SUNDIALSTB v2.4.0, a MATLAB Interface to SUNDIALS

Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

April 27, 2009

UCRL-SM-212121

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07TNA27344.

Approved for public release; further dissemination unlimited

Contents
1 Introduction

2 Installation
2.1 Compilation and installation of sundialsTB
2.2 Configuring Matlab’s startup
2.3 Testing the installation o

3 MATLAB Interface to CVODES
3.1 Imterface functions e
3.2 Function types e

4 MATLAB Interface to IDAS
4.1 Interface functions e
4.2 Function types e

5 MATLAB Interface to KINSOL
5.1 Interface functions
5.2 Function types L

6 Supporting modules
6.1 NVECTOR functions
6.2 Parallel utilities e

A Implementation of CVodeMonitor.m
B Implementation of IDAMonitor.m
References

Index

NN ==

w

103

119

135

136

1 Introduction

SUNDIALS [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software
tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems
of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis
capabilities.

SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers.

The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the
various user-callable functions for that solver. However, this MEX file should not be called directly,
but rather through the user-callable functions provided for each MATLAB interface.

A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible,
equally familiar to both SUNDIALS users and MATLAB users. Moreover, we tried to keep the num-
ber of user-callable functions to a minimum. For example, the CVODES MATLAB interface contains
only 12 such functions, 2 of which relate to forward sensitivity analysis and 4 more interface solely
to the adjoint sensitivity module in CVODES. A user who is only interested in integration of ODEs
and not in sensitivity analysis therefore needs to call at most 6 functions. In tune with the MATLAB
ODESET function, optional solver inputs in SUNDIALSTB are specified through a single function; e.g.
CvodeSetOptions for CVODES (a similar function is used to specify optional inputs for forward sensi-
tivity analysis). However, unlike the ODE solvers in MATLAB, we have kept the more flexible SUNDIALS
model in which a separate “solve” function (CVodeSolve for CVODES) must be called to return the
solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and
solution derivatives at additional times) can be obtained at any time with calls to separate functions
(CVodeGetStats and CVodeGet for CVODES).

This document provides a complete documentation for the SUNDIALSTB functions. For additional
details on the methods and underlying SUNDIALS software consult also the coresponding SUNDIALS
user guides [3, 4, 1].

Requirements. For parallel support, SUNDIALSTB depends on MPITB with LAM v > 7.1.1 (for MPI-
2 spawning feature). The required software packages can be obtained from the following addresses.

SUNDIALS http://www.llnl.gov/CASC/sundials
MPITB http://atc.ugr.es/javier-bin/mpitb._eng
LAM http://www.lam-mpi.org/

2 Installation

The following steps are required to install and setup SUNDIALSTB:

2.1 Compilation and installation of sundialsTB

As of version 2.3.0, SUNDIALSTB is distributed only with the complete SUNDIALS package.

In the sequel, we assume that the SUNDIALS package was unpacked under the directory srcdir. The
SUNDIALSTB files are therefore in sredir/sundialsTB.

Compilation and installation of the SUNDIALSTB toolbox is done by running the MATLAB script
install STB.m which is present in the SUNDIALSTB top directory.

1. Launch MATLAB in sundialsTB

% cd srcdir/sundialsTB
% matlab

2. Run the MATLAB script install_STB

Note that parallel support will be compiled into the MEX files only if SLAMHOME is defined
and SMPITB_ROOT is defined and sredir/src/nvec_par exists.

After the MEX files are generated, you will be asked if you wish to install the SUNDIALSTB
toolbox. If you answer yes, you will be then asked for the installation directory (called in the
sequel instdir). To install SUNDIALSTB for all MATLAB users (not usual), assuming MATLAB is
installed under /usr/local/matlab7, specify instdir = /usr/local/matlab7/toolbox. To in-
stall SUNDIALSTB for just one user (usual configuration), install SUNDIALSTB under a directory
of your choice (typically under your matlab working directory). In other words, specify instdir
= /home/user/matlab.

2.2 Configuring Matlab’s startup

After a successful installation, a SUNDIALSTB.m startup script is generated in instdir/sundialsTB.
This file must be called by MATLAB at initialization.

If SUNDIALSTB was installed for all MATLAB users (not usual), add the SUNDIALSTB startup to
the system-wide startup file (by linking or copying):

% cd /usr/local/matlab7/toolbox/local
% 1n -s ../sundialsTB/startup_STB.m .

and add these lines to your original local startup.m

% SUNDIALS Toolbox startup M-file, if it exists.
if exist(’startup_STB’,’file’)

startup_STB
end

If sUNDIALSTB was installed for just one user (usual configuration) and assuming you do not need
to keep any previously existing startup.m, link or copy the startup_STB.m script to your working
‘matlab’ directory:

% cd “/matlab
% 1ln -s sundialsTB/startup_STB.m startup.m

If you already have a startup.m, use the method described above, first linking (or copying)
startup STB.m to the destination subdirectory and then editing the file /matlab/startup.m to
run startup_STB.m.

2.3 Testing the installation

If everything went fine, you should now be able to try one of the CVODES, IDAS, or KINSOL examples
(in MATLAB, type "help cvodes’, ’help idas’, or ’help kinsol’ to see a list of all examples available). For
example, go to the CVODES serial example directory:

% cd instdir/sundialsTB/cvode/examples_ser

and then launch MATLAB and execute mcvsRoberts_dns.

3 MATLAB Interface to CVODES

The MATLAB interface to CVODES provides access to all functionality of the CVODES solver, including
IVP simulation and sensitvity analysis (both forward and adjoint).

The interface consists of several user-callable functions. In addition, the user must provide several
required and optional user-supplied functions which define the problem to be solved. The user-callable
functions are listed in Tables 1, 2, and 3 for IVP solution, forward sensitivity analysis (FSA), and
adjoint sensitivity analysis (ASA), respectively. For completness, some functions appear in more than
one table. The types of user-supplied functions are listed in Table 4. All these functions are fully
documented later in this section. For more in depth details, consult also the CVODES user guide [3].

To illustrate the use of the CVODES MATLAB interface, several example problems are provided with
SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations of
example problems provided with CVODES.

Table 1: CVODES MATLAB interface functions for ODE integration

CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodelnit | allocate and initialize memory for CVODES. 11
CVodeQuadlnit | allocate and initialize memory for quadrature integration. 12
CVodeRelnit | reinitialize memory for CVODES. 14
CVodeQuadRelnit | reinitialize memory for quadrature integration. 15
CVode | integrate the ODE problem. 17
CVodeGetStats | return statistics for the CVODES solver. 19
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function. 103

Table 2: CVODES MATLAB interface functions for FSA
CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodeSensSetOptions | create an options structure for FSA. 10
CVodelnit | allocate and initialize memory for CVODES. 11
CVodeQuadlInit | allocate and initialize memory for quadrature integration. 12
CVodeSenslnit | allocate and initialize memory for FSA. 12
CVodeRelnit | reinitialize memory for CVODES. 14
CVodeQuadRelnit | reinitialize memory for quadrature integration. 15
CVodeSensRelnit | reinitialize memory for FSA. 15
CVodeSensToggleOff | temporarily deactivates FSA. 19
CVode | integrate the ODE problem. 17
CVodeGetStats | return statistics for the CVODES solver. 19
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function. 103

Table 3: CVODES MATLAB interface functions for ASA

CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodelnit | allocate and initialize memory for the forward problem. 11
CVodeQuadlnit | allocate and initialize memory for forward quadrature integration. 12
CVodeQuadRelnit | reinitialize memory for forward quadrature integration. 15
CVodeRelnit | reinitialize memory for the forward problem. 14
CVodeAdjlnit | allocate and initialize memory for ASA. 13
CVodelnitB | allocate and initialize a backward problem. 13
CVodeAdjRelnit | reinitialize memory for ASA. 16
CVodeRelnitB | reinitialize a backward problem. 16
CVode | integrate the forward ODE problem. 17

CVodeB | integrate the backward problems. 18
CVodeGetStats | return statistics for the integration of the forward problem. 19
CVodeGetStatsB | return statistics for the integration of a backward problem. 21
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function for forward problem. 103
CVodeMonitorB | monitoring function for backward problems. 118

3.1 Interface functions

CVodeSetOptions

PURPOSE

CVodeSetOptions creates an options structure for CVODES.
SYNOPSIS

function options = CVodeSetOptions(varargin)
DESCRIPTION

CVodeSetOptions creates an options structure for CVODES.

Usage: OPTIONS
OPTIONS

CVodeSetOptions(’NAME1l’ ,VALUE1l, NAME2’ ,VALUE2, ...)
CVodeSetOptions (OLDOPTIONS, *NAMEL1’ ,VALUEL, .. .)

OPTIONS = CVodeSetOptions(’NAME1’,VALUE1, NAME2’ ,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.
It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeSetOptions(OLDOPTIONS,’NAME1’,VALUELl,...) alters an
existing options structure OLDOPTIONS.

CVodeSetOptions with no input arguments displays all property names

Table 4: CVODES MATLAB function types

CVRhsFn | RHS function 25

CVRootFn | root-finding function 26

g CVQuadRhsFn | quadrature RHS function 26
% CVSensRhsFn | sensitivity RHS function 25
S CVDenseJacFn | dense Jacobian function 27
g CVBandJacFn | banded Jacobian function 28
5 CVJacTimesVecFn | Jacobian times vector function 28
% CVPrecSetupFn | preconditioner setup function 29
= CVPrecSolveFn | preconditioner solve function 30
CVGlocalFn | RHS approximation function (BBDPre) | 32
CVGcommFn | communication function (BBDPre) 31
CVMonitorFn | monitoring function 33
CVRhsFnB | RHS function 34

E CVQuadRhsFnB | quadrature RHS function 34
% CVDenseJacFnB | dense Jacobian function 35
2 CVBandJacFnB | banded Jacobian function 35
—? CVJacTimesVecFnB | Jacobian times vector function 36
§ CVPrecSetupFnB | preconditioner setup function 37
~ CVPrecSolveFnB | preconditioner solve function 38
& CVGlocalFnB | RHS approximation function (BBDPre) | 39
CVGcommFnB | communication function (BBDPre) 38
CVMonitorFnB | monitoring function 40

and their possible values.

CVodeSetOptions properties
(See also the CVODES User Guide)

UserData - User data passed unmodified to all functions [empty]
If UserData is not empty, all user provided functions will be
passed the problem data as their last input argument. For example,
the RHS function must be defined as YD = ODEFUN(T,Y,DATA).

LMM - Linear Multistep Method [’Adams’ | ’BDF’]

This property specifies whether the Adams method is to be used instead
of the default Backward Differentiation Formulas (BDF) method.

The Adams method is recommended for non-stiff problems, while BDF is
recommended for stiff problems.

NonlinearSolver - Type of nonlinear solver used [Functional | Newton]
The ’Functional’ nonlinear solver is best suited for non-stiff
problems, in conjunction with the ’Adams’ linear multistep method,
while ’Newton’ is better suited for stiff problems, using the ’BDF’
method.

RelTol - Relative tolerance [positive scalar | le-4]

RelTol defaults to le-4 and is applied to all components of the solution
vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | le-6]

The relative and absolute tolerances define a vector of error weights
with components

ewt(i) = 1/(RelTolx|y(i)| + AbsTol) if AbsTol is a scalar

ewt(i) = 1/(RelTolx|y(i)| + AbsTol(i)) if AbsTol is a vector
This vector is used in all error and convergence tests, which
use a weighted RMS norm on all error-like vectors v:

WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))~2),
where N is the problem dimension.

MaxNumSteps - Maximum number of steps [positive integer | 500]

CVode will return with an error after taking MaxNumSteps internal steps
in its attempt to reach the next output time.

InitialStep - Suggested initial stepsize [positive scalar]

By default, CVode estimates an initial stepsize hO at the initial time
t0 as the solution of
WRMSnorm(h0~2 ydd / 2) = 1
where ydd is an estimated second derivative of y(t0).
MaxStep - Maximum stepsize [positive scalar | inf]
Defines an upper bound on the integration step size.
MinStep - Minimum stepsize [positive scalar | 0.0]
Defines a lower bound on the integration step size.

MaxOrder - Maximum method order [1-12 for Adams, 1-5 for BDF | 5]
Defines an upper bound on the linear multistep method order.

StopTime - Stopping time [scalar]

Defines a value for the independent variable past which the solution
is not to proceed.

RootsFn - Rootfinding function [function]

To detect events (roots of functions), set this property to the event
function. See CVRootFn.

NumRoots - Number of root functions [integer | O]

Set NumRoots to the number of functions for which roots are monitored.
If NumRoots is 0, rootfinding is disabled.

StabilityLimDet - Stability limit detection algorithm [false | true]
Flag used to turn on or off the stability limit detection algorithm
within CVODES. This property can be used only with the BDF method.

In this case, if the order is 3 or greater and if the stability limit
is detected, the method order is reduced.

LinearSolver - Linear solver type [Dense|Diag|Band|GMRES|BiCGStab|TFQMR]
Specifies the type of linear solver to be used for the Newton nonlinear
solver (see NonlinearSolver). Valid choices are: Dense (direct, dense
Jacobian), Band (direct, banded Jacobian), Diag (direct, diagonal Jacobian),
GMRES (iterative, scaled preconditioned GMRES), BiCGStab (iterative, scaled
preconditioned stabilized BiCG), TFQMR (iterative, scaled transpose-free QMR).
The GMRES, BiCGStab, and TFQMR are matrix—-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, CVODES uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type CVDenseJacFn and
must return a dense Jacobian matrix. For the Band linear solver, JacobianFn
must be of type CVBandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES, BiCGStab, and TFQMR, JacobianFn must
be of type CVJacTimesVecFn and must return a Jacobian-vector product. This
property is not used for the Diag linear solver.

If these options are for a backward problem, the corresponding funciton types
are CVDenseJacFnB for the Dense linear solver, CVBandJacFnB for he band linear
solver, and CVJacTimesVecFnB for the iterative linear solvers.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used
(see LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]
Specifies the type of Gram-Schmidt orthogonalization (classical or modified).
This property is used only if the GMRES linear solver is used (see LinSolver).

PrecType - Preconditioner type [Left | Right | Both | Nome]

Specifies the type of user preconditioning to be done if an iterative linear
solver, GMRES, BiCGStab, or TFQMR is used (see LinSolver). PrecType must be
one of the following: ’None’, ’Left’, ’Right’, or ’Both’, corresponding to no
preconditioning, left preconditioning only, right preconditioning only, and
both left and right preconditioning, respectively.

PrecModule - Preconditioner module [BandPre | BBDPre | UserDefined]

If PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)
CVODES provides the following two general-purpose preconditioner modules:

BandPre provide a band matrix preconditioner based on difference quotients
of the ODE right-hand side function. The user must specify the lower and
upper half-bandwidths through the properties LowerBwidth and UpperBwidth,
respectively.

BBDPre can be only used with parallel vectors. It provide a preconditiomner
matrix that is block-diagonal with banded blocks. The blocking corresponds
to the distribution of the dependent variable vector y among the processors.
Each preconditioner block is generated from the Jacobian of the local part
(on the current processor) of a given function g(t,y) approximating
f(t,y) (see GlocalFn). The blocks are generated by a difference quotient
scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,
together with PrecSolve, defines left and right preconditioner matrices
(either of which can be trivial), such that the product P1#P2 is an
aproximation to the Newton matrix. PrecSetupFn must be of type CVPrecSetupFn
or CVPrecSetupFnB for forward and backward problems, respectively.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which
must solve a linear system Pz = r, for given r. PrecSolveFn must be of type
CVPrecSolveFn or CVPrecSolveFnB for forward and backward problems, respectively.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the ODE right-hand side. GlocalFn must
be of type CVGlocFn or CVGlocFnB for forward and backward problems, respectively.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type CVGcommFn or CVGcommFnB for forward and
backward problems, respectively.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in CVODES is used
(see PrecModule), it specifies the lower half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre preconditioner
module (see PrecModule) is used, it specifies the lower half-bandwidth of
the band preconditioner matrix. LowerBwidth defaults to O (no sub-diagonals).
UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]
This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the upper half-bandwidth of the band Jacobian approximation.
If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in CVODES is used
(see PrecModule), it specifies the upper half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre
preconditioner module (see PrecModule) is used, it specifies the upper
half-bandwidth of the band preconditioner matrix. UpperBwidth defaults to
0 (no super-diagonals).
LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | O]
Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).
UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]
Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

MonitorFn - User-provied monitoring function [function]
Specifies a function that is called after each successful integration step.
This function must have type CVMonitorFn or CVMonitorFnB, depending on
whether these options are for a forward or a backward problem, respectively.
Sample monitoring functions CVodeMonitor and CvodeMonitorB are provided
with CVODES.

MonitorData - User-provied data for the monitoring function [struct]
Specifies a data structure that is passed to the MonitorFn function every
time it is called.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem right-hand side depends on
forward sensitivites. If TRUE, the right-hand side function provided for
this backward problem must have the appropriate type (see CVRhsFnB).

ErrorMessages - Post error/warning messages [true | false]
Note that any errors in CVodeInit will result in a Matlab error, thus
stoping execution. Only subsequent calls to CVODES functions will respect
the value specified for ’ErrorMessages’.

NOTES:

The properties listed above that can only be used for forward problems
are: StopTime, RootsFn, and NumRoots.

The property SensDependent is relevant only for backward problems.
See also

CVodeInit, CVodeReInit, CVodeInitB, CVodeReInitB
CVRhsFn, CVRootFn,

CVDenseJacFn, CVBandJacFn, CVJacTimesVecFn
CVPrecSetupFn, CVPrecSolveFn

CVGlocalFn, CVGcommFn

CVMonitorFn

CVRhsFnB,

CVDenseJacFnB, CVBandJacFnB, CVJacTimesVecFnB
CVPrecSetupFnB, CVPrecSolveFnB

CVGlocalFnB, CVGcommFnB

CVMonitorFnB

CVodeQuadSetOptions

PURPOSE

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.
SYNOPSIS

function options = CVodeQuadSetOptions(varargin)

DESCRIPTION

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.

Usage: OPTIONS
OPTIONS

CVodeQuadSetOptions (’NAME1’ ,VALUE1, *NAME2’ ,VALUE2, ...)
CVodeQuadSetOptions (OLDOPTIONS, ’NAME1’ ,VALUEL,...)

OPTIONS = CVodeQuadSetOptions(’NAME1’,VALUE1, NAME2’,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeQuadSetOptions(OLDOPTIONS, ’NAME1’,VALUEl,...) alters an
existing options structure OLDOPTIONS.

CVodeQuadSetOptions with no input arguments displays all property names
and their possible values.

CVodeQuadSetOptions properties
(See also the CVODES User Guide)

ErrControl - Error control strategy for quadrature variables [false | true]
Specifies whether quadrature variables are included in the error test.

RelTol - Relative tolerance for quadrature variables [scalar le-4]
Specifies the relative tolerance for quadrature variables. This parameter is
used only if ErrControl = true.

AbsTol - Absolute tolerance for quadrature variables [scalar or vector le-6]
Specifies the absolute tolerance for quadrature variables. This parameter is
used only if ErrControl = true.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem quadrature right-hand side depends
on forward sensitivites. If TRUE, the right-hand side function provided for

this backward problem must have the appropriate type (see CVQuadRhsFnB).

See also
CVodeQuadInit, CVodeQuadRelInit.
CVodeQuadInitB, CVodeQuadReInitB

CVodeSensSetOptions

PURPOSE

CVodeSensSetOptions creates an options structure for FSA with CVODES.
SYNOPSIS

function options = CVodeSensSetOptions(varargin)

DESCRIPTION

CVodeSensSetOptions creates an options structure for FSA with CVODES.

Usage: OPTIONS
OPTIONS

CVodeSensSetOptions (’NAME1’ ,VALUE1, *NAME2’ ,VALUE2, ...)
CVodeSensSetOptions (OLDOPTIONS, NAME1’ ,VALUEL, .. .)

OPTIONS = CVodeSensSetOptions(’NAME1’,VALUE1l, NAME2’,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeSensSetOptions(OLDOPTIONS, ’NAME1’ ,VALUELl,...) alters an
existing options structure OLDOPTIONS.

CVodeSensSetOptions with no input arguments displays all property names
and their possible values.

CVodeSensSetOptions properties
(See also the CVODES User Guide)

method - FSA solution method [’Simultaneous’ | ’Staggered’]
Specifies the FSA method for treating the nonlinear system solution for
sensitivity variables. In the simultaneous case, the nonlinear systems
for states and all sensitivities are solved simultaneously. In the
Staggered case, the nonlinear system for states is solved first and then
the nonlinear systems for all sensitivities are solved at the same time.
ParamField - Problem parameters [string]
Specifies the name of the field in the user data structure (specified through
the ’UserData’ field with CVodeSetOptions) in which the nominal values of the problem
parameters are stored. This property is used only if CVODES will use difference
quotient approximations to the sensitivity right-hand sides (see CVSensRhsFn).
ParamList - Parameters with respect to which FSA is performed [integer vector]
Specifies a list of Ns parameters with respect to which sensitivities are to
be computed. This property is used only if CVODES will use difference-quotient
approximations to the sensitivity right-hand sides. Its length must be Ns,

10

consistent with the number of columns of ySO (see CVodeSensInit).

ParamScales - Order of magnitude for problem parameters [vector]
Provides order of magnitude information for the parameters with respect to
which sensitivities are computed. This information is used if CVODES
approximates the sensitivity right-hand sides or if CVODES estimates integration
tolerances for the sensitivity variables (see RelTol and AbsTol).

RelTol - Relative tolerance for sensitivity variables [positive scalar]
Specifies the scalar relative tolerance for the sensitivity variables.

See also AbsTol.

AbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]
Specifies the absolute tolerance for sensitivity variables. AbsTol must be
either a row vector of dimension Ns, in which case each of its components is
used as a scalar absolute tolerance for the coresponding sensitivity vector,
or a N x Ns matrix, in which case each of its columns is used as a vector
of absolute tolerances for the corresponding sensitivity vector.

By default, CVODES estimates the integration tolerances for sensitivity
variables, based on those for the states and on the order of magnitude
information for the problem parameters specified through ParamScales.

ErrControl - Error control strategy for sensitivity variables [false | true]
Specifies whether sensitivity variables are included in the error control test.
Note that sensitivity variables are always included in the nonlinear system
convergence test.

DQtype - Type of DR approx. of the sensi. RHS [Centered | Forward]

Specifies whether to use centered (second-order) or forward (first-order)
difference quotient approximations of the sensitivity eqation right-hand
sides. This property is used only if a user-defined sensitivity right-hand
side function was not provided.

DQparam - Cut-off parameter for the DQ approx. of the sensi. RHS [scalar | 0.0]
Specifies the value which controls the selection of the difference-quotient
scheme used in evaluating the sensitivity right-hand sides (switch between
simultaneous or separate evaluations of the two components in the sensitivity
right-hand side). The default value 0.0 indicates the use of simultaenous approximation
exclusively (centered or forward, depending on the value of DQtype.

For DQparam >= 1, CVODES uses a simultaneous approximation if the estimated
DQ perturbations for states and parameters are within a factor of DQparam,

and separate approximations otherwise. Note that a value DQparam < 1

will inhibit switching! This property is used only if a user-defined sensitivity
right-hand side function was not provided.

See also
CVodeSensInit, CVodeSensRelnit

CVodelnit

PURPOSE

CVodeInit allocates and initializes memory for CVODES.
SYNOPSIS

function status = CVodeInit(fct, lmm, nls, t0, yO, options)

DESCRIPTION

11

CVodelInit allocates and initializes memory for CVODES.
Usage: CVodeInit (ODEFUN, LMM, NLS, TO, YO [, OPTIONS])
ODEFUN is a function defining the ODE right-hand side: y’ = f(t,y).

This function must return a vector containing the current
value of the righ-hand side.

LMM is the Linear Multistep Method (’Adams’ or ’BDF’)

NLS is the type of nonlinear solver used (’Functional’ or ’Newton’)
TO is the initial value of t.

YO is the initial condition vector y(tO).

OPTIONS is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVodeSetOptions, CVRhsFn

NOTES:

1) The ’Functional’ nonlinear solver is best suited for non-stiff
problems, in conjunction with the ’Adams’ linear multistep method,
while ’Newton’ is better suited for stiff problems, using the ’BDF’
method.

2) When using the ’Newton’ nonlinear solver, a linear solver is also
required. The default one is ’Dense’, indicating the use of direct
dense linear algebra (LU factorization). A different linear solver
can be specified through the option ’LinearSolver’ to CVodeSetOptions.

CVodeQuadInit

PURPOSE

CVodeQuadInit allocates and initializes memory for quadrature integration.
SYNOPSIS

function status = CVodeQuadInit(fctQ, yQO, options)

DESCRIPTION

CVodeQuadInit allocates and initializes memory for quadrature integration.

Usage: CVodeQuadInit (QFUN, YQO [, OPTIONS])

QFUN is a function defining the righ-hand sides of the quadrature
ODEs yQ’ = fQ(t,y).
YQO is the initial conditions vector yQ(tO0).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVQuadRhsFn

CVodeSensInit

12

PURPOSE

CVodeSensInit allocates and initializes memory for FSA with CVODES.
SYNOPSIS

function status = CVodeSensInit(Ns,fctS,ySO,options)

DESCRIPTION

CVodeSensInit allocates and initializes memory for FSA with CVODES.

Usage: CVodeSensInit (NS, SFUN, YSO [, OPTIONS])

NS is the number of parameters with respect to which sensitivities
are desired

SFUN is a function defining the righ-hand sides of the sensitivity
ODEs yS’ = £5(t,y,yS).

YSO Initial conditions for sensitivity variables.

YSO must be a matrix with N rows and Ns columns, where N is the problem
dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with
the CVodeSetFSAOptions function.

See also CVodeSensSetOptions, CVodeInit, CVSensRhsFn

CVodeAdjInit

PURPOSE

CVodeAdjInit allocates and initializes memory for ASA with CVODES.
SYNOPSIS

function status = CVodeAdjInit(steps, interp)

DESCRIPTION

CVodeAdjInit allocates and initializes memory for ASA with CVODES.
Usage: CVodeAdjInit(STEPS, INTEPR)

STEPS specifies the (maximum) number of integration steps between two
consecutive check points.

INTERP Specifies the type of interpolation used for estimating the forward
solution during the backward integration phase. INTERP should be
’Hermite’, indicating cubic Hermite interpolation, or ’Polynomial’,
indicating variable order polynomial interpolation.

CVodeInitB

PURPOSE

CVodeInitB allocates and initializes backward memory for CVODES.

SYNOPSIS

function [idxB, status] = CVodeInitB(fctB, lmmB, nlsB, tBO, yBO, optionsB)

DESCRIPTION

13

CVodeInitB allocates and initializes backward memory for CVODES.
Usage: IDXB = CVodeInitB (FCTB, LMMB, NLSB, TBO, YBO [, OPTIONSB])
FCTB is a function defining the adjoint ODE right-hand side.

This function must return a vector containing the current
value of the adjoint ODE righ-hand side.

LMMB is the Linear Multistep Method (’Adams’ or ’BDF’)

NLSB is the type of nonlinear solver used (’Functional’ or ’Newton’)
TBO is the final value of t.

YBO is the final condition vector yB(tBO).

OPTIONSB is an (optional) set of integration options, created with
the CVodeSetOptions function.

CVodeInitB returns the index IDXB associated with this backward
problem. This index must be passed as an argument to any subsequent

functions related to this backward problem.

See also: CVodeSetOptions, CVodeInit, CVRhsFnB

CVodeQuadInitB

PURPOSE

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.
SYNOPSIS

function status = CVodeQuadInitB(idxB, fctQB, yQBO, optionsB)

DESCRIPTION

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.
Usage: CVodeQuadInitB (IDXB, QBFUN, YQBO [, OPTIONS])

IDXB is the index of the backward problem, returned by
CVodeInitB.

QBFUN is a function defining the righ-hand sides of the
backward ODEs yQB’ = fQB(t,y,yB).

YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeInitB, CVodeSetQuadOptions, CVQuadRhsFnB

CVodeRelInit

PURPOSE

CVodeRelInit reinitializes memory for CVODES
SYNOPSIS

function status = CVodeReInit(tO, yO, options)

DESCRIPTION

14

CVodeRelInit reinitializes memory for CVODES
where a prior call to CVodeInit has been made with the same
problem size N. CVodeReInit performs the same input checking
and initializations that CVodeInit does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: CVodeReInit (TO, YO [, OPTIONS])

TO is the initial value of t.

YO is the initial condition vector y(tO).

OPTIONS is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVodeSetOptions, CVodelnit

CVodeQuadReInit

PURPOSE

CVodeQuadReInit reinitializes CVODES’s quadrature-related memory
SYNOPSIS

function status = CVodeQuadReInit(yQO, options)

DESCRIPTION

CVodeQuadRelInit reinitializes CVODES’s quadrature-related memory
assuming it has already been allocated in prior calls to CVodelnit
and CVodeQuadInit.

Usage: CVodeQuadReInit (YQO [, OPTIONS])
YQO Initial conditions for quadrature variables yQ(t0).
OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeQuadInit

CVodeSensReInit

PURPOSE

CVodeSensRelInit reinitializes CVODES’s FSA-related memory
SYNOPSIS

function status = CVodeSensReInit(ySO, options)

DESCRIPTION

15

CVodeSensRelnit reinitializes CVODES’s FSA-related memory
assuming it has already been allocated in prior calls to CVodelnit
and CVodeSensInit.
The number of sensitivities Ns is assumed to be unchanged since the
previous call to CVodeSensInit.

Usage: CVodeSensReInit (YSO [, OPTIONS])

YSO Initial conditions for sensitivity variables.
YSO must be a matrix with N rows and Ns columns, where N is the problem
dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with
the CVodeSensSetOptions function.

See also: CVodeSensSetOptions, CVodeReInit, CVodeSensInit

CVodeAdjRelInit

PURPOSE

CVodeAdjRelInit re-initializes memory for ASA with CVODES.
SYNOPSIS

function status = CVodeAdjReInit()

DESCRIPTION

CVodeAdjReInit re-initializes memory for ASA with CVODES.

Usage: CVodeAdjRelnit

CVodeReInitB

PURPOSE

CVodeReInitB re-initializes backward memory for CVODES.
SYNOPSIS

function status = CVodeReInitB(idxB, tBO, yBO, optionsB)
DESCRIPTION

CVodeReInitB re-initializes backward memory for CVODES.
where a prior call to CVodeInitB has been made with the same
problem size NB. CVodeReInitB performs the same input checking
and initializations that CVodeInitB does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: CVodeReInitB (IDXB, TBO, YBO [, OPTIONSB])

IDXB is the index of the backward problem, returned by

16

CVodeInitB.

TBO is the final value of t.

YBO is the final condition vector yB(tBO).

OPTIONSB is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVodeSetOptions, CVodeInitB

CVodeQuadReInitB

PURPOSE

CVodeQuadReInitB reinitializes memory for backward quadrature integration.
SYNOPSIS

function status = CVodeQuadReInitB(idxB, yQBO, optionsB)

DESCRIPTION

CVodeQuadReInitB reinitializes memory for backward quadrature integration.

Usage: CVodeQuadReInitB (IDXB, YSO [, OPTIONS])

IDXB is the index of the backward problem, returned by
CVodeInitB.
YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeReInitB, CVodeQuadInitB

CVode

PURPOSE

CVode integrates the ODE.

SYNOPSIS

function [varargout] = CVode(tout, itask)
DESCRIPTION

CVode integrates the ODE.

Usage: [STATUS, T, Y] = CVode (TOUT, ITASK)
[STATUS, T, Y, YS] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ, YS] = CVode (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

17

and returns in Y the solution at the new internal time. In this case, TOUT
is used only during the first call to CVode to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInit), CVode will return their
values at T in the vector YQ.

If sensitivity calculations were enabled (see CVodeSensInit), CVode will
return their values at T in the matrix YS. Each row in the matrix YS
represents the sensitivity vector with respect to one of the problem parameters.

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments Y and YQ are matrices, each column representing the solution
vector at the corresponding time returned in the vector T. If computed, the
sensitivities are eturned in the 3-dimensional array YS, with YS(:,:,I) representing
the sensitivity vectors at the time T(I).

On return, STATUS is one of the following:
0: successful CVode return.
1: CVode succeded and returned at tstop.
2: CVode succeeded and found one or more roots.

See also CVodeSetOptions, CVodeGetStats

CVodeB

PURPOSE

CVodeB integrates all backwards ODEs currently defined.

SYNOPSIS

function [varargout] = CVodeB(tout,itask)

DESCRIPTION

CVodeB integrates all backwards ODEs currently defined.

Usage: [STATUS, T, YB] = CVodeB (TOUT, ITASK)
[STATUS, T, YB, YQB] = CVodeB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to CVodeB to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInitB), CVodeB will return their
values at T in the vector Y(QB.

18

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments YB and Y(B are matrices, each column representing the solution
vector at the corresponding time returned in the vector T.

If more than one backward problem was defined, the return arguments are cell
arrays, with TIDXB, YBIDXB, and YQBIDXB corresponding to the backward
problem with index IDXB (as returned by CVodeInitB).

On return, STATUS is one of the following:
0: successful CVodeB return.

1: CVodeB succeded and return at a tstop value (internally set).

See also CVodeSetOptions, CVodeGetStatsB

CVodeSensToggleOff

PURPOSE

CVodeSensToggleOff deactivates sensitivity calculations.

SYNOPSIS

function status = CVodeSensToggleOff ()

DESCRIPTION

CVodeSensToggleOff deactivates sensitivity calculations.

It does NOT deallocate sensitivity-related memory so that
sensitivity computations can be later toggled ON (through
CVodeSensReInit).

Usage: CVodeSensToggleOff

See also: CVodeSensInit, CVodeSensRelnit

CVodeGetStats

PURPOSE

CVodeGetStats returns run statistics for the CVODES solver.

SYNOPSIS

function [si, status] = CVodeGetStats()

DESCRIPTION

CVodeGetStats returns run statistics for the CVODES solver.

Usage: STATS = CVodeGetStats

Fields in the structure STATS

19

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o hOused - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics
o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the
i-th rootfinding function has a root (upon a return with status=2 from
CVode) .

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.
Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’
o njeD - number of Jacobian evaluations
o nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Diag’ linear solver
o name - ’Diag’
o nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Band’ linear solver
o name - ’Band’
o njeB - number of Jacobian evaluations
o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

20

njeSG - number of Jacobian-vector product evaluations

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures
o

o

nfeSG - number of right-hand side function evaluations for difference-quotient
Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the
following fields

o nfSe - number of sensitivity right-hand side evaluations

o nfeS - number of right-hand side evaluations for difference-quotient
sensitivity right-hand side approximation

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables

CVodeGetStatsB
PURPOSE

CVodeGetStatsB returns run statistics for the backward CVODES solver.
SYNOPSIS

function [si, status] = CVodeGetStatsB(idxB)

DESCRIPTION

CVodeGetStatsB returns run statistics for the backward CVODES solver.
Usage: STATS = CVodeGetStatsB(IDXB)

IDXB is the index of the backward problem, returned by
CVodeInitB.

Fields in the structure STATS

nst - number of integration steps

nfe - number of right-hand side function evaluations
nsetups - number of linear solver setup calls

netf - number of error test failures

nni - number of nonlinear solver iterations

ncfn - number of convergence test failures

qlast - last method order used

qcur - current method order

hOused - actual initial step size used

hlast - last step size used

hcur - current step size

tcur - current time reached by the integrator
QuadInfo - structure with quadrature integration statistics

O O O O OO OO OO0 O o o

21

o LSInfo - structure with linear solver statistics
The structure LSinfo has different fields, depending on the linear solver used.
If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver
o name - ’Diag’
o nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Band’ linear solver
o name - ’Band’
o njeB - number of Jacobian evaluations
o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’
o