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Abstract

This document describes the Fortran 90 and C user interded&MP $ersion 4.5.5. We describe in
detail the data structures, parameters, calling sequeand<error diagnostics. Example programs using
MUMP@re also given.

*Information on how to obtain updated copies of MUMPS can betaiobd from the Web pages
http://lwww.enseeiht.fr/lapo/MUMPS/ and http://graal.ens-lyon.frfMUMPS/ or by sending email to
mumps@cerfacs.fr
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1 Introduction

MUMP&‘MUItifrontal Massively Parallel Solver”) is a packagerfsolving systems of linear equations
of the form Ax = b, where the matribA is sparse and can be either unsymmetric, symmetric positive
definite, or general symmetridd UMPSises a multifrontal technique which is a direct method based
either theLU or the LD L7 factorization of the matrix. We refer the reader to the psfper4, 7, 16, 17]
for full details of the techniques usedlUMP &xploits both parallelism arising from sparsity in the matr
A and from dense factorizations kernels.

The main features of thBlUMP$ackage include the solution of the transposed systemt wfpu
the matrix in assembled format (distributed or centraljzadelemental format, error analysis, iterative
refinement, scaling of the original matrix, and return of &@ccomplement matrix. MUMP Sffers
several built-in ordering algorithms, a tight interfacestime external ordering packages such as PORD
[19] and METIS [18], and the possibility for the user to inpudiven ordering. FinallMUMP$ available
in various arithmetics (real or complex, single or doublegsion).

The software is written in Fortran 90 although a C interfacavailable (see Section 8). The parallel
version of MUMP $equires MPI [20] for message passing and makes use of theSBLA, 12], BLACS,
and ScaLAPACK [9] libraries. The sequential version onleseon BLAS.

MUMP®as been tested on an SGI Origin 2000, a CRAY T3E, an IBM SPaataister of PC under
Linux, and on the following operating systems: IRIX 6.4 amghler, UNICOS, AIX 4.3 and higher, and
Linux.

MUMPSlistributes the work tasks among the processors, but arifidenprocessor (the host) is
required to perform most of the analysis phase, distridueincoming matrix to the other processors
(slaves) in the case where the matrix is centralized, anéatdhe solution. The systelAx = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based onitimaeatrized patters\ +
AT, and carries out symbolic factorization. A mapping of thdtifrontal computational graph is
then computed, and symbolic information is transferrethftbe host to the other processors. Using
this information, the processors estimate the memory sacg$or factorization and solution.

2. Factorization. The original matrix is first distributed to processors thall participate in the
numerical factorization. The numerical factorization acle frontal matrix is conducted by a
masterprocessor (determined by the analysis phase) and one orstaveprocessors (determined
dynamically). Each processor allocates an array for douion blocks and factors; the factors
must be kept for the solution phase.

3. Solution. The right-hand sid® is broadcast from the host to the other processors. Thesegwzors
compute the solutios using the (distributed) factors computed during Step 2,taadsolution is
either assembled on the host or kept distributed on the psocs.

Each of these phases can be called independently and sesteaices oMUMP&®an be handled
simultaneouslyMUMP@llows the host processor to participate in computatiomgduhe factorization
and solve phases, just like any other processor (see S&c8ijpn

For both the symmetric and the unsymmetric algorithms usethé code, we have chosen a
fully asynchronous approach with dynamic scheduling of tbenputational tasks. Asynchronous
communication is used to enable overlapping between conwation and computation. Dynamic
scheduling was initially chosen to accommodate numeridaitipg in the factorization. The other
important reason for this choice was that, with dynamic dalieg, the algorithm can adapt itself at
execution time to remap work and data to more appropriategssors. In fact, we combine the main
features of static and dynamic approaches; we use the éstimabtained during the analysis to map
some of the main computational tasks; the other tasks arendaigally scheduled at execution time. The
main data structures (the original matrix and the factors)semilarly partially mapped according to the
analysis phase.

2 Main functionalities of MUMPS 4.5.5

We describe here the main functionalities of the soMIMPSThe user should refer to Sections 4
and 5 for a complete description of the parameters that meisseb or that are referred to in this



Section. The variables mentioned in this section are coemmtsnof a structurenumpspar of type
[SDCZ]MUMPSSTRUC(see Section 3) and for the sake of clarity, we refer to thety by their
component name. For example, we use ICNTL to refentmnpspar%ICNTL .

2.1 Input matrix structure

MUMP$®rovides several possibilities to input the matrix. Thisastrolled by the parameters ICNTL(5)
and ICNTL(18).

The input matrix can be supplied glemental formatnd must then be input centrally on the host
(ICNTL(5)=1 and ICNTL(18)=0). For implementation detagse Section 4.5. Otherwise, it can be
supplied inassembled formaflCNTL(5)=0) in coordinate form, and, in this case, there aeveral
possibilities (see Sections 4.4 and 4.6):

1. the matrix can be input centrally on the host processdlIq18)=0);

2. only the matrix structure is provided on the host for thalgsis phase and the matrix entries are
provided for the numerical factorization, distributed@ss the processors:

e either according to a mapping supplied by the analysis (I0(48)=1),
e or according to a user determined mapping (ICNTL(18)=2);

3. itis also possible to distribute the matrix pattern areehtries in any distribution in local triplets
(ICNTL(28)=3) for both analysis and factorization (recoemded option for distributed entry).

By default the input matrix is considered in assembled farfif@NTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Symmetric orderings

A range of orderings to preserve sparsity is available inahalysis phase. Most of them have been
introduced in release 4.2 of thdUMP$ackage. The parameter ICNTL(7) is used to control the erger
request.

Besides the approximate minimum degree ordering (AMD,, [@}) approximate minimum degree
ordering with automatic quasi dense row detection (QAMO),[&n approximate minimum fill-in
ordering (AMF), an ordering where bottom-up strategiesused to build separators by Jurgen Schulze
from Univ. of Paderborn (PORD, [19]), and the METIS packagenf Univ. of Minnesota [18] are
possible choices. For what concerns the METIS package, thelWMETISNODEND hybrid ordering
routine can be used.

A user-supplied ordering can also be provided and the pie@ranust be set by the user in PERM
(see Section 4.8). Also, it should be noted that the logittthadles this case is different from the built-in
orderings so that, for example, a different performancedifierent internal data structures are created
by a run that generates an ordering and a separate one tHatfet same ordering array in as input.

If ICNTL(7)=7, theMUMP $ackage will automatically choose the ordering dependimife ordering
packages installed, the type of the matrix (Symmetric oyommsetric), the size of the matrix and the
number of processors available.

The default value of ICNTL(7) is 7.

2.3 Other pre-processing facilities

Besides the symmetric orderinddUMP ®ffers other pre-processing facilities: permuting to zize®
diagonal and prescaling.

Permutations to zero-free diagonal can be applied to vesyrametric matrices and can help reduce
fill-in and arithmetic, see [13, 14]. This functionality isrtrolled by ICNTL(6). For symmetric matrices
this permutation can also be used to constrain the symnperinutation (see ICNTL(12) option).

Prescaling of the input matrix can help reduce fill-in durifagtorization and can improve the
numerical accuracy. A range of classical scalings are geaiand can be automatically performed at
the beginning of the numerical factorization phase. Thigfionality is controlled by ICNTL(8). For
some values of ICNTL(6) or ICNTL(12) the arrays COLSCA/RO®B/Scan also be allocated and built



during the analysis phase (see Section 4.7). Concerningnsynic indefinite matrices preprocessings as
described in [15] and controlled by ICNTL(12) can be applied

2.4 Post-processing facilities

It has been shown [8] that with only two to three steps of tieearefinement the solution can often be
significantly improved. Iterative refinement can be optllynperformed after the solution step using the
parameter ICNTL(10).

MUMP&lso enables the user to perform classical error analysiedban the residuals (see the
description of ICNTL(11) in Section 5). We calculate an mstie of the sparse backward error using
the theory and metrics developed in [8]. We use the notatior the computed solution and a modulus
sign on a vector or a matrix to indicate the vector or matritaoted by replacing all entries by their
moduli. The scaled residual

b — Ax|,
(bl + AT, @
(b + [A[Ix]);
is computed for all equations except those for which the matoe is nonzero and the denominator is
small. For all the exceptional equations,

_ b Ax’|z _ @
(A xD; + Al [1%l oo
is used instead, wherA; is row i of A. The largest scaled residual (1) is returned, on the host, in
RINFOG(7) and the largest scaled residual (2) is returndNFOG(8). If all equations are in category
(1), zero is returned in RINFOG(8). The computed soluttas the exact solution of the equation

(A +5A)x = (b + db),

where
§A;; < max(RINFOG(7), RINFOG(8))[A,,
andob; < max(RINFOG(7)|b|,, RINFOG(8)||A:|| . [IX]|..)- Note thatd A respects the sparsity of

A. An upper bound for the error in the solution is returned INRDG(9). Finally condition numbers
cond, andcond, for the matrix are returned in RINFOG(10) and RINFOG(113pextively, and

[|ox]] < RINFOG(7) x cond; + RINFOG(8) x conds.

[l

2.5 Solving the transposed system

Given a sparse matriA, the systemAx = b or ATx = b can be solved during the solve stage. This is
controlled by ICNTL(9).

2.6 Return a specified Schur complement

A Schur complement matrix (centralized or provided as 2xbloyclic matrix) can be returned to the

user (see ICNTL(19) and Section 4.9). The user must spelé#ylist of indices of the Schur matrix.

MUMP&hen provides both a partial factorization of the completgrir and returns the assembled Schur

matrix in user memory. The Schur matrix is considered aslanfatrix. The partial factorization that

builds the Schur matrix can also be used to solve linear systssociated with the “interior” variables.
For example, consider the partitioned matrix

Al 1 Al 2
A= ’ ’ 3
( Asxq Asp ) (3)
where the variables oA » are those specified by the user. Then the Schur complemerefuaned
by MUMPSs As 2 — AQ,IA;}AI,Q, and the solve is performed ok, ,; only. (Entries in the solution
vector corresponding to indices in the Schur matrix areieitiyl set to 0.)
Note that the Schur complement could be considered as aret@ontribution to the interface block

in a domain decomposition and B8JMP8ould be used to solve this interface problem using the eléeme
entry functionality.



2.7 Arithmetic versions

Several versions of the packaygJMP%re available:REAL DOUBLE PRECISIONCOMPLEXand
DOUBLE COMPLEX
This document applies to all four precisions. In the follog/ive use the conventions below:

the ternreal is used foREALor DOUBLE PRECISION

the termcomplexis used fotl COMPLEXr DOUBLE COMPLEX

real version means eithREALor DOUBLE PRECISIONersion,
complex version means eitheOMPLEXor DOUBLE COMPLEXrsion.

AP w DN PE

2.8 The working host processor

The analysis phase is performed on the host processor. Tiegsor is the one with rank 0 in the
communicator provided tMUMPSMUMPllows the host to participate to computations during the
factorization and solve phases, just like any other prareds/ setting the variable PAR to 1 (see
Section 4.2). This allows for examad@UMP$o run on a single processor and avoids the host processor to
be idle during the factorization and solve phases (as istbe for PAR=0). We thus generally recommend
to use a working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a lasy@ralized matrix on a purely
distributed architecture with relatively small local melyto PAR=1 will lead to a memory imbalance
because of storage related to the initial matrix on the host.

2.9 Sequential version

It is possible to uséMUMPSequentially by limiting the number of processors to oné the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries ate tuser program needed to make explicit
calls toMPI_INIT andMPI_FINALIZE .

A purely sequential version slUMP$% also available: for this, a special library is distrilkaitghich
provides all external symbols neededMyMP $or a sequential environmertlUMP$an thus be used in
a simple sequential program, ignoring anything related Bd.NDetails on how to build a purely sequential
version of MUMP@re available in the file README available in tMUMP $listribution. Note that for
the sequential version, the component PAR must be set t@S@etion 4.2) and that the calling program
should not make use of MPI.

2.10 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a shawedory), a parallel shared memory
BLAS library (also called multithread BLAS) is often proed by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) camghbi#isantly more efficient than running
with only MPI processes. For example on a computer with 2 Skifea and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MRgs

3 Calling sequence

In the following we use the notatiofSDCZJMUMPS for referring to DMUMPS SMUMPS
ZMUMP®r CMUMP®r REAL DOUBLE PRECISIONCOMPLEXndDOUBLE COMPLEXrsions,
respectively. Similarlyf SDCZ]MUMPSSTRUCrefers to eithe'SMUMPSTRUC DMUMPSTRUG
CMUMPSTRUG or ZMUMPSTRUGC and [sdczlmumps _struc.h to smumpsstruc.h
dmumpsstruc.h , cmumpsstruc.h  or zmumpsstruc.h

In the Fortran 90 interface, there is a single user callahibraitine per precision, called
[SDCZ]JMUMPS that has a single parametemumpspar of Fortran 90 derived datatype
[SDCZ]MUMPSSTRUCdefined in [sdczlmumpstruc.h. The interface is the same for the sequential
version, only the compilation process and libraries neednamged. In the case of the parallel version,



MPI must be initialized by the user before the first calf$®CZ]MUMPSs made. The calling sequence
for theDOUBLE PRECISIONersion may look as follows:

INCLUDE ’'mpif.h’
INCLUDE ’'dmumps_struc.h’

INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPL_INIT(IERR) I Not needed in purely sequential versi on
CALL DMUMPS( mumps_par )

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other precisions, dmumpsstruc.h should be replaced bysmumpsstruc.h
cmumpsstruc.h , or zmumpsstruc.h , and the’D’ in DMUMPSnd DMUMPSTRUC by
'S ,C or'Z

The variablenumpspar of datatypg SDCZ]JMUMPSSTRUGCholds all the data for the problem. It
has many components, only some of which are of interest taghe The other components are internal
to the package. Some of the components must only be definebdeonost. Others must be defined
on all processors. The filsdczlmumps _struc.h  defines the derived datatype and must always
be included in the program that caMUMPSThe file [sdczlmumps _root.h , which is included in
[sdczlmumps _struc.h , must also be available at compilation time. Componenthefstructure
[SDCZ]MUMPSSTRUGCNhat are of interest to the user are shown in Figure 1.

The interface toMUMPSonsists in calling the subroutinDCZ]MUMPSwith the appropriate
parameters set imumpspar .



INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]JMUMPS_STRUC
SEQUENCE
C INPUT PARAMETERS

G Frkkkkkkkkkkkkkkk

Problem definition
Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
Type of parallelism (PAR=1 host working, PAR=0 host not wor king)
INTEGER SYM, PAR, JOB
Control parameters

INTEGER ICNTL(40)

o0 0000

real CNTL(5)

INTEGER N ! Order of input matrix
Assembled input matrix : User interface

[eXe!

INTEGER NZ
real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A _LOC
C Unassembled input matrix: User interface

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/lcomplex, DIMENSION(:), POINTER :: A _ELT
MPI Communicator

INTEGER COMM
Ordering and scaling, if given by user (optional)

o0 00

INTEGER, DIMENSION(:), POINTER :: PERM_IN
real/complex DIMENSION(:), POINTER :: COLSCA, ROWSCA
INPUT/OUTPUT data

*hkkkkkkkkkkkkkkkk
RHS/SOL_loc : on input it holds the right-hand side
on output it always holds the assembled solution

O0000

real/complex DIMENSION(:), POINTER :: RHS
real/lcomplex DIMENSION(:), POINTER :: RHS _SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_LOC

real/lcomplex DIMENSION(:), POINTER :: SOL _LOC

INTEGER, DIMENSION(:), POINTER :: ISOL_LOC

C OUTPUT data and Statistics

C Khkkkhkhkkkhkhkhkhkhkhkkkk
INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur

0O

INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex DIMENSION(:), POINTER :: SCHUR
C Mapping potentially provided by MUMPS
C

INTEGER, DIMENSION(:), POINTER :: MAPPING
END TYPE [SDCZ]MUMPS_STRUC

Figure 1: Main components of the structurdSDCZ]JMUMPSSTRUC defined in
[sdczlmumps _struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, wheregsal is used for parameters that are always real, even in the
complex version oMUMPS 8



4 Input and output parameters

In this section, we describe the components of the variablempspar% of datatype
[SDCZ]MUMPSSTRUGChat must be set by the user.

4.1 Control of the three main phases: Analysis, Factorizatin, Solve

mumpspar%JOB (integer) must be initialized by the user on all processefsite a call toMUMPSt
controls the main action taken BYUMPSt is not altered byMUMPS

JOB=-1 initializes an instance of the package. A call witB3S1 must be performed before any
other call to the package on the same instance. It sets tefdués for other components of
MUMPSTRUC(such as ICNTL, see below), which may then be altered befabseqjuent
calls toMUMPSNote that three components of the structure must alway®tieysthe user
(on all processors) before a call with JOB=-1. These are

o mumpspar%COMM,
e mumpspar%SYM, and
e mumpspar%PAR.

Note that, after a call to JOB=-1, the internal component pripar%MYID contains
the rank of the calling processor in the communicator predito MUMPSThus, the test
“(mumpspar%MYID == 0)” may be used to identify the host processoe (Section 2.8).
JOB=-2 destroys an instance of the package. All data stestassociated with the instance,
except those provided by the user in munpmas, are deallocated. It should be called by the
user only when no further calls tddUMPSvith this instance are required. It should be called
before a further JOB=-1 call with the same argument mupgrs
JOB=1 performs the analysis. In this phab#JMP&hooses pivots from the diagonal using a
selection criterion to preserve sparsity. It uses the patieA + AT but ignores numerical
values. It subsequently constructs subsidiary informmatéy the numerical factorization (a
JOB=2 call).
An option exists for the user to input the pivotal sequenGN{TL(7)=1, see below) in which
case only the necessary information for a JOB=2 call will beagated.
The numerical values of the original matrix, mumpar%A, must be provided by the user
during the analysis phase only for particular values of IC{6) (computation of a column
permutation to get a zero-free diagonal). See Section 5 fwemetails.
MUMP@&ses the pattern of the matri input by the user. In the case afcentralized matrix
the following components of the structure defining the matdttern must be set by the user
only on the host:
e mumpspar%N, mumpspar%NZ, mumppar%IRN, and mumppar%JCN if the user
wishes to input the structure of the matrix assembled formaflCNTL(5)=0 and
ICNTL(18) # 3) (see Section 4.4),

e mumpspar%N, mumpgpar%NELT, mumpar%ELTPTR, and mumpgar%ELTVAR
if the user wishes to input the matrix@emental formatl CNTL(5)=1) (see Section 4.5).
These components should be passed unchanged when laitgg tadl factorization (JOB=2)
and solve (JOB=3) phases.
In the case o distributed assembled matrigee Section 4.6 for more details and options),
e If ICNTL(18) = 1 or 2, the previous requirements hold excédpttiRN and JCN are no
longer required and need not be passed unchanged to theZatitm phase.
e If ICNTL(18) = 3, the user should provide
— mumpspar%N on the host
— mumpspar%NZloc, mumpspar%IRNloc and mumpspar%JCNIoc on all slave
processors. Those should be passed unchanged to theZatitori(JOB=2) and solve
(JOB=3) phases.
A call to MUMP®iith JOB=1 must be preceded by a call with JOB=-1 on the sastarine.



JOB=2 performs the factorization. It uses the numericaleslof the matrixA provided by the
user and the information from the analysis phase (JOB=Jdmfize the matri.
If the matrix is centralizecbn the host (ICNTL(18)=0), the pattern of the matrix should
be passed unchanged since the last call to the analysis feselOB=1); the following
components of the structure define the numerical values arsl be set by the user (on the
host only) before a call with JOB=2:
e mumpspar%A if the matrix is in assembled format (ICNTL(5)=0), or
e mumpspar%AELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed(ICNTL(5)=0 and ICNTL(18)+# 0), then the following
components of the structure must be set by the user on all plcessors before a call with
JOB=2:
e mumpspar%A.loc on all slave processors, and
e mumpspar%NZloc, mumpspar%IRNloc and mumpgar%JCNIoc if ICNTL(18)=1
or 2. (For ICNTL(18)=3, NZloc, IRN_loc and JCNIoc have already been passed to the
analysis step and must be passed unchanged.)
(See Sections 4.4-4.5-4.6.) The actual pivot sequenceadusied the factorization may differ
slightly from the sequence returned by the analysis if theima is not diagonally dominant.
An option exists for the user to input scaling vectors orNBiMPSompute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(8) 0, see Section 4.7).

A call to MUMP®iith JOB=2 must be preceded by a call with JOB=1 on the santarios.
JOB=3 performs the solution. It uses the right-hand sigeovided by the user and the factors
generated by the factorization (JOB=2) to solve a systengudonsAx = b or ATx = b.

The pattern and values of the matrix should be passed unetiasigce the last call to the
factorization phase (see JOB=2). The structure componantpapar%RHS must be set by
the user (on the host only) before a call with JOB=3. (Seei@edt11.)
A call to MUMP$ith JOB=3 must be preceded by a call with JOB=2 (or JOB=4hersame
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. Istne preceded by a call to
MUMP®iith JOB=-1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must beedeetby a call ttIUMP ®vith
JOB=1 on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. Istnlne¢ preceded by a call to
MUMP&ith JOB=-1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance ashje.

4.2 Control of parallelism

mumpsparCOMM (integer) must be set by the user on all processors beforaittaization phase
(JOB=-1) and must not be changed. It must be set to a valid Mfhwunicator that will be used
for message passing insidlJMPSIt is not altered byMUMPSThe processor with rank 0 in this
communicator is used IMUMP @s thehost processor. Note that only the processors belonging to
the communicator should cdlUMPS

mumpsparPAR (integer) must be initialized by the user on all processarbsia accessed ifUMPS
only during the initialization phase (JOB=-1). It is noteatd byMUMP SPossible values for PAR
are:
0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial probleerform symbolic computations during
the analysis phase, distribute data, and collect reswoits fither processors. If setto 1, the host will
also participate in the factorization and solve phasesdfnitial problem is large and memory is
an issue, PAR = 1 is not recommended if the matrix is centrdln processor 0 because this can

10



lead to memory imbalance, with processor 0 having a largenongload than the other processors.
Note that setting PAR to 1, and using only 1 processor, leadssequential code.

4.3 Matrix type

mumpspar¥sSYM (integer) must be initialized by the user on all processotsia accessed IMUMPS
only during the initialization phase (JOB=-1). It is noteatd byMUMP @xcept for the complex
version ofMUMPSvhere SYM=1 is replaced by SYM=2 and structural symmetryjdated up
to the root. Possible values for SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

For the complex version, the value SYM=1 is currently trdate SYM=2. We do not have a version
for Hermitian matrices in this release MUMPS

4.4 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), and mumpg$6A (eal/complex
array pointer, dimension NZ) hold the matrix in assembleunét. These components should be
set by the user only on the host and only when ICNTL(5)=0 andTi18)=0:

e N is the order of the matriA, N > 0. It is not altered bMUMPS

e NZ is the number of entries being input, NZO0. Itis not altered bMUMPS

e |IRN, JCN are integer arrays of length NZ containing the rodt eslumn indices, respectively,
for the matrix entries. IRN is unchanged. JCN is unchangéessnCNTL(6)>0, in which
case the original matrix might be permuted to have a zemdragonal.

e Ais areal (complexin the complex version) array of length NZ. The user must 4&) o

the value of the entry in row IRN(k) and column JCN(k) of thetrxa A is accessed when
JOB=1 only when ICNTL(G)eq0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonakemru;; is held as A(K)=:,
IRN(k)=JCN(k)=, and a pair of off-diagonal nonzeres; = a;; is held as A(k)=:; and
IRN(k)=47, JCN(K)=j or vice-versa. Again, duplicate entries are summed andesntvith
IRN(K) or JCN(K) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern ofrtéieix and must be set by the

user before the analysis phase (JOB=1). Component A musthmfore the factorization phase
(JOB=2).

4.5 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NELT (integer), mumppar%ELTPTR (integer array pointer,
dimension NELT+1), mumppar%ELTVAR (integer array pointer, dimension ELTPTR(NELI)—
1), and mumppar%AELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the hoehgndthen ICNTL(5)=1:

e N is the order of the matriA, N > 0. It is not altered bMUMPS
e NELT is the number of elements being input, NELTO. It is not altered bMUMPS

e ELTPTRIs an integer array of length NELT+1. ELTPTR(j) paitid the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) mustdat to the position after the
last variable of the last element. Note that ELTPTR(1) sthdndd equal to 1. It is not altered
by MUMPS

e ELTVAR is an integer array of length ELTPTR(NELT+1)-1 and shibe set to the lists of
variables of the elements. It is not altered WJJMPSThose for element j are stored in
positions ELTPTR(j), ..., ELTPTR(j+1)-1. Out-of-rangeriedles are ignored.
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e A_ELT is areal (complexin the complex version) array. [V, denotes ELTPTR(p+1)—
ELTPTR(p), then the values for element j are stored in pws#ti; + 1, ..., Kj + L;, where

- K; =317 Np* andL; = N;® in the unsymmetric case (SYM = 0)
- K; = Y7L (N, - (Np 4+ 1))/2, and L; = (N - (Nj + 1))/2 in the symmetric case

p=1

(SYM = 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Valeesesponding to out-of-range
variables are ignored and values corresponding to duplicatiables within an element are
summed. AELT is not accessed when JOB = 1. Note that, although the eliinaatrix may
be symmetric or unsymmetric in value, its structure is asvgymmetric.

The components N, NELT, ELTPTR, and ELTVAR describe thegratbf the matrix and must
be set by the user before the analysis phase (JOB=1). ComipAnELT must be set before the
factorization phase (JOB=2). Note that, in the currentasdeof the package, the element entry
must be centralized on the host.

4.6 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)+0

When the matrix is in assembled form (ICNTL(5)=0), we offexeral options, defined by the control
parameter ICNTL(18) described in Section 5. The followirgnponents of the structure define the
distributed assembled matrix input. They are valid for remozvalues of ICNTL(18), otherwise the user
should refer to Section 4.4.

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), murpps%IRNloc (integer array
pointer, dimension NZoc), mumpspar%JCNIoc (integer array pointer, dimension N#c),
mumpspar%A.loc (real/complexarray pointer, dimension Nibc), and mumpgpar%eMAPPING
(integer array, dimension NZ).

e N is the order of the matriA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS

e NZis the number of entries being input in the definitionfofNZ > 0. It must be defined on
the host before analysis if ICNTL(18) =1, or 2.

e |IRN, JCN are integer arrays of length NZ containing the rodt @slumn indices, respectively,
for the matrix entries. They must be defined on the host befoatysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis

e NZ_loc is the number of entries local to a processor. It must Bimeld on all processors in
the case of the working host model of parallelism (PAR=1) an all processors except the
host in the case of the non-working host model of parallel{®4&R=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.

e IRN_loc, JCNloc are integer arrays of length Nidc containing the row and column indices,
respectively, for the matrix entries. They must be definecbiprocessors if PAR=1, and
on all processors except the host if PAR=0, before anal§diSNTL(18) = 3, and before
factorization if ICNTL(18) =1 or 2.

e A_loc is areal (complexin the complex version) array of dimension Nac that must be
defined before the factorization phase (JOB=2) on all psmrasif PAR = 1, and on all
processors except the host if PAR = 0. The user must sketick) to the value in row
IRN_loc(k) and column JCNoc(k).

e MAPPING is an integer array of size NZ which is returned MyMPSn the host after
the analysis phase as an indication of a preferred mappilgNTL(18) = 1. In that case,
MAPPING (i) = IPROC means that entry IRN(i), JCN(i) shoulddrevided on processor with
rank IPROC in theMUMP8ommunicator.

We recommend the use of options ICNTL(18)= 2 or 3 becauseatesthe simplest and most flexible
options. Furthermore, those options (2 or 3) are in gendmabst as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.
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4.7 Scaling

mumpspar%COLSCA, mumpspar¥ROWSCA (double precision array pointers, dimension N) are
optional scaling arrays required only by the host. If a seplis provided by the user
(ICNTL(8)=-1), these arrays must be allocated and initédi by the user on the host, before a
call to the factorization phase (JOB=2). They might also lteraatically allocated and computed
by the package during analysis (if ICNTL(6)=5 or 6), in whiciise ICNTL(8)=—2 will be set by
the package during analysis and should be passed unchantjedsolve phase (JOB=3).

4.8 Given ordering: ICNTL(7)=1

mumpspar¥PERM_IN (integer array pointer, dimension N) must be allocated aitéhlized by the
user on the host if ICNTL(7)=1. It is accessed during the sial(JOB=1) and PERMN(i), i=1,
..., N'must hold the position of variable i in the pivot ordbiote that, even when the ordering is
provided by the user, the analysis must still be performédrbenumerical factorization.

4.9 Return a Schur complement: ICNTL(19)=1, 2, or 3

mumpspar¥SIZE_SCHUR (integer) must be initialized on the host to the number ofaldes defining
the Schur complement if ICNTL(19) = 1, 2, or 3. Itis accessadrd) the analysis phase and should
be passed unchanged to the factorization and solve phases.

mumpsparISTVAR _SCHUR (integer array pointer, dimension mumpar%SIZE_SCHUR) must
be allocated and initialized by the user on the host if ICNI®)(= 1, 2 or 3. It is not altered by
MUMPSt is accessed during analysis (JOB=1) and LISTVBRHUR(i), i=1, ..., SIZESCHUR
must hold the'” variable of the Schur complement matrix.

Centralized Schur complement (ICNTL(19)=1)

mumpspar%SCHUR is areal (complexin the complex version) 1-dimensional pointer array that
should point to size SIZESCHUR x SIZE_.SCHUR locations in memory. It must be allocated
by the user on the host (independently of the value of mupgr86PAR) before the factorization
phase. On exit, it holds the Schur complement matrix. Onuddtpm the factorization phase, and
on the host node, the 1-dimensional pointer array SCHURngjtleSIZESCHUR*SIZESCHUR
holds the (dense) Schur matrix of order SIBEHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the userd8TVAR_SCHUR and that the Schur
matrix is storedy rows. If the matrix is symmetric then only the lower triangulartpaf the Schur
matrix is provided y rows) and the upper part is not significant. (This can also be eagthe
upper triangular part stored by columns in which case thetqart is not defined.)

Distributed Schur complement (ICNTL(19)=2 or 3)

For symmetric matrices, the value of ICNTL(19) controlswieether only the lower part or the complete
matrix is generated. For unsymmetric matrices with botliegl(ICNTL(19)=2 and ICNTL(19)=3) we
provide the complete matrix and thus both values lead toaheegesult.
If ICNTL(19)=2 or 3, the following parameters should be defin on the host on
entry to the analysis pha*@e

mumpspary™NPROW, mumpspar¥&NPCOL, mumpspar%MBLOCK , and mumpgary&NBLOCK
are integers corresponding to the characteristics of a 2bkbtyclic grid of processors. They
should be defined on the host before a call to the analysisephHisany of these quantities is
smaller or equal to zero or has not been defined by the uséiNBFROWx NPCOL is larger than
the number of slave processors available (total numberarfgssors if mumppar%PAR=1, total
number of processors minus 1 if mumpar%PAR=0), then a grid shape will be computed by the
analysis phase dlUMP&nd NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exit
from the analysis phase. Please refer to [9] (for examplejnfare details on the notion of grid of
processors and on 2D block cyclic distributions. We brie#igatibe the meaning of the four above
parameters here:
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e NPROW is the number of processors in a row of the process grid,

e NPCOL is the number of processors in a column of the proceds gr

e MBLOCK is the blocking factor used to distribute the rows lo¢ tSchur complement,

e NBLOCK is the blocking factor used to distribute the colunafishe Schur complement.
As in ScaLAPACK, we use a row-major process grid of processtivat is, process ranks (as
provided toMUMPSn the MPI communicator) are consecutive in a row of the psecerid.

NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchanget the analysis phase
to the factorization phase.

‘ On exit to the analysis pha#sethe two following components are set MUMP®n the NPROWXx
NPCOL first slave processors (the host is excluded if PAR=Dtha processors with largest MPI ranks
in the communicator provided tdUMP $ay not be part of the grid of processors).

mumpspar¥SCHUR_MLOC is an integer giving the number of rows of the local Schur clemgnt
matrix on the concerned processor. It is equal to NUMROCESECHUR, MBLOCK, myrow O,
NPROW), where

e NUMROC is an INTEGER function defined in most ScaLAPACK impkntations (also used
internally by theMUMP$ackage),
e SIZE SCHUR, MBLOCK, NPROW have been defined earlier, and

e myrowis defined as follows:
Let myidbe the rank of the calling process in the communicator COM&igled toMUMPS
(myidcan be returned by the MPI routihdPI_COMMRANK)

— if PAR = 1 myrowis equal tomyid/ NPCOL,

— if PAR = 0 myrowis equal to(myid— 1) / NPCOL.
Note that an upperbound of the minimum value of leading dsiwen (SCHURLLD defined
bellow) is equal to ((SIZESCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.

mumpspar¥sSCHUR_NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equaNUMROC(SIZESCHUR,
NBLOCK, mycol| 0, NPCOL), where
e SIZE SCHUR, NBLOCK, NPCOL have been defined earlier, and

e mycolis defined as follows:
Let myidbe the rank of the calling process in the communicator COM&ipled toMUMPS
(myidcan be returned by the MPI routihdPI_COMNMRANK)

— if PAR = 1 myrowis equal to MODfnyid NPCOL),
— if PAR = 0 myrowis equal to MODfnyid— 1, NPCOL).

On entry to the factorization pha#(a]OB = 2), SCHURLLD should be defined by the user and

SCHUR should be allocated by the user on the NPRQWPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI rankfié communicator provided tdUMPS
may not be part of the grid of processors).

mumpspar¥sSCHUR_LLD is an integer defining the leading dimension of the local Ecbmplement
matrix. It should be larger or equal to the local number ofs@f that matrix, SCHURMLOC
(as returned bMUMP®n exit from the analysis phase on the processors that ipatiécto the
computation of the Schur). SCHURLD is not modified byMUMPS

mumpspar¥SCHUR is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factiwizgphase. Its size should be at
least equal to SCHURLD x (SCHURNLOC - 1) + SCHURMLOC, where SCHURMLOC,
SCHURNLOC, and SCHURLLD have been defined above. On exit to the factorization @has
the pointer array SCHUR contains the Schur complementedtby columns, in the format
corresponding to the 2D cyclic grid of NPROWNPCOL processors, with block sizes MBLOCK
and NBLOCK, and local leading dimensions SCHWRD.
The Schur complement is stored by columns. Note that seftiR€OL x NPROW = 1
will centralize the Schur complement matrigtored by columnginstead of by rows as in the
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ICNTL(19)=1 option). It will then be available on the hostd®if PAR=1, and on the node with
MPI identifier 1 (first working slave processor) if PAR=0.

If ICNTL(19)=2 and the Schur is symmetric (SYM=1 or 2), only the lower trignig provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetric (SYM=1 or 2), then both the lowet apper
triangles are provided, stored by columns. Note that if ICKBP)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices, ICNTL(19)=2 and ICNTL(19)=3%&dhe same effect.)

4.10 Workspace parameters

mumpspar¥MAXIS and mumpgpar¥MAXS (integers) are defined, for each processor, as the size

of the integer and the real (complex for the complex versiwajkspaces respectively required
for factorization and/or solve. On return from analysis BJ©1), INFO(7) and INFO(8) return
the minimum values for MAXIS and MAXS, respectively, to theeu If the user has reason to
believe that significant numerical pivoting will be requirét may be desirable to choose a higher
value for MAXIS (or MAXS) than output from the analysis. Attlbeginning of the factorization,
MAXIS and MAXS are set to the maximum of estimates based otysisaphase data and the
values supplied by the user. An integer array IS of size MAXhE a real (complex in the complex
version) array S of size MAXS are then dynamically alloceaed used during the factorization
and solve phases to hold the factors and contribution blocks

4.11 Right-hand side and solution vectors/matrices

The formats of the right-hand side and of the solution arerotied by ICNTL(20) and ICNTL(21),
respectively.

Centralized dense right-hand side (ICNTL(20)=0) and centalized dense solution
(ICNTL(21)=0)

If ICNTL(20)=0 or ICNTL(21)=0, the following should be defd on the host.

mumpspar¥RHS (real/complex array pointer, dimension NRHE&_RHS) is areal (complexin the
complex version) array that should be allocated by the usén@host before a call tdUMPSith
JOB=3, 5, or 6.
On entry, if ICNTL(20)=0, RHS(i+(k-1XLRHS) must hold the i-th component &th right-hand
side vector of the equations being solved.
On exit, if ICNTL(21)=0, then RHS(i+(k-2YLRHS) will hold the i-th component of théth
solution vector.

mumpspar¥8NRHS (integer) is an optional parameter that is significant onttbst before a call to
MUMPSvith JOB = 3, 5, or 6. If set, it should hold the number of rigfatad side vectors. If not
set, the value 1 is assumed to ensure backward compatitiitihe MUMP $hterface with versions
anterior to 4.3.3. Note that if NRHS 1, then functionalities related to iterative refinement and
error analysis (see ICNTL(10) and ICNTL(11) are currenilsatbled.

mumpspar?dRHS (integer) is an optional parameter that is significant onttbst before a call to
MUMP3®vith JOB=3, 5, or 6. If NRHS is provided, LRHS should then htiid leading dimension
of the array RHS. Note that in that case, LRHS sould be greatequal to N.

Sparse right-hand side (ICNTL(20)=1)

If ICNTL(20)=1, the following input parameters should bdided on the host only before a callMUMPS
with JOB=3, 5, or 6:

mumpspar¥NZ _RHS (integer) should hold the number of non-zeros in all thetrlggind side vectors.
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mumpspar¥®NRHS (integer), if set, should hold the number of right-hand sidetors. If not set, the
value 1 is assumed.

mumpspar¥RHS_SPARSE (real/complex array pointer, dimension NRHS) should hold the
numerical values of the non-zero inputs of each right-haahel gector. See also IRHBTR below.

mumpspardRHS _SPARSE((integer array pointer, dimension NRHS should hold the indices of the
variables of the non-zero inputs of each right-hand sidéovec

mumpspar’dRHS_PTR is an integer array pointer of dimension NRHS+1. IRATR
is such that the i-th right-hand side vector is defined by iBn-nero row indices
IRHS_SPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1) and the corresponding  numerical
values RHSSPARSE(IRHSPTR()...IRHSPTR(i+1)-1).  Note that IRH$TR(1)=1 and
IRHS_PTR(NRHS+1)=NZRHS+1.

Distributed solution (ICNTL(21)=1)

On some networks with low bandwidth, and especially whemettage many right-hand side vectors,
centralizing the solution on the host processor might bestlycoperation in the solution phase from
MUMPS. If this is critical to the user, this functionalitylavs to keep the solution distributed over the
processors. The solution should then be exploited in itsibiged form by the user application.

mumpspar%SOL_LOC is areal/complex array pointer, of dimension LSQLOCxNRHS (where
NRHS corresponds to the value provided in id%NRHS on the) htisdt should be allocated by
the user before the solve phase (JOB=3) on all processohe inase of the working host model
of parallelism (PAR=1), and on all processors except th¢ imathe case of the non-working host
model of parallelism (PAR=0). Its leading dimension LSQOC should be larger or equal to
INFO(23), where INFO(23) has been returned\lby MP o the user on exit from the factorization
phase. On exit from the solve phase, SDDC(i+(k-1)xLSOL_LOC) will contain the value
correponding to variable ISQLOC(i) in the k** solution vector.

mumpspar?dSOL _LOC (integer). LSOLLOC must be set to the leading dimension of SOQC
(see above) and should be larger or equal to INFO(23), wH¢FR©O([23) has been returned by
MUMP$%o the user on exit from the factorization phase.

mumpspardSOL _LOC (integer array pointer, dimension INFO(23)) IS@OC should be allocated
by the user before the solve phase (JOB=3) on all processtiis case of the working host model
of parallelism (PAR=1), and on all processors except the¢ imathe case of the non-working host
model of parallelism (PAR=0). ISQLOC should be of size at least INFO(23), where INFO(23)
has been returned BMUMPSo the user on exit from the factorization phase. On exit fithin
solve phase, ISOLOC(i) contains the index of the variables for which the siolu (in SOLLOC)
is available on the local processor. Note that if successilis to the solve phase (JOB=3) are
performed for a given matrix, ISQLOC will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functbties related to error analysis and iterative
refinement (see ICNTL(10) and ICNTL(11)) are not available.

5 Control parameters

On exit from the initialization call (JOB=-1), the controhrameters are set to default values. If the
user wishes to use values other than the defaults, the pomrdig entries in mumppar%ICNTL and
mumpspar%CNTL should be reset after this initial call and befdre ¢all in which they are used.

mumpspar?dCNTL is an integer array of dimension 40.

ICNTL(1) is the output stream for error messages. If it isaieg or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, &tts, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is

16



ICNTL(3) is the output stream for global information, calted on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diaostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possillees are
e < 0: No messages output.
: Only error messages printed.
: Errors and warnings printed.
: Errors and warnings and terse diagnostics (only first tdries of arrays) printed.
: Errors and warnings and all information on input and otijarameters printed.

(]
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ICNTL(5) has default value 0 and is only accessed by the ha$toaly during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled fatin the structure components N,
NZ, IRN, JCN, and A (or NZloc, IRN_loc, JCNloc, A_loc, see Section 4.6). If ICNTL(5) = 1, the
input matrix must be given in elemental format in the streetcomponents N, NELT, ELTPTR,
ELTVAR, and A ELT.

ICNTL(6) has default value 7 (automatic choice done by thekpge). It is only accessed by the host
and only during the analysis phase. For unsymmetric matri€dCNTL(6)=1, 2, 3, 4, 5, 6 a
column permutation based on the publically available co6M(see [13, 14] for more details) is
applied to the original matrix to get a zero-free diagonalr ymmetric matrices, if ICNTL(6)=1,
2,3,4,5, 6 asetof advisddx 1 and2 x 2 pivots is computed (see [15] for more details) from the
permutation returned by MC64.

Possible values of ICNTL(6) are:

e 0: No column permutation is computed.

e 1: The permuted matrix has as many entries on its diagonalitges The values on the
diagonal are of arbitrary size.

e 2: The smallest value on the diagonal of the permuted matmxaximized.

e 3: Variant of option 2 with different performance.

e 4: The sum of the diagonal entries of the permuted matrix isimized.

5: The product of the diagonal entries of the permuted manmaximized. Vectors are also
computed (and stored in COLSCA and ROWSCA, only if ICNTL(&sxset to 7) to scale
the permuted matrix so that the nonzero diagonal entriesaerpermuted matrix are one in
absolute value and all the off-diagonal entries are legs éh@qual to one in absolute value.
6 : Similar to 5 but with a different algorithm.

7 : Based on the structural symmetry of the input matrix andthen availability of the
numerical values, the value of ICNTL(6) is automaticallpsén by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the angi matrix, mumpspar%A, must be
provided by the user during the analysis phase. If the marsymmetric positive definite (SYM
= 1), orin elemental format (ICNTL(5)=1), or the ordering i®pided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19¥ 0) is required, or the matrix is initially distributed (ICNLTL8)

# 0), then ICNTL(6) is treated as 7.

‘ On unsymmetric matric#s(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On outpatf the analysis phase, when the
column permutation is not the identity, the pointer munpps%UNSPERM (internal data valid
until a call toMUMPSvith JOB=-2) provides access to the permutation. (The colpermutation

is such that entry; ,,....,(;) is on the diagonal of the permuted matrix.) Otherwise, thatpois
unassociated.

‘ On general symmetric matrice§SYM = 2), we advise either to leMlUMPSelect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diaptoek). On output to the analysis
the pointer mumppar%UNSPERM is unassociated.

On output to the analysis phase, INFOG(23) holds the vall€TL(6) that was effectively used.
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ICNTL(7) has default value 7 and is only accessed by the hudtoaly during the analysis phase. It
determines the pivot order to be used for the factorizatidote that, even when the ordering is
provided by the user, the analysis must be performed beforerical factorization. In exceptional
cases, ICNTL(7) may be modified lUMPSvhen the ordering is not compatible with the value
of ICNTL(12). Possible values are:

0 : Approximate Minimum Degree (AMD) [2] is used,

1 : the pivot order should be set by the user in PERMIn this case, PERMN(i), (i=1, ...

N) holds the position of variable i in the pivot order.

: the Approximate Minimum Fill (AMF) is used,

: Not available in the current version.

: PORD [19] is used,

: the METIS [18] routine METISNODEND is used,

: the Approximate Minimum Degree with automatic quasisterow detection (QAMD) is

used.

e 7 : Automatic value chosen by the software during analysasph This choice will depend

on the ordering packages made available, on the matrix @ggesize), and on the number of
processors.

[ ]
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Other values are treated as 7. Currently, options 3, 4 and brdy available if the corresponding
packages are installed (see comments in the Makefiles tdUBP%now about them). If the
packages are not installed options 3, 4 and 5 are treatedi&th&.problem is in elemental format
(ICNTL(5)=1), then only options 0, 1, 5 and 7 are availabléhwption 7 leading to an automatic
choice between AMD and METIS (options O or 5); other valuestegated as 7. If the user asks
for a Schur complement matrix, only options 0, 1 and 7 areetilly available, Other options are
treated as 7 which will (currently) necessarily be treated éAMD).

Generally, with the automatic choice corresponding to IC{)=7, the option chosen by
the package depends on the ordering packages installedtypleeof matrix (symmetric or
unsymmetric), the size of the matrix and the number of pramss

For linear programming matrices of formA”, and for matrices with relatively dense rows, we
highly recommend option 6 which may significantly reducetthee for analysis.

On output, the pointer mumpgzar%SYMPERM (internal data valid until a call ttMlUMPS
with JOB=-2) provides access to the symmetric permutatioat is effectively used by
the MUMPS package, and INFOG(7) to the ordering option thas veffectively used.
(mumpspar%SYMPERMIN(i), (i=1, ... N) holds the position of variable i in the mitorder.)

ICNTL(8) has default value 7. It is used to describe the sgaditrategy and is only accessed by the
host.
On entry to the analysis phaFda‘ ICNTL(8) = 7, then an automatic choice of the scaling optis

performed during the analysis and ICNTL(8) is modified adoagly. In particular, if ICNTL(8) is
set to -2 by the user or reset to -2 by the package during tHgsas\ascaling arrays are computed
internally and will be ready to be used by the factorizatibage.

‘ On entry to the factorization pha#seif ICNTL(8) =-1, scaling vectors must be provided in
COLSCA and ROWSCA by the user, who is then responsible focating and freeing them, if
ICNTL(8) = -2, scaling vectors must be provided in COLSCA &WSCA by the package (see
previous paragraph). If ICNTL(8) = 0, no scaling is perfodnand arrays COLSCA/ROWSCA
are not used. If ICNTL(8)> 0, the scaling arrays COLSCA/ROWSCA are allocated and ctadpu
by the package during the factorization phase.

Possible values of ICNTL(8) are listed below:

e -2: Scaling computed during analysis (see [13, 14] for treyammetric case and [15] for the
symmetric case).

e -1: Scaling provided on entry to numerical factorizatiomgpd,

1Distributed within MUMPS by permission of J. Schulze (Unisigy of Paderborn).
2See http://www-users.cs.umn.edikarypis/metis/ to obtain a copy.
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: No scaling applied/computed.

: Diagonal scaling,

: Scaling based on [10] (HSL code MC29),

: Column scaling,

: Row and column scaling,

: Scaling based on [10] followed by column scaling,

: Scaling based on [10] followed by row and column scaling.

e 7 (analysis only) : Automatic choice of scaling value donerpanalysis.

]
o o~ W N PFEP O

If the input matrix is symmetric (SYM£ 0), then only options -2, -1, 0, 1 and 7 are allowed and
other options are treated as O; if ICNTL(8)=-1, the user kEhensure that the array ROWSCA is
equal to the array COLSCA. If the input matrix is in elemeritamat (ICNTL(5) = 1), then only
options —1 and 0 are allowed and other options are treated Hsh@ initial matrix is distributed
(ICNTL(18) # 0 and ICNTL(5) = 0) then the value of ICNTL(8) is ignored and sealing is
applied. If ICNTL(8)= —2 then the user has to provide the numerical value {HAylon entry to
the analysis.

ICNTL(9) has default value 1 and is only accessed by the hagtgl the solve phase. If ICNTL(9) =1,
Ax = bis solved, otherwiseATx = b is solved.

ICNTL(10) has default value 0 and is only accessed by the dwadhg the solve phase. If NRHS =1,
then ICNTL(10) corresponds to the maximum number of stefteddtive refinement. If NRHS-
1, ICNTL(10) corresponds to the exact number of steps ddiitex refinement. If ICNTL(10X O,
iterative refinement is not performed.
In the current version, if ICNTL(21)=1 (solution kept disuited) or NRHS> 1, then iterative
refinement are not performed and ICNTL(10) is treated as 0.

ICNTL(11) has default value 0 and is only accessed by the d&wodtonly during the solve phase. A
positive value will return statistics related to the linsgstem solved4Ax = bor A”x = b
depending on the value of ICNTL(9)): the infinite norm of thpuit matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respelti a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in thesoh in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). Se® &sction 2.4. Note that if
performance is concerned, ICNTL(11) should be left to 0.afn note that if NRHS> 1, then
ICNTL(11) is treated as 0. In the current version, if ICNTILJ21 (solution vector kept distributed)
then error analysis is not performed and ICNTL(11) is tréa 0.

ICNTL(12) is meaningful only on general symmetric matri¢€¥M = 2) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) ansyetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing epnit is only accessed by the host
and only during the analysis phase. It defines the ordermatesty (see [15] for more details) and is
used, in conjunction with ICNTL(6) option, to add contraitd the ordering algorithm. (ICNTL(7)
option). Possible values of ICNTL(12) are :

e 0: automatic choice

e 1: usual ordering (nothing done)

2 : ordering on the compressed graph associated to the matrix
e 3: constrained ordering, only available WAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(12), ICNTL(6), ICNTLgAlues are strongly related.
Therefore, as for ICNTL(6), if the matrix is in elemental fioat (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur optionNM.(19) # 0) is required, or the
matrix is initially distributed (ICNTL(18)~ 0) then ICNTL(12) is treated as one.

If MUMPSletects some incompatibility between control parametees it uses the following
rules to automatically reset the control parametrers. tiFil€NTL(12) has a lower priority
than ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is nAMFthen ICNTL(12)
is internally treated as 2. Secondly ICNTL(12) has a higheoripy than ICNTL(6) and
ICNTL(8). Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6)
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is automatically reset (treated as ICNTL(6)=7). Furthemmd ICNTL(12) = 3 then ICNTL(6) is

automatically set to 5 and ICNTL(8) is set to -2.

On output to the analysis phase, INFOG(24) holds the valu€NITL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of TCY) and ICNTL(6)

(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by thedwritg the analysis phase. If ICNTL(13)
= 0, ScaLAPACK will be used for the root node if the size of tbetrnode of the assembly tree
is larger than a machine-dependent minimum size. Othenwhgeroot node of the tree will be
processed sequentially. Note that, although ICNTL(13}rads the efficiency of the factorization
and solve phases, preprocessing work is performed durialysie and this option must be set on
entry to the analysis phase.

ICNTL(14) is accessed by the host both during the analysigtaa factorization phases. It corresponds
to the percentage increase in the estimated working spaben\ignificant extra fill-in is caused
by numerical pivoting, larger values of ICNTL(14) may helgeuthe real working space more
efficiently. Default value is 20 % except for symmetric pivsitdefinite matrices (SYM=1) where
the default value is 15 %.

ICNTL(15-17) Experimental rank-revealing functionadii available on request.

ICNTL(18) has default value 0 and is only accessed by thedwritg the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines theastgy for the distributed input
matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is theadif see Section 4.4.

e 1: the user provides the structure of the matrix on the hostnatysis, MUMPSeturns a
mapping and the user should then provide the matrix digetbaccording to the mapping on
entry to the numerical factorization phase.

e 2: the user provides the structure of the matrix on the hoshatysis, and the distributed
matrix on all slave processors at factorization. Any digttion is allowed.

e 3: user directly provides the distributed matrix input bfithanalysis and factorization.

For options 1, 2, 3, see Section 4.6 for more details on thaetfoptput parameters tdUMPSFor
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the Hasihg the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be reted to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schilt be returned to the user on the
slave processors in the form of a 2D block cyclic distributeatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals @t 3, the user must set on entry to
the analysis phase, on the host node:

e the integer variable SIZESCHUR to the size of the Schur matrix,
e the integer array pointer LISTVASCHUR to the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), thieger variables NPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the aislyphase (default
values will otherwise be provided). Furthermore, workspabould be allocated by the user
before the factorization phase in order fdiJMP$o store the Schur complement (see SCHUR,
SCHURMLOC, SCHURNLOC, and SCHURLLD in Section 4.9).

Note that the partial factorization of the interior variedblcan then be exploited to perform a solve
phase (transposed matrix or not, see ICNTL(9)). Note thatitiht-hand side (RHS) provided on
input must still be of size N (or Nk NRHS in case of multiple right-hand sides) even if only the
N-SIZE_SCHUR indices will be considered and if only N-SIZEZHUR indices of the solution
will be relevant to the user.

Finally note that since the Schur complement can be viewedpastial factorization of the global
matrix (with partial ordering of the variables provided b tuser) the following options ailUMPS
are incompatible with the Schur option: maximum transJegegaling, iterative refinement, error
analysis. Note that if the ordering is given (ICNTL(7)=1¢ththe following property should hold:
PERM.IN(LISTVAR _SCHUR(i)) = N-SIZESCHURH+i, for i=1,SIZESCHUR.
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ICNTL(20) has default value 0 and is only accessed by the dosing the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense forihe structure component RHS. If
ICNTL(20)=1, then the right-hand side must be given in spéwam using the structure components
IRHS_SPARSE, RHSSPARSE, IRHSPTR and NZRHS. Values different from 0 and 1 are treated
as 0.

ICNTL(21) has default value 0 and is only accessed by thechositg the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the straccomponent RHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the Botuvector is kept distributed at the
end of the solve phase, and will be available on each slax@psor in the structure components
ISOL_loc and SOLloc. ISOLloc and SOLloc must then have been allocated by the user and
must be of size at least INFO(23), where INFO(23) has beemmed by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different fromifidal are currently treated as 0.

Note that if the solution is kept distributed, error anadyand iterative refinement (controlled by
ICNTL(10) and ICNTL(11)) are not applied.

ICNTL(22-40) are not used in the current version.

mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivotingt forms a trade-off between preserving
sparsity and ensuring numerical stability during the feztdion. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate fézadion. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, rsuch pivoting will be performed
and the subroutine will fail if a zero pivot is encounteredthe matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorizatione while still providing a stable
decomposition. If the code is called for unsymmetric or gaheymmetric matrices, CNTL(1)
has default value 0.01. For symmetric positive definite im@drand if the Schur complement is
asked to be returned (ICNTL(12)0), numerical pivoting is suppressed and the default vaue i
0.0. Values less than 0.0 are treated as 0.0. In the unsymroate (respectively symmetric case),
values greater than 1.0 (respectively 0.5) are treateddgsekpectively 0.5).

CNTL(2) is the stopping criterion for iterative refinememidais only accessed by the host during the
solve phase. LeBerr = max; iy [8] Iterative refinement will stop when either the
required accuracy is reacheBdrr < CNTL(2) ) or the convergence rate is too slo®«rr does
not decrease by at least a factor of 5). Default valugds

CNTL(3) determines the absolute threshold-es for numerical pivoting. It has default value -1.0 and
is only accessed by the host during the numerical factaoizathase. If CNTL(3)< O (default),
thresis determined automaticallyhres = €||A|| if SYM=2 in the case of node level parallelism;
thres = 0 otherwise. If CNTL(3)> 0, then the valughres = CNTL(3) is used. During the
numerical factorization, a potential pivot has to be lathanthres to be accepted.

CNTL(4) determines the value for static pivoting. It hasalgf value 0.0 in symmetric indefinite case
and -1.0 otherwise. If CNTL(4x 0.0 static pivoting is not activated. If CNTL(4} 0.0 an
automatic choice between numerical and static pivotingréopmed during analysis. If CNTL(4)
> 0.0 static pivoting is activated and the magnitude of smiadits will be set to CNTL(4).

CNTL(5) is not used in the current version.

6 Information parameters
The parameters described in this section are returnedlBiIP%nd hold information that may be of

interest to the user. Some of the information is local to gaclcessor and some only on the host. If an
error is detected (see Section 7), the information may benipdete.

6.1 Information local to each processor

The arrays mumpparRINFO and mumpspar?dNFO are local to each process.
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mumpspar¥RINFO is a double precision array of dimension 20. It contains thiéowing local
information on the execution dIUMPS

RINFO(1) - after analysis: The estimated number of floapigit operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-poimperations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-pbimperations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar%dNFO is an integer array of dimension 40. It contains the follgyiacal information on
the execution oMUMPS

INFO(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Secjioar7
positive if a warning is returned.

INFO(2) holds additional information about the error or tharning. If INFO(1)=-1, INFO(2) is the
processor number (in communicator mungas%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed oprtieessor for factors.
INFO(4) - after analysis: Estimated integer space needeteprocessor for factors.
INFO(5) - after analysis: Estimated maximum front size omphocessor.

INFO(6) - after analysis: Number of nodes in the complete.tr&he same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated the analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimatedtby analysis phase to run the numerical
factorization successfully.

INFO(9) - after factorization: Size of the real space usethemprocessor to store the LU factors.

INFO(10) - after factorization: Size of the integer spacedusn the processor to store the LU factors.

INFO(11) - after factorization: Order of the largest frdntaatrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pté encountered on the processor if SYM=0
or number of negative pivots on the processor if SYM=1 or 2CNTL(13)=0 (the default), this
excludes pivots from the parallel root node treated by Sd2A@K. (This means that the user
should set ICNTL(13)=1 or use a single processor in ordeetdlge exact number of off-diagonal

or negative pivots rather than a lower bound.) Note that iM&Y or 2, INFO(12) will be O for
complex symmetric matrices.

INFO(13) - after factorization: The number of uneliminategtiables, corresponding to delayed pivots,
sent to the father. If a delayed pivot is subsequently passttk father of the father, it is counted
a second time.

INFO(14) - after factorization: Number of memory compresse the processor.

INFO(15) - after analysis: estimated total size (in milboof bytes) of allMUMPSnternal data for
running numerical factorization.

INFO(16) - after factorization: total size (in millions of/tes) of allMUMP $ternal data used during
numerical factorization.

INFO(17) - INFO(22) are not used in the current version.

INFO(23) - after factorization: total number of pivots elitated on the processor concerned. In case
of distributed solution (see ICNTL(21)), this should bedibg the user to allocate solution vectors
ISOL loc and SOLloc of appropriate dimensions (ISALOC of size INFO(23), SOLLOC of size
LSOL_LOC x NRHS where LSOLLOC > INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - INFO(40) are not used in the current version.
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6.2 Information available on the host
The arrays mumppar%RINFOG and mumppar%INFOG :

mumpspar¥RINFOG is a double precision array of dimension 20. It contains thiing global
information on the execution dIUMPS

RINFOG(1) - after analysis: The estimated number of floapogt operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of flogtipoint operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of flo@tpoint operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysisni®returned on the host process if
ICNTL(11) # 0. See description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumpspar%dNFOG is an integer array of dimension 40. It contains the follgyghobal information on
the execution oMUMPS

INFOG(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Secjioor 7
positive if a warning is returned.

INFOG(2) holds additional information about the error & thiarning.

The difference between INFOG(1:2) and INFO(1:2) is that@@G{1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returnefi tie most negative INFO(1) value. For
example, if processagy returns with INFO(1)=-13, and INFO(2)=10000, then all atpeocessors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still IBEL)=-1 and INFO(2)».

INFOG(3) - after analysis: Total estimated real workspagddctors on all processors.
INFOG(4) - after analysis: Total estimated integer workspfor factors on all processors.
INFOG(5) - after analysis: Estimated maximum front sizeni@a tomplete tree.

INFOG(6) - after analysis: Number of nodes in the complete.tr

INFOG(7) - after analysis: ordering option effectively dgsee ICNTL(7)).

INFOG(8) - after analysis: structural symmetry in percet((: symmetric, O : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structuralsyetry was not computed.)

INFOG(9) - after factorization: Total real space to store thJ factors.
INFOG(10) - after factorization: Total integer space tastihe LU factors.
INFOG(11) - after factorization: Order of largest frontahtrix.

INFOG(12) - after factorization: Total number of off-diagg pivots if SYM=0 or total number of
negative pivots (real arithmetic) if SYM=1 or 2. If ICNTL(}30 (the default) this excludes
pivots from the parallel root node treated by ScaLAPACK.i§Timeans that the user should set
ICNTL(13)=1 or use a single processor in order to get thetaxamber of off-diagonal or negative
pivots rather than a lower bound.) Note that if SYM=1 or 2, E(12) will be 0 for complex
symmetric matrices.

INFOG(13) - after factorization: Total number of delayedqts.
INFOG(14) - after factorization: Total number of memory quesses.
INFOG(15) - after solution: Number of steps of iterative mefnent.

INFOG(16) - after analysis: Estimated size (in million oftés) of all MUMP $hternal data for running
factorization: value on the most memory consuming progesso

INFOG(17) - after analysis: Estimated size (in millions gfés) of allMUMP$ternal data for running
factorization: sum over all processors.
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INFOG(18) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: value on the most memory consuming progesso

INFOG(19) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entriehiefactors.

INFOG(21) - after factorization: Size in millions of byted memory effectively used during
factorization: value on the most memory consuming progesso

INFOG(22) - after factorization: Size in millions of byted memory effectively used during
factorization: sum over all processors.

INFOG(23) - After analysis : value of ICNTL(6) effectivelysad.

INFOG(24) - After analysis : value of ICNTL(12) effectivelised.

INFOG(25) - After factorization : number of tiny pivots (mifidd pivot entries during static pivoting)
INFOG(26) - INFOG(40) are not used in the current version.

7 Error diagnostics

MUMP&ises the following mechanism to process errors that mayrattming the parallel execution of
the code. If, during a call tMUMPSan error occurs on a processor, this processor informbheabther
processors before they return from the call. In parts of ddeavhere messages are sent asynchronously
(for example factorization and solve phases), the processwhich the error occurs sends a message to
the other processors with a specific error tag. On the othad,Hithe error occurs in a subroutine that
does not use asynchronous communication, the procesqmgates the error to the other processors.

On successful completion, a call MUMPSvill exit with the parameter mumppar%INFOG(1) set
to zero. A negative value for mumgmr%INFOG(1) indicates that an error has been detected ®@fon
the processors. For example, if processogturns with INFO(1)=—8 and INFO(2)=1000, then processor
s ran out of integer workspace during the factorization amddifze of the workspace MAXIS should be
increased by 1000 at least. The other processors are inficetbut this error and return with INFO(1) =
-1 (i.e., an error occurred on another processor) and INEQ(2e., the error occurred on processr
Processors that detected a local error, do not overwrit©i(d}; i.e., only processors that did not produce
an error will set INFO(1) to —1 and INFO(2) to the processaiitgithe smallest error code.

The behaviour is slightly different for INFOG(1) and INFQB( in the previous example, all
processors would return with INFOG(1)=—8 and INFOG(2)=100

The possible error codes returned in INFO(1) (and INFOG{&yk the following meaning:

—1 An error occurred on processor INFO(2).
—2 NZis out of range. INFO(2)=NZ.

-3 MUMPSvas called with an invalid value for JOB. This may happen feanaple if the analysis
(JOB=1) was not performed before the factorization (JOB=®) the factorization was not
performed before the solve (JOB=3). See item for JOB in 8edi This error also occurs if
JOB does not contain the same value on all processes on ety MPS

—4 Error in user-provided permutation array PERNlin position INFO(2). This error occurs on the
host only.

-5 Problem of REAL workspace allocation of size INFO(2) duramlysis.
—6 Matrix is singular in structure.
—7 Problem of INTEGER workspace allocation of size INFO(2)idgranalysis.

—8 MAXIS too small for factorization. This may happen, for exam if numerical pivoting leads to
significantly more fill-in than was predicted by the analySike user should increase the value of
ICNTL(14) or the value of MAXIS before entering the factaiion (JOB=2).

-9 MAXS too small for factorization. The user should incredsevalue of ICNTL(14) or MAXS before
entering the factorization (JOB=2).
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—10 Numerically singular matrix.

—11 MAXS too small for solution. See error INFO(1)=-9.

—12 MAXS too small for iterative refinement. See error INFO(19=—

—13 Error in a Fortran ALLOCATE statement. INFO(2) contains $iiee that the package requested.

—14 MAXIS too small for solution. See error INFO(1)=-8.

—15 MAXIS too small for iterative refinement and/or error anadySee error INFO(1)=-8.

—16 N is out of range. INFO(2)=N.

—17 The internal send buffer that was allocated dynamicallyMiyMP®n the processor is too small.
The user should increase the value of ICNTL(14) before amgehe analysis (JOB=1).

—18 MAXIS too small to process root node. See error INFO(1)=-8.

—19 MAXS too small to process root node. See error INFO(1)=-9.

—20 The internal reception buffer that was allocated dynamjiday MUMPSn the processor is too
small. INFO(2) holds the minimum size of the reception bufégjuired (in bytes). The user should
increase the value of ICNTL(14) before entering the anal{@DB=1).

—21 Value of PAR=0 is not allowed because only one processomisale; INFO(2) is set to the number
of processors, 1. RunninglUMPS3n host-node mode (the host is not a slave processor itself)
requires at least two processors. The user should eithéAdgetto 1 or increase the number of
processors.

—22 A pointer array is provided by the user that is either

e not associated, or
e has an insufficient size, or
e is associated and should not be associated (for example 0RIH8n-host processors).

INFO(2) points to the pointer array having the wrong fornmethie table below:

INFO(2) array
1 IRN or ELTPTR
2 JCN or ELTVAR
3 PERM.IN
4 AorA_ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR_SCHUR
9 SCHUR
10 RHS SPARSE
11 IRHS_SPARSE
12 IRHS_PTR
13 ISOL.LOC
14 SOLLOC

—23 MPI was not initialized by the user prior to a callMUMP8/ith JOB=-1.
—24 NELT is out of range. INFO(2)=NELT.

—25 A problem has occured in the initialization of the BLACS. $may be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instea

—26 LRHS is out of range. INFO(2) = LRHS.

—27 NZ_RHS and IRHSPTR(NRHS+1) do not match. INFO(2) = IRHSTR(NRHS+1).
—28 IRHS_PTR(1) is not equal to 1. INFO(2) = IRHBTR(1).

—29 LSOL_LOC is smaller than KEEP(89). INFO(2)=LSALOC.

—30 SCHURLLD is out of range. INFO(2) = SCHURLD.
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—31 A 2D block cyclic Schur complement is required with optionNTL(19)=3, but the user
has provided a process grid that does not satisfy the camstMBLOCK=NBLOCK.
INFO(2)=MBLOCK-NBLOCK.

A positive value of INFO(1) is associated with a warning naggswhich will be output on unit
ICNTL(2).

+1 Index (in IRN or JCN) out of range. Action taken by subroutis¢o ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. diletof the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solutvas found to be zero.
+8 Warning return from the iterative refinement routine. Mdrart ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to sungntihe constituent warnings.

8 Calling MUMPS from C

MUMPSs a Fortran 90 library, designed to be used from Fortran @ferahan C. However a basic C
interface is provided that allows users to ddiIUMP@irectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose compongatch those in thelUMPStructure for
Fortran (Figure 1). Thus the description of the paramete&eictions 4and 5 applies. Figure 2 shows the
C structurd SDCZ]JMUMPSSTRUCC. This structure is defined in the include fisglczlmumps _c.h

and there is one main routine per available precision wighféflowing prototype:

void [sdczlmumps_c(MUMPS_STRUC_C * idptr);

An example of callinglUMP&om C for a complex assembled problem is given in Section B
following subsections discuss some technical issues thaeashould be aware of before using the C
interface toMUMPS

In the following, we suppose that has been declared of typ@DCZ]MUMPSSTRUCC.

8.1 Array indices

Arrays in C start atindex 0 whereas they normally start atBoiriran. Therefore, care must be taken when
providing arrays to the C structure. For example, the roviceslof the matrixd, stored iNRN(1:NZ)

in the Fortran version should be storedirin[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One saldtialeal with this is to define macros:

#define ICNTL( i ) icntl] (i) - 1 ]
#define A( i) a[ (i) -1 ]
#define IRN( i ) ir[ (i) -1 ]

and then use the uppercase notation with parenthesisgthsfelowercase/brackets). In that case, the
notationid.IRN(l)  , wherel isin{ 1, 2, ... NZ can be used instead wf.irn[I-1] ; this notation
then matches exactly with the description in Sections 4 anehBre arrays are supposed to start at 1.

This can be slightly more confusing for element matrix infage Section 4.5), where some arrays
are used to index other arrays. For instance, the first valdtptr , eltptr[O] , pointing into
the list of variables of the first element mitvar , should be equal to 1. Effectively, using the
notation above, the list of variables for element= 1 starts at locatiorELTVAR(ELTPTR())) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1]

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a differerdtgla¢ and are not directly compatible.
For the C interfaceMUMP3equires a Fortran communicator to be provideddicomm _fortran

If, however, this field is initialized to the special value87®54, the Fortran communicator
MPI_COMMVORLIX used by default. If you need to cMlUMP8ased on a smaller number of processors
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typedef struct
{
int sym, par, job;
int comm _fortran; /* Fortran communicator */
int icntl[40];
real cntl[5];
int n;
/* Assembled entry */
int nz; int *irn; int *jcn; real/complex *a;
/* Distributed entry */
int nz _loc; int *irn Joc; int *jcn Jloc; real/complex *a _loc;
/* Element entry */
int nelt; int *eltptr; int *eltvar; real/complex *a _elt;
/* Ordering, if given by user */
int *perm _in;
/* Scaling (input only in this version) */
real/complex *colsca; real/complex *rowsca;
/* RHS, solution, output data and statistics */

real/complex *rhs, *rhs  _sparse, *sol  _loc;
int *irhs _spgrse, *irhs _ptr, *isol _loc;
int nrhs, Irhs, nz _rhs, Isol _loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int *sym _perm, *uns _perm;

/* Null space (not maintained) */

int deficiency; real/complex * nullspace; int * mapping;

/* Schur */ int size _schur; int *listvar _schur;  real/complex *schur;
int nprow, npcol, mblock, nblock, schur _id, schur _mloc,schur _nloc;

/* Internal parameters */

int instance _number;

} [SDCZ]MUMPSSTRUCC;

Figure 2: Definition of the C structuf&DCZ]MUMPSSTRUCC. real/complexis used for data that can
be either real or complexeal for data that stays reall¢at  or double ) in the complex version.
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defined by a C subcommunicator, then you should convert yazor@municator to a Fortran one. This
has not been included MUMP8ecause itis dependent on @1 implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that FLINT is defined in[sdczlmumps _c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators the same integer representation

id.comm_fortran = (F_INT) comm_c;

should work.
For some MPI implementaitons, check if id.comm _fortran =
MPIR_FromPointer(comm _c) can be used.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlleddiyTL(1:4) /icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichresponds tetdout . For a more
general usage with specific file names from C, passing a C fildlaais not currently possible. One
solution would be to use a Fortran subroutine along the liidlse model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT

CHARACTER*(*) NAME

OPEN(UNIT, file=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile _( &mumps_par.ICNTL(1), name, name _length _byval)
(or slightly different depending on the C-Fortran callir@neentions); something similar could be done
to close the file.

8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the commpiked to compildMUMP$s required at the
link stage. One way to provide it is to perform the link phasththe Fortran compiler (instead of the C
compiler orld ).

8.5 Integer, real and complex datatypes in C and Fortran

We assume that thiet , float anddouble types are compatible with the FortrtMTEGER REAL
andDOUBLE PRECISIONJatatypes. If this was not the case, the flldsczlmumps _prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define tikemplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortr&©OMPLEXndDOUBLE COMPLEYpes:

typedef struct {float r,i; } mumpscomplex; for simple precisiondmumps), and
typedef struct {double r,i; } mumpsdouble _complex; for double precision
(zmumps).

Types for complex data from the user program should be cdbipatith those above.

8.6 Sequential version

The C interface ttMUMP$ compatible with the sequential version; see Section 2.9.
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9 Examples of use of MUMPS

9.1 An assembled problem

An example program illustrating a possible use MUMPSon assembledOUBLE PRECISION
problems is given Figure 3. Two files must be included in thegpam: mpif.h  for MPI and
mumpsstruc.h  for MUMPSThe filemumpsroot.h  must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performedtli@ user program via the
calls toMPI_INIT andMPI_FINALIZE .

TheMUMP®ackage is initialized by callinfflUMP 8vith JOB=-1, the problem is read in by the host
(in the components N, NZ, IRN, JCN, A, and RHS), and the sotuis computed in RHS with a call on
all processors ttMUMP$vith JOB=6. Finally, a call ttMUMP®vith JOB=-2 is performed to deallocate
the data structures used by the instance of the package.

Thus for the assembledx 5 matrix and right-hand side

2 3 4 20
3 -3 6 24
-1 1 2 ) 9

2 6

=~
—
—_
w

we could have as input
5 N

[EnY
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Z
N
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-3.0
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1.0
3.0
2.0
4.0
2.0
6.0

P WNWOOAOFRLNOOBRMNPRE
WWNOAOBRARNRFRPRFRPOWWDN

4.0
3310 A
20.0

24.0

9.0

6.0

13.0 ‘RHS
and we obtain the solution RHS(i) =i,i=1, ..., 5.

9.2 An elemental problem

An example of a driver to uSIUMP $or elemenDOUBLE PRECISIONroblems is given in Figure 4.
The calling sequence is similar to that for the assembledleno in Section 9.1 but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, LT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matidbeays have a symmetric structure. For
the two-element matrix and right-hand side

12

2 -1 3 7
12 -1, 23
3 2 1 6

22

we could have as input
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PROGRAM MUMPS_EXAMPLE
INCLUDE 'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, |
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,%) ( id%IRN() ,1=1, id%NZ )
READ(5,*) ( id%JCN(l) ,I=1, id%NZ )
READ(5,%) ( id%A(l),I=1, id%NZ )
READ(5,*) ( id%RHS(l) ,I=1, id%N )

END IF
Call package for solution
id%JOB = 6

CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ",(id%RHS(I),I=1,id%N)
END IF
Deallocate user data
IF ( id%MYID .eq. 0 )THEN
DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 3: Example program usidgUMP®n an assembledOUBLE PRECISIONyroblem
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5
2
6
1
1
1

8
4 7
23345
-1.0 20 1.0 20 1.0 1.0 3.0 1.0 1.0 20 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i) =i,i=1, ..., 5.

9.3 Anexample of calling MUMPS from C

An example of a driver to uselUMP®&om C is given in Figure 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN
READ(5,*) id%N
READ(5,*) id%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%ELTPTR(I) ,I=1, id%NELT+1 )
READ(5,*) ( id%ELTVAR(l) ,I=1, LELTVAR )
READ(5,*) ( id%A_ELT(l),I=1, NA_ELT )
READ(5,*) ( id%RHS(l) ,I=1, id%N )
END IF
Specify element entry
id%ICNTL(5) = 1
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(l),I=1,id%N)
Deallocate user data
DEALLOCATE( id%ELTPTR )
DEALLOCATE( Id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 4: Example program usidgUMP®n an elementdDOUBLE PRECISIONbroblem.
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/* Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]'T
* Solution is [1 2]'T */

#include <stdio.h>

#include "mpi.h"

#include "dmumps_c.h"

#define JOB_INIT -1

#define JOB_END -2

#define USE_COMM_WORLD -987654

int main(int argc, char ** argv) {

DMUMPS_STRUC_C id;
int n = 2;

int nz = 2;

int irn[] = {1,2};

int jen[] = {1,2};

double a[2];

double rhs[2];

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/* Define A and rhs */

rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

[* Initialize a MUMPS instance. Use MPI_COMM_WORLD.

id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U
dmumps_c(&id);
/* Define the problem on the host */
if (myid == 0) {
id.n n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a a; id.rhs = rhs;

}
#define ICNTL(I) icntl[()-1] /* macro s.t. indices match d
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN
/* Call the MUMPS package. */

id.job=6;

dmumps_c(&id);

id.job=JOB_END; dmumps_c(&id); /* Terminate instance */

if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}

return O;

%
SE_COMM_WORLD;

ocumentation */

TL(4)=0;

Figure 5: Example program usiddUMP&om C on an assembled problem.
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9.4 Notes on MUMPS distribution

This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
european project PARASOL (1996-1999). It has been partiall y supported
by the European Community, and by CERFACS, ENSEEIHT-IRIT, | NRIA

Rhone-Alpes, and LBNL.

Main contributors are Patrick Amestoy, lain Duff, Abdou Gue rmouche,
Jacko Koster, Jean-Yves L’Excellent, and Stephane Pralet.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages http://www.enseeiht.frlapo/MUMPS/
or http://graal.ens-lyon.frfMUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can

include this complete notice. You can acknowledge (using

references [1], [2], and [3] the contribution of this packag e
in any scientific publication dependent upon the use of the

package. You shall use reasonable endeavours to notify

the authors of the package of this publication.

[1] P. R. Amestoy, |. S. Duff and J.-Y. L'Excellent (1998),
Multifrontal parallel distributed symmetric and unsymmet ric solvers,
in Comput. Methods in Appl. Mech. Eng., 184, 501-520 (2000).

[2] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic
scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,

Vol 23, No 1, pp 15-41 (2001).

[3] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet (2005), Hybrid scheduling for the parallel soluti on
of linear systems. Submitted to Parallel Computing.
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