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1 Introduction

PARMETIS is an MPI-based parallel library that implements a variety of algorithms for partitioning and repartitioning
unstructured graphs and for computing fill-reducing orderings of sparse matrices.PARMETIS is particularly suited for
parallel numerical simulations involving large unstructured meshes. In this type of computation,PARMETIS dramati-
cally reduces the time spent in communication by computing mesh decompositions such that the numbers of interface
elements are minimized.

The algorithms inPARMETIS are based on the multilevel partitioning and fill-reducing ordering algorithms that are
implemented in the widely-used serial packageMETIS [5]. However,PARMETIS extends the functionality provided by
METIS and includes routines that are especially suited for parallel computations and large-scale numerical simulations.
In particular,PARMETIS provides the following functionality:

• Partition unstructured graphs and meshes.

• Repartition graphs that correspond to adaptively refined meshes.

• Partition graphs for multi-phase and multi-physics simulations.

• Improve the quality of existing partitionings.

• Compute fill-reducing orderings for sparse direct factorization.

• Construct the dual graphs of meshes

The rest of this manual is organized as follows. Section 2 briefly describes the differences between major versions
of PARMETIS. Section 3 describes the various algorithms that are implemented inPARMETIS. Section 4 describes the
format of the basic parameters that need to be supplied to theroutines. Section 5 provides a detailed description
of the calling sequences for the major routines inPARMETIS. Finally, Section 7 describes software and hardware
requirements and provides contact information.

2 Changes Across Key Releases

2.1 Changes between 3.2 and 3.1
The major change in version 3.2 is its better support for computing fill-reducing orderings of sparse matrices. Specifi-
cally, version 3.2 contains the following enhancements/additions:

• A new parallel separator refinement algorithm that leads to smaller separators and less fill-in.

• Parallel orderings can now be computed on non power-of-two processors.

• It provides support for computing multiple separators at each level (both during the parallel and the serial
phases). The smallest separator among these multiple runs is selected.

• There is a new API routine,ParMETIS V32 NodeND that exposes additional parameters to the user in order
to better control various aspects of the algorithm. The old API routine (ParMETIS V3 NodeND) is still valid
and is mapped to the new ordering routine.

The end results of these enhancements is that the quality of the orderings computed byPARMETIS are now compa-
rable to those computed byMETIS’ nested dissection routines. In addition, version 3.2 contains a number of bug-fixes
and documentation corrections. Note that changes in the documentation are marked using change-bars.

3



Version 1.0 Version 2.0 Version 3.0
PARKMETIS ParMETISPartKway ParMETISV3 PartKway
PARGKMETIS ParMETISPartGeomKway ParMETISV3 PartGeomKway
PARGMETIS ParMETISPartGeom ParMETISV3 PartGeom
PARGRMETIS Not available Not available
PARRMETIS ParMETISRefineKway ParMETISV3 RefineKway
PARUAMETIS ParMETISRepartLDiffusion
PARDAMETIS ParMETISRepartGDiffusion
Not available ParMETISRepartRemap

ParMETISV3 AdaptiveRepart

Not available ParMETISRepartMLRemap
PAROMETIS ParMETISNodeND ParMETISV3 NodeND
Not available Not available ParMETISV3 PartMeshKway
Not available Not available ParMETISV3 Mesh2Dual

Table 1: The relationships between the names of the routines in the different versions of PARMETIS.

2.2 Changes between 3.0/3.1 and 2.0
Version 3.x contains a number of changes over the previous major release (version 2.x). These changes include the
following:

• The names and calling sequence of all the routines have changed due to expanded functionality that has been
provided in this release. Table 1 shows how the names of the various routines map from version to version. Note
that Version 3.0 is fully backwards compatible with all previous versions ofPARMETIS. That is, the old API
calls have been mapped to the new routines. However, the expanded functionality provided with this release is
only available by using the new calling sequences.

• The four adaptive repartitioning routines:ParMETIS RepartLDiffusion, ParMETIS RepartGDiffusion,
ParMETIS RepartRemap, andParMETIS RepartMLRemap have been replaced by a (single) implementa-
tion of a unified repartitioning algorithm [15],ParMETIS V3 AdaptiveRepart, that combines the best features
of the previous routines.

• Multiple vertex weights/balance constraints are supported for most of the routines. This allowsPARMETIS to be
used to partition graphs for multi-phase and multi-physicssimulations.

• In order to optimize partitionings for specific heterogeneous computing architectures, it is now possible to
specify the target sub-domain weights for each of the sub-domains and for each balance constraint. This feature,
for example, allows the user to compute a partitioning in which one of the sub-domains is twice the size of all
of the others.

• The number of sub-domains has been de-coupled from the number of processors in both the static and the
adaptive partitioning schemes. Hence, it is now possible touse the parallel partitioning and repartitioning
algorithms to compute ak-way partitioning independent of the number of processors that are used. Note that
Version 2.0 provided this functionality for the static partitioning schemes only.

• Routines are provided for both directly partitioning a finite element mesh, and for constructing the dual graph
of a mesh in parallel. In version 3.1 these routines have beenextended to support mixed element meshes.

3 Algorithms Used in P ARMETIS

PARMETIS provides a variety of routines that can be used to compute different types of partitionings and repartitionings
as well as fill-reducing orderings. Figure 1 provides an overview of the functionality provided byPARMETIS as well
as a guide to its use.
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Figure 1: A brief overview of the functionality provided by PARMETIS. The shaded boxes correspond to the actual routines in

PARMETIS that implement each particular operation.

3.1 Unstructured Graph Partitioning
ParMETIS V3 PartKway is the routine inPARMETIS that is used to partition unstructured graphs. This routinetakes
a graph and computes ak-way partitioning (wherek is equal to the number of sub-domains desired) while attempting
to minimize the number of edges that are cut by the partitioning (i.e., theedge-cut). ParMETIS V3 PartKway makes
no assumptions on how the graph is initially distributed among the processors. It can effectively partition a graph that
is randomly distributed as well as a graph that is well distributed1. If the graph is initially well distributed among the
processors,ParMETIS V3 PartKway will take less time to run. However, the quality of the computed partitionings
does not depend on the initial distribution.

The parallel graph partitioning algorithm used inParMETIS V3 PartKway is based on the serial multilevelk-
way partitioning algorithm described in [6, 7] and parallelized in [4, 14]. This algorithm has been shown to quickly
produce partitionings that are of very high quality. It consists of three phases: graph coarsening, initial partitioning,
and uncoarsening/refinement. In the graph coarsening phase, a series of graphs is constructed by collapsing together
adjacent vertices of the input graph in order to form a related coarser graph. Computation of the initial partitioning
is performed on the coarsest (and hence smallest) of these graphs, and so is very fast. Finally, partition refinement is
performed on each level graph, from the coarsest to the finest(i.e., original graph) using a KL/FM-type refinement
algorithm [2, 9]. Figure 2 illustrates the multilevel graphpartitioning paradigm.

PARMETIS provides theParMETIS V3 PartGeomKway routine for computing partitionings for graphs derived
from finite element meshes in which the vertices have coordinates associated with them. Given a graph that is dis-
tributed among the processors and the coordinates of the verticesParMETIS V3 PartGeomKway quickly computes

1The reader should note the difference between the termsgraph distributionandgraph partition. A partitioning is a mapping of the vertices to
the processors that results in a distribution. In other words, a partitioning specifies a distribution. In order to partition a graph in parallel, an initial
distribution of the nodes and edges of the graph among the processors is required. For example, consider a graph that corresponds to the dual of a
finite-element mesh. This graph could initially be partitioned simply by mapping groups ofn/p consecutively numbered elements to each processor
wheren is the number of elements andp is the number of processors. Of course, this naive approach isnot likely to result in a very good distribution
because elements that belong to a number of different regions of the mesh may get mapped to the same processor. (That is, each processor may get
a number of small sub-domains as opposed to a single contiguous sub-domain). Hence, you would want to compute a new high-quality partitioning
for the graph and then redistribute the mesh accordingly. Note that it may also be the case that the initial graph is well distributed, as when meshes
are adaptively refined and repartitioned.
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projected to the larger graphs. G0 is the input graph, which is the finest graph. Gi+1 is the next level coarser graph ofGi. G4 is the coarsest graph.

an initial partitioning using a space-filling curve method,redistributes the graph according to this partitioning, and
then callsParMETIS V3 PartKway to compute the final high-quality partitioning. Our experiments have shown that
ParMETIS V3 PartGeomKway is often two times faster thanParMETIS V3 PartKway, and achieves identical par-
tition quality. Note that depending on how the graph is constructed from the underlying mesh, the coordinates can
correspond to either the actual node coordinates of the mesh(nodal graphs) or the coordinates of the coordinates of
the element centers (dual graphs).

PARMETIS also provides theParMETIS V3 PartGeom function for partitioning unstructured graphs when coordi-
nates for the vertices are available.ParMETIS V3 PartGeom computes a partitioning based only on the space-filling
curve method. Therefore, it is extremely fast (often 5 to 10 times faster thanParMETIS V3 PartGeomKway), but it
computes poor quality partitionings (it may cut 2 to 10 timesmore edges thanParMETIS V3 PartGeomKway). This
routine can be useful for certain computations in which the use of space-filling curves is the appropriate partitioning
technique (e.g.,n-body computations).

3.2 Partitioning Meshes Directly
PARMETIS also provides routines that support the computation of partitionings and repartitionings givenmeshes(and
not graphs) as inputs. In particular,ParMETIS V3 PartMeshKway take a mesh as input and computes a partitioning
of the mesh elements. Internally,ParMETIS V3 PartMeshKway uses a mesh-to-graph routine and then calls the
same core partitioning routine that is used byParMETIS V3 PartKway.

PARMETIS provides no such routines for computing adaptive repartitionings directly from meshes. However, it
does provide the routineParMETIS V3 Mesh2Dual for constructing a dual graph given a mesh, quickly and in
parallel. Since the construction of the dual graph is in parallel, it can be used to construct the input graph for
ParMETIS V3 AdaptiveRepart.

3.3 Partitioning Adaptively Refined Meshes
For large-scale scientific simulations, the computationalrequirements of techniques relying on globally refined meshes
become very high, especially as the complexity and size of the problems increase. By locally refining and de-refining
the mesh either to capture flow-field phenomena of interest [1] or to account for variations in errors [11], adaptive
methods make standard computational methods more cost effective. The efficient execution of such adaptive scientific
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simulations on parallel computers requires a periodic repartitioning of the underlying computational mesh. These
repartitionings should minimize both the inter-processorcommunications incurred in the iterative mesh-based compu-
tation and the data redistribution costs required to balance the load. Hence, adaptive repartitioning is a multi-objective
optimization problem.PARMETIS provides the routineParMETIS V3 AdaptiveRepart for repartitioning such adap-
tively refined meshes. This routine assumes that the mesh is well distributed among the processors, but that (due to
mesh refinement and de-refinement) this distribution is poorly load balanced.

Repartitioning algorithms fall into two general categories. The first category balances the computation by incre-
mentally diffusing load from those sub-domains that have more work to adjacent sub-domains that have less work.
These schemes are referred to asdiffusive schemes. The second category balances the load by computing an entirely
new partitioning, and then intelligently mapping the sub-domains of the new partitioning to the processors such that
the redistribution cost is minimized. These schemes are generally referred to asremapping schemes. Remapping
schemes typically lead to repartitionings that have smaller edge-cuts, while diffusive schemes lead to repartitionings
that incur smaller redistribution costs. However, since these results can vary significantly among different types of
applications, it can be difficult to select the best repartitioning scheme for the job.

ParMETIS V3 AdaptiveRepart is a parallel implementation of the Unified Repartitioning Algorithm [15] for
adaptive repartitioning that combines the best characteristics of remapping and diffusion-based repartitioning schemes.
A key parameter used by this algorithm is theITR Factor. This parameter describes the ratio between the time
required for performing the inter-processor communications incurred during parallel processing compared to the time
to perform the data redistribution associated with balancing the load. As such, it allows us to compute a single metric
that describes the quality of the repartitioning, even though adaptive repartitioning is a multi-objective optimization
problem.

ParMETIS V3 AdaptiveRepart is based on the multilevel partitioning algorithm, and so, is in nature similar
to the the algorithm implemented inParMETIS V3 PartKway. However, this routine uses a technique known as
local coarsening. Here, only vertices that have been distributed onto the same processor are coarsened together. On
the coarsest graph, an initial partitioning need not be computed, as one can either be derived from the initial graph
distribution (in the case when sub-domains are coupled to processors), or else one needs to be supplied as an input to
the routine (in the case when sub-domains are de-coupled from processors). However, this partitioning does need to
be balanced. The balancing phase is performed on the coarsest graph twice by alternative methods. That is, optimized
variants of remapping and diffusion algorithms [16] are both used to compute new partitionings. A quality metric
for each of these partitionings is then computed (using the ITR Factor) and the partitioning with the highest quality
is selected. This technique tends to give very good points from which to start multilevel refinement, regardless of
the type of repartitioning problem or the value of the ITR Factor. Note that the fact that the algorithm computes
two initial partitionings does not impact its scalability as long as the size of the coarsest graph is suitably small [8].
Finally, multilevel refinement is performed on the balancedpartitioning in order to further improve its quality. Since
ParMETIS V3 AdaptiveRepart starts from a graph that is already well distributed, it is extremely fast.

Appropriate values to pass for the ITR Factor parameter can easily be determined depending on the times required
to perform (i) all inter-processor communications that have occurred since the last repartitioning, and (ii) the data
redistribution associated with the last repartitioning/load balancing phase. Simply divide the first time by the second.
The result is the correct ITR Factor. In case these times cannot be ascertained (e.g., for the first repartitioning/load
balancing phase), our experiments have shown that values between 100 and 1000 work well for a variety of situations.

ParMETIS V3 AdaptiveRepart can be used to load balance the mesh either before or after mesh adaptation. In
the latter case, each processor first locally adapts its mesh, leading to different processors having different numbersof
elements.ParMETIS V3 AdaptiveRepart can then compute a partitioning in which the load is balanced. However,
load balancing can also be done before adaptation if the degree of refinement for each element can be estimateda
priori . That is, if we know ahead of time into how many new elements each old element will subdivide, we can use
these estimations as the weights of the vertices for the graph that corresponds to the dual of the mesh. In this case,
the mesh can be redistributed before adaption takes place. This technique can significantly reduce data redistribution
times [10].
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(a) (b)

Figure 3: A computational mesh for a particle-in-cells simulation (a) and a computational mesh for a contact-impact simulation (b). The particle-in-cells mesh

is partitioned so that both the number of mesh elements and the number of particles are balanced across the sub-domains. Two partitionings are shown for the

contact-impact mesh. The dashed partitioning balances only the number of mesh elements. The solid partitioning balances both the number of mesh elements and

the number of surface (lightly shaded) elements across the sub-domains.

3.4 Partition Refinement
ParMETIS V3 RefineKway is the routine provided byPARMETIS to improve the quality of an existing partitioning.
Once a graph is partitioned (and has been redistributed accordingly), ParMETIS V3 RefineKway can be called to
compute a new partitioning that further improves the quality. ParMETIS V3 RefineKway can be used to improve
the quality of partitionings that are produced by other partitioning algorithms (such as the technique discussed in
Section 3.1 that is used inParMETIS V3 PartGeom). ParMETIS V3 RefineKway can also be used repeatedly to
further improve the quality of a partitioning. However, each successive call toParMETIS V3 RefineKway will tend
to produce smaller improvements in quality.

3.5 Partitioning for Multi-phase and Multi-physics Computations
The traditional graph partitioning problem formulation islimited in the types of applications that it can effectively
model because it specifies that only a single quantity be loadbalanced. Many important types of multi-phase and multi-
physics computations require that multiple quantities be load balanced simultaneously. This is because synchronization
steps exist between the different phases of the computations, and so, each phase must be individually load balanced.
That is, it is not sufficient to simply sum up the relative times required for each phase and to compute a partitioning
based on this sum. Doing so may lead to some processors havingtoo much work during one phase of the computation
(and so, these may still be working after other processors are idle), and not enough work during another. Instead, it is
critical that every processor have an equal amount of work from each phase of the computation.

Two examples are particle-in-cells [17] and contact-impact simulations [3]. Figure 3 illustrates the characteristics
of partitionings that are needed for these simulations. Figure 3(a) shows a mesh for a particles-in-cells computation.
Assuming that a synchronization separates the mesh-based computation from the particle computation, a partitioning
is required that balances both the number of mesh elements and the number of particles across the sub-domains. Fig-
ure 3(b) shows a mesh for a contact-impact simulation. During the contact detection phase, computation is performed
only on the surface (i.e., lightly shaded) elements, while during the impact phase, computation is performed on all of
the elements. Therefore, in order to ensure that both phasesare load balanced, a partitioning must balance both the
total number of mesh elements and the number of surface elements across the sub-domains. The solid partitioning in
Figure 3(b) does this. The dashed partitioning is similar towhat a traditional graph partitioner might compute. This
partitioning balances only the total number of mesh elements. The surface elements are imbalanced by over 50%.

A new formulation of the graph partitioning problem is presented in [6] that is able to model the problem of
balancing multiple computational phases simultaneously,while also minimizing the inter-processor communications.
In this formulation, a weight vector of sizem is assigned to each vertex of the graph. Themulti-constraint graph
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Figure 4: A dual graph with vertex weight vectors of size two is constructed from the particle-in-cells mesh from Figure 3. A multi-constraint partitioning has

been computed for this graph, and this partitioning has been projected back to the mesh.

partitioning problemthen is to compute a partitioning such that the edge-cut is minimized and that every sub-
domain has approximately the same amount of each of the vertex weights. The routinesParMETIS V3 PartKway,
ParMETIS V3 PartGeomKway, ParMETIS V3 RefineKway, andParMETIS V3 AdaptiveRepart are all able to
compute partitionings that satisfy multiple balance constraints.

Figure 4 gives the dual graph for the particles-in-cells mesh shown in Figure 3. Each vertex has two weights here.
The first represents the work associated with the mesh-basedcomputation for the corresponding element. (These are all
ones because we assume in this case that all of the elements have the same amount of mesh-based work associated with
them.) The second weight represents the work associated with the particle-based computation. This value is estimated
by the number of particles that fall within each element. A multi-constraint partitioning is shown that balances both of
these weights.

3.6 Partitioning for Heterogeneous Computing Architectures
Complex, heterogeneous computing platforms, such as groups of tightly-coupled shared-memory nodes that are
loosely connected via high bandwidth and high latency interconnection networks, and/or processing nodes that have
complex memory hierarchies, are becoming more common, as they display competitive cost-to-performance ratios.
The same is true of platforms that are geographically distributed. Most existing parallel simulation codes can easily
be ported to a wide range of parallel architectures as they employ a standard messaging layer such as MPI. However,
complex and heterogeneous architectures present new challenges to the scalable execution of such codes, since many
of the basic parallel algorithm design assumptions are no longer valid.

We have taken the first steps toward developing architecture-aware graph-partitioning algorithms. These are able
to compute partitionings that allow computations to achieve the highest levels of performance regardless of the
computing platform. Specifically, we have enabledParMETIS V3 PartKway, ParMETIS V3 PartGeomKway,
ParMETIS V3 PartMeshKway, ParMETIS V3 RefineKway, andParMETIS V3 AdaptiveRepart to compute ef-
ficient partitionings for networks of heterogeneous processors. To do so, these routines require an additional array
(tpwgts) to be passed as a parameter. This array describes the fraction of the total vertex weight each sub-domain
should contain. For example, if you have a network of four processors, the first three of which are of equal pro-
cessing speed, and the fourth of which is twice as fast as the others, the user would pass an array containing the
values(0.2, 0.2, 0.2, 0.4). Note that by allowing users to specify target sub-domain weights as such, heterogeneous
processing power can be taken into account when computing a partitioning. However, this does not allow us to take
heterogeneous network bandwidths and latencies into account. Optimizing partitionings for heterogeneous networks
is still the focus of ongoing research.

3.7 Computing Fill-Reducing Orderings
ParMETIS V3 NodeND andParMETIS V32 NodeND are the routines provided byPARMETIS for computing fill-
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reducing orderings, suited for Cholesky-based direct factorization algorithms. Note thatParMETIS V3 NodeND is
simply a wrapper around the more generalParMETIS V32 NodeND routine and is included for backward compat-
ibility. ParMETIS V32 NodeND makes no assumptions on how the graph is initially distributed among the proces-
sors. It can effectively compute fill-reducing orderings for graphs that are randomly distributed as well as graphs that
are well distributed.

The algorithm implemented byParMETIS V32 NodeND is based on a multilevel nested dissection algorithm.
This algorithm has been shown to produce low fill orderings for a wide variety of matrices. Furthermore, it leads
to balanced elimination trees that are essential for parallel direct factorization.ParMETIS V32 NodeND uses a
multilevel node-based refinement algorithm that is particularly suited for directly refining the size of the separators.
To achieve high performance,ParMETIS V32 NodeND first usesParMETIS V3 PartKway to compute a high-
quality partitioning and redistributes the graph accordingly. Next it proceeds to compute the⌊log p⌋ levels of the
elimination tree concurrently. When the graph has been separated intop parts (wherep is the number of processors),
the graph is redistributed among the processor so that each processor receives a single subgraph, andMETIS’ serial
nested dissection ordering algorithm is used to order thesesmaller subgraphs.

4 Input and Output Formats used by P ARMETIS

4.1 Format of the Input Graph
All of the graph routines inPARMETIS take as input the adjacency structure of the graph, the weights of the vertices
and edges (if any), and an array describing how the graph is distributed among the processors. Note that depending
on the application this graph can represent different things. For example, whenPARMETIS is used to compute fill-
reducing orderings, the graph corresponds to the non-zero structure of the matrix (excluding the diagonal entries). In
the case of finite element computations, the vertices of the graph can correspond to nodes (points) in the mesh while
edges represent the connections between these nodes. Alternatively, the graph can correspond to the dual of the finite
element mesh. In this case, each vertex corresponds to an element and two vertices are connected via an edge if the
corresponding elements share an edge (in 2D) or a face (in 3D). Also, the graph can be similar to the dual, but be more
or less connected. That is, instead of limiting edges to those elements that share a face, edges can connect any two
elements that share even a single node. However the graph is constructed, it is usually undirected.2 That is, for every
pair of connected verticesv andu, it contains both edges(v, u) and(u, v).

In PARMETIS, the structure of the graph is represented by the compressedstorage format (CSR), extended for the
context of parallel distributed-memory computing. We willfirst describe the CSR format for serial graphs and then
describe how it has been extended for storing graphs that aredistributed among processors.

Serial CSR Format The CSR format is a widely-used scheme for storing sparse graphs. Here, the adjacency
structure of a graph is represented by two arrays,xadj andadjncy. Weights on the vertices and edges (if any) are
represented by using two additional arrays,vwgt andadjwgt. For example, consider a graph withn vertices andm
edges. In the CSR format, this graph can be described using arrays of the following sizes:

xadj[n+ 1], vwgt[n], adjncy[2m], andadjwgt[2m]

Note that the reason bothadjncy andadjwgt are of size2m is because every edge is listed twice (i.e., as(v, u)

and(u, v)). Also note that in the case in which the graph is unweighted (i.e., all vertices and/or edges have the same
weight), then either or both of the arraysvwgt andadjwgt can be set toNULL. ParMETIS V3 AdaptiveRepart
additionally requires avsize array. This array is similar to thevwgt array, except that instead of describing the
amount of work that is associated with each vertex, it describes the amount of memory that is associated with each
vertex.

The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts from 0 (C style),
the adjacency list of vertexi is stored in arrayadjncy starting at indexxadj[i] and ending at (but not including)

2Multi-constraint and multi-objective graph partitioning formulations [6, 13] can get around this requirement for some applications. These also
allow the computation of partitionings for bipartite graphs, as well as for graphs corresponding to non-square and non-symmetric matrices.
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indexxadj[i + 1] (in other words,adjncy[xadj[i]] up through and includingadjncy[xadj[i + 1]-1]).
Hence, the adjacency lists for each vertex are stored consecutively in the arrayadjncy. The arrayxadj is used
to point to where the list for each specific vertex begins and ends. Figure 5(b) illustrates the CSR format for the
15-vertex graph shown in Figure 5(a). If the graph was weights on the vertices, thenvwgt[i] is used to store the
weight of vertexi. Similarly, if the graph has weights on the edges, then the weight of edgeadjncy[j] is stored in
adjwgt[j]. This is the same format that is used by the (serial)METIS library routines.

0 2 5 8 11 13

0 5 10 15vtxdist

1 0 2 6 1 3 75 2 4 938

0 3 7 11 15 18

1 5 7 11 2 6 8 12 3 7 9 13 4 8 140 6 10

0 5 10 15vtxdist

5 11 6 10 12 7 11 13 8 12 14 9 13

0 2 5 8 11 13

0 5 10 15vtxdist

Description of the graph on a parallel computer with 3 processors (ParMeTiS)

xadj

adjncy

Processor 0:

Processor 1: xadj

adjncy

adjncy

xadjProcessor 2:

0 2 5 8 11 13 16 20 24 28 31 33 36 39 42 44

1 0 2 6 1 3 75 2 4 938 1 5 7 11 2 6 8 12 3 7 9 13 4 8 140 6 10 5 11 6 10 12 7 11 13 8 12 14 9 13

xadj

adjncy

Description of the graph on a serial computer (serial MeTiS)

0 1 2 3 4

5 6 7 8 9

1413121110

(a) A sample graph

(b) Serial CSR format

(c) Distributed CSR format

Figure 5: An example of the parameters passed to PARMETIS in a three processor case. The arrays vwgt and adjwgt are

assumed to be NULL.

Distributed CSR Format PARMETIS uses an extension of the CSR format that allows the vertices of the graph
and their adjacency lists to be distributed among the processors. In particular,PARMETIS assumes that each processor
Pi storesni consecutive vertices of the graph and the correspondingmi edges, so thatn =

∑
i ni, and2∗m =

∑
i mi.

Here, each processor stores its local part of the graph in thefour arraysxadj[ni + 1], vwgt[ni], adjncy[mi],
andadjwgt[mi], using the CSR storage scheme. Again, if the graph is unweighted, the arraysvwgt andadjwgt
can be set toNULL. The straightforward way to distribute the graph forPARMETIS is to taken/p consecutive adjacency
lists fromadjncy and store them on consecutive processors (wherep is the number of processors). In addition, each
processor needs its localxadj array to point to where each of its local vertices’ adjacencylists begin and end. Thus, if
we take all the localadjncy arrays and concatenate them, we will get exactly the sameadjncy array that is used in
the serial CSR. However, concatenating the localxadj arrays will not give us the serialxadj array. This is because
the entries in each localxadj must point to their localadjncy array, and so,xadj[0] is zero for all processors.
In addition to these four arrays, each processor also requires the arrayvtxdist[p + 1] that indicates the range of
vertices that are local to each processor. In particular, processorPi stores the vertices fromvtxdist[i] up to (but
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not including) vertexvtxdist[i+ 1].
Figure 5(c) illustrates the distributed CSR format by an example on a three-processor system. The 15-vertex graph

in Figure 5(a) is distributed among the processors so that each processor gets 5 vertices and their corresponding
adjacency lists. That is, Processor Zero gets vertices 0 through 4, Processor One gets vertices 5 through 9, and
Processor Two gets vertices 10 through 14. This figure shows thexadj, adjncy, andvtxdist arrays for each
processor. Note that thevtxdist array will always be identical for every processor.

All five arrays that describe the distributed CSR format are defined inPARMETIS to be of typeidxtype. By default
idxtype is set to be equivalent to typeint (i.e., integers). However,idxtype can be made to be equivalent to
a short int for certain architectures that use 64-bit integers by default. (Note that doing so will cut the memory
usage and communication time required approximately in half.) The conversion ofidxtype from int to short
can be done by modifying the fileparmetis.h. (Instructions are included there.) The sameidxtype is used for
the arrays that store the computed partitioning and permutation vectors.

When multiple vertex weights are used for multi-constraint partitioning, thec vertex weights for each vertex are
stored contiguously in thevwgt array. In this case, thevwgt array is of sizenc, wheren is the number of locally-
stored vertices andc is the number of vertex weights (and also the number of balance constraints).

4.2 Format of Vertex Coordinates
As discussed in Section 3.1,PARMETIS provides routines that use the coordinate information of the vertices to quickly
pre-distribute the graph, and so, speedup the execution of the parallelk-way partitioning. These coordinates are
specified in an array calledxyz of single precision floating point numbers (i.e.,float). If d is the number of
dimensions of the mesh (i.e.,d = 2 for 2D meshes ord = 3 for 3D meshes), then each processor requires an array
of sized ∗ ni, whereni is the number of locally-stored vertices. (Note that the number of dimensions of the mesh,
d, is required as a parameter to the routine.) In this array, the coordinates of vertexi are stored starting at location
xyz[i ∗ d] up to (but not including) locationxyz[i ∗ d+ d]. For example, ifd = 3, then the x, y, and z coordinates
of vertexi are stored atxyz[3*i], xyz[3*i+1], andxyz[3*i+2], respectively.

4.3 Format of the Input Mesh
The routine ParMETIS V3 PartMeshKway takes a distributed mesh and computes its partitioning, while
ParMETIS V3 Mesh2Dual takes a distributed mesh and constructs a distributed dual graph. Both of these rou-
tines require anelmdist array that specifies the distribution of the mesh elements, but that is otherwise identical
to thevtxdist array. They also require a pair of arrays calledeptr andeind, as well as the integer parameter
ncommonnodes.

Theeptr andeind arrays are similar in nature to thexadj andadjncy arrays used to specify the adjacency
list of a graph but now for each element they specify the set ofnodes that make up each element. Specifically, the set
of nodes that belong to elementi is stored in arrayeind starting at indexeptr[i] and ending at (but not including)
indexeptr[i+1] (in other words,eind[eptr[i]] up through and includingeind[eptr[i+1]-1]). Hence,
the node lists for each element are stored consecutively in the arrayeind. This format allows the specification of
meshes that contain elements of mixed type.

Thencommonnodes parameter specifies the degree of connectivity that is desired between the vertices of the
dual graph. Specifically, an edge is placed between two vertices if their corresponding mesh elements share at least
g nodes, whereg is thencommonnodes parameter. Hence, this parameter can be set to result in a traditional dual
graph (e.g., a value of two for a triangle mesh or a value of four for a hexahedral mesh). However, it can also be set
higher or lower for increased or decreased connectivity.

Additionally, ParMETIS V3 PartMeshKway requires anelmwgt array that is analogous to thevwgt array.

4.4 Format of the Computed Partitionings and Orderings
Format of the Partitioning Array The partitioning and repartitioning routines require thatarrays (calledpart)
of sizesni (whereni is the number of local vertices) be passed as parameters to each processor. Upon completion
of the PARMETIS routine, for each vertexj, the sub-domain number (i.e., the processor label) to whichthis vertex
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Figure 6: An example of the ordering produced by ParMETIS_V3_NodeND. Consider the simple 3 × 5 grid and assume that

we have four processors. ParMETIS_V3_NodeND finds the three separators that are shaded. It first finds the big separator and

then for each of the two sub-domains it finds the smaller. At the end of the ordering, the order vector concatenated over all the

processors will be the one shown. Similarly, the sizes arrays will all be identical to the one shown, corresponding to the regions

pointed to by the arrows.

belongs will have been written topart[j]. Note thatPARMETIS does not redistribute the graph according to the new
partitioning, it simply computes the partitioning and writes it to thepart array.

Additionally, whenever the number of sub-domains does not equal the number of processors that are used to com-
pute a repartitioning,ParMETIS V3 RefineKway andParMETIS V3 AdaptiveRepart require that the previously
computed partitioning be passed as a parameter via thepart array. (This is also required whenever the user chooses to
de-couple the sub-domains from the processors. See discussion in Section 5.2.) This is because the initial partitioning
needs to be obtained from the values supplied in thepart array. If the numbers of sub-domains and processors are
equal, then the initial partitioning can be obtained from the initial graph distribution, and so this information need not
be supplied. (In this case, for each processori, every element ofpart would be set toi.)

Format of the Ordering and Separator Sizes Arrays Each processor runningParMETIS V3 NodeND (and
ParMETIS V32 NodeND) writes its portion of the computed fill-reducing ordering to an array calledorder. Similar
to thepart array, the size oforder is equal to the number of vertices stored at each processor. Upon completion,
for each vertexj, order[j] stores the new global number of this vertex in the fill-reducing permutation.

Besides the ordering vector,ParMETIS V3 NodeND also returns information about the sizes of the different
sub-domains as well as the separators at different levels. This array is calledsizes and is of size2p (wherep is
the number of processors). Every processor must supply thisarray and upon return, each of thesizes arrays are
identical.

To accommodate runs in which the number of processors is not apower of two,ParMETIS V3 NodeND performs
⌊log p⌋ levels of nested dissection. Because of that, letp′ = 2⌊log p⌋ be the largest number of processors less thanp

that is a power of two.
Given the above definition ofp′, the format of thesizes array is as follows. The firstp′ entries ofsizes

starting from0 to p′ − 1 store the number of nodes in each one of thep′ sub-domains. The remainingp′ − 1 entries
of this array starting fromsizes[p′] up tosizes[2p′ − 2] store the sizes of the separators at thelog p′ levels
of nested dissection. In particular,sizes[2p′ − 2] stores the size of the top level separator,sizes[2p′ − 4] and
sizes[2p′−3] store the sizes of the two separators at the second level (from left to right). Similarly,sizes[2p′−8]

throughsizes[2p′ − 5] store the sizes of the four separators of the third level (from left to right), and so on. This
array can be used to quickly construct the separator tree (a form of an elimination tree) for direct factorization. Given
this separator tree and the sizes of the sub-domains, the nodes in the ordering produced byParMETIS V3 NodeND
are numbered in a postorder fashion. Figure 6 illustrates thesizes array and the postorder ordering.
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4.5 Numbering and Memory Allocation
PARMETIS allows the user to specify a graph whose numbering starts either at 0 (C style) or at 1 (Fortran style). Of
course,PARMETIS requires that same numbering scheme be used consistently for all the arrays passed to it, and it
writes to thepart andorder arrays similarly.

PARMETIS allocates all the memory that it requires dynamically. Thishas the advantage that the user does not have
to provide workspace. However, if there is not enough memoryon the machine, the routines inPARMETIS will abort.
Note that the routines inPARMETIS do not modify the arrays that store the graph (e.g.,xadj andadjncy). They
only modify thepart andorder arrays.

14



5 Calling Sequence of the Routines in P ARMETIS

The calling sequences of thePARMETIS routines are described in this section.
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5.1 Graph Partitioning
ParMETIS V3 PartKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,

int *wgtflag, int *numflag, int *ncon, int *nparts, float *tpwgts, float *ubvec,
int *options, int *edgecut, idxtype *part, MPIComm *comm)

Description
This routine is used to compute ak-way partitioning of a graph onp processors using the multilevelk-way
multi-constraint partitioning algorithm.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.
xadj, adjncy

These store the (local) adjacency structure of the graph at each processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt
These store the weights of the vertices and edges. (See discussion in Section 4.1).

wgtflag This is used to indicate if the graph is weighted.wgtflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andpart
arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.

ncon This is used to specify the number of weights that each vertexhas. It is also the number of balance
constraints that must be satisfied.

nparts This is used to specify the number of sub-domains that are desired. Note that the number of sub-
domains is independent of the number of processors that callthis routine.

tpwgts An array of sizencon × nparts that is used to specify the fraction of vertex weight that should
be distributed to each sub-domain for each balance constraint. If all of the sub-domains are to be of
the same size for every vertex weight, then each of thencon × nparts elements should be set to
a value of 1/nparts. If ncon is greater than 1, the target sub-domain weights for each sub-domain
are stored contiguously (similar to thevwgt array). Note that the sum of all of thetpwgts for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for each vertex weight, with 1
being perfect balance andnparts being perfect imbalance. A value of 1.05 for each of thencon

weights is recommended.

options This is an array of integers that is used to pass additional parameters for the routine. Ifoptions[0]=0,
then the default values are used. Ifoptions[0]=1, then the remaining two elements ofoptionsare
interpreted as follows:

options[1] This specifies the level of information to be returned during the execution of the algo-
rithm. Timing information can be obtained by setting this to1. Additional options for
this parameter can be obtained by looking atparmetis.h. The numerical values
there should be added to obtain the correct value. The default value is 0.
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options[2] This is the random number seed for the routine. The default value is 15.

edgecut Upon successful completion, the number of edges that are cutby the partitioning is written to this
parameter.

part This is an array of size equal to the number of locally-storedvertices. Upon successful completion the
partition vector of the locally-stored vertices is writtento this array. (See discussion in Section 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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ParMETIS V3 PartGeomKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,
int *wgtflag, int *numflag, int *ndims, float *xyz, int *ncon, int *nparts,
float *tpwgts, float *ubvec, int *options, int *edgecut, idxtype *part,
MPI Comm *comm)

Description
This routine is used to compute ak-way partitioning of a graph onp processors by combining the coordinate-
based and multi-constraintk-way partitioning schemes.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.

xadj, adjncy
These store the (local) adjacency structure of the graph at each processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt
These store the weights of the vertices and edges. (See discussion in Section 4.1).

wgtflag This is used to indicate if the graph is weighted.wgtflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andpart
arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.

ndims The number of dimensions of the space in which the graph is embedded.

xyz The array storing the coordinates of the vertices (described in Section 4.2).

ncon This is used to specify the number of weights that each vertexhas. It is also the number of balance
constraints that must be satisfied.

nparts This is used to specify the number of sub-domains that are desired. Note that the number of sub-
domains is independent of the number of processors that callthis routine.

tpwgts An array of sizencon × nparts that is used to specify the fraction of vertex weight that should
be distributed to each sub-domain for each balance constraint. If all of the sub-domains are to be of
the same size for every vertex weight, then each of thencon × nparts elements should be set to a
value of 1/nparts. If ncon is greater than one, the target sub-domain weights for each sub-domain
are stored contiguously (similar to thevwgt array). Note that the sum of all of thetpwgts for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for each vertex weight, with 1
being perfect balance andnparts being perfect imbalance. A value of 1.05 for each of thencon

weights is recommended.

options This is an array of integers that is used to pass parameters tothe routine. Their meanings are identical
to those ofParMETIS V3 PartKway.

edgecut Upon successful completion, the number of edges that are cutby the partitioning is written to this
parameter.
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part This is an array of size equal to the number of locally-storedvertices. Upon successful completion the
partition vector of the locally-stored vertices is writtento this array. (See discussion in Section 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.

Note
The quality of the partitionings computed byParMETIS V3 PartGeomKway are comparable to those pro-
duced byParMETIS V3 PartKway. However, the run time of the routine may be up to twice as fast.

Because the current implementation of the geometric partitioning routines rely on a parallel samplesort,
ParMETIS V3 PartGeomKway switches toParMETIS V3 PartKway when more than 4096 processors are
used or when the number of vertices assigned to each processor is less than the number of processors.
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ParMETIS V3 PartGeom (idxtype *vtxdist, int *ndims, float *xyz, idxtype *part, MPI Comm *comm)

Description
This routine is used to compute ap-way partitioning of a graph onp processors using a coordinate-based space-
filling curves method.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.

ndims The number of dimensions of the space in which the graph is embedded.

xyz The array storing the coordinates of the vertices (described in Section 4.2).

part This is an array of size equal to the number of locally stored vertices. Upon successful completion
stores the partition vector of the locally stored graph (described in Section 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.

Note
The quality of the partitionings computed byParMETIS V3 PartGeom are significantly worse than those
produced byParMETIS V3 PartKway andParMETIS V3 PartGeomKway.

Because the current implementation of the geometric partitioning routines rely on a parallel samplesort,
ParMETIS V3 PartGeom returns without computing a partitioning when more than 4096 processors are used
or when the number of vertices assigned to each processor is less than the number of processors.
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ParMETIS V3 PartMeshKway (idxtype *elmdist, idxtype *eptr, idxtype *eind, idxtype *elmwgt,
int *wgtflag, int *numflag, int *ncon, int *ncommonnodes, int*nparts,
float *tpwgts, float *ubvec, int *options, int *edgecut, idxtype *part,
MPI Comm *comm)

Description
This routine is used to compute ak-way partitioning of ameshonp processors. The mesh can contain elements
of different types.

Parameters
elmdist This array describes how the elements of the mesh are distributed among the processors. It is anal-

ogous to thevtxdist array. Its contents are identical for every processor. (Seediscussion in
Section 4.3).

eptr, eind
These arrays specifies the elements that are stored locally at each processor. (See discussion in
Section 4.3).

elmwgt This array stores the weights of the elements. (See discussion in Section 4.3).

wgtflag This is used to indicate if the elements of the mesh have weights associated with them. Thewgtflag
can take two values:

0 No weights (elmwgt is NULL).

2 Weights on the vertices only.

numflag This is used to indicate the numbering scheme that is used fortheelmdist, elements, andpart arrays.
numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.

ncon This is used to specify the number of weights that each vertexhas. It is also the number of balance
constraints that must be satisfied.

ncommonnodes
This parameter determines the degree of connectivity amongthe vertices in the dual graph. Specifi-
cally, an edge is placed between any two elements if and only if they share at least this many nodes.
This value should be greater than 0, and for most meshes a value of two will create reasonable dual
graphs. However, depending on the type of elements in the mesh, values greater than 2 may also
be valid choices. For example, for meshes containing only triangular, tetrahedral, hexahedral, or
rectangular elements, this parameter can be set to two, three, four, or two, respectively.

Note that setting this parameter to a small value will increase the number of edges in the resulting
dual graph and the corresponding partitioning time.

nparts This is used to specify the number of sub-domains that are desired. Note that the number of sub-
domains is independent of the number of processors that callthis routine.

tpwgts An array of sizencon × nparts that is used to specify the fraction of vertex weight that should
be distributed to each sub-domain for each balance constraint. If all of the sub-domains are to be of
the same size for every vertex weight, then each of thencon × nparts elements should be set to
a value of 1/nparts. If ncon is greater than 1, the target sub-domain weights for each sub-domain
are stored contiguously (similar to thevwgt array). Note that the sum of all of thetpwgts for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for each vertex weight, with 1
being perfect balance andnparts being perfect imbalance. A value of 1.05 for each of thencon

weights is recommended.

21



options This is an array of integers that is used to pass parameters tothe routine. Their meanings are identical
to those ofParMETIS V3 PartKway.

edgecut Upon successful completion, the number of edges that are cutby the partitioning is written to this
parameter.

part This is an array of size equal to the number of locally-storedvertices. Upon successful completion the
partition vector of the locally-stored vertices is writtento this array. (See discussion in Section 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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5.2 Graph Repartitioning
ParMETIS V3 AdaptiveRepart (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *vsize,

idxtype *adjwgt, int *wgtflag, int *numflag, int *ncon, int *nparts, float *tpwgts,
float *ubvec, float *itr, int *options, int *edgecut, idxtype*part,
MPI Comm *comm)

Description
This routine is used to balance the work load of a graph that corresponds to an adaptively refined mesh.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.
xadj, adjncy

These store the (local) adjacency structure of the graph at each processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt
These store the weights of the vertices and edges. (See discussion in Section 4.1).

vsize This array stores the size of the vertices with respect to redistribution costs. Hence, vertices associ-
ated with mesh elements that require a lot of memory will havelarger corresponding entries in this
array. Otherwise, this array is similar to thevwgt array. (See discussion in Section 4.1).

wgtflag This is used to indicate if the graph is weighted.wgtflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andpart
arrays.numflagcan take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

ncon This is used to specify the number of weights that each vertexhas. It is also the number of balance
constraints that must be satisfied.

nparts This is used to specify the number of sub-domains that are desired. Note that the number of sub-
domains is independent of the number of processors that callthis routine.

tpwgts An array of sizencon × nparts that is used to specify the fraction of vertex weight that should
be distributed to each sub-domain for each balance constraint. If all of the sub-domains are to be of
the same size for every vertex weight, then each of thencon × nparts elements should be set to a
value of 1/nparts. If ncon is greater than one, the target sub-domain weights for each sub-domain
are stored contiguously (similar to thevwgt array). Note that the sum of all of thetpwgts for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for each vertex weight, with 1
being perfect balance andnparts being perfect imbalance. A value of 1.05 for each of thencon

weights is recommended.

itr This parameter describes the ratio of inter-processor communication time compared to data redistri-
bution time. It should be set between 0.000001 and 1000000.0. If ITR is set high, a repartitioning
with a low edge-cut will be computed. If it is set low, a repartitioning that requires little data redistri-
bution will be computed. Good values for this parameter can be obtained by dividing inter-processor
communication time by data redistribution time. Otherwise, a value of 1000.0 is recommended.
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options This is an array of integers that is used to pass additional parameters for the routine. Ifoptions[0]=0,
then the default values are used. Ifoptions[0]=1, then the remaining three elements ofoptionsare
interpreted as follows:

options[1] This specifies the level of information to be returned during the execution of the algo-
rithm. Timing information can be obtained by setting this to1. Additional options for
this parameter can be obtained by looking atparmetis.h. The numerical values
there should be added to obtain the correct value. The default value is 0.

options[2] This is the random number seed for the routine. The default value is 15.

options[3] This specifies whether the sub-domains and processors are coupled or un-coupled. If
the number of sub-domains desired (i.e.,nparts) and the number of processors that
are being used is not the same, then these must be un-coupled.However, ifnparts
equals the number of processors, these can either be coupledor de-coupled. If sub-
domains and processors are coupled, then the initial partitioning will be obtained im-
plicitly from the graph distribution. However, if sub-domains are un-coupled from
processors, then the initial partitioning needs to be obtained from the initial values as-
signed to thepart array. A value of PARMETISPSRCOUPLED indicates that sub-
domains and processors are coupled and a value of PARMETISPSRUNCOUPLED
indicates that these are de-coupled. The default value is PARMETIS PSRCOUPLED
if nparts equals the number of processors and PARMETISPSRUNCOUPLED (un-
coupled) otherwise. These constants are defined inparmetis.h.

edgecut Upon successful completion, the number of edges that are cutby the partitioning is written to this
parameter.

part This is an array of size equal to the number of locally-storedvertices. Upon successful completion the
partition vector of the locally-stored vertices is writtento this array. (See discussion in Section 4.4).
If the number of processors is not equal to the number of sub-domains and/or options[3] is set to
PARMETIS PSRUNCOUPLED, then the previously computed partitioning mustbe passed to the
routine as a parameter via this array.

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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5.3 Partitioning Refinement
ParMETIS V3 RefineKway (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,

int *wgtflag, int *numflag, int *ncon, int *nparts, float *tpwgts, float *ubvec,
int *options, int *edgecut, idxtype *part, MPIComm *comm)

Description
This routine is used to improve the quality of an existing ak-way partitioning onp processors using the multi-
levelk-way refinement algorithm.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.

xadj, adjncy
These store the (local) adjacency structure of the graph at each processor. (See discussion in Sec-
tion 4.1).

vwgt, adjwgt
These store the weights of the vertices and edges. (See discussion in Section 4.1).

ncon This is used to specify the number of weights that each vertexhas. It is also the number of balance
constraints that must be satisfied.

nparts This is used to specify the number of sub-domains that are desired. Note that the number of sub-
domains is independent of the number of processors that callthis routine.

wgtflag This is used to indicate if the graph is weighted.wgtflagcan take one of four values:

0 No weights (vwgt and adjwgt are both NULL).

1 Weights on the edges only (vwgt is NULL).

2 Weights on the vertices only (adjwgt is NULL).

3 Weights on both the vertices and edges.

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andpart
arrays.numflagcan take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

tpwgts An array of sizencon × nparts that is used to specify the fraction of vertex weight that should
be distributed to each sub-domain for each balance constraint. If all of the sub-domains are to be of
the same size for every vertex weight, then each of thencon × nparts elements should be set to
a value of 1/nparts. If ncon is greater than 1, the target sub-domain weights for each sub-domain
are stored contiguously (similar to thevwgt array). Note that the sum of all of thetpwgts for a
give vertex weight should be one.

ubvec An array of sizencon that is used to specify the imbalance tolerance for each vertex weight, with 1
being perfect balance andnparts being perfect imbalance. A value of 1.05 for each of thencon

weights is recommended.

options This is an array of integers that is used to pass parameters tothe routine. Their meanings are identical
to those ofParMETIS V3 AdaptiveRepart.

edgecut Upon successful completion, the number of edges that are cutby the partitioning is written to this
parameter.
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part This is an array of size equal to the number of locally-storedvertices. Upon successful completion the
partition vector of the locally-stored vertices is writtento this array. (See discussion in Section 4.4).
If the number of processors is not equal to the number of sub-domains and/or options[3] is set to
PARMETIS PSRUNCOUPLED, then the previously computed partitioning mustbe passed to the
routine as a parameter via this array.

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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5.4 Fill-reducing Orderings
ParMETIS V3 NodeND (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, int *numflag, int *options,

idxtype *order, idxtype *sizes, MPIComm *comm)

Description
This routine is used to compute a fill-reducing ordering of a sparse matrix using multilevel nested dissection.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.

xadj, adjncy
These store the (local) adjacency structure of the graph at each processor (See discussion in Sec-
tion 4.1).

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andorder
arrays.numflagcan take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

options This is an array of integers that is used to pass parameters tothe routine. Their meanings are identical
to those ofParMETIS V3 PartKway.

order This array returns the result of the ordering (described in Section 4.4).

sizes This array returns the number of nodes for each sub-domain and each separator (described in Sec-
tion 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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ParMETIS V32 NodeND (idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
int *numflag, int *mtype, int *rtype, int *pnseps, int *snseps, float *ubfrac,
int *seed, int *dbglvl, idxtype *order, idxtype *sizes, MPIComm *comm)

Description
This routine is used to compute a fill-reducing ordering of a sparse matrix using multilevel nested dissection.

Parameters
vtxdist This array describes how the vertices of the graph are distributed among the processors. (See discus-

sion in Section 4.1). Its contents are identical for every processor.
xadj, adjncy

These store the (local) adjacency structure of the graph at each processor (See discussion in Sec-
tion 4.1).

vwgt These store the weights of the vertices. A value of NULL indicates that each vertex has unit weight.
(See discussion in Section 4.1).

numflag This is used to indicate the numbering scheme that is used forthe vtxdist, xadj, adjncy, andorder
arrays. The possible values are:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

mtype This is used to indicate the scheme to be used for computing the matching. The possible values,
defined inparmetis.h, are:

PARMETIS MTYPE LOCAL A local matching scheme is used in which each pair of matched
vertices reside on the same processor.

PARMETIS MTYPE GLOBAL A global matching scheme is used in which the pairs of matched
vertices can reside on different processors. This is the default
value if a NULL value is passed.

rtype This is used to indicate the separator refinement scheme thatwill be used. The possible values,
defined inparmetis.h, are:

PARMETIS SRTYPEGREEDY Uses a simple greedy refinement algorithm.

PARMETIS SRTYPE2PHASE Uses a higher quality refinement algorithm, which is somewhat
slower. This is the default value if a NULL value is passed.

p nseps Specifies the number of different separators that will be computed during each bisection at the first
⌊log p⌋ levels of the nested dissection (these are computed in parallel among the processors). The
bisection that achieves the smallest separator is selected. The default value is 1 (when NULL is
supplied), but values greater than 1 can lead to better quality orderings. However, this is a time-
quality trade-off.

s nseps Specifies the number of different separators that will be computed during each of the bisections
levels of the remaining levels of the nested dissection (when the matrix has been divided among
the processors and each processor proceeds independently to order its portion of the matrix). The
bisections that achieve the smallest separator are selected. The default value is 1 (when NULL is
supplied), but values greater than 1 can lead to better quality orderings. However, this is a time-
quality trade-off.

ubfrac This value indicates how unbalanced the two partitions are allowed to get during each bisection level.
The default value (when NULL is supplied) is 1.05, but highervalues (typical ranges 1.05–1.25) can
lead to smaller separators.

seed This is the seed for the random number generator. When NULL is supplied, a default seed is used.
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dbglvl This specifies the level of information to be returned duringthe execution of the algorithm. This is
identical to theoptions[2] parameter of the other routines. When NULL is supplied, a value of
0 is used.

order This array returns the result of the ordering (described in Section 4.4).

sizes This array returns the number of nodes for each sub-domain and each separator (described in Sec-
tion 4.4).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.
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5.5 Mesh to Graph Translation
ParMETIS V3 Mesh2Dual (idxtype *elmdist, idxtype *eptr, idxtype *eind, int *numflag,

int *ncommonnodes, idxtype **xadj, idxtype **adjncy, MPIComm *comm)

Description
This routine is used to construct a distributed graph given adistributed mesh. It can be used in conjunction with
other routines in thePARMETIS library. The mesh can contain elements of different types.

Parameters
elmdist This array describes how the elements of the mesh are distributed among the processors. It is anal-

ogous to thevtxdist array. Its contents are identical for every processor. (Seediscussion in
Section 4.3).

eptr, eind
These arrays specifies the elements that are stored locally at each processor. (See discussion in
Section 4.3).

numflag This is used to indicate the numbering scheme that is used forthe elmdist, elements, xadj, adjncy,
andpart arrays.numflagcan take one of two values:

0 C-style numbering that starts from 0.

1 Fortran-style numbering that starts from 1.
ncommonnodes

This parameter determines the degree of connectivity amongthe vertices in the dual graph. Specifi-
cally, an edge is placed between any two elements if and only if they share at least this many nodes.
This value should be greater than 0, and for most meshes a value of two will create reasonable dual
graphs. However, depending on the type of elements in the mesh, values greater than 2 may also
be valid choices. For example, for meshes containing only triangular, tetrahedral, hexahedral, or
rectangular elements, this parameter can be set to two, three, four, or two, respectively.

Note that setting this parameter to a small value will increase the number of edges in the resulting
dual graph and the corresponding partitioning time.

xadj, adjncy
Upon the successful completion of the routine, pointers to the constructedxadj andadjncy arrays
will be written to these parameters. (See discussion in Section 4.1).

comm This is a pointer to the MPI communicator of the processes that call PARMETIS. For most programs
this will point toMPI COMM WORLD.

Note
This routine can be used in conjunction withParMETIS V3 PartKway, ParMETIS V3 PartGeomKway, or
ParMETIS V3 AdaptiveRepart. It typically runs in half the time required byParMETIS V3 PartKway.
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6 Restrictions & Limitations

The following is a list of restrictions and limitations imposed by the current release ofPARMETIS. Note that these
restrictions are on top of any other restrictions describedwith each API function.

1. The graph must be initially distributed among the processors such that each processor has at least one vertex.
Substantially better performance will be achieved if the vertices are distributed so that each processor gets an
equal number of vertices.

2. The routines must be called by at least two processors. That is, PARMETIS cannot be used on a single processor.
If you need to partition on a single processor useMETIS.

3. The partitioning routines inPARMETIS switch to a purely serial implementation (via a call to the corresponding
METIS’ routine) when the following conditions are met: (i) the graph/matrix contains less than 10000 vertices,
(ii) the graph contains no edges, and (iii) the number of vertices in the graph is less than20× p, wherep is the
number of processors.

7 Hardware & Software Requirements, and Contact Information

PARMETIS is written in ANSI C and uses MPI for inter-processor communication. Instructions on how to build
PARMETIS are available in theINSTALL file. In the directory calledGraphs, you will find programs that tests if
PARMETIS was built correctly. Also, a header file calledparmetis.h is provided that contains prototypes for the
functions inPARMETIS and various constant definitions.

In order to usePARMETIS in your application you need to have a copy of the serialMETIS library and link your
program with both libraries (i.e.,libparmetis.a andlibmetis.a). Note that thePARMETIS package already
contains the source code for theMETIS library. The included Makefiles automatically construct both libraries.

PARMETIS have been extensively tested on a number of different parallel computers. However, even though
PARMETIS contains no known bugs, this does not mean that all of its bugshave been found and fixed. If you have any
problems, please send email tokarypis@cs.umn.eduwith a brief description of the problem.

8 Copyright & License Notice

PARMETIS is copyrighted by the Regents of the University of Minnesota. It can be freely used for educational and
research purposes by non-profit institutions and US government agencies only. Other organizations are allowed to
usePARMETIS only for evaluation purposes, and any further uses will require prior approval. The software may not
be sold or redistributed without prior approval. One may make copies of the software for their use provided that the
copies, are not sold or distributed, are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any part of this software constitutes an implicit agreement to
these terms. These terms and conditions are subject to change at any time without prior notice.
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