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Abstract

This document describes the Fortran 90 and C user inteded&MPS 4.9We describe in detail the
data structures, parameters, calling sequences, anddiaugostics. Example programs usikt MPS
are also given.

*Information on how to obtain updated copies of MUMPS can betainbd from the Web pages
http://mumps.enseeiht.fr/ andhttp://graal.ens-lyon.frfMUMPS/
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1 Introduction

MUMP$&‘MUItifrontal Massively Parallel Solver”) is a packagerfeolving systems of linear equations of
the formAx = b, whereA is a square sparse matrix that can be either unsymmetriansic positive
definite, or general symmetriUMP® direct method based on a multifrontal approach whichqueré

a direct factorizatiord = LU or A = LDL" depending on the symmetry of the matrix. We refer the
reader to the papers,[4, 7, 18, 19, 22, 21, 9] for full details of the techniques useMUMP &xploits both
parallelism arising from sparsity in the mati& and from dense factorizations kernels.

The main features of thBIlUMP$ackage include the solution of the transposed systemf wfpu
the matrix in assembled format (distributed or centraljzmdelemental format, error analysis, iterative
refinement, scaling of the original matrix, out-of-core abitity, detection of null pivots, basic estimate
of rank deficiency and null space basis, and computation ahairScomplement matrixMUMP $ffers
several built-in ordering algorithms, a tight interfacestime external ordering packages such as PORD
[27], SCOTCH p5] or METIS [27] (strongly recommended), and the possibility for the useinput
a given ordering. FinallyMUMP$s available in various arithmetics (real or complex, singt double
precision).

The software is written in Fortran 90 although a C interfacavailable (see Secti@). The parallel
version ofMUMP $equires MPI P8] for message passing and makes use of the BLAST4], BLACS,
and ScaLAPACK 1] libraries. The sequential version only relies on BLAS.

MUMP& downloaded from the web site almost four times a day oreaeeand has been run on very
many machines, compilers and operating systems, althougkxperience is really only with UNIX-
based systems. We have tested it extensively on parallepaems from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSlistributes the work tasks among the processors, but arifidenprocessor (the host) is
required to perform most of the analysis phase, to distili incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, andlteat the solution. The systeaix = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Sectib® based on the symmetrized pattern
A + AT, and carries out the symbolic factorization. A mapping @f thultifrontal computational
graph is then computed, and symbolic information is tramefe from the host to the other
processors. Using this information, the processors egtitha memory necessary for factorization
and solution.

2. Factorization. The original matrix is first distributed to processors thall participate in the
numerical factorization. Based on the so cakidichination tree [24], the numerical factorization
is then a sequence of dense factorization on so céibedal matrices. The elimination tree also
expresses independency between tasks and enables miutiigketo be processed simultaneously.
This approach is calledhultifrontal approach . After the factorization, the factor matrices are kept
distributed (in core memory or on disk); they will be usedret $olution phase.

3. Solution. The right-hand sidéb is broadcasted from the host to the working processors that
compute the solutior using the (distributed) factors computed during factdiima The solution
is then either assembled on the host or kept distributedewttking processors.

Each of these phases can be called separately and seveealces ofMUMPSan be handled
simultaneously. MUMP&llows the host processor to participate to the factowraind solve phases,
just like any other processor (see Sect?n).

For both the symmetric and the unsymmetric algorithms usethé code, we have chosen a
fully asynchronous approach with dynamic scheduling of ¢benputational tasks. Asynchronous
communication is used to enable overlapping between conwation and computation. Dynamic
scheduling was initially chosen to accommodate numerioadting in the factorization. The other
important reason for this choice was that, with dynamic dalig, the algorithm can adapt itself at
execution time to remap work and data to more appropriategssors. In fact, we combine the main
features of static and dynamic approaches; we use the éstimabtained during the analysis to map
some of the main computational tasks; the other tasks ar@ndaigally scheduled at execution time. The
main data structures (the original matrix and the factarsyanilarly partially mapped during the analysis
phase.



2 Main functionalities of MUMPS 4.9

We describe here the main functionalities of the solM&MPSThe user should refer to SectioAs
and 5 for a complete description of the parameters that must beorsé¢hat are referred to in this
Section. The variables mentioned in this section are compsnof a structurenumpspar of type
[SDCZ]MUMPSSTRUC(see Sectior8) and for the sake of clarity, we refer to them only by their
component name. For example, we use ICNTL to refentmnpspar%ICNTL .

2.1 Input matrix structure

MUMPSorovides several possibilities for inputting the matrix. heT selection is controlled by the
parameter$CNTL(5) andICNTL(18).

The input matrix can be supplied glemental formaand must then be input centrally on the host
(ICNTL(5)=1 and ICNTL(18)=0). For full details see Sectidrb. Otherwise, it can be supplied in
assembled forman coordinate form (ICNTL(5)=0), and, in this case, there several possibilities (see
Sectionst.5and4.7):

1. the matrix can be input centrally on the host processdlIq18)=0);

2. only the matrix structure is provided on the host for thalgsis phase and the matrix entries are
provided for the numerical factorization, distributedass the processors:

e either according to a mapping supplied by the analysis (10(48)=1),
e or according to a user determined mapping (ICNTL(18)=2);

3. itis also possible to distribute the matrix pattern araehtries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recoemded option for distributed entry).

By default the input matrix is considered in assembled farffGNTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Preprocessing

A range of symmetric orderings to preserve sparsity is algl during the analysis phase. In addition
to the symmetric orderings, the package offers pre-pravg$acilities: permuting to zero-free diagonal
and prescaling. When all preprocessing options are aetlyétte preprocessed matireproc that will

be effectively factored is :

Apreproc =P Dr A Qc Dc PT ’ (1)

whereP is a permutation matrix applied symmetricaly. is a (column) permutation add, andD.
are diagonal matrices for (respectively row and columnlimgaNote that when the matrix is symmetric,
preprocessing is designed to preserved symmetry.

Preprocessing highly influences the performance (mematyiare) of the factorization and solution
steps. The default values correspond to an automatic ggitiriormed by the package which depends on
the ordering packages installed, the type of the matrix (sginic or unsymmetric), the size of the matrix
and the number of processors available. We thus strongbmeend the user to install all ordering
packages to offer maximum choice to the automatic decisiocgss.

e Symmetric permutationP

The symmetric permutation can be computed either seqligntiain parallel. ThelCNTL(28)
parameter is responsible for setting the strategy.

In the case where the symmetric permutation is computedesgiglly, the ordering method is set
by the ICNTL(7) parameter which offers a range of ordering options inclgdhe approximate
minimum degree ordering (AMD/2]), an approximate minimum degree ordering with automatic
quasi-dense row detection (QAMD]]), an approximate minimum fill-in ordering (AMF), an
ordering where bottom-up strategies are used to build aggarby Jirgen Schulze from University
of Paderborn (PORD2[/]), the SCOTCH package’f], and the METIS package from Univ. of
Minnesota P3]. A user-supplied ordering can also be provided and thetgivder must be set by
the user in PERMN (see Sectiord.9).



In the case where the symmetric permutation is computedrallph the ordering method is set by
theICNTL(29). One of the PT-SCOTCH and ParMetis parallel ordering toafsiesed in this case.

In addition to the symmetric orderingg]UMP S ffers other pre-processing facilities: permuting to
zero-free diagonal and prescaling.

e Permutations to a zero-free diagon&).

Controlled byICNTL(6), this permutation is recommended for very unsymmetric icedrto
reduce fill-in and arithmetic cost, se&5] 16]. For symmetric matrices this permutation can also be
used to constrain the symmetric permutation (seel@8trL(12) option).

e Row and Column scalingsD, andD.
Controlled byICNTL(8), this preprocessing improves the numerical accuracy ankesnall
estimations performed during analysis more reliable. Ageaaf classical scalings are provided
and can be automatically performed at the beginning of timeemical factorization phase or during
the analysis if ICNTL(8) is set to -2. For some valued®NTL(12) the scaling arrays can also
be allocated and built during the analysis phase (see ®etifp Symmetric indefinite matrices
preprocessings, as described ][ can be applied and are controlled by ICNTL(12).

2.3 Post-processing facilities

It has been shownl[] that with only two to three steps of iterative refinement sloéution can often be
significantly improved. Iterative refinement can be optllyngerformed after the solution step using the
parametetCNTL(10).

MUMPS&ilso enables the user to perform classical error analysiedoan the residuals (see the
description oflCNTL(11 in Section??). We calculate an estimate of the sparse backward errog usin
the theory and metrics developed ir)]. We use the notatio for the computed solution and a modulus
sigh on a vector or a matrix to indicate the vector or matritaoted by replacing all entries by their
moduli. The scaled residual

b — Ax]|,
inlimniel VRN 2
(Tl TAT ), @)

is computed for all equations except those for which the matoe is nonzero and the denominator is
small. For all the exceptional equations,

b — AXx|,
- = ®)
(AL, + 1Al 1%l

is used instead, whem&; is row: of A. The largest scaled residu@) (s returned in RINFOG(7) and the
largest scaled residua)(is returned in RINFOG(8). If all equations are in categdty, ¢ero is returned
in RINFOG(8). The computed solutionis the exact solution of the equation

(A +5A)x = (b + db),

where
0A,;; < max(RINFOG(?),RINFOG(8))|A|,L.J.,

anddb; < max(RINFOG(7)|b|,, RINFOG(8)||A:||||X||..)- Note thatd A respects the sparsity of
A. An upper bound for the error in the solution is returned INRDG(9). Finally condition numbers
cond; andconds for the matrix are returned in RINFOG(10) and RINFOG(113pextively, and

[lox|]

] < RINFOG(9) = RINFOG(7) x cond; + RINFOG(8) X conds.

2.4 Solving the transposed system

Given a sparse matriA, the systemAX = B or ATX = B can be solved during the solve stage,
whereA is square of order andX andB are of ordem by nrhs. This is controlled by CNTL(9).



2.5 Reduce/condense a problem on an interface (Schur compient and
reduced/condensed right-hand side)

A Schur complement matrix (centralized or provided as 2xbloyclic matrix) can be returned to the
user (see
mumpsICNTL(19),
mumpsICNTL(26) and Sectiod.10. The user must specify the list of indices of the Schur matri
MUMP&hen provides both a partial factorization of the completgrin and returns the assembled Schur
matrix in user memory. The Schur matrix is considered aslarfatrix. The partial factorization that
builds the Schur matrix can also be used to solve linear systessociated with the “interior” variables
(ICNTL(26)=0) and also to handle a reduced/condensed-Hghtd-side (ICNTL(26)=1,2) as described
in the following discussion.

Let us consider a partitioned matrix (here with an unsymimetatrix) where the variables ok »,
specified by the user, correspond to the Schur variables awhich a partial factorization has been
performed. In the following, and only for the sake of cle@swe have ordered last all variables belonging

to the Schur.
. Ain A\ ([ Lia O Ui Uip
A= (A2,1 A2,2)_<L2,1 I)( 0 S ) “)
Thus the Schur complement, as returnediyMPSs such thaB = A2 — Az 1 AT 1A .

ICNTL(26) can then be used during the solution phase to desbiow this partial factorization can
be used to solvAAx = b:

° ‘ Compute a partial solutio‘n
If ICNTL(26)=0 then the solve is performed on the internal problem:

A171£C1 = bl.

Entries in the right-hand side corresponding to indicemftbe Schur matrix need not be set on
entry and they are explicitly set to zero on output.

° ‘ Solve the complete system in three st}eps

L1,1 0 U1,1 U1, 1 o b1
(o) (v %) (%) -(0)

1. ‘ Reduction/condensation pha{se
One can compute with ICNTL(26)=1, the intermediateector, in whichy, is often referred
to as the reduced/condensed right-hand-side.

L1,1 0 Y1 _ by
() () -()

Then one has to solve

U1,1 U1, 1 o Y1
(%) (n) -(0)

2. ‘ Using Schur matri*:
The Schur matrix is an output of the factorisation phases thé responsabiltiy of the user to
computezs such thaSzs = y».

3. | Expansion phasg

Givenz, andys, option ICNTL(26)=2 of the solve phase can be used to compyteNote
that the package usgs computed (and stored in thrumpsstructure) during the first step
(ICNTL(26)=1) and that the complete solutieris provided on output.

Note that the Schur complement could be considered as amet@ontribution to the interface block
in a domain decomposition approaddUMP $ould then be used to solve this interface problem using
the element entry functionality.




2.6 Arithmetic versions

Several versions of the packalygJMP%re available:REAL DOUBLE PRECISIONCOMPLEXand
DOUBLE COMPLEX
To compile all or any particular version, please refer tortte README of the MUMPS sources.
This document applies to all four arithmetics. In the follogywe use the conventions below:

1. the ternreal is used folREALor DOUBLE PRECISION
2. the termcomplexis used fotCOMPLEXr DOUBLE COMPLEX

2.7 The working host processor

The analysis phase is performed on the host processor. Ttiegsor is the one with rank 0 in the
communicator provided tMUMPSBy setting the variable PAR to 1 (see Sectib8), MUMP&llows the
host to participate in computations during the factor@atind solve phases, just like any other processor.
This allowsMUMPSo run on a single processor and prevents the host processw idlle during the
factorization and solve phases (as would be the case for BAR¥e thus generally recommend using a
working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a lamgy&ralized matrix on a purely
distributed architecture with relatively small local meyto PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on tts. ho

2.8 Sequential version

It is possible to usélUMPSequentially by limiting the number of processors to oné the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries art tuser program needs to make explicit
calls toMPI_INIT andMPI_FINALIZE .

A purely sequential version dlUMP$s also available. For this, a special library is distrilaliteat
provides all external references neededMiyMPSor a sequential environmentMUMP&an thus be
used in a simple sequential program, ignoring everythitafed to parallelism or MPI. Details on how
to build a purely sequential version BRUMP@re available in the file README available in tMUMPS
distribution. Note that for the sequential version, the poment PAR must be set to 1 (see Sectod)
and that the calling program should not make use of MPI.

2.9 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a shawdory), a parallel shared memory
BLAS library (also called multithread BLAS) is often proed by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) caghiisantly more efficient than running
with only MPI processes. For example on a computer with 2 Skiia and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MRgss

2.10 Out-of-core facility

Controlled byICNTL(22), a preliminary out-of-core facility is available in bothcgeential and parallel
environments. In this version only the factors are writterdisk during the factorization phase and
will be read each time a solution phase is requested. Ourriexpe is that on a reasonably small
number of processors this can significantly reduce the mgmeguirement while not increasing much
the factorization time. The extra cost of the out-of-coratiee is thus mainly during the solve phase.

3 Sequence in which routines are called
In the following, we use the notatig8DCZ]MUMPSo refer toDMUMPSMUMPZMUMP8rCMUMPS

for REAL DOUBLE PRECISIONCOMPLEXNdDOUBLE COMPLEXrsions, respectively. Similarly
[SDCZ]MUMPSSTRUC refers to either SMUMPSTRUC DMUMPSTRUC CMUMPSTRUG



or ZMUMPSSTRUGC and [sdczlmumps _struc.h  to smumpsstruc.h , dmumpsstruc.h
cmumpsstruc.h  orzmumpsstruc.h

In the Fortran 90 interface, there is a single user callablbrautine per arithmetic,
called [SDCZ]JMUMPS that has a single parametenumpspar of Fortran 90 derived datatype
[SDCZ]MUMPSSTRUCdefined in [sdczlmumpstruc.h. The interface is the same for the sequential
version, only the compilation process and libraries needhamged. In the case of the parallel version,
MPI must be initialized by the user before the first calfJ$® CZ]MUMPSs made. The calling sequence
for theDOUBLE PRECISIONersion may look as follows:

INCLUDE 'mpif.h’
INCLUDE 'dmumps_struc.h’

INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPL_INIT(IERR) I Not needed in purely sequential versi on
CALL DMUMPS( mumps_par )

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other arithmetics, dmumpsstruc.h should be replaced bysmumpsstruc.h
cmumpsstruc.h  , or zmumpsstruc.h , and the’'D’ in DMUMPSnd DMUMPSTRUC by
'S’ ,'C or'Z

The variablenumpspar of datatypg SDCZ]MUMPSSTRUGCholds all the data for the problem. It
has many components, only some of which are of interest taghe The other components are internal
to the package. Some of the components must only be definedeonhost. Others must be defined
on all processors. The filisdczlmumps _struc.h  defines the derived datatype and must always
be included in the program that caMUMPSThe file [sdczlmumps _root.h , which is included in
[sdczlmumps _struc.h , must also be available at compilation time. Componenthefstructure
[SDCZ]MUMPSSTRUGNhat are of interest to the user are shown in Figure

The interface toMUMPSonsists in calling the subroutin®DCZ]MUMPSwith the appropriate
parameters set imumpspar .



INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC
SEQUENCE
C INPUT PARAMETERS

| @ ———
C Problem definition
[ O ———
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not wor king)
INTEGER SYM, PAR, JOB
C Control parameters
[ O ———

INTEGER ICNTL(40)

real CNTL(15)

INTEGER N ! Order of input matrix
Assembled input matrix : User interface

[eX@)

INTEGER NZ
real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A _LOC
C Unassembled input matrix: User interface

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex, DIMENSION(:), POINTER :: A _ELT
MPI Communicator and identifier

INTEGER COMM, MYID
Ordering and scaling, if given by user (optional)

o0 00

INTEGER, DIMENSION(:), POINTER :: PERM_IN
real/complex DIMENSION(:), POINTER :: COLSCA, ROWSCA
INPUT/OUTPUT data : right-hand side and solution

[eXe!

real/complex DIMENSION(:), POINTER :: RHS, REDRHS
real/lcomplex DIMENSION(:), POINTER :: RHS _SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_LOC, LREDRHS

real/complex DIMENSION(:), POINTER :: SOL _LOC

INTEGER, DIMENSION(:), POINTER :: ISOL_LOC
C OUTPUT data and Statistics

INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)
INTEGER INFOG(40) ! Global information (host only)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur
INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex DIMENSION(:), POINTER :: SCHUR

C Mapping if provided by MUMPS
INTEGER, DIMENSION(:), POINTER :: MAPPING

C Version number
CHARACTER(LEN=46) VERSION_NUMBER

C Name of file to dump a problem in matrix market format
CHARACTER(LEN=255) WRITE_PROBLEM

C Out-of-core

CHARACTER(LEN=63) :: OOC._PREFIX
CHARACTER(LEN=255) :: OOC.TMPDIR

END TYPE [SDCZ]JMUMPS_STRUC

Figure 1. Main  components of thgg structurdSDCZJMUMPSSTRUC defined in
[sdczlmumps _struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, where@sal is used for parameters that are always real, even in the
complex version oMUMPS



4 Input and output parameters

In this section, we describe the components of the variablampgpar of datatype
[SDCZ]MUMPSSTRUC Those components define the argumentsMidMPShat must be set by
the user, or that are returned to the user.

4.1 \Version number

mumpspar%/ERSION_NUMBER (string) is set byMUMP $o the version number of MUMPS after a
call to the initialization phase (JOB=-1).

4.2 Control of the three main phases: Analysis, Factorizatin, Solve

mumpspar%JOB (integer) must be initialized by the user on all processefsie a call taMUMPS
It controls the main action taken BYUMPSt is not altered byMUMPS

JOB = -1 initializes an instance of the package. A call with J&B-1 must be performed before
any other call to the package on the same instance. It setsltieélues for other components of
MUMPSSTRUC(such as ICNTL, see below), which may then be altered befabbsexjuent calls
to MUMPSNote that three components of the structure must alwaysbeysthe user (on all
processors) before a call with JGB-1. These are

e mumpspar%COMM,

e mumpspar%SYM, and

e mumpspar%PAR.
Note that if the user wants to modify one of those three coraptmnthen he must destroy the
instance (call with JOB= —2) then reinitialize the instance (call with JGB-1).
Furthermore, after a call with JOB -1, the internal component mumpar%MYID contains

the rank of the calling processor in the communicator predido MUMPSThus, the test
“(mumpspar%MYID == 0)" may be used to identify the host processoe (Sectior.7).

Finally, the version number is returned in munmme%VERSIONNUMBER (see Sectiod.1).

JOB = -2 destroys an instance of the package. All data structssesceted with the instance, except
those provided by the user in mumpar, are deallocated. It should be called by the user onlywhe
no further calls tdUMP$vith this instance are required. It should be called befdigther JOB
= —1 call with the same argument murpar.

JOB=1 performs the analysis. In this phaskJMP$hooses pivots from the diagonal using a selection
criterion to preserve sparsity. It uses the pattermof- A but ignores numerical values. It
subsequently constructs subsidiary information for theewical factorization (a JOB=2 call).

An option exists for the user to input the pivotal sequen@N{TL(7)=1, see below) in which case
only the necessary information for a JOB=2 call will be geed.

The numerical values of the original matrix, mumpsr%A, must be provided by the user during
the analysis phase only if ICNTL(6) is set to a value betwean@7. See ICNTL(6) in Sectioh
for more details.

MUMP&ises the pattern of the matriX input by the user. In the case afcentralized matrixthe
following components of the structure defining the matriitgga must be set by the user only on
the host:

e mumpspar%N, mumpspar%NZ, mumpspar%IRN, and mumppar%JCN if the user wishes
to input the structure of the matrix @ssembled formgiCNTL(5)=0 and ICNTL(18)# 3)
(see Sectiod.5),

e mumpspar%N, mumpgar%NELT, mumppar%ELTPTR, and mumpgar%ELTVAR if the
user wishes to input the matrix elemental forma(lCNTL(5)=1) (see SectioA.6).

These components should be passed unchanged when laiteg tadl factorization (JOB=2) and
solve (JOB=3) phases.

In the case o& distributed assembled matrigee Sectiod.7 for more details and options),

11



e IfICNTL(18) =1 or 2, the previous requirements hold excépttiRN and JCN are no longer
required and need not be passed unchanged to the factonipdtase.
e IfICNTL(18) = 3, the user should provide
— mumpspar%N on the host
— mumpspar%NZloc, mumpspar%IRNIloc and mumpgar%JCNIloc on all slave
processors. Those should be passed unchanged to theZatitori(JOB=2) and solve
(JOB=3) phases.

A call to MUMP®iith JOB=1 must be preceded by a call with J&B-1 on the same instance.

JOB=2 performs the factorization. It uses the numericaleslof the matrixA provided by the user
and the information from the analysis phase (JOB=1) to famdhe matrixA.

If the matrix is centralize@n the host (ICNTL(18)=0), the pattern of the matrix shouddgassed
unchanged since the last call to the analysis phase (seel)OiBe following components of the
structure define the numerical values and must be set by #reg(@s the host only) before a call
with JOB=2:
e mumpspar%A if the matrix is in assembled format (ICNTL(5)=0), or
e mumpspar%A_ELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed ICNTL(5)=0 and ICNTL(18) # 0), then the following
components of the structure must be set by the user on ak glencessors before a call with
JOB=2:
e mumpspar%A.loc on all slave processors, and
e mumpspar%NZloc, mumpspar%IRNIoc and mumpspar%JCNIloc if ICNTL(18)=1 or 2.
(For ICNTL(18)=3, NZloc, IRN_loc and JCNIoc have already been passed to the analysis
step and must be passed unchanged.)
(See Sectiond.5, 4.6, and4.7.)
The actual pivot sequence used during the factorization shghtly differ from the sequence
returned by the analysis if the matri is not diagonally dominant.
An option exists for the user to input scaling vectors or MtUMPScompute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(8) 0, see Sectiod.8).
A call to MUMPS®rith JOB=2 must be preceded by a call with JOB=1 on the santarios.

JOB=3 performs the solution. It can also be used (see ICNG)).({® compute the null space basis
provided that “null pivot row” detection (ICNTL(24)) was and that the number of null pivots
INFOG(28) was different from 0. It uses the right-hand s&)& provided by the user and the
factors generated by the factorization (JOB=2) to solvestesy of equationA X = BorA”X =
B. The pattern and values of the matrix should be passed ugetiasince the last call to the
factorization phase (see JOB=2). The structure componentpapar%RHS must be set by the
user (on the host only) before a call with JOB=3. (See Seib8)

A call to MUMPSvith JOB=3 must be preceded by a call with JOB=2 (or JOB=4)hensame
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. ktrbe preceded by a call MUMPS
with JOB= —1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must beegdeetby a call tiMUMP&ith JOB=1
on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. Ktrbe preceded by a call MUMPS/ith
JOB= -1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance aslpe.
4.3 Control of parallelism

mumpspar%COMM (integer) must be set by the user on all processors beforaittaization phase
(JOB=-1) and must not be changed. It must be set to a valid MPI corioaian that will be used
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for message passing insillUMPSIt is not altered byMUMPSThe processor with rank 0 in this
communicator is used lYIlUMP&s thehost processor. Note that only the processors belonging to
the communicator should cdlUMPS

mumpspar¥PAR (integer) must be initialized by the user on all processarsia accessed IMUMPS
only during the initialization phase (JOB —1). It is not altered byMUMPSnd its value is
communicated internally to the other phases as requiressilBle values for PAR are:

0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problemerform symbolic computations during
the analysis phase, distribute data, and collect reswoits fither processors. If setto 1, the host will
also participate in the factorization and solve phasesédfnitial problem is large and memory is
an issue, PAR = 1 is not recommended if the matrix is centrdlan processor 0 because this can
lead to memory imbalance, with processor 0 having a largenongload than the other processors.
Note that setting PAR to 1, and using only 1 processor, leadssequential code.

4.4 Matrix type

mumpspar%SYM (integer) must be initialized by the user on all processard & accessed by
MUMPSnly during the initialization phase (JOB —1). It is not altered byMUMPSIts value
is communicated internally to the other phases as requitesisible values for SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

Other values are treated as 0. For the complex version, the &'M=1 is currently treated as
SYM=2. We do not have a version for Hermitian matrices in telsase oMUMPS

4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), and muwpg@$ocA (eal/complex
array pointer, dimension NZ) hold the matrix in assemblethfit. These components should be set
by the user only on the host and only when ICNTL(5)=0 and ICNB)=0; they are not modified
by the package.

e N is the order of the matriA, N > 0. Itis not altered bMUMPS
e NZis the number of entries being input, NZ0. It is not altered bMUMPS

e |IRN, JCN are integer arrays of length NZ containing the rodt eslumn indices, respectively,
for the matrix entries.

Ais areal (complexin the complex version) array of length NZ. The user must g&) £o

the value of the entry in row IRN(k) and column JCN(k) of thetrixa A is accessed when
JOB=1 only when ICNTL(6)}£ 0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.

Note that, in the case of the symmetric solver, a diagonatea;; is held as A(K)=i:,
IRN(k)=JCN(k)=, and a pair of off-diagonal nonzeres; = a;; is held as A(k)=;; and
IRN(K)=¢, JCN(K)= or vice-versa. Again, duplicate entries are summed andesnivith
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern ofrtatix and must be set by
the user before the analysis phase (JOB=1). Component A leuset before the factorization
phase (JOB=2) or before analysis (JOB=1) if a numericalnoegssing option is requestet £
ICNTL(6) < 7).
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4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NELT (integer), mumppar%ELTPTR (integer array pointer,
dimension NELT+1), mumppar%ELTVAR (integer array pointer, dimension ELTPTR(NEHI)
— 1), and mumppar%AELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the hoshgndthen ICNTL(5)=1:

N is the order of the matriA, N > 0. Itis not altered bMUMPS

NELT is the number of elements being input, NELTO. It is not altered bMUMPS

ELTPTR is an integer array of length NELT+1. ELTPTR(j) paid the position in ELTVAR

of the first variable in element j, and ELTPTR(NELT+1) mustdee to the position after the

last variable of the last element. Note that ELTPTR(1) stidnd equal to 1. ELPTR is not

altered byMUMPS

ELTVAR is an integer array of length ELTPTR(NELT+1) — 1 and shie set to the lists

of variables of the elements. It is not altered MMPSThose for element j are stored in

positions ELTPTR()), ..., ELTPTR(j+1)-1. Out-of-rangeriedles are ignored.

A_ELT is areal (complexin the complex version) array. IV, denotes ELTPTR(p+1)—

ELTPTR(p), then the values for element j are stored in pmstK; + 1, ..., Kj + Lj, where
- K; =1 Np? andL; = N;* in the unsymmetric case (SYM = 0)

- K; = J;:ll(Np - (Np +1))/2,andL; = (Nj - (N + 1))/2 in the symmetric case
(SYM # 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Valeesesponding to out-of-range
variables are ignored and values corresponding to duplicatiables within an element are
summed. AELT is not accessed when JOB = 1. Note that, although the elinaatrix may
be symmetric or unsymmetric in value, its structure is asveymmetric.

The components N, NELT, ELTPTR, and ELTVAR describe thegratof the matrix and must
be set by the user before the analysis phase (JOB=1). ComipAnELT must be set before the
factorization phase (JOB=2). Note that, in the currentasdeof the package, the element entry
must be centralized on the host.

4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)+0

When the matrix is in assembled form (ICNTL(5)=0), we offeveral options to distribute the matrix,
defined by the control parameter ICNTL(18) described ini8ed. The following components of the
structure define the distributed assembled matrix inpugy®re valid for nonzero values of ICNTL(18),
otherwise the user should refer to Sectibh

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), mumpps%IRN.loc (integer array
pointer, dimension NZoc), mumpspar%JCNIoc (integer array pointer, dimension N#c),
mumpspar%A._loc (real/complexarray pointer, dimension NIbc), and mumpgar%MAPPING
(integer array, dimension NZ).

N is the order of the matriA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS

NZ is the number of entries being input in the definitiondfNZ > 0. It must be defined on
the host before analysis if ICNTL(18) =1, or 2.

IRN, JCN are integer arrays of length NZ containing the roa eslumn indices, respectively,
for the matrix entries. They must be defined on the host befoatysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis

NZ_loc is the number of entries local to a processor. It must li@el on all processors in
the case of the working host model of parallelism (PAR=1} an all processors except the
host in the case of the non-working host model of parallel{f#¥R=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.
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e IRN_loc, JCNlIoc are integer arrays of length Nic containing the row and column indices,
respectively, for the matrix entries. They must be definecbiprocessors if PAR=1, and
on all processors except the host if PAR=0, before analydiSNTL(18) = 3, and before
factorization if ICNTL(18) =1 or 2.

e A_loc is areal (complexin the complex version) array of dimension Nac that must be
defined before the factorization phase (JOB=2) on all psarssif PAR = 1, and on all
processors except the host if PAR = 0. The user must sktcik) to the value in row
IRN_loc(k) and column JCNoc(K).

e MAPPING is an integer array of size NZ which is returned MyMPSn the host after
the analysis phase as an indication of a preferred mappilgNTL(18) = 1. In that case,
MAPPING (i) = IPROC means that entry IRN(i), JCN(i) shoulddrevided on processor with
rank IPROC in theMUMP®ommunicator. Remark that MAPPING is allocatedMyYMPS
and not by the user. It will be freed during a callNbJMP Svith JOB = -2.

We recommend the use of options ICNTL(18)= 2 or 3 becauseatethe simplest and most flexible
options. Furthermore, those options (2 or 3) are in gendmabst as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.

4.8 Scaling

mumpspar%COLSCA, mumpspar¥ROWSCA (double precision array pointers, dimension N) are
optional, respectively column and row scaling arrays neglionly by the host. If a scaling is
provided by the user (ICNTL(8F —1), these arrays must be allocated and initialized by tlee us
on the host, before a call to the factorization phase (JOBFRey might also be automatically
allocated and computed by the package during analysis (WTIG6)=5 or 6), in which case
ICNTL(8) = -2 will be set by the package during analysis and should bsegasnchanged to
the solve phase (JOB=3).

4.9 Given ordering: ICNTL(7)=1

mumpsparPERM_IN (integer array pointer, dimension N) must be allocated aitdhlized by the
user on the host if ICNTL(7)=1. It is accessed during the sial(JOB=1) and PERMN(i), i=1,
..., N'must hold the position of variable i in the pivot ordbiote that, even when the ordering is
provided by the user, the analysis must still be performddrbenumerical factorization.

4.10 Schur complement with reduced (or condensed) right-had side:
ICNTL(19) and ICNTL(26)

mumpspar¥%SIZE _SCHUR (integer) must be initialized on the host to the number oialdes defining
the Schur complement if ICNTL(19) = 1, 2, or 3. Itis accessadid) the analysis phase and should
be passed unchanged to the factorization and solve phases.

mumpspar?.ISTVAR _SCHUR (integer array pointer, dimension mumpar%SIZE _SCHUR) must
be allocated and initialized by the user on the host if ICNI@)(= 1, 2 or 3. It is not altered by
MUMPSt is accessed during analysis (JOB=1) and LISTVBRHUR(), i=1, ..., SIZESCHUR
must hold the'” variable of the Schur complement matrix.

Centralized Schur complement (ICNTL(19)=1)

mumpspar%SCHUR is areal (complexin the complex version) 1-dimensional pointer array that
should point to size SIZESCHUR x SIZE_.SCHUR locations in memory. It must be allocated
by the user on the host (independently of the value of mupgr86PAR) before the factorization
phase. On exit, it holds the Schur complement matrix. Onudftpm the factorization phase, and
on the host node, the 1-dimensional pointer array SCHURngjtleSIZESCHUR*SIZESCHUR
holds the (dense) Schur matrix of order SIBEHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the usérd8TVAR_SCHUR and that the Schur
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matrix is storedy rows. If the matrix is symmetric then only the lower triangulartpaf the Schur
matrix is provided iy rows) and the upper part is not significant. (This can also be \vieagethe
upper triangular part stored by columns in which case thetqart is not defined.)

Distributed Schur complement (ICNTL(19)=2 or 3)

For symmetric matrices, the value of ICNTL(19) controls e only the lower part (ICNTL(19) =
2) or the complete matrix (ICNTL(19) = 3) is generated. Weals/ provide the complete matrix for
unsymmetric matrices so either value for ICNTL(19) has tmae effect.

If ICNTL(19)=2 or 3, the following parameters should be defin on the host on

‘ entry to the analysis pha#e

mumpspar¥NPROW, mumpsparyNPCOL, mumpspar¥dMBLOCK , and mumpsar¥&NBLOCK
are integers corresponding to the characteristics of a 2Bkbtyclic grid of processors. They
should be defined on the host before a call to the analysieplfamy of these quantities is smaller
than or equal to zero or has not been defined by the user, orRIONPx NPCOL is larger than
the number of slave processors available (total numberadfgssors if mumppar%PAR=1, total
number of processors minus 1 if mumpar%PAR=0), then a grid shape will be computed by the
analysis phase dlUMP&nd NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exit
from the analysis phase. Please referitd [for example) for more details on the notion of grid of
processors and on 2D block cyclic distributions. We briefigatibe the meaning of the four above
parameters here:

e NPROW is the number of processors in a row of the process grid,

e NPCOL is the number of processors in a column of the proceds gr

e MBLOCK is the blocking factor used to distribute the rows le¢ tSchur complement,

e NBLOCK is the blocking factor used to distribute the colunafishe Schur complement.

As in ScaLAPACK, we use a row-major process grid of processtivat is, process ranks (as
provided toMUMPSn the MPI communicator) are consecutive in a row of the psscerid.
NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchangat the analysis phase
to the factorization phase.

On exit from the analysis phas#sethe following two components are set BYUMPSn the first
NPROW x NPCOL slave processors (the host is excluded if PAR=0 andibeessors with largest
MPI ranks in the communicator provided MtlUMP $nhay not be part of the grid of processors).
mumpsparSCHUR_MLOC is an integer giving the number of rows of the local Schur cement
matrix on the concerned processor. It is equal to MAX(1,NUMKRSIZESCHUR, MBLOCK,
myrow, 0, NPROW)), where
e NUMROC is an INTEGER function defined in most ScaLAPACK impkntations (also used
internally by theMUMP $ackage),
e SIZE SCHUR, MBLOCK, NPROW have been defined earlier, and
e myrowis defined as follows:
Let myidbe the rank of the calling process in the communicator COM&isled toMUMPS
(myidcan be returned by the MPI routihdéPI_COMNMRANK)
— if PAR = 1 myrowis equal tomyid/ NPCOL,
— if PAR = 0 myrowis equal to(myid— 1) / NPCOL.
Note that an upperbound of the minimum value of leading dsimn(SCHURLLD defined below)
is equal to ((SIZESCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.
mumpsparSCHUR_NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equaNWMROC(SIZESCHUR,
NBLOCK, mycol 0, NPCOL), where
e SIZE SCHUR, NBLOCK, NPCOL have been defined earlier, and
e mycolis defined as follows:
Let myidbe the rank of the calling process in the communicator COMMigled toMUMPS
(myidcan be returned by the MPI routihdéPI_COMMRANK)
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— if PAR = 1 mycolis equal to MODfnyid, NPCOL),
— if PAR = 0 mycolis equal to MODfnyid— 1, NPCOL).

On entry to the factorization pha#(a]OB = 2), SCHURLLD should be defined by the user and
SCHUR should be allocated by the user on the NPRQWPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI rankfié communicator provided tdUMPS
may not be part of the grid of processors).

mumpspar%SCHUR_LLD is an integer defining the leading dimension of the local $cbmplement
matrix. It should be larger or equal to the local number ofs@f that matrix, SCHURMLOC
(as returned bMUMP®n exit from the analysis phase on the processors that ipatécin the
computation of the Schur). SCHURLD is not modified byMUMPS

mumpspar%SCHUR is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factiwizgphase. Its size should be at
least equal to SCHURLD x (SCHURNLOC - 1) + SCHURMLOC, where SCHURMLOC,
SCHURNLOC, and SCHURLLD have been defined above. On exit to the factorization @has
the pointer array SCHUR contains the Schur complementegdtby columns, in the format
corresponding to the 2D cyclic grid of NPROWNPCOL processors, with block sizes MBLOCK
and NBLOCK, and local leading dimensions SCHIIRD.

The Schur complement is stored by columns. Note that seftiR€OL x NPROW = 1
will centralize the Schur complement matrigtored by columnginstead of by rows as in the
ICNTL(19)=1 option). It will then be available on the hostd®if PAR=1, and on the node with
MPI identifier 1 (first working slave processor) if PAR=0.

If ICNTL(19)=2 and the Schur is symmetric (SYM=1 or 2), only the lower trignig provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetric (SYM=1 or 2), then both the lowetd apper
triangles are provided, stored by columns. Note that if ICKP)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices, ICNTL(19)=2 and ICNTL(19)=%&dhe same effect.)

Using partial factorization during solution phase (ICNTL(26)=0, 1 or 2)

As explained in Sectio8.5, when a Schur complement has been computed during theifadton phase,
then either the solution phase computes a solution on teenialt problem (ICNTL(26)=0, see control
parameter ICNTL(26)), or the complete problem can use acestitigh-hand side to build the solution of
the problem on the Schur variables (ICNTL(26)=1 and ICNRB)&2).

If ICNTL(26)=1 or 2, then the following parameters must bdimed on the host on entry to the
solution step:

mumpspar?d_REDRHS is an integer defining the leading dimension of the reducgiht-fiand side,
REDRHS. It must be larger or equal to SIZEZHUR, the size of the Schur complement.

mumpsparREDRHS is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before entering the solptiase. Its size should be at least equal
to LREDRHSx (NRHS-1)+ SIZESCHUR. If ICNTL(26)=1, then on exit from the solution phase,
REDRHS(i+(k-1)*LREDRHS), i=1,..., SIZESCHUR, k=1,..., NRHS will hold the reduced
right-hand side. If ICNTL(26)=2, then REDRHS(i+(k-1)*LRIRHS), i=1,. .., SIZE SCHUR,
k=1, ..., NRHS must be set (on entry to the solution phase) to theisoloh the Schur variables.
In that case (ie, ICNTL(26)=2), it is not altered MUMPS

4.11 Out-of-core (ICNTL(22)# 0)

The decision to use the disk to store the matrix of factor®igrolled by ICNTL(22) (ICNTL(22)# 0
implies out-of-core). Only the value on the host node isifiigant.

Both mumpspar©OOC_TMPDIR and mumpspar%OOC_PREFIX can be provided by the user
(on each processor) to control respectively the directdngne the out-of-core files will be stored and
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the prefix of those files. If not provided, the /tmp directoril e tried and file names will be chosen
automatically.

It is also possible to provide the directory and filename préfirough environment variables.
If mumpspar%OOCTMPDIR is not defined, then MUMPS checks for the environmeatiable
MUMPS_.OOCTMPDIR. If not defined, then the directory /tmp is attemptedSimilarly, if
mumpspar%OO0CPREFIX is not defined, then MUMPS checks for the environmeatiable
MUMPS_OOC_PREFIX. If not defined, then MUMPS chooses the filename autioaiby.

4.12 Workspace parameters

The memory required to run the numerical phases is estinduédg the analysis. The size of the
workspace required during numerical factorization depeml algorihtmic parameters such as the in-
core/out-of-core strategies (ICNTL(22)) and the memotgxation parameter ICNTL(14).

Two main integer and real/complex workarrays (IS and S gesgely) that hold factors, active frontal
matrices, and contribution blocks are allocated inteynalNote that, apart from these two large work
arrays, other internal work arrays exist (for example,rimiécommunication buffers in the parallel case,
or integer arrays holding the structure of the assembly.tree

At the end of the analysis phase, the following estimatiohshe memory required to run the
numerical phases are provided (for the given or defaultevadfithe memory relaxation parameter
ICNTL(14)):

e INFO(15) returns the minimum size in Megabytes to run the exiical phases (factorisation/solve)
. (The maximum and sum over all processors are returnedagigely in INFOG(16) and
INFOG(17)).

e INFO(17) provides an estimation (in Megabytes) of the mimmtotal memory required to run
the numerical phas. (The maximum and sum over all processors are returned
respectively in INFOG(26) and INFOG(27)).

Those memory estimations can be used as lower bounds whesahwants to explicitly control the
memory used (see description of ICNTL(23)).

As a first general approach, we advise the user to rely on theatns provided during the analysis
phase. If the user wants to increase the allocated workgpgmeally, numerical pivoting that leads to
extra storage, or previous call to MUMPS that failed becadiselack of allocated memory), we describe
in the following how the size of the workspace can be corgrbll

e The memory relaxation parameter ICNTL(14) is designed mirobthe increase, with respect to the
estimations performed during analysis, in the size of theksmace allocated during the numerical
phase.

e The user can also provide the size of the total memory ICN3)L{Rat the package is allowed to
use internally. ICNTL(23) is expressed in Megabytes pecgssor. If ICNTL(23) is provided,
ICNTL(14) is still used to relax the integer workspace anthednternal buffers. That memory
is subtracted from ICNTL(23); what remains determines the ef the main (and most memory-
consuming) real/complex array holding the factors andkst@contribution blocks.

4.13 Right-hand side and solution vectors/matrices

The formats of the right-hand side and of the solution argrotiad by ICNTL(20) and ICNTL(21),
respectively.

Centralized dense right-hand side (ICNTL(20)=0) and/or catralized dense solution
(ICNTL(21)=0)

If ICNTL(20)=0 or ICNTL(21)=0, the following should be defd on the host.

mumpspar%RHS (real/complex array pointer, dimension NRH&_RHS) is areal (complexin the
complex version) array that should be allocated by the us¢n@host before a call tdUMP®iith
JOB=3, 5, or 6.
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On entry, if ICNTL(20)=0, RHS(i+(k-1XLRHS) must hold the i-th component &th right-hand
side vector of the equations being solved.

On exit, if ICNTL(21)=0, then RHS(i+(k-2YLRHS) will hold the i-th component of théth
solution vector.

mumpspar¥&NRHS (integer) is an optional parameter that is significant onttbst before a call to
MUMPSvith JOB = 3, 5, or 6. If set, it should hold the number of rigfatad side vectors. If not
set, the value 1 is assumed to ensure backward compatitilihe MUMP $hterface with versions
prior to 4.3.3. Note that if NRHS- 1, then functionalities related to iterative refinement andr
analysis (see ICNTL(10) and ICNTL(11) are currently disabl

mumpspar%dRHS (integer) is an optional parameter that is significant onftbst before a call to
MUMPS8vith JOB=3, 5, or 6. If NRHS is provided, LRHS should then htild leading dimension
of the array RHS. Note that in that case, LRHS should be grézde or equal to N.

Sparse right-hand side (ICNTL(20)=1)

If ICNTL(20)=1, the following input parameters should bdided on the host only before a callMtUMPS
with JOB=3, 5, or 6:

mumpspar¥8NZ_RHS (integer) should hold the total number of non-zeros in al tight-hand side
vectors.

mumpspar¥8NRHS (integer), if set, should hold the number of right-hand sidetors. If not set, the
value 1 is assumed.

mumpsparRHS_SPARSE (real/complex array pointer, dimension NRHS) should hold the
numerical values of the non-zero inputs of each right-haael wector. See also IRHBTR below.

mumpspardRHS _SPARSE(integer array pointer, dimension NZHS should hold the indices of the
variables of the non-zero inputs of each right-hand sidéovec

mumpspar’dRHS_PTR is an integer array pointer of dimension NRHS+1. IRABR
is such that the i-th right-hand side vector is defined by iBn-nero row indices
IRHS_SPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1) and the corresponding  numerical
values RHSSPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1). Note that IRH®TR(1)=1 and
IRHS_PTR(NRHS+1)=NZRHS+1.

Note that, if the right-hand side is sparse and the solut®rentralized (ICNTL(21)=0), then
mumpsparRHS should still be allocated on the host, as explained in theipus section. On exit
from a call toMUMP8vith JOB=3, 5, or 6, it will hold the centralized solution.

Distributed solution (ICNTL(21)=1)

On some networks with low bandwidth, and especially whemettzge many right-hand side vectors,
centralizing the solution on the host processor might bestlycpart of the solution phase. If this is
critical to the user, this functionality allows the solutito be left distributed over the processors. The
solution should then be exploited in its distributed formthg user application.

mumpspar%SOL_LOC is areal/complex array pointer, of dimension LSQLOCxNRHS (where
NRHS corresponds to the value provided in murmpps%NRHS on the host), that should be
allocated by the user before the solve phase (JOB=3) onakpsors in the case of the working
host model of parallelism (PAR=1), and on all processorepithe host in the case of the non-
working host model of parallelism (PAR=0). Its leading dim®n LSOLLOC should be larger
than or equal to INFO(23), where INFO(23) has the value netiroy MUMP®n exit from the
factorization phase. On exit from the solve phase, S@IC(i+(k-1)x LSOL_LOC) will contain
the value corresponding to variable IS@OC(i) in the k*" solution vector.

mumpspar?d_SOL _LOC (integer). LSOLLOC must be set to the leading dimension of SOQC
(see above) and should be larger than or equal to INFO(23renNFO(23) has the value returned
by MUMP®n exit from the factorization phase.
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mumpspar?dSOL _LOC (integer array pointer, dimension INFO(23)) ISQIOC should be allocated
by the user before the solve phase (JOB=3) on all processtine case of the working host model
of parallelism (PAR=1), and on all processors except the imahe case of the non-working host
model of parallelism (PAR=0). ISQLOC should be of size at least INFO(23), where INFO(23)
has the value returned BYUMP®n exit from the factorization phase. On exit from the solkege,
ISOL_LOC(i) contains the index of the variables for which the siolu (in SOLLOC) is available
on the local processor. Note that if successive calls todhe phase (JOB=3) are performed for a
given matrix, ISOLLOC will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functéties related to error analysis and iterative
refinement (see ICNTL(10) and ICNTL(11)) are currently naikable.

4.14 Writing a matrix to a file

mumpspar/NVRITE _PROBLEM (string) can be set by the user before the analysis phase=U)0B
order to write the matrix passed MUMP $to the file “WRITE.LPROBLEM”. This only applies to
assembled matrices and the format used to write the mattieiématrix market” format If the
matrix is distributed, then each processor must initia#lRI TE_.PROBLEM. Each processor will
then write its share of the matrix in a file whose name is “WRIFROBLEM” appended by the
rank of the processor in the communicator passeédd/PNote that WRITEPROBLEM should
include both the path and the file name.

5 Control parameters

On exit from the initialization call (JOB= —1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the pondig entries in mumppar%ICNTL and
mumpspar%CNTL should be reset after this initial call and befdre ¢all in which they are used.

mumpspar?dCNTL is an integer array of dimension 40.

ICNTL(1) is the output stream for error messages. If it is negativeeon,zthese messages will be
suppressed. Default value is 6.

ICNTL(2) isthe output stream for diagnostic printing, statisticgl warning messages. If itis negative
or zero, these messages will be suppressed. Default value is

ICNTL(3) is the output stream for global information, collected oa kost. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostiessages. Maximum value is 4
and default value is 2 (errors and warnings printed). Péessddues are
e < 0: No messages output.
e 1: Only error messages printed.
e 2: Errors, warnings, and main statistics printed.
e 3: Errors and warnings and terse diagnostics (only first ries of arrays) printed.
e 4: Errors and warnings and information on input and outptépeters printed.
ICNTL(5) has default value 0 and is only accessed by the host and oriygdhe analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled fatin the structure components N,

NZ, IRN, JCN, and A (or NZloc, IRN_loc, JCNloc, A_loc, see Sectiod.7). If ICNTL(5) = 1, the
input matrix must be given

N, NELT, ELTPTR, ELTVAR, and AELT.

Please note that parallel analysis is only available forices in assembled format and, thus, an
error will be raised if ICNTL(5)=1 and ICNTL(28)=2.

1seehttp://math.nist.gov/MatrixMarket/
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ICNTL(6) has default value 7 (automatic choice done by the packagesarsed to control an option
for permuting and/or scaling the matrix. It is only accedsgthe host and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, B 6olumn permutation (based on
weighted bipartite matching algorithms describedlif, [L6]) is applied to the original matrix to get
a zero-free diagonal. For symmetric matrices, if ICNTL(B)2, 3, 4, 5, 6, the column permutation
is not applied but it can be used to determine a set of recomednx 1 and2 x 2 pivots (see]7]
for more details).

Possible values of ICNTL(6) are:

e 0: No column permutation is computed.
e 1 : The permuted matrix has as many entries on its diagonalitdes The values on the
diagonal are of arbitrary size.

e 2: The permutation is such that the smallest value on theodagf the permuted matrix is
maximized.

e 3: Variant of option 2 with different performance.

e 4 : The sum of the diagonal entries of the permuted matrixdihputation was applied) is
maximized.

e 5: The product of the diagonal entries of the permuted méfrpermutation was applied) is
maximized. Vectors are computed (and stored in COLSCA and/BOA, only if ICNTL(8)
is set to -2 or 77) to scale the matrix. In case the matrix isctiffely permuted (unsymmetric
matrix) then the nonzero diagonal entries in the permutedixsre one in absolute value and
all the off-diagonal entries less than or equal to one in kitsvalue.

e 6: Similar to 5 but with a different algorithm.

e 7 : Based on the structural symmetry of the input matrix andthan availability of the
numerical values, the value of ICNTL(6) is automaticallysén by the software.

Other values are treated as 0.

Except for ICNTL(6)=0, 1 or 7, the numerical values of thegaral matrix, mumpspar%A, must
be provided by the user during the analysis phase. If thexiasymmetric positive definite (SYM
= 1), orin elemental format (ICNTL(5)=1), or the ordering i®pided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19% 1, 2, or 3) is required, or the matrix is initially distribate
(ICNTL(18) # 0), then ICNTL(6) is treated as O.

‘ On unsymmetric matrice{s(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On outpatf the analysis phase, when the
column permutation is not the identity, the pointer mumpps%UNSPERM (internal data valid
until a call toMUMP Svith JOB=-2) provides access to the permutation. (The colpermutation

is such that entry; ,,.,.,(;) is on the diagonal of the permuted matrix.) Otherwise, thatpois
unassociated.

‘ On general symmetric matrice§SYM = 2), we advise either to lelUMPSelect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagtwwk). On output from the analysis
the pointer mumppar%UNSPERM is unassociated.

On output from the analysis phase, INFOG(23) holds the vafUENTL(6) that was effectively
used.

Please note that this permutation/scaling of the matrinésmpatible with parallel analysis and,
thus and error will be raised if ICNTL(28)=2 and ICNTL(6)#%1-

ICNTL(7) has default value 7 and is only accessed by the host and orilygdilne analysis phase.
If sequential analysis is to be performed (ICNTL(28)=1)létermines the pivot order to be used
for the factorization. Note that, even when the orderingra/jgled by the user, the analysis must
be performed before numerical factorization. In excegtia@ases, ICNTL(7) may be modified by
MUMPS&/hen the ordering is not compatible with the value of ICNT2)1Possible values are:

e 0: Approximate Minimum Degree (AMD)]] is used,

e 1: the pivot order should be set by the user in PERMIn this case, PERMN(i), (i=1, ...
N) holds the position of variable i in the pivot order.
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2 : Approximate Minimum Fill (AMF) is used,

3: SCOTCH [25] is used (if previously installed by the user).
e 4:PORD [27] is used,

5 : the METIS [29] package is used (if previously installed by the user),

6 : Approximate Minimum Degree with automatic quasi-dens& detection (QAMD) is
used.
e 7 : Automatic choice by the software during analysis phashis Thoice will depend on
the ordering packages made available, on the matrix (typeseae), and on the number of
processors.

Other values are treated as 7. Currently, options 3, 4 and brdy available if the corresponding
packages are installed (see comments in the Makefiles tdUBP&now about them). If the
packages are not installed then options 3, 4 and 5 are traatéd

e If the user asks for a Schur complement matrix and the mati@ssembled then only options
0, 1, 5 and 7 are currently available. Other options aredrtktas 7.

° For| elemental matriceE(ICNTL(S):l), only options 0, 1, 5 and 7 are available, wiftion

7 leading to an automatic choice between AMD and METIS (oy®tid or 5); other values are
treated as 7. Furthermore, if the user asks for a Schur congpiematrix, only options 0, 1
and 7 are currently available. Other options are treatedvelsich will (currently) be treated
as 0 (AMD).

Generally, with the automatic choice corresponding to IC{J=7, the option chosen by

the package depends on the ordering packages installedtypleeof matrix (symmetric or

unsymmetric), the size of the matrix and the number of prames

For matrices with relatively dense rows, we highly recomeheption 6 which may significantly

reduce the time for analysis.

On output, the pointer mumpgsar%SYMPERM provides access to the symmetric permutation
that is effectively used by the MUMPS package, and INFOG§7he ordering option that was
effectively used. (mumppar%SYMPERM(i), (i=1, ... N) holds the position of variable i in the
pivot order.)

Please note that ICNTL(7) is meaningless if the parallelyasmgis chosen, i.e., ICNTL(28)=2.
ICNTL(8) has default value 77. Itis used to describe the scalingeglyadnd is only accessed by the

host.

‘ On entry to the analysis phaFé ICNTL(8) = 77, then an automatic choice of the scalingiopt

is performed during the analysis and ICNTL(8) is modifiedaadingly. In particular, if ICNTL(8)

is set to -2 by the user or reset to -2 by the package duringihlgsis, scaling arrays are computed

internally and will be ready to be used by the factorizatibage.

‘ On entry to the factorization pha‘feif ICNTL(8) = -1, scaling vectors must be provided in

COLSCA and ROWSCA by the user, who is then responsible focating and freeing them, if
ICNTL(8) = -2, scaling vectors must be provided in COLSCA and ROWSCAbypeackage (see
previous paragraph). If ICNTL(8) = 0, no scaling is perfodnand arrays COLSCA/ROWSCA
are not used. If ICNTL(8)> 0, the scaling arrays COLSCA/ROWSCA are allocated and céedpu
by the package during the factorization phase.

‘ Possible values of ICNTL(Q)are listed below:
e -2: Scaling computed during analysis (sé&,[L6] for the unsymmetric case and] for the
symmetric case).
e -1: Scaling arrays provided on entry to the numerical fazé&tion phase,
e 0: No scaling applied/computed.
e 1: Diagonal scaling,

2Seehttp://gforge.inria.fr/projects/scotch/ to obtain a copy.
3Distributed within MUMPS by permission of J. Schulze (Unisiey of Paderborn).
4Seehttp://glaros.dtc.umn.edu/gkhome/metis/metis/overvi ewto obtain a copy.
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: Row and column scaling based ar?],

: Column scaling,

: Row and column scaling based on infinite row/column norms,

: Scaling based on ] followed by column scaling,

: Scaling based on ] followed by row and column scaling.

: Simultaneous row and colum iterative scaling based’6hgnd [3].

: Similar to 7 but more rigorous and expensive to compute.

e 77 (analysis only) : Automatic choice of ICNTL(8) value dahgring analysis.

If the input matrix is symmetric (SYM- 0), then only options -2, -1, 0, 1, 7, 8 and 77 are allowed
and other options are treated as O; if ICNTL£8)-1, the user should ensure that the array ROWSCA
is equal to (or points to the same location as) the array CGL$Che input matrix is in elemental
format (ICNTL(5) = 1), then only options —1 and O are allowexd @ther options are treated as 0.
If the initial matrix is distributed (ICNTL(18) 0 and ICNTL(5) = 0), then only options 7, 8 and
77 are allowed, otherwise no scaling is applied. If ICNTL£8)2 then the user has to provide the
numerical values of the original matrix (mumpar%A) on entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the host durirgptiie phase. If ICNTL(9) =
1, Ax = bis solved, otherwiseA”x = b is solved.

ICNTL(10) has default value 0 and is only accessed by the host duringaite phase. If NRHS
= 1, then ICNTL(10) corresponds to the maximum number ofstpiterative refinement. If
ICNTL(10) < 0, iterative refinement is not performed.

In the current version, if ICNTL(21)=1 (solution kept disuted) or NRHS> 1, then iterative
refinement is not performed and ICNTL(10) is treated as O.

ICNTL(11) has default value 0 and is only accessed by the host and orilygdihe solve phase. A
positive value will return statistics related to the linegstem solvedAx = bor ATx = b
depending on the value of ICNTL(9)): the infinite norm of thpuit matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respelti a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in thesoh in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). Se® &@sction2.3. Note that if
performance is critical, ICNTL(11) should be kept equal toRnally, note that, in the current
version, if NRHS> 1 or if ICNTL(21)=1 (solution vector kept distributed) themror analysis is
not performed and ICNTL(11) is treated as O.

ICNTL(12) is meaningful only on general symmetric matrices (S¥\R) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) ansyetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing elpnit is only accessed by the host
and only during the analysis phase. It defines the orderiagesty (seel7] for more details) and
is used, in conjunction with ICNTL(6), to add constraintsthe ordering algorithm. (ICNTL(7)
option). Possible values of ICNTL(12) are :

[ ]
0O ~NO Ok WN

e 0: automatic choice

1 : usual ordering (nothing done)

e 2: ordering on the compressed graph associated with théxmatr
e 3: constrained ordering, only available WAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(12), ICNTL(6), ICNTL{Alues are strongly related.
Therefore, as for ICNTL(6), if the matrix is in elemental fioat (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur optionNM.(19) # 0) is required, or the
matrix is initially distributed (ICNTL(18)~ 0) then ICNTL(12) is treated as one.

If MUMPSletects some incompatibility between control parametees it uses the following
rules to automatically reset the control parameters. IFit€INTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is né&MFthen ICNTL(12)
is internally treated as 2. Secondly ICNTL(12) has a higheoripy than ICNTL(6) and
ICNTL(8). Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6)
is automatically reset (treated as ICNTL(6)=7). Furthemmd ICNTL(12) = 3 then ICNTL(6) is
automatically setto 5 and ICNTL(8) is set to -2.
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On output from the analysis phase, INFOG(24) holds the vefuENTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of TCN) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by the host durin@rhgysis phase. |If
ICNTL(13) < 0, to be factored) if its size is larger than a machine-depsnainimum size.
Otherwise (ICNTL(13)> 0), ScaLAPACK will not be used and the root node will be trelate
sequentially. Processing the root sequentially can baibsdéien the user is interested in the inertia
of the matrix (see INFO(12) and INFOG(12)), or when the usants to detect null pivots (see
ICNTL(24)).

This parameter also controls splitting of the root frontatrix. If the number of working processors
is strictly larger than ICNTL(13) with ICNTL(13}0 (ScaLAPACK off), then splitting of the root
node is performed, in order to automatically recover pathefparallelism lost because the root
node was processed sequentially. Finally, setting ICNB)L(a& -1 will force splitting of the root
node in all cases (even sequentially), while values syratialler than -1 will be treated as 0.

Note that, although ICNTL(13) controls the efficiency of tfextorization and solve phases,
preprocessing work is performed during analysis and thisomust be set on entry to the analysis
phase.

ICNTL(14) isaccessed by the host both during the analysis and theifatton phases. It corresponds
to the percentage increase in the estimated working spaben\ignificant extra fill-in is caused
by numerical pivoting, increasing ICNTL(14) may help. Egtén special cases, the default value
is 20 (which corresponds to a 20 % increase).

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by the host duringrthlysis phase, if the
matrix format is assembled (ICNTL(5) = 0). ICNTL(18) definbe strategy for the distributed
input matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is theadif see Sectiod.5.

e 1: the user provides the structure of the matrix on the hostnatysis,MUMPSeturns a
mapping and the user should then provide the matrix digetbaccording to the mapping on
entry to the numerical factorization phase.

e 2: the user provides the structure of the matrix on the hosnatysis, and the distributed
matrix on all slave processors at factorization. Any disttion is allowed.

e 3: user directly provides the distributed matrix input bfithanalysis and factorization.

For options 1, 2, 3, see Sectidri7 for more details on the input/output parameterttdMP SFor
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the host durin@rhgysis phase. |If
ICNTL(19)=1, then the Schur complement matrix will be rekedl to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schilf be returned to the user on the
slave processors in the form of a 2D block cyclic distributeatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals ar 3, the user must set on entry to
the analysis phase, on the host node:

e the integer variable SIZESCHUR to the size of the Schur matrix,
e the integer array pointer LISTVARSCHUR to the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), thieger variables NPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the aialyphase (default
values will otherwise be provided). Furthermore, workgpabould be allocated by the user
before the factorization phase in order /diJMP$o store the Schur complement (see SCHUR,
SCHURMLOC, SCHURNLOC, and SCHURLLD in Section4.10.

Note that the partial factorization of the interior variadlcan then be exploited to perform a solve
phase (transposed matrix or not, see ICNTL(9)). Note thatitiht-hand side (RHS) provided on
input must still be of size N (or Nk NRHS in case of multiple right-hand sides) even if only the
N-SIZE_.SCHUR indices will be considered and if only N-SIZEZHUR indices of the solution
will be relevant to the user.
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Finally, since the Schur complement is a partial factoriabf the global matrix (with partial
ordering of the variables provided by the user), the follmyoptions oMUMP&re incompatible
with the Schur option: maximum transversal, scaling, tteearefinement, error analysis and
parallel analysis. If the ordering is given (ICNTL(7)=1)kththe following property should hold:
PERM.IN(LISTVAR _SCHUR(i)) = N-SIZESCHURHi, for i=1,SIZESCHUR.

ICNTL(20) has default value 0 and is only accessed by the host duringsdhee phase. If
ICNTL(20)=0, the right-hand side must be given in dense fortme structure component RHS. If
ICNTL(20)=1, then the right-hand side must be given in spéwsm using the structure components
IRHS_.SPARSE, RHSSPARSE, IRHSPTR and NZRHS. Values different from 0 and 1 are treated
as 0. (See Sectioh13.

ICNTL(21) has default value 0 and is only accessed by the host duringsdhee phase. If
ICNTL(21)=0, the solution vector will be assembled and etbin the structure component RHS,
that must have been allocated earlier by the user. If ICNT)%2, the solution vector is kept
distributed at the end of the solve phase, and will be availabn each slave processor in the
structure components ISQlbc and SOLloc. ISOL loc and SOLIoc must then have been allocated
by the user and must be of size at least INFO(23), where INB{@s been returned by MUMPS
at the end of the factorization phase. Values of ICNTL(2Hedént from O and 1 are currently
treated as 0.

Note that if the solution is kept distributed, error anadyand iterative refinement (controlled by
ICNTL(10) and ICNTL(11)) are not applied.

ICNTL(22) has default value 0 and controls the in-core/ out-of-cor@Q@pfacility. It must be set on
the host before the factorization phase. Possible valees ar

e 0: In core factorization and solution phases (default stedhgersion).

e 1: Out of core factorization and solve phases. The complateixof factors is written to disk
(see Sectiod.11).

ICNTL(23) has default value 0. It can be provided by the user at the hegjrof the factorization
phase and is only significant on the host. It corresponds émtaximum size of the working
memory in MegaBytes that MUMPS can allocate per working essor. (It covers all internal
integer and real (complex in the complex version) workspace

If ICNTL(23) is greater than 0 then MUMPS automatically cartgs the size of the internal
workarrays such that the storage for all MUMPS internal da¢gjual to ICNTL(23). The relaxation
ICNTL(14) is first applied to the internal integer workarréy and to communication and 1/0O
buffers; the remaining available space is given to the meaiil fnost critical) real/complex internal
workarray S holding the factors and the stack of contribbubitocks. A lower bound of ICNTL(23)
(if ICNTL(14) has not been modified since the analysis) iegiby INFOG(26).

If ICNTL(23) is left to its default value 0 then each procesadll allocate workspace based on
the estimates computed during the analysis (INFO(17) ifTC{L4) has not been modified since
analysis, or larger if ICNTL(14) was increased). Note thase estimates are accurate in the
sequential version diIUMP Sbut that they can be inaccurate in the parallel case, edpefor the
out-of-core version. Therefore, in parallel, we recommtmdse ICNTL(23) and provide a value
significantly larger than INFOG(26).

ICNTL(24) has default value 0 and controls the detection of “null praws”.  Null pivot rows
are modified to enable the solution phase to provide oneisnlamong the possible solutions of
the numerically deficient matrix. Note that the list of rovdices corresponding to null pivots is
returned on the host in PIVNULIST(1:INFOG(28)). The solution phase (JOB=3) can then be
used to either provide a “regular” solution (in the senseitha a possible solution of the complete
system when the right-hand-side belongs to the span of figenak matrix) or to compute the
associated vectors of the null-space basis (see ICNTL(P®gsible values of ICNTL(24) are:

e 0 Nothing done. A null pivot will result in error INFO(1)=-10

e 1 Null pivot row detection; CNTL(3) is used to compute theestrold to decide that a pivot
row is “null”. The parameter CNTL(5) then defines the fixattbat will be used to enable the
solution phase to provide a possible solution to the origigatem.
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Other values are treated as 0. Note that when ScalLAPACK iBeappn the root node (see
ICNTL(13)), then exact null pivots on the root will stop thacforization (INFO(1)=-10) while
tiny pivots on the root node will still be factored. SettifgNTL(13) to a non-zero value will help
with the correct detection of null pivots but degrade parfance.

ICNTL(25) has default value 0 and is only accessed by thedhastg the solution phase. It allows the
computation of a null space basis, which is meaningful onfya Zero-pivot detection option was
requested (ICNTL(243 0) during the factorization and if the matrix was found to lefident
(INFOG(28)> 0); Possible values of ICNTL(25) are:

e 0 A normal solution step is performed. If the matrix was fowimgular during factorization
then one possible solution is returned.

e ;with 1 < i < INFOG(28). The i-th vector of the null space basis is comgute
e -1. The complete null space basis is computed.
e Other values result in an error.

Note that when vectors from the null space are requestel deaitralized and distributed solutions
options can be used. In both cases space to store the nudl gpetors must be allocated by the
user and provided to MUMPS. If the solution is centralizedNITL(21)=0), then the null space
vectors are returned to the user in the array RHS, allocatelebuser on the host. If the solution
is distributed (ICNTL(21)=1), then the null space vectoms @turned in the array SQLOC. In
both cases, note that the number of columns of RHS or 8OC must be equal to the number of
vectors requested, so that NRHS is equal to:

e 1if1 <ICNTL(25) < INFOG(28);
e INFOG(28) if ICNTL(25)=-1.

Finally, note that iterative refinement, error analysig] #re option to solve the transpose system
(ICNTL(9)) are ignored when the solution step is used torreteectors from the null space
(ICNTL(25) # 0).

ICNTL(26) has default value 0 and is only accessed by the host duringdhgion phase. It
is only significant if combined with the Schur option (ICNTLS) # 0, see above). It can be
used to condense/reduce (ICNTL(26)=1) the right-hand sidthe Schur variables, or to expand
(ICNTL(26)=2) the Schur local solution on the complete siolu (see SectioR.5).

If ICNTL(26) # 0, then the user should provide workspace in the pointey ®EDRHS, as well
as a leading dimension LREDRHS (see Sectid().

If ICNTL(26)=1 then only a forward substitution is performed. The soluorresponding to the
‘internal” (non-Schur) variables is returned togetherhvithie reduced/condensed right-hand-side.
The reduced right-hand side is made available on the hosEDARHS.

If ICNTL(26)=2 then REDRHS is considered to be the solution correspontiinthe Schur
variables. The backward substitution is then performedi e given right-hand side to compute
the solution associated with the "internal” variables. @&lttat the solution corresponding to the
Schur variables is also made available in the main solutamtor/matrix.

Values different from 1 and 2 are treated as 0. Note that if ctmuBcomplement was computed,
ICNTL(26) = 1 or 2 results in an error. Finally, if ICNTL(26) £ or 2, then error analysis and
iterative refinements are disabled.

ICNTL(27) Experimental parameter subject to change in a future radeBBNTL(27) is only accessed
by the host during the solution phase. It controls the bioglsize for multiple right-hand sides. It
influences both the memory usage (see INFOG(30) and INFOQ§484l the solution time. Larger
values of ICNTL(27) lead to larger memory requirements ametter performance (except if the
larger memory requirements induce swapping effects). nUNCNTL(27) is critical, especially
when factors are on disk (ICNTL(22)=1 at the factorizatitage) because factors must be accessed
once for each block of right-hand sides. A negative valuécatds that an automatic setting
is performed by the solver: when ICNTL(27) is negative, thecksize is currently set to (i)
—2xICNTL(27) if the factors are on disk (ICNTL(22)=1); and ta)(i-ICNT L(27) otherwise
(in-core factors). The default value is -8 and zero is tréateone.
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ICNTL(28) This parameter is only accessed by the host process dugrantilysis phase and decides
whether a parallel or a sequential analysis will be perfatniéree values are possible:

e 0: automatic choice.

e 1: sequential analysis. In this case the ordering methaat isysl CNTL(7) and the ICNTL(29)
(see details below) parameter is meaningless.

e 2: parallel analysis. A parallel ordering and parallel spfitbfactorization will be performed
if either the PT-SCOTCH or ParMetis parallel ordering tqoisboth) are available, depending
on the value of ICNTL(29). In this case ICNTL(7) is meanirggie

Any other values will be treated as 0.

At this moment, the parallel analysis is not available foassembled matrices (i.e., ICNTL(5)=1),
in the case where a Schur complement is requested (i.e., LCI9J=1) or in the case where a
maximum transversal is requested on the input matrix (iG\;TL(6)=1-6).

ICNTL(29) is accessed by host process only during the analysis phdsenanif a parallel analysis
has to be performed, i.e., ICNTL(28)=2 (see details abaitalefines the parallel ordering tool to
be used to compute the fill-in reducing permutation. Thrégegare possible:

e 0: automatic choice.

e 1. PT-SCOTCH: the PT-SCOTCH parallel ordering tool will bged to reorder the input
matrix, if available.

e 2: ParMetis: the ParMetis parallel ordering tool will be dige reorder the input matrix, if
available.

Any other value will be treated as 0. Also, note that ICNTL(Z9meaningless if the sequential
analysis is chosen, i.e., ICNTL(28)=1.

ICNTL(30-40) are not used in the current version.

mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivotingt i$ only accessed by the host during
the factorization phase. It forms a trade-off between pu@sg sparsity and ensuring numerical
stability during the factorization. In general, a largetueaof CNTL(1) increases fill-in but leads
to a more accurate factorization. If CNTL(1) is nonzero, eucal pivoting will be performed. If
CNTL(1) is zero, no such pivoting will be performed and thérswtine will fail if a zero pivot
is encountered. If the matrix is diagonally dominant, thettisg CNTL(1) to zero will decrease
the factorization time while still providing a stable deqmwsition. On unsymmetric or general
symmetric matrices, CNTL(1) has default value 0.01. Formeatric positive definite matrices
numerical pivoting is suppressed and the default valueis\alues less than 0.0 are treated as 0.0.
In the unsymmetric case (respectively symmetric caseliegagireater than 1.0 (respectively 0.5)
are treated as 1.0 (respectively 0.5).

CNTL(2) is the stopping criterion for iterative refinememidais only accessed by the host during the
solve phase. LeBerr = max; m [10). Iterative refinement will stop when either the
required accuracy is reacheBdrr < CNTL(2) ) or the convergence rate is too slo®er does
not decrease by at least a factor of 5). Default valugdsvheree holds the machine precision and

depends on the arithmetic version.

CNTL(3) is only used combined with null pivot detection (ICN(24) = 1) and is not used otherwise.
CNTL(3) has default value.0 and is only accessed by the host during the numerical faettion
phase. LetA,..proc e the preprocessed matrix to be factored (see Equa)ionA pivot is
considered to be null if the infinite norm of its row/columnsmaller than a thresholthres.
Let ¢ be the machine precision afjd| be the infinite norm.

o IFCNTL(3) > 0 then thres = CNTL(3) X || Apreproc||
o IFCNTL(3) = 0.0 then thres=¢ x 107° X |[Apreprocl|
e IfCNTL(3) < 0 then thres = |CNTL(3)|
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CNTL(4) determines the threshold for static pivoting. Ibidly accessed by the host, and must be set
either before the factorization phase, or before the aitaplsase. It has default value -1.0. If
CNTL(4) < 0.0 static pivoting is not activated. If CNTL(4} 0.0 static pivoting is activated and
the magnitude of small pivots smaller than CNTL(4) will beé ®eCNTL(4). If CNTL(4) = 0.0
static pivoting is activated and the threshold value usefgisrmined automatically.

CNTL(5) is the fixation for null pivots and is effective onlyh&n null pivot detection is active
(ICNTL(24) = 1). CNTL(5) has default value 0.0 and is only accessed by tis Huring
the numerical factorization phase. Lét,,.,roc be the preprocessed matrix to be factored (see
Equationl). If CNTL(5) > O the detected null pivot is set to CNTL(5)|| Apreproc||- Furthermore,
the sign of the pivot is preserved in the modified diagonatyerif CNTL(5) < 0, then the pivot
row (except the pivot) is set to zero and the pivot is set ta tmeymmetric case, the pivot column
(except the pivot) is also set to 0.

CNTL(6-15) are not used in the current version.

6 Information parameters

The parameters described in this section are returnedBiIP&nd hold information that may be of
interest to the user. Some of the information is local to gaclcessor and some only on the host. If an
error is detected (see Sectidp the information may be incomplete.

6.1 Information local to each processor

The arrays mumppar¥RINFO and mumpspardNFO are local to each process.

mumpspar¥RINFO is a double precision array of dimension 20. It contains thiéoving local
information on the execution &1UMPS

RINFO(1) - after analysis: The estimated number of floapogit operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-pobimperations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-pbimperations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar?dNFO is an integer array of dimension 40. It contains the follayiacal information on
the execution oMUMPS

INFO(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Se@jioar
positive if a warning is returned.

INFO(2) holds additional information about the error or th@rning. If INFO(1)= -1, INFO(2) is the
processor number (in communicator mungas%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated size of the real/compigace needed on the processor to store the
factors in memory if the factorization is performed in-cGi@NTL(22)=0). If INFO(3) is negative,
then the absolute value correspondantilions of real/complex entries used to store the factor
matrices. If the user plans to perform an out-of-core fazétion (ICNTL(22)=1), then a rough
estimation of the size of the disk space in bytes of the fildttewr by the concerned processor
can be obtained by multiplying INFO(3) by 4, 8, 8, or 16 forgieprecision, double precision,
single complex, and double complex arithmetics, respelgtivi he effective value will be returned
in INFO(9) (see below), but only after the factorization.

INFO(4) - after analysis: Estimated integer space needeteoprocessor for factors.
INFO(5) - after analysis: Estimated maximum front size omphocessor.
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INFO(6) - after analysis: Number of nodes in the complete.tr&he same value is returned on all
processors.

INFO(7) - after analysis: Minimum estimated size of the maternal integer workarray IS to run the

numerical factorizatiohin-core |.

INFO(8) - after analysis: Minimum estimated size of the niaternal real/complex workarray S to run
the numerical factorizatio. If negative, then the absolute value correspondsittions
of real/complex entries needed in this workarray.

INFO(9) - after factorization: Size of the real/complex spaised on the processor to store the factor
matrices. If negative, then the absolute value corresptinnisllions of real/complex entries used
to store the factor matrices. In the case of an out-of-coeewion (ICNTL(22)=1), the disk space
in bytes of the files written by the concerned processor casbtaned by multiplying INFO(9) (or
its absolute value multiplied by 1 million) by 4, 8, 8, or 16 &ingle precision, double precision,
single complex, and double complex arithmetics, respelgtiv

INFO(10) - after factorization: Size of the integer spacedusn the processor to store the factor
matrices.

INFO(11) - after factorization: Order of the largest frdntaatrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pt¢ selected on the processor if SYM=0 or
number of negative pivots on the processor if SYM=1 or 2. INKL(13)=0 (the default), this
excludes pivots from the parallel root node treated by SE2A@K. (This means that the user
should set ICNTL(13)=1 or use a single processor in ordeetdlge exact number of off-diagonal
or negative pivots rather than a lower bound.) Note thatéonglex symmetric matrices (SYM=1
or 2), INFO(12) will be 0.

INFO(13) - after factorization: The number of postponedhétiation because of numerical issues.

INFO(14) - after factorization: Number of memory compresse

INFO(15) - after analysis: estimated size in Megabyteslafiaiking space to run the numerical phases
(factorisation/solve (ICNTL(22)=0 for the factorization).

INFO(16) - after factorization: total size (in millions ofytes) of all MUMPSnternal data allocated
during the numerical factorization.

INFO(17) - after analysis: estimated size in Megabyteslofiaiking space to run the numerical phases

(ICNTL(22)£0) with the default strategy.

INFO(18) - after factorization: local number of null pivatsulting from detected when ICNTL(24].
INFO(19) - after analysis: Estimated size of the main iraémteger workarray IS to run the numerical

factorizatio.

INFO(20) - after analysis: Estimated size of the main irdémeal/complex workarray S to run the
numerical factorizatio. If negative, then the absolute value correspondwsitbions
of real/complex entries needed in this workarray.

INFO(21) - after factorization: Effective space used inti@n real/complex workarray S. If negative,
then the absolute value correspondsnitlions of real/complex entries needed in this workarray.

INFO(22) - after factorization: Size in millions of bytes @hemory effectively used during
factorization.

INFO(23) - after factorization: total number of pivots elitated on the processor. In the case of a
distributed solution (see ICNTL(21)), this should be usgdhe user to allocate solution vectors
ISOL_loc and SOLIloc of appropriate dimensions (ISALOC of size INFO(23), SOLLOC of size
LSOL_LOC x NRHS where LSOLLOC > INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - after analysis: estimated number of entries atdies on the processor. If negative, then the
absolute value correspondsrtullions of entries in the factors. Note that in the unsymmetric case,
INFO(24)=INFO(3). In the symmetric case, however, INFQ(24NFO(3).
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INFO(25) - after factorization: effective number of engri@ factors on the processor. If negative, then
the absolute value correspondsnidlions of entries in the factors. Note that in the unsymmetric
case, INFO(25)=INFO(9). In the symmetric case, howeveFMR5) < INFO(9).

INFO(26) - after solution: effective size in Megabytes of abrking space to run the solution
phase. (The maximum and sum over all processors are retuespdctively in INFOG(30) and
INFOG(31)).

INFO(27) - INFO(40) are not used in the current version.

6.2 Information available on all processors
The arrays mumppar%RINFOG and mumppar%INFOG :

mumpspar¥RINFOG is a double precision array of dimension 20. It contains tiing global
information on the execution dIUMPS

RINFOG(1) - after analysis: The estimated number of floapogt operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of flogtipoint operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of flogtipoint operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysisnl@returned if ICNTL(11)# 0. See
description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumpspar%dNFOG is an integer array of dimension 40. It contains the follgyghobal information on
the execution oMUMPS

INFOG(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Set}ioor
positive if a warning is returned.

INFOG(2) holds additional information about the error & thiarning.

The difference between INFOG(1:2) and INFO(1:2) is that@G{1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returneti tie most negative INFO(1) value. For
example, if processap returns with INFO(1)=-13, and INFO(2)=10000, then all atheocessors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still IBFL)=-1 and INFO(2)p.

INFOG(3) - after analysis: Total (sum over all processostineated real/complex workspace to store
the factor matrices. If negative, then the absolute valueessponds tamillions of real/complex
entries used to store the factor matrices. If the user plapeitform an out-of-core factorization
(ICNTL(22)=1), then a rough estimate of the total disk spacéytes (for all processors) can
be obtained by multiplying INFOG(3) (or its absolute valueltiplied by 1 million) by 4, 8,

8, or 16 for single precision, double precision, single claxpand double complex arithmetics,
respectively. The effective is returned in INFOG(9) (selWg, but only after the factorization.

INFOG(4) - after analysis: Total (sum over all processosgt)neated integer workspace to store the
factor matrices

INFOG(5) - after analysis: Estimated maximum front sizeni@a tomplete tree.

INFOG(6) - after analysis: Number of nodes in the complege.tr

INFOG(7) - after analysis: the ordering method actuallydus&he returned value will depend on
the type of analysis performed, e.g. sequential or parédlet INFOG(32)). Please refer to

ICNTL(7) and ICNTL(29) for more details on the ordering medls available in sequential and
parallel analysis respectively.

INFOG(8) - after analysis: structural symmetry in perc&®t((: symmetric, O : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structurahsyetry was not computed which will be
the case if the input matrix is in elemental form.)
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INFOG(9) - after factorization: Total (sum over all procesy real/complex workspace to store
the factor matrices. If negative, then the absolute valueesponds to the size imillions of
real/complex entries used to store the factors. In case @fiof-core factorization (ICNTL(22)=1,
the total disk space in bytes of the files written by all preces can be obtained by multiplying
INFOG(9) (or its absolute value multiplied by 1 million) by 8, 8, or 16 for single precision,
double precision, single complex, and double complex iaugtiics, respectively.

INFOG(10) - after factorization: Total (sum over all prosess) integer workspace to store the factor
matrices.
INFOG(11) - after factorization: Order of largest frontahtmix.

INFOG(12) - after factorization: Total number of off-diag pivots if SYM=0 or total number of
negative pivots (real arithmetic) if SYM=1 or 2. If ICNTL(}30 (the default) this excludes pivots
from the parallel root node treated by ScaLAPACK. (This nesthiat the user should set ICNTL(13)
to a positive value, say 1, or use a single processor in oodgettthe exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that iIM&Y or 2, INFOG(12) will be 0 for
complex symmetric matrices.

INFOG(13) - after factorization: Total number of delayeggis. A large number (more that 10% of
the order of the matrix) indicates numerical problems. iBgstrelated to numerical preprocessing
(ICNTL(6-8-12)) might then be modified by the user.

INFOG(14) - after factorization: Total number of memory quesses.

INFOG(15) - after solution: Number of steps of iterative mefnent.

INFOG(16) - after analysis: Estimated size (in million oftéy) of all MUMP $ternal data for running
factorizatio (value on the most memory consuming processor).

INFOG(17) - after analysis: Estimated size (in millions gfés) of al MUMP $hternal data for running

factorization in core|(sum over all processors).

INFOG(18) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: value on the most memory consuming progesso

INFOG(19) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entrieshia factors. If negative the absolute
value corresponds taillions of entries in the factors. Note that in the unsymmetric case,
INFOG(20)=INFOG(3). In the symmetric case, however, INKQ@ < INFOG(3).

INFOG(21) - after factorization: Size in millions of byted memory effectively used during
factorization: value on the most memory consuming progesso

INFOG(22) - after factorization: Size in millions of byted memory effectively used during
factorization: sum over all processors.

INFOG(23) - After analysis: value of ICNTL(6) effectivelysad.
INFOG(24) - After analysis: value of ICNTL(12) effectivelysed.
INFOG(25) - After factorization : number of tiny pivots (nto@r of pivots modified by static pivoting)
INFOG(26-27) - after analysis: Estimated size (in milliaofsbytes) of allMUMPSnternal data for
running factorizatio ( ICNTL(22)+# 0) for a given value of ICNTL(14) and for the
default strategy.
e ——(26) : max over all processors
e ——(27) : sum over all processors

INFOG(28) - After factorization: number of null pivots enadered. See CNTL(3) for the definition of
a null pivot.

INFOG(29) - After factorization: effective number of ertsiin the factors (sum over all processors).
If negative, then the absolute value correspondsiitbons of entries in the factors. Note that in
the unsymmetric case, INFOG(29)=INFOG(9). In the symmatese, however, INFOG(29
INFOG(9).
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INFOG(30-31) - after solution: Size in millions of bytes oemory effectively used during solution
phase:

e ——(30) : max over all processors
e ——(31) : sum over all processors

INFOG(32) - after analysis: the type of analysis actuallpel¢see ICNTL(28)). INFOG(32) has value
1 if sequential analysis was performed, in which case INFQ@gturns the sequential ordering
option used, as defined by ICNTL(7). INFOG(32) has value aiffiel analysis was performed,
in which case INFOG(7) returns the parallel ordering usediefined by ICNTL(29).

INFOG(33) - INFOG(40) are not used in the current version.

7 Error diagnostics

MUMPSises the following mechanism to process errors that mayrataing the parallel execution of
the code. If, during a call tMUMPSan error occurs on a processor, this processor informbheabther
processors before they return from the call. In parts of tteavhere messages are sent asynchronously
(for example the factorization and solve phases), the gemeon which the error occurs sends a message
to the other processors with a specific error tag. On the bidued, if the error occurs in a subroutine that
does not use asynchronous communication, the procesqmgates the error to the other processors.

On successful completion, a callMiUMP$iill exit with the parameter mumppar%INFOG(1) set to
zero. A negative value for mumgsar%INFOG(1) indicates that an error has been detected @ofdhe
processors. For example, if processoeturns with INFO(1)= —8 and INFO(2)=1000, then processor
ran out of integer workspace during the factorization awrdsile of the workspace should be increased by
1000 at least. The other processors are informed aboutrtioisand return with INFO(13= -1 (i.e., an
error occurred on another processor) and INFO{Z)=., the error occurred on processdr Processors
that detected a local error, do not overwrite INFO(1), iomly processors that did not produce an error
will set INFO(1) to —1 and INFO(2) to the processor having st negative error code.

The behaviour is slightly different for INFOG(1) and INFQZ( in the previous example, all
processors would return with INFOG(3 -8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOGt{aye the following meaning:

—1 An error occurred on processor INFO(2).
—2 NZis out of range. INFO(2)=NZ.

-3 MUMPSvas called with an invalid value for JOB. This may happen foaraple if the analysis
(JOB=1) was not performed before the factorization (JOB=®) the factorization was not
performed before the solve (JOB=3), or the initializatitrage (JOB=-1) was performed a second
time on an instance not freed (JOB=-2). See description BfidGection3. This error also occurs
if JOB does not contain the same value on all processes onteritUMPS

—4 Error in user-provided permutation array PERNIin position INFO(2). This error occurs on the
host only.

-5 Problem of REAL workspace allocation of size INFO(2) durarlysis.
—6 Matrix is singular in structure.
—7 Problem of INTEGER workspace allocation of size INFO(2)idgranalysis.

—8 Main internal integer workarray IS too small for factoripet. This may happen, for example, if
numerical pivoting leads to significantly more fill-in tharasvpredicted by the analysis. The user
should increase the value of ICNTL(14) before recallingfd@torization (JOB=2).

—9 Main internal real/complex workarray S too small. If INFQ{2 positive, then the number of entries
that are missing in S at the moment when the error is raisedaitable in INFO(2). If INFO(2) is
negative, then its absolute value should be multiplied byilliam. If an error -9 occurs, the user
should increase the value of ICNTL(14) before calling thetdeization (JOB=2) again, except if
ICNTL(23) is provided, in which case ICNTL(23) should berieased.

—10 Numerically singular matrix.
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—11 Internal real/complex workarray S too small for solutionlede contact us. If INFO(2) is positive,
then the number of entries that are missing in S at the momkeenithe error is raised is available

in INFO(2).
—12 Internal real/complex workarray S too small for iteratieéimement. Please contact us.

—13 An error occurred in a Fortran ALLOCATE statement. The sizat tthe package requested is
available in INFO(2). If INFO(2) is negative, then the sibattithe package requested is obtained
by multiplying the absolute value of INFO(2) by 1 million.

—14 Internal integer workarray IS too small for solution. Se@etNFO(1)= -8.

—15 Integer workarray 1S too small for iterative refinement anarror analysis. See error INFO&)
-8.

—16 N is out of range. INFO(2)=N.

—17 The internal send buffer that was allocated dynamicallyMiyMP®n the processor is too small.
The user should increase the value of ICNTL(14) beforermgMUMP&gain.

—20 The internal reception buffer that was allocated dynarhida MUMP& too small. INFO(2) holds
the minimum size of the reception buffer required (in bytd$)e user should increase the value of
ICNTL(14) before callingulUMP&gain.

—21 Value of PAR=0 is not allowed because only one processoradgadle; RunningUMP$ host-
node mode (the host is not a slave processor itself) reqaileast two processors. The user should
either set PAR to 1 or increase the number of processors.

—22 A pointer array is provided by the user that is either

e not associated, or
e has insufficient size, or
e is associated and should not be associated (for example o0RH8n-host processors).

INFO(2) points to the incorrect pointer array in the tabléote

INFO(2) array
1 IRN or ELTPTR
2 JCN or ELTVAR
3 PERM.IN
4 AorA_ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR_SCHUR
9 SCHUR
10 RHS.SPARSE
11 IRHS_SPARSE
12 IRHS.PTR
13 ISOL_.LOC
14 SOLLOC
15 REDRHS

—23 MPI was not initialized by the user prior to a callMUMP8&vith JOB= —1.

—24 NELT is out of range. INFO(2)=NELT.

—25 A problem has occurred in the initialization of the BLACS.iFmay be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instea

—26 LRHS is out of range. INFO(2)=LRHS.

—27 NZ_RHS and IRHSPTR(NRHS+1) do not match. INFO(2) = IRHSTR(NRHS+1).
—28 IRHS_PTR(1) is not equal to 1. INFO(2) = IRHBTR(1).

—29 LSOL_LOC is smaller than INFO(23). INFO(2)=LSQLOC.

—30 SCHURLLD is out of range. INFO(2) = SCHURLD.
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—31 A 2D block cyclic Schur complement is required with the optidCNTL(19)=3, but the
user has provided a process grid that does not satisfy thetreont MBLOCK=NBLOCK.
INFO(2)=MBLOCK-NBLOCK.

—32 Incompatible values of NRHS and ICNTL(25). Either ICNTLj2bas set to -1 and NRHS is
different from INFOG(28); or ICNTL(25) was set ipl < i < INFOG(28) and NRHS is different
from 1. Value of NRHS is stored in INFO(2).

—33 ICNTL(26) was asked during solve phase but Schur complemes not computed during
factorization. INFO(2)=ICNTL(26).

—34 LREDRHS is out of range. INFO(2)=LREDRHS.

—35 Expansion phase was called (ICNTL(26) = 2) but reductionsph@CNTL(26)=1) was not called
before.

—36 Incompatible values of ICNTL(25) and INFOG(28). Value oNTL(25) is stored in INFO(2).
—38 Parallel analysis was set (i.e., ICNTL(28)=2) but PT-SC®IT& ParMetis were not provided.

—39 Incompatible values for ICNTL(28) and ICNTL(5) and/or ICN(IL9) and/or ICNTL(6). Parallel
analysis is not possible in the cases where the matrix issenasied and/or a Schur complement is
requested and/or a maximum transversal is requested onattix.m

—40 The matrix was indicated to be positive definite (SYM=1) bg tiser but a negative or null pivot
was encountered during the processing of the root by ScalCkPASYM=2 should be used.

—90 Error in out-of-core management. See the error messagaeeton output unit ICNTL(1) for more
information.

A positive value of INFO(1) is associated with a warning naggswhich will be output on unit
ICNTL(2) when ICNTL(4)> 2.

+1 Index (in IRN or JCN) out of range. Action taken by subroutis¢o ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. diletof the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed soluivas found to be zero.

+4 User data JCN has been modified (internally) by the solver.

+8 Warning return from the iterative refinement routine. Mdrart ICNTL(10) iterations are required.
+ Combinations of the above warnings will correspond to sungntihe constituent warnings.

8 Calling MUMPS from C

MUMP$s a Fortran 90 library, designed to be used from Fortran @erahan C. However a basic C
interface is provided that allows users to ddiIUMP@lirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose compongtch those in thelUMPStructure for
Fortran (Figurel). Thus the description of the parameters in Sectibasd5 applies. Figur@ shows the
C structurdSDCZ]JMUMPSSTRUCC. This structure is defined in the include fisglczlmumps _c.h
and there is one main routine per available arithmetic wighfollowing prototype:

void [sdcz]mumps_c([SDCZ]JMUMPS_STRUC_C * idptr);

An example of callingdUMP&om C for a complex assembled problem is given in Secti@@ The
following subsections discuss some technical issues thatashould be aware of before using the C
interface toMUMPS

In the following, we suppose that has been declared of typ@DCZ]MUMPSSTRUCC.
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typedef struct

{
int sym, par, job;
int comm _fortran; / * Fortran communicator * [
int icntl[40];
real cntl[15];
int n;
/* Assembled entry  x/
int nz; int xirn; int xjcn;  real/complex *a;
/ = Distributed entry */

int nz _loc; int +irn _loc; int +jcn _loc; real/complex *a_loc;

/ * Element entry */

int nelt; int * eltptr; int * eltvar; real/complex *a_elt;

/ = Ordering, if given by user */

int  *perm_in;

/ * Scaling (input only in this version) */

real/complex *colsca;  real/complex *rowsca;

/* RHS, solution, output data and statistics */

real/complex *rhs, =*redrhs, xrhs _sparse, =*sol _loc;

int *irhs _sparse, =*irhs _ptr, *isol _loc;

int nrhs, Irhs, Iredrhs, nz _rhs, Isol _loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int  *sym_perm, *uns_perm;

int  * mapping;

[/ Schur =x/ int size _schur; int xlistvar  _schur; real/complex *schur;
int nprow, npcol, mblock, nblock, schur Ald, schur  _mloc,schur _nloc;
[+ Version number  x/

char version _number[80];

char ooc _tmpdir[256], ooc _prefix[64]; char write _problem[256];
/ = Internal parameters */

int instance _number;

} [SDCZ]JMUMPSSTRUCC;

Figure 2: Definition of the C structuf©DCZ]MUMPSSTRUCC. real/complexis used for data that can
be either real or complexeal for data that stays redll¢at  or double ) in the complex version.

35



8.1 Array indices

Arrays in C start atindex 0 whereas they normally start atHoiriran. Therefore, care must be taken when
providing arrays to the C structure. For example, the roviceslof the matrixd, stored iNRN(1:NZ)

in the Fortran version should be storedirin[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One saluti@leal with this is to define macros:

#tdefine ICNTL( i ) icntl (i) - 1 ]
#define A( i) af (i) -1 ]
#define IRN( i ) irn[ (i) -1 ]

and then use the uppercase notation with parenthesisdéhstfelowercase/brackets). In that case, the
notationid.IRN(I)  , wherel isin{1, 2, ... NZ can be used instead iof.irn[l-1] ; this notation
then matches exactly with the description in Sectibasd5, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix infage Sectio.6), where some arrays
are used to index other arrays. For instance, the first valwgdtptr , eltptr[0] , pointing into
the list of variables of the first element mtvar , should be equal to 1. Effectively, using the
notation above, the list of variables for elemgnt= 1 starts at locatiorELTVAR(ELTPTR())) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1]

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a differerdtgla¢ and are not directly compatible.
For the C interfaceMUMPS3equires a Fortran communicator to be provideddicomm _fortran

If, however, this field is initialized to the special value87®54, the Fortran communicator
MPI_COMMVORLI3 used by default. If you need to cMUMP$®ased on a smaller number of processors
defined by a C subcommunicator, then you should convert yazor@municator to a Fortran one. This
has not been included MUMP8ecause itis dependent on @1 implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that F_INT is defined in[sdczlmumps _c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators the same integer representation

id.comm_fortran = (F_INT) comm_gc;

should work.
For some MPI implementations, check if id.comm _fortran =
MPIR_FromPointer(comm _¢) can be used.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlleddiyTL(1:4) /icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichresponds tstdout . For a more
general usage with specific file names from C, passing a C fildleais not currently possible. One
solution would be to use a Fortran subroutine along the liiélse model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT

CHARACTER *) NAME

OPEN(UNIT, file=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile  _( &mumps_par.ICNTL(1), name, name _length _byval)
(or slightly different depending on the C-Fortran callimeentions); something similar could be done
to close the file.
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8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the commpiked to compiléMUMP$s required at the
link stage. One way to provide it is to perform the link phasthhe Fortran compiler (instead of the C
compiler orld ).

8.5 Integer, real and complex datatypes in C and Fortran

We assume that thiet , float anddouble types are compatible with the FortrtNTEGER REAL
andDOUBLE PRECISIONlatatypes. If this were not the case, the fllgsczlmumps _prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define tikemplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortr&©MPLEXndDOUBLE COMPLE)pes:

typedef struct {float r,i; }+ mumpscomplex; for simple precisiondmumps), and
typedef struct {double r,i; } mumpsdouble _complex; for double precision
(zmumps).

Types for complex data from the user program should be cabipatith those above.

8.6 Sequential version
The C interface ttMUMP$ compatible with the sequential version; see Se@ién

9 Scilab and MATLAB interfaces

The main callable functions are

id = initmumps;
id = dmumps(id [,mat] );
id = zmumps(id [[mat] );

We have designed these interfaces such that their usagsiisite as possible to the existing C and
Fortran interfaces to MUMPS, and where only the parametdeded to the sequential code are used.
(Note that out-of-core functionalities allowing to corittbe directory and name of temporary files, are,
however, not available.) The main differences and chariatits are:

e The existence of a functionitmumps (usageid=initmumps ) that builds an initial structure
id inwhichid.JOB issetto-1andd.SYM is setto O (unsymmetric solver by default).

e Only the double precision and double complex versions of MR8Vare interfaced, since they
correspond to the arithmetics used in MATLAB/Scilab.

e the sparse matrid is passed to the interface functiashmumpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, ... are thus iexglnt).

e the right-hand side vector or matrix, possibly sparse, &sed to the interface functioasnumps
and/orzmumpsin the argumentd.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, ... are thus irrelevant).

e The Schur complement matrix, if required, is allocated imitthe interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parametdZESSCHUR and ICNTL(19) need
not be set by the user; they are set automatically dependirigecavailability and size of the list of
Schur variablesd.VAR _SCHUR

e We have chosen to use a new varialleSOL to store the solution, instead of overwriting
id.RHS .

Please refer to the repofi(] for a more detailed description of these interfaces. Rlaso refer to the
README file in directories MATLAB or Scilab of the main MUMPSdtribution for more information
on installation. For example, one important thing to notéhet at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the céeddIUMP$ackage. This can be done in
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the makefile for the MATLAB interface (filenake.inc ) and in the builder for the Scilab interface (file
builder.sce ).

Finally, note that examples of usage of the MATLAB and theleécinterfaces are provided in
directoriesMATLABand Scilab/examples  , respectively. In the following, we describe the input
and output parameters of the functigizlmumps , that are relevant in the context of this interface to the
sequential version of MUMPS.

Input Parameters

e mat : sparse matrix which has to be provided as the second arguwheimumps if id.JOB is
strictly larger than O.

e id.SYM : controls the matrix type (symmetric positive definite, sgyatric indefinite or
unsymmetric) and it has do be initialized by the user befbeeinitialization phase oMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps

e id.JOB : defines the action that will be realized MUMPSinitialize, analyze and/or factorize
and/or solve and releaddUMP $hternal C/Fortran data. It has to be set by the user beforealh
to MUMP $except after a call to initmumps, which sets its value to -1)

e id.ICNTL and id.CNTL : define control parameters that can be set after the iziéadin call
(id.JOB = -1). See Section “Control parameters” for moreaitet If the user does not modify
an entry in id.ICNTL therMUMPSises the default parameter. For example, if the user wants to
use the AMD ordering, he/she should set id.ICNTL(7) = 0. Nzt the following parameters
are inhibited because they are automatically set withinrtegface: id.ICNTL(19) which controls
the Schur complement option and id.ICNTL(20) which corgrible format of the right-hand side.
Note that parameters id.ICNTL(1:4) may not work properlpeleding on your compiler and your
environment. In case of problem, we recommand to swith ipgraff by setting id.ICNL(1:4)=-1.

e id.PERM_IN : corresponds to the given ordering option (see Sectionitiapd output parameters”
for more details). Note that this permutation is only acedssthe parameter id.ICNTL(7) is set to
1.

e id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

e id.RHS : defines the right-hand side. The parameter id.ICNTL(2[@}ed to its format (sparse or
dense) is automatically set within the interface. Note iti&HS is not modified (as iIMUMPS
the solution is returned in id.SOL.

e id.VAR_SCHUR : corresponds to the list of variables that appear in the Sabmplement matrix
(see Section “Input and output parameters” for more d@tails

e id.REDRHS (input parameter only if id. VARSCHUR was provided during the factorization and
if ICNTL(26)=2 on entry to the solve phase): partial solation the variables corresponding
to the Schur complement. It is provided by the user and ndymasults from both the Schur
complement and the reduced right-hand side that were edibyMUMP$1 a previous call. When
ICNTL(26)=2,MUMP&ses this information to build the solution id.SOL on the ptete problem.
See Section “Schur complement” for more details.

Output Parameters

e id.SCHUR :ifid.VAR _SCHUR is provided of size SIZECHUR, then id.SCHUR corresponds to
a dense array of size (SIZECHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more detailske Uiber does not have to initialize it.

e id.REDRHS (output parameter only if ICNTL(26)=1 and id.VARCHUR was defined): Reduced
right-hand side (or condensed right-hand side on the Ve@sassociated to the Schur complement).
It is computed byMUMPSIuring the solve stage if ICNTL(26)=1. It can then be usedsioet
MUMP Stogether with the Schur complement, to build a solution lea interface. See Section
“Schur complement” for more details.
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e id.INFOG and id.RINFOG : information parameters (see Section “Information patensg ).

e id.SYM_PERM : corresponds to a symmetric permutation of the variableg @iscussion
regarding ICNTL(7) in Section “Control parameters” ). Tpisrmutation is computed during the
analysis and is followed by the numerical factorizationeptavhen numerical pivoting occurs.

e id.UNS_PERM : column permutation (if any) on exit from the analysis phaséMUMP$see
discussion regarding ICNTL(6) in Section “Control paraenst).

e id.SOL : dense vector or matrix containing the solution aff®dMPSolution phase.

Internal Parameters

e id.INST: (MUMP $eserved componentlUMP $ternal parameter.
e id.TYPE: MUMPS%eserved component) defines the arithmetic (complex orldquriecision).

10 Examples of use of MUMPS

10.1 An assembled problem

An example program illustrating a possible use MUMPSon assembledOUBLE PRECISION
problems is given Figur8. Two files must be included in the progranmpif.h  for MPI and
mumpsstruc.h  for MUMPSThe filemumpsroot.h  must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performedlire user program via the
calls toMPI_INIT andMPI_FINALIZE .

The MUMP®ackage is initialized by callinylUMPSvith JOB= —1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and thetism is computed in RHS with a
call on all processors tMUMPSvith JOB=6. Finally, a call tdAMUMPSvith JOB= -2 is performed to
deallocate the data structures used by the instance of thagea.

Thus for the assembledx 5 matrix and right-hand side

2 3 4 20
3 -3 6 24
-1 1 2 , 9

2 6

~
—
—
w

we could have as input
5 N

[EEY
N
Z
N

3.0

-3.0

2.0

1.0

3.0

2.0

4.0

2.0

6.0

-1.0

4.0

3310 A
20.0

24.0

9.0

6.0

13.0 ‘RHS

and we obtain the solution RHS(i)) =i,i=1,...,5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE 'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, |
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define problem on the host (processor 0)

IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%IRN(l) ,I=1, id%NZ )
READ(5, *) ( id%JCN(I) ,I=1, id%NZ )
READ(5, *) ( id%A(l),I=1, id%NZ )
READ(5, *) ( id%RHS(l) ,I=1, id%N )

END IF
Call package for solution
id%JOB = 6

CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(I),1=1,id%N)
END IF
Deallocate user data
IF ( id%MYID .eq. O )THEN
DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 3: Example program usidgUMP®n an assembledOUBLE PRECISIONyroblem
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10.2 An elemental problem

An example of a driver to uslUMP $or elementDOUBLE PRECISIONyroblems is given in Figuré.
The calling sequence is similar to that for the assembletleno in Sectionl0.1but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR,RLT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matidbeays have a symmetric structure. For
the two-element matrix and right-hand side

12
1 -1 2 3 3 2 -1 3 7
2(211), 4<1 2—1), 23
3 1 1 1 5 3 2 1 6
22
we could have as input
5
2
6
18
147
123345
-1.0 20 1.0 20 1.0 1.0 3.0 1.0 1.0 20 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i)) =i,i=1,...,5.

10.3 An example of calling MUMPS from C

An example of a driver to usglUMP&om C is given in Figure.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NELT
READ(5, *) LELTVAR
READ(5, *) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%ELTPTR(l) ,I=1, id%NELT+1 )
READ(5, *) ( id%ELTVAR() ,I=1, LELTVAR )
READ(5, *) ( id%A_ELT(l),I=1, NA_ELT )
READ(5, *) ( id%RHS(l) ,I=1, id%N )
END IF
Specify element entry
id%ICNTL(5) = 1
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(I),1=1,id%N)
Deallocate user data
DEALLOCATE( Id%ELTPTR )
DEALLOCATE( Id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 4: Example program usidguUMP®n an elementdDOUBLE PRECISIONyroblem.
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/ = Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]'T
* Solution is [1 2]'T */

#include <stdio.h>

#include "mpi.h"

#include "dmumps_c.h"

#define JOB_INIT -1

#define JOB_END -2

#define USE_COMM_WORLD -987654

int main(int argc, char * argv) {
DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jen[] = {1,2};
double a[2];

double rhs[2];

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
[+ Define A and rhs  */

rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

/ * Initialize a MUMPS instance. Use MPI_COMM_WORLD. */
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U SE_COMM_WORLD;
dmumps_c(&id);
/ = Define the problem on the host */
if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

#define ICNTL(I) icntl[(1)-1] / * macro s.t. indices match documentation */
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN TL(4)=0;
[+ Call the MUMPS package. =/

id.job=6;

dmumps_c(&id);
id.job=JOB_END; dmumps_c(&id); / * Terminate instance */
if (myid == 0) {
printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}

return O;

Figure 5: Example program usidguUMP®&om C on an assembled problem.
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11 Notes on MUMPS distribution

This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999) by CERFACS, ENSEEIHT -IRIT and RAL.
Since this first public domain version in 1999, the developm ents are
supported by the following institutions: CERFACS, CNRS, IN PT(ENSEEIHT)-

IRIT, and INRIA.

Current development team includes Patrick Amestoy, Alfred o Bulttari,
Abdou Guermouche, Jean-Yves L’Excellent, Bora Ucar.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages:
http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr /IMUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can
include this complete notice. You can acknowledge (using
references [1] and [2]) the contribution of this package

in any scientific publication dependent upon the use of the
package. You shall use reasonable endeavours to notify

the authors of the package of this publication.

[1] P. R. Amestoy, |. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic
scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,

Vol 23, No 1, pp 15-41 (2001).

[2] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet, Hybrid scheduling for the parallel solution of li near
systems. Parallel Computing Vol 32 (2), pp 136-156 (2006).
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