorm (Mat A,NormType type, double *r); r = ||A||type
MatDiagonalScale (Mat A,Vec l,Vec r); A = diag(l) ∗A ∗ diag(r)
MatScale (PetscScalar *a,Mat A); A = a ∗A
MatConvert (Mat A,MatType type,Mat *B); B = A
MatCopy (Mat A,Mat B,MatStructure ); B = A
MatGetDiagonal (Mat A,Vec x); x = diag(A)
MatTranspose (Mat A,Mat * B); B = AT

MatZeroEntries (Mat A); A = 0
MatShift (PetscScalar *a,Mat Y); Y = Y + a ∗ I

Table 2: PETSc Matrix Operations

UserMult(Mat mat,Vec x,Vec y);

and then associate it with the matrix,mat , by using the command

MatShellSetOperation (Mat mat,MatOperation MATOPMULT,
(void(*)(void)) int (*UserMult)(Mat ,Vec ,Vec ));

HereMATOP_MULTis the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such asUserMult() ), the user should callMatShellGetContext () to obtain the user-defined
context,ctx , that was set byMatCreateShell (). This shell matrix can be used with the iterative lin-
ear equation solvers discussed in the following chapters. The routineMatShellSetOperation () can
be used to set any other matrix operations as well. The file${PETSC_DIR}/include/petscmat.
h provides a complete list of matrix operations, which have the formMATOP_<OPERATION>, where
<OPERATION>is the name (in all capital letters) of the user interface routine (for example,MatMult
() → MATOP_MULT). All user-provided functions have the same calling sequence as the usual matrix
interface routines, since the user-defined functions are intended to be accessed through the same inter-
face, e.g.,MatMult(Mat,Vec,Vec) → UserMult(Mat,Vec,Vec) . The final argument forMatS
hellSetOperation () needs to be cast to avoid * , since the final argument could (depending on
the MatOperation) be a variety of different functions. Note thatMatShellSetOperation () can also
be used as a “backdoor” means of introducing user-defined changes in matrix operations for other stor-
age formats (for example, to override the default LU factorization routine supplied within PETSc for the
MATSEQAIJ format). However, we urge anyone who introduces such changes to use caution, since it
would be very easy to accidentally create a bug in the new routine that could affect other routines as well.
See also Section5.5for details on one set of helpful utilities for using the matrix-free approach for nonlinear
solvers.

3.4 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix is
generated. To retain a given matrix but reinitialize its contents, one can employ
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MatZeroEntries (Mat A);

This routine will zero the matrix entries in the data structure but keep all the data that indicates where the
nonzeros are located. In this way a new matrix assembly will be much less expensive, since no memory
allocations or copies will be needed. Of course, one can also explicitly set selected matrix elements to zero
by calling MatSetValues (). In the numerical solution of elliptic partial differential equations, it can
be cumbersome to deal with Dirichlet boundary conditions. In particular, one would like to assemble the
matrix without regard to boundary conditions and then at the end apply the Dirichlet boundary conditions.
In numerical analysis classes this process is usually presented as moving the known boundary conditions to
the right-hand side and then solving a smaller linear system for the interior unknowns. Unfortunately, im-
plementing this requires extracting a large submatrix from the original matrix and creating its corresponding
data structures. This process can be expensive in terms of both time and memory.

One simple way to deal with this difficulty is to replace those rows in the matrix associated with known
boundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done with the
command

MatZeroRows (Mat A,IS rows,constPetscScalar diag value[]);

For sparse matrices this removes the data structures for certain rows of the matrix. If the pointerdiag_
value is PETSC_NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given
value at the pointer location in the diagonal entry of the eliminated rows.

Another matrix routine of interest is

MatConvert (Mat mat,MatType newtype,Mat *M)

which converts the matrixmat to new matrix,M, that has either the same or different format. Setnewtype
to MATSAME to copy the matrix, keeping the same matrix format. See${PETSC_DIR}/include/
petscmat.h for other available matrix types; standard ones areMATSEQDENSE, MATSEQAIJ, MATM
PIAIJ , MATMPIROWBS,MATSEQBDIAG, MATMPIBDIAG, MATSEQBAIJ, andMATMPIBAIJ . In
certain applications it may be necessary for application codes to directly access elements of a matrix. This
may be done by using the the command (for local rows only)

MatGetRow (Mat A,int row, int *ncols,int (*cols)[],PetscScalar (*vals)[]);

The argumentncols returns the number of nonzeros in that row, whilecols andvals returns the column
indices (with indices starting at zero) and values in the row. If only the column indices are needed (and
not the corresponding matrix elements), one can usePETSC_NULLfor the vals argument. Similarly,
one can usePETSC_NULLfor thecols argument. The user can only examine the values extracted with
MatGetRow (); the valuescannotbe altered. To change the matrix entries, one must useMatSetValues
(). Once the user has finished using a row, he or shemustcall

MatRestoreRow (Mat A,int row,int *ncols,int **cols,PetscScalar **vals);

to free any space that was allocated during the call toMatGetRow ().

3.5 Partitioning

For almost all unstructured grid computation, the distribution of portions of the grid across the process’s
work load and memory can have a very large impact on performance. In most PDE calculations the grid
partitioning and distribution across the processes can (and should) be done in a “pre-processing” step before
the numerical computations. However, this does not mean it need be done in a separate, sequential program,
rather it should be done before one sets up the parallel grid data structures in the actual program. PETSc
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provides an interface to the ParMETIS (developed by George Karypis; see the docs/installation/index.htm
file for directions on installing PETSc to use ParMETIS) to allow the partitioning to be done in parallel.
PETSc does not currently provide directly support for dynamic repartitioning, load balancing by migrating
matrix entries between processes, etc. For problems that require mesh refinement, PETSc uses the “rebuild
the data structure” approach, as opposed to the “maintain dynamic data structures that support the inser-
tion/deletion of additional vector and matrix rows and columns entries” approach. Partitioning in PETSc
is organized around theMatPartitioning object. One first creates a parallel matrix that contains the
connectivity information about the grid (or other graph-type object) that is to be partitioned. This is done
with the command

MatCreateMPIAdj (MPI Commcomm,int mlocal,int n,const int ia[],const int ja[],
int *weights,Mat *Adj);

The argumentmlocal indicates the number of rows of the graph being provided by the given process,n is
the total number of columns; equal to the sum of all themlocal . The argumentsia and ja are the row
pointers and column pointers for the given rows, these are the usual format for parallel compressed sparse
row storage, using indices starting at 0,not 1.
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Figure 11: Numbering on Simple Unstructured Grid

This, of course, assumes that one has already distributed the grid (graph) information among the pro-
cesses. The details of this initial distribution is not important; it could be simply determined by assigning to
the first process the firstn0 nodes from a file, the second process the nextn1 nodes, etc. For example, we
demonstrate the form of theia andja for a triangular grid where we

(1) partition by element (triangle)

• Process 0,mlocal = 2, n = 4, ja = {2, 3, |3}, ia = {0, 2, 3}

• Process 1,mlocal = 2, n = 4, ja = {0, |0, 1}, ia = {0, 1, 3}

Note that elements are not connected to themselves and we only indicate edge connections (in some contexts
single vertex connections between elements may also be included). We use a| above to denote the transition
between rows in the matrix. and (2) partition by vertex.

• Process 0,mlocal = 3, n = 6, ja = {3, 4, |4, 5, |3, 4, 5}, ia = {0, 2, 4, 7}
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• Process 1,mlocal = 3, n = 6, ja = {0, 2, 4, |0, 1, 2, 3, 5, |1, 2, 4}, ia = {0, 3, 8, 11}.

Once the connectivity matrix has been created the following code will generate the renumbering required
for the new partition

MatPartitioningCreate (MPI Commcomm,MatPartitioning *part);
MatPartitioningSetAdjacency (MatPartitioning part,Mat Adj);
MatPartitioningSetFromOptions (MatPartitioning part);
MatPartitioningApply (MatPartitioning part,IS *is);
MatPartitioningDestroy (MatPartitioning part);
MatDestroy (Mat Adj);
ISPartitioningToNumbering (IS is,IS *isg);

The resultingisg contains for each local node the new global number of that node. The resultingis
contains the new process number that each local node has been assigned to. Now that a new numbering
of the nodes has been determined one must renumber all the nodes and migrate the grid information to the
correct process. The command

AOCreateBasicIS (isg,PETSCNULL,&ao);

generates, see Section2.3.1, anAO object that can be used in conjunction with theis andgis to move the
relevant grid information to the correct process and renumber the nodes etc.

PETSc does not currently provide tools that completely manage the migration and node renumbering,
since it will be dependent on the particular data structure you use to store the grid information and the type
of grid information that you need for your application. We do plan to include more support for this in the
future, but designing the appropriate general user interface and providing a scalable implementation that can
be used for a wide variety of different grids requires a great deal of time.
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Chapter 4

SLES: Linear Equations Solvers

The objectSLES is the heart of PETSc, because it provides uniform and efficient access to all of the
package’s linear system solvers, including parallel and sequential, direct and iterative.SLES is intended
for solving nonsingular systems of the form

Ax = b, (4.1)

whereA denotes the matrix representation of a linear operator,b is the right-hand-side vector, andx is the
solution vector.SLES uses the same calling sequence for both direct and iterative solution of a linear sys-
tem. In addition, particular solution techniques and their associated options can be selected at runtime. The
combination of a Krylov subspace method and a preconditioner is at the center of most modern numerical
codes for the iterative solution of linear systems. See, for example, [7] for an overview of the theory of such
methods.SLES creates a simplified interface to the lower-levelKSP andPC modules within the PETSc
package. TheKSP package, discussed in Section4.3, provides many popular Krylov subspace iterative
methods; thePC module, described in Section4.4, includes a variety of preconditioners. Although both
KSP andPC can be used directly, users should employ the interface ofSLES .

4.1 Using SLES

To solve a linear system withSLES , one must first create a solver context with the command

SLESCreate (MPI Commcomm,SLES *sles);

Herecommis the MPI communicator, andsles is the newly formed solver context. Before actually solving
a linear system withSLES , the user must call the following routine to set the matrices associated with the
linear system:

SLESSetOperators (SLES sles,Mat Amat,Mat Pmat,MatStructure flag);

The argumentAmat, representing the matrix that defines the linear system, is a symbolic place holder for
any kind of matrix. In particular,SLES doessupport matrix-free methods. The routineMatCreateShell
() in Section3.3provides further information regarding matrix-free methods. Typically thepreconditioning
matrix (i.e., the matrix from which the preconditioner is to be constructed),Pmat, is the same as the matrix
that defines the linear system,Amat; however, occasionally these matrices differ (for instance, when a
preconditioning matrix is obtained from a lower order method than that employed to form the linear system
matrix). The argumentflag can be used to eliminate unnecessary work when repeatedly solving linear
systems of the samesize with the same preconditioning method; when solving just one linear system, this
flag is ignored. The user can setflag as follows:
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• SAME_NONZERO_PATTERN- the preconditioning matrix has the same nonzero structure during
successive linear solves,

• DIFFERENT_NONZERO_PATTERN- the preconditioning matrix does not have the same nonzero
structure during successive linear solves,

• SAME_PRECONDITIONER- the preconditioner matrix is identical to that of the previous linear solve.

If the structure of a matrix is not known a priori, one should use the flagDIFFERENT_NONZERO_PATT
ERN. Much of the power ofSLES can be accessed through the single routine

SLESSetFromOptions (SLES sles);

This routine accepts the options-h and-help as well as any of theKSP andPC options discussed below.
To solve a linear system, one merely executes the command

SLESSolve (SLES sles,Vec b,Vec x,int *its);

whereb andx respectively denote the right-hand-side and solution vectors. On return, the parameterits
contains either the iteration number at which convergence was successfully reached, or thenegativeof
the iteration at which divergence or breakdown was detected. Section4.3.2gives more details regarding
convergence testing. Note that multiple linear solves can be performed by the sameSLES context. Once
theSLES context is no longer needed, it should be destroyed with the command

SLESDestroy (SLES sles);

The above procedure is sufficient for general use of theSLES package. One additional step is required for
users who wish to customize certain preconditioners (e.g., see Section4.4.4) or to log certain performance
data using the PETSc profiling facilities (as discussed in Chapter12). In this case, the user can optionally
explicitly call

SLESSetUp (SLES sles,Vec b,Vec x);

before callingSLESSolve () to perform any setup required for the linear solvers. The explicit call of this
routine enables the separate monitoring of any computations performed during the set up phase, such as
incomplete factorization for the ILU preconditioner. The default solver withinSLES is restarted GMRES,
preconditioned for the uniprocess case with ILU(0), and for the multiprocess case with the block Jacobi
method (with one block per process, each of which is solved with ILU(0)). A variety of other solvers and
options are also available. To allow application programmers to set any of the preconditioner or Krylov
subspace options directly within the code, we provide routines that extract thePC andKSP contexts,

SLESGetPC(SLES sles,PC *pc);
SLESGetKSP(SLES sles,KSP *ksp);

The application programmer can then directly call any of thePC or KSP routines to modify the correspond-
ing default options.

To solve a linear system with a direct solver (currently supported by PETSc for sequential matrices, and
by several external solvers through PETSc interfaces (see Section4.6)) one may use the options-ksp_
type preonly -pc_type lu (see below). By default, if a direct solver is used, the factorization isnot
done in-place. This approach prevents the user from the unexpected surprise of having a corrupted matrix
after a linear solve. The routinePCLUSetUseInPlace (), discussed below, causes factorization to be
done in-place.
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4.2 Solving Successive Linear Systems

When solving multiple linear systems of the samesize with the same method, several options are avail-
able. To solve successive linear systems having thesamepreconditioner matrix (i.e., the same data struc-
ture with exactly the same matrix elements) but different right-hand-side vectors, the user should simply
call SLESSolve () multiple times. The preconditioner setup operations (e.g., factorization for ILU) will
be done during the first call toSLESSolve() only; such operations willnot be repeated for succes-
sive solves. To solve successive linear systems that havedifferentpreconditioner matrices (i.e., the ma-
trix elements and/or the matrix data structure change), the usermustcall SLESSetOperators () and
SLESSolve () for each solve. See Section4.1for a description of various flags forSLESSetOperators
() that can save work for such cases.

4.3 Krylov Methods

The Krylov subspace methods accept a number of options, many of which are discussed below. First, to set
the Krylov subspace method that is to be used, one calls the command

KSPSetType (KSP ksp,KSPType method);

The type can be one ofKSPRICHARDSON, KSPCHEBYCHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCG
S, KSPCGS, KSPTFQMR, KSPCR, KSPLSQR, KSPBICG, or KSPPREONLY. TheKSP method can also
be set with the options database command-ksp_type , followed by one of the optionsrichardson ,
chebychev , cg , gmres , tcqmr , bcgs , cgs , tfqmr , cr , lsqr , bicg , or preonly. There are
method-specific options for the Richardson, Chebychev, and GMRES methods:

KSPRichardsonSetScale (KSP ksp,double dampingfactor);
KSPChebychevSetEigenvalues (KSP ksp,double emax,double emin);
KSPGMRESSetRestart (KSP ksp,int maxsteps);

The default parameter values aredamping_factor=1.0, emax=0.01, emin=100.0 , andmax_
steps=30 . The GMRES restart and Richardson damping factor can also be set with the options-ksp_
gmres_restart <n> and -ksp_richardson_scale <factor> . The default technique for
orthogonalization of the Hessenberg matrix in GMRES is the iterative refinement Gram-Schmidt method.
This can be set by using the command line option-ksp_gmres_irorthog . Or via

KSPGMRESSetOrthogonalization (KSP ksp,KSPGMRESModifiedGramSchmidtOrthogonalization);

A slightly faster approach is to use the unmodified (classical) Gram-Schmidt method, which can be set with

KSPGMRESSetOrthogonalization (KSP ksp,KSPGMRESUnmodifiedGramSchmidtOrthogonalization);

or the options database command-ksp_gmres_unmodifiedgramschmidt . Note that this algorithm
is numerically unstable, but may deliver slightly better speed performance. One can also use modifed Gram-
Schmidt, by setting the orthogonalization routine, KSPGMRESModifiedGramSchmidtOrthogonalization(),
by using the command line option-ksp_gmres_modifiedgramschmidt . For the conjugate gradient
method with complex numbers, there are two slightly different algorithms depending on whether the matrix
is Hermitian symmetric or truly symmetric (the default is to assume that it is Hermitian symmetric). To
indicate that it is symmetric, one uses the command

KSPCGSetType (KSP ksp,KSPCGType KSP_CG_SYMMETRIC);
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Note that this option is not valid for all matrices. The LSQR algorithm does not involve a preconditioner,
any preconditioner set to work with theKSP object is ignored if LSQR was selected. By default,KSP
assumes an initial guess of zero by zeroing the initial value for the solution vector that is given; this zeroing
is done at the call toSLESSolve () (or KSPSolve ()). To use a nonzero initial guess, the usermustcall

KSPSetInitialGuessNonzero (KSP ksp,PetscTruth flg);

4.3.1 Preconditioning within KSP

Since the rate of convergence of Krylov projection methods for a particular linear system is strongly de-
pendent on its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the
convergence rate of iterative techniques. Preconditioning can be applied to the system (4.1) by

(M−1
L AM−1

R ) (MRx) = M−1
L b, (4.2)

whereML andMR indicate preconditioning matrices (or, matrices from which the preconditioner is to be
constructed). IfML = I in (4.2), right preconditioning results, and the residual of (4.1),

r ≡ b−Ax = b−AM−1
R MRx,

is preserved. In contrast, the residual is altered for left (MR = I) and symmetric preconditioning, as given
by

rL ≡M−1
L b−M−1

L Ax = M−1
L r.

By default, allKSP implementations use left preconditioning. Right preconditioning can be activated for
some methods by using the options database command-ksp_right_pc or calling the routine

KSPSetPreconditionerSide (KSP ksp,PCSide PC RIGHT);

Attempting to use right preconditioning for a method that does not currently support it results in an error
message of the form

KSPSetUp Richardson:No right preconditioning for KSPRICHARDSON

We summarize the defaults for the residuals used inKSP convergence monitoring within Table3. Details
regarding specific convergence tests and monitoring routines are presented in the following sections. The
preconditioned residual is used by default for convergence testing of all left-preconditionedKSP methods.
For the conjugate gradient, Richardson, and Chebyshev methods the true residual can be used by the options
database commandksp_norm_type unpreconditioned or by calling the routine

KSPSetNormType (KSP ksp,KSP UNPRECONDITIONEDNORM);

Note: the bi-conjugate gradient method requires application of both the matrix and its transpose plus the
preconditioner and its transpose. Currently not all matrices and preconditioners provide this support and
thus theKSPBICGcannot always be used.

4.3.2 Convergence Tests

The default convergence test,KSPDefaultConverged (), is based on thel2-norm of the residual. Con-
vergence (or divergence) is decided by three quantities: the relative decrease of the residual norm,rtol , the
absolutesize of the residual norm,atol , and the relative increase in the residual,dtol . Convergence is
detected at iterationk if

‖rk‖2 < max(rtol ∗ ‖r0‖2, atol),
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Options Default
Database Convergence

Method KSPType Name Monitor†
Richardson KSPRICHARDSON richardson true
Chebychev KSPCHEBYCHEV chebychev true
Conjugate Gradient [12] KSPCG cg true
BiConjugate Gradient KSPBICG bicg true
Generalized Minimal Residual [17] KSPGMRES gmres precond
BiCGSTAB [20] KSPBCGS bcgs precond
Conjugate Gradient Squared [19] KSPCGS cgs precond
Transpose-Free Quasi-Minimal Residual (1) [8] KSPTFQMR tfqmr precond
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tcqmr precond
Conjugate Residual KSPCR cr precond
Least Squares Method KSPLSQR lsqr precond
Shell for noKSP method KSPPREONLY preonly precond

†true - denotes true residual norm, precond - denotes preconditioned residual norm

Table 3: KSP Defaults. All methods use left preconditioning by default.

whererk = b−Axk. Divergence is detected if

‖rk‖2 > dtol ∗ ‖r0‖2.

These parameters, as well as the maximum number of allowable iterations, can be set with the routine

KSPSetTolerances (KSP ksp,double rtol,double atol,double dtol,int maxits);

The user can retain the default value of any of these parameters by specifyingPETSC_DEFAULTas the
corresponding tolerance; the defaults arertol =10−5, atol =10−50, dtol =105, andmaxits =105. These
parameters can also be set from the options database with the commands-ksp_rtol <rtol> , -ksp_
atol <atol> , -ksp_divtol <dtol> , and -ksp_max_it <its> . In addition to providing an
interface to a simple convergence test,KSP allows the application programmer the flexibility to provide
customized convergence-testing routines. The user can specify a customized routine with the command

KSPSetConvergenceTest (KSP ksp,int (*test)(KSP ksp,int it,double rnorm,
KSPConvergedReason *reason,void *ctx),void *ctx);

The final routine argument,ctx , is an optional context for private data for the user-defined convergence
routine, test . Other test routine arguments are the iteration number,it , and the residual’sl2 norm,
rnorm . The routine for detecting convergence,test , should set reason to positive for convergence, 0 for
no convergence, and negative for failure to converge. A list of possibleKSPConvergedReason is given
in include/petscksp.h .

4.3.3 Convergence Monitoring

By default, the Krylov solvers run silently without displaying information about the iterations. The user can
indicate that the norms of the residuals should be displayed by using-ksp_monitor within the options
database. To display the residual norms in a graphical window (running under X Windows), one should use
-ksp_xmonitor [x,y,w,h] , where either all or none of the options must be specified. Application
programmers can also provide their own routines to perform the monitoring by using the command
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KSPSetMonitor (KSP ksp,int (*mon)(KSP ksp,int it,double rnorm,void *ctx),
void *ctx,int (*mondestroy)(void *));

The final routine argument,ctx , is an optional context for private data for the user-defined monitoring rou-
tine,mon. Othermon routine arguments are the iteration number (it ) and the residual’sl2 norm (rnorm ).
A helpful routine within user-defined monitors isPetscObjectGetComm((PetscObject)ksp,MP
I_Comm *comm), which returns incomm the MPI communicator for theKSP context. See section
1.3 for more discussion of the use of MPI communicators within PETSc. Several monitoring routines are
supplied with PETSc, including

KSPDefaultMonitor (KSP,int,double, void *);
KSPSingularValueMonitor (KSP,int,double, void *);
KSPTrueMonitor (KSP,int,double, void *);

The default monitor simply prints an estimate of thel2-norm of the residual at each iteration. The routine
KSPSingularValueMonitor () is appropriate only for use with the conjugate gradient method or GM-
RES, since it prints estimates of the extreme singular values of the preconditioned operator at each iteration.
SinceKSPTrueMonitor () prints the true residual at each iteration by actually computing the residual
using the formular = b − Ax, the routine is slow and should be used only for testing or convergence
studies, not for timing. These monitors may be accessed with the command line options-ksp_monitor ,
-ksp_singmonitor , and-ksp_truemonitor . To employ the default graphical monitor, one should
use the commands

PetscDrawLG lg;
KSPLGMonitorCreate (char *display,char *title,int x,int y,int w,int h,PetscDrawLG *lg);
KSPSetMonitor (KSP ksp,KSPLGMonitor,lg,0);

When no longer needed, the line graph should be destroyed with the command

KSPLGMonitorDestroy (PetscDrawLG lg);

The user can change aspects of the graphs with thePetscDrawLG*() andPetscDrawAxis*() rou-
tines. One can also access this functionality from the options database with the command-ksp_
xmonitor [x,y,w,h] . , wherex, y, w, h are the optional location andsize of the window.
One can cancel hardwired monitoring routines forKSP at runtime with-ksp_cancelmonitors . Un-
less the Krylov method converges so that the residual norm is small, say10−10, many of the final digits
printed with the-ksp_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun Sparc. This makes testing be-
tween different machines difficult. The option-ksp_smonitor causes PETSc to print fewer of the digits
of the residual norm as it gets smaller; thus on most of the machines it will always print the same numbers
making cross system testing easier.

4.3.4 Understanding the Operator’s Spectrum

Since the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the
preconditioned operator, PETSc has specific routines for eigenvalue approximation via the Arnoldi or Lanc-
zos iteration. First, before the linear solve one must call

KSPSetComputeEigenvalues (KSP ksp,PETSCTRUE);

Then after theSLES solve one calls

KSPComputeEigenvalues (KSP ksp, int n,double *realpart,double *complexpart,int *neig);
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Here,n is thesize of the two arrays and the eigenvalues are inserted into those two arrays.Neig is the
number of eigenvalues computed; this number depends on thesize of the Krylov space generated during
the linear system solution, for GMRES it is never larger than the restart parameter. There is an additional
routine

KSPComputeEigenvaluesExplicitly (KSP ksp, int n,double *realpart,double *complexpart);

that is useful only for very small problems. It explicitly computes the full representation of the precondi-
tioned operator and calls LAPACK to compute its eigenvalues. It should be only used for matrices ofsize
up to a couple hundred. ThePetscDrawSP*() routines are very useful for drawing scatter plots of the

eigenvalues. The eigenvalues may also be computed and displayed graphically with the options data base
commands-ksp_plot_eigenvalues and-ksp_plot_eigenvalues_explicitly . Or they
can be dumped to the screen in ASCII text via-ksp_compute_eigenvalues and-ksp_compute_
eigenvalues_explicitly .

4.3.5 Other KSP Options

To obtain the solution vector and right hand side from aKSP context, one uses

KSPGetSolution (KSP ksp,Vec *x);
KSPGetRhs (KSP ksp,Vec *rhs);

During the iterative process the solution may not yet have been calculated or it may be stored in a different
location. To access the approximate solution during the iterative process, one uses the command

KSPBuildSolution (KSP ksp,Vec w,Vec *v);

where the solution is returned inv . The user can optionally provide a vector inw as the location to store
the vector; however, ifw is PETSC_NULL, space allocated by PETSc in theKSP context is used. One
should not destroy this vector. For certainKSP methods, (e.g., GMRES), the construction of the solution is
expensive, while for many others it requires not even a vector copy.

Access to the residual is done in a similar way with the command

KSPBuildResidual (KSP ksp,Vec t,Vec w,Vec *v);

Again, for GMRES and certain other methods this is an expensive operation.

4.4 Preconditioners

As discussed in Section4.3.1, the Krylov space methods are typically used in conjunction with a precondi-
tioner. To employ a particular preconditioning method, the user can either select it from the options database
using input of the form-pc_type <methodname> or set the method with the command

PCSetType (PC pc,PCType method);

In Table4 we summarize the basic preconditioning methods supported in PETSc. ThePCSHELLprecon-
ditioner uses a specific, application-provided preconditioner. The direct preconditioner,PCLU, is, in fact,
a direct solver for the linear system that uses LU factorization.PCLU is included as a preconditioner so
that PETSc has a consistent interface among direct and iterative linear solvers. Each preconditioner may
have associated with it a set of options, which can be set with routines and options database commands
provided for this purpose. Such routine names and commands are all of the formPC<TYPE>Option and
-pc_<type>_option [value] . A complete list can be found by consulting the manual pages; we
discuss just a few in the sections below.
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Method PCType Options Database Name
Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor
SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Linear solver PCSLES sles
Combination of preconditionersPCCOMPOSITE composite
LU PCLU lu
Cholesky PCCholesky cholesky
No preconditioning PCNONE none
Shell for user-definedPC PCSHELL shell

Table 4: PETSc Preconditioners

4.4.1 ILU and ICC Preconditioners

Some of the options for ILU preconditioner are

PCILUSetLevels (PC pc,int levels);
PCILCCSetLevels(PC pc,int levels);
PCILUSetReuseOrdering (PC pc,PetscTruth flag);
PCILUSetUseDropTolerance (PC pc,double dt,double dtcol,int dtcount);
PCILUDTSetReuseFill (PC pc,PetscTruth flag);
PCILUSetUseInPlace (PC pc);
PCILUSetAllowDiagonalFill (PC pc);

When repeatedly solving linear systems with the sameSLES context, one can reuse some information
computed during the first linear solve. In particular,PCILUSetReuseOrdering () causes the ordering
(for example, set with-pc_ilu_ordering_type order ) computed in the first factorization to be
reused for later factorizations. ThePCILUDTSetReuseFill() causes the fill computed during the first
drop tolerance factorization to be reused in later factorizations.PCILUSetUseInPlace () is often used
with PCASMor PCBJACOBIwhen zero fill is used, since it reuses the matrix space to store the incomplete
factorization it saves memory and copying time. Note that in-place factorization is not appropriate with any
ordering besides natural and cannot be used with the drop tolerance factorization. These options may be set
in the database with

-pc_ilu_levels <levels>
-pc_ilu_reuse_ordering
-pc_ilu_use_drop_tolerance <dt>,<dtcol>,<dtcount>
-pc_ilu_reuse_fill
-pc_ilu_in_place
-pc_ilu_nonzeros_along_diagonal
-pc_ilu_diagonal_fill

See Section13.4.2for information on preallocation of memory for anticipated fill during factorization. By
alleviating the considerable overhead for dynamic memory allocation, such tuning can significantly enhance
performance. PETSc supports incomplete factorization preconditioners for several matrix types for the
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uniprocess case. In addition, for the parallel case we provide an interface to the ILU and ICC precondi-
tioners of BlockSolve95 [13]. PETSc enables users to employ the preconditioners within BlockSolve95 by
using the BlockSolve95 matrix formatMATMPIROWBSand invoking either thePCILU or PCICC method
within the linear solvers. Since PETSc automatically handles matrix assembly, preconditioner setup, profil-
ing, etc., users who employ BlockSolve95 through the PETSc interface need not concern themselves with
many details provided within the BlockSolve95 users manual. Consult the filedocs/installation/
index.htm for details on installing PETSc to allow the use of BlockSolve95. One can create a matrix
that is compatible with BlockSolve95 by usingMatCreate () with the option-mat_mpirowbs , or by
directly calling

MatCreateMPIRowbs (MPI Commcomm,int m,int M,int nz,int *nnz,Mat *A)

A is the newly created matrix, while the argumentsmandMindicate the number of local and global rows,
respectively. Either the local or global parameter can be replaced with PETSCDECIDE, so that PETSc
will determine it. The matrix is stored with a fixed number of rows on each process, given bym, or
determined by PETSc ifm is PETSCDECIDE. The argumentsnz and nnz can be used to preallocate
storage space, as discussed in Section3.1 for increasing the efficiency of matrix assembly; one setsnz=0
andnnz=PETSC_NULLfor PETSc to control all matrix memory allocation. If the matrix is symmetric,
onemaycall

MatSetOption (Mat mat,MAT SYMMETRIC);

to improve efficiency, but in this case one cannot use the ILU preconditioner, only ICC. Internally, PETSc
inserts zero elements into matrices of theMATMPIROWBSformat if necessary, so that nonsymmetric ma-
trices are considered to be symmetric in terms of their sparsity structure; this format is required for use of
the parallel communication routines within BlockSolve95. In particular, if the matrix elementA[i, j] exists,
then PETSc will internally allocate a 0 value for the elementA[j, i] duringMatAssemblyEnd () if the user
has not already set a value for the matrix elementA[j, i] . When manipulating a preconditioning matrix,A,
BlockSolve95 internally works with a scaled and permuted matrix,Â = PD−1/2AD−1/2, whereD is the
diagonal ofA, andP is a permutation matrix determined by a graph coloring for efficient parallel compu-
tation. Thus, when solving a linear system,Ax = b, using ILU/ICC preconditioning and the matrix format
MATMPIROWBSfor both the linear system matrix and the preconditioning matrix, one actually solves the
scaled and permuted system̂Ax̂ = b̂, wherex̂ = PD1/2x andb̂ = PD−1/2b . PETSc handles the internal
scaling and permutation ofx andb, so the user doesnot deal with these conversions, but instead always
works with the original linear system. In this case, by default the scaled residual norm is monitored; one
must use the option-ksp_truemonitor to print both the scaled and unscaled residual norms.Note:
If one is using ILU/ICC via BlockSolve95 and theMATMPIROWBSmatrix format for the preconditioner
matrix, but using a different format for a different linear system matrix, then this scaling and permuting is
done only internally during the application of the preconditioner.

4.4.2 SOR and SSOR Preconditioners

PETSc provides only a sequential SOR preconditioner that can only be used on sequential matrices or as
the subblock preconditioner when using block Jacobi or ASM preconditioning (see below). The options for
SOR preconditioning are

PCSORSetOmega(PC pc,double omega);
PCSORSetIterations (PC pc,int its,int lits);
PCSORSetSymmetric (PC pc,MatSORType type);

The first of these commands sets the relaxation factor for successive over (under) relaxation. The second
command sets the number of inner iterationsits and local iterationslits (the number of smoothing
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sweeps on a process before doing a ghost point update from the other processes) to use between steps of the
Krylov space method. The total number of SOR sweeps is given byits*lits . The third command sets
the kind of SOR sweep, where the argumenttype can be one ofSOR_FORWARD_SWEEP, SOR_BACK
WARD_SWEEPor SOR_SYMMETRIC_SWEEP, the default beingSOR_FORWARD_SWEEP. Setting the type
to be SOR_SYMMETRIC_SWEEPproduces the SSOR method. In addition, each process can locally and
independently perform the specified variant of SOR with the typesSOR_LOCAL_FORWARD_SWEEP, SOR_
LOCAL_BACKWARD_SWEEP, andSOR_LOCAL_SYMMETRIC_SWEEP. These variants can also be set
with the options-pc_sor_omega <omega> , -pc_sor_its <its> , -pc_sor_lits <lits> ,
-pc_sor_backward , -pc_sor_symmetric , -pc_sor_local_forward , -pc_sor_local_
backward , and-pc_sor_local_symmetric .

The Eisenstat trick [5] for SSOR preconditioning can be employed with the methodPCEISENSTAT
(-pc_type eisenstat ). By using both left and right preconditioning of the linear system, this vari-
ant of SSOR requires about half of the floating-point operations for conventional SSOR. The option
-pc_eisenstat_no_diagonal_scaling ) (or the routinePCEisenstatNoDiagonalScaling
()) turns off diagonal scaling in conjunction with Eisenstat SSOR method, while the option-pc_eisenstat_
omega <omega> (or the routinePCEisenstatSetOmega(PC pc,double omega) ) sets the SSOR
relaxation coefficient,omega, as discussed above.

4.4.3 LU Factorization

The LU preconditioner provides several options. The first, given by the command

PCLUSetUseInPlace (PC pc);

causes the factorization to be performed in-place and hence destroys the original matrix. The options
database variant of this command is-pc_lu_in_place . Another direct preconditioner option is se-
lecting the ordering of equations with the command

-pc_lu_ordering_type <ordering>

The possible orderings are

• MATORDERING_NATURAL- Natural

• MATORDERING_ND- Nested Dissection

• MATORDERING_1WD- One-way Dissection

• MATORDERING_RCM- Reverse Cuthill-McKee

• MATORDERING_QMD- Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following:-pc_
lu_ordering_type natural , -pc_lu_ordering_type nd , -pc_lu_ordering_type 1wd ,
-pc_lu_ordering_type rcm , -pc_lu_ordering_type qmd . In addition, see
MatGetOrdering (), discussed in Section16.2. The sparse LU factorization provided in PETSc does
not perform pivoting for numerical stability (since they are designed to preserve nonzero structure), thus
occasionally a LU factorization will fail with a zero pivot when, in fact, the matrix is non-singular. The
option -pc_lu_nonzeros_along_diagonal <tol> will often help eliminate the zero pivot, by
preprocessing the the column ordering to remove small values from the diagonal. Here,tol is an optional
tolerance to decide if a value is nonzero; by default it is1.e− 10.

In addition, Section13.4.2provides information on preallocation of memory for anticipated fill dur-
ing factorization. Such tuning can significantly enhance performance, since it eliminates the considerable
overhead for dynamic memory allocation.
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4.4.4 Block Jacobi and Overlapping Additive Schwarz Preconditioners

The block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; however,
only the uniprocess version of the block Gauss-Seidel method is currently in place. By default, the PETSc
implentations of these methods employ ILU(0) factorization on each individual block ( that is, the default
solver on each subblock isPCType=PCILU, KSPType=KSPPREONLY); the user can set alternative
linear solvers via the options-sub_ksp_type and-sub_pc_type . In fact, all of theKSP andPC
options can be applied to the subproblems by inserting the prefix-sub_ at the beginning of the option

name. These options database commands set the particular options forall of the blocks within the global
problem. In addition, the routines

PCBJacobiGetSubSLES (PC pc,int *n local,int *first local,SLES **subsles);
PCASMGetSubSLES(PC pc,int *n local,int *first local,SLES **subsles);

extract theSLES context for each local block. The argumentn_local is the number of blocks on the
calling process, andfirst_local indicates the global number of the first block on the process. The
blocks are numbered successively by processes from zero throughgb− 1, wheregb is the number of global
blocks. The array ofSLES contexts for the local blocks is given bysubsles . This mechanism enables
the user to set different solvers for the various blocks. To set the appropriate data structures, the user
mustexplicitly call SLESSetUp () before callingPCBJacobiGetSubSLES () or PCASMGetSubSLES
(). For further details, see the example${PETSC_DIR}/src/sles/examples/tutorials/ex7.
c . The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set the
number of blocks into which the problem is divided. The options database commands to set this value are
-pc_bjacobi_blocks n and-pc_bgs_blocks n , and, within a program, the corresponding routines
are

PCBJacobiSetTotalBlocks (PC pc,int blocks,int *size );
PCASMSetTotalSubdomains (PC pc,int n,IS *is);
PCASMSetType (PC pc,PCASMType type);

The optional argumentsize , is an array indicating thesize of each block. Currently, for certain parallel
matrix formats, only a single block per process is supported. However, theMATMPIAIJ andMATMPIBAIJ
formats support the use of general blocks as long as no blocks are shared among processes. Theis argument
contains the index sets that define the subdomains.

The objectPCASMType is one ofPC_ASM_BASIC, PC_ASM_INTERPOLATE, PC_ASM_RESTRIC
T, PC_ASM_NONEand may also be set with the options database-pc_asm_type [basic , interpolate ,
restrict , none] . The typePC_ASM_BASIC(or -pc_asm_type basic ) corresponds to
the standard additive Schwarz method that uses the full restriction and interpolation operators. The type
PC_ASM_RESTRICT(or -pc_asm_type restrict ) uses a full restriction operator, but during the
interpolation process ignores the off-process values. Similarly,PC_ASM_INTERPOLATE(or -pc_asm_
type interpolate ) uses a limited restriction process in conjunction with a full interpolation, while
PC_ASM_NONE(or -pc_asm_type none ) ignores off-process valies for both restriction and interpo-
lation. The ASM types with limited restriction or interpolation were suggested by Xiao-Chuan Cai and
Marcus Sarkis [3]. PC_ASM_RESTRICTis the PETSc default, as it saves substantial communication and
for many problems has the added benefit of requiring fewer iterations for convergence than the standard
additive Schwarz method. The user can also set the number of blocks and sizes on a per-process basis with
the commands

PCBJacobiSetLocalBlocks (PC pc,int blocks,int *size );
PCASMSetLocalSubdomains (PC pc,int N,IS *is);
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For the ASM preconditioner one can use the following command to set the overlap to compute in construct-
ing the subdomains.

PCASMSetOverlap (PC pc,int overlap);

The overlap defaults to 1, so if one desires that no additional overlap be computed beyond what may have
been set with a call toPCASMSetTotalSubdomains() or PCASMSetLocalSubdomains (), then
overlap must be set to be 0. In particular, if one doesnot explicitly set the subdomains in an application
code, then all overlap would be computed internally by PETSc, and using an overlap of 0 would result in
an ASM variant that is equivalent to the block Jacobi preconditioner. Note that one can define initial index
setsis with anyoverlap viaPCASMSetTotalSubdomains () or PCASMSetLocalSubdomains ();
the routinePCASMSetOverlap () merely allows PETSc to extend that overlap further if desired.

4.4.5 Shell Preconditioners

The shell preconditioner simply uses an application-provided routine to implement the preconditioner. To
set this routine, one uses the command

PCShellSetApply (PC pc,int (*apply)(void *ctx,Vec ,Vec ),void *ctx);

The final argumentctx is a pointer to the application-provided data structure needed by the preconditioner
routine. The three routine arguments ofapply() are this context, the input vector, and the output vector,
respectively. For a preconditioner that requires some sort of “setup” before being used, that requires a
new setup everytime the operator is changed, one can provide a “setup” routine that is called everytime the
operator is changed (usually viaSLESSetOperators ()).

PCShellSetSetUp (PC pc,int (*setup)(void *ctx));

The argument to the “setup” routine is the same application-provided data structure passed in with the
PCShellSetApply () routine.

4.4.6 Combining Preconditioners

ThePC typePCCOMPOSITEallows one to form new preconditioners by combining already defined pre-
conditioners and solvers. Combining preconditioners usually requires some experimentation to find a com-
bination of preconditioners that works better than any single method. It is a tricky business and is not
recommended until your application code is complete and running and you are trying to improve perfor-
mance. In many cases using a single preconditioner is better than a combination; an exception is the multi-
grid/multilevel preconditioners (solvers) that are always combinations of some sort, see Section4.4.7. Let
B1 andB2 represent the application of two preconditioners of typetype1 andtype2 . The preconditioner
B = B1 +B2 can be obtained with

PCSetType (pc,PCCOMPOSITE);
PCCompositeAddPC (pc,type1);
PCCompositeAddPC (pc,type2);

Any number of preconditioners may added in this way.
This way of combining preconditioners is called additive, since the actions of the preconditioners are

added together. This is the default behavior. An alternative can be set with the option

PCCompositeSetType (PC pc,PCCompositeType PC COMPOSITEMULTIPLICATIVE);
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In this form the new residual is updated after the application of each preconditioner and the next precondi-
tioner applied to the next residual. For example, with two composed preconditioners:B1 andB2; y = Bx
is obtained from

y = B1x

w1 = x−Ay
y = y +B2w1

Loosely, this corresponds to a Gauss-Siedel iteration, while additive corresponds to a Jacobi iteration. Under
most circumstances the multiplicative form requires one-half the number of iterations as the additive form;
but the multiplicative form does require the application ofA inside the preconditioner.

In the multiplicative version, the calculation of the residual inside the preconditioner can be done in two
ways: using the original linear system matrix or using the matrix used to build the preconditionersB1, B2,
etc. By default it uses the “preconditioner matrix”, to use the true matrix use the option

PCCompositeSetUseTrue (PC pc);

The individual preconditioners can be accessed (in order to set options) via

PCCompositeGetPC (PC pc,int count,PC *subpc);

For example, to set the first sub preconditioners to use ILU(1)

PC subpc;
PCCompositeGetPC (pc,0,&subpc);
PCILUSetFill (subpc,1);

These various options can also be set via the options database. For example,-pc_type composite
-pc_composite_pcs jacobi,ilu causes the composite preconditioner to be used with two precon-
ditioners: Jacobi and ILU. The option-pc_composite_type multiplicative initiates the multi-
plicative version of the algorithm, while-pc_composite_type additive the additive version. Using
the true preconditioner is obtained with the option-pc_composite_true . One sets options for the
subpreconditioners with the extra prefix-sub_N_ whereN is the number of the subpreconditioner. For
example,-sub_0_pc_ilu_fill 0 . PETSc also allows a preconditioner to be a complete linear solver.
This is achieved with thePCSLEStype.

PCSetType (PC pc,PCSLES PCSLES);
PCSLESGetSLES(pc,&sles);
/* set anySLES /KSP/PC options */

From the command line one can use 5 iterations of bi-CG-stab with ILU(0) preconditioning as the precondi-
tioner with-pc_type sles -sles_pc_type ilu -sles_ksp_max_it 5 -sles_ksp_type bcgs .

By default the innerSLES preconditioner uses the outer preconditioner matrix as the matrix to be solved
in the linear system; to use the true matrix use the option

PCSLESSetUseTrue (PC pc);

or at the command line with-pc_sles_true . Naturally one can use aSLES preconditioner inside
a composite preconditioner. For example,-pc_type composite -pc_composite_pcs ilu,
sles -sub_1_pc_type jacobi -sub_1_ksp_max_it 10 uses two preconditioners: ILU(0) and
10 iterations of GMRES with Jacobi preconditioning. Though it is not clear whether one would ever wish
to do such a thing.
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4.4.7 Multigrid Preconditioners

A large suite of routines is available for using multigrid as a preconditioner. In thePC framework the
user is required to provide the coarse grid solver, smoothers, restriction, and interpolation, as well as the
code to calculate residuals. ThePC package allows all of that to be wrapped up into a PETSc compliant
preconditioner. We fully support both matrix-free and matrix-based multigrid solvers. See also Chapter7
for a higher level interface to the multigrid solvers for linear and nonlinear problems using theDMMGobject.
A multigrid preconditioner is created with the four commands

SLESCreate (MPI Commcomm,SLES *sles);
SLESGetPC(SLES sles,PC *pc);
PCSetType (PC pc,PCMG);
MGSetLevels (pc,int levels,MPIComm *comms);

A large number of parameters affect the multigrid behavior. The command

MGSetType (PC pc,MGType mode);

indicates which form of multigrid to apply [18]. For standard V or W-cycle multigrids, one sets themode
to beMGMULTIPLICATIVE; for the additive form (which in certain cases reduces to the BPX method, or
additive multilevel Schwarz, or multilevel diagonal scaling), one usesMGADDITIVE as themode. For
a variant of full multigrid, one can useMGFULL, and for the Kaskade algorithmMGKASKADE. For the
multiplicative and full multigrid options, one can use a W-cycle by calling

MGSetCycles (PC pc,int cycles);

with a value ofMG_W_CYCLEfor cycles . The commands above can also be set from the options database.
The option names are-pc_mg_type [multiplicative, additive, full, kaskade] , and
-pc_mg_cycles <cycles> . The user can control the amount of pre- and postsmoothing by using
either the options-pc_mg_smoothup m and-pc_mg_smoothdown n or the routines

MGSetNumberSmoothUp (PC pc,int m);
MGSetNumberSmoothDown (PC pc,int n);

Note that if the command MGSetSmoother() (discussed below) has been employed, the same amounts of
pre- and postsmoothing will be used. The multigrid routines, which determine the solvers and interpola-
tion/restriction operators that are used, are mandatory. To set the coarse grid solver, one must call

MGGetCoarseSolve (PC pc,SLES *sles);

and set the appropriate options insles . Similarly, the smoothers are set by calling

MGGetSmoother (PC pc,int level,SLES *sles);

and setting the various options insles. To use a different pre- and postsmoother, one should call the
following routines instead.

MGGetSmootherUp (PC pc,int level,SLES *upsles);

and

MGGetSmootherDown (PC pc,int level,SLES *downsles);

Use

MGSetInterpolate (PC pc,int level,Mat P);
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and

MGSetRestriction (PC pc,int level,Mat R);

to define the intergrid transfer operations. It is possible for these interpolation operations to be matrix free
(see Section3.3), he or she should make sure that these operations are defined for the (matrix-free) matrices
passed in. Note that this system is arranged so that if the interpolation is the transpose of the restriction, the
samemat argument can be passed to bothMGSetRestriction () and MGSetInterpolation(). On each
level except the coarsest, one must also set the routine to compute the residual. The following command
suffices:

MGSetResidual (PC pc,int level,int (*residual)(Mat ,Vec ,Vec ,Vec ),Mat mat);

The residual() function can be set to beMGDefaultResidual () if one’s operator is stored in aMat
format. In certain circumstances, where it is much cheaper to calculate the residual directly, rather than
through the usual formulab−Ax, the user may wish to provide an alternative.

Finally, the user must provide three work vectors for each level (except on the finest, where only the
residual work vector is required). The work vectors are set with the commands

MGSetRhs (PC pc,int level,Vec b);
MGSetX(PC pc,int level,Vec x);
MGSetR(PC pc,int level,Vec r);

The user is responsible for freeing these vectors once the iteration is complete. One can control theKSP
andPC options used on the various levels (as well as the coarse grid) using the prefixmg_levels_

(mg_coarse_ for the coarse grid). For example,

-mg levelsksp type cg

will cause the CG method to be used as the Krylov method for each level. Or

-mg levelspc type ilu -mg levelspc ilu levels 2

will cause the the ILU preconditioner to be used on each level with two levels of fill in the incomplete
factorization.

4.5 Solving Singular Systems

Sometimes one is required to solver linear systems that are singular. That is systems with the matrix has a
null space. For example, the discretization of the Laplacian operator with Neumann boundary conditions as
a null space of the constant functions. PETSc has tools to help solve these systems. First, one must know
what the null space is and store it using an orthonormal basis in an array of PETScVecs . (The constant
functions can be handled seperately, since they are such a common case). Create aMatNullSpace object
with the command

MatNullSpaceCreate (MPI Comm,PetscTruth hasconstants,int dim,Vec *basis,MatNullSpace *nsp);

Heredim is the number of vectors inbasis andhasconstants indicates if the null space contains the
constant functions. (If the null space contains the constant functions you do not need to include it in the
basis vectors you provide). One then tells thePC object you are using what the null space is with the call

PCNullSpaceAttach (PC pc,MatNullSpace nsp);

The PETSc solvers will now handle the null space during the solution process.But if one chooses a direct
solver (or an incomplete factorization) it may still detect a zero pivot. You can run with the additional
options-pc_lu_damping <dampingfactor> or -pc_ilu_damping <dampingfactor> to
prevent the zero pivot. A good choice for thedamping factor is 1.e-10.
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4.6 Using PETSc to interface with external linear solvers

PETSc interfaces to several external linear solvers (see Acknowledgments). To use these solvers, one needs
to do the followings.

1. Install the external software.

2. Enable using the external software from PETSc by editing${PETSC_DIR}/bmake/${PETSC_
ARCH}/packages . For example, to use SuperLU, one would specify the following variables with
the appropriate paths:
SUPERLU_LIB = /home/petsc/software/SuperLU/superlu_linux_gcc_pgf90.a
SUPERLU_INCLUDE = -I/home/petsc/software/SuperLU/SRC
PETSC_HAVE_SUPERLU = -DPETSC_HAVE_SUPERLU

It should be clear that SUPERLULIB specifies the compiler command to link with the SuperLU li-
braries, and similarly SUPERLUINCLUDE specifies the compiler command to augment the Include
search path to find SuperLU header files. The third essential detail, PETSCHAVE SUPERLU in-
forms our make system to perform builds in the directories that include the SuperLU interface, and
sets the flag -DPETSCHAVE SUPERLU for conditional inclusion within various source files.

3. Build the PETSc libraries.

4. Use the runtime option:-mat_type <mattype> -ksp_type preonly -pc_type <pctype> .

Package Base Class PCType MatType Runtime Options
DSCPACK baij cholesky MATDSCPACK -mat_type dscpack
MUMPS aij lu MATAIJMUMPS -mat_type aijmumps

sbaij cholesky MATSBAIJMUMPS -mat_type sbaijmumps
SPOOLES seqaij lu MATSEQAIJSPOOLES -mat_type seqaijspooles

mpiaij lu MATMPIAIJSPOOLES -mat_type mpiaijspooles
seqsbaij cholesky MATSEQSBAIJSPOOLES -mat_type seqsbaijspooles
mpisbaij cholesky MATMPISBAIJSPOOLES -mat_type mpisbaijspooles

SUPERLU seqaij lu MATSUPERLU -mat_type superlu
SUPERLUDIST aij lu MATSUPERLUDIST -mat_type superlu_dist
UMFPACK seqaij lu MATUMFPACK -mat_type umfpack
ESSL seqaij lu MATESSL -mat_type essl
LUSOL seqaij lu MATLUSOL -mat_type lusol

Table 5: Options for External Solvers

The default and available input options for each external software can be found by specifying -help (or -h) at
runtime. As an alternative to using runtime flags to employ these external packages, one can also create ma-
trices with the appropriate capabilities by callingMatCreate () followed byMatSetType () specifying
the desired matrix type from5. These matrix types inherit capabilities from their PETSc matrix parents: se-
qaij, mpiaij, etc. As a result, the preallocation routines MatSeqAIJPreallocate, MatMPIAIJPreallocate, etc.
and any other type specific routines of the base class are supported. One can also callMatConvert inplace
to convert the matrix to and from its base class without performing an expensive data copy.MatConvert
cannot be called on matrices that have already been factored. In5, the base class aij refers to the fact

that inheritance is based onMATSEQAIJ when constructed with a single process communicator, and from
MATMPIAIJ otherwise. The same holds for baij and sbaij. For codes that are intended to be run as both
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a single process or with multiple processes, depending on thempirun command, it is recommended that
both sets of preallocation routines are called for these communicator morphing types. The call for the
incorrect type will simply be ignored without any harm or message.
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Chapter 5

SNES: Nonlinear Solvers

The solution of large-scale nonlinear problems pervades many facets of computational science and demands
robust and flexible solution strategies. TheSNES library of PETSc provides a powerful suite of data-
structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structures
discussed in preceding chapters,SNES enables the user to easily customize the nonlinear solvers according
to the application at hand. Also, theSNES interface isidentical for the uniprocess and parallel cases;
the only difference in the parallel version is that each process typically forms only its local contribution to
various matrices and vectors. TheSNES class includes methods for solving systems of nonlinear equations
of the form

F (x) = 0, (5.1)

whereF : <n → <n. Newton-like methods provide the core of the package, including both line search and
trust region techniques, which are discussed further in Section5.2. Following the PETSc design philosophy,
the interfaces to the various solvers are all virtually identical. In addition, theSNES software is completely
flexible, so that the user can at runtime change any facet of the solution process. The general form of the
n-dimensional Newton’s method for solving (5.1) is

xk+1 = xk − [F ′(xk)]−1F (xk), k = 0, 1, . . . , (5.2)

wherex0 is an initial approximation to the solution andF ′(xk), the Jacobian, is nonsingular at each itera-
tion. In practice, the Newton iteration (5.2) is implemented by the following two steps:

1. (Approximately) solve F ′(xk)∆xk = −F (xk). (5.3)

2. Update xk+1 = xk + ∆xk. (5.4)

5.1 Basic Usage

In the simplest usage of the nonlinear solvers, the user must merely provide a C, C++, or Fortran routine to
evaluate the nonlinear function of Equation (5.1). The corresponding Jacobian matrix can be approximated
with finite differences. For codes that are typically more efficient and accurate, the user can provide a
routine to compute the Jacobian; details regarding these application-provided routines are discussed below.
To provide an overview of the use of the nonlinear solvers, we first introduce a complete and simple example
in Figure12, corresponding to${PETSC_DIR}/src/snes/examples/tutorials/ex1.c .

/*$Id: ex1.c,v 1.26 2001/08/07 03:04:16 balay Exp $*/

static char help[] = "Newton’s method to solve a two-variable system, se-
quentially.\n\n";
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/*T
Concepts: SNESˆbasic uniprocessor example
Processors: 1

T*/

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace meth-

ods
petscviewer.h - viewers petscpc.h - preconditioners
petscsles.h - linear solvers

*/
#include "petscsnes.h"

/*
User-defined routines

*/
extern int FormJacobian1(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
extern int FormFunction1(SNES,Vec,Vec,void*);
extern int FormJacobian2(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
extern int FormFunction2(SNES,Vec,Vec,void*);

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

SNES snes; /* nonlinear solver context */
SLES sles; /* linear solver context */
PC pc; /* preconditioner context */
KSP ksp; /* Krylov subspace method context */
Vec x,r; /* solution, residual vectors */
Mat J; /* Jacobian matrix */
int ierr,its,size;
PetscScalar pfive = .5,*xx;
PetscTruth flg;

PetscInitialize(&argc,&argv,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create nonlinear solver context
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = SNESCreate(PETSC_COMM_WORLD,&snes);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Create matrix and vector data structures; set corresponding routines
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

*/
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/*
Create vectors for solution and nonlinear function

*/
ierr = VecCreateSeq(PETSC_COMM_SELF,2,&x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);

/*
Create Jacobian matrix data structure

*/
ierr = MatCreate(PETSC_COMM_SELF,PETSC_DECIDE,PETSC_DECIDE,2,2,&J);CHKERRQ(ierr);
ierr = MatSetFromOptions(J);CHKERRQ(ierr);

ierr = PetscOptionsHasName(PETSC_NULL,"-hard",&flg);CHKERRQ(ierr);
if (!flg) {

/*
Set function evaluation routine and vector.

*/
ierr = SNESSetFunction(snes,r,FormFunction1,PETSC_NULL);CHKERRQ(ierr);

/*
Set Jacobian matrix data structure and Jacobian evaluation routine

*/
ierr = SNESSetJacobian(snes,J,J,FormJacobian1,PETSC_NULL);CHKERRQ(ierr);

} else {
ierr = SNESSetFunction(snes,r,FormFunction2,PETSC_NULL);CHKERRQ(ierr);
ierr = SNESSetJacobian(snes,J,J,FormJacobian2,PETSC_NULL);CHKERRQ(ierr);

}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Customize nonlinear solver; set runtime options

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*
Set linear solver defaults for this problem. By extracting the
SLES, KSP, and PC contexts from the SNES context, we can then
directly call any SLES, KSP, and PC routines to set various options.

*/
ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCNONE);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20);CHKERRQ(ierr);

/*
Set SNES/SLES/KSP/PC runtime options, e.g.,

-snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
These options will override those specified above as long as
SNESSetFromOptions() is called _after_ any other customization
routines.

*/
ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Evaluate initial guess; then solve nonlinear system
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (!flg) {

ierr = VecSet(&pfive,x);CHKERRQ(ierr);
} else {

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
xx[0] = 2.0; xx[1] = 3.0;
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

}
/*

Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/

ierr = SNESSolve(snes,x,&its);CHKERRQ(ierr);
if (flg) {

Vec f;
ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
ierr = SNESGetFunction(snes,&f,0,0);CHKERRQ(ierr);
ierr = VecView(r,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

}

ierr = PetscPrintf(PETSC_COMM_SELF,"number of Newton iterations = %d\n\n",its);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(r);CHKERRQ(ierr);
ierr = MatDestroy(J);CHKERRQ(ierr); ierr = SNESDestroy(snes);CHKERRQ(ierr);

ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}
/* ------------------------------------------------------------------- */
#undef __FUNCT__
#define __FUNCT__ "FormFunction1"
/*

FormFunction1 - Evaluates nonlinear function, F(x).

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameter:
. f - function vector

*/
int FormFunction1(SNES snes,Vec x,Vec f,void *dummy)
{

int ierr;
PetscScalar *xx,*ff;
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/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation depen-

dent.
- You MUST call VecRestoreArray() when you no longer need access to

the array.
*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/*
Compute function

*/
ff[0] = xx[0]*xx[0] + xx[0]*xx[1] - 3.0;
ff[1] = xx[0]*xx[1] + xx[1]*xx[1] - 6.0;

/*
Restore vectors

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);

return 0;
}
/* ------------------------------------------------------------------- */
#undef __FUNCT__
#define __FUNCT__ "FormJacobian1"
/*

FormJacobian1 - Evaluates Jacobian matrix.

Input Parameters:
. snes - the SNES context
. x - input vector
. dummy - optional user-defined context (not used here)

Output Parameters:
. jac - Jacobian matrix
. B - optionally different preconditioning matrix
. flag - flag indicating matrix structure
*/
int FormJacobian1(SNES snes,Vec x,Mat *jac,Mat *B,MatStructure *flag,void
*dummy)
{

PetscScalar *xx,A[4];
int ierr,idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.

- Since this is such a small problem, we set all entries for
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the matrix at once.
*/
A[0] = 2.0*xx[0] + xx[1]; A[1] = xx[0];
A[2] = xx[1]; A[3] = xx[0] + 2.0*xx[1];
ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

/*
Restore vector

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

return 0;
}

/* ------------------------------------------------------------------- */
#undef __FUNCT__
#define __FUNCT__ "FormFunction2"
int FormFunction2(SNES snes,Vec x,Vec f,void *dummy)
{

int ierr;
PetscScalar *xx,*ff;

/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation depen-

dent.
- You MUST call VecRestoreArray() when you no longer need access to

the array.
*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);

/*
Compute function

*/
ff[0] = PetscSinScalar(3.0*xx[0]) + xx[0];
ff[1] = xx[1];

/*
Restore vectors

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);

return 0;
}
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/* ------------------------------------------------------------------- */
#undef __FUNCT__
#define __FUNCT__ "FormJacobian2"
int FormJacobian2(SNES snes,Vec x,Mat *jac,Mat *B,MatStructure *flag,void
*dummy)
{

PetscScalar *xx,A[4];
int ierr,idx[2] = {0,1};

/*
Get pointer to vector data

*/
ierr = VecGetArray(x,&xx);CHKERRQ(ierr);

/*
Compute Jacobian entries and insert into matrix.

- Since this is such a small problem, we set all entries for
the matrix at once.

*/
A[0] = 3.0*PetscCosScalar(3.0*xx[0]) + 1.0; A[1] = 0.0;
A[2] = 0.0; A[3] = 1.0;
ierr = MatSetValues(*jac,2,idx,2,idx,A,INSERT_VALUES);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;

/*
Restore vector

*/
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);

/*
Assemble matrix

*/
ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

return 0;
}

Figure 12: Example of Uniprocess SNES Code

To create aSNES solver, one must first callSNESCreate () as follows:

SNESCreate (MPI Commcomm,SNES *snes);

The user must then set routines for evaluating the function of equation (5.1) and its associated Jacobian
matrix, as discussed in the following sections. To choose a nonlinear solution method, the user can either
call

SNESSetType (SNES snes,SNESType method);

or use the the option-snes_type <method> , where details regarding the available methods are pre-
sented in Section5.2. The application code can take complete control of the linear and nonlinear techniques
used in the Newton-like method by calling
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SNESSetFromOptions (snes);

This routine provides an interface to the PETSc options database, so that at runtime the user can select
a particular nonlinear solver, set various parameters and customized routines (e.g., specialized line search
variants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user can
also control all linear solver options in theSLES , KSP, andPC modules, as discussed in Chapter4. After
having set these routines and options, the user solves the problem by calling

SNESSolve (SNES snes,Vec x,int *iters);

whereiters is the number of nonlinear iterations required for convergence andx indicates the solution
vector. The user should initialize this vector to the initial guess for the nonlinear solver prior to calling
SNESSolve (). In particular, to employ an initial guess of zero, the user should explicitly set this vector to
zero by callingVecSet (). Finally, after solving the nonlinear system (or several systems), the user should
destroy theSNES context with

SNESDestroy (SNES snes);

5.1.1 Nonlinear Function Evaluation

When solving a system of nonlinear equations, the user must provide a vector,f , for storing the function of
Equation (5.1), as well as a routine that evaluates this function at the vectorx . This information should be
set with the command

SNESSetFunction (SNES snes,Vec f,
int (*FormFunction)(SNES snes,Vec x,Vec f,void *ctx),void *ctx);

The argumentctx is an optional user-defined context, which can store any private, application-specific
data required by the function evaluation routine;PETSC_NULLshould be used if such information is not
needed. In C and C++, a user-defined context is merely a structure in which various objects can be stashed; in
Fortran a user context can be an integer array that contains both parameters and pointers to PETSc objects.
${PETSC_DIR}/src/snes/examples/tutorials/ex5.c and${PETSC_DIR}/src/snes/
examples/tutorials/ex5f.F give examples of user-defined application contexts in C and Fortran,
respectively.

5.1.2 Jacobian Evaluation

The user must also specify a routine to form some approximation of the Jacobian matrix,A, at the current
iterate,x , as is typically done with

SNESSetJacobian (SNES snes,Mat A,Mat B,int (*FormJacobian)(SNES snes,
Vec x,Mat *A,Mat *B,MatStructure *flag,void *ctx),void *ctx);

The arguments of the routineFormJacobian() are the current iterate,x ; the Jacobian matrix,A; the
preconditioner matrix,B (which is usually the same asA); a flag indicating information about the pre-
conditioner matrix structure; and an optional user-defined Jacobian context,ctx , for application-specific
data. The options forflag are identical to those for the flag ofSLESSetOperators() , discussed
in Section4.1. Note that theSNES solvers are all data-structure neutral, so the full range of PETSc
matrix formats (including “matrix-free” methods) can be used. Chapter3 discusses information regard-
ing available matrix formats and options, while Section5.5 focuses on matrix-free methods inSNES.
We briefly touch on a few details of matrix usage that are particularly important for efficient use of the
nonlinear solvers. During successive calls toFormJacobian() , the user can either insert new matrix
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Method SNES Type Options Name Default Convergence Test
Line search SNESLS ls SNESConvergedLS()
Trust region SNESTR tr SNESConvergedTR()
Test Jacobian SNESTEST test

Table 6: PETSc Nonlinear Solvers

contexts or reuse old ones, depending on the application requirements. For many sparse matrix formats,
reusing the old space (and merely changing the matrix elements) is more efficient; however, if the matrix
structure completely changes, creating an entirely new matrix context may be preferable. Upon subse-
quent calls to theFormJacobian() routine, the user may wish to reinitialize the matrix entries to zero
by calling MatZeroEntries (). See Section3.4 for details on the reuse of the matrix context. If the
preconditioning matrix retains identical nonzero structure during successive nonlinear iterations, setting
the parameter,flag , in theFormJacobian() routine to beSAME_NONZERO_PATTERNand reusing
the matrix context can save considerable overhead. For example, when one is using a parallel precondi-
tioner such as incomplete factorization in solving the linearized Newton systems for such problems, ma-
trix colorings and communication patterns can be determined a single time and then reused repeatedly
throughout the solution process. In addition, if using different matrices for the actual Jacobian and the
preconditioner, the user can hold the preconditioner matrix fixed for multiple iterations by settingflag
to SAME_PRECONDITIONER. See the discussion ofSLESSetOperators () in Section4.1 for details.
The directory${PETSC_DIR}/src/snes/examples/tutorials provides a variety of examples.

5.2 The Nonlinear Solvers

As summarized in Table5.2, SNES includes several Newton-like nonlinear solvers based on line search
techniques and trust region methods. Each solver may have associated with it a set of options, which can be
set with routines and options database commands provided for this purpose. A complete list can be found
by consulting the manual pages or by running a program with the-help option; we discuss just a few in
the sections below.

5.2.1 Line Search Techniques

The methodSNESLS(-snes_type ls ) provides a line search Newton method for solving systems of
nonlinear equations. By default, this technique employs cubic backtracking [4]. An alternative line search
routine can be set with the command

SNESSetLineSearch (SNES snes,int (*ls)(SNES,Vec ,Vec ,Vec ,Vec ,double,double*,double*),void *lsctx);

Other line search methods provided by PETSc areSNESQuadraticLineSearch (), SNESNoLineS
earch (), andSNESNoLineSearchNoNorms (), which can be set with the option

-snes_ls [cubic, quadratic, basic, basicnonorms]

The line search routines involve several parameters, which are set to defaults that are reasonable for many
applications. The user can override the defaults by using the options-snes_ls_alpha <alpha> ,
-snes_ls_maxstep <max> , and-snes_ls_steptol <tol> .
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5.2.2 Trust Region Methods

The trust region method inSNES for solving systems of nonlinear equations,SNESTR(-snes_type tr ),
is taken from the MINPACK project [14]. Several parameters can be set to control the variation of the trust
regionsize during the solution process. In particular, the user can control the initial trust region radius,
computed by

∆ = ∆0‖F0‖2,

by setting∆0 via the option-snes_tr_delta0 <delta0> .

5.3 General Options

This section discusses options and routines that apply to allSNESsolvers and problem classes. In particular,
we focus on convergence tests, monitoring routines, and tools for checking derivative computations.

5.3.1 Convergence Tests

Convergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify a
customized test, as discussed below. The default convergence routines for the various nonlinear solvers
within SNES are listed in Table5.2; see the corresponding manual pages for detailed descriptions. Each
of these convergence tests involves several parameters, which are set by default to values that should be
reasonable for a wide range of problems. The user can customize the parameters to the problem at hand
by using some of the following routines and options. One method of convergence testing is to declare
convergence when the norm of the change in the solution between successive iterations is less than some
tolerance,stol . Convergence can also be determined based on the norm of the function (or gradient for
a minimization problem). Such a test can use either the absolutesize of the norm,atol , or its relative
decrease,rtol , from an initial guess. The following routine sets these parameters, which are used in many
of the defaultSNES convergence tests:

SNESSetTolerances (SNES snes,double atol,double rtol,double stol,
int its,int fcts);

This routine also sets the maximum numbers of allowable nonlinear iterations,its , and function evalu-
ations,fcts . The corresponding options database commands for setting these parameters are-snes_
atol <atol> , -snes_rtol <rtol> , -snes_stol <stol> , -snes_max_it <its> , and
-snes_max_funcs <fcts> . A related routine isSNESGetTolerances (). Convergence tests for
trust regions methods often use an additional parameter that indicates the minimium allowable trust region
radius. The user can set this parameter with the option-snes_trtol <trtol> or with the routine

SNESSetTrustRegionTolerance (SNES snes,double trtol);

An additional parameter is sometimes used for unconstrained minimization problems, namely the minimum
function tolerance,ftol , which can be set with the option-snes_fmin <ftol> or with the routine

SNESSetMinimizationFunctionTolerance(SNES snes,double ftol);

Users can set their own customized convergence tests inSNES by using the command

SNESSetConvergenceTest (SNES snes,int (*test)(SNES snes,double xnorm,
double gnorm,double f,SNESConvergedReason reason,
void *cctx),void *cctx);
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The final argument of the convergence test routine,cctx , denotes an optional user-defined context for pri-
vate data. When solving systems of nonlinear equations, the argumentsxnorm , gnorm , andf are the cur-
rent iterate norm, current step norm, and function norm, respectively. Likewise, when solving unconstrained
minimization problems, the argumentsxnorm , gnorm , andf are the current iterate norm, current gradient
norm, and the function value.SNESConvergedReason should be set positive for convergence and neg-
ative for divergence. Seeinclude/petscsnes.h for a list of values forSNESConvergedReason .

5.3.2 Convergence Monitoring

By default theSNES solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

SNESSetMonitor (SNES snes,int (*mon)(SNES,int its,double norm,void* mctx),
void *mctx,int (*monitordestroy)(void *));

The routine,mon, indicates a user-defined monitoring routine, whereits andmctx respectively denote the
iteration number and an optional user-defined context for private data for the monitor routine. The argument
norm is the function norm. The routine set bySNESSetMonitor () is called once after every successful
step computation within the nonlinear solver. Hence, the user can employ this routine for any application-
specific computations that should be done after the solution update. The option-snes_monitor activates
the defaultSNESmonitor routine,SNESDefaultMonitor (), while -snes_xmonitor draws a simple
line graph of the residual norm’s convergence. Once can cancel hardwired monitoring routines forSNES
at runtime with-snes_cancelmonitors . As the Newton method converges so that the residual norm
is small, say10−10, many of the final digits printed with the-snes_monitor option are meaningless.
Worse, they are different on different machines; due to different round-off rules used by, say, the IBM
RS6000 and the Sun Sparc. This makes testing between different machines difficult. The option-snes_
smonitor causes PETSc to print fewer of the digits of the residual norm as it gets smaller; thus on most
of the machines it will always print the same numbers making cross process testing easier. The routines

SNESGetSolution (SNES snes,Vec *x);
SNESGetFunction (SNES snes,Vec *r,void *ctx,

int(**func)(SNES,Vec ,Vec ,void*));

return the solution vector and function vector from aSNES context. These routines are useful, for instance,
if the convergence test requires some property of the solution or function other than those passed with routine
arguments.

5.3.3 Checking Accuracy of Derivatives

Since hand-coding routines for Jacobian matrix evaluation can be error prone,SNES provides easy-to-use
support for checking these matrices against finite difference versions. In the simplest form of comparison,
users can employ the option-snes_type test to compare the matrices at several points. Although
not exhaustive, this test will generally catch obvious problems. One can compare the elements of the two
matrices by using the option-snes_test_display , which causes the two matrices to be printed to
the screen. Another means for verifying the correctness of a code for Jacobian computation is running the
problem with either the finite difference or matrix-free variant,-snes_fd or -snes_mf . see Section5.6
or Section5.5). If a problem converges well with these matrix approximations but not with a user-provided
routine, the problem probably lies with the hand-coded matrix.
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5.4 Inexact Newton-like Methods

Since exact solution of the linear Newton systems within (5.2) at each iteration can be costly, modifica-
tions are often introduced that significantly reduce these expenses and yet retain the rapid convergence of
Newton’s method. Inexact or truncated Newton techniques approximately solve the linear systems using
an iterative scheme. In comparison with using direct methods for solving the Newton systems, iterative
methods have the virtue of requiring little space for matrix storage and potentially saving significant com-
putational work. Within the class of inexact Newton methods, of particular interest are Newton-Krylov
methods, where the subsidiary iterative technique for solving the Newton system is chosen from the class of
Krylov subspace projection methods. Note that at runtime the user can set any of the linear solver options
discussed in Chapter4, such as-ksp_type <ksp_method> and-pc_type <pc_method> , to set
the Krylov subspace and preconditioner methods. Two levels of iterations occur for the inexact techniques,
where during each global or outer Newton iteration a sequence of subsidiary inner iterations of a linear
solver is performed. Appropriate control of the accuracy to which the subsidiary iterative method solves
the Newton system at each global iteration is critical, since these inner iterations determine the asymptotic
convergence rate for inexact Newton techniques. While the Newton systems must be solved well enough
to retain fast local convergence of the Newton’s iterates, use of excessive inner iterations, particularly when
‖xk − x∗‖ is large, is neither necessary nor economical. Thus, the number of required inner iterations typ-
ically increases as the Newton process progresses, so that the truncated iterates approach the true Newton
iterates. A sequence of nonnegative numbers{ηk} can be used to indicate the variable convergence criterion.
In this case, when solving a system of nonlinear equations, the update step of the Newton process remains
unchanged, and direct solution of the linear system is replaced by iteration on the system until the residuals

r
(i)
k = F ′(xk)∆xk + F (xk)

satisfy

‖r(i)
k ‖

‖F (xk)‖
≤ ηk ≤ η < 1.

Herex0 is an initial approximation of the solution, and‖ · ‖ denotes an arbitrary norm in<n .
By default a constant relative convergence tolerance is used for solving the subsidiary linear systems

within the Newton-like methods ofSNES. When solving a system of nonlinear equations, one can instead
employ the techniques of Eisenstat and Walker [6] to computeηk at each step of the nonlinear solver by
using the option-snes_ksp_ew_conv . In addition, by adding one’s ownKSP convergence test (see
Section4.3.2), one can easily create one’s own, problem-dependent, inner convergence tests.

5.5 Matrix-Free Methods

TheSNES class fully supports matrix-free methods. The matrices specified in the Jacobian evaluation rou-
tine need not be conventional matrices; instead, they can point to the data required to implement a particular
matrix-free method. The matrix-free variant is allowedonly when the linear systems are solved by an it-
erative method in combination with no preconditioning (PCNONEor -pc_type none ), a user-provided
preconditioner matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Section4.4); that is,
obviously matrix-free methods cannot be used if a direct solver is to be employed. The user can create a
matrix-free context for use withinSNES with the routine

MatCreateSNESMF (SNES snes,Vec x, Mat *mat);

This routine creates the data structures needed for the matrix-vector products that arise within Krylov space
iterative methods [2] by employing the matrix typeMATSHELL, discussed in Section3.3. The defaultSNES

89

manualpages/SNES/SNES.html##SNES
manualpages/KSP/KSP.html##KSP
manualpages/SNES/SNES.html##SNES
manualpages/SNES/SNES.html##SNES
manualpages/SNESMF/MatCreateSNESMF.html##MatCreateSNESMF
manualpages/SNES/SNES.html##SNES
manualpages/Vec/Vec.html##Vec
manualpages/Mat/Mat.html##Mat
manualpages/SNES/SNES.html##SNES
manualpages/SNES/SNES.html##SNES


matrix-free approximations can also be invoked with the command-snes_mf . Or, one can retain the user-
provided Jacobian preconditioner, but replace the user-provided Jacobian matrix with the default matrix free
variant with the option-snes_mf_operator . See also

MatCreateMF (Vec x, Mat *mat);

for users who need a matrix-free matrix but are not usingSNES. The user can set one parameter to control
the Jacobian-vector product approximation with the command

MatSNESMFSetFunctionError (Mat mat,double rerror);

The parameterrerror should be set to the square root of the relative error in the function evaluations,erel;
the default is10−8, which assumes that the functions are evaluated to full double precision accuracy. This
parameter can also be set from the options database with

-snesmf err<err>

In addition,SNES provides a way to register new routines to compute the differencing parameter (h); see
the manual page forMatSNESMFSetType () andMatSNESMFRegisterDynamic ) . We currently
provide two default routines accessible via

-snesmf type<default or wp>

For the default approach there is one “tuning” parameter, set with

MatSNESMFDefaultSetUmin (Mat mat,PetscReal umin);

This parameter,umin (or umin), is a bit involved; its default is10−6 . The Jacobian-vector product is
approximated via the formula

F ′(u)a ≈ F (u+ h ∗ a)− F (u)
h

whereh is computed via

h = erel ∗ uTa/||a||22 if |u′a| > umin ∗ ||a||1
= erel ∗ umin ∗ sign(uTa) ∗ ||a||1/||a||22 otherwise.

This approach is taken from Brown and Saad [2]. The parameter can also be set from the options database
with

-snesmf umin<umin>

The second approach, taken from Walker and Pernice, [16], computesh via

h =
√

1 + ||u||erel
||a||

This has no tunable parameters, but note that (a) for GMRES with left preconditioning||a|| = 1 and (b) for
the entirelinear iterative processu does not change hence

√
1 + ||u|| need be computed only once. This

information may be set with the options

MatSNESMFWPSetComputeNormA(Mat mat,PetscTruth );
MatSNESMFWPSetComputeNormU(Mat mat,PetscTruth );

or
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-snesmf computenorma <true or false>
-snesmf computenormu<true or false>

This information is used to eliminate the redundant computation of these parameters, therefor reducing the
number of collective operations and improving the efficiency of the application code. It is also possible to
monitor the differencing parameters h that are computed via the routines

MatSNESMFSetHHistory (Mat ,PetscScalar *,int);
MatSNESMFResetHHistory (Mat ,PetscScalar *,int);
MatSNESMFGetH(Mat ,PetscScalar *);
MatSNESMFKSPMonitor(KSP,int,double,void *);

and the runtime option-snes_mf_ksp_monitor . We include an example in Figure13 that explicitly
uses a matrix-free approach. Note that by using the option-snes_mf one can easily convert anySNES
code to use a matrix-free Newton-Krylov method without a preconditioner. As shown in this example,

SNESSetFromOptions () must be calledafterSNESSetJacobian () to enable runtime switching be-
tween the user-specified Jacobian and the defaultSNES matrix-free form. Table7 summarizes the various
matrix situations thatSNESsupports. In particular, different linear system matrices and preconditioning ma-
trices are allowed, as well as both matrix-free and application-provided preconditioners. All combinations
are possible, as demonstrated by the example,${PETSC_DIR}/src/snes/examples/tutorials/
ex5.c , in Figure13.

Matrix Use Conventional Matrix Formats Matrix-Free Versions

Jacobian Create matrix withMatCreate (). ∗ Create matrix withMatCreateShell ().
Assemble matrix with user-defined UseMatShellSetOperation () to set

Matrix routine.† various matrix actions.
Or useMatCreateSNESMF ().

Preconditioning Create matrix withMatCreate (). ∗ UseSNESGetSLES() andSLESGetPC()
Matrix Assemble matrix with user-defined to access thePC, then use

routine.† PCSetType (pc,PCSHELL);
followed by PCSetApply().

∗ Use either the genericMatCreate () or a format-specific variant such asMatCreateMPIAIJ ().

† Set user-defined matrix formation routine withSNESSetJacobian ().

Table 7: Jacobian Options

/*$Id: ex6.c,v 1.71 2001/08/07 03:04:16 balay Exp $*/

static char help[] = "u‘‘ + uˆ{2} = f. Different matrices for the Jacobian
and the preconditioner.\n\
Demonstrates the use of matrix-free Newton-Krylov methods in conjunction\n\
with a user-provided preconditioner. Input arguments are:\n\

-snes_mf : Use matrix-free Newton methods\n\

91

manualpages/SNESMF/MatSNESMFSetHHistory.html##MatSNESMFSetHHistory
manualpages/Mat/Mat.html##Mat
manualpages/Sys/PetscScalar.html##PetscScalar
manualpages/SNESMF/MatSNESMFResetHHistory.html##MatSNESMFResetHHistory
manualpages/Mat/Mat.html##Mat
manualpages/Sys/PetscScalar.html##PetscScalar
manualpages/SNESMF/MatSNESMFGetH.html##MatSNESMFGetH
manualpages/Mat/Mat.html##Mat
manualpages/Sys/PetscScalar.html##PetscScalar
manualpages/KSP/KSP.html##KSP
manualpages/SNES/SNES.html##SNES
manualpages/SNES/SNES.html##SNES
manualpages/SNES/SNESSetFromOptions.html##SNESSetFromOptions
manualpages/SNES/SNESSetJacobian.html##SNESSetJacobian
manualpages/SNES/SNES.html##SNES
manualpages/SNES/SNES.html##SNES
manualpages/Mat/MatCreate.html##MatCreate
manualpages/Mat/MatCreateShell.html##MatCreateShell
manualpages/Mat/MatShellSetOperation.html##MatShellSetOperation
manualpages/SNESMF/MatCreateSNESMF.html##MatCreateSNESMF
manualpages/Mat/MatCreate.html##MatCreate
manualpages/SNES/SNESGetSLES.html##SNESGetSLES
manualpages/SLES/SLESGetPC.html##SLESGetPC
manualpages/PC/PC.html##PC
manualpages/PC/PCSetType.html##PCSetType
manualpages/PC/PCSHELL.html##PCSHELL
manualpages/Mat/MatCreate.html##MatCreate
manualpages/Mat/MatCreateMPIAIJ.html##MatCreateMPIAIJ
manualpages/SNES/SNESSetJacobian.html##SNESSetJacobian


-user_precond : Employ a user-defined preconditioner. Used only with\n\
matrix-free methods in this example.\n\n";

/*T
Concepts: SNESˆdifferent matrices for the Jacobian and preconditioner;
Concepts: SNESˆmatrix-free methods
Concepts: SNESˆuser-provided preconditioner;
Concepts: matrix-free methods
Concepts: user-provided preconditioner;
Processors: 1

T*/

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petsc.h - base PETSc routines petscvec.h - vectors
petscsys.h - system routines petscmat.h - matrices
petscis.h - index sets petscksp.h - Krylov subspace meth-

ods
petscviewer.h - viewers petscpc.h - preconditioners
petscsles.h - linear solvers

*/
#include "petscsnes.h"

/*
User-defined routines

*/
int FormJacobian(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
int FormFunction(SNES,Vec,Vec,void*);
int MatrixFreePreconditioner(void*,Vec,Vec);

int main(int argc,char **argv)
{

SNES snes; /* SNES context */
SLES sles; /* SLES context */
PC pc; /* PC context */
KSP ksp; /* KSP context */
Vec x,r,F; /* vectors */
Mat J,JPrec; /* Jacobian,preconditioner matrices */
int ierr,it,n = 5,i,size;
int *Shistit = 0,Khistl = 200,Shistl = 10;
PetscReal h,xp = 0.0,*Khist = 0,*Shist = 0;
PetscScalar v,pfive = .5;
PetscTruth flg;

PetscInitialize(&argc,&argv,(char *)0,help);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
h = 1.0/(n-1);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create nonlinear solver context
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
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ierr = SNESCreate(PETSC_COMM_WORLD,&snes);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Create vector data structures; set function evaluation routine
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

*/

ierr = VecCreate(PETSC_COMM_SELF,&x);CHKERRQ(ierr);
ierr = VecSetSizes(x,PETSC_DECIDE,n);CHKERRQ(ierr);
ierr = VecSetFromOptions(x);CHKERRQ(ierr);
ierr = VecDuplicate(x,&r);CHKERRQ(ierr);
ierr = VecDuplicate(x,&F);CHKERRQ(ierr);

ierr = SNESSetFunction(snes,r,FormFunction,(void*)F);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Create matrix data structures; set Jacobian evaluation routine
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

*/

ierr = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,3,PETSC_NULL,&J);CHKERRQ(ierr);
ierr = MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,1,PETSC_NULL,&JPrec);CHKERRQ(ierr);

/*
Note that in this case we create separate matrices for the Jacobian
and preconditioner matrix. Both of these are computed in the
routine FormJacobian()

*/
ierr = SNESSetJacobian(snes,J,JPrec,FormJacobian,0);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Customize nonlinear solver; set runtime options

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* Set preconditioner for matrix-free method */
ierr = PetscOptionsHasName(PETSC_NULL,"-snes_mf",&flg);CHKERRQ(ierr);
if (flg) {

ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetPC(sles,&pc);CHKERRQ(ierr);
ierr = PetscOptionsHasName(PETSC_NULL,"-user_precond",&flg);CHKERRQ(ierr);
if (flg) { /* user-defined precond */

ierr = PCSetType(pc,PCSHELL);CHKERRQ(ierr);
ierr = PCShellSetApply(pc,MatrixFreePreconditioner,PETSC_NULL);CHKERRQ(ierr);

} else {ierr = PCSetType(pc,PCNONE);CHKERRQ(ierr);}
}

ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);

/*
Save all the linear residuals for all the Newton steps; this enables

us
to retain complete convergence history for printing after the conclu-

sion
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of SNESSolve(). Alternatively, one could use the monitoring options
-snes_monitor -ksp_monitor

to see this information during the solver’s execution; however, such
output during the run distorts performance evaluation data. So, the
following is a good option when monitoring code performance, for ex-

ample
when using -log_summary.

*/
ierr = PetscOptionsHasName(PETSC_NULL,"-rhistory",&flg);CHKERRQ(ierr);
if (flg) {

ierr = SNESGetSLES(snes,&sles);CHKERRQ(ierr);
ierr = SLESGetKSP(sles,&ksp);CHKERRQ(ierr);
ierr = PetscMalloc(Khistl*sizeof(PetscReal),&Khist);CHKERRQ(ierr);
ierr = KSPSetResidualHistory(ksp,Khist,Khistl,PETSC_FALSE);CHKERRQ(ierr);
ierr = PetscMalloc(Shistl*sizeof(PetscReal),&Shist);CHKERRQ(ierr);
ierr = PetscMalloc(Shistl*sizeof(int),&Shistit);CHKERRQ(ierr);
ierr = SNESSetConvergenceHistory(snes,Shist,Shistit,Shistl,PETSC_FALSE);CHKERRQ(ierr);

}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Initialize application:
Store right-hand-side of PDE and exact solution

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

xp = 0.0;
for (i=0; i<n; i++) {

v = 6.0*xp + pow(xp+1.e-12,6.0); /* +1.e-12 is to prevent 0ˆ6 */
ierr = VecSetValues(F,1,&i,&v,INSERT_VALUES);CHKERRQ(ierr);
xp += h;

}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Evaluate initial guess; then solve nonlinear system

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = VecSet(&pfive,x);CHKERRQ(ierr);
ierr = SNESSolve(snes,x,&it);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_SELF,"Newton iterations = %d\n\n",it);CHKERRQ(ierr);

ierr = PetscOptionsHasName(PETSC_NULL,"-rhistory",&flg);CHKERRQ(ierr);
if (flg) {

ierr = KSPGetResidualHistory(ksp,PETSC_NULL,&Khistl);CHKERRQ(ierr);
ierr = PetscRealView(Khistl,Khist,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
ierr = PetscFree(Khist);CHKERRQ(ierr);CHKERRQ(ierr);
ierr = SNESGetConvergenceHistory(snes,PETSC_NULL,PETSC_NULL,&Shistl);CHKERRQ(ierr);
ierr = PetscRealView(Shistl,Shist,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
ierr = PetscIntView(Shistl,Shistit,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
ierr = PetscFree(Shist);CHKERRQ(ierr);
ierr = PetscFree(Shistit);CHKERRQ(ierr);

}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
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ierr = VecDestroy(x);CHKERRQ(ierr); ierr = VecDestroy(r);CHKERRQ(ierr);
ierr = VecDestroy(F);CHKERRQ(ierr); ierr = MatDestroy(J);CHKERRQ(ierr);
ierr = MatDestroy(JPrec);CHKERRQ(ierr); ierr = SNESDestroy(snes);CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);

return 0;
}
/* ------------------------------------------------------------------- */
/*

FormInitialGuess - Forms initial approximation.

Input Parameters:
user - user-defined application context
X - vector

Output Parameter:
X - vector

*/
int FormFunction(SNES snes,Vec x,Vec f,void *dummy)
{

PetscScalar *xx,*ff,*FF,d;
int i,ierr,n;

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetArray(f,&ff);CHKERRQ(ierr);
ierr = VecGetArray((Vec)dummy,&FF);CHKERRQ(ierr);
ierr = VecGetSize(x,&n);CHKERRQ(ierr);
d = (PetscReal)(n - 1); d = d*d;
ff[0] = xx[0];
for (i=1; i<n-1; i++) {

ff[i] = d*(xx[i-1] - 2.0*xx[i] + xx[i+1]) + xx[i]*xx[i] - FF[i];
}
ff[n-1] = xx[n-1] - 1.0;
ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
ierr = VecRestoreArray(f,&ff);CHKERRQ(ierr);
ierr = VecRestoreArray((Vec)dummy,&FF);CHKERRQ(ierr);
return 0;

}
/* ------------------------------------------------------------------- */
/*

FormJacobian - This routine demonstrates the use of different
matrices for the Jacobian and preconditioner

Input Parameters:
. snes - the SNES context
. x - input vector
. ptr - optional user-defined context, as set by SNESSetJacobian()

Output Parameters:
. A - Jacobian matrix
. B - different preconditioning matrix
. flag - flag indicating matrix structure
*/
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int FormJacobian(SNES snes,Vec x,Mat *jac,Mat *prejac,MatStructure *flag,void
*dummy)
{

PetscScalar *xx,A[3],d;
int i,n,j[3],ierr;

ierr = VecGetArray(x,&xx);CHKERRQ(ierr);
ierr = VecGetSize(x,&n);CHKERRQ(ierr);
d = (PetscReal)(n - 1); d = d*d;

/* Form Jacobian. Also form a different preconditioning matrix that
has only the diagonal elements. */

i = 0; A[0] = 1.0;
ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
for (i=1; i<n-1; i++) {

j[0] = i - 1; j[1] = i; j[2] = i + 1;
A[0] = d; A[1] = -2.0*d + 2.0*xx[i]; A[2] = d;
ierr = MatSetValues(*jac,1,&i,3,j,A,INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[1],INSERT_VALUES);CHKERRQ(ierr);

}
i = n-1; A[0] = 1.0;
ierr = MatSetValues(*jac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);
ierr = MatSetValues(*prejac,1,&i,1,&i,&A[0],INSERT_VALUES);CHKERRQ(ierr);

ierr = MatAssemblyBegin(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyBegin(*prejac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(*prejac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = VecRestoreArray(x,&xx);CHKERRQ(ierr);
*flag = SAME_NONZERO_PATTERN;
return 0;

}
/* ------------------------------------------------------------------- */
/*

MatrixFreePreconditioner - This routine demonstrates the use of a
user-provided preconditioner. This code implements just the null
preconditioner, which of course is not recommended for general use.

Input Parameters:
. ctx - optional user-defined context, as set by PCShellSetApply()
. x - input vector

Output Parameter:
. y - preconditioned vector
*/
int MatrixFreePreconditioner(void *ctx,Vec x,Vec y)
{

int ierr;
ierr = VecCopy(x,y);CHKERRQ(ierr);
return 0;

}

Figure 13: Example of Uniprocess SNES Code - Both Conventional and Matrix-Free Jacobians
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5.6 Finite Difference Jacobian Approximations

PETSc provides some tools to help approximate the Jacobian matrices efficiently via finite differences.
These tools are intended for use in certain situations where one is unable to compute Jacobian matrices ana-
lytically, and matrix-free methods do not work well without a preconditioner, due to very poor conditioning.
The approximation requires several steps:

• First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same color
do not share any common rows.

• Next, one creates aMatFDColoring data structure that will be used later in actually computing
the Jacobian.

• Finally, one tells the nonlinear solvers ofSNES to use theSNESDefaultComputeJacobianC
olor () routine to compute the Jacobians.

A code fragment that demonstrates this process is given below.

ISColoring iscoloring;
MatFDColoring fdcoloring;
MatStructure str;
/*
This initializes the nonzero structure of the Jacobian. This is artificial
because clearly if we had a routine to compute the Jacobian we wouldn’t
need to use finite differences.
*/
FormJacobian(snes,x,&J,&J,&str,&user);
/*
Color the matrix, i.e. determine groups of columns that share no common
rows. These columns in the Jacobian can all be computed simulataneously.
*/
MatGetColoring (J,MATCOLORING SL,&iscoloring);
/*
Create the data structure thatSNESDefaultComputeJacobianColor () uses
to compute the actual Jacobians via finite differences.
*/
MatFDColoringCreate (J,iscoloring,&fdcoloring);
ISColoringDestroy (iscoloring);
MatFDColoringSetFromOptions (fdcoloring);
/*
Tell SNES to use the routineSNESDefaultComputeJacobianColor ()
to compute Jacobians.
*/
SNESSetJacobian (snes,J,J,SNESDefaultComputeJacobianColor ,fdcoloring);

Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian, then how
do we know what its nonzero structure is so that it may be colored? Determining the structure is problem
dependent, but fortunately, for most structured grid problems (the class of problems for which PETSc is
designed) if one knows the stencil used for the nonlinear function one can usually fairly easily obtain an
estimate of the location of nonzeros in the matrix. This is harder in the unstructured case, and has not yet
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been implemented in general. One need not necessarily use the routineMatGetColoring () to determine
a coloring. For example, if a grid can be colored directly (without using the associated matrix), then that
coloring can be provided toMatFDColoringCreate (). Note that the user must always preset the
nonzero structure in the matrix regardless of which coloring routine is used. For sequential matrices PETSc
provides three matrix coloring routines from the MINPACK package [14]: smallest-last (sl ), largest-first
(lf ), and incidence-degree (id ). These colorings, as well as the “natural” coloring for which each column
has its own unique color, may be accessed with the command line options

-mat coloring type<sl,id,lf,natural>

Alternatively, one can set a coloring type ofCOLORING_SL, COLORING_ID, COLORING_LF, or COLO
RING_NATURALwhen callingMatGetColoring (). As for the matrix-free computation of Jacobians
(see Section5.5), two parameters affect the accuracy of the finite difference Jacobian approximation. These
are set with the command

MatFDColoringSetParameters (MatFDColoring fdcoloring,double rerror,double umin);

The parameterrerror is the square root of the relative error in the function evaluations,erel; the default
is 10−8, which assumes that the functions are evaluated to full double-precision accuracy. The second
parameter,umin , is a bit more involved; its default is10e−8 . Columni of the Jacobian matrix (denoted by
F:i) is approximated by the formula

F ′:i ≈
F (u+ h ∗ dxi)− F (u)

h

whereh is computed via

h = erel ∗ ui if |ui| > umin

h = erel ∗ umin ∗ sign(ui) otherwise.

These parameters may be set from the options database with

-mat fd coloring errerr
-mat fd coloring uminumin

Note that theMatGetColoring () routine currently works only on sequential routines. Extensions may
be forthcoming. However, if one can compute the coloringiscoloring some other way, the routine
MatFDColoringCreate () does work in parallel. An example of this for 2D distributed arrays is given
below that uses the utility routineDAGetColoring ().

DAGetColoring (da,IS COLORING GHOSTED,&iscoloring);
MatFDColoringCreate (J,iscoloring,&fdcoloring);
MatFDColoringSetFromOptions (fdcoloring);
ISColoringDestroy (iscoloring);

Note that the routineMatFDColoringCreate () currently is only supported for the AIJ matrix format.
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Chapter 6

TS: Scalable ODE Solvers

TheTS library provides a framework for the scalable solution of ODEs arising from the discretization of
time-dependent PDEs, and of steady-state problems using pseudo-timestepping.Time-Dependent Prob-

lems: Consider the ODE
ut = F (u, t),

whereu is a finite-dimensional vector, usually obtained from discretizing a PDE with finite differences,
finite elements, etc. For example, discretizing the heat equation

ut = uxx

with centered finite differences results in

(ui)t =
ui+1 − 2ui + ui−1

h2
.

The TS library provides code to solve these equations (currently using the forward or backward Euler
method) as well as an interface to other sophisticated ODE solvers, in a clean and easy manner, where the
user need only provide code for the evaluation ofF (u, t) and (optionally) its associated Jacobian matrix.
Steady-State Problems:In addition,TS provides a general code for performing pseudo timestepping with

a variable timestep at each physical node point. For example, instead of directly attacking the steady-state
problem

F (u) = 0,

we can use pseudo-transient continuation by solving

ut = F (u).

By using time differencing with the backward Euler method, we obtain

un+1 − un

dtn
= F (un+1).

More generally we can consider a diagonal matrixDtn that has a pseudo-timestep for each node point to
obtain the series of nonlinear equations

Dtn
−1

(un+1 − un) = F (un+1).

For this problem the user must provideF (u) and the diagonal matrixDtn, (or optionally, if the timestep is
position independent, a scalar timestep) as well as optionally the Jacobian ofF (u).
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6.1 Basic Usage

The user first creates aTS object with the command

int TSCreate (MPI Commcomm,TSProblemType problemtype,TS *ts);

TheTSProblemType is one ofTS_LINEAR or TS_NONLINEAR, to indicate whetherF (u, t) is given
by a matrixA, orA(t), or a functionF (u, t). One can set the solution method with the routine

TSSetType (TS ts,TSType type);

Currently supported types areTS_EULER, TS_BEULER, andTS_PSEUDOor the command line option
-ts_type euler, beuler, pseudo . Set the initial time and timestep with the command

TSSetInitialTimeStep (TS ts,double time,double dt);

One can change the timestep with the command

TSSetTimeStep (TS ts,double dt);

One can determine the current timestep with the routine

TSGetTimeStep (TS ts,double* dt);

Here, “current” refers to the timestep being used to attempt to promote the solution formun to un+1. One
sets the total number of timesteps to run or the total time to run (whatever is first) with the command

TSSetDuration (TS ts,int maxsteps,double maxtime);

One sets up the timestep context with

TSSetUp (TS ts);

destroys it with

TSDestroy (TS ts);

and views it with

TSView (TS ts,PetscViewer viewer);

6.1.1 Solving Time-dependent Problems

To set upTS for solving an ODE, one must set the following:

• Solution:

TSSetSolution (TS ts,Vec initialsolution);

The vectorinitialsolution should contain the “initial conditions” for the ODE.

• Function:

• For linear functions (solved with implicit timestepping), the user must call
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TSSetRHSMatrix (TS ts,Mat A, Mat B,
int (*f)( TS ,double,Mat *,Mat *,MatStructure *,void*),void *fP);

The matrixB (although usually the same asA) allows one to provide a different matrix to be used in
the construction of the preconditioner. The functionf is used to form the matricesA andB at each
timestep if the matrices are time dependent. If the matrix does not depend on time, the user should
pass inPETSC_NULLfor f . The variablefP allows users to pass in an application context that is
passed to thef() function whenever it is called, as the final argument. The user must provide the
matricesA andB; if they have the right-hand side only as a linear function, they must construct a
MatShell matrix. Note that this is the same interface as that forSNESSetJacobian ().

• For nonlinear problems (or linear problems solved using explicit timestepping methods) the
user passes the function with the routine

TSSetRHSFunction (TS ts,int (*f)(TS ,double,Vec ,Vec ,void*),void *fP);

The arguments to the functionf() are the timestep context, the current time, the input for the func-
tion, the output for the function, and the (optional) user-provided context variablefP .

• Jacobian: For nonlinear problems the user must also provide the (approximate) Jacobian matrix of
F(u,t) and a function to compute it at each Newton iteration. This is done with the command

TSSetRHSJacobian (TS ts,Mat A, Mat B,int (*fjac)(TS ,double,Vec ,Mat *,Mat *,
MatStructure *,void*),void *fP);

The arguments for the functionfjac() are the timestep context, the current time, the location where
the Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used
as a preconditioner, and the optional user-provided context, passed in asfP . The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach is used, the user must create aMatShell
matrix. Again, note the similarity toSNESSetJacobian ().

Similar toSNESDefaultComputeJacobianColor () is the routineTSDefaultComputeJacobianC
olor () and TSDefaultComputeJacobian() that corresponds toSNESDefaultComputeJacobian ().

6.1.2 Using PVODE from PETSc

PVODE is a parallel ODE solver developed by Hindmarsh et al. at LLNL. TheTS library provides an
interface to use PVODE directly from PETSc. (To install PETSc to use PVODE, see the installation guide,
docs/installation/index.htm .)

To use the PVODE integrators, call

TSSetType (TS ts,TSType TS PVODE);

or use the command line option-ts_type pvode . PVODE comes with to main integrator families,
Adams and BDF (backward differentiation formula). One can select these with

TSPVodeSetType (TS ts,TSPVodeType [PVODEADAMS,PVODE BDF]);

or the command line option-ts_pvode_type <adams,bdf> . BDF is the default. PVODE does
not use theSNES library within PETSc for its nonlinear solvers, so one cannot change the nonlinear solver
options viaSNES. Rather, PVODE uses the preconditioners within thePC package of PETSc, which can
be accessed via
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TSPVodeGetPC (TS ts,PC *pc);

The user can then directly set preconditioner options; alternatively, the usual runtime options can be em-
ployed via-pc_xxx . Finally, one can set the PVODE tolerances via

TSPVodeSetTolerance (TS ts,double abs,double rel);

whereabs denotes the absolute tolerance andrel the relative tolerance. Other PETSc-PVode options
include

TSPVodeSetGramSchmidtType (TS ts,TSPVodeGramSchmidtType type);

wheretype is eitherPVODE_MODIFIED_GSor PVODE_UNMODIFIED_GS. This may be set via the
options data base with-ts_pvode_gramschmidt_type <modifed,unmodified> . The routine

TSPVodeSetGMRESRestart (TS ts,int restart);

sets the number of vectors in the Krylov subpspace used by GMRES. This may be set in the options database
with -ts_pvode_gmres_restart restart .

6.1.3 Solving Steady-State Problems with Pseudo-Timestepping

For solving steady-state problems with pseudo-timestepping one proceeds as follows.

• Provide the functionF(u) with the routine

TSSetRHSFunction (TS ts,int (*f)(TS ,double,Vec ,Vec ,void*),void *fP);

The arguments to the functionf() are the timestep context, the current time, the input for the func-
tion, the output for the function and the (optional) user-provided context variablefP .

• Provide the (approximate) Jacobian matrix ofF(u,t) and a function to compute it at each Newton
iteration. This is done with the command

TSSetRHSJacobian (TS ts,Mat A, Mat B,int (*f)(TS ,double,Vec ,Mat *,Mat *,
MatStructure *,void*),void *fP);

The arguments for the functionf() are the timestep context, the current time, the location where the
Jacobian is to be computed, the Jacobian matrix, an alternative approximate Jacobian matrix used as
a preconditioner, and the optional user-provided context, passed in asfP . The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach, one must create aMatShell matrix.

In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly different
depending on if one is using a constant timestep over the entire grid, or it varies with location.

• For location-independent pseudo-timestepping, one uses the routine

TSPseudoSetTimeStep (TS ts,int(*dt)(TS ,double*,void*),void* dtctx);

The functiondt is a user-provided function that computes the next pseudo-timestep. As a default one
can useTSPseudoDefaultTimeStep(TS,double*,void*) for dt . This routine updates
the pseudo-timestep with one of two strategies: the default

dtn = dtincrement ∗ dtn−1 ∗ ||F (un−1)||
||F (un)||
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or, the alternative,

dtn = dtincrement ∗ dt0 ∗
||F (u0)||
||F (un)||

which can be set with the call

TSPseudoIncrementDtFromInitialDt (TS ts);

or the option-ts_pseudo_increment_dt_from_initial_dt . The valuedtincrement is
by default1.1, but can be reset with the call

TSPseudoSetTimeStepIncrement (TS ts,double inc);

or the option -ts_pseudo_increment <inc> .

• For location-dependent pseudo-timestepping, the interface function has not yet been created.
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Chapter 7

High Level Support for Multigrid with
DMMG

PETSc provides an easy to use high-level interface for multigrid on a single structured grid using the PETSc
DA object (or theVecPack object) to decompose the grid across the processes. ThisDMMGcode is
built on top of the lower level PETSc multigrid interface provided in thePCType of MG, see Section4.4.7.
Currently we only provide piecewise linear and piecewise constant interpolation, but can add more if needed.
TheDMMGroutines only provide linear multigrid but they can be used easily with eitherSLES (for linear
problems) orSNES (for nonlinear problems). For linear problems the examplessrc/sles/examples/
tutorials/ex22.c andex25.c can be used to guide your development. We give a short summary
here.

DMMG*dmmg;
DA da;
Vec soln;
/* Create theDA that stores information about the coarsest grid you wish to use */
ierr = DACreate3d (PETSCCOMM WORLD,DA NONPERIODIC,DA STENCIL STAR,
3,3,3,PETSCDECIDE,PETSCDECIDE,PETSCDECIDE,1,1,0,0,0,&da);CHKERRQ(ierr);
/* Create theDMMGdata structure */
- the second argument indicates the number of levels you wish to use and
can be changed with the option -dmmgnlevels
ierr = DMMGCreate(PETSCCOMM WORLD,3,PETSCNULL,&dmmg);CHKERRQ(ierr);
/* Tell the DMMGobject to use the da to define the coarsest grid */
ierr = DMMGSetDM(dmmg,(DM)da);
/* Tell the DMMGwe are solving a linear problem (henceSLES) and provide the
callback function to compute the right hand side and matrices for each level */
ierr = DMMGSetSLES(dmmg,ComputeRHS,ComputeMatrix);CHKERRQ(ierr);
/* Solve the problem */
ierr = DMMGSolve(dmmg);CHKERRQ(ierr);
/* One can access the solution with */
soln =DMMGGetx(dmmg);
ierr = DMMGDestroy (dmmg);CHKERRQ(ierr);
ierr = DADestroy (da);CHKERRQ(ierr);

The option-dmmg_ksp_monitor causes theDMMGcode to print the residual norms for each level of
the solver to the screen so that the coarser the grid the more indented the print out. The option-dmmg_
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grid_sequence causes theDMMGsolve to use grid sequencing to generate the initial guess by solving
the same problem on the previous coarser grid; this often results in a much faster time to solution. The
solver (smoother) used on each level but the coarsest can be controled via the options database with anyPC
or KSP option prefixed as-mg_levels_[pc/ksp]_ . The solver options on the finest grid can be set

with -mg_coarse_[pc/ksp]_ . TheDMMGhas many other options that can view by running theDMMG
program with the option-help . You should generally run your code with the option-sles_view to see
exactly what solvers are being used. For nonlinear problems one replaces theDMMGSetSLES() with

DMMGSetSNES(DMMG*dmmg,int (*function)(SNES,Vec ,Vec ,void*),
int (*jacobian)(SNES,Vec ,Mat *,Mat *,MatStructure *,void*))

or the prefered approach

DMMGSetSNESLocal(DMMG*dmmg,
int (*localfunction)(DALocalInfo *info,void *x,void *f,void* appctx),
int (*localjacobian)(DALocalInfo *,void *x,Mat J,void *appctx),
ad function,admf function);

The ad_function and ad_mf_function are described in the next chapter. See examplessrc/
snes/examples/tutorials/ex18.c andex19.c for complete details. For scalar problems (prob-
lems with one degree of freedom per node), thelocalfunction x and f arguments are simply multi-
dimensional arrays of double precision (or complex) numbers (according to the dimension of the grid) that
should be indexed usingglobal i, j, k indices on the entire grid. For multi-component problems you must
create a C struct with an entry for each component and thex andf arguments are appropriately dimensioned
arrays of that struct. For example, for a 3d scalar problem the function would be

int localfunction(DALocalInfo *info,double ***x, double ***f,void *ctx)

For a 2d multi-component problem with u, v, and p components one would write

typedef struct{
PetscScalar u,v,p;
} Field;
...
int localfunction(DALocalInfo *info,Field **x,Field **f,void *ctx)

For many nonlinear problems it is too difficult to compute the Jacobian analytically, thus ifjacobian
or localjacobian is not provided, (indicated by passing in aPETSC_NULL) theDMMGwill compute
the sparse Jacobian reasonably efficiently automatically using finite differencing. See the next chapter on
computing the Jacobian via automatic differentiation. The option-dmmg_jacobian_mf_fd causes the
code to not compute the Jacobian explicitly but rather to use differences to apply the matrix vector product
of the Jacobian. The option-dmmg_snes_monitor can be used to monitor the progress of the nonlinear
solver. The usual-snes_ options may be used to control the nonlinearr solves. Again we recommend
using the option-dmmg_grid_sequence and-snes_view for most runs.
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Chapter 8

Using ADIC and ADIFOR with PETSc

Automatic differentiation is an incredible technique to generate code that computes Jacobians and other
differentives directly from code that only evaluates the function. For structured grid problems, via theDMMG
interface (see Chapter7) PETSc provides a way to use ADIFOR and ADIC to compute the sparse Jacobians
or perform matrix free vector products with them. Seesrc/snes/examples/tutorials/ex18.c
andex5f.F for example usage.

First one indicates the functions for which one needs Jacobians by adding in the comments in the code

/* Process adiC(maximum number colors): FormFunctionLocal FormFunctionLocali */

where one lists the functions. In Fortran use

! Process adifor: FormFunctionLocal

Next one uses the call

DMMGSetSNESLocal(DMMG*dmmg,
int (*localfunction)(DALocalInfo *info,void *x,void *f,void* appctx),PETSCNULL,
ad localfunction,admf localfunction);

where the names of the last two functions are obtained by prepending anad_ andad_mf_ in front of
the function name. In Fortran, this is done by prepending ag_ andm_. Two useful options are-dmmg_
jacobian_mf_ad and -dmmg_jacobian_mf_ad_operator , with the former is uses the matrix-
free automatic differentiation to apply the operator and to define the preconditioner operator. The latter
form uses the matrix-free for the matrix-vector product but still computes the Jacobian (by default with
finite differences) used to construct the preconditioner.

8.1 Work arrays inside the local functions

In C you can callDAGetArray () to get work arrays (this is low overhead). In Fortran you can provide a
FormFunctionLocal() that had local arrays that have hardwired sizes that are large enough or some-
how allocate space and pass it into an inner FormFunctionLocal() that is the one you differentiate; this
second approach will require some hand massaging. For example,

subroutine TrueFormFunctionLocal(info,x,f,ctx,ierr)
double precision x(gxs:gxe,gys:gye),f(xs:xe,ys:ye)
DA info(DA LOCAL INFO SIZE)
integer ctx,ierr
double precision work(gxs:gxe,gys:gye)
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.... do the work ....
return
subroutine FormFunctionLocal(info,x,f,ctx,ierr)
double precision x(*),f(*)
DA info(DA LOCAL INFO SIZE)
integer ctx,ierr
double precision work(10000)
call TrueFormFunctionLocal(info,x,f,work,ctx,ierr)
return

107

manualpages/DA/DA.html##DA
manualpages/DA/DA.html##DA


Chapter 9

Using Matlab with PETSc

There are three basic ways to use Matlab with PETSc: (1) dumping files to be read into Matlab, (2) automat-
ically sending data from a running PETSc program to a Matlab process where you may interactively type
Matlab commands (or run scripts) and (3) automatically sending data back and forth between PETSc and
Matlab where Matlab commands are issued not interactively but from a script or the PETSc program.

9.1 Dumping Data for Matlab

One can dump PETSc matrices and vectors to the screen (and thus save in a file via> filename.m ) in a
format that Matlab can read in directly. This is done with the command line options-vec_view_matlab
or -mat_view_matlab . This causes the PETSc program to print the vectors and matrices every time a
VecAssemblyXXX() and MatAssemblyXXX() is called. To provide finer control over when and what
vectors and matrices are dumped one can use theVecView () andMatView () functions with a viewer
type of ASCII (seePetscViewerASCIIOpen (), PETSC_VIEWER_STDOUT_WORLD, PETSC_VIEW
ER_STDOUT_SELF, or PETSC_VIEWER_STDOUT_(MPI_Comm)). Before calling the viewer set the
output type with, for example,

PetscViewerSetFormat (PETSCVIEWER STDOUT WORLD,PETSCVIEWER ASCII MATLAB);
VecView (A,PETSCVIEWER STDOUT WORLD);

or

PetscViewerPushFormat (PETSCVIEWER STDOUT WORLD,PETSCVIEWER ASCII MATLAB);
MatView (B,PETSCVIEWER STDOUT WORLD);

The name of each PETSc variable printed for Matlab may be set with

PetscObjectSetName ((PetscObject )A,”name”);

If no name is specified, the object is given a default name usingPetscObjectName .

9.2 Sending Data to Interactive Running Matlab Session

One creates a viewer to Matlab via

PetscViewerSocketOpen (MPI Comm,char *machine,int port,PetscViewer *v);

(port is usally set toPETSC_DEFAULT, usePETSC_NULLfor the machine if the Matlab interactive session
is running on the same machine as the PETSc program) and then sends matrices or vectors via
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VecView (Vec A,v);
MatView (Mat B,v);

One can also send arrays or integer arrays via

PetscViewerSocketPutScalar (v,int m,int n,PetscScalar *array);
PetscViewerSocketPutReal (v,int m,int n,double *array);
PetscViewerSocketPutInt (v,int m,int *array);

One may start the Matlab program manually or use the PETSc commandPetscStartMatlab(MPI_
Comm,char *machine,char *script,FILE **fp); where machine and script may bePETS
C_NULL. To receive the objects in Matlab you must first make sure that${PETSC_DIR}/bin/matlab
is in your Matlab path. Usep = openport; (or p = openport(portnum) if you provided a port
number in your call toPetscViewerSocketOpen ()), thena = receive(p); returns the object you
have passed from PETSc.receive() may be called any number of times. Each call should correspond
on the PETSc side with viewing a single vector or matrix. You many callcloseport() to close the
connection from Matlab. It is also possible to start your PETSc program from Matlab vialaunch() .

9.3 Using the Matlab Compute Engine

One creates access to the Matlab engine via

PetscMatlabEngineCreate (MPI Commcomm,char *machine,PetscMatlabEngine *e);

wheremachine is the name of the machine hosting Matlab (PETSC_NULLmay be used for localhost).
One can send objects to Matlab via

PetscMatlabEnginePut (PetscMatlabEngine e,PetscObject obj);

One can get objects via

PetscMatlabEngineGet (PetscMatlabEngine e,PetscObject obj);.

Similarly one can send arrays via

PetscMatlabEnginePutArray (PetscMatlabEngine e,int m,int n,PetscScalar *array,char *name);

and get them back via

PetscMatlabEngineGetArray (PetscMatlabEngine e,int m,int n,PetscScalar *array,char *name);

One cannot use Matlab interactively in this mode but you can send Matlab commands via

PetscMatlabEngineEvaluate (PetscMatlabEngine ,”format”,...);

whereformat has the usualprintf() format. For example,

PetscMatlabEngineEvaluate (PetscMatlabEngine ,”x = %g *y + z;”,avalue);

The name of each PETSc variable passed to Matlab may be set with

PetscObjectSetName ((PetscObject )A,”name”);

Text responses can be returned from Matlab via

PetscMatlabEngineGetOutput (PetscMatlabEngine ,char **);

or

PetscMatlabEnginedPrintOutput(PetscMatlabEngine ,FILE*).

There is a short-cut to starting the Matlab engine withPETSC_MATLAB_ENGINE_(MPI_Comm).
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Chapter 10

Using ESI with PETSc

TheEquation Solver Interface (location of official headers ) is an attempt to de-
fine a common linear solver interface for a variety of scalable solver packages. It is currently only for C++
and defines a set of abstract C++ classes (the header files for these classes are ininclude/esi ). PETSc
provides code that allows

• ESI objects to be wrapped as PETSc objects and then be used with “regular” PETSc code and

• PETSc objects to be wrapped as ESI objects and then used with other ESI code.

The wrapping does not involve data copies and thus is efficient. To wrap ESI objects as PETSc objects use

VecCreate (MPI Comm,Vec *x);
VecSetType (x,VECESI);
VecESISetVector (s,::esi::Vector<double,int> *v);

MatCreate (MPI Comm,...,Mat *A);
MatSetType (A,MATESI);
MatESISetOperator(A,::esi::Operator<double,int> *a);

PCCreate (MPI Comm,PC *pc);
PCSetType (pc,PCESI);
PCESISetPreconditioner (A,::esi::Preconditioner<double,int> *p);

To wrap PETSc objects as ESI objects

int VecESIWrap(Vec xin,::esi::Vector<double,int> **v);
eis = new esi::petsc::IndexSpace<int>::IndexSpace(PetscMap map);
evec = new esi::petsc::Vector<double,int>::Vector(Vec vec);
emat = new esi::petsc::Operator<double,int>::Operator(Mat mat);
epc = new esi::petsc::Preconditioner<double,int>::Preconditioner(PC pc);

One can also create ESI objects directly with

eis = new esi::petsc::IndexSpace<int>::IndexSpace(MPIComm icomm, int n, int N)
esi = new esi::petsc::IndexSpace<int>::IndexSpace(::esi::IndexSpace<int> &sourceIndexSpace)
evec = new esi::petsc::Vector<double,int>::Vector( ::esi::IndexSpace<int> *inmap)
emat = new esi::petsc::Matrix<double,int>::Matrix(esi::IndexSpace<int> *inrmap,esi::IndexSpace<int> *incmap)

PETSc also provides mechanisms to load ESI classes directly from dynamic libraries to be used with PETSc.
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VecESISetType (Vec pc,char *name);
MatESISetType(Mat pc,char *name)
PCESISetType (PC pc,char *name)

wherename is the full name of the class; for example,esi::petsc::Vector orPetra_ESI_Vector .
These are implemented by loading a factory which then creates the actual class object. This can also be
achieved from the command line with

-is esi type esi::petsc::IndexSpace
-vec type esi -vecesi type esi::petsc::Vector
-mat type esi -matesi type esi::petsc::Matrix
-pc type esi -pcesi type esi:petsc::Preconditioner

Note that theis in -is_esi_type is short for IndexSpace,not PETScIS objects. Finally when using
the PETSc ESI objects (not Trilinos or some other implementation), one can set the underly PETSc object
type to the PETSc objected that is wrapped as ESI with

-vec type esi -vecesi type esi::petsc::Vector -esivec type<seq,mpi>
-mat type esi -matesi type esi::petsc::Matrix -esimat type<seqaij,mpiaij,...>
-pc type esi -pcesi type esi:petsc::Preconditioner -esipc type<lu,ilu,....>

Mostly for testing purposes PETSc provides a short hand way of using ESI with the PETSc ESI objects.
One can use

-vec type petscesi -esivec type<seq,mpi>
-mat type petscesi -esimat type<seqaij,mpiaij,...>
-pc type petscesi -esipc type<lu,ilu,....>
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Chapter 11

PETSc for Fortran Users

Most of the functionality of PETSc can be obtained by people who program purely in Fortran 77 or Fortran
90. The PETSc Fortran interface works with both F77 and F90 compilers. Since Fortran77 does not pro-
vide type checking of routine input/output parameters, we find that many errors encountered within PETSc
Fortran programs result from accidentally using incorrect calling sequences. Such mistakes are immediately
detected during compilation when using C/C++. Thus, using a mixture of C/C++ and Fortran often works
well for programmers who wish to employ Fortran for the core numerical routines within their applications.
In particular, one can effectively write PETSc driver routines in C/C++, thereby preserving flexibility within
the program, and still use Fortran when desired for underlying numerical computations.

11.1 Differences between PETSc Interfaces for C and Fortran

Only a few differences exist between the C and Fortran PETSc interfaces, all of which are due to Fortran
77 syntax limitations. Since PETSc is primarily written in C, the FORTRAN 90 dynamic allocation is not
easily accessible. All Fortran routines have the same names as the corresponding C versions, and PETSc
command line options are fully supported. The routine arguments follow the usual Fortran conventions; the
user need not worry about passing pointers or values. The calling sequences for the Fortran version are in
most cases identical to the C version, except for the error checking variable discussed in Section11.1.2and
a few routines listed in Section11.1.10.

11.1.1 Include Files

The Fortran include files for PETSc are located in the directory${PETSC_DIR}/include/finclude
and should be used via statements such as the following:

#include ”include/finclude/includefile.h”

Since one must be very careful to include each file no more than once in a Fortran routine, application
programmers must manually include each file needed for the various PETSc libraries within their program.
This approach differs from the PETSc C/C++ interface, where the user need only include the highest level
file, for example, petscsnes.h , which then automatically includes all of the required lower level files.
As shown in the examples of Section11.2, in Fortran one must explicitly listeachof the include files. One
must employ the Fortran file suffix.F rather than.f . This convention enables use of the CPP preprocessor,
which allows the use of the#includestatements that define PETSc objects and variables. (Familarity with
the CPP preprocessor is not needed for writing PETSc Fortran code; one can simply begin by copying a
PETSc Fortran example and its corresponding makefile.)
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11.1.2 Error Checking

In the Fortran version, each PETSc routine has as its final argument an integer error variable, in contrast
to the C convention of providing the error variable as the routine’s return value. The error code is set to
be nonzero if an error has been detected; otherwise, it is zero. For example, the Fortran and C variants of
SLESSolve () are given, respectively, below, whereierr denotes the error variable:

call SLESSolve (SLES sles,Vec b,Vec x,int its,int ierr)
SLESSolve (SLES sles,Vec b,Vec x,int *its);

Fortran programmers can check these error codes withCHKERRQ(ierr) , which terminates all processes
when an error is encountered. Likewise, one can set error codes within Fortran programs by usingSETE
RRQ(ierr,p,’ ’) , which again terminates all processes upon detection of an error. Note that complete
error tracebacks withCHKERRQ()andSETERRQ(), as described in Section1.4 for C routines, arenot
directly supported for Fortran routines; however, Fortran programmers can easily use the error codes in
writing their own tracebacks. For example, one could use code such as the following:

call SLESSolve (sles,x,y,ierr)
if ( ierr .ne. 0) then
print*, ’Error in routine ...’
return
endif

The most common reason for crashing PETSc Fortran code is forgetting the finalierr argument.

11.1.3 Array Arguments

Since Fortran 77 does not allow arrays to be returned in routine arguments, all PETSc routines that return
arrays, such asVecGetArray (), MatGetArray (), ISGetIndices (), andDAGetGlobalIndices
() are defined slightly differently in Fortran than in C. Instead of returning the array itself, these routines
accept as input a user-specified array of dimension one and return an integer index to the actual array used
for data storage within PETSc. The Fortran interface for several routines is as follows:

double precision xxv(1), aav(1)
integer ssv(1), dd v(1), ierr, nloc
PetscOffset ssi, xx i, aa i, dd i
Vec x
Mat A
IS s
DA d
call VecGetArray (x,xx v,xx i,ierr)
call MatGetArray (A,aa v,aai,ierr)
call ISGetIndices (s,ssv,ss i,ierr)
call DAGetGlobalIndices (d,nloc,ddv,dd i,ierr)

To access array elements directly, both the user-specified array and the integer indexmust then be used
together. For example, the following Fortran program fragment illustrates directly setting the values of a
vector array instead of usingVecSetValues() . Note the (optional) use of the preprocessor#define
statement to enable array manipulations in the conventional Fortran manner.

#define xxa(ib) xx v(xx i + (ib))
double precision xxv(1)
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PetscOffset xxi
integer i, ierr, n
Vec x
call VecGetArray (x,xx v,xx i,ierr)
call VecGetLocalSize (x,n,ierr)
do 10, i=1,n
xx a(i) = 3*i + 1
10 continue
call VecRestoreArray (x,xx v,xx i,ierr)

Figure 15 contains an example of usingVecGetArray () within a Fortran routine. Since in this case
the array is accessed directly from Fortran, indexing begins with 1, not 0 (unless the array is declared as
xx_v(0:1) ). This is different from the use ofVecSetValues () where, indexing always starts with 0.
Note: If using VecGetArray (), MatGetArray (), ISGetIndices (), or DAGetGlobalIndices
() from Fortran, the usermust notcompile the Fortran code with options to check for “array entries out of
bounds” (e.g., on the IBM RS/6000 this is done with the-C compiler option, so never use the-C option
with this).

11.1.4 Calling Fortran Routines from C (and C Routines from Fortran)

Different machines have different methods of naming Fortran routines called from C (or C routines called
from Fortran). Most Fortran compilers change all the capital letters in Fortran routines to small. On some
machines, the Fortran compiler appends an underscore to the end of each Fortran routine name; for example,
the Fortran routineDabsc() would be called from C withdabsc_() . Other machines change all the
letters in Fortran routine names to capitals.

PETSc provides two macros (defined in C/C++) to help write portable code that mixes C/C++ and For-
tran. They arePETSC_HAVE_FORTRAN_UNDERSCOREandPETSC_HAVE_FORTRAN_CAPS, which
are defined in the file${PETSC_DIR}/bmake/${PETSC_ARCH}/petscconf.h . The macros are
used, for example, as follows:

#if defined(PETSCHAVE FORTRAN CAPS)
#define dabscDABSC
#elif !defined(PETSCHAVE FORTRAN UNDERSCORE)
#define dabscdabsc
#endif
.....
dabsc(&n,x,y); /* call the Fortran function */

11.1.5 Passing Null Pointers

In several PETSc C functions, one has the option of passing a 0 (null) argument (for example, the fifth
argument ofMatCreateSeqAIJ ()). From Fortran, usersmustpassPETSC_NULL_XXXto indicate
a null argument (where XXX isINTEGER, DOUBLE, CHARACTER, or SCALARdepending on the type
of argument required); passing 0 from Fortran will crash the code. Note that the C convention of passing
PETSC_NULL(or 0)cannotbe used. For example, when no options prefix is desired in the routinePetscO
ptionsGetInt (), one must use the following command in Fortran:

call PetscOptionsGetInt (PETSCNULL CHARACTER,’-name’,N,flg,ierr)

This Fortran requirement is inconsistent with C, where the user can employPETSC_NULLfor all null
arguments.

114

manualpages/Vec/Vec.html##Vec
manualpages/Vec/VecGetArray.html##VecGetArray
manualpages/Vec/VecGetLocalSize.html##VecGetLocalSize
manualpages/Vec/VecRestoreArray.html##VecRestoreArray
manualpages/Vec/VecGetArray.html##VecGetArray
manualpages/Vec/VecSetValues.html##VecSetValues
manualpages/Vec/VecGetArray.html##VecGetArray
manualpages/Mat/MatGetArray.html##MatGetArray
manualpages/IS/ISGetIndices.html##ISGetIndices
manualpages/DA/DAGetGlobalIndices.html##DAGetGlobalIndices
manualpages/DA/DAGetGlobalIndices.html##DAGetGlobalIndices
manualpages/Mat/MatCreateSeqAIJ.html##MatCreateSeqAIJ
manualpages/Sys/PetscOptionsGetInt.html##PetscOptionsGetInt
manualpages/Sys/PetscOptionsGetInt.html##PetscOptionsGetInt
manualpages/Sys/PetscOptionsGetInt.html##PetscOptionsGetInt


11.1.6 Duplicating Multiple Vectors

The Fortran interface toVecDuplicateVecs () differs slightly from the C/C++ variant because Fortran
does not allow arrays to be returned in routine arguments. To createn vectors of the same format as an
existing vector, the user must declare a vector array,v_new of size n. Then, afterVecDuplicateVecs
() has been called,v_new will contain (pointers to) the new PETSc vector objects. When finished with the
vectors, the user should destroy them by callingVecDestroyVecs (). For example, the following code
fragment duplicatesv_old to form two new vectors,v_new(1) andv_new(2) .

Vec v old, v new(2)
integer ierr
PetscScalar alpha
....
call VecDuplicateVecs (v old,2,v new,ierr)
alpha = 4.3
call VecSet (alpha,vnew(1),ierr)
alpha = 6.0
call VecSet (alpha,vnew(2),ierr)
....
call VecDestroyVecs (v new,2,ierr)

11.1.7 Matrix and Vector Indices

All matrices and vectors in PETSc use zero-based indexing, regardless of whether C or Fortran is being used.
The interface routines, such asMatSetValues () andVecSetValues (), always use zero indexing. See
Section3.2for further details.

11.1.8 Setting Routines

When a function pointer is passed as an argument to a PETSc function, such as the test inKSPSetC
onvergenceTest (), it is assumed that this pointer references a routine written in the same language as
the PETSc interface function that was called. For instance, ifKSPSetConvergenceTest () is called
from C, the test argument is assumed to be a C function. Likewise, if it is called from Fortran, the test is
assumed to be written in Fortran.

11.1.9 Compiling and Linking Fortran Programs

Figure21shows a sample makefile that can be used for PETSc programs. In this makefile, one can compile
and run a debugging version of the Fortran programex3.F with the actionsmake BOPT=g ex3andmake
runex3 , respectively. The compilation command is restated below:

ex3: ex3.o
-${FLINKER} -o ex3 ex3.o${PETSC_FORTRAN_LIB} ${PETSC_LIB}
${RM} ex3.o

Note that the PETSc Fortran interface library, given by${PETSC_FORTRAN_LIB}, mustprecede the base
PETSc libraries, given by${PETSC_LIB} , on the link line.

11.1.10 Routines with Different Fortran Interfaces

The following Fortran routines differ slightly from their C counterparts; see the manual pages and previous
discussion in this chapter for details:
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PetscInitialize (char *filename,intierr)
PetscError (int err,char *message,intierr)
VecGetArray (), MatGetArray ()
ISGetIndices (), DAGetGlobalIndices ()
VecDuplicateVecs (), VecDestroyVecs ()
PetscOptionsGetString ()

The following functions are not supported in Fortran:

PetscFClose (), PetscFOpen (), PetscFPrintf (), PetscPrintf ()
PetscPopErrorHandler (), PetscPushErrorHandler ()
PetscLogInfo ()
PetscSetDebugger ()
VecGetArrays (), VecRestoreArrays ()
PetscViewerASCIIGetPointer (), PetscViewerBinaryGetDescriptor ()
PetscViewerStringOpen (), PetscViewerStringSPrintf ()
PetscOptionsGetStringArray ()

11.1.11 Fortran90

PETSc includes limited support for direct use of Fortran90 pointers. Current routines include:

VecGetArrayF90 (), VecRestoreArrayF90 ()
VecDuplicateVecsF90 (), VecDestroyVecsF90 ()
DAGetGlobalIndicesF90 ()
MatGetArrayF90 (), MatRestoreArrayF90 ()
ISGetIndicesF90 (), ISRestoreIndicesF90 ()

See the manual pages for details and pointers to example programs. To use the routinesVecGetArrayF90
(), VecRestoreArrayF90 () VecDuplicateVecsF90 (), andVecDestroyVecsF90 (), one must
use the Fortran90 vector include file,

#include ”include/finclude/petscvec.h90”

Analogous include files for other libraries arepetscda.h90 , petscmat.h90 , andpetscis.h90 .
Unfortunately, these routines currently work only on certain machines with certain compilers. They cur-
rently work with the SGI, Solaris, the Cray T3E, the IBM and the NAG Fortran 90 compiler.

11.2 Sample Fortran77 Programs

Sample programs that illustrate the PETSc interface for Fortran are given in Figures14– 17, corresponding
to${PETSC_DIR}/src/vec/examples/tests/ex19.F , ${PETSC_DIR}/src/vec/examples/
tutorials/ex4f.F ,
${PETSC_DIR}/src/draw/examples/tests/ex5.F , and${PETSC_DIR}/src/snes/examples/
ex1f.F , respectively. We also refer Fortran programmers to the C examples listed throughout the manual,
since PETSc usage within the two languages differs only slightly.

!
! "$Id: ex19.F,v 1.38 2001/08/10 03:08:33 balay Exp $";
!

program main
#include "include/finclude/petsc.h"
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#include "include/finclude/petscvec.h"
!
! This example demonstrates basic use of the PETSc Fortran interface
! to vectors.
!

integer n,ierr,flg
PetscScalar one,two,three,dot
PetscReal norm,rdot
Vec x,y,w

n = 20
one = 1.0
two = 2.0
three = 3.0

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

! Create a vector, then duplicate it
call VecCreate(PETSC_COMM_WORLD,x,ierr)
call VecSetSizes(x,PETSC_DECIDE,n,ierr)
call VecSetFromOptions(x,ierr)
call VecDuplicate(x,y,ierr)
call VecDuplicate(x,w,ierr)

call VecSet(one,x,ierr)
call VecSet(two,y,ierr)

call VecDot(x,y,dot,ierr)
rdot = PetscRealPart(dot)
write(6,100) rdot

100 format(’Result of inner product ’,f10.4)

call VecScale(two,x,ierr)
call VecNorm(x,NORM_2,norm,ierr)
write(6,110) norm

110 format(’Result of scaling ’,f10.4)

call VecCopy(x,w,ierr)
call VecNorm(w,NORM_2,norm,ierr)
write(6,120) norm

120 format(’Result of copy ’,f10.4)

call VecAXPY(three,x,y,ierr)
call VecNorm(y,NORM_2,norm,ierr)
write(6,130) norm

130 format(’Result of axpy ’,f10.4)

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call VecDestroy(w,ierr)
call PetscFinalize(ierr)
end
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Figure 14: Sample Fortran Program: Using PETSc Vectors

!
! "$Id: ex4f.F,v 1.28 2001/08/07 03:02:34 balay Exp $";
!
! Description: Illustrates the use of VecSetValues() to set
! multiple values at once; demonstrates VecGetArray().
!
!/*T
! Concepts: vectorsˆassembling;
! Concepts: vectorsˆarrays of vectors;
! Processors: 1
!T*/
! -----------------------------------------------------------------------

program main
implicit none

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Include files
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

!
! The following include statements are required for Fortran programs
! that use PETSc vectors:
! petsc.h - base PETSc routines
! petscvec.h - vectors

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Macro definitions
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors.
!
! - The element xx_a(ib) is element ib+1 in the vector x
! - Here we add 1 to the base array index to facilitate the use of
! conventional Fortran 1-based array indexing.
!
#define xx_a(ib) xx_v(xx_i + (ib))
#define yy_a(ib) yy_v(yy_i + (ib))

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Beginning of program
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PetscScalar xwork(6)
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PetscScalar xx_v(1),yy_v(1)
integer i,n,ierr,loc(6)
PetscOffset xx_i,yy_i
Vec x,y

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
n = 6

! Create initial vector and duplicate it

call VecCreateSeq(PETSC_COMM_SELF,n,x,ierr)
call VecDuplicate(x,y,ierr)

! Fill work arrays with vector entries and locations. Note that
! the vector indices are 0-based in PETSc (for both Fortran and
! C vectors)

do 10 i=1,n
loc(i) = i-1
xwork(i) = 10.0*i

10 continue

! Set vector values. Note that we set multiple entries at once.
! Of course, usually one would create a work array that is the
! natural size for a particular problem (not one that is as long
! as the full vector).

call VecSetValues(x,6,loc,xwork,INSERT_VALUES,ierr)

! Assemble vector

call VecAssemblyBegin(x,ierr)
call VecAssemblyEnd(x,ierr)

! View vector

write(6,20)
20 format(’initial vector:’)

call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)
call VecCopy(x,y,ierr)

! Get a pointer to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
! the array.
! - Note that the Fortran interface to VecGetArray() differs from the
! C version. See the users manual for details.

call VecGetArray(x,xx_v,xx_i,ierr)
call VecGetArray(y,yy_v,yy_i,ierr)

! Modify vector data

do 30 i=1,n
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xx_a(i) = 100.0*i
yy_a(i) = 1000.0*i

30 continue

! Restore vectors

call VecRestoreArray(x,xx_v,xx_i,ierr)
call VecRestoreArray(y,yy_v,yy_i,ierr)

! View vectors

write(6,40)
40 format(’new vector 1:’)

call VecView(x,PETSC_VIEWER_STDOUT_SELF,ierr)

write(6,50)
50 format(’new vector 2:’)

call VecView(y,PETSC_VIEWER_STDOUT_SELF,ierr)

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.

call VecDestroy(x,ierr)
call VecDestroy(y,ierr)
call PetscFinalize(ierr)
end

Figure 15: Sample Fortran Program: Using VecSetValues() and VecGetArray()

!
! "$Id: ex5.F,v 1.29 2001/08/07 03:01:54 balay Exp $";
!

program main
#include "include/finclude/petsc.h"
#include "include/finclude/petscdraw.h"
!
! This example demonstrates basic use of the Fortran interface for
! PetscDraw routines.
!

PetscDraw draw
PetscDrawLG lg
PetscDrawAxis axis
integer n,i,ierr,x,y,width,height,flg
PetscScalar xd,yd

n = 20
x = 0
y = 0
width = 300
height = 300

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
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call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-width’,width, &
& flg,ierr)

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-height’,height, &
& flg,ierr)

call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

! call PetscDrawOpenX(PETSC_COMM_SELF,PETSC_NULL_CHARACTER, &
! PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)

call PetscDrawCreate(PETSC_COMM_SELF,PETSC_NULL_CHARACTER, &
& PETSC_NULL_CHARACTER,x,y,width,height,draw,ierr)

call PetscDrawSetType(draw,PETSC_DRAW_X,ierr)

call PetscDrawLGCreate(draw,1,lg,ierr)
call PetscDrawLGGetAxis(lg,axis,ierr)
call PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED, &

& PETSC_DRAW_BLUE,ierr)
call PetscDrawAxisSetLabels(axis,’toplabel’,’xlabel’,’ylabel’, &

& ierr)

do 10, i=0,n-1
xd = i - 5.0
yd = xd*xd
call PetscDrawLGAddPoint(lg,xd,yd,ierr)

10 continue

call PetscDrawLGIndicateDataPoints(lg,ierr)
call PetscDrawLGDraw(lg,ierr)
call PetscDrawFlush(draw,ierr)

call PetscSleep(10,ierr)

call PetscDrawLGDestroy(lg,ierr)
call PetscDrawDestroy(draw,ierr)
call PetscFinalize(ierr)
end

Figure 16: Sample Fortran Program: Using PETSc PetscDraw Routines

!
! "$Id: ex1f.F,v 1.33 2001/08/07 03:04:16 balay Exp $";
!
! Description: Uses the Newton method to solve a two-variable system.
!
!/*T
! Concepts: SNESˆbasic uniprocessor example
! Processors: 1
!T*/
!
! -----------------------------------------------------------------------

program main
implicit none
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! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Include files
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

!
! The following include statements are generally used in SNES Fortran
! programs:
! petsc.h - base PETSc routines
! petscvec.h - vectors
! petscmat.h - matrices
! petscksp.h - Krylov subspace methods
! petscpc.h - preconditioners
! petscsles.h - SLES interface
! petscsnes.h - SNES interface
! Other include statements may be needed if using additional PETSc
! routines in a Fortran program, e.g.,
! petscviewer.h - viewers
! petscis.h - index sets
!
#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscksp.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsles.h"
#include "include/finclude/petscsnes.h"
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Variable declarations
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

!
! Variables:
! snes - nonlinear solver
! sles - linear solver
! pc - preconditioner context
! ksp - Krylov subspace method context
! x, r - solution, residual vectors
! J - Jacobian matrix
! its - iterations for convergence
!

SNES snes
SLES sles
PC pc
KSP ksp
Vec x,r
Mat J
integer ierr,its,size,rank
PetscScalar pfive
double precision tol
PetscTruth setls
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! Note: Any user-defined Fortran routines (such as FormJacobian)
! MUST be declared as external.

external FormFunction, FormJacobian, MyLineSearch

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
! Macro definitions
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
!
! Macros to make clearer the process of setting values in vectors and
! getting values from vectors. These vectors are used in the routines
! FormFunction() and FormJacobian().
! - The element lx_a(ib) is element ib in the vector x
!
#define lx_a(ib) lx_v(lx_i + (ib))
#define lf_a(ib) lf_v(lf_i + (ib))
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Beginning of program
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
if (size .ne. 1) then

if (rank .eq. 0) then
write(6,*) ’This is a uniprocessor example only!’

endif
SETERRQ(1,’ ’,ierr)

endif

! - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -
! Create nonlinear solver context
! - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -

call SNESCreate(PETSC_COMM_WORLD,snes,ierr)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Create matrix and vector data structures; set corresponding routines
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Create vectors for solution and nonlinear function

call VecCreateSeq(PETSC_COMM_SELF,2,x,ierr)
call VecDuplicate(x,r,ierr)

! Create Jacobian matrix data structure

call MatCreate(PETSC_COMM_SELF,PETSC_DECIDE,PETSC_DECIDE,2,2,J, &
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& ierr)
call MatSetFromOptions(J,ierr)

! Set function evaluation routine and vector

call SNESSetFunction(snes,r,FormFunction,PETSC_NULL_OBJECT,ierr)

! Set Jacobian matrix data structure and Jacobian evaluation routine

call SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL_OBJECT, &
& ierr)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Customize nonlinear solver; set runtime options
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Set linear solver defaults for this problem. By extracting the
! SLES, KSP, and PC contexts from the SNES context, we can then
! directly call any SLES, KSP, and PC routines to set various options.

call SNESGetSLES(snes,sles,ierr)
call SLESGetKSP(sles,ksp,ierr)
call SLESGetPC(sles,pc,ierr)
call PCSetType(pc,PCNONE,ierr)
tol = 1.e-4
call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION, &

& PETSC_DEFAULT_DOUBLE_PRECISION,20,ierr)

! Set SNES/SLES/KSP/PC runtime options, e.g.,
! -snes_view -snes_monitor -ksp_type <ksp> -pc_type <pc>
! These options will override those specified above as long as
! SNESSetFromOptions() is called _after_ any other customization
! routines.

call SNESSetFromOptions(snes,ierr)

call PetscOptionsHasName(PETSC_NULL_CHARACTER,’-setls’,setls,ierr)

if (setls .eq. PETSC_TRUE) then
call SNESSetLineSearch(snes,MyLineSearch, &

& PETSC_NULL_OBJECT,ierr)
endif

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Evaluate initial guess; then solve nonlinear system
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Note: The user should initialize the vector, x, with the initial guess
! for the nonlinear solver prior to calling SNESSolve(). In particular,
! to employ an initial guess of zero, the user should explicitly set
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! this vector to zero by calling VecSet().

pfive = 0.5
call VecSet(pfive,x,ierr)
call SNESSolve(snes,x,its,ierr)
if (rank .eq. 0) then

write(6,100) its
endif

100 format(’Number of Newton iterations = ’,i5)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call VecDestroy(x,ierr)
call VecDestroy(r,ierr)
call MatDestroy(J,ierr)
call SNESDestroy(snes,ierr)
call PetscFinalize(ierr)
end

! ---------------------------------------------------------------------
!
! FormFunction - Evaluates nonlinear function, F(x).
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameter:
! f - function vector
!

subroutine FormFunction(snes,x,f,dummy,ierr)
implicit none

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscsnes.h"

SNES snes
Vec x,f
integer ierr,dummy(*)

! Declarations for use with local arrays

PetscScalar lx_v(1),lf_v(1)
PetscOffset lx_i,lf_i

! Get pointers to vector data.
! - For default PETSc vectors, VecGetArray() returns a pointer to
! the data array. Otherwise, the routine is implementation dependent.
! - You MUST call VecRestoreArray() when you no longer need access to
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! the array.
! - Note that the Fortran interface to VecGetArray() differs from the
! C version. See the Fortran chapter of the users manual for details.

call VecGetArray(x,lx_v,lx_i,ierr)
call VecGetArray(f,lf_v,lf_i,ierr)

! Compute function

lf_a(1) = lx_a(1)*lx_a(1) &
& + lx_a(1)*lx_a(2) - 3.0

lf_a(2) = lx_a(1)*lx_a(2) &
& + lx_a(2)*lx_a(2) - 6.0

! Restore vectors

call VecRestoreArray(x,lx_v,lx_i,ierr)
call VecRestoreArray(f,lf_v,lf_i,ierr)

return
end

! ---------------------------------------------------------------------
!
! FormJacobian - Evaluates Jacobian matrix.
!
! Input Parameters:
! snes - the SNES context
! x - input vector
! dummy - optional user-defined context (not used here)
!
! Output Parameters:
! A - Jacobian matrix
! B - optionally different preconditioning matrix
! flag - flag indicating matrix structure
!

subroutine FormJacobian(snes,X,jac,B,flag,dummy,ierr)
implicit none

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsnes.h"

SNES snes
Vec X
Mat jac,B
MatStructure flag
PetscScalar A(4)
integer ierr,idx(2),dummy(*)

! Declarations for use with local arrays

PetscScalar lx_v(1)
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PetscOffset lx_i

! Get pointer to vector data

call VecGetArray(x,lx_v,lx_i,ierr)

! Compute Jacobian entries and insert into matrix.
! - Since this is such a small problem, we set all entries for
! the matrix at once.
! - Note that MatSetValues() uses 0-based row and column numbers
! in Fortran as well as in C (as set here in the array idx).

idx(1) = 0
idx(2) = 1
A(1) = 2.0*lx_a(1) + lx_a(2)
A(2) = lx_a(1)
A(3) = lx_a(2)
A(4) = lx_a(1) + 2.0*lx_a(2)
call MatSetValues(jac,2,idx,2,idx,A,INSERT_VALUES,ierr)
flag = SAME_NONZERO_PATTERN

! Restore vector

call VecRestoreArray(x,lx_v,lx_i,ierr)

! Assemble matrix

call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)

return
end

subroutine MyLineSearch(snes,lctx,x,f,g,y,w,fnorm,ynorm,gnorm, &
& flag,ierr)

#include "include/finclude/petsc.h"
#include "include/finclude/petscvec.h"
#include "include/finclude/petscmat.h"
#include "include/finclude/petscksp.h"
#include "include/finclude/petscpc.h"
#include "include/finclude/petscsles.h"
#include "include/finclude/petscsnes.h"

SNES snes
integer lctx
Vec x, f,g, y, w
double precision fnorm,ynorm,gnorm
integer flag,ierr

PetscScalar mone

mone = -1.0d0
flag = 0
call VecNorm(y,NORM_2,ynorm,ierr)
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call VecAYPX(mone,x,y,ierr)
call SNESComputeFunction(snes,y,g,ierr)
call VecNorm(g,NORM_2,gnorm,ierr)
return
end

Figure 17: Sample Fortran Program: Using PETSc Nonlinear Solvers
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Part III

Additional Information

129





Chapter 12

Profiling

PETSc includes a consistent, lightweight scheme to allow the profiling of application programs. The PETSc
routines automatically log performance data if certain options are specified at runtime. The user can also
log information about application codes for a complete picture of performance. In addition, as described
in Section12.1.1, PETSc provides a mechanism for printing informative messages about computations.
Section12.1introduces the various profiling options in PETSc, while the remainder of the chapter focuses
on details such as monitoring application codes and tips for accurate profiling.

12.1 Basic Profiling Information

If an application code and the PETSc libraries have been compiled with the-DPETSC_USE_LOGflag
(which is the default for all versions), then various kinds of profiling of code between calls toPetscI
nitialize() andPetscFinalize () can be activated at runtime. Note that the flag-DPETSC_US
E_LOGcan be specified for an installation of PETSc in the file${PETSC_DIR}/bmake/${PETSC_
ARCH}/variables , as discussed in Section15.2. The profiling options include the following:

• -log_summary - Prints an ASCII version of performance data at program’s conclusion. These
statistics are comprehensive and concise and require little overhead; thus,-log_summary is in-
tended as the primary means of monitoring the performance of PETSc codes.

• -log_info [infofile] - Prints verbose information about code to stdout or an optional file.
This option provides details about algorithms, data structures, etc. Since the overhead of printing
such output slows a code, this option should not be used when evaluating a program’s performance.

• -log_trace [logfile] - Traces the beginning and ending of all PETSc events. This option,
which can be used in conjunction with-log_info , is useful to see where a program is hanging
without running in the debugger.

As discussed in Section12.1.3, additional profilng can be done with MPE.

12.1.1 Interpreting -log summary Output: The Basics

As shown in Figure7 (in Part I), the option -log_summary activates printing of profile data to standard
output at the conclusion of a program. Profiling data can also be printed at any time within a program by
calling PetscLogPrintSummary() . We print performance data for each routine, organized by PETSc
libraries, followed by any user-defined events (discussed in Section12.2). For each routine, the output data
include the maximum time and floating point operation (flop) rate over all processes. Information about
parallel performance is also included, as discussed in the following section. For the purpose of PETSc
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floating point operation counting, we define oneflop as one operation of any of the following types: mul-
tiplication, division, addition, or subtraction. For example, oneVecAXPY () operation, which computes
y = αx + y for vectors of lengthN , requires2N flops (consisting ofN additions andN multiplications).
Bear in mind that flop rates present only a limited view of performance, since memory loads and stores are
the real performance barrier. For simplicity, the remainder of this discussion focuses on interpreting profile
data for theSLES library, which provides the linear solvers at the heart of the PETSc package. Recall the
hierarchical organization of the PETSc library, as shown in Figure1. EachSLES solver is composed of a
PC (preconditioner) and aKSP (Krylov subspace) part, which are in turn built on top of theMat (matrix)
andVec (vector) modules. Thus, operations in theSLES module are composed of lower-level operations
in these packages. Note also that the nonlinear solvers library,SNES, is build on top of theSLES module,
and the timestepping library,TS , is in turn built on top ofSNES. We briefly discuss interpretation of the
sample output in Figure7, which was generated by solving a linear system on one process using restarted
GMRES and ILU preconditioning. The linear solvers inSLES consist of two basic phases,SLESSetUp
() andSLESSolve (), each of which consists of a variety of actions, depending on the particular solution
technique. For the case of using the PCILU preconditioner and KSPGMRES Krylov subspace method, the
breakdown of PETSc routines is listed below. As indicated by the levels of indentation, the operations in
SLESSetUp () include all of the operations withinPCSetUp (), which in turn includeMatILUFactor
(), and so on.

• SLESSetUp - Set up linear solver
• PCSetUp - Set up preconditioner
•MatILUFactor - Factor preconditioning matrix
•MatILUFactorSymbolic - Symbolic factorization phase
•MatLUFactorNumeric - Numeric factorization phase

• SLESSolve - Solve linear system
• PCApply - Apply preconditioner
•MatSolve - Forward/backward triangular solves

• KSPGMRESOrthog - Orthogonalization in GMRES
• VecDot or VecMDot - Inner products

•MatMult - Matrix-vector product
•MatMultAdd - Matrix-vector product + vector addition
• VecScale , VecNorm , VecAXPY, VecCopy , ...

The summaries printed via-log_summary reflect this routine hierarchy. For example, the performance
summaries for a particular high-level routine such asSLESSolve include all of the operations accumulated
in the lower-level components that make up the routine.

Admittedly, we do not currently present the output with-log_summary so that the hierarchy of
PETSc operations is completely clear, primarily because we have not determined a clean and uniform way to
do so throughout the library. Improvements may follow. However, for a particular problem, the user should
generally have an idea of the basic operations that are required for its implementation (e.g., which operations
are performed when using GMRES and ILU, as described above), so that interpreting the-log_summary
data should be relatively straightforward.

12.1.2 Interpreting -log summary Output: Parallel Performance

We next discuss performance summaries for parallel programs, as shown within Figures18 and19, which
present the combined output generated by the-log_summary option. The program that generated this
data is${PETSC_DIR}/src/sles/examples/ex21.c . The code loads a matrix and right-hand-side
vector from a binary file and then solves the resulting linear system; the program then repeats this process
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mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -options_left
Number of iterations = 19
Residual norm = 7.7643e-05
Number of iterations = 55
Residual norm = 6.3633e-01
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
ex21 on a rs6000 named p039 with 4 processors, by mcinnes Wed Jul 24 16:30:22 1996
Max Min Avg Total
Time (sec): 3.289e+01 1.0 3.288e+01
Objects: 1.130e+02 1.0 1.130e+02
Flops: 2.195e+08 1.0 2.187e+08 8.749e+08
Flops/sec: 6.673e+06 1.0 2.660e+07
MPI Messages: 2.205e+02 1.4 1.928e+02 7.710e+02
MPI Message Lengths: 7.862e+06 2.5 5.098e+06 2.039e+07
MPI Reductions: 1.850e+02 1.0
Summary of Stages: ---- Time ------ ----- Flops ------- -- Messages -- -- Message-lengths -- Reductions -
Avg %Total Avg %Total counts %Total avg %Total counts %Total

0: Load System 0: 1.191e+00 3.6% 3.980e+06 0.5% 3.80e+01 4.9% 6.102e+04 0.3% 1.80e+01 9.7%
1: SLESSetup 0: 6.328e-01 2.5% 1.479e+04 0.0% 0.00e+00 0.0% 0.000e+00 0.0% 0.00e+00 0.0%
2: SLESSolve 0: 2.269e-01 0.9% 1.340e+06 0.0% 1.52e+02 19.7% 9.405e+03 0.0% 3.90e+01 21.1%
3: Load System 1: 2.680e+01 107.3% 0.000e+00 0.0% 2.10e+01 2.7% 1.799e+07 88.2% 1.60e+01 8.6%
4: SLESSetup 1: 1.867e-01 0.7% 1.088e+08 2.3% 0.00e+00 0.0% 0.000e+00 0.0% 0.00e+00 0.0%
5: SLESSolve 1: 3.831e+00 15.3% 2.217e+08 97.1% 5.60e+02 72.6% 2.333e+06 11.4% 1.12e+02 60.5%

------------------------------------------------------------------------------------------------------------------------
.... [Summary of various phases, see part II below] ...
------------------------------------------------------------------------------------------------------------------------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants’ Mem.
Viewer 5 5 0 0
Index set 10 10 127076 0
Vector 76 76 9152040 0
Vector Scatter 2 2 106220 0
Matrix 8 8 9611488 5.59773e+06
Krylov Solver 4 4 33960 7.5966e+06
Preconditioner 4 4 16 9.49114e+06
SLES 4 4 0 1.71217e+07

Figure 18: Profiling a PETSc Program: Part I - Overall Summary

for a second linear system. This particular case was run on four processors of an IBM SP, using restarted
GMRES and the block Jacobi preconditioner, where each block was solved with ILU. Figure18presents an
overall performance summary, including times, floating-point operations, computational rates, and message-
passing activity (such as the number andsize of messages sent and collective operations). Summaries for
various user-defined stages of monitoring (as discussed in Section12.3) are also given. Information about
the various phases of computation then follow (as shown separately here in Figure19). Finally, a summary
of memory usage and object creation and destruction is presented. We next focus on the summaries for the
various phases of the computation, as given in the table within Figure19. The summary for each phase
presents the maximum times and flop rates over all processes, as well as the ratio of maximum to minimum
times and flop rates for all processes. A ratio of approximately 1 indicates that computations within a given
phase are well balanced among the processes; as the ratio increases, the balance becomes increasingly poor.
Also, the total computational rate (in units of MFlops/sec) is given for each phase in the final column of the
phase summary table.

Total Mflop/sec = 10−6 ∗ (sum of flops over all processors)/(max time over all processors)

Note: Total computational rates< 1 MFlop are listed as 0 in this column of the phase summary table. Ad-
ditional statistics for each phase include the total number of messages sent, the average message length,
and the number of global reductions. As discussed in the preceding section, the performance summaries for
higher-level PETSc routines include the statistics for the lower levels of which they are made up. For ex-
ample, the communication within matrix-vector productsMatMult () consists of vector scatter operations,
as given by the routinesVecScatterBegin () and VecScatterEnd() . The final data presented are
the percentages of the various statistics (time (%T), flops/sec (%F), messages(%M), average message length
(%L), and reductions (%R)) for each event relative to the total computation and to any user-defined stages
(discussed in Section12.3). These statistics can aid in optimizing performance, since they indicate the sec-
tions of code that could benefit from various kinds of tuning. Chapter13 gives suggestions about achieving
good performance with PETSc codes.
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mpirun ex21 -f0 medium -f1 arco6 -ksp_gmres_unmodifiedgramschmidt -log_summary -mat_mpibaij \
-matload_block_size 3 -pc_type bjacobi -options_left
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
.... [Overall summary, see part I] ...
Phase summary info:
Count: number of times phase was executed
Time and Flops/sec: Max - maximum over all processors
Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length
Reduct: number of global reductions
Global: entire computation
Stage: optional user-defined stages of a computation. Set stages with PLogStagePush() and PLogStagePop().
%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase
Total Mflop/s: 10ˆ6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Phase Count Time (sec) Flops/sec --- Global --- --- Stage --- Total
Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------
...
--- Event Stage 4: SLESSetUp 1
MatGetReordering 1 3.491e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 2 0 0 0 0 0
MatILUFctrSymbol 1 6.970e-03 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 3 0 0 0 0 0
MatLUFactorNumer 1 1.829e-01 1.1 3.2e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 90 99 0 0 0 110
SLESSetUp 2 1.989e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 99 99 0 0 0 102
PCSetUp 2 1.952e-01 1.1 2.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 97 99 0 0 0 104
PCSetUpOnBlocks 1 1.930e-01 1.1 3.0e+07 1.1 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 96 99 0 0 0 105
--- Event Stage 5: SLESSolve 1
MatMult 56 1.199e+00 1.1 5.3e+07 1.0 1.1e+03 4.2e+03 0.0e+00 5 28 99 23 0 30 28 99 99 0 201
MatSolve 57 1.263e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 187
VecNorm 57 1.528e-01 1.3 2.7e+07 1.3 0.0e+00 0.0e+00 2.3e+02 1 1 0 0 31 3 1 0 0 51 81
VecScale 57 3.347e-02 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 1 1 0 0 0 184
VecCopy 2 1.703e-03 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 3 2.098e-03 1.0 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 3 3.247e-03 1.1 5.4e+07 1.1 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 200
VecMDot 55 5.216e-01 1.2 9.8e+07 1.2 0.0e+00 0.0e+00 2.2e+02 2 20 0 0 30 12 20 0 0 49 327
VecMAXPY 57 6.997e-01 1.1 6.9e+07 1.1 0.0e+00 0.0e+00 0.0e+00 3 21 0 0 0 18 21 0 0 0 261
VecScatterBegin 56 4.534e-02 1.8 0.0e+00 0.0 1.1e+03 4.2e+03 0.0e+00 0 0 99 23 0 1 0 99 99 0 0
VecScatterEnd 56 2.095e-01 1.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 1 0 0 0 0 5 0 0 0 0 0
SLESSolve 1 3.832e+00 1.0 5.6e+07 1.0 1.1e+03 4.2e+03 4.5e+02 15 97 99 23 61 99 99 99 99 99 222
KSPGMRESOrthog 55 1.177e+00 1.1 7.9e+07 1.1 0.0e+00 0.0e+00 2.2e+02 4 39 0 0 30 29 40 0 0 49 290
PCSetUpOnBlocks 1 1.180e-05 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
PCApply 57 1.267e+00 1.0 4.7e+07 1.0 0.0e+00 0.0e+00 0.0e+00 5 27 0 0 0 33 28 0 0 0 186
------------------------------------------------------------------------------------------------------------------------
.... [Conclusion of overall summary, see part I] ...

Figure 19: Profiling a PETSc Program: Part II - Phase Summaries

12.1.3 Using-log mpewith Upshot/Jumpshot

It is also possible to use theUpshot(or Jumpshot) package [11] to visualize PETSc events. This package
comes with the MPE software, which is part of the MPICH [9] implementation of MPI. The option

-log mpe [logfile]

creates a logfile of events appropriate for viewing withUpshot. The user can either use the default logging
file, mpe.log , or specify an optional name vialogfile .

To use this logging option, the user may employ any implementation of MPI (not necessarily MPICH),
but must build and link the MPE part of the MPICH. The user must compile the PETSc library with the
-DPETSC_HAVE_MPEflag, which isnot activated by default. The user can turn on MPE logging by
specifying-DPETSC_HAVE_MPEin the PCONFvariable within ${PETSC_DIR}/bmake/${PETS
C_ARCH}/packages and (re)compiling all of PETSc. By default, not all PETSc events are logged with
MPE. For example, sinceMatSetValues () may be called thousands of times in a program, by default its
calls are not logged with MPE. To activate MPE logging of a particular event, one should use the command

PetscLogEventMPEActivate(int event);

To deactivate logging of an event for MPE, one should use

PetscLogEventMPEDeactivate(int event);

The event may be either a predefined PETSc event (as listed in the file${PETSC_DIR}/include/
petsclog.h ) or one obtained withPetscLogEventRegister () (as described in Section12.2).
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These routines may be called as many times as desired in an application program, so that one could re-
strict MPE event logging only to certain code segments. To see what events are logged by default, the user
can view the source code; see the filessrc/plot/src/plogmpe.c andinclude/petsclog.h . A
simple program and GUI interface to see the events that are predefined and their definition is being devel-
oped. The user can also log MPI events. To do this, simply consider the PETSc application as any MPI
application, and follow the MPI implementation’s instructions for logging MPI calls. For example, when
using MPICH, this merely required adding-llmpich to the library listbefore-lmpich .

12.2 Profiling Application Codes

PETSc automatically logs object creation, times, and floating-point counts for the library routines. Users can
easily supplement this information by monitoring their application codes as well. The basic steps involved
in logging a user-defined portion of code, called anevent, are shown in the code fragment below:

#include ”petsclog.h”
int USEREVENT;
PetscLogEventRegister (&USER EVENT,”User event name”,0);
PetscLogEventBegin (USEREVENT,0,0,0,0);
/* application code segment to monitor */
PetscLogFlops (number of flops for this code segment);
PetscLogEventEnd (USEREVENT,0,0,0,0);

One must register the event by callingPetscLogEventRegister() , which assigns a unique integer
to identify the event for profiling purposes:

PetscLogEventRegister (int *e,const char string[]);

Herestring is a user-defined event name, andcolor is an optional user-defined event color (for use
with Upshot/Nupshotlogging); one should see the manual page for details. The argument returned ine
should then be passed to thePetscLogEventBegin () andPetscLogEventEnd () routines. Events
are logged by using the pair

PetscLogEventBegin (int event,PetscObject o1,PetscObject o2,
PetscObject o3,PetscObject o4);
PetscLogEventEnd (int event,PetscObject o1,PetscObject o2,
PetscObject o3,PetscObject o4);

The four objects are the PETSc objects that are most closely associated with the event. For instance, in
a matrix-vector product they would be the matrix and the two vectors. These objects can be omitted by
specifying 0 foro1 - o4 . The code between these two routine calls will be automatically timed and logged
as part of the specified event. The user can log the number of floating-point operations for this segment of
code by calling

PetscLogFlops (number of flops for this code segment);

between the calls toPetscLogEventBegin () andPetscLogEventEnd (). This value will automati-
cally be added to the global flop counter for the entire program.
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12.3 Profiling Multiple Sections of Code

By default, the profiling produces a single set of statistics for all code between thePetscInitialize ()
andPetscFinalize () calls within a program. One can independently monitor up to ten stages of code
by switching among the various stages with the comands

PetscLogStagePush (int stage);
PetscLogStagePop ();

wherestage is an integer (0-9); see the manual pages for details. The command

PetscLogStageRegister (int stage,char *name)

allows one to associate a name with a stage; these names are printed whenever summaries are generated with
-log_summary or PetscLogPrintSummary (). The following code fragment uses three profiling
stages within an program.

PetscInitialize (int *argc,char ***args,0,0);
/* stage 0 of code here */
PetscLogStageRegister (0,”Stage 0 of Code”);
for (i=0; i¡ntimes; i++){
PetscLogStagePush(1);
PetscLogStageRegister(1,”Stage 1 of Code”);
/* stage 1 of code here */
PetscLogStagePop();
PetscLogStagePush(2);
PetscLogStageRegister(1,”Stage 2 of Code”);
/* stage 2 of code here */
PetscLogStagePop();
} PetscFinalize ();

Figures18 and19 show output generated by-log_summary for a program that employs several profil-
ing stages. In particular, this program is subdivided into six stages: loading a matrix and right-hand-side
vector from a binary file, setting up the preconditioner, and solving the linear system; this sequence is then
repeated for a second linear system. For simplicity, Figure19contains output only for stages 4 and 5 (linear
solve of the second system), which comprise the part of this computation of most interest to us in terms of
performance monitoring. This code organization (solving a small linear system followed by a larger sys-
tem) enables generation of more accurate profiling statistics for the second system by overcoming the often
considerable overhead of paging, as discussed in Section12.8.

12.4 Restricting Event Logging

By default, all PETSc operations are logged. To enable or disable the PETSc logging of individual events,
one uses the commands

PetscLogEventActivate (int event);
PetscLogEventDeactivate (int event);

The event may be either a predefined PETSc event (as listed in the file${PETSC_DIR}/include/
petsclog.h ) or one obtained withPetscLogEventRegister () (as described in Section12.2).
PETSc also provides routines that deactivate (or activate) logging for entire components of the library. Cur-
rently, the components that support such logging (de)activation areMat (matrices),Vec (vectors),SLES
(linear solvers, includingKSP andPC), andSNES (nonlinear solvers):
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PetscLogEventDeactivateClass (MAT COOKIE);
PetscLogEventDeactivateClass (SLES COOKIE); /* includesPC andKSP */
PetscLogEventDeactivateClass (VEC COOKIE);
PetscLogEventDeactivateClass (SNES COOKIE);

and

PetscLogEventActivateClass (MAT COOKIE);
PetscLogEventActivateClass (SLES COOKIE); /* includesPC andKSP */
PetscLogEventActivateClass (VEC COOKIE);
PetscLogEventActivateClass (SNES COOKIE);

Recall that the option-log_all produces extensive profile data, which can be a challenge for PETScView
to handle due to the memory limitations of Tcl/Tk. Thus, one should generally use-log_all when
running programs with a relatively small number of events or when disabling some of the events that occur
many times in a code (e.g.,VecSetValues (), MatSetValues ()). Section12.1.3gives information on
the restriction of events in MPE logging.

12.5 Interpreting -log info Output: Informative Messages

Users can activate the printing of verbose information about algorithms, data structures, etc. to the screen by
using the option -log_info or by calling PetscLogInfoAllow(PETSC_TRUE) . Such logging,
which is used throughout the PETSc libraries, can aid the user in understanding algorithms and tuning
program performance. For example, as discussed in Section3.1.1, -log_info activates the printing of
information about memory allocation during matrix assembly. Application programmers can employ this
logging as well, by using the routine

PetscLogInfo (void* obj,char *message,...)

whereobj is the PETSc object associated most closely with the logging statement,message . For example,
in the line search Newton methods, we use a statement such as

PetscLogInfo (snes,"Cubically determined step, lambda %g\n" ,lambda);

One can selectively turn off informative messages about any of the basic PETSc objects (e.g.,Mat , SNES
) with the command

PetscLogInfoDeactivateClass (int object cookie)

where object_cookie is one ofMAT_COOKIE, SNES_COOKIE, etc. Messages can be reactivated with
the command

PetscLogInfoActivateClass (int object cookie)

Such deactivation can be useful when one wishes to view information about higher-level PETSc libraries
(e.g.,TS andSNES) without seeing all lower level data as well (e.g.,Mat ). One can deactivate events at
runtime for matrix and linear solver libraries via-log_info [no_mat, no_sles] .
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12.6 Time

PETSc application programmers can access the wall clock time directly with the command

PetscLogDouble time;
PetscGetTime (&time);CHKERRQ(ierr);

which returns the current time in seconds since the epoch, and is commonly implemented withMPI_Wtime .
A floating point number is returned in order to express fractions of a second. In addition, as discussed in
Section12.2, PETSc can automatically profile user-defined segments of code.

12.7 Saving Output to a File

All output from PETSc programs (including informative messages, profiling information, and convergence
data) can be saved to a file by using the command line option-log_history [filename] . If no
file name is specified, the output is stored in the file${HOME}/.petschistory . Note that this option
only saves output printed with thePetscPrintf () andPetscFPrintf () commands, not the standard
printf() andfprintf() statements.

12.8 Accurate Profiling: Overcoming the Overhead of Paging

One factor that often plays a significant role in profiling a code is paging by the operating system. Generally,
when running a program only a few pages required to start it are loaded into memory rather than the entire
executable. When the execution procedes to code segments that are not in memory, a pagefault occurs,
prompting the required pages to be loaded from the disk (a very slow process). This activity distorts the
results significantly. (The paging effects are noticeable in the the log files generated by-log_mpe , which
is described in Section12.1.3.) To eliminate the effects of paging when profiling the performance of a
program, we have found an effective procedure is to run theexact same codeon a small dummy problem
before running it on the actual problem of interest. We thus ensure that all code required by a solver is loaded
into memory during solution of the small problem. When the code procedes to the actual (larger) problem of
interest, all required pages have already been loaded into main memory, so that the performance numbers are
not distorted. When this procedure is used in conjunction with the user-defined stages of profiling described
in Section12.3, we can focus easily on the problem of interest. For example, we used this technique in
the program${PETSC_DIR}/src/sles/examples/tutorials/ex10.c to generate the timings
within Figures18 and19. In this case, the profiled code of interest (solving the linear system for the larger
problem) occurs within event stages 4 and 5. Section12.1.2provides details about interpreting such profiling
data. In particular, the macros

PreLoadBegin (PetscTruth ,char* stagename),
PreLoadStage (char *stagename),

and

PreLoadEnd ()

can be used to easily convert a regular PETSc program to one that uses preloading. The command line
options-preload true and-preload false may be used to turn on and off preloading at run time
for PETSc programs that use these macros.
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Chapter 13

Hints for Performance Tuning

This chapter presents some tips on achieving good performance within PETSc codes. We urge users to read
these hints before evaluating the performance of PETSc application codes.

13.1 Compiler Options

Code compiled with theBOPT=Ooption generally runs two to three times faster than that compiled with
BOPT=g, so we recommend using one of the optimized versions of code (BOPT=O, BOPT=O_c++, orBOPT
=O_complex ) when evaluating performance. The user can specify alternative compiler options instead of
the defaults set in the PETSc distribution. One can set the compiler options for a particular architecture (PE
TSC_ARCH) andBOPTby editing the file${PETSC_DIR}/bmake/${PETSC_ARCH}/variables .
Section15.1.2gives details.

13.2 Profiling

Users should not spend time optimizing a code until after having determined where it spends the bulk of its
time on realistically sized problems. As discussed in detail in Chapter12, the PETSc routines automatically
log performance data if certain runtime options are specified. We briefly highlight usage of these features
below.

• Run the code with the option-log_summary to print a performance summary for various phases
of the code.

• Run the code with the option-log_mpe [logfilename] , which creates a logfile of events suit-
able for viewing with Upshot or Nupshot (part of MPICH).

13.3 Aggregation

Performing operations on chunks of data rather than a single element at a time can significantly enhance
performance.

• Insert several (many) elements of a matrix or vector at once, rather than looping and inserting a single
value at a time. In order to access elements in of vector repeatedly, employ VecGetArray() to allow
direct manipulation of the vector elements.

• When usingMatSetValues (), if the column indices of the values being inserted have been sorted
in monotonically increasing order, call the routineMatSetOption(mat,MAT_COLUMNS_SORT
ED) before setting the values to reduce the insertion time significantly.

139

manualpages/Mat/MatSetValues.html##MatSetValues


• When possible, useVecMDot () rather than a series of calls toVecDot ().

13.4 Efficient Memory Allocation

13.4.1 Sparse Matrix Assembly

Since the process of dynamic memory allocation for sparse matrices is inherently very expensive, accurate
preallocation of memory is crucial for efficient sparse matrix assembly. One should use the matrix creation
routines for particular data structures, such asMatCreateSeqAIJ() andMatCreateMPIAIJ () for
compressed, sparse row formats, instead of the genericMatCreate () routine. For problems with multiple
degrees of freedom per node, the block, compressed, sparse row formats, created byMatCreateSeqBAIJ
() andMatCreateMPIBAIJ (), can significantly enhance performance. Section3.1.1includes extensive
details and examples regarding preallocation.

13.4.2 Sparse Matrix Factorization

When symbolically factoring an AIJ matrix, PETSc has to guess how much fill there will be. Careful use
of the fill parameter in the MatILUInfo structure when callingMatLUFactorSymbolic () or MatILU
FactorSymbolic () can reduce greatly the number of mallocs and copies required, and thus greatly
improve the performance of the factorization. One way to determine a good value for f is to run a program
with the option-log_info . The symbolic factorization phase will then print information such as

Info:MatILUFactorSymbolic AIJ:Realloc 12 Fill ratio:given 1 needed 2.16423

This indicates that the user should have used a fill estimate factor of about 2.17 (instead of 1) to prevent the
12 required mallocs and copies. The command line option

-pc ilu fill 2.17

will cause PETSc to preallocate the correct amount of space for incomplete (ILU) factorization. The corre-
sponding option for direct (LU) factorization is-pc_lu_fill <fill_amount\trl{>} .

13.4.3 PetscMalloc() Calls

Users should employ a reasonable number ofPetscMalloc () calls in their codes. Hundreds or thousands
of memory allocations may be appropriate; however, if tens of thousands are being used, then reducing
the number ofPetscMalloc () calls may be warranted. For example, reusing space or allocating large
chunks and dividing it into pieces can produce a significant savings in allocation overhead. Section13.5
gives details.

13.5 Data Structure Reuse

Data structures should be reused whenever possible. For example, if a code often creates new matrices or
vectors, there often may be a way to reuse some of them. Very significant performance improvements can
be achieved by reusing matrix data structures with the same nonzero pattern. If a code creates thousands of
matrix or vector objects, performance will be degraded. For example, when solving a nonlinear problem or
timestepping, reusing the matrices and their nonzero structure for many steps when appropriate can make
the code run significantly faster.

A simple technique for saving work vectors, matrices, etc. is employing a user-defined context. In C and
C++ such a context is merely a structure in which various objects can be stashed; in Fortran a user context
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can be an integer array that contains both parameters and pointers to PETSc objects. See${PETSC_DIR}/
snes/examples/tutorials/ex5.c and${PETSC_DIR}/snes/examples/tutorials/ex5f.
F for examples of user-defined application contexts in C and Fortran, respectively.

13.6 Numerical Experiments

PETSc users should run a variety of tests. For example, there are a large number of options for the linear
and nonlinear equation solvers in PETSc, and different choices can make avery big difference in conver-
gence rates and execution times. PETSc employs defaults that are generally reasonable for a wide range
of problems, but clearly these defaults cannot be best for all cases. Users should experiment with many
combinations to determine what is best for a given problem and customize the solvers accordingly.

• Use the options-snes_view , -sles_view , etc. (or the routinesSLESView (), SNESView (),
etc.) to view the options that have been used for a particular solver.

• Run the code with the option-help for a list of the available runtime commands.

• Use the option-log_info to print details about the solvers’ operation.

• Use the PETSc monitoring discussed in Chapter12 to evaluate the performance of various numerical
methods.

13.7 Tips for Efficient Use of Linear Solvers

As discussed in Chapter4, the default linear solvers are

• uniprocess: GMRES(30) with ILU(0) preconditioning

• multiprocess: GMRES(30) with block Jacobi preconditioning, where there is 1 block per process, and
each block is solved with ILU(0)

One should experiment to determine alternatives that may be better for various applications. Recall that one
can specify theKSP methods and preconditioners at runtime via the options:

-ksp type<ksp name> -pc type<pc name>

One can also specify a variety of runtime customizations for the solvers, as discussed throughout the manual.
In particular, note that the default restart parameter for GMRES is 30, which may be too small for some
large-scale problems. One can alter this parameter with the option-ksp_gmres_restart < restart>
or by callingKSPGMRESSetRestart (). Section4.3 gives information on setting alternative GMRES
orthogonalization routines, which may provide much better parallel performance.

13.8 Detecting Memory Allocation Problems

PETSc provides a number of tools to aid in detection of problems with memory allocation, including leaks
and use of uninitialized space. We briefly describe these below.
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• The PETSc memory allocation (which collects statistics and performs error checking), is employed
by default for codes compiled in a debug mode (BOPT=g, BOPT=g_c++, BOPT=g_complex ).
PETSc memory allocation can be activated for other other cases, such asBOPT=O, with the option
-trmalloc , while -trmalloc_off forces the use of conventional memory allocation for the
BOPT=g, BOPT=g_c++, andBOPT=g_complex versions. When running timing tests, one should
use theBOPT=Oversion of the libraries.

• When the PETSc memory allocation routines are used, the option-trdump will print a list of un-
freed memory at the conclusion of a program. If all memory has been freed, only a message stating
the maximum allocated space will be printed. However, if some memory remains unfreed, this infor-
mation will be printed. Note that the option-trdump merely activates a call toPetscTrDump ()
duringPetscFinalize (); the user can also callPetscTrDump () elsewhere in a program.

• Another useful option for use with PETSc memory allocation routines is-trmalloc_log , which
activates logging of all calls to malloc and reports memory usage, including all Fortran arrays. This
option provides a more complete picture than-trdump for codes that employ Fortran with hardwired
arrays. Note that the option-trmalloc_log activates calls toPetscTrLog (), PetscTrLogD
ump() , andPetscGetResidentSetSize () during PetscFinalize() ; the user can also
call these routines elsewhere in a program.

• The option-trmalloc_nan is useful for tracking down the allocated memory that is used before it
has been initialized. This option calls PetscInitializeNans() which marks an array as being uninitial-
ized, so that if values are used for computation without first having been set, a floating point exception
is generated. This option also calls PetscInitializeLargeInts(); see the manual pages for details. Note
that so far these work only on the certain systems.

13.9 System-Related Problems

The performance of a code can be affected by a variety of factors, including the cache behavior, other users
on the machine, etc. Below we briefly describe some common problems and possibilities for overcoming
them.

• Problem too large for physical memory size: When timing a program, one should always leave at
least a ten percent margin between the total memory a process is using and the physicalsize of
the machine’s memory. One way to estimate the amount of memory used by given process is with
the UNIX getrusage system routine. Also, the PETSc option-log_summary prints the amount
of memory used by the basic PETSc objects, thus providing a lower bound on the memory used.
Another useful option is-trmalloc_log which reports all memory, including any Fortran arrays
in an application code.

• Effects of other users: If other users are running jobs on the same physical processor nodes on which
a program is being profiled, the timing results are essentially meaningless.

• Overhead of timing routines on certain machines: On certain machines, even calling the system
clock in order to time routines is slow; this skews all of the flop rates and timing results. The file
${PETSC_DIR}/src/benchmarks/PetscTime.c contains a simple test problem that will
approximate the ammount of time required to get the current time in a running program. On good
systems it will on the order of 1.e-6 seconds or less.

• Problem too large for good cache performance: Certain machines with lower memory bandwidths
(slow memory access) attempt to compensate by having a very large cache. Thus, if a significant
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portion of an application fits within the cache, the program will achieve very good performance; if the
code is too large, the performance can degrade markedly. To analyze whether this situation affects a
particular code, one can try plotting the total flop rate as a function of problemsize . If the flop rate
decreases rapidly at some point, then the problem may likely be too large for the cachesize .

• Inconsistent timings: Inconsistent timings are likely due to other users on the machine, thrashing
(using more virtual memory than available physical memory), or paging in of the initial executable.
Section12.8provides information on overcoming paging overhead when profiling a code. We have
found on all systems that if you follow all the advise above your timings will be consistent within a
variation of less than five percent.
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Chapter 14

Other PETSc Features

14.1 PETSc on a process subset

Users who wish to employ PETSc routines on only a subset of processes within a larger parallel job, or
who wish to use a “master” process to coordinate the work of “slave” PETSc processes, should specify an
alternative communicator forPETSC_COMM_WORLDby calling

PetscSetCommWorld (MPI Commcomm);

beforecalling PetscInitialize() , but, obviously, after callingMPI_Init() . PetscSetCommW
orld() can be called at most once per process. Most users will never need to use the routinePetscSetC
ommWorld() .

14.2 Runtime Options

Allowing the user to modify parameters and options easily at runtime is very desirable for many applications.
PETSc provides a simple mechanism to enable such customization. To print a list of available options for a
given program, simply specify the option-help (or -h ) at runtime, e.g.,

mpirun -np 1 ex1 -help

Note that all runtime options correspond to particular PETSc routines that can be explicitly called from
within a program to set compile-time defaults. For many applications it is natural to use a combination of
compile-time and runtime choices. For example, when solving a linear system, one could explicitly specify
use of the Krylov subspace technique BiCGStab by calling

KSPSetType (ksp,KSPBCGS);

One could then override this choice at runtime with the option

-ksp type tfqmr

to select the Transpose-Free QMR algorithm. (See Chapter4 for details.) The remainder of this section
discusses details of runtime options.

14.2.1 The Options Database

Each PETSc process maintains a database of option names and values (stored as text strings). This database
is generated with the command PETScInitialize(), which is listed below in its C/C++ and Fortran variants,
respectively:
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PetscInitialize (int *argc,char ***args,const char *file,const char *help);
call PetscInitialize (character file,integer ierr)

The argumentsargc and args (in the C/C++ version only) are the addresses of usual command line
arguments, while thefile is a name of a file that can contain additional options. By default this file is
called .petscrc in the user’s home directory. The user can also specify options via the environmental
variablePETSC_OPTIONS. The options are processed in the following order:

• file

• environmental variable

• command line

Thus, the command line options supersede the environmental variable options, which in turn supersede the
options file.

The file format for specifying options is

-optionname possiblevalue
-anotheroptionname possiblevalue
...

All of the option names must begin with a dash (-) and have no intervening spaces. Note that the option
values cannot have intervening spaces either, and tab characters cannot be used between the option names
and values. The user can employ any naming convention. For uniformity throughout PETSc, we employ
the format-package_option (for instance,-ksp_type and-mat_view_info ). Users can specify
an alias for any option name (to avoid typing the sometimes lengthy default name) by adding an alias to the
.petscrc file in the format

alias -newname -oldname

For example,

alias -kspt -ksptype
alias -sd -startin debugger

Comments can be placed in the .petscrc file by using one of the following symbols in the first column of a
line: #, %, or ! .

14.2.2 User-Defined PetscOptions

Any subroutine in a PETSc program can add entries to the database with the command

PetscOptionsSetValue (char *name,char *value);

though this is rarely done. To locate options in the database, one should use the commands

PetscOptionsHasName (char *pre,char *name,PetscTruth *flg);
PetscOptionsGetInt (char *pre,char *name,int *value,PetscTruth *flg);
PetscOptionsGetReal (char *pre,char *name,double *value,PetscTruth *flg);
PetscOptionsGetString (char *pre,char *name,char *value,int maxlen,PetscTruth *flg);
PetscOptionsGetStringArray (char *pre,char *name,char **values,int *maxlen,PetscTruth *flg);
PetscOptionsGetIntArray (char *pre,char *name,int *value,int *nmax,PetscTruth *flg);
PetscOptionsGetRealArray (char *pre,char *name,double *value, int *nmax,PetscTruth *flg);
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All of these routines setflg=PETSC_TRUE if the corresponding option was found,flg=PETSC_FALSE
if it was not found. The optional argumentpre indicates that the true name of the option is the given name
(with the dash “-” removed) prepended by the prefixpre . Usuallypre should be set toPETSC_NULL
(or PETSC_NULL_CHARACTERfor Fortran); its purpose is to allow someone to rename all the options
in a package without knowing the names of the individual options. For example, when using block Jacobi
preconditioning, theKSP andPC methods used on the individual blocks can be controlled via the options
-sub_ksp_type and -sub_pc_type .

14.2.3 Keeping Track of Options

One useful means of keeping track of user-specified runtime options is use of-optionstable , which
prints tostdout during PetscFinalize() a table of all runtime options that the user has specified.
A related option is-options_left , which prints the options table and indicates any options that have
notbeen requested upon a call toPetscFinalize() . This feature is useful to check whether an option
has been activated for a particular PETSc object (such as a solver or matrix format), or whether an option
name may have been accidentally misspelled.

14.3 Viewers: Looking at PETSc Objects

PETSc employs a consistent scheme for examining, printing, and saving objects through commands of the
form

XXXView(XXX obj, PetscViewer viewer);

Hereobj is any PETSc object of typeXXX, whereXXX is Mat , Vec , SNES, etc. There are several
predefined viewers:

• Passing in a zero for the viewer causes the object to be printed to the screen; this is most useful when
viewing an object in a debugger.

• PETSC_VIEWER_STDOUT_SELFand PESC_VIEWER_STDOUT_WORLDcause the object to be
printed to the screen.

• PETSC_VIEWER_DRAW_SELFandPETSC_VIEWER_DRAW_WORLDcauses the object to be drawn
in a default X window.

• Passing in a viewer obtained by PetscViewerDrawOpenX() causes the object to be displayed graphi-
cally.

• To save an object to a file in ASCII format, the user creates the viewer object with the command
PetscViewerASCIIOpen(MPI_Comm comm, char* file, PetscViewer *viewer) .
This object is analogous toPETSC_VIEWER_STDOUT_SELF(for a communicator ofMPI_COMM
_SELF) andPETSC_VIEWER_STDOUT_WORLD(for a parallel communicator).

• To save an object to a file in binary format, the user creates the viewer object with the command
PetscViewerBinaryOpen(MPI_Comm comm,char* file,PetscViewerBinaryType
type, PetscViewer *viewer) . Details of binary I/O are discussed below.

• Vector and matrix objects can be passed to a running Matlab process with a viewer created by

PetscViewerMatlabOpen(MPICommcomm,char *machine,int port,PetscViewer *viewer).
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On the Matlab side, one must first runv = openport(int port) and thenA = receive(v)
to obtain the matrix or vector. Once all objects have been received, the port can be closed from the
Matlab end withcloseport(v) . On the PETSc side, one should destroy the viewer object with

PetscViewerDestroy() . The corresponding Matlabmex files are located in${PETSC_DI
R}/src/viewer/impls/matlab .

The user can control the format of ASCII printed objects with viewers created byPetscViewerASCII
Open () by calling

PetscViewerSetFormat (PetscViewer viewer,int format);

Possible formats includePETSC_VIEWER_ASCII_DEFAULT, PETSC_VIEWER_ASCII_MATLAB, and
PETSC_VIEWER_ASCII_IMPL. The implementation-specific format,PETSC_VIEWER_ASCII_IMP
L, displays the object in the most natural way for a particular implementation. For example, when viewing a
block diagonal matrix that has been created withMatCreateSeqBDiag (), PETSC_VIEWER_ASCII_I
MPLprints by diagonals, whilePETSC_VIEWER_ASCII_DEFAULTuses the conventional row-oriented
format. The routines

PetscViewerPushFormat (PetscViewer viewer,int format);
PetscViewerPopFormat (PetscViewer viewer);

allow one to temporarily change the format of a viewer. As discussed above, one can output PETSc objects
in binary format by first opening a binary viewer withPetscViewerBinaryOpen () and then using
MatView (), VecView (), etc. The corresponding routines for input of a binary object have the form
XXXLoad() . In particular, matrix and vector binary input is handled by the following routines:

MatLoad (PetscViewer viewer,MatType outtype,Mat *newmat);
VecLoad (PetscViewer viewer,Vec *newvec);

These routines generate parallel matrices and vectors if the viewer’s communicator has more than one pro-
cess. The particular matrix and vector formats are determined from the options database; see the manual
pages for details. One can provide additional information about matrix data for matrices stored on disk by
providing an optional filematrixfilename.info , wherematrixfilename is the name of the file
containing the matrix. The format of the optional file is the same as the.petscrc file and can (currently)
contain the following:

-matloadblock size<bs>
-matloadbdiagdiags<s1,s2,s3,...>

The blocksize indicates thesize of blocks to use if the matrix is read into a block oriented data structure
(for example,MATSEQBDIAGor MATMPIBAIJ). The diagonal informations1,s2,s3,... indicates
which (block) diagonals in the matrix have nonzero values.

14.4 Debugging

PETSc programs may be debugged using one of the two options below.

• -start_in_debugger [noxterm,dbx,xxgdb] [-display name] - start all processes
in debugger

• -on_error_attach_debugger [noxterm,dbx,xxgdb] [-display name] - start de-
bugger only on encountering an error
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Note that, in general, debugging MPI programs cannot be done in the usual manner of starting the pro-
gramming in the debugger (because then it cannot set up the MPI communication and remote processes).
By default the GNU debuggergdb is used when-start_in_debugger or -on_error_attach_
debugger is specified. To employ eitherxxgdbor the common UNIX debuggerdbx, one uses command
line options as indicated above. On HP-UX machines the debuggerxdbshould be used instead ofdbx; on
RS/6000 machines thexldbdebugger is supported as well. By default, the debugger will be started in a new
xterm (to enable running separate debuggers on each process), unless the optionnoxterm is used. In order
to handle the MPI startup phase, the debugger command “cont” should be used to continue execution of the
program within the debugger. Rerunning the program through the debugger requires terminating the first
job and restarting the processor(s); the usual “run” option in the debugger will not correctly handle the MPI
startup and should not be used. Not all debuggers work on all machines, so the user may have to experiment
to find one that works correctly. You can select a subset of the processes to be debugged (the rest just run
without the debugger) with the option

-debuggernodes node1,node2,...

where you simply list the nodes you want the debugger to run with.

14.5 Error Handling

Errors are handled through the routinePetscError() . This routine checks a stack of error handlers and
calls the one on the top. If the stack is empty, it selectsPetscTraceBackErrorHandler (), which
tries to print a traceback. A new error handler can be put on the stack with

PetscPushErrorHandler (int (*HandlerFunction)(int line,char *dir,char *file,
char *message,int number,void*),void *HandlerContext)

The arguments toHandlerFunction() are the line number where the error occurred, the file in which
the error was detected, the corresponding directory, the error message, the error integer, and theHandlerC
ontext. The routine

PetscPopErrorHandler ()

removes the last error handler and discards it. PETSc provides two additional error handlers besides
PetscTraceBackErrorHandler ():

PetscAbortErrorHandler ()
PetscAttachErrorHandler()

The functionPetscAbortErrorHandler () calls abort on encountering an error, while PetscAttachEr-
rorHandler() attaches a debugger to the running process if an error is detected. At runtime, these er-
ror handlers can be set with the options-on_error_abort or -on_error_attach_debugger
[noxterm, dbx, xxgdb, xldb] [-display DISPLAY] . All PETSc calls can be traced (useful
for determining where a program is hanging without running in the debugger) with the option

-log trace [filename]

wherefilename is optional. By default the traces are printed to the screen. This can also be set with the
commandPetscLogTraceBegin(FILE*) . It is also possible to trap signals by using the command

PetscPushSignalHandler ( int (*Handler)(int,void *),void *ctx);
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The default handlerPetscDefaultSignalHandler () callsPetscError() and then terminates. In
general, a signal in PETSc indicates a catastrophic failure. Any error hander that the user provides should
try to clean up only before exiting. By default all PETSc programs use the default signal handler, although
the user can turn this off at runtime with the option-no_signal_handler . There is a separate signal
handler for floating-point exceptions. The option-fp_trap turns on the floating-point trap at runtime,
and the routine

PetscSetFPTrap (int flag);

can be used in-line. Aflag of PETSC_FP_TRAP_ONindicates that floating-point exceptions should be
trapped, while a value ofPETSC_FP_TRAP_OFF(the default) indicates that they should be ignored. Note
that on certain machines, in particular the IBM RS/6000, trapping is very expensive. A small set of macros
is used to make the error handling lightweight. These macros are used throughout the PETSc libraries and
can be employed by the application programmer as well. When an error is first detected, one should set it
by calling

SETERRQ(int flag,int pflag,char *message);

The user should check the return codes for all PETSc routines (and possibly user-defined routines as well)
with

ierr = PetscRoutine(...);CHKERRQ(int ierr);

Likewise, all memory allocations should be checked with

ierr = PetscMalloc (n*sizeof(double),&ptr);CHKERRQ(ierr);

If this procedure is followed throughout all of the user’s libraries and codes, any error will by default generate
a clean traceback of the location of the error.

Note that the macro__FUNCT__is used to keep track of routine names during error tracebacks. Users
need not worry about this macro in their application codes; however, users can take advantage of this feature
if desired by setting this macro before each user-defined routine that may callSETERRQ(), CHKERRQ().
A simple example of usage is given below.

#undef FUNCT
#define FUNCT ”MyRoutine1”
int MyRoutine1(){
/* code here */
return 0;
}

14.6 Incremental Debugging

When developing large codes, one is often in the position of having a correctly (or at least believed to be
correctly) running code; making a change to the code then changes the results for some unknown reason.
Often even determining the precise point at which the old and new codes diverge is a major pain. In other
cases, a code generates different results when run on different numbers of processes, although in exact
arithmetic the same answer is expected. (Of course, this assumes thatexactlythe same solver and parameters
are used in the two cases.) PETSc provides some support for determining exactly where in the code the
computations lead to different results. First, compile both programs with different names. Next, start running
both programs as a single MPI job. This procedure is dependent on the particular MPI implementation
being used. For example, when using MPICH on workstations,procgroupfiles can be used to specify the
processors on which the job is to be run. Thus, to run two programs,old andnew, each on two processors,
one should create the procgroup file with the following contents:
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local 0
workstation1 1 /home/bsmith/old
workstation2 1 /home/bsmith/new
workstation3 1 /home/bsmith/new

(Of course, workstation1, etc. can be the same machine.) Then, one can execute the command

mpirun -p4pg<procgroupfilemame> old -compare<tolerance> [options]

Note that the same runtime options must be used for the two programs. The first time an inner product
or norm detects an inconsistency larger than<tolerance> , PETSc will generate an error. The usual
runtime options-start_in_debugger and -on_error_attach_debugger may be used. The
user can also place the commands

PetscCompareDouble ()
PetscCompareScalar ()
PetscCompareInt ()

in portions of the application code to check for consistency between the two versions.

14.7 Complex Numbers

PETSc supports the use of complex numbers in application programs written in C, C++, and Fortran. To do
so, we employ C++ versions of the PETSc libraries in which the basic “scalar” datatype, given in PETSc
codes byPetscScalar , is defined ascomplex (or complex<double> for machines using tem-
plated complex class libraries). To work with complex numbers, the user should compile the PETSc li-
braries (including the Fortran interface library) and the application code withBOPT=[g_complex,O_
complex] for debugging, optimized, and profiling versions, respectively. The file${PETSC_DIR}/
docs/installation/index.htm provides detailed instructions for installing PETSc. We recom-
mend using optimized Fortran kernels for some key numerical routines with complex numbers (such as
matrix-vector products, vector norms, etc.) instead of the default C++ routines. See the “Complex Num-
bers” section of the file${PETSC_DIR}/docs/installation/index.htm for details on building
these kernels. This implementation exploits the maturity of Fortran compilers while retaining the identical
user interface. For example, on rs6000 machines, the base single-node performance when using the Fortran
kernels is 4-5 times faster than the default C++ code. Recall that each variant of the PETSc libraries is stored
in a different directory, given by

${PETSC_DIR}/lib/lib${BOPT}/${PETSC_ARCH} ,

according to the architecture andBOPToptimization variable. Thus, the libraries for complex numbers are
maintained separately from those for real numbers. When using any of the complex numbers versions of
PETSc,all vector and matrix elements are treated as complex, even if their imaginary components are zero.
Of course, one can elect to use only the real parts of the complex numbers when using the complex versions
of the PETSc libraries; however, when workingonly with real numbers in a code, one should use a version
of PETSc for real numbers for best efficiency. The program${PETSC_DIR}/src/sles/examples/
tutorials/ex11.c solves a linear system with a complex coefficient matrix. Its Fortran counterpart is
${PETSC_DIR}/src/sles/examples/tutorials/ex11f.F .

150

http://www.mcs.anl.gov/mpi/www/www1/mpirun.html##mpirun
manualpages/Sys/PetscCompareDouble.html##PetscCompareDouble
manualpages/Sys/PetscCompareScalar.html##PetscCompareScalar
manualpages/Sys/PetscCompareInt.html##PetscCompareInt


14.8 Emacs Users

If users develop application codes using Emacs (which we highly recommend), theetags feature can be
used to search PETSc files quickly and efficiently. To use this feature, one should first check if the file,
${PETSC_DIR}/TAGS exists. If this file is not present, it should be generated by runningmake etags
from the PETSc home directory. Once the file exists, from Emacs the user should issue the command

M-x visit-tags-table

where “M” denotes the Emacs Meta key, and enter the name of theTAGSfile. Then the command “M-. ” will
cause Emacs to find the file and line number where a desired PETSc function is defined. Any string in any
of the PETSc files can be found with the command “M-x tags-search ”. To find repeated occurrences,
one can simply use “M-, ” to find the next occurrence.

14.9 Parallel Communication

When used in a message-passing environment, all communication within PETSc is done through MPI, the
message-passing interface standard [15]. Any file that includespetsc.h (or any other PETSc include file),
can freely use any MPI routine.

14.10 Graphics

PETSc graphics library is not intended to compete with high-quality graphics packages. Instead, it is in-
tended to be easy to use interactively with PETSc programs. We urge users to generate their publication-
quality graphics using a professional graphics package. If a user wants to hook certain packages in PETSc,
he or she should send a message to petsc-maint@mcs.anl.gov, and we will see whether it is reasonable to
try to provide direct interfaces.

14.10.1 Windows as PetscViewers

For drawing predefined PETSc objects such as matrices and vectors, one must first create a viewer using the
command

PetscViewerDrawOpenX(MPICommcomm,char *display,char *title,int x,
int y,int w,int h,PetscViewer *viewer);

This viewer may be passed to any of theXXXView() routines. To draw into the viewer, one must obtain
the Draw object with the command

PetscViewerDrawGetDraw (PetscViewer viewer,PetscDraw *draw);

Then one can call any of thePetscDrawXXX commands on thedraw object. If one obtains thedraw
object in this manner, one does not call thePetscDrawOpenX () command discussed below. Predefined
viewers,PETSC_VIEWER_DRAW_WORLDandPETSC_VIEWER_DRAW_SELF, may be used at any time.
Their initial use will cause the appropriate window to be created. By default, PETSc drawing tools employ

a private colormap, which remedies the problem of poor color choices for contour plots due to an external
program’s mangling of the colormap (e.g, Netscape tends to do this). Unfortunately, this causes flashing
of colors as the mouse is moved between the PETSc windows and other windows. Alternatively, a shared
colormap can be used via the option-draw_x_shared_colormap .
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14.10.2 Simple PetscDrawing

One can open a window that is not associated with a viewer directly under the X11 Window System with
the command

PetscDrawOpenX (MPI Commcomm,char *display,char *title,int x,
int y,int w,int h,PetscDraw *win);

All drawing routines are done relative to the windows coordinate system and viewport. By default the draw-
ing coordinates are from(0,0) to (1,1) , where(0,0) indicates the lower left corner of the window.
The application program can change the window coordinates with the command

PetscDrawSetCoordinates (PetscDraw win,double xl,double yl,double xr,double yr);

By default, graphics will be drawn in the entire window. To restrict the drawing to a portion of the window,
one may use the command

PetscDrawSetViewPort (PetscDraw win,double xl,double yl,double xr,double yr);

These arguments, which indicate the fraction of the window in which the drawing should be done, must
satisfy0 ≤ xl ≤ xr ≤ 1 and0 ≤ yl ≤ yr ≤ 1.

To draw a line, one uses the command

PetscDrawLine (PetscDraw win,double xl,double yl,double xr,double yr,int cl);

The argumentcl indicates the color (which is an integer between 0 and 255) of the line. A list of predefined
colors may be found ininclude/petscdraw.h and includesPETSC_DRAW_BLACK, PETSC_DRAW
_RED, PETSC_DRAW_BLUEetc. To ensure that all graphics actually have been displayed, one should use
the command

PetscDrawFlush (PetscDraw win);

When displaying by using double buffering, which is set with the command

PetscDrawSetDoubleBuffer (PetscDraw win);

all processes must call

PetscDrawSynchronizedFlush (PetscDraw win);

in order to swap the buffers. From the options database one may use-draw_pause n , which causes
the PETSc application to pausen seconds at eachPetscDrawPause (). A time of -1 indicates that the
application should pause until receiving mouse input from the user. Text can be drawn with either of the two
commands

PetscDrawString (PetscDraw win,double x,double y,int color,char *text);
PetscDrawStringVertical (PetscDraw win,double x,double y,int color,char *text);

The user can set the text fontsize or determine it with the commands

PetscDrawStringSetSize (PetscDraw win,double width,double height);
PetscDrawStringGetSize (PetscDraw win,double *width,double *height);
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14.10.3 Line Graphs

PETSc includes a set of routines for manipulating simple two-dimensional graphs. These routines, which be-
gin with PetscDrawAxisDraw (), are usually not used directly by the application programmer. Instead,
the programmer employs the line graph routines to draw simple line graphs. As shown in the program,
within Figure20, line graphs are created with the command

PetscDrawLGCreate (PetscDraw win,int ncurves,PetscDrawLG *ctx);

The argumentncurves indicates how many curves are to be drawn. Points can be added to each of the
curves with the command

PetscDrawLGAddPoint (PetscDrawLG ctx,double *x,double *y);

The argumentsx andy are arrays containing the next point value for each curve. Several points for each
curve may be added with

PetscDrawLGAddPoints (PetscDrawLG ctx,int n,double **x,double **y);

The line graph is drawn (or redrawn) with the command

PetscDrawLGDraw (PetscDrawLG ctx);

A line graph that is no longer needed can be destroyed with the command

PetscDrawLGDestroy (PetscDrawLG ctx);

To plot new curves, one can reset a linegraph with the command

PetscDrawLGReset (PetscDrawLG ctx);

The line graph automatically determines the range of values to display on the two axes. The user can change
these defaults with the command

PetscDrawLGSetLimits (PetscDrawLG ctx,double xmin,double xmax,double ymin,double ymax);

It is also possible to change the display of the axes and to label them. This procedure is done by first
obtaining the axes context with the command

PetscDrawLGGetAxis (PetscDrawLG ctx,PetscDrawAxis *axis);

One can set the axes’ colors and labels, respectively, by using the commands

PetscDrawAxisSetColors (PetscDrawAxis axis,int axislines,int ticks,int text);
PetscDrawAxisSetLabels (PetscDrawAxis axis,char *top,char *x,char *y);

/*$Id: ex3.c,v 1.42 2001/08/07 21:28:44 bsmith Exp $*/

static char help[] = "Plots a simple line graph.\n";

#include "petsc.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc,char **argv)
{

PetscDraw draw;

153

manualpages/Draw/PetscDrawAxisDraw.html##PetscDrawAxisDraw
manualpages/Draw/PetscDrawLGCreate.html##PetscDrawLGCreate
manualpages/Draw/PetscDraw.html##PetscDraw
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGAddPoint.html##PetscDrawLGAddPoint
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGAddPoints.html##PetscDrawLGAddPoints
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGDraw.html##PetscDrawLGDraw
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGDestroy.html##PetscDrawLGDestroy
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGReset.html##PetscDrawLGReset
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGSetLimits.html##PetscDrawLGSetLimits
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawLGGetAxis.html##PetscDrawLGGetAxis
manualpages/Draw/PetscDrawLG.html##PetscDrawLG
manualpages/Draw/PetscDrawAxis.html##PetscDrawAxis
manualpages/Draw/PetscDrawAxisSetColors.html##PetscDrawAxisSetColors
manualpages/Draw/PetscDrawAxis.html##PetscDrawAxis
manualpages/Draw/PetscDrawAxisSetLabels.html##PetscDrawAxisSetLabels
manualpages/Draw/PetscDrawAxis.html##PetscDrawAxis


PetscDrawLG lg;
PetscDrawAxis axis;
int n = 20,i,ierr,x = 0,y = 0,width = 300,height = 300,nports

= 1;
PetscTruth flg;
char *xlabel,*ylabel,*toplabel;
PetscReal xd,yd;
PetscDrawViewPorts *ports;

xlabel = "X-axis Label";toplabel = "Top Label";ylabel = "Y-axis Label";

ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-width",&width,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-height",&height,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscOptionsHasName(PETSC_NULL,"-nolabels",&flg);CHKERRQ(ierr);
if (flg) {

xlabel = (char *)0; toplabel = (char *)0;
}
/* ierr = PetscDrawOpenX(PETSC_COMM_SELF,0,"Title",x,y,width,height,&draw);CHKERRQ(ierr);*/
ierr = PetscDrawCreate(PETSC_COMM_SELF,0,"Title",x,y,width,height,&draw);CHKERRQ(ierr);
ierr = PetscDrawSetFromOptions(draw);CHKERRQ(ierr);

ierr = PetscOptionsGetInt(PETSC_NULL,"-nports",&nports,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscDrawViewPortsCreate(draw,nports,&ports);CHKERRQ(ierr);
ierr = PetscDrawViewPortsSet(ports,0);CHKERRQ(ierr);

ierr = PetscDrawLGCreate(draw,1,&lg);CHKERRQ(ierr);
ierr = PetscDrawLGGetAxis(lg,&axis);CHKERRQ(ierr);
ierr = PetscDrawAxisSetColors(axis,PETSC_DRAW_BLACK,PETSC_DRAW_RED,PETSC_DRAW_BLUE);CHKERRQ(ierr);
ierr = PetscDrawAxisSetLabels(axis,toplabel,xlabel,ylabel);CHKERRQ(ierr);

for (i=0; i<n ; i++) {
xd = (PetscReal)(i - 5); yd = xd*xd;
ierr = PetscDrawLGAddPoint(lg,&xd,&yd);CHKERRQ(ierr);

}
ierr = PetscDrawLGIndicateDataPoints(lg);CHKERRQ(ierr);
ierr = PetscDrawLGDraw(lg);CHKERRQ(ierr);
ierr = PetscDrawFlush(draw);CHKERRQ(ierr);
ierr = PetscSleep(2);CHKERRQ(ierr);

ierr = PetscDrawViewPortsDestroy(ports);CHKERRQ(ierr);
ierr = PetscDrawLGDestroy(lg);CHKERRQ(ierr);
ierr = PetscDrawDestroy(draw);CHKERRQ(ierr);
ierr = PetscFinalize();CHKERRQ(ierr);
return 0;

}

Figure 20: Example of PetscDrawing Plots

It is possible to turn off all graphics with the option-nox . This will prevent any windows from being
opened or any drawing actions to be done. This is useful for running large jobs when the graphics overhead
is too large, or for timing.
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14.10.4 Graphical Convergence Monitor

For both the linear and nonlinear solvers default routines allow one to graphically monitor convergence
of the iterative method. These are accessed via the command line with-ksp_xmonitor and-snes_
xmonitor . See also Sections4.3.3and5.3.2.

The two functions used are KSPLGMonitor() andKSPLGMonitorCreate () . These can easily be
modified to serve specialized needs.

14.10.5 Disabling Graphics at Compile Time

To disable all x-window-based graphics, edit the file${PETSC_DIR}/bmake/${PETSC_ARCH}/packages
and comment the variablePETSC_DHAVE_X11. Then (re)compile the PETSc libraries.
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Chapter 15

Makefiles

This chapter describes the design of the PETSc makefiles, which are the key to managing our code portability
across a wide variety of UNIX and Windows systems.

15.1 Our Makefile System

To make a program namedex1 , one may use the command

make BOPT=[g,O] PETSCARCH=arch ex1

which will compile a debugging, optimized, or profiling version of the example and automatically link the
appropriate libraries. The architecture,arch , is one ofsolaris, rs6000, IRIX, hpux , etc. Note
that when using command line options with make (as illustrated above), one mustnotplace spaces on either
side of the “=” signs. The variablesBOPTandPETSC_ARCHcan also be set as environmental variables.
Although PETSc is written in C, it can be compiled with a C++ compiler. For many C++ users this may
be the preferred route. To compile with the C++ compiler, one should use the optionBOPT=g_c++ or
BOPT=O_c++. The optionsBOPT=g_complex andBOPT=O_complex will create C versions that use
complex double-precision numbers.

15.1.1 Makefile Commands

The directory${PETSC_DIR}/bmake contains virtually all makefile commands and customizations to
enable portability across different architectures. Most makefile commands for maintaining the PETSc sys-
tem are defined in the file${PETSC_DIR}/bmake/common . These commands, which process all ap-
propriate files within the directory of execution, include

• lib - Updates the PETSc libraries based on the source code in the directory.

• libfast - Updates the libraries faster. Sincelibfast recompiles all source files in the directory
at once, rather than individually, this command saves time when many files must be compiled.

• clean - Removes garbage files.

The tree command enables the user to execute a particular action within a directory and all of its subdi-
rectories. The action is specified byACTION=[action] , whereaction is one of the basic commands
listed above. For example, if the command

make BOPT=g ACTION=lib tree

were executed from the directory${PETSC_DIR}/src/sles/ksp , the debugging library for all Krylov
subspace solvers would be built.
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15.1.2 Customized Makefiles

The directory${PETSC_DIR}/bmake contains a subdirectory for each architecture that contains machine-
specific information, enabling the portability of our makefile system. For instance, for Sun workstations
running OS 5.7, the directory is calledsolaris . Each architecture directory contains three makefiles:

• packages - locations of all needed packages for a particular site. This file (discussed below) is
usually the only one that the user needs to alter.

• variables - definitions of the compilers, linkers, etc.

• rules - some build rules specific to this machine.

The architecture independent makefiles, are located in${PETSC_DIR}/bmake/common , and the machine-
spcecific makefiles get included from here.

15.2 PETSc Flags

PETSc has several flags that determine how the source code will be compiled. The default flags for particular
versions are specified by the variablePETSCFLAGSwithin the base files of ${PETSC_DIR}/bmake/
${PETSC_ARCH}, discussed in Section15.1.2. The flags include

• PETSC_USE_DEBUG- The PETSc debugging options are activated. We recommend always using
this.

• PETSC_USE_COMPLEX- The version with scalars represented as complex numbers is used.

• PETSC_USE_LOG- Various monitoring statistics on floating-point operations, and message-passing
activity are kept.

15.2.1 Sample Makefiles

Maintaining portable PETSc makefiles is very simple. In Figures21, 22, and23 we present three sample
makefiles.

The first is a “minimum” makefile for maintaining a single program that uses the PETSc libraires. The
most important line in this makefile is the line starting withinclude :

include ${PETSC_DIR}/bmake/common/base

This line includes other makefiles that provide the needed definitions and rules for the particular base PETSc
installation (specified by${PETSC_DIR} ) and architecture (specified by${PETSC_ARCH}). (See1.2
for information on setting these environmental variables.) As listed in the sample makefile, the appropriate
include file is automatically completely specified; the user shouldnot alter this statement within the
makefile.

ALL: ex2
CFLAGS =
FFLAGS =
CPPFLAGS =
FPPFLAGS =
include ${PETSC_DIR}/bmake/common/base
ex2: ex2.o chkopts
${CLINKER} -o ex2 ex2.o ${PETSC_LIB}
${RM} ex2.o
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Figure 21: Sample PETSc Makefile for a Single Program

Note that the variable${PETSC_LIB} (as listed on the link line in the above makefile) specifiesall
of the various PETSc libraries in the appropriate order for correct linking. For users who employ only
a specific PETSc library, can use alternative variables like${PETSC_SYS_LIB} , ${PETSC_VEC_LI
B} , ${PETSC_MAT_LIB} , ${PETSC_DM_LIB} , ${PETSC_SLES_LIB} , ${PETSC_SNES_LIB}
or ${PETSC_TS_LIB} . The second sample makefile, given in Figure22, controls the generation of several
example programs.

CFLAGS =
FFLAGS =
CPPFLAGS =

FPPFLAGS =
include ${PETSC_DIR}/bmake/common/base
ex1: ex1.o

-${CLINKER} -o ex1 ex1.o ${PETSC_LIB}
${RM} ex1.o
ex2: ex2.o

-${CLINKER} -o ex2 ex2.o ${PETSC_LIB}
${RM} ex2.o
ex3: ex3.o

-${FLINKER} -o ex3 ex3.o ${PETSC_FORTRAN_LIB} ${PETSC_LIB}
${RM} ex3.o
ex4: ex4.o

-${CLINKER} -o ex4 ex4.o ${PETSC_LIB}
${RM} ex4.o
runex1:
-@${MPIRUN} ex1
runex2:
-@${MPIRUN} -np 2 ex2 -mat_seqdense -options_left
runex3:
-@${MPIRUN} ex3 -v -log_summary
runex4:
-@${MPIRUN} -np 4 ex4 -trdump
RUNEXAMPLES_1 = runex1 runex2
RUNEXAMPLES_2 = runex4
RUNEXAMPLES_3 = runex3
EXAMPLESC = ex1.c ex2.c ex4.c
EXAMPLESF = ex3.F
EXAMPLES_1 = ex1 ex2
EXAMPLES_2 = ex4
EXAMPLES_3 = ex3
include ${PETSC_DIR}/bmake/common/test

Figure 22: Sample PETSc Makefile for Several Example Programs

Again, the most important line in this makefile is theinclude line that includes the files defining all
of the macro variables. Some additional variables that can be used in the makefile are defined as follows:

CFLAGS, FFLAGSUser specified additional options for the C compiler and fortran compiler.

CPPFLAGS, FPPFLAGSUser specified additional flags for the C preprocessor and fortran preprocesor.

CLINKER, FLINKER the C and Fortran linkers.
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RM the remove command for deleting files.

EXAMPLES 1 examples that will be built withmake BOPT=[g,O] examples (see Section15.1.1)

RUNEXAMPLES 1 examples that will be run withmake runexamples (see Section15.1.1)

EXAMPLESC all C examples that will be checked in/out of RCS withmake ci andmake co (not generally needed
by users).

EXAMPLESF all Fortran examples that will be checked in/out of RCS withmake ci andmake co (not generally
needed by users).

PETSCLIB all of the base PETSc libraries.

PETSCFORTRAN LIB the PETSc Fortran interface library.

Note that the PETSc example programs are divided into several categories, which currently include:

EXAMPLES 1 basic C suite used in installation tests

EXAMPLES 2 additional C suite including graphics

EXAMPLES 3 basic Fortran .F suite

EXAMPLES 4 subset of 1 and 2 that runs on only a single process

EXAMPLES 5 examples that require complex numbers

EXAMPLES 6 C examples that do not work with complex numbers

EXAMPLES 8 Fortran .F examples that do not work with complex numbers

EXAMPLES 9 uniprocess version of 3

EXAMPLES 10 Fortran .F examples that require complex numbers

We next list in Figure23 a makefile that maintains a PETSc library. Although most users do not need to
understand or deal with such makefiles, they are also easily used.

ALL: lib
CFLAGS =
SOURCEC = sp1wd.c spinver.c spnd.c spqmd.c sprcm.c
SOURCEF = degree.f fnroot.f genqmd.f qmdqt.f rcm.f fn1wd.f gen1wd.f
genrcm.f qmdrch.f rootls.f fndsep.f gennd.f qmdmrg.f qmdupd.f
SOURCEH =
OBJSC = sp1wd.o spinver.o spnd.o spqmd.o sprcm.o
OBJSF = degree.o fnroot.o genqmd.o qmdqt.o rcm.o fn1wd.o gen1wd.o
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genrcm.o qmdrch.o rootls.o fndsep.o gennd.o qmdmrg.o qmdupd.o
LIBBASE = libpetscmat
MANSEC = Mat
include ${PETSC_DIR}/bmake/common/base

Figure 23: Sample PETSc Makefile for Library Maintenance

The library’s name islibpetscmat.a , and the source files being added to it are indicated bySO
URCEC(for C files) andSOURCEF(for Fortran files). Note that theOBJSFandOBJSCare identical to
SOURCEFandSOURCEC, respectively, except they use the suffix.o rather than.c or .f .

The variableMANSECindicates that any manual pages generated from this source should be included in
theMat section.

15.3 Limitations

This approach to portable makefiles has some minor limitations, including the following:

• Each makefile must be called “makefile”.

• Each makefile can maintain at most one archive library.
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Chapter 16

Unimportant and Advanced Features of
Matrices and Solvers

This chapter introduces additional features of the PETSc matrices and solvers. Since most PETSc users
should not need to use these features, we recommend skipping this chapter during an initial reading.

16.1 Extracting Submatrices

One can extract a (parallel) submatrix from a given (parallel) using

MatGetSubMatrix (Mat A,IS rows,IS cols,int csize,MatReuse call,Mat *B);

This extracts therows andcol umns of the matrixA into B. If call is MAT_INITIAL_MATRIX it will
create the matrixB. If call is MAT_REUSE_MATRIXit will reuse theB created with a previous call. The
argumentcsize is ignored on sequential matrices, for parallel matrices it determines the “local columns”
if the matrix format supports this concept. Often one can use the default by passing in PETSCDECIDE. To
create aB matrix that may be multiplied with a vectorx one can use

VecGetLocalSize (x,&csize);
MatGetSubMatrix (Mat A,IS rows,IS cols,int csize,MatReuse call,Mat *B);

16.2 Matrix Factorization

Normally, PETSc users will access the matrix solvers through theSLES interface, as discussed in Chapter
4, but the underlying factorization and triangular solve routines are also directly accessible to the user. The

LU and Cholesky matrix factorizations are split into two or three stages depending on the user’s needs. The
first stage is to calculate an ordering for the matrix. The ordering generally is done to reduce fill in a sparse
factorization; it does not make much sense for a dense matrix.

MatGetOrdering (Mat matrix,MatOrderingType type,IS * rowperm,IS * colperm);

The currently available alternatives for the orderingtype are

• MATORDERING_NATURAL- Natural
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• MATORDERING_ND- Nested Dissection

• MATORDERING_1WD- One-way Dissection

• MATORDERING_RCM- Reverse Cuthill-McKee

• MATORDERING_QMD- Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following:-pc_
lu_ordering_type natural , -pc_lu_ordering_type nd , -pc_lu_ordering_type 1wd ,
-pc_lu_ordering_type rcm , -pc_lu_ordering_type qmd . Certain matrix formats
may support only a subset of these; more options may be added. Check the manual pages for up-to-date
information. All of these orderings are symmetric at the moment; ordering routines that are not symmetric
may be added. Currently we support orderings only for sequential matrices. Users can add their own
ordering routines by providing a function with the calling sequence

int reorder(Mat A,MatOrderingType type,IS * rowperm,IS * colperm);

HereA is the matrix for which we wish to generate a new ordering,type may be ignored androwperm
andcolperm are the row and column permutations generated by the ordering routine. The user registers
the ordering routine with the command

MatOrderingRegisterDynamic (MatOrderingType inname,char *path,char *sname,
int (*reorder)(Mat ,MatOrderingType ,IS *,IS *)));

The input argumentinname is a string of the user’s choice,iname is either an ordering defined in
petscmat.h or a users string, to indicate one is introducing a new ordering, while the output See the
code insrc/mat/impls/order/sorder.c and other files in that directory for examples on how the
reordering routines may be written. Once the reordering routine has been registered, it can be selected for
use at runtime with the command line option-pc_lu_ordering_type sname . If reordering directly,
the user should provide thename as the second input argument ofMatGetOrdering (). The following
routines perform complete, in-place, symbolic, and numerical factorizations for symmetric and nonsymmet-
ric matrices, respectively:

MatCholeskyFactor (Mat matrix,IS permutation,double pf);
MatLUFactor (Mat matrix,IS rowpermutation,IS columnpermutation,MatLUInfo *info);

The argumentinfo->fill > 1 is the predicted fill expected in the factored matrix, as a ratio of the
original fill. For example,info->fill=2.0 would indicate that one expects the factored matrix to
have twice as many nonzeros as the original. For sparse matrices it is very unlikely that the factorization
is actually done in-place. More likely, new space is allocated for the factored matrix and the old space
deallocated, but to the user it appears in-place because the factored matrix replaces the unfactored matrix.
The two factorization stages can also be performed separately, by using the out-of-place mode:

MatCholeskyFactorSymbolic (Mat matrix,IS perm, double pf,Mat *result);
MatLUFactorSymbolic (Mat matrix,IS rowperm,IS colperm,MatLUInfo *info,Mat *result);
MatCholeskyFactorNumeric (Mat matrix,Mat *result);
MatLUFactorNumeric (Mat matrix,Mat *result);

In this case, the contents of the matrixresult is undefined between the symbolic and numeric factorization
stages. It is possible to reuse the symbolic factorization. For the second and succeeding factorizations, one
simply calls the numerical factorization with a new inputmatrix and thesamefactoredresult matrix. It
is essentialthat the new input matrix have exactly the same nonzero structure as the original factored matrix.
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(The numerical factorization merely overwrites the numerical values in the factored matrix and does not
disturb the symbolic portion, thus enabling reuse of the symbolic phase.) In general, callingXXXFactorS
ymbolic with a dense matrix will do nothing except allocate the new matrix; theXXXFactorNumeric
routines will do all of the work.

Why provide the plainXXXfactor routines when one could simply call the two-stage routines? The
answer is that if one desires in-place factorization of a sparse matrix, the intermediate stage between the
symbolic and numeric phases cannot be stored in aresult matrix, and it does not make sense to store the
intermediate values inside the original matrix that is being transformed. We originally made the combined
factor routines do either in-place or out-of-place factorization, but then decided that this approach was not
needed and could easily lead to confusion. We do not currently support sparse matrix factorization with
pivoting for numerical stability. This is because trying to both reduce fill and do pivoting can become quite
complicated. Instead, we provide a poor stepchild substitute. After one has obtained a reordering, with
MatGetOrdering (Mat A,MatOrdering type,IS *row,IS *col) one may call

MatReorderForNonzeroDiagonal (Mat A,double tol,IS row, IS col);

which will try to reorder the columns to ensure that no values along the diagonal are smaller thantol in
a absolute value. If small values are detected and corrected for, a nonsymmetric permutation of the rows
and columns will result. This is not guaranteed to work, but may help if one was simply unlucky in the
original ordering. When using theSLES solver interface the options-pc_ilu_nonzeros_along_
diagonal <tol> and-pc_lu_nonzeros_along_diagonal <tol> may be used. Here,tol
is an optional tolerance to decide if a value is nonzero; by default it is1.e− 10.

Once a matrix has been factored, it is natural to solve linear systems. The following four routines enable
this process:

MatSolve (Mat A,Vec x, Vec y);
MatSolveTranspose (Mat A, Vec x, Vec y);
MatSolveAdd (Mat A,Vec x, Vec y, Vec w);
MatSolveTransposeAdd (Mat A, Vec x, Vec y, Vec w);

The matrixA of these routines must have been obtained from a factorization routine; otherwise, an error
will be generated. In general, the user should use theSLES solvers introduced in the next chapter rather
than using these factorization and solve routines directly.

16.3 Unimportant Details of KSP

Again, virtually all users should useKSP through theSLES interface and, thus, will not need to know the
details that follow.

It is possible to generate a Krylov subspace context with the command

KSPCreate (MPI Commcomm,KSP *kps);

Before using the Krylov context, one must set the matrix-vector multiplication routine and the preconditioner
with the commands

PCSetOperators (PC pc,Mat mat,Mat pmat,MatStructure flag);
KSPSetPC (KSP ksp,PC pc);

In addition, theKSP solver must be initialized with

KSPSetUp (KSP ksp);
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Solving a linear system is done with the command

KSPSolve (KSP ksp,int *its);

Finally, theKSP context should be destroyed with

KSPDestroy (KSP ksp);

It may seem strange to put the matrix in the preconditioner rather than directly in theKSP ; this decision
was the result of much agonizing. The reason is that for SSOR with Eisenstat’s trick, and certain other
preconditioners, the preconditioner has to change the matrix-vector multiply. This procedure could not be
done cleanly if the matrix were stashed in theKSP context thatPC cannot access. Any preconditioner can
supply not only the preconditioner, but also a routine that essentially performs a complete Richardson step.
The reason for this is mainly SOR. To use SOR in the Richardson framework, that is,

un+1 = un +B(f −Aun),

is much more expensive than just updating the values. With this addition it is reasonable to state thatall our
iterative methods are obtained by combining a preconditioner from thePCpackage with a Krylov method
from theKSPpackage. This strategy makes things much simpler conceptually, so (we hope) clean code will
result. Note: We had this idea already implicitly in older versions ofSLES , but, for instance, just doing
Gauss-Seidel with Richardson in oldSLES was much more expensive than it had to be. With PETSc this
should not be a problem.

16.4 Unimportant Details of PC

Most users will obtain their preconditioner contexts from theSLES context with the commandSLESGetPC
(). It is possible to create, manipulate, and destroyPC contexts directly, although this capability should
rarely be needed. To create aPC context, one uses the command

PCCreate (MPI Commcomm,PC *pc);

The routine

PCSetType (PC pc,PCType method);

sets the preconditioner method to be used. The two routines

PCSetOperators (PC pc,Mat mat,Mat pmat,MatStructure flag);
PCSetVector (PC pc,Vec vec);

set the matrices and type of vector that are to be used with the preconditioner. Thevec argument is needed
by thePC routines to determine the format of the vectors. The routine

PCGetOperators (PC pc,Mat *mat,Mat *pmat,MatStructure *flag);

returns the values set withPCSetOperators (). The preconditioners in PETSc can be used in several
ways. The two most basic routines simply apply the preconditioner or its transpose and are given, respec-
tively, by

PCApply (PC pc,Vec x,Vec y);
PCApplyTranspose (PC pc,Vec x,Vec y);

164

manualpages/KSP/KSPSolve.html##KSPSolve
manualpages/KSP/KSP.html##KSP
manualpages/KSP/KSP.html##KSP
manualpages/KSP/KSPDestroy.html##KSPDestroy
manualpages/KSP/KSP.html##KSP
manualpages/KSP/KSP.html##KSP
manualpages/KSP/KSP.html##KSP
manualpages/PC/PC.html##PC
manualpages/SLES/SLES.html##SLES
manualpages/SLES/SLES.html##SLES
manualpages/SLES/SLES.html##SLES
manualpages/SLES/SLESGetPC.html##SLESGetPC
manualpages/SLES/SLESGetPC.html##SLESGetPC
manualpages/PC/PC.html##PC
manualpages/PC/PC.html##PC
manualpages/PC/PCCreate.html##PCCreate
manualpages/Sys/comm.html##comm
manualpages/PC/PC.html##PC
manualpages/PC/PCSetType.html##PCSetType
manualpages/PC/PC.html##PC
manualpages/PC/PCType.html##PCType
manualpages/PC/PCSetOperators.html##PCSetOperators
manualpages/PC/PC.html##PC
manualpages/Mat/Mat.html##Mat
manualpages/Mat/Mat.html##Mat
manualpages/Mat/MatStructure.html##MatStructure
manualpages/PC/PCSetVector.html##PCSetVector
manualpages/PC/PC.html##PC
manualpages/Vec/Vec.html##Vec
manualpages/PC/PC.html##PC
manualpages/PC/PCGetOperators.html##PCGetOperators
manualpages/PC/PC.html##PC
manualpages/Mat/Mat.html##Mat
manualpages/Mat/Mat.html##Mat
manualpages/Mat/MatStructure.html##MatStructure
manualpages/PC/PCSetOperators.html##PCSetOperators
manualpages/PC/PCApply.html##PCApply
manualpages/PC/PC.html##PC
manualpages/Vec/Vec.html##Vec
manualpages/Vec/Vec.html##Vec
manualpages/PC/PCApplyTranspose.html##PCApplyTranspose
manualpages/PC/PC.html##PC
manualpages/Vec/Vec.html##Vec
manualpages/Vec/Vec.html##Vec


In particular, for a preconditioner matrix,B, that has been set viaPCSetOperators(pc,A,B,flag) ,
the routinePCApply(pc,x,y) computesy = B−1x by solving the linear systemBy = x with the
specified preconditioner method. Additional preconditioner routines are

PCApplyBAorAB (PC pc,PCSide right,Vec x,Vec y,Vec work,int its);
PCApplyBAorABTranspose (PC pc,PCSide right,Vec x,Vec y,Vec work,int its);
PCApplyRichardson (PC pc,Vec x,Vec y,Vec work,PetscReal rtol,PetscReal atol,PetscReal dtolint its);

The first two routines apply the action of the matrix followed by the preconditioner or the preconditioner
followed by the matrix depending on whether theright is PC_LEFTor PC_RIGHT. The final routine
appliesits iterations of Richardson’s method. The last three routines are provided to improve efficiency
for certain Krylov subspace methods. APC context that is no longer needed can be destroyed with the
command

PCDestroy (PC pc);
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Index

-compare,150
-dmmggrid sequence,105
-dmmgksp monitor,104
-dmmgsnesmonitor,105
-draw pause,152
-fp trap,17, 149
-h, 17, 144
-help,144
-ksp atol,65
-ksp cancelmonitors,66
-ksp computeeigenvalues,67
-ksp computeeigenvaluesexplicitly, 67
-ksp divtol, 65
-ksp gmresirorthog,63
-ksp gmresmodifiedgramschmidt,63
-ksp gmresrestart,63
-ksp gmresunmodifiedgramschmidt,63
-ksp max it, 65
-ksp monitor,65, 66
-ksp plot eigenvalues,67
-ksp plot eigenvaluesexplicitly, 67
-ksp richardsonscale,63
-ksp right pc,64
-ksp rtol, 65
-ksp singmonitor,66
-ksp smonitor,66
-ksp truemonitor,66, 69
-ksp type,63
-ksp xmonitor,65, 66, 155
-log history,138
-log info, 53, 55, 131, 137
-log mpe,134, 139
-log summary,131, 132, 139
-log trace,131, 148
-mat aij oneindex,52
-mat coloring,98
-mat fd coloring err,98
-mat fd coloring umin,98
-mat view matlab,108
-mg levels,75
-no signalhandler,149

-nox,154
-on error attachdebugger,17
-optionsleft, 146
-optionstable,146
-pc asmtype,71
-pc bgsblocks,71
-pc bjacobiblocks,71
-pc compositepcs,73
-pc compositetrue,73
-pc compositetype,73
-pc eisenstatno diagonalscaling,70
-pc eisenstatomega,70
-pc ilu damping,75
-pc ilu diagonalfill, 68
-pc ilu fill, 140
-pc ilu in place,68
-pc ilu levels,68
-pc ilu nonzerosalongdiagonal,68, 163
-pc ilu reusefill, 68
-pc ilu reuseordering,68
-pc ilu usedrop tolerance,68
-pc lu damping,75
-pc lu fill, 140
-pc lu in place,70
-pc lu nonzerosalongdiagonal,70, 163
-pc lu orderingtype,70, 162
-pc mg cycles,74
-pc mg smoothdown,74
-pc mg smoothup,74
-pc mg type,74
-pc slestrue,73
-pc sor backward,70
-pc sor its, 70
-pc sor local backward,70
-pc sor local forward,70
-pc sor local symmetric,70
-pc sor omega,70
-pc sor symmetric,70
-pc type,67
-preload,138
-snesatol,87
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-snescancelmonitors,88
-snesfmin, 87
-snesksp ew conv,89
-snesls, 86
-snesls alpha,86
-snesls maxstep,86
-snesls steptol,86
-snesmax funcs,87
-snesmax it, 87
-snesmf, 90
-snesmf err,90
-snesmf operator,90
-snesmf umin,90
-snesmonitor,88
-snesrtol, 87
-snessmonitor,88
-snesstol,87
-snestestdisplay,88
-snestrtol, 87
-snestype,84
-snesxmonitor,88, 155
-start in debugger,17
-subksp type,71
-subpc type,71
-trdump,17, 142
-trmalloc,141
-trmalloc log, 142
-trmalloc nan,142
-trmalloc off, 141
-ts pseudoincrement,103
-ts pseudoincrementdt from initial dt, 103
-ts pvodegmresrestart,102
-ts pvodegramschmidttype,102
-ts pvodetype,101
-ts type,100
-v, 17
-vec type,35
-vec view matlab,108
.petschistory,138
.petscrc,145
1-norm,37, 56
2-norm,37

Adams,101
ADD VALUES, 36, 47
additive preconditioners,73
aggregation,139
AIJ matrix format,52
alias,145

AO, 39, 40
AOApplicationToPetsc(),40
AOApplicationToPetscIS(),40
AOCreateBasic(),39
AOCreateBasicIS(),40
AODestroy(),40
AOPetscToApplication(),40
AOPetscToApplicationIS(),40
AOView, 40
Arnoldi, 67
array, distributed,42
ASM, 71
assembly,36
axis, drawing,153

backward Euler,100
BDF, 101
Bi-conjugate gradient,64
block Gauss-Seidel,71
block Jacobi,71, 146
boundary conditions,58

C++,156
Cai, Xiao-Chuan,71
CG,63
CHKERRQ(),149
Cholesky,161
coarse grid solve,74
collective operations,23
coloring with SNES,97
coloring with TS,101
combining preconditioners,72
command line arguments,17
command line options,144
communicator,66, 144
compiler options,139
complex numbers,22, 150, 156
composite,73
convergence tests,65, 87
coordinates,152
CSR, compressed sparse row format,52

DA NONPERIODIC,42
DA STENCIL BOX, 42
DA STENCIL STAR,42
DA XPERIODIC,42
DA XYPERIODIC,42
DA XYZPERIODIC,42
DA XZPERIODIC,42
DA YPERIODIC,42
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DA YZPERIODIC,42
DA ZPERIODIC,42
DACreate1d(),42
DACreate2d(),42
DACreate3d(),42
DACreateGlobalVector(),43
DACreateLocalVector(),43
DAGetAO(),45
DAGetColoring(),98
DAGetCorners(),44
DAGetGhostCorners(),44
DAGetGlobalIndices(),44, 113
DAGetScatter(),43
DAGlobalToLocalBegin(),43
DAGlobalToLocalEnd(),43
DALocalToGlobal(),43
DALocalToLocalBegin(),43
DALocalToLocalEnd(),43
damping,75
debugger,17
debugging,147, 148
DIFFERENTNONZEROPATTERN,62
direct solver,70
distributed array,42
DMMG, 104
DMMGCreate(),104
DMMGDestroy(),104
DMMGGetx(),104
DMMGSetDA(),104
DMMGSetDM(),104
DMMGSetSNES(),105
DMMGSetSNESLocal(),105
DMMGSolve(),104
double buffer,152

eigenvalues,67
Eisenstat trick,70
Emacs,151
Equation Solver Interface,110
errors,148
ESI,110
etags, in Emacs,151
Euler,100

factorization,161
floating-point exceptions,149
flushing, graphics,152
Frobenius norm,56

gather,46

ghost points,40, 41
global numbering,39
global representation,40
global to local mapping,41
GMRES,63
Gram-Schmidt,63
graphics,151
graphics, disabling,155
grid partitioning,58

Hermitian matrix,63
Hindmarsh,101

ICC, parallel,69
IEEE floating point,149
ILU, parallel,69
in-place solvers,70
incremental debugging,149
index sets,46
inexact Newton methods,89
infinity norm,37, 56
INSERT VALUES, 36, 46
installing PETSc,16
IS GTOLM DROP,41
IS GTOLM MASK, 41
ISBlock(),46
ISBlockGetBlockSize(),46
ISBlockGetIndices(),46
ISBlockGetSize(),46
ISColoringDestroy(),97
ISCreateBlock,46
ISCreateGeneral(),46
ISDestroy(),46
ISGetIndices(),46, 113
ISGetSize(),46
ISGlobalToLocalMappingApply,41
ISLocalToGlobalMapping,40
ISLocalToGlobalMappingApply(),40
ISLocalToGlobalMappingApplyIS(),40
ISLocalToGlobalMappingCreate(),40
ISLocalToGlobalMappingDestroy(),40
ISRestoreIndices(),46
ISStrideGetInfo(),46

Jacobi,71
Jacobian,78
Jacobian, debugging,88
Jacobian, testing,88

Krylov subspace methods,61, 63
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KSP CG SYMMETRIC, 63
KSPBCGS,63
KSPBICG,63, 64
KSPBuildResidual(),67
KSPBuildSolution(),67
KSPCG,63
KSPCGSetType(),63
KSPCGType,63
KSPCHEBYCHEV,63
KSPChebychevSetEigenvalues(),63
KSPComputeEigenvalues(),67
KSPConvergedReason,65
KSPCR,63
KSPCreate(),163
KSPDefaultMonitor(),66
KSPDestroy(),164
KSPGetRhs(),67
KSPGetSolution(),67
KSPGMRES,63
KSPGMRESIROrthogonalization,63
KSPGMRESModifiedGramSchmidtOrthogonalization,

63
KSPGMRESSetOrthogonalization(),63
KSPGMRESSetRestart(),63
KSPGMRESUnmodifiedGramSchmidtOrthogonalization,

63
KSPLGMonitor(),155
KSPLGMonitorCreate(),66, 155
KSPLGMonitorDestroy(),66
KSPPREONLY,63
KSPRICHARDSON,63
KSPRichardsonSetScale(),63
KSPSetComputeEigenvalues(),66
KSPSetConvergenceTest(),65
KSPSetInitialGuessNonzero(),64
KSPSetMonitor(),65
KSPSetPC(),163
KSPSetRhs(),67
KSPSetSolution(),67
KSPSetTolerances(),65
KSPSetType(),63
KSPSetUp(),163
KSPSingularValueMonitor(),66
KSPSolve(),164
KSPTCQMR,63
KSPTFQMR,63
KSPTrueMonitor(),66

Lanczos,67

line graphs,153
line search,78, 86
linear system solvers,61
lines, drawing,152
local linear solves,71
local representation,40
local to global mapping,40
logging,131, 139
LU, 161

MAT COLUMNS SORTED,51
MAT FINAL ASSEMBLY, 51
MAT FLUSH ASSEMBLY, 51
MAT INITIAL MATRIX, 161
MAT REUSEMATRIX, 161
MAT ROWSSORTED,51
MatAssemblyBegin(),22, 51
MatAssemblyEnd(),22, 51
MatCholeskyFactor(),162
MatCholeskyFactorNumeric(),162
MatCholeskyFactorSymbolic(),162
MATCOLORING ID, 98
MATCOLORING LF, 98
MATCOLORING NATURAL, 98
MATCOLORING SL, 98
MatConvert(),58
MatCopy(),56
MatCreate(),22, 50
MatCreateMPIAIJ(),53
MatCreateMPIRowbs(),69
MatCreateSeqAIJ(),52
MatCreateSeqDense(),55
MatCreateShell(),56, 61
MatCreateSNESMF(),89
MatFDColoring,97
MatFDColoringCreate(),97
MatFDColoringSetFromOptions(),97
MatFDColoringSetParameters(),98
MatGetArray(),113
MatGetColoring(),97
MatGetOrdering(),161
MatGetOwnershipRange(),51
MatGetRow(),58
MatGetSubMatrix(),161
MatILUInfo, 140
Matlab,108
MatLoad(),147
MatLUFactor(),162
MatLUFactorNumeric(),162
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MatLUFactorSymbolic(),162
MatMult(), 56
MatMultAdd(), 56
MatMultTranspose(),56
MatMultTransposeAdd(),56
MatNorm(),56
MATORDERING 1WD, 70, 162
MATORDERING NATURAL, 70, 162
MATORDERING ND, 70, 162
MATORDERING QMD, 70, 162
MATORDERING RCM, 70, 162
MatOrderingRegisterDynamic(),162
MatPartitioning,59
MatPartitioningApply(),60
MatPartitioningCreate(),60
MatPartitioningDestroy(),60
MatPartitioningSetAdjacency(),60
MatPartitioningSetFromOptions(),60
MatReorderForNonzeroDiagonal(),163
MatRestoreRow(),58
matrices,22, 50
matrix ordering,162
matrix-free Jacobians,89
matrix-free methods,56, 61
MatSetOption(),50
MatSetValues(),22, 50
MatSetValuesBlocked(),51
MATSHELL, 89
MatShellGetContext(),57
MatShellSetOperation(),57
MatSNESMFDefaultSetUmin(),90
MatSNESMFRegisterDynamic),90
MatSNESMFSetFunctionError(),90
MatSNESMFSetType(),90
MatSolve(),163
MatSolveAdd(),163
MatSolveTranspose(),163
MatSolveTransposeAdd(),163
MatView(), 56
MatZeroEntries(),57
MatZeroRows(),58
memory allocation,141
memory leaks,141
MG W CYCLE, 74
MGADDITIVE, 74
MGDefaultResidual(),75
MGFULL, 74
MGGetCoarseSolve(),74
MGGetSmoother(),74

MGKASKADE, 74
MGMULTIPLICATIVE, 74
MGSetCycles(),74
MGSetLevels(),74
MGSetNumberSmoothDown(),74
MGSetNumberSmoothUp(),74
MGSetR(),75
MGSetResidual(),75
MGSetRhs(),75
MGSetSmoother(),74
MGSetType(),74
MGSetX(),75
MPI, 151
MPI Finalize(),18
MPI Init(), 17
mpirun,16
multigrid, 74
multigrid, additive,74
multigrid, full, 74
multigrid, Kaskade,74
multigrid, multiplicative,74
multiplicative preconditioners,73

nested dissection,70, 162
Newton-like methods,78
nonlinear equation solvers,78
NORM 1, 37, 56
NORM 2, 37
NORM FROBENIUS,56
NORM INFINITY, 37, 56
NormType,37, 56
null space,75
Nupshot,134

ODE solvers,99, 101
one-way dissection,70, 162
options,144
ordering,162
orderings,39, 40, 68, 70
overlapping Schwarz,71

partitioning,58
PC ASM BASIC, 71
PC ASM INTERPOLATE,71
PC ASM NONE,71
PC ASM RESTRICT,71
PC COMPOSITEADDITIVE, 73
PC COMPOSITEMULTIPLICATIVE, 73
PC LEFT, 165
PC RIGHT, 165

170



PCApply(),164
PCApplyBAorAB(),165
PCApplyBAorABTranspose(),165
PCApplyRichardson(),165
PCApplyTranspose(),164
PCASM,67
PCASMSetOverlap(),72
PCASMSetTotalSubdomains(),71
PCASMSetType(),71
PCBJACOBI,67
PCBJacobiGetSubSLES(),71
PCBJacobiSetTotalBlocks(),71
PCCOMPOSITE,72
PCCompositeAddPC(),73
PCCompositeGetPC(),73
PCCompositeSetType(),73
PCCompositeSetUseTrue(),73
PCCreate(),164
PCDestroy(),165
PCEISENSTAT,70
PCEisenstatNoDiagonalScaling(),70
PCEisenstatSetOmega(),70
PCGetOperators(),164
PCICC,67
PCILU, 67
PCILUDTSetReuseFill(),68
PCILUSetAllowDiagonalFill(),68
PCILUSetLevels(),68
PCILUSetReuseOrdering(),68
PCILUSetUseDropTolerance(),68
PCILUSetUseInPlace(),68
PCJACOBI,67
PCLU,67
PCLUSetUseInPlace(),62, 70
PCNONE,67
PCSetOperators(),163, 164
PCSetType(),67, 164
PCSetVector(),164
PCSHELL,67, 89
PCShellSetApply(),72
PCShellSetSetUp(),72
PCSide,64
PCSLES,73
PCSLESGetSLES(),73
PCSLESSetUseTrue(),73
PCSOR,67
PCSORSetIterations(),69
PCSORSetOmega(),69
PCSORSetSymmetric(),69

performance tuning,139
PETSCCOMM SELF,17
PETSCCOMM WORLD, 17
PETSCDECIDE,35, 54, 55
PETSCDEFAULT, 65
PETSCDIR, 16
PETSCFORTRAN LIB, 115, 159
PETSCFP TRAP OFF,149
PETSCFP TRAP ON, 149
PETSCHAVE FORTRAN CAPS,114
PETSCHAVE FORTRAN UNDERSCORE,114
PETSCLIB, 115, 158, 159
PETSCNULL CHARACTER,114
PETSCNULL DOUBLE, 114
PETSCNULL INTEGER,114
PETSCNULL SCALAR, 114
PETSCOPTIONS,145
PETSCUSE COMPLEX,157
PETSCUSE DEBUG,157
PETSCUSE LOG, 131, 157
PETSCVIEWER ASCII DEFAULT, 147
PETSCVIEWER ASCII IMPL, 147
PETSCVIEWER ASCII MATLAB, 147
PETSCVIEWER DRAW SELF,146, 151
PETSCVIEWER DRAW WORLD, 36, 56, 146,

151
PETSCVIEWER STDOUT SELF,146
PETSCVIEWER STDOUT WORLD, 36, 146
PetscAbortErrorHandler(),148
PetscAttachErrorHandler(),148
PetscCompareDouble(),150
PetscCompareInt(),150
PetscCompareScalar(),150
PetscDefaultSignalHandler(),149
PetscDrawAxis*(),66
PetscDrawAxisSetColors(),153
PetscDrawAxisSetLabels(),153
PetscDrawFlush(),152
PetscDrawLG*(),66
PetscDrawLGAddPoint(),153
PetscDrawLGAddPoints(),153
PetscDrawLGCreate(),153
PetscDrawLGDestroy(),153
PetscDrawLGDraw(),153
PetscDrawLGGetAxis(),153
PetscDrawLGReset(),153
PetscDrawLGSetLimits(),153
PetscDrawLine(),152
PetscDrawOpenX(),152
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PetscDrawSetCoordinates(),152
PetscDrawSetDoubleBuffer(),152
PetscDrawSetViewPort(),152
PetscDrawSP*(),67
PetscDrawString(),152
PetscDrawStringGetSize(),152
PetscDrawStringSetSize(),152
PetscDrawStringVertical(),152
PetscDrawSynchronizedFlush(),152
PetscError(),148
PetscFinalize(),18
PetscFPrintf(),138
PetscGetResidentSetSize(),142
PetscGetTime(),138
PetscInitialize(),17
PetscInitializeLargeInts(),142
PetscInitializeNans(),142
PetscLogEventBegin(),135
PetscLogEventEnd(),135
PetscLogEventRegister(),135
PetscLogFlops(),135
PetscLogInfo(),137
PetscLogInfoActivateClass(),137
PetscLogInfoAllow(),137
PetscLogInfoDeactivateClass(),137
PetscLogStagePop(),136
PetscLogStagePush(),136
PetscLogStageRegister(),136
PetscLogTraceBegin(),148
PetscObjectGetComm(),66
PetscObjectName(),108
PetscObjectSetName(),108
PetscOptionsGetInt(),145
PetscOptionsGetIntArray(),146
PetscOptionsGetReal(),146
PetscOptionsGetRealArray(),146
PetscOptionsGetString(),146
PetscOptionsHasName(),145
PetscOptionsSetValue(),145
PetscPopErrorHandler(),148
PetscPrintf(),138
PetscPushErrorHandler(),148
PetscPushSignalHandler(),148
PetscScalar,22
PetscSetCommWorld(),144
PetscSetFPTrap(),149
PetscTraceBackErrorHandler(),148
PetscTrDump(),142
PetscTrLog(),142

PetscTrLogDump(),142
PetscViewer,146
PetscViewerASCIIOpen(),146
PetscViewerBinaryOpen(),146
PetscViewerDestroy(),147
PetscViewerDrawGetDraw(),151
PetscViewerDrawOpenX(),56, 151
PetscViewerMatlabOpen(),146
PetscViewerPopFormat(),147
PetscViewerPushFormat(),147
PetscViewerSetFormat(),147
preconditioners,67
preconditioning,61, 64
preconditioning, right and left,165
PreLoadBegin(),138
PreLoadEnd(),138
PreLoadStage(),138
profiling, 131, 139
providing arrays for vectors,37
PVODE,101
PVODE MODIFIED GS,102
PVODE UNMODIFIED GS,102

quotient minimum degree,70, 162

relaxation,69, 74
reorder,161
restart,63
reverse Cuthill-McKee,70, 162
Richardson’s method,165
running PETSc programs,16
runtime options,144

SAME NONZEROPATTERN,62, 86
SAME PRECONDITIONER,62
Sarkis, Marcus,71
scatter,46
SCATTERFORWARD,46
SCATTERREVERSE,47
SETERRQ(),149
signals,148
singular systems,75
SLESCreate(),22, 61
SLESDestroy(),22, 62
SLESGetKSP(),62
SLESGetPC(),62
SLESSetFromOptions(),22, 62
SLESSetOperators(),22, 61
SLESSetUp(),62, 71
SLESSolve(),22, 62
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smoothing,74
snesmf ksp monitor,91
SNESConvergedReason,88
SNESDefaultComputeJacobianColor(),97
SNESDefaultMonitor(),88
SNESetFromOptions(),84
SNESGetFunction,88
SNESGetSolution(),88
SNESGetTolerances(),87
SNESNoLineSearch(),86
SNESNoLineSearchNoNorms(),86
SNESQuadraticLineSearch(),86
SNESSetConvergenceTest(),87
SNESSetFunction(),85
SNESSetJacobian(),85, 101
SNESSetLineSearch(),86
SNESSetMonitor(),88
SNESSetTolerances(),87
SNESSetType(),84
SNESSolve,85
SOR,69
SORBACKWARD SWEEP,70
SORFORWARD SWEEP,70
SORLOCAL BACKWARD SWEEP,70
SORLOCAL FORWARD SWEEP,70
SORLOCAL SYMMETRIC SWEEP,70
SORSYMMETRIC SWEEP,70
SPARSKIT,52
spectrum,67
SSOR,69
stride,46
submatrices,161
symbolic factorization,162

text, drawing,152
time,138
timing, 131, 139
trust region,78, 87
TS,99
TS BEULER,100
TS EULER,100
TS PSEUDO,100
TS PVODE,101
TSCreate(),100
TSDefaultComputeJacobian(),101
TSDefaultComputeJacobianColor(),101
TSDestroy(),100
TSGetTimeStep(),100
TSProblemType,100

TSPseudoIncrementDtFromInitialDt(),103
TSPseudoSetTimeStepIncrement(),103
TSPVodeGetPC(),102
TSPVodeGramSchmidtType,102
TSPVodeSetGMRESRestart(),102
TSPVodeSetGramSchmidtType(),102
TSPVodeSetTolerance(),102
TSPVodeSetType(),101
TSPVodeType,101
TSSetDuration(),100
TSSetInitialTimeStep,100
TSSetRHSFunction,101, 102
TSSetRHSJacobian,101, 102
TSSetRHSMatrix(),101
TSSetSolution(),100
TSSetTimeStep(),100
TSSetType(),100
TSSetUp(),100
TSView(),100

Upshot,134

V-cycle,74
Vec,35
VecAssemblyBegin(),36
VecAssemblyEnd(),36
VecCreate(),21, 35
VecCreateGhost(),49
VecCreateGhostWithArray(),49
VecCreateMPI(),35, 40
VecCreateMPIWithArray(),37
VecCreateSeq(),35
VecCreateSeqWithArray(),37
VecDestroy(),37
VecDestroyVecs(),37, 115
VecDotBegin(),39
VecDotEnd(),39
VecDuplicate(),21, 36
VecDuplicateVecs(),37, 115
VecGetArray(),37, 113, 139
VecGetLocalSize(),37
VecGetOwnershipRange(),37
VecGetSize(),38
VecGetValues(),47
VecGhostGetLocalForm(),49
VecGhostRestoreLocalForm(),49
VecGhostUpdateBegin(),49
VecGhostUpdateEnd(),49
VecLoad(),147
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VecNorm(),37
VecNormBegin(),39
VecNormEnd(),39
VecScatterBegin(),46
VecScatterCreate(),46
VecScatterDestroy(),46
VecScatterEnd(),46
VecSet(),21, 36
VecSetFromOptions(),21, 35
VecSetLocalToGlobalMapping(),41
VecSetSizes(),21, 35
VecSetType(),21
VecSetValues(),21, 36, 47
VecSetValuesLocal(),41
VecTDotBegin(),39
VecTDotEnd(),39
vector values, getting,47
vector values, setting,36
vectors,21, 35
vectors, setting values with local numbering,41
vectors, user-supplied arrays,37
vectors, with ghost values,49
VecView(),36

W-cycle,74
wall clock time,138

X windows,152

zero pivot,75
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