
MPICH2 User’s Guide∗

Version 1.0.3

Mathematics and Computer Science Division

Argonne National Laboratory

William Gropp
Ewing Lusk

David Ashton
Darius Buntinas

Ralph Butler
Anthony Chan

Rob Ross
Rajeev Thakur
Brian Toonen

November 23, 2005

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

1

Contents

1 Introduction 1

2 Migrating to MPICH2 from MPICH1 1

2.1 Default Runtime Environment 1

2.2 Starting Parallel Jobs . 2

2.3 Command-Line Arguments in Fortran 2

2.4 Configure Options . 2

3 Setting Paths 3

4 Quick Start 3

5 Compiling and Linking 4

5.1 Specifying Compilers . 4

5.2 Shared Libraries . 4

5.3 Special Issues for C++ . 5

5.4 Special Issues for Fortran . 5

6 Running Programs with mpiexec 5

6.1 Standard mpiexec . 6

6.2 Extensions for All Process Management Environments 6

6.3 Extensions for the MPD Process Management Environment . 7

6.3.1 Basic mpiexec arguments for MPD 7

6.3.2 Other Command-Line Arguments to mpiexec 8

6.3.3 Environment Variables Affecting mpiexec 12

6.4 Extensions for SMPD . 12

6.4.1 mpiexec arguments for SMPD 12

i

6.5 Extensions for gforker . 15

6.5.1 mpiexec arguments for gforker 15

7 Managing the Process Management Environment 15

7.1 MPD . 15

8 Debugging 16

8.1 gdb via mpiexec . 16

8.2 TotalView . 20

9 MPICH2 under Windows 20

9.1 Directories . 20

9.2 Compiling . 20

9.3 Running . 21

A General Information 21

B Building MPICH2 21

C Compiling MPI Programs 21

D Running MPI Programs 22

D.1 Q: What is MPICH2? . 22

D.2 Q: What does MPICH stand for? 22

D.3 Q: What is the difference between the MPD and SMPD pro-
cess managers? . 22

D.4 Q: When I use the g95 Fortran compiler on a 64-bit platform,
some of the tests fail . 23

D.5 C++ and SEEK SET . 23

ii

D.6 When building the ssm or sshm channel, I get the error ”mpidu process locks.h:234:2:
error: #error *** No atomic memory operation specified to
implement busy locks ***” 24

D.7 Q: How do I pass environment variables to the processes of
my parallel program . 24

D.8 Q: How do I pass environment variables to the processes of
my parallel program when using the mpd process manager? . 24

D.9 Q: What determines the hosts on which my MPI processes run? 25

D.10 Q: On Windows, I get an error when I attempt to call MPI Comm spawn. 26

iii

1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH2 has already been installed. For instruc-
tions on how to install MPICH2, see the MPICH2 Installer’s Guide, or the
README in the top-level MPICH2 directory. This manual explains how to
compile, link, and run MPI applications, and use certain tools that come
with MPICH2. This is a preliminary version and some sections are not
complete yet. However, there should be enough here to get you started with
MPICH2.

2 Migrating to MPICH2 from MPICH1

If you have been using MPICH 1.2.x (1.2.6 is the latest version), you will
find a number of things about MPICH2 that are different (and hopefully
better in every case.) Your MPI application programs need not change, of
course, but a number of things about how you run them will be different.

MPICH2 is an all-new implementation of the MPI Standard, designed to
implement all of the MPI-2 additions to MPI (dynamic process management,
one-sided operations, parallel I/O, and other extensions) and to apply the
lessons learned in implementing MPICH1 to make MPICH2 more robust,
efficient, and convenient to use.

2.1 Default Runtime Environment

In MPICH1, the default configuration used the now-old p4 portable pro-
gramming environment. Processes were started via remote shell commands
(rsh or ssh) and the information necessary for processes to find and con-
nect with one another over sockets was collected and then distributed at
startup time in a non-scalable fashion. Furthermore, the entanglement of
process managment functionality with the communication mechanism led to
confusing behavior of the system when things went wrong.

MPICH2 provides a separation of process management and communica-
tion. The default runtime environment consists of a set of daemons, called
mpd’s, that establish communication among the machines to be used be-
fore application process startup, thus providing a clearer picture of what
is wrong when communication cannot be established and providing a fast

2 MIGRATING TO MPICH2 FROM MPICH1 2

and scalable startup mechanism when parallel jobs are started. Section 7.1
describes the MPD process management system in more detail.

2.2 Starting Parallel Jobs

MPICH1 provided the mpirun command to start MPICH1 jobs. The MPI-2
Forum recommended a standard, portable command, called mpiexec, for
this purpose. MPICH2 implements mpiexec and all of its standard argu-
ments, together with some extensions. See Section 6.1 for standard ar-
guments to mpiexec and various subsections of Section 6 for extensions
particular to various process management systems.

MPICH2 also provides an mpirun command for simple backward com-
patibility, but MPICH2’s mpirun does not provide all the options of mpiexec
or all of the options of MPICH1’s mpirun.

2.3 Command-Line Arguments in Fortran

MPICH1 (more precisely) MPICH1’s mpirun) required access to command
line arguments in all application programs, including Fortran ones, and
MPICH1’s configure devoted some effort to finding the libraries that con-
tained the right versions of iargc and getarg and including those libraries
with which the mpif77 script linked MPI programs. Since MPICH2 does not
require access to command line arguments to applications, these functions
are optional, and configure does nothing special with them. If you need
them in your applications, you will have to ensure that they are available in
the Fortran environment you are using.

2.4 Configure Options

The arguments to configure are different in MPICH1 and MPICH2; the
Installer’s Guide discusses configure. In particular, the newer configure
in MPICH2 does not support the -cc=<compiler-name> (or -fc, -c++, or
-f90) options. Instead, many of the items that could be specified in the
command line to configure in MPICH1 must now be set by defining an
environment variable. E.g., while MPICH1 allowed

./configure -cc=pgcc

3 SETTING PATHS 3

MPICH2 requires

setenv CC pgcc

(or export CC=pgcc for ksh or CC=pgcc ; export CC for strict sh) before
./configure. Basically, every option to the MPICH-1 configure that does
not start with --enable or --with is not available as a configure option in
MPICH2. Instead, environment variables must be used. This is consistent
(and required) for use of version 2 GNU autoconf.

3 Setting Paths

You will have to know the directory where MPICH2 has been installed.
(Either you installed it there yourself, or your systems administrator has
installed it. One place to look in this case might be /usr/local.) We
suggest that you put the bin subdirectory of that directory in your path.
This will give you access to assorted MPICH2 commands to compile, link,
and run your programs conveniently. Other commands in this directory
manage parts of the run-time environment and execute tools.

One of the first commands you might run is mpich2version to find out
the exact version and configuration of MPICH2 you are working with. Some
of the material in this manual depends on just what version of MPICH2 you
are using and how it was configured at installation time.

4 Quick Start

You should now be able to run an MPI program. Let us assume that the di-
rectory where MPICH2 has been installed is /home/you/mpich2-installed,
so that in the section above you did

setenv PATH /home/you/mpich2-installed/bin:$PATH

for tcsh and csh, or

export PATH=/home/you/mpich2-installed/bin:$PATH

5 COMPILING AND LINKING 4

for bash or sh. Then to run an MPI program, albeit only on one machine,
you can do:

mpd &
cd /home/you/mpich2-installed/examples
mpiexec -n 3 cpi
mpdallexit

Details for these commands are provided below, but if you can successfully
execute them here, then you have a correctly installed MPICH2 and have
run an MPI program.

5 Compiling and Linking

A convenient way to compile and link your program is by using scripts that
use the same compiler that MPICH2 was built with. These are mpicc,
mpicxx, mpif77, and mpif90, for C, C++, Fortran 77, and Fortran 90 pro-
grams, respectively. If any of these commands are missing, it means that
MPICH2 was configured without support for that particular language.

5.1 Specifying Compilers

You need not use the same compiler that MPICH2 was built with, but not
all compilers are compatible. You can also specify the compiler for building
MPICH2 itself, as reported by mpich2version just by using the compiling
and linking commands from the previous section. The environment variables
MPICH CC, MPICH CXX, MPICH F77, and MPICH F90 may be used to specify
alternate C, C++, Fortran 77, and Fortran 90 compilers, respectively.

5.2 Shared Libraries

Currently shared libraries are only tested on Linux, and there are restric-
tions. See the Installer’s Guide for how to build MPICH2 as a shared library.
If shared libraries have been built, you will get them automatically when
you link your program with any of the MPICH2 compilation scripts.

6 RUNNING PROGRAMS WITH MPIEXEC 5

5.3 Special Issues for C++

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

The problem is that both stdio.h and the MPI C++ interface use SEEK SET,
SEEK CUR, and SEEK END. This is really a bug in the MPI-2 standard. You
can try adding

#undef SEEK_SET
#undef SEEK_END
#undef SEEK_CUR

before mpi.h is included, or add the definition

-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK SET etc. to
be skipped).

5.4 Special Issues for Fortran

MPICH2 provides two kinds of support for Fortran programs. For Fortran 77
programmers, the file mpif.h provides the definitions of the MPI constants
such as MPI COMM WORLD. Fortran 90 programmers should use the MPI module
instead; this provides all of the definitions as well as interface definitions for
many of the MPI functions. However, this MPI module does not provide
full Fortran 90 support; in particular, interfaces for the routines, such as
MPI Send, that take “choice” arguments are not provided.

6 Running Programs with mpiexec

If you have been using the original MPICH, or any of a number of other
MPI implementations, then you have probably been using mpirun as a way
to start your MPI programs. The MPI-2 Standard describes mpiexec as
a suggested way to run MPI programs. MPICH2 implements the mpiexec

6 RUNNING PROGRAMS WITH MPIEXEC 6

standard, and also provides some extensions. MPICH2 provides mpirun for
backward compatibility with existing scripts, but it does not support the
same or as many options as mpiexec or all of the options of MPICH1’s
mpirun.

6.1 Standard mpiexec

Here we describe the standard mpiexec arguments from the MPI-2 Stan-
dard [1]. The simplest form of a command to start an MPI job is

mpiexec -n 32 a.out

to start the executable a.out with 32 processes (providing an MPI COMM WORLD
of size 32 inside the MPI application). Other options are supported, for spec-
ifying hosts to run on, search paths for executables, working directories, and
even a more general way of specifying a number of processes. Multiple sets
of processes can be run with different exectuables and different values for
their arguments, with “:” separating the sets of processes, as in:

mpiexec -n 1 -host loginnode master : -n 32 -host smp slave

The -configfile argument allows one to specify a file containing the spec-
ifications for process sets on separate lines in the file. This makes it unnec-
essary to have long command lines for mpiexec. (See p. 353 of [2].)

It is also possible to start a one process MPI job (with size of MPI COMM WORLD
equal to 1), without using mpiexec. This process will become an MPI pro-
cess when it calls MPI Init, and can then call other MPI functions, including
MPI Comm spawn.

6.2 Extensions for All Process Management Environments

Some mpiexec arguments are specific to particular communication sub-
systems (“devices”) or process management environments (“process man-
agers”). Our intention is to make all arguments as uniform as possible
across devices and process managers. For the time being we will document
these separately.

6 RUNNING PROGRAMS WITH MPIEXEC 7

6.3 Extensions for the MPD Process Management Environ-
ment

MPICH2 provides a number of process management systems. The default
is called MPD. MPD provides a number of extensions to the standard form
of mpiexec.

6.3.1 Basic mpiexec arguments for MPD

The default configuration of MPICH2 chooses the MPD process manager
and the “simple” implementation of the Process Management Interface.
MPD provides a version of mpiexec that supports both the standard ar-
guments described in Section 6.1 and other arguments described in this
section. MPD also provides a number of commands for querying the MPD
process management environment and interacting with jobs it has started.

Before running mpiexec, the runtime environment must be established.
In the case of MPD, the daemons must be running. See Section 7.1 for how
to run and manage the MPD daemons.

We assume that the MPD ring is up and the installation’s bin directory
is in your path; that is, you can do:

mpdtrace

and it will output a list of nodes on which you can run MPI programs. Now
you are ready to run a program with mpiexec. Let us assume that you
have compiled and linked the program cpi (in the installdir/examples
directory and that this directory is in your PATH. Or that is your current
working directory and ‘.’ (“dot”) is in your PATH. The simplest thing to
do is

mpiexec -n 5 cpi

to run cpi on five nodes. The process management system (such as MPD)
will choose machines to run them on, and cpi will tell you where each is
running.

You can use mpiexec to run non-MPI programs as well. This is some-
times useful in making sure all the machines are up and ready for use. Useful
examples include

6 RUNNING PROGRAMS WITH MPIEXEC 8

mpiexec -n 10 hostname

and

mpiexec -n 10 printenv

6.3.2 Other Command-Line Arguments to mpiexec

The MPI-2 standard specifies the syntax and semantics of the arguments -n,
-path,-wdir, -host, -file, -configfile, and -soft. All of these are cur-
rently implemented for MPD’s mpiexec. Each of these is what we call a “lo-
cal” option, since its scope is the processes in the set of processes described
between colons, or on separate lines of the file specified by -configfile. We
add some extensions that are local in this way and some that are “global” in
the sense that they apply to all the processes being started by the invocation
of mpiexec.

The MPI-2 Standard provides a way to pass different arguments to dif-
ferent application processes, but does not provide a way to pass environment
variables. MPICH2 provides an extension that supports environment vari-
ables. The local parameter -env does this for one set of processes. That
is,

mpiexec -n 1 -env FOO BAR a.out : -n 2 -env BAZZ FAZZ b.out

makes BAR the value of environment variable FOO on the first process, running
the executable a.out, and gives the environment variable BAZZ the value
FAZZ on the second two processes, running the executable b.out. To set an
environment variable without giving it a value, use ’’ as the value in the
above command line.

The global parameter -genv can be used to pass the same environment
variables to all processes. That is,

mpiexec -genv FOO BAR -n 2 a.out : -n 4 b.out

makes BAR the value of the environment variable FOO on all six processes. If
-genv appears, it must appear in the first group. If both -genv and -env
are used, the -env’s add to the environment specified or added to by the

6 RUNNING PROGRAMS WITH MPIEXEC 9

-genv variables. If there is only one set of processes (no “:”), the -genv
and -env are equivalent.

The local parameter -envall is an abbreviation for passing the en-
tire environment in which mpiexec is executed. The global version of it
is -genvall. This global version is implicitly present. To pass no envi-
ronment variables, use -envnone and -genvnone. So, for example, to set
only the environment variable FOO and no others, regardless of the current
environment, you would use

mpiexec -genvnone -env FOO BAR -n 50 a.out

A list of environment variable names whose values are to be copied
from the current environment can be given with the -envlist (respectively,
-genvlist) parameter; for example,

mpiexec -genvnone -envlist PATH,LD_SEARCH_PATH -n 50 a.out

sets the PATH and LD LIBRARY PATH in the environment of the a.out pro-
cesses to their values in the environment where mpiexec is being run. In
this situation you can’t have commas in the environment variable names,
although of course they are permitted in values.

Some extension parameters have only global versions. They are

-l provides rank labels for lines of stdout and stderr. These are a bit
obscure for processes that have been explicitly spawned, but are still
useful.

-usize sets the “universe size” that is retrieved by the MPI attribute
MPI UNIVERSE SIZE on MPI COMM WORLD.

-bnr is used when one wants to run executables that have been compiled
and linked using the ch p4mpd or myrinet device in MPICH1. The
MPD process manager provides backward compatibility in this case.

-machinefile can be used to specify information about each of a set of
machines. This information may include the number of processes to
run on each host when executing user programs. For example, assume
that a machinefile named mf contains:

6 RUNNING PROGRAMS WITH MPIEXEC 10

comment line
hosta
hostb:2
hostc ifhn=hostc-gige
hostd:4 ifhn=hostd-gige

In addition to specifying hosts and number of processes to run on
each, this machinefile indicates that processes running on hostc and
hostd should use the gige interface on hostc and hostd respectively
for MPI communications. (ifhn stands for “interface host name” and
should be set to an alternate host name for the machine that is used
to designate an alternate communication interface.) This interface
information causes the MPI implementation to choose the alternate
host name when making connections. When the alternate hostname
specifies a particular interface, MPICH communication will then travel
over that interface.

You might use this machinefile in the following way:

mpiexec -machinefile mf -n 7 p0

Process rank 0 is to run on hosta, ranks 1 and 2 on hostb, rank 3 on
hostc, and ranks 4-6 on hostd. Note that the file specifies information
for up to 8 ranks and we only used 7. That is OK. But, if we had used
“-n 9”, an error would be raised. The file is not used as a pool of
machines that are cycled through; the processes are mapped to the
hosts in the order specified in the file.

A more complex command-line example might be:

mpiexec -l -machinefile mf -n 3 p1 : -n 2 p2 : -n 2 p3

Here, ranks 0-2 all run program p1 and are executed placing rank 0
on hosta and ranks 1-2 on hostb. Similarly, ranks 3-4 run p2 and are
executed on hostc and hostd, respectively. Ranks 5-6 run on hostd
and execute p3.

-s can be used to direct the stdin of mpiexec to specific processes in a
parallel job. For example:

mpiexec -s all -n 5 a.out

6 RUNNING PROGRAMS WITH MPIEXEC 11

directs the stdin of mpiexec to all five processes.

mpiexec -s 4 -n 5 a.out

directs it to just the process with rank 4, and

mpiexec -s 1,3 -n 5 a.out

sends it to processes 1 and 3, while

mpiexec -s 0-3 -n 5 a.out

sends stdin to processes 0,1,2, and 3.

The default, if -s is not specified, is to send mpiexec’s stdin to process
0 only.

-kx is used only for debugging. The mpd process manager encapsulates the
command-line arguments, the contents of the -machinefile argment,
-configfile, and in some cases the environment, into an XML file
for delivery to the internals of the process manager. Under ordinary
circumstances, this file, created in /tmp, is not seen by the user, and
is deleted after use. In some cases it may be desirable to examine the
contents of this file after it is used, in order to debug difficulties with
the installation and functioning of mpd. In this case, the -kx argument
causes mpiexec to keep the file, which you will be able to find in /tmp
with a name like smith tempxml 1234.

A “:” can optionally be used between global args and normal argument
sets, e.g.:

mpiexec -l -n 1 -host host1 pgm1 : -n 4 -host host2 pgm2

is equivalent to:

mpiexec -l : -n 1 -host host1 pgm1 : -n 4 -host host2 pgm2

This option implies that the global arguments can occur on a separate line in
the file specified by -configfile when it is used to replace a long command
line.

6 RUNNING PROGRAMS WITH MPIEXEC 12

6.3.3 Environment Variables Affecting mpiexec

A small number of environment variables affect the behavior of mpiexec.

MPIEXEC TIMEOUT The value of this environment variable is the maximum
number of seconds this job will be permitted to run. When time is up,
the job is aborted.

MPIEXEC BNR If this environment variable is defined (its value, if any, is
currently insignificant), then MPD will act in backward-compatibility
mode, supporting the BNR interface from the original MPICH (e.g.
versions 1.2.0 – 1.2.6) instead of its native PMI interface, as a way for
application processes to interact with the process management system.

MPD CON EXT Adds a string to the default Unix socket name used by mpiexec
to find the local mpd. This allows one to run multiple mpd rings at
the same time.

6.4 Extensions for SMPD

SMPD is an alternate process manager that runs on both Unix and Win-
dows. It can launch jobs across both platforms if the binary formats match
(big/little endianness and size of C types– int, long, void*, etc).

6.4.1 mpiexec arguments for SMPD

mpiexec for smpd accepts the standard MPI-2 mpiexec options. Execute

mpiexec

or

mpiexec -help2

to print the usage options. Typical usage:

mpiexec -n 10 myapp.exe

6 RUNNING PROGRAMS WITH MPIEXEC 13

All options to mpiexec:

-n x

-np x
launch x processes

-localonly x

-np x -localonly
launch x processes on the local machine

-machinefile filename
use a file to list the names of machines to launch on

-host hostname
launch on the specified host.

-hosts n host1 host2 ... hostn

-hosts n host1 m1 host2 m2 ... hostn mn
launch on the specified hosts. In the second version the number of
processes = m1 + m2 + ... + mn

-dir drive:\my\working\directory
-wdir /my/working/directory

launch processes with the specified working directory. (-dir and -wdir
are equivalent)

-env var val
set environment variable before launching the processes

-exitcodes
print the process exit codes when each process exits.

-noprompt
prevent mpiexec from prompting for user credentials. Instead errors
will be printed and mpiexec will exit.

-localroot
launch the root process directly from mpiexec if the host is local. (This
allows the root process to create windows and be debugged.)

-port port

6 RUNNING PROGRAMS WITH MPIEXEC 14

-p port
specify the port that smpd is listening on.

-phrase passphrase
specify the passphrase to authenticate connections to smpd with.

-smpdfile filename
specify the file where the smpd options are stored including the passphrase.
(unix only option)

-path search path
search path for executable, ; separated

-timeout seconds
timeout for the job.

Windows specific options:

-map drive:\\host\share
map a drive on all the nodes this mapping will be removed when the
processes exit

-logon
prompt for user account and password

-pwdfile filename
read the account and password from the file specified.

put the account on the first line and the password on the second

-nopopup debug
disable the system popup dialog if the process crashes

-priority class[:level]
set the process startup priority class and optionally level.
class = 0,1,2,3,4 = idle, below, normal, above, high
level = 0,1,2,3,4,5 = idle, lowest, below, normal, above, highest
the default is -priority 2:3

-register
encrypt a user name and password to the Windows registry.

-remove
delete the encrypted credentials from the Windows registry.

7 MANAGING THE PROCESS MANAGEMENT ENVIRONMENT 15

-validate [-host hostname]
validate the encrypted credentials for the current or specified host.

-delegate
use passwordless delegation to launch processes.

-impersonate
use passwordless authentication to launch processes.

-plaintext
don’t encrypt the data on the wire.

6.5 Extensions for gforker

gforker is a process management system for starting processes on a single
machine, so called because the MPI processes are simply forked from the
mpiexec process.

6.5.1 mpiexec arguments for gforker

The argument -maxtime sets a maximum time in seconds for the job to run.
gforker also supports all of the MPI-2 standard arguments for mpiexec as
well as the extensions for environment variables described in Section 6.3.2.

7 Managing the Process Management Environment

Some of the process managers supply user commands that can be used to
interact with the process manager and to control jobs. In this section we
describe user commands that may be useful.

7.1 MPD

mpd starts an mpd daemon.

mpdboot starts a set of mpd’s on a list of machines.

mpdtrace lists all the MPD daemons that are running. The -l option lists
full hostnames and the port where the mpd is listening.

8 DEBUGGING 16

mpdlistjobs lists the jobs that the mpd’s are running. Jobs are identified
by the name of the mpd where they were submitted and a number.

mpdkilljob kills a job specified by the name returned by mpdlistjobs

mpdsigjob delivers a signal to the named job. Signals are specified by name
or number.

You can use keystrokes to provide signals in the usual way, where mpiexec
stands in for the entire parallel application. That is, if mpiexec is being
run in a Unix shell in the foreground, you can use ^C (control-C) to send
a SIGINT to the processes, or ^Z (control-Z) to suspend all of them. A
suspended job can be continued in the usual way.

Precise argument formats can be obtained by passing any MPD com-
mand the --help or -h argument. More details can be found in the README
in the mpich2 top-level directory or the README file in the MPD directory
mpich2/src/pm/mpd.

8 Debugging

Debugging parallel programs is notoriously difficult. Here we describe a
number of approaches, some of which depend on the exact version of MPICH2
you are using.

8.1 gdb via mpiexec

If you are using the MPD process manager, you can use the -gdb argument to
mpiexec to execute a program with each process running under the control
of the gdb sequential debugger. -gdb helps control the multiple instances of
gdb by sending stdin either to all processes or to a selected process and by
labeling and merging output. The following script of a -gdb session gives
an idea of how this works. Input keystrokes are sent to all processes unless
specifially directed by the “z” command.

ksl2% mpiexec -gdb -n 10 cpi
0-9: (gdb) l
0-9: 5 double f(double);
0-9: 6

8 DEBUGGING 17

0-9: 7 double f(double a)
0-9: 8 {
0-9: 9 return (4.0 / (1.0 + a*a));
0-9: 10 }
0-9: 11
0-9: 12 int main(int argc,char *argv[])
0-9: 13 {
0-9: 14 int done = 0, n, myid, numprocs, i;
0-9: (gdb)
0-9: 15 double PI25DT = 3.141592653589793238462643;
0-9: 16 double mypi, pi, h, sum, x;
0-9: 17 double startwtime = 0.0, endwtime;
0-9: 18 int namelen;
0-9: 19 char processor_name[MPI_MAX_PROCESSOR_NAME];
0-9: 20
0-9: 21 MPI_Init(&argc,&argv);
0-9: 22 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
0-9: 23 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
0-9: 24 MPI_Get_processor_name(processor_name,&namelen);
0-9: (gdb)
0-9: 25
0-9: 26 fprintf(stdout,"Process %d of %d is on %s\n",
0-9: 27 myid, numprocs, processor_name);
0-9: 28 fflush(stdout);
0-9: 29
0-9: 30 n = 10000; /* default # of rectangles */
0-9: 31 if (myid == 0)
0-9: 32 startwtime = MPI_Wtime();
0-9: 33
0-9: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0-9: (gdb) b 30
0-9: Breakpoint 2 at 0x4000000000002541:

file /home/lusk/mpich2/examples/cpi.c, line 30.
0-9: (gdb) r
0-9: Continuing.
0: Process 0 of 10 is on ksl2
1: Process 1 of 10 is on ksl2
2: Process 2 of 10 is on ksl2
3: Process 3 of 10 is on ksl2
4: Process 4 of 10 is on ksl2
5: Process 5 of 10 is on ksl2
6: Process 6 of 10 is on ksl2
7: Process 7 of 10 is on ksl2
8: Process 8 of 10 is on ksl2
9: Process 9 of 10 is on ksl2

8 DEBUGGING 18

0-9:
0-9: Breakpoint 2, main (argc=1, argv=0x60000fffffffb4b8)
0-9: at /home/lusk/mpich2/examples/cpi.c:30
0-9: 30 n = 10000; * default # of rectangles */
0-9: (gdb) n
0-9: 31 if (myid == 0)
0-9: (gdb) n
0: 32 startwtime = MPI_Wtime();
1-9: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0-9: (gdb) z 0
0: (gdb) n
0: 34 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
0: (gdb) z
0-9: (gdb) where
0-9: #0 main (argc=1, argv=0x60000fffffffb4b8)
0-9: at /home/lusk/mpich2/examples/cpi.c:34
0-9: (gdb) n
0-9: 36 h = 1.0 / (double) n;
0-9: (gdb)
0-9: 37 sum = 0.0;
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)

8 DEBUGGING 19

0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb)
0-9: 39 for (i = myid + 1; i <= n; i += numprocs)
0-9: (gdb)
0-9: 41 x = h * ((double)i - 0.5);
0-9: (gdb)
0-9: 42 sum += f(x);
0-9: (gdb) p sum
0: $1 = 19.999875951497799
1: $1 = 19.999867551672725
2: $1 = 19.999858751863549
3: $1 = 19.999849552071328
4: $1 = 19.999839952297158
5: $1 = 19.999829952542203
6: $1 = 19.999819552807658
7: $1 = 19.999808753094769
8: $1 = 19.999797553404832
9: $1 = 19.999785953739192
0-9: (gdb) c
0-9: Continuing.
0: pi is approximately 3.1415926544231256, Error is 0.0000000008333325
1-9:
1-9: Program exited normally.
1-9: (gdb) 0: wall clock time = 44.909412
0:
0: Program exited normally.
0: (gdb) q
0-9: MPIGDB ENDING
ksl2%

You can attach to a running job with

mpiexec -gdba <jobid>

where <jobid> comes from mpdlistjobs.

9 MPICH2 UNDER WINDOWS 20

8.2 TotalView

MPICH2 supports use of the TotalView debugger from Etnus. If mpich
has been configured to enable debugging with TotalView (See the section on
configuration of the mpd process manager in the Installer’s Guide) then one
can debug an MPI program started with mpd by adding -tv to the global
mpiexec arguments, as in

mpiexec -tv -n 3 cpi

You will get a popup window from TotalView asking whether you want to
start the job in a stopped state. If so, when the TotalView window appears,
you may see assembly code in the source window. Click on main in the stack
window (upper left) to see the source of the main function. TotalView will
show that the program (all processes) are stopped in the call to MPI Init.

9 MPICH2 under Windows

9.1 Directories

The default installation of MPICH2 is in C:\Program Files\MPICH2. Un-
der the installation directory are three sub-directories: include, bin, and
lib. The include and lib directories contain the header files and libraries
necessary to compile MPI applications. The bin directory contains the pro-
cess manager, smpd.exe, and the MPI job launcher, mpiexec.exe. The dlls
that implement MPICH2 are copied to the Windows system32 directory.

9.2 Compiling

The libraries in the lib directory were compiled with MS Visual C++ .NET
2003 and Intel Fortran 8.1. These compilers and any others that can link
with the MS .lib files can be used to create user applications. gcc and g77
for cygwin can be used with the libmpich*.a libraries.

For MS Developer Studio users: Create a project and add

C:\Program Files\MPICH2\include

A GENERAL INFORMATION 21

to the include path and

C:\Program Files\MPICH2\lib

to the library path. Add mpi.lib and cxx.lib to the link command. Add
cxxd.lib to the Debug target link instead of cxx.lib.

Intel Fortran 8 users should add fmpich2.lib to the link command.

Cygwin users should use libmpich2.a libfmpich2g.a.

9.3 Running

MPI jobs are run from a command prompt using mpiexec.exe. See Sec-
tion 6.4 on mpiexec for smpd for a description of the options to mpiexec.

Frequently Asked Questions This is the content of the online FAQ, as of
November 7, 2005.

A General Information

• Q: What is MPICH2?

• Q: What does MPICH stand for?

B Building MPICH2

• Q: What is the difference between the MPD and SMPD process man-
agers?

• Q: When I use the g95 Fortran compiler on a 64-bit platform, some of
the tests fail

C Compiling MPI Programs

• C++ and SEEK SET

D RUNNING MPI PROGRAMS 22

• When building the ssm or sshm channel, I get the error ”mpidu process locks.h:234:2:
error: #error *** No atomic memory operation specified to implement
busy locks ***”

D Running MPI Programs

• Q: How do I pass environment variables to the processes of my parallel
program

• Q: How do I pass environment variables to the processes of my parallel
program when using the mpd process manager?

• Q: What determines the hosts on which my MPI processes run?

• Q: On Windows, I get an error when I attempt to call MPI Comm spawn.

D.1 Q: What is MPICH2?

MPICH2 is a freely available, portable implementation of MPI, the Standard
for message-passing libraries. It implements both MPI-1 and MPI-2.

D.2 Q: What does MPICH stand for?

A: MPI stands for Message Passing Interface. The CH comes from Chameleon,
the portability layer used in the original MPICH to provide portability to
the existing message-passing systems.

D.3 Q: What is the difference between the MPD and SMPD
process managers?

MPD is the default process manager for MPICH2 on Unix platforms. It
is written in Python. SMPD is the primary process manager for MPICH2
on Windows. It is also used for running on a combination of Windows and
Linux machines. It is written in C.

http://www.mpi-forum.org

D RUNNING MPI PROGRAMS 23

D.4 Q: When I use the g95 Fortran compiler on a 64-bit
platform, some of the tests fail

A: The g95 compiler incorrectly defines the default Fortran integer as a 64-
bit integer while defining Fortran reals as 32-bit values (the Fortran standard
requires that INTEGER and REAL be the same size). This was apparently
done to allow a Fortran INTEGER to hold the value of a pointer, rather
than requiring the programmer to select an INTEGER of a suitable KIND.
To force the g95 compiler to correctly implement the Fortran standard, use
the -i4 flag. For example, set the environment variable F90FLAGS before
configuring MPICH2:

setenv F90FLAGS "-i4"

G95 users should note that there (at this writing) are two distributions of
g95 for 64-bit Linux platforms. One uses 32-bit integers and reals (and
conforms to the Fortran standard) and one uses 32-bit integers and 64-bit
reals. We recommend using the one that conforms to the standard (note
that the standard specifies the ratio of sizes, not the absolute sizes, so a
Fortran 95 compiler that used 64 bits for both INTEGER and REAL would
also conform to the Fortran standard. However, such a compiler would need
to use 128 bits for DOUBLE PRECISION quantities).

D.5 C++ and SEEK SET

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

The problem is that both stdio.h and the MPI C++ interface use SEEK SET,
SEEK CUR, and SEEK END. This is really a bug in the MPI-2 standard. You
can try adding

#undef SEEK_SET
#undef SEEK_END
#undef SEEK_CUR

before mpi.h is included, or add the definition

D RUNNING MPI PROGRAMS 24

-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK SET etc. to
be skipped).

D.6 When building the ssm or sshm channel, I get the er-
ror ”mpidu process locks.h:234:2: error: #error *** No
atomic memory operation specified to implement busy
locks ***”

The ssm and sshm channels do not work on all platforms because they use
special interprocess locks (often assembly) that may not work with some
compilers or machine architectures. They work on Linux with gcc, Intel,
and Pathscale compilers on various Intel architectures. They also work in
Windows and Solaris environments.

D.7 Q: How do I pass environment variables to the processes
of my parallel program

A: The specific method depends on the process manager and version of
mpiexec that you are using.

D.8 Q: How do I pass environment variables to the processes
of my parallel program when using the mpd process
manager?

A: By default, all the environment variables in the shell where mpiexec is run
are passed to all processes of the application program. (The one exception
is LD LIBRARY PATH when the mpd’s are being run as root.) This default
can be overridden in many ways, and individual environment variables can
be passed to specific processes using arguments to mpiexec. A synopsis of
the possible arguments can be listed by typing

mpiexec -help

and further details are available in the Users Guide.

http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf

D RUNNING MPI PROGRAMS 25

D.9 Q: What determines the hosts on which my MPI pro-
cesses run?

A: Where processes run, whether by default or by specifying them yourself,
depends on the process manager being used.

If you are using the gforker process manager, then all MPI processes
run on the same host where you are running mpiexec.

If you are using the mpd process manager, which is the default, then many
options are available. If you are using mpd, then before you run mpiexec,
you will have started, or will have had started for you, a ring of processes
called mpd’s (multi-purpose daemons), each running on its own host. It is
likely, but not necessary, that each mpd will be running on a separate host.
You can find out what this ring of hosts consists of by running the program
mpdtrace. One of the mpd’s will be running on the “local” machine, the one
where you will run mpiexec. The default placement of MPI processes, if one
runs

mpiexec -n 10 a.out

is to start the first MPI process (rank 0) on the local machine and then to
distribute the rest around the mpd ring one at a time. If there are more
processes than mpd’s, then wraparound occurs. If there are more mpd’s than
MPI processes, then some mpd’s will not run MPI processes. Thus any
number of processes can be run on a ring of any size. While one is doing
development, it is handy to run only one mpd, on the local machine. Then
all the MPI processes will run locally as well.

The first modification to this default behavior is the -1 option to mpiexec
(not a great argument name). If -1 is specified, as in

mpiexec -1 -n 10 a.out

then the first application process will be started by the first mpd in the ring
after the local host. (If there is only one mpd in the ring, then this will be on
the local host.) This option is for use when a cluster of compute nodes has
a “head node” where commands like mpiexec are run but not application
processes.

If an mpd is started with the --ncpus option, then when it is its turn to
start a process, it will start several application processes rather than just

REFERENCES 26

one before handing off the task of starting more processes to the next mpd
in the ring. For example, if the mpd is started with

mpd --ncpus=4

then it will start as many as four application processes, with consecutive
ranks, when it is its turn to start processes. This option is for use in clusters
of SMP’s, when the user would like consecutive ranks to appear on the same
machine. (In the default case, the same number of processes might well run
on the machine, but their ranks would be different.)

(A feature of the –ncpus=¡n¿ argument is that it has the above effect only
until all of the mpd’s have started n processes at a time once; afterwards
each mpd starts one process at a time. This is in order to balance the
number of processes per machine to the extent possible.)

Other ways to control the placement of processes are by direct use of
arguments to mpiexec. See the Users Guide.

D.10 Q: On Windows, I get an error when I attempt to call
MPI Comm spawn.

A: On Windows, you need to start the program with mpiexec for any of the
MPI-2 dynamic process functions to work.

References

[1] Message Passing Interface Forum. MPI2: A Message Passing Interface
standard. International Journal of High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

[2] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker,
and Jack Dongarra. MPI—The Complete Reference: Volume 1, The
MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf

	Introduction
	Migrating to MPICH2 from MPICH1
	Default Runtime Environment
	Starting Parallel Jobs
	Command-Line Arguments in Fortran
	Configure Options

	Setting Paths
	Quick Start
	Compiling and Linking
	Specifying Compilers
	Shared Libraries
	Special Issues for C++
	Special Issues for Fortran

	Running Programs with mpiexec
	Standard mpiexec
	Extensions for All Process Management Environments
	Extensions for the MPD Process Management Environment
	Basic mpiexec arguments for MPD
	Other Command-Line Arguments to mpiexec
	Environment Variables Affecting mpiexec

	Extensions for SMPD
	mpiexec arguments for SMPD

	Extensions for gforker
	mpiexec arguments for gforker

	Managing the Process Management Environment
	MPD

	Debugging
	gdb via mpiexec
	TotalView

	MPICH2 under Windows
	Directories
	Compiling
	Running

	General Information
	Building MPICH2
	Compiling MPI Programs
	Running MPI Programs
	Q: What is MPICH2?
	Q: What does MPICH stand for?
	Q: What is the difference between the MPD and SMPD process managers?
	Q: When I use the g95 Fortran compiler on a 64-bit platform, some of the tests fail
	C++ and SEEK_SET
	When building the ssm or sshm channel, I get the error "mpidu_process_locks.h:234:2: error: #error *** No atomic memory operation specified to implement busy locks ***"
	Q: How do I pass environment variables to the processes of my parallel program
	Q: How do I pass environment variables to the processes of my parallel program when using the mpd process manager?
	Q: What determines the hosts on which my MPI processes run?
	Q: On Windows, I get an error when I attempt to call MPI_Comm_spawn.

