
User Documentation for cvode v2.3.0

Alan C. Hindmarsh and Radu Serban

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

April 2005

UCRL-SM-208108

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

This research was supported under the auspices of the U.S. Department of Energy by the Uni-
versity of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Approved for public release; further dissemination unlimited

Contents

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Historical Background . 1
1.2 Changes from previous versions . 2
1.3 Reading this User Guide . 2

2 CVODE Installation Procedure 5
2.1 Installation steps . 5
2.2 Configuration options . 6
2.3 Configuration examples . 10

3 Mathematical Considerations 11
3.1 IVP solution . 11
3.2 BDF stability limit detection . 14
3.3 Rootfinding . 15

4 Code Organization 17
4.1 SUNDIALS organization . 17
4.2 CVODE organization . 17

5 Using CVODE 21
5.1 Access to library and header files . 21
5.2 Data types . 22
5.3 Header files . 22
5.4 A skeleton of the user’s main program . 23
5.5 User-callable functions . 25

5.5.1 CVODE initialization and deallocation functions 25
5.5.2 Linear solver specification functions . 27
5.5.3 CVODE solver function . 29
5.5.4 Optional input functions . 30
5.5.5 Interpolated output function . 40
5.5.6 Optional output functions . 40
5.5.7 CVODE reinitialization function . 53

5.6 User-supplied functions . 54
5.6.1 ODE right-hand side . 54
5.6.2 Error weight function . 54
5.6.3 Jacobian information (direct method with dense Jacobian) 55
5.6.4 Jacobian information (direct method with banded Jacobian) 56
5.6.5 Jacobian information (SPGMR matrix-vector product) 57
5.6.6 Preconditioning (SPGMR linear system solution) 57

iii

5.6.7 Preconditioning (SPGMR Jacobian data) . 58
5.7 Rootfinding . 59

5.7.1 User-callable functions for rootfinding . 59
5.7.2 User-supplied function for rootfinding . 60

5.8 Preconditioner modules . 61
5.8.1 A serial banded preconditioner module . 61
5.8.2 A parallel band-block-diagonal preconditioner module 63

5.9 FCVODE, a Fortran-C interface module . 69
5.9.1 FCVODE routines . 69
5.9.2 FCVODE optional input and output . 70
5.9.3 Usage of the FCVODE interface module . 70
5.9.4 Usage of the FCVROOT interface to rootfinding 77
5.9.5 Usage of the FCVBP interface to CVBANDPRE 78
5.9.6 Usage of the FCVBBD interface to CVBBDPRE 79

6 Description of the NVECTOR module 83
6.1 The NVECTOR SERIAL implementation . 87
6.2 The NVECTOR PARALLEL implementation . 89
6.3 NVECTOR functions used by CVODE . 92

7 Providing Alternate Linear Solver Modules 93

8 Generic Linear Solvers in SUNDIALS 97
8.1 The DENSE module . 97

8.1.1 Type DenseMat . 97
8.1.2 Accessor Macros . 98
8.1.3 Functions . 98
8.1.4 Small Dense Matrix Functions . 98

8.2 The BAND module . 100
8.2.1 Type BandMat . 100
8.2.2 Accessor Macros . 100
8.2.3 Functions . 102

8.3 The SPGMR module . 102

9 CVODE Constants 105
9.1 CVODE input constants . 105
9.2 CVODE output constants . 105

Bibliography 109

Index 111

iv

List of Tables

2.1 SUNDIALS libraries and header files . 7

5.1 Optional inputs for cvode, cvdense, cvband, and cvspgmr 31
5.2 Optional outputs from cvode, cvdense, cvband, cvdiag, and cvspgmr 41
5.3 Description of the fcvode optional input-output arrays IOPT and ROPT 71

6.1 Description of the NVECTOR operations . 85
6.2 List of vector functions usage by cvode code modules 92

v

List of Figures

4.1 Organization of the SUNDIALS suite . 18
4.2 Overall structure diagram of the cvode package . 19

5.1 Diagram of the user program and cvode package for integration of IVP 23

8.1 Diagram of the storage for a matrix of type BandMat 101

vii

Chapter 1

Introduction

cvode is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers. This suite consists of cvode, kinsol, and ida, and variants of these with sensi-
tivity analysis capabilities.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are vode [1] and vodpk [3]. vode is a general purpose
solver that includes methods for stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [17]. vodpk is a variant of vode that uses a
preconditioned Krylov (iterative) method for the solution of the linear systems. vodpk is a powerful
tool for large stiff systems because it combines established methods for stiff integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of
stiffness, in the form of the user-supplied preconditioner matrix [2]. The capabilities of both vode

and vodpk have been combined in the C-language package cvode [8].

In the process of translating the vode and vodpk algorithms into C, the overall cvode organi-
zation has been changed considerably. One key feature of the cvode organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in pvode [6], the parallel variant
of cvode.

Recently, the functionality of cvode and pvode has been combined into one single code, simply
called cvode. Development of the new version of cvode was concurrent with a redesign of the
vector operations module across the sundials suite. The key feature of the new nvector module
is that it is written in terms of abstract vector operations with the actual vector kernels attached
by a particular implementation (such as serial or parallel) of nvector. This allows writing the
sundials solvers in a manner independent of the actual nvector implementation (which can be
user-supplied), as well as allowing more than one nvector module linked into an executable file.

There are several motivations for choosing the C language for cvode. First, a general move-
ment away from Fortran and toward C in scientific computing is apparent. Second, the pointer,
structure, and dynamic memory allocation features in C are extremely useful in software of this
complexity, with the great variety of method options offered. Finally, we prefer C over C++ for
cvode because of the wider availability of C compilers, the potentially greater efficiency of C, and
the greater ease of interfacing the solver to applications written in extended Fortran.

2 Introduction

1.2 Changes from previous versions

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build systems has been further improved to make
it more robust.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvode now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §5.5.4 and §5.5.6.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

Installation of cvode (and all of sundials) has been completely redesigned and is now based
on configure scripts.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We
expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of cvode. The most casual user, with a small IVP
problem only, can get by with reading §3.1, then Chapter 5 through §5.5.3 only, and looking at
examples in [14]. In a different direction, a more expert user with an IVP problem may want to
(a) use a package preconditioner (§5.8), (b) supply his/her own Jacobian or preconditioner routines
(§5.6), (c) do multiple runs of problems of the same size (§5.5.7), (d) supply a new nvector module
(Chapter 6), or even (e) supply a different linear solver module (§4.2 and Chapter 8).

The structure of this document is as follows:

• In Chapter 2 we begin with instructions for the installation of cvode, within the structure of
sundials.

• In Chapter 3, we give short descriptions of the numerical methods implemented by cvode for
the solution of initial value problems for systems of ODEs.

• The following chapter describes the structure of the sundials suite of solvers (§4.1) and the
software organization of the cvode solver (§4.2).
• In Chapter 5, we give an overview of the usage of cvode, as well as a complete description of

the user interface and of the user-defined routines for integration of IVP ODEs.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the two nvector implementations provided with
sundials: a serial implementation (§6.1) and a parallel implementation based on MPI (§6.2).

1.3 Reading this User Guide 3

• Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide
his/her own such module.

• Chapter 8 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, Chapter 9 lists the constants used for input to and output from cvode.

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeMalloc) within textual explanations appear in type-
writer type style; fields in C structures (such as content) appear in italics; and packages or modules,
such as cvdense, are written in all capitals. In the Index, page numbers that appear in bold indicate
the main reference for that entry.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the cvode

and pvode codes and user guides of Scott D. Cohen [7] and George D. Byrne [5].

Chapter 2

CVODE Installation Procedure

The installation of cvode is accomplished by installing the sundials suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file
contains solvers other than cvode.

Generally speaking, the installation procedure outlined in §2.1 below will work on commodity
LINUX/UNIX systems without modification. Users are still encouraged, however, to carefully read
the entire chapter before attempting to install the sundials suite, in case non-default choices are
desired for compilers, compilation options, or the like. In lieu of reading the option list below, the
user may invoke the configuration script with the help flag to view a complete listing of available
options, which may be done by issuing

% ./configure --help

from within the sundials directory.
In the descriptions below, build tree refers to the directory under which the user wants to build

and/or install the sundials package. By default, the sundials libraries and header files are installed
under the subdirectories build tree/lib and build tree/include, respectively. Also, source tree refers
to the directory where the sundials source code is located. The chosen build tree may be different
from the source tree, thus allowing for multiple installations of the sundials suite with different
configuration options.

Concerning the installation procedure outlined below, after invoking the tar command with the
appropriate options, the contents of the sundials archive (or the source tree) will be extracted to
a directory named sundials. Since the name of the extracted directory is not version-specific it is
recommended that the user refrain from extracting the archive to a directory containing a previous
version/release of the sundials suite. If the user is only upgrading and the previous installation of
sundials is not needed, then the user may remove the previous installation by issuing

% rm -rf sundials

from a shell command prompt.
Even though the installation procedure given below presupposes that the user will use the default

vector modules supplied with the distribution, using the sundials suite with a user-supplied vector
module normally will not require any changes to the build procedure.

2.1 Installation steps

To install the sundials suite, given a downloaded file named sundials file.tar.gz, issue the following
commands from a shell command prompt, while within the directory where source tree is to be
located. The names of installed libraries and header files are listed in Table 2.1 for reference. (For
brevity, the corresponding .c files are not listed.) Regarding the file extension .lib appearing in
Table 2.1, shared libraries generally have an extension of .so and static libraries have an extension
of .a. (See Options for library support for additional details.)

6 CVODE Installation Procedure

1. gunzip sundials file.tar.gz

2. tar -xf sundials file.tar [creates sundials directory]

3. cd build tree

4. path to source tree/configure options [options can be absent]

5. make

6. make install

7. make examples

8. If system storage space conservation is a priority, then issue
% make clean

and/or
% make examples_clean

from a shell command prompt to remove unneeded object files.

2.2 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may
be used to indicate which MPI implementation should be used. Also, if the user wants to use
non-default language compilers, then, again, the necessary shell environment variables must be
appropriately redefined. The remainder of this section provides explanations of available configure
script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=build tree

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=PREFIX/lib

--disable-examples

All available example programs are automatically built unless this option is given. The example
executables are stored under the following subdirectories of the associated solver:

build tree/solver/examples ser : serial C examples

build tree/solver/examples par : parallel C examples (MPI-enabled)

build tree/solver/fcmix/examples ser : serial Fortran examples

build tree/solver/fcmix/examples par : parallel Fortran examples (MPI-enabled)

Note: Some of these subdirectories may not exist depending upon the solver and/or the config-
uration options given.

2.2 Configuration options 7

Table 2.1: SUNDIALS libraries and header files

Module Libraries Header files
shared libsundials shared.lib sundialstypes.h

sundialsmath.h

sundials config.h

dense.h

smalldense.h

band.h

spgmr.h

iterative.h

nvector.h

nvector serial libsundials nvecserial.lib nvector serial.h

libsundials fnvecserial.a

nvector parallel libsundials nvecparallel.lib nvector parallel.h

libsundials fnvecparallel.a

cvode libsundials cvode.lib cvode.h

libsundials fcvode.a cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

cvodes libsundials cvodes.lib cvodes.h

cvodea.h

cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

ida libsundials ida.lib ida.h

idadense.h

idaband.h

idaspgmr.h

idabbdpre.h

kinsol libsundials kinsol.lib kinsol.h

libsundials fkinsol.a kinspgmr.h

kinbbdpre.h

8 CVODE Installation Procedure

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, and
kinsol.

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).

--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in non-
standard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named
libfoo.a or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may
be used to build sundials with realtype alternatively defined as a single-precision floating-
point numeric data type (float C-type) if ARG=single, or as a long double C-type if
ARG=extended.

Default: ARG=double

Options for Fortran support

--disable-f77

Using this option will disable all Fortran support. The fcvode, fkinsol and fnvector

modules will not be built regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

The configuration script will attempt to automatically determine the function name mangling scheme
required by the specified Fortran compiler, but the following two options may be used to override
the default behavior.

--with-f77underscore=ARG

This option pertains to the fkinsol, fcvode and fnvector Fortran-C interface modules
and is used to specify the number of underscores to append to function names so Fortran

routines can properly link with the associated sundials libraries. Valid values for ARG are:
none, one and two.

Default: ARG=one

--with-f77case=ARG

Use this option to specify whether the external names of the fkinsol, fcvode and fnvector

Fortran-C interface functions should be lowercase or uppercase so Fortran routines can
properly link with the associated sundials libraries. Valid values for ARG are: lower and
upper.

Default: ARG=lower

2.2 Configuration options 9

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used
to disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers
to be used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sun-

dials configuration script will automatically check under the subdirectories MPIDIR/include

and MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin

will also be searched for the C and Fortran MPI compiler scripts, unless the user uses
--with-mpicc=no or --with-mpif77=no.

--with-mpi-incdir=INCDIR

--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler
script, but instead would rather use a serial complier and provide the flags necessary to compile
the MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include, LIBDIR=MPIDIR/lib and LIBS=-lmpi

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared
libraries on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sun-

dials libraries being built if the system supports shared libraries. To build only shared libraries
also specify --disable-static.

Note: The fcvode and fkinsol libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

10 CVODE Installation Procedure

Options for cross-compilation

If the sundials suite will be cross-compiled (meaning the build procedure will not be completed on
the actual destination system, but rather on an alternate system with a different architecture) then
the following two options should be used:

--build=BUILD

This particular option is used to specify the canonical system/platform name for the build
system.

--host=HOST

If cross-compiling, then the user must use this option to specify the canonical system/platform
name for the destination system.

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen
compiler) as the C language compiler, use CC=xcc in the configure step.

CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

2.3 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The above example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags.

% configure CC=gcc --disable-examples --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich

This example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no
option explicitly disables the use of the corresponding MPI compiler script. In addition, since
the --with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include

and -L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions.
The --disable-examples option disables the examples (which means a Fortran compiler is not
required). The --with-mpi-libs option is still needed so that the configure script can check if gcc
can link with the appropriate MPI library as -lmpi is the internal default.

Chapter 3

Mathematical Considerations

cvode solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract
form

ẏ = f(t, y) , y(t0) = y0 , (3.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable,
and usually this is time, it certainly need not be. cvode solves both stiff and nonstiff systems.
Roughly speaking, stiffness is characterized by the presence of at least one rapidly damped mode,
whose time constant is small compared to the time scale of the solution itself.

3.1 IVP solution

The methods used in cvode are variable-order, variable-step multistep methods, based on formulas
of the form

K1
∑

i=0

αn,iy
n−i + hn

K2
∑

i=0

βn,iẏ
n−i = 0 . (3.2)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvode must choose appropriately one of two multistep methods. For nonstiff problems, cvode

includes the Adams-Moulton formulas , characterized by K1 = 1 and K2 = q above, where the
order q varies between 1 and 12. For stiff problems, cvode includes the Backward Differentiation
Formulas (BDFs) in so-called fixed-leading coefficient form, given by K1 = q and K2 = 0, with order
q varying between 1 and 5. The coefficients are uniquely determined by the method type, its order,
the recent history of the step sizes, and the normalization αn,0 = −1. See [4] and [16].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, y
n)− an = 0 , (3.3)

where an ≡
∑

i>0(αn,iy
n−i + hnβn,iẏ

n−i), must be solved (approximately) at each integration step.
For this, cvode offers the choice of either functional iteration, suitable only for nonstiff systems,
and various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, y
n(m)) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (3.4)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (3.5)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data. For the Newton corrections, cvode provides a choice of four methods:

12 Mathematical Considerations

• a dense direct solver (serial version only),

• a band direct solver (serial version only),

• a diagonal approximate Jacobian solver, or

• spgmr = Scaled Preconditioned GMRES, without restarts.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and a preconditioned GMRES algorithm yields a powerful tool because it combines established
methods for stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-
specific treatment of the dominant source of stiffness, in the form of the user-supplied preconditioner
matrix [2].

In the process of controlling errors at various levels, cvode uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The weights used are based on the current
solution and on the relative and absolute tolerances input by the user, namely

Wi = rtol · |yi|+ atoli . (3.6)

Because Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, or diagonal), the iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, for
SPGMR, it is an Inexact Newton iteration, in which M is applied in a matrix-free manner, with
matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. The
matrix M (direct cases) or preconditioner matrix P (SPGMR case) is updated as infrequently as
possible to balance the high costs of matrix operations against other costs. Specifically, this matrix
update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,

• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,

• a non-fatal convergence failure just occurred, or

• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to re-evaluate
Jacobian data in P) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at the last update
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m) − yn(0)‖ ≤ ε.
Letting yn denote the exact solution of (3.3), we want to ensure that the iteration error yn−yn(m) is
small relative to ε, specifically that it is less than 0.1ε. (The safety factor 0.1 can be changed by the
user.) For this, we also estimate the linear convergence rate constant R as follows. We initialize R

3.1 IVP solution 13

to 1, and reset R = 1 when M or P is updated. After computing a correction δm = yn(m)−yn(m−1),
we update R if m > 1 as

R← max{0.3R, ‖δm‖/‖δm−1‖} .
Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε .

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the
iteration diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current,
we are forced to reduce the step size, and we replace hn by hn/4. The integration is halted after a
preset number of convergence failures; the default value of this limit is 10, but this can be changed
by the user.

When SPGMR is used to solve the linear system, its errors must also be controlled, and this
also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls,
we require that the norm of the preconditioned residual in SPGMR is less than 0.05 · (0.1ε).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [fi(t, y + σjej)− fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0Wj

}

,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in
(3.6). In the dense case, this scheme requires N evaluations of f , one for each column of J . In the
band case, the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the
number of f evaluations equal to the bandwidth.

In the case of SPGMR, preconditioning may be used on the left, on the right, or both, with
user-supplied routines for the preconditioning setup and solve operations, and optionally also for the
required matrix-vector products Jv. If a routine for Jv is not supplied, these products are computed
as

Jv = [f(t, y + σv)− f(t, y)]/σ . (3.7)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvode — making it an ODE “solver” rather than just an ODE method, is its

control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) +O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] +O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ε ≡ 1/|C ′| .

14 Mathematical Considerations

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step
size h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ε/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it
fails three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1).
The ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after
three. After seven failures, cvode returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvode periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order q for which a polynomial of order q
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
At the current order q, selecting a new step size is done exactly as when the error test fails, giving
a tentative step size ratio

h′/h = (ε/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q+1 steps at order q, and then we consider only orders
q′ = q− 1 (if q > 1) or q′ = q+1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q ′),
behaves asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do
not bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is
limited to 104.

The various algorithmic features of cvode described above, as inherited from the solvers vode

and vodpk, are documented in [1, 3, 12]. They are also summarized in [13].
Normally, cvode takes steps until a user-defined output value t = tout is overtaken, and then it

computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvode not to integrate
past a given stopping point t = tstop.

3.2 BDF stability limit detection

cvode includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods is certain situations, as
described below.

When the BDF option is selected, cvode uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
λ in the open left half-plane, the method is unconditionally stable (for any step size) for the standard
scalar model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as
all modes in the system are stable, the method is also stable for any choice of step size, at least in
the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each
case, in order for the method to be stable at step size h on the scalar model problem, the product hλ
must lie in a region of absolute stability. That region excludes a portion of the left half-plane that

3.3 Rootfinding 15

is concentrated near the imaginary axis. The size of that region of instability grows as the order
increases from 3 to 5. What this means is that, when running BDF at any of these orders, if an
eigenvalue λ of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents
hλ from leaving the stability region. The meaning of close enough depends on the order. At order 3,
the unstable region is much narrower than at order 5, so the potential for unstable behavior grows
with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary
axis. Problems with modes of that kind call for different considerations, since the oscillation generally
must be followed by the solver, and this requires step sizes (h ∼ 1/ν, where ν is the frequency) that
are stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the
solution is eventually damped to the noise level, and at that time it is important that the solver not
be restricted to step sizes on the order of 1/ν. It is in this situation that the new option may be of
great value.

In terms of partial differential equations, the typical problems for which the stability limit de-
tection option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs
discretized in space) with advection and diffusion, but with advection dominating over diffusion.
Diffusion alone produces pure decay modes, while advection tends to produce undamped oscillatory
modes. A mix of the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [10]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvode for choosing
step size and order based on estimated local truncation errors. It works directly with history data
that is readily available in cvode. If it concludes that the step size is in fact stability-limited, it
dictates a reduction in the method order, regardless of the outcome of the error-based algorithm.
The stald algorithm has been tested in combination with the vode solver on linear advection-
dominated advection-diffusion problems [11], where it works well. The implementation in cvode

has been successfully tested on linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some overhead computational cost to the cvode solu-
tion. (In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on
the size and complexity of the problem, with lower relative costs for larger problems.) Therefore,
it should be activated only when there is reasonable expectation of modes in the user’s system for
which it is appropriate. In particular, if a cvode solution with this option turned off appears to take
an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution
time scale, then there is a good chance that step sizes are being limited by stability, and that turning
on the option will improve the efficiency of the solution.

3.3 Rootfinding

The cvode solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (3.1), cvode can also find the roots of a set of user-defined
functions gi(t, y) that depend on t and the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the
various root locations are found and reported in the order that they occur on the t axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvode. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and
then (when a sign change is found) to home in on the root (or roots) with a modified secant method
[9]. In addition, each time g is computed, cvode checks to see if gi(t) = 0 exactly, and if so it

16 Mathematical Considerations

reports this as a root. However, if an exact zero of any gi is found at a point t, cvode computes g
at t+ τ for a small (near roundoff level) increment τ , slightly further in the direction of integration,
and if any gi(t+ τ) = 0 also, cvode stops and reports an error. This way, each time cvode takes
a time step, it is guaranteed that the values of all gi are nonzero at some past value of t, beyond
which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvode has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi

is further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the
end of the time step last taken, or the next requested output time tout if this comes sooner. The
endpoint tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the
last root location (if a root was just located within this step), possibly adjusted slightly toward tn if
an exact zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If
no sign changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the
next time interval (starting at thi). If one or more sign changes were found, then a loop is entered
to locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi) − gi(tlo)|, corresponding to
the closest to tlo of the secant method values. At each pass through the loop, a new value tmid is
set, strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi

is reset to tmid according to which subinterval is found to have the sign change. If there is none in
(tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi− tlo| < τ ,
and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that
its fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being
the midpoint), and the actual distance from the endpoint is at least τ/2.

Chapter 4

Code Organization

4.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems),
kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition,
variants of these which also do sensitivity analysis calculations are available or in development.
cvodes, an extension of cvode that provides both forward and adjoint sensitivity capabilities is
available, while idas is currently in development.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 4.1). The following is a
list of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs dy/dt = f(t, y, p) with sensitivity analysis capa-
bilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

4.2 CVODE organization

The cvode package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvode package is shown in Figure 4.2. The central integration
module, implemented in the files cvode.h and cvode.c, deals with the evaluation of integration
coefficients, the functional or Newton iteration process, estimation of local error, selection of stepsize
and order, and interpolation to user output points, among other issues. Although this module
contains logic for the basic Newton iteration algorithm, it has no knowledge of the method being
used to solve the linear systems that arise. For any given user problem, one of the linear system
modules is specified, and is then invoked as needed during the integration.

At present, the package includes the following four cvode linear system modules:

• cvdense: LU factorization and backsolving with dense matrices;

• cvband: LU factorization and backsolving with banded matrices;

• cvdiag: an internally generated diagonal approximation to the Jacobian;

• cvspgmr: scaled preconditioned GMRES method.

18 Code Organization

CVDIAG CVDENSE CVBAND CVSPGMR IDADENSE IDABAND IDASPGMR

IDA KINSOL

KINSPGMR

CVODE CVODES

SUNDIALS

DENSE SPGMR
ITERATIVE

BAND NVECTOR

NVECTOR_SERIAL NVECTOR_PARALLEL

(a) High-level diagram

nvector.h
dense.h
spgmr.h
...

sundialstypes.h
sundialsmath.h

...

...
......

cvdense.h
cvspgmr.h

cvodes.h
cvodea.h
cvdense.h
cvspgmr.h
...

cvode.c
cvdense.c
cvspgmr.c

cvodes.c
cvodea.c
cvdense.c
cvspgmr.c

kinsol.h
kinspgmr.h
...

ida.h
idadense.h
idaspgmr.h
...

kinsol.c
kinspgmr.c

ida.c
idadense.c
idaspgmr.c
...

cvode.h

configure

nvector.c
dense.c
spgmr.c

sundialsmath.c

...

source

fcmix fcmix

doc

examples_par

examples_ser examples_ser

examples_par

doc doc

examples_par

examples_ser

source sourcesourcesource

includeincludeincludeincludeinclude

shared cvode cvodes kinsol ida nvec_ser nvec_par

sundials

examples_ser

examples_par

doc

(b) Directory structure

Figure 4.1: Organization of the SUNDIALS suite

4.2 CVODE organization 19

SPGMR
ITERATIVE

BANDDENSE

SUNDIALS

IDA

NVECTOR_PARALLEL

NVECTOR

NVECTOR_SERIAL

KINSOL

CVDIAG CVBAND

CVBBDPRE

CVSPGMRCVDENSE

CVODES CVODE

CVBANDPRE

Figure 4.2: Overall structure diagram of the cvode package. Modules specific to cvode are distin-
guished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

In the case of the direct cvdense and cvband methods, the package includes an algorithm
for the approximation of the Jacobian by difference quotients, but the user also has the option of
supplying the Jacobian (or an approximation to it) directly. In the case of the iterative cvspgmr

method, the package includes an algorithm for the approximation by difference quotients of the
product between the Jacobian matrix and a vector of appropriate length. Again, the user has the
option of providing a routine for this operation. In the case of cvspgmr, the preconditioning must
be supplied by the user, in two phases: setup (preprocessing of Jacobian data) and solve. While
there is no default choice of preconditioner analogous to the difference quotient approximation in the
direct case, the references [2]-[3], together with the example and demonstration programs included
with cvode, offer considerable assistance in building preconditioners.

Each cvode linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central cvode module to each of the five associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules cvdense, cvband,
and cvspgmr is a set of interface routines built on top of a generic solver module, named dense,
band, and spgmr, respectively. The interfaces deal with the use of these methods in the cvode

context, whereas the generic solver is independent of the context. While the generic solvers here
were generated with sundials in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the cvode package elsewhere.

cvode also provides two preconditioner modules. The first one, cvbandpre, is intended to be
used with nvector serial and provides a banded difference quotient Jacobian based preconditioner
and solver routines for use with cvspgmr. The second preconditioner module, cvbbdpre, works
in conjunction with nvector parallel and generates a preconditioner that is a block-diagonal
matrix with each block being a band matrix.

All state information used by cvode to solve a given problem is saved in a structure, and a

20 Code Organization

pointer to that structure is returned to the user. There is no global data in the cvode package, and
so in this respect it is reentrant. State information specific to the linear solver is saved in separate
structure, a pointer to which resides in the cvode memory structure. The reentrancy of cvode was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from one user program.

Chapter 5

Using CVODE

This chapter is concerned with the use of cvode for the integration of IVPs. The following sections
treat the header files, the layout of the user’s main program, description of the cvode user-callable
functions, and user-supplied functions. The final section describes the Fortran/C interface module,
which supports users with applications written in Fortran77. The listings of the example programs
in the companion document [14] may also be helpful. Those codes may be used as templates (with
the removal of some lines involved in testing), and are included in the cvode package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers since these linear solver modules need to form the complete system Jacobian.
The following cvode modules can only be used with nvector serial: cvdense, cvband, and
cvbandpre. The preconditioner module cvbbdpre can only be used with nvector parallel.

cvode uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 9.

5.1 Access to library and header files

At this point, it is assumed that the installation of cvode, following the procedure described in
Chapter 2, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvode. In terms of the directory build tree defined in Chapter 2, the relevant library files are

• build tree/lib/libsundials cvode.lib,

• build tree/lib/libsundials fcvode.a,

• build tree/lib/libsundials shared.lib,

• build tree/lib/libsundials nvec*.lib (up to two files), and

• build tree/lib/libsundials fnvec*.a (up to two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The
relevant header files are all located in the subdirectory

• build tree/include

For an application that contains both a cvode problem (IVP) and a cvodes problem (IVP
with sensitivity analysis), references to the library files must be made carefully, because both of the
associated solver library files contain a user-callable function called CVode, although the version in
cvodes is fully compatible with that in cvode. In this case, the loader command must reference
build tree/lib/libsundials cvodes.lib, and not build tree/lib/libsundials cvode.lib.

22 Using CVODE

5.2 Data types

The sundialstypes.h file contains the definition of the type realtype, which is used by the sundi-

als solvers for all floating-point data. The type realtype can be float, double, or long double,
with the default being double. The user can change the precision of the sundials solvers arithmetic
at the configuration stage (see §2.2).

Additionally, based on the current precision, sundialstypes.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with
no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes
it a float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to
be a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to
1.0 if realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double.
sundials uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the
type double, float, or long double in their code (assuming the typedef for realtype matches this
choice). Thus, a previously existing piece of ANSI C code can use sundials without modifying the
code to use realtype, so long as the sundials libraries use the correct precision (for details see
§2.2).

5.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvode.h, the header file for cvode, which defines the several types and various constants, and
includes function prototypes.

Note that cvode.h includes sundialstypes.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter 6

for details). For the two nvector implementations that are included in the cvode package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both these files include in turn the header file nvector.h which defines the abstract
N Vector type.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a
linear solver module header file will be required. The header files corresponding to the various linear
solver options in cvode are:

• cvdense.h, which is used with the dense direct linear solver in the context of cvode. This
in turn includes a header file (dense.h) which defines the DenseMat type and corresponding
accessor macros;

5.4 A skeleton of the user’s main program 23

NV_DATA_S(...)
NV_LENGTH_S(...)
NV_Ith_S(...)

NV_DATA_P(...)
NV_LOCLENGTH_P(...)

NV_Ith_P(...)
NV_GLOBLENGTH_P(...)

NVECTOR_SERIAL

nvector_serial.h
nvector_serial.c

NVECTOR_PARALLEL

nvector_parallel.h
nvector_parallel.c

cvode.h , cvode.c

Main CVODE Integrator

CVodeMalloc(...)

CVode(...)

CVodeFree(...)

 CVDENSE

cvdense.h , cvdense.c

CVDense(...)

cvband.h , cvband.c

 CVBAND

CVBand(...) CVDiag(...)

cvdiag.h , cvdiag.c

 CVDIAG CVSPGMR

cvspgmr.h , cvspgmr.c

CVSpgmr(...)

User’s Program

 y = N_VNew_Serial(...) or N_VNew_Parallel(...)

 CVodeMalloc(cvode_mem, f, ...)

main() {

 cvode_mem = CVodeCreate(...)

 for (...) { CVode(..., y, ...) }

 N_VDestroy_Serial(y) or N_VDestroy_Parallel(y)

jac(...){...} or

jtimes(...){...} , PrecSetup(...){...} and PrecSolve(...){...}

 CVDense or CVBand or CVDiag or CVSpgmr(...)

 CVodeFree(cvode_mem)
}

f(...){...}

Figure 5.1: Diagram of the user program and cvode package for integration of IVP

• cvband.h, which is used with the band direct linear solver in the context of cvode. This
in turn includes a header file (band.h) which defines the BandMat type and corresponding
accessor macros;

• cvdiag.h, which is used with a diagonal linear solver in the context of cvode;

• cvspgmr.h, which is used with the Krylov solver spgmr in the context of cvode. This in turn
includes a header file (iterative.h) which enumerates the kind of preconditioning and the
choices for the Gram-Schmidt process.

Other headers may be needed, according as to the choice of preconditioner, etc. In one of
the examples in [14], preconditioning is done with a block-diagonal matrix. For this, the header
smalldense.h is included.

5.4 A skeleton of the user’s main program

A high-level view of the combined user program and cvode package is shown in Figure 5.1. The
following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Some steps are independent of the nvector implementation used; where this is not
the case, usage specifications are given for the two implementations provided with cvode: Steps
marked with [P] correspond to nvector parallel, while steps marked with [S] correspond to
nvector serial.

24 Using CVODE

1. [P] Initialize MPI

Call MPI Init(&argc, &argv); to initialize MPI if used by the user’s program, aside from
the internal use in nvector parallel. Here argc and argv are the command line argument
counter and array received by main.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this processor); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set
of processors.

3. Set vector of initial values

To set the vector y0 of initial values, use functions defined by a particular nvector implemen-
tation. If a realtype array ydata already exists, containing the initial values of y, make the
call:

[S] y0 = NV Make Serial(N, ydata);

[P] y0 = NV Make Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:

[S] y0 = NV New Serial(N);

[P] y0 = NV New Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active
processors is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all
processors are to be used, comm must be MPI COMM WORLD.

4. Create cvode object

Call cvode mem = CVodeCreate(lmm,iter); to create the cvode memory block and specify the
solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate

returns a pointer to the cvode memory structure. See §5.5.1 for details.

5. Allocate internal memory

Call CVodeMalloc(...); to provide required problem specifications, allocate internal memory
for cvode, and initialize cvode. CVodeMalloc returns an error flag to indicate success or an
illegal argument value. See §5.5.1 for details.

6. Set optional inputs

Call CVodeSet* functions to change from their default values any optional inputs that control
the behavior of cvode. See §5.5.4 for details.

7. Attach linear solver module

If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §5.5.2):
[S] ier = CVDense(...);

[S] ier = CVBand(...);

ier = CVDiag(...);

5.5 User-callable functions 25

ier = CVSpgmr(...);

8. Set linear solver optional inputs

Call CV*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §5.5.4 for details.

9. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §5.7.1 for details.

10. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,

itask); Set itask to specify the return mode. The vector y (which can be the same as the
vector y0 above) will contain y(t). See §5.5.3 for details.

11. Get optional outputs

Call CV*Get* functions to obtain optional output. See §5.5.6 and §5.7.1 for details.

12. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor
function defined by the nvector implementation:

[S] NV Destroy Serial(y);

[P] NV Destroy Parallel(y);

13. Free solver memory

CVodeFree(cvode mem); to free the memory allocated for cvode.

14. [P] Finalize MPI

Call MPI Finalize(); to terminate MPI.

5.5 User-callable functions

This section describes the cvode functions that are called by the user to set up and solve an IVP.
Some of these are required. However, starting with §5.5.4, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of cvode. In
any case, refer to §5.4 for the correct order of these calls. Calls related to rootfinding are described
in §5.7.

5.5.1 CVODE initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only
after the IVP solution is complete, as it frees the cvode memory block created and allocated by
the first two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm, iter);

Description The function CVodeCreate instantiates a cvode solver object and specifies the solu-
tion method.

Arguments lmm (int) specifies the linear multistep method and must be one of two possible
values: CV ADAMS or CV BDF.

26 Using CVODE

iter (int) specifies the type of nonlinear solver iteration and may be either CV NEWTON

or CV FUNCTIONAL.

The recommended choices for (lmm, iter) are (CV ADAMS, CV FUNCTIONAL) for nonstiff
problems and (CV BDF, CV NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created cvode memory
block (of type void *). If an error occurred, CVodeCreate prints an error message to
stderr and returns NULL.

CVodeMalloc

Call flag = CVodeMalloc(cvode mem, f, t0, y0, itol, reltol, abstol);

Description The function CVodeMalloc provides required problem and solution specifications, al-
locates internal memory, and initializes cvode.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes f in the ODE. This function
has the form f(t, y, ydot, f data) (for full details see §5.6.1).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

itol (int) is one of CV SS, CV SV, or CV WF, where itol=SS indicates scalar rel-
ative error tolerance and scalar absolute error tolerance, while itol=CV SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each component of the ODE. If itol=CV WF, the arguments
reltol and abstol are ignored and the user is expected to provide a func-
tion to evaluate the error weight vector W from (3.6). See CVodeSetEwtFn
in §5.5.4.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=CV SS,
abstol must be a pointer to a realtype variable. If itol=CV SV, abstol
must be an N Vector variable.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeMalloc was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeMalloc has an illegal value.

Notes If an error occurred, CVodeMalloc also prints an error message to the file specified by
the optional input errfp.

The tolerance values in reltol and abstol may be changed between calls to CVode

(see CVodeSetTolerances in §5.5.4).

! It is the user’s responsibility to provide compatible itol and abstol arguments.

CVodeFree

Call CVodeFree(cvode mem);

Description The function CVodeFree frees the pointer allocated by a previous call to CVodeMalloc.

Arguments The argument is the pointer to the cvode memory block (of type void *).

Return value The function CVodeFree has no return value.

5.5 User-callable functions 27

5.5.2 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (3.4).
There are four cvode linear solvers currently available for this task: cvdense, cvband, cvdiag,
and cvspgmr. The first three are direct solvers and derive their name from the type of approximation
used for the Jacobian J = ∂f/∂y. cvdense, cvband, and cvdiag work with dense, banded, and
diagonal approximations to J , respectively. The fourth cvode linear solver, cvspgmr, is an iterative
solver. The spgmr in the name indicates that it uses a scaled preconditioned GMRES method.

To specify a cvode linear solver, after the call to CVodeCreate but before any calls to CVode, the
user’s program must call one of the functions CVDense, CVBand, CVDiag, CVSpgmr, as documented
below. The first argument passed to these functions is the cvode memory pointer returned by
CVodeCreate. A call to one of these functions links the main cvode integrator to a linear solver
and allows the user to specify parameters which are specific to a particular solver, such as the half-
bandwidths in the cvband case. The use of each of the linear solvers involves certain constants
and possibly some macros, that are likely to be needed in the user code. These are available in the
corresponding header file associated with the linear solver, as specified below.

In each case except the diagonal approximation case cvdiag, the linear solver module used by
cvode is actually built on top of a generic linear system solver, which may be of interest in itself.
These generic solvers, denoted dense, band, and spgmr, are described separately in Chapter 8.

CVDense

Call flag = CVDense(cvode mem, N);

Description The function CVDense selects the cvdense linear solver.

The user’s main function must include the cvdense.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The cvdense initialization was successful.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE ILL INPUT The cvdense solver is not compatible with the current nvector

module.

CVDENSE MEM FAIL A memory allocation request failed.

Notes The cvdense linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

CVBand

Call flag = CVBand(cvode mem, N, mupper, mlower);

Description The function CVBand selects the cvband linear solver.

The user’s main function must include the cvband.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The cvband initialization was successful.

CVBAND MEM NULL The cvode mem pointer is NULL.

28 Using CVODE

CVBAND ILL INPUT The cvband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside its valid
range (0 . . . N−1).

CVBAND MEM FAIL A memory allocation request failed.

Notes The cvband linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials,
only nvector serial is compatible, while nvector parallel is not. The half-
bandwidths are to be set so that the nonzero locations (i, j) in the banded (approxi-
mate) Jacobian satisfy −mlower ≤ j − i ≤ mupper.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main function must include the cvdiag.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector

module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all the current cvode linear solvers. The cvdiag

solver uses an approximate diagonal Jacobian formed by way of a difference quotient.
The user does not have the option to supply a function to compute an approximate
diagonal Jacobian.

CVSpgmr

Call flag = CVSpgmr(cvode mem, pretype, maxl);

Description The function CVSpgmr selects the cvspgmr linear solver.

The user’s main function must include the cvspgmr.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to
use the default value CVSPGMR MAXL= 5.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The cvspgmr initialization was successful.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR ILL INPUT The preconditioner type pretype is not valid.

CVSPGMR MEM FAIL A memory allocation request failed.

Notes The cvspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (3.4).
With this spgmr method, preconditioning can be done on the left only, on the right
only, on both the left and the right, or not at all. For a given preconditioner matrix,
the merits of left vs. right preconditioning are unclear in general, and the user should
experiment with both choices. Performance will differ because the inverse of the left

5.5 User-callable functions 29

preconditioner is included in the linear system residual whose norm is being tested
in the spgmr algorithm. As a rule, however, if the preconditioner is the product
of two matrices, we recommend that preconditioning be done either on the left only
or the right only, rather than using one factor on each side. For specification of
preconditioner, see §5.5.4 and §5.6.
If preconditioning is done, user-supplied functions define left and right preconditioner
matrices P1 and P2 (either of which could be the identity matrix), such that the
product P1P2 approximates the Newton matrix M = I − γJ of (3.5).

5.5.3 CVODE solver function

This is the central step in the solution process — the call to perform the integration of the IVP.

CVode

Call flag = CVode(cvode mem, tout, yout, tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvode memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype *) the time reached by the solver.

itask (int) a flag indicating the job of the solver for the next user step. The
CV NORMAL task is to have the solver take internal steps until it has reached
or just passed the user specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP

option tells the solver to just take one internal step and return the so-
lution at the point reached by that step. The CV NORMAL TSTOP and
CV ONE STEP TSTOP modes are similar to CV NORMAL and CV ONE STEP, re-
spectively, except that the integration never proceeds past the value tstop
(specified through the function CVodeSetStopTime).

Return value On return, CVode returns a vector yout and a corresponding independent variable
value t =*tret, such that yout is the computed value of y(t).

In CV NORMAL mode with no errors, *tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no root was found.

CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §5.5.4).

CV ROOT RETURN CVode succeeded and found one or more roots. If nrtfn > 1, call
CVodeGetRootInfo to see which gi were found to have a root. See
§5.7 for more information.

CV MEM NULL The cvode mem argument was NULL.

CV NO MALLOC The cvode memory was not allocated by a call to CVodeMalloc.

CV ILL INPUT One of the inputs to CVode is illegal. This includes the situation
where a root of one of the root functions was found both at a point
t and also very near t. It also includes the situation where a com-
ponent of the error weight vector becomes negative during internal
time-stepping. The CV ILL INPUT flag will also be returned if the
linear solver function initialization (called by the user after calling
CVodeCreate) failed to set the linear solver-specific lsolve field
in cvode mem. In any case, the user should see the printed error
message for details.

30 Using CVODE

CV LINIT FAIL The linear solver’s initialization function failed.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user
for some internal step.

CV ERR FAILURE Error test failures occurred too many times (MXNEF = 7) during
one internal time step or occurred with |h| = hmin.

CV CONV FAILURE Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-
ner.

Notes The vector yout can occupy the same space as the y0 vector of initial conditions that
was passed to CVodeMalloc.

In the CV ONE STEP mode, tout is used on the first call only, to get the direction and
rough scale of the independent variable.

All failure return values are negative and therefore a test flag< 0 will trap all CVode
failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the
integration. On all other error returns, tret and yout are left unchanged from the
previous CVode return.

5.5.4 Optional input functions

cvode provides an extensive list of functions that can be used to change from their default values
various optional input parameters that control the behavior of the cvode solver. Table 5.1 lists
all optional input functions in cvode which are then described in detail in the remainder of this
section. For the most casual use of cvode, the reader can skip to §5.6.

We note that, on error return, all these functions also print an error message to stderr (or to the
file pointed to by errfp if already specified). We also note that all error return values are negative,
so a test flag< 0 will catch any error.

Main solver optional input functions

The calls listed here can be executed in any order.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies the pointer to the file where all cvode mes-
sages should be directed.

Arguments cvode mem (void *) pointer to the cvode memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case
in which the cvode memory pointer is NULL).

5.5 User-callable functions 31

Table 5.1: Optional inputs for cvode, cvdense, cvband, and cvspgmr

Optional input Function name Default
CVODE main solver

Pointer to an error file CVodeSetErrFile stderr

Data for right-hand side function CVodeSetFdata NULL
Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet FALSE
Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime ∞
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Data for rootfinding function CVodeSetGdata NULL
Nonlinear iteration type CVodeSetIterType none
Integration tolerances CVodeSetTolerances none
Ewt compuation function CVodeSetEwtFn internal fn.

CVDENSE linear solver
Dense Jacobian function and data CVDenseSetJacFn internal DQ, NULL

CVBAND linear solver
Band Jacobian function and data CVBandSetJacFn internal DQ, NULL

CVSPGMR linear solver
Preconditioner functions and data CVSpgmrSetPreconditioner NULL, NULL, NULL
Jacobian times vector function and data CVSpgmrSetJacTimesVecFn internal DQ, NULL
Type of Gram-Schmidt orthogonalization CVSpgmrSetGSType classical GS
Ratio between linear and nonlinear tolerances CVSpgmrSetDelt 0.05
Preconditioning type CVSpgmrSetPrecType none

32 Using CVODE

! If CVodeSetErrFile is to be called, it should be called before any other optional
input functions, in order to take effect for any later error message.

CVodeSetFdata

Call flag = CVodeSetFdata(cvode mem, f data);

Description The function CVodeSetFdata specifies the user data block f data, for use by the user
right-hand side function f , and attaches it to the main cvode memory block.

Arguments cvode mem (void *) pointer to the cvode memory block.

f data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If f data is not specified, a NULL pointer is passed to the f function.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrder(cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxord (int) value of the maximum method order.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The specified value maxord is negative, or larger than its previous value.

Notes The default value is ADAMS Q MAX= 12 for the Adams-Moulton method and BDF Q MAX=
5 for the BDF method. Since maxord affects the memory requirements for the internal
cvode memory block, its value can not be increased past its previous value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be
taken by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvode memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT mxsteps is non-positive.

Notes Passing mxsteps= 0 results in cvode using the default value (500).

5.5 User-callable functions 33

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of warning mes-
sages issued by the solver that t+ h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

mxhnil (int) maximum number of warning messages

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative mxhnil value indicates that no warning messages
should be issued.

CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates to turn on/off the BDF stability limit
detection algorithm. See §3.2.

Arguments cvode mem (void *) pointer to the cvode memory block.

stldet (booleantype) flag to control stability limit detection (TRUE = on; FALSE
= off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The linear multistep method is not set to CV BDF.

Notes The default value is FALSE. If stldet = TRUE, when BDF is used and the method
order is 3 or greater, an internal function, CVsldet, is called to detect stability limit.
If limit is detected, the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvode memory block.

hin (realtype) value of the initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvode estimates the initial stepsize as the solution h of ‖0.5h2ÿ‖WRMS =
1, where ÿ is an estimated second derivative of the solution at the initial time.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies the minimum absolute value of the step size.

Arguments cvode mem (void *) pointer to the cvode memory block.

hmin (realtype) minimum absolute value of the step size.

Return value The return value flag (of type int) is one of

34 Using CVODE

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmin is not positive or it is larger than the maximum allowable
step.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies the maximum absolute value of the step size.

Arguments cvode mem (void *) pointer to the cvode memory block.

hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value ∞.

CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvode memory block.

tstop (realtype) value of the independent variable past which the solution
should not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is ∞.

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxnef (int) maximum number of error test failures allowed on one step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

5.5 User-callable functions 35

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations at one step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.

CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear
solver convergence failures at one step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
on one step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor in the nonlinear
convergence test (see §3.1).

Arguments cvode mem (void *) pointer to the cvode memory block.

nlscoef (realtype) coefficient in nonlinear convergence test.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type iter.

Arguments cvode mem (void *) pointer to the cvode memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

36 Using CVODE

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate

(see §5.5.1). This function call is needed only if iter is being changed from its value
in the prior call to CVodeCreate.

CVodeSetTolerances

Call flag = CVodeSetTolerances(cvode mem, itol, reltol, abstol);

Description The function CVodeSetTolerances resets the integration tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

itol (int) is either CV SS or CV SV, where itol=CV SS indicates scalar relative
error tolerance and scalar absolute error tolerance, while itol=CV SV in-
dicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each component of the ODE.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=CV SS,
abstol must be a pointer to a realtype variable. If itol=CV SV, abstol
must be an N Vector variable.

Return value The return value flag (of type int) is one of

CV SUCCESS The tolerances have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT An input argument has an illegal value.

Notes The integration tolerances are initially specified in the call to CVodeMalloc (see §5.5.1).
This function call is needed only if the tolerances are being changed from their values
between successive calls to CVode.

! It is the user’s responsibility to provide compatible itol and abstol arguments.

! It is illegal to call CVodeSetTolerances before a call to CVodeMalloc.

CVodeSetEwtFn

Call flag = CVodeSetEwtFn(cvode mem, efun, e data);

Description The function CVodeSetEwtFn specifies the user-defined function to be used in com-
puting the error weight vector W in (3.6).

Arguments cvode mem (void *) pointer to the cvodes memory block.

efun (CVEwtFn) is the C function which defines the ewt vector (see §5.6.2).
e data (void *) pointer to user data passed to efun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function efun and data pointer e data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes This function can be called between successive calls to CVode.

If not needed, pass NULL for edata.

! It is illegal to call CVodeSetEwtFn before a call to CVodeMalloc.

Linear solver optional input functions

The linear solver modules, with one exception, allow for various optional inputs, which are described
here. The diagonal linear solver module has no optional inputs.

5.5 User-callable functions 37

Dense Linear solver. The cvdense solver needs a function to compute a dense approximation
to the Jacobian matrix J(t, y). This function must be of type CVDenseJacFn. The user can supply
his/her own dense Jacobian function, or use the default difference quotient function CVDenseDQJac

that comes with the cvdense solver. To specify a user-supplied Jacobian function djac and asso-
ciated user data jac data, cvdense provides the function CVDenseSetJacFn. The cvdense solver
passes the pointer jac data to its dense Jacobian function. This allows the user to create an arbi-
trary structure with relevant problem data and access it during the execution of the user-supplied
Jacobian function, without using global data in the program. The pointer jac data may be identical
to f data, if the latter was specified through CVodeSetFdata.

CVDenseSetJacFn

Call flag = CVDenseSetJacFn(cvode mem, djac, jac data);

Description The function CVDenseSetJacFn specifies the dense Jacobian approximation function
to be used and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvode memory block.

djac (CVDenseJacFn) user-defined dense Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes By default, cvdense uses the difference quotient function CVDenseDQJac. If NULL is
passed to djac, this default function is used.

The function type CVDenseJacFn is described in §5.6.3.

Band Linear solver. The cvdense solver needs a function to compute a banded approximation
to the Jacobian matrix J(t, y). This function must be of type CVBandJacFn. The user can supply
his/her own banded Jacobian approximation function, or use the default difference quotient function
CVBandDQJac that comes with the cvband solver. To specify a user-supplied Jacobian function bjac

and associated user data jac data, cvband provides the function CVBandSetJacFn. The cvband

solver passes the pointer jac data to its banded Jacobian approximation function. This allows the
user to create an arbitrary structure with relevant problem data and access it during the execution
of the user-supplied Jacobian function, without using global data in the program. The pointer
jac data may be identical to f data, if the latter was specified through CVodeSetFdata.

CVBandSetJacFn

Call flag = CVBandSetJacFn(cvode mem, bjac, jac data);

Description The function CVBandSetJacFn specifies the banded Jacobian approximation function
to be used and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvode memory block.

bjac (CVBandJacFn) user-defined banded Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes By default, cvband uses the difference quotient function CVBandDQJac. If NULL is
passed to bjac, this default function is used.

The function type CVBandJacFn is described in §5.6.4.

38 Using CVODE

SPGMR Linear solver. If any type of preconditioning is to be done within the spgmr method,
then the user must supply a preconditioner solve function psolve and specify its name through
a call to CVSpgmrSetPreconditioner. The evaluation and preprocessing of any Jacobian-related
data needed by the user’s preconditioner solve function is done in the optional user-supplied function
psetup. Both of these functions are fully specified in §5.6. If used, the psetup function should also
be specified in the call to CVSpgmrSetPreconditioner. Optionally, the cvspgmr solver passes
the pointer it receives through CVSpgmrSetPreconditioner to the preconditioner setup and solve
functions. This allows the user to create an arbitrary structure with relevant problem data and
access it during the execution of the user-supplied preconditioner functions without using global
data in the program. The pointer p data may be identical to f data, if the latter was specified
through CVodeSetFdata.

The cvspgmr solver requires a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian times vector
approximation function, or use the difference quotient function CVSpgmrDQJtimes that comes with
the cvspgmr solver. A user-defined Jacobian-vector function must be of type CVSpgmrJtimesFn

and can be specified through a call to CVSpgmrSetJacTimesVecFn (see §5.6 for specification details).
As with the preconditioner user data structure p data, the user can also specify int the call to
CVSpgmrSetJacFn, a pointer to a user-defined data structure, jac data, which the cvspgmr solver
passes to the Jacobian times vector function jtimes each time it is called. The pointer jac data

may be identical to p data and/or f data.

CVSpgmrSetPreconditioner

Call flag = CVSpgmrSetPrecSolveFn(cvode mem, psolve, psetup, p data);

Description The function CVSpgmrSet specifies the preconditioner setup and solve functions and
the pointer to user data.

Arguments cvode mem (void *) pointer to the cvode memory block.

psolve (CVSpgmrPrecSolveFn) user-defined preconditioner solve function.

psetup (CVSpgmrPrecSetupFn) user-defined preconditioner setup function.

p data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

Notes The function type CVSpgmrPrecSolveFn is described in §5.6.6. The function type
CVSpgmrPrecSetupFn is described in §5.6.7.

CVSpgmrSetJacTimesVecFn

Call flag = CVSpgmrSetJacTimesVecFn(cvode mem, jtimes, jac data);

Description The function CVSpgmrSetJacTimesFn specifies the Jacobian-vector function to be used
and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvode memory block.

jtimes (CVSpgmrJacTimesVecFn) user-defined Jacobian-vector product function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

5.5 User-callable functions 39

Notes By default, cvspgmr uses the difference quotient function CVSpgmrDQJtimes. If NULL
is passed to jtimes, this default function is used.

The function type CVSpgmrJacTimesVecFn is described in §5.6.5.

CVSpgmrSetGSType

Call flag = CVSpgmrSetGSType(cvode mem, gstype);

Description The function CVSpgmrSetGSType specifies the Gram-Schmidt orthogonalization to be
used. This must be one of the enumeration constants MODIFIED GS or CLASSICAL GS.
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, re-
spectively.

Arguments cvode mem (void *) pointer to the cvode memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPGMR ILL INPUT The Gram-Schmidt orthogonalization type gstype is not valid.

Notes The default value is MODIFIED GS.

CVSpgmrSetDelt

Call flag = CVSpgmrSetDelt(cvode mem, delt);

Description The function CVSpgmrSetDelt specifies the factor by which the GMRES convergence
test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvode memory block.

delt (realtype)

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPGMR ILL INPUT The factor delt is negative.

Notes The default value is 0.05.

Passing a value delt= 0.0 also indicates using the default value.

CVSpgmrSetPrecType

Call flag = CVSpgmrSetPrecType(cvode mem, pretype);

Description The function CVSpgmrSetPrecType resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the type of preconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPGMR ILL INPUT The preconditioner type pretype is not valid.

40 Using CVODE

Notes The preconditioning type is initially specified in the call to CVSpgmr (see §5.5.2). This
function call is needed only if pretype is being changed from its value in the previous
call to CVSpgmr.

5.5.5 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
must be called after a successful return from CVode and provides interpolated values of y or its
derivatives, up to the current order of the integration method, interpolated to any value of t in the
last internal step taken by cvode.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the y function at time
t, i.e. d(k)y/dt(k)(t), where tn − hu ≤ t ≤ tn, tn denotes the current internal time
reached, and hu is the last internal step size successfully used by the solver. The user
may request k = 0, 1, . . . , qu, where qu is the current order.

Arguments cvode mem (void *) pointer to the cvode memory block.

t (realtype) the value of the independent variable at which the derivative
is requested.

k (int) the derivative order requested.

dky (N Vector) vector containing the derivative. This vector must be allocated
by the caller.

Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.

CV BAD K k is not in the range 0, 1, ..., qu.

CV BAD T t is not in the interval [tn − hu, tn].

CV BAD DKY The dky argument was NULL.

CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.

5.5.6 Optional output functions

cvode provides an extensive list of functions that can be used to obtain solver performance infor-
mation. Table 5.2 lists all optional output functions in cvode, which are then described in detail
in the remainder of this section.

Main solver optional output functions

cvode provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvode memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Also provided are functions
to extract statistics related to the performance of the cvode nonlinear solver being used. As a
convenience, additional extraction functions provide the optional outputs in groups. These optional
output functions are described next.

5.5 User-callable functions 41

Table 5.2: Optional outputs from cvode, cvdense, cvband, cvdiag, and cvspgmr

Optional output Function name
CVODE main solver

Size of cvode real and integer workspaces CVodeGetWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup function CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

Order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

All cvode integrator statistics CVodeGetIntegratorStats

cvode nonlinear solver statistics CVodeGetNonlinSolvStats

Array showing roots found CvodeGetRootInfo

No. of calls to user root function CVodeGetNumGEvals

CVDENSE linear solver
Size of cvdense real and integer workspaces CVDenseGetWorkSpace

No. of Jacobian evaluations CVDenseGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVDenseGetNumRhsEvals

Last return from a cvdense function CVDenseGetLastFlag

CVBAND linear solver
Size of cvband real and integer workspaces CVBandGetWorkSpace

No. of Jacobian evaluations CVBandGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVBandGetNumRhsEvals

Last return from a cvband function CVBandGetLastFlag

CVDIAG linear solver
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvdiag function CVDiagGetLastFlag

CVSPGMR linear solver
Size of cvspgmr real and integer workspaces CVSpgmrGetWorkSpace

No. of linear iterations CVSpgmrGetNumLinIters

No. of linear convergence failures CVSpgmrGetNumConvFails

No. of preconditioner evaluations CVSpgmrGetNumPrecEvals

No. of preconditioner solves CVSpgmrGetNumPrecSolves

No. of Jacobian-vector product evaluations CVSpgmrGetNumJtimesEvals

No. of r.h.s. calls for finite diff. Jacobian-vector evals. CVSpgmrGetNumRhsEvals

Last return from a cvspgmr function CVSpgmrGetLastFlag

42 Using CVODE

CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvode integer and real workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrw (long int) the number of realtype values in the cvode workspace.

leniw (long int) the number of integer values in the cvode workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N and maximum method order maxord, the actual size
of the real workspace given in realtype words is:

• Base value: lenrw = 89+ (maxord+5)N

• With itol = CV SV: lenrw = lenrw +N

• With rootfinding for Ng functions (see §5.7): lenrw = lenrw+3Ng

The size of the integer workspace (without distinction between int and long int) is:

• Base value: leniw = 40+ (maxord+5)N

• With itol = CV SV: leniw = leniw +N

• With rootfinding for Ng functions: leniw = leniw+Ng

For the default value of maxord, the base values are:

• For the Adams method: lenrw = 89 + 17N and leniw = 40 + 17N

• For the BDF method: lenrw = 89 + 10N and leniw = 40 + 10N

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps
taken by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvode memory block.

nsteps (long int) number of steps taken by cvode.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-
hand side evaluation function.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f from a linear solver or preconditioner module.

5.5 User-callable functions 43

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during
the last internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

44 Using CVODE

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvode to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the
local error test.

CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvode memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

5.5 User-callable functions 45

CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §3.2).

Arguments cvode mem (void *) pointer to the cvode memory block.

nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SLDET The stability limit detection algorithm was not activated through a call
to CVodeSetStabLimDet.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some
internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi of (3.6).

Arguments cvode mem (void *) pointer to the cvode memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes ! The user must allocate memory for eweight.

CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvode memory block.

ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes ! The user must allocate memory for ele.

46 Using CVODE

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,

&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvode integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvode memory block.

nsteps (long int) number of steps taken by cvode.

nfevals (long int) number of calls to the user’s f function.

nlinsetups (long int) number of calls made to the linear solver setup function.

netfails (long int) number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the cvode memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

5.5 User-callable functions 47

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvode nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvode memory block.

nniters (long int) number of nonlinear iterations performed.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Linear solver optional output functions

For each of the linear system solver modules, there are various optional outputs that describe the
performance of the module. The functions available to access these are described below.

Dense Linear solver. The following optional outputs are available from the cvdense module:
workspace requirements, number of calls to the Jacobian routine, number of calls to the right-hand
side routine for finite-difference Jacobian approximation, and last return value from a cvdense

function.

CVDenseGetWorkSpace

Call flag = CVDenseGetWorkSpace(cvode mem, &lenrwD, &leniwD);

Description The function CVDenseGetWorkSpace returns the cvdense real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwD (long int) the number of realtype values in the cvdense workspace.

leniwD (long int) the number of integer values in the cvdense workspace.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is 2N 2 realtype

words, and the actual size of the integer workspace is N integer words.

CVDenseGetNumJacEvals

Call flag = CVDenseGetNumJacEvals(cvode mem, &njevalsD);

Description The function CVDenseGetNumJacEvals returns the number of calls to the dense Jaco-
bian approximation function.

Arguments cvode mem (void *) pointer to the cvode memory block.

njevalsD (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

48 Using CVODE

CVDenseGetNumRhsEvals

Call flag = CVDenseGetNumRhsEvals(cvode mem, &nfevalsD);

Description The function CVDenseGetNumRhsEvals returns the number of calls to the user right-
hand side function due to the finite difference dense Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsD (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes The value nfevalsD is incremented only if the default CVDenseDQJac difference quo-
tient function is used.

CVDenseGetLastFlag

Call flag = CVDenseGetLastFlag(cvode mem, &lsflag);

Description The function CVDenseGetLastFlag returns the last return value from a cvdense

routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (int) the value of the last return flag from a cvdense function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes If the cvdense setup function failed (CVode returned CV LSETUP FAIL), the value
lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the dense Jacobian matrix.

Band Linear solver. The following optional outputs are available from the cvband module:
workspace requirements, number of calls to the Jacobian routine, number of calls to the right-hand
side routine for finite-difference Jacobian approximation, and last return value from a cvband

function.

CVBandGetWorkSpace

Call flag = CVBandGetWorkSpace(cvode mem, &lenrwB, &leniwB);

Description The function CVBandGetWorkSpace returns the cvband real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwB (long int) the number of realtype values in the cvband workspace.

leniwB (long int) the number of integer values in the cvband workspace.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes In terms of the problem size N and Jacobian half-bandwidths, the actual size of the
real workspace is (2 mupper+3 mlower +2)N realtype words, and the actual size of
the integer workspace is N integer words.

5.5 User-callable functions 49

CVBandGetNumJacEvals

Call flag = CVBandGetNumJacEvals(cvode mem, &njevalsB);

Description The function CVBandGetNumJacEvals returns the number of calls to the banded Ja-
cobian approximation function.

Arguments cvode mem (void *) pointer to the cvode memory block.

njevalsB (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

CVBandGetNumRhsEvals

Call flag = CVBandGetNumRhsEvals(cvode mem, &nfevalsB);

Description The function CVBandGetNumRhsEvals returns the number of calls to the user right-
hand side function due to the finite difference banded Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsB (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes The value nfevalsB is incremented only if the default CVBandDQJac difference quotient
function is used.

CVBandGetLastFlag

Call flag = CVBandGetLastFlag(cvode mem, &lsflag);

Description The function CVBandGetLastFlag returns the last return value from a cvband rou-
tine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (int) the value of the last return flag from a cvband function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes If the cvband setup sunction failed (CVode returned CV LSETUP FAIL), the value
lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the banded Jacobian matrix.

Diagonal Linear solver. The following optional outputs are available from the cvdiag module:
workspace requirements, number of calls to the right-hand side routine for finite-difference Jacobian
approximation, and last return value from a cvdiag function.

50 Using CVODE

CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwDI, &leniwDI);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwDI (long int) the number of realtype values in the cvdiag workspace.

leniwDI (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is 3N realtype

words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsDI);

Description The function CVDiagGetNumRhsEvals returns the number of calls to the user right-
hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsDI (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
to the linear solver setup function (available by calling CVodeGetNumLinsolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value
lsflag is equal to CVDIAG INV FAIL, indicating that a zero diagonal element was
encountered. The same value for lsflag is set if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).

SPGMR Linear solver. The following optional outputs are available from the cvspgmr module:
workspace requirements, number of linear iterations, number of linear convergence failures, number
of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-vector product
routine, number of calls to the right-hand side routine for finite-difference Jacobian-vector product
approximation, and last return value from a cvspgmr function.

5.5 User-callable functions 51

CVSpgmrGetWorkSpace

Call flag = CVSpgmrGetWorkSpace(cvode mem, &lenrwSG, &leniwSG);

Description The function CVSpgmrGetWorkSpace returns the cvspgmr real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwSG (long int) the number of realtype values in the cvspgmr workspace.

leniwSG (long int) the number of integer values in the cvspgmr workspace.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of
the real workspace is (maxl+5) ∗ N+ maxl ∗(maxl+4) + 1 realtype words. (In a
parallel setting, this value is global — summed over all processors.)

CVSpgmrGetNumLinIters

Call flag = CVSpgmrGetNumLinIters(cvode mem, &nliters);

Description The function CVSpgmrGetNumLinIters returns the cumulative number of linear iter-
ations.

Arguments cvode mem (void *) pointer to the cvode memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSpgmrGetNumConvFails

Call flag = CVSpgmrGetNumConvFails(cvode mem, &nlcfails);

Description The function CVSpgmrGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvode memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSpgmrGetNumPrecEvals

Call flag = CVSpgmrGetNumPrecEvals(cvode mem, &npevals);

Description The function CVSpgmrGetNumPrecEvals returns the number of preconditioner evalu-
ations, i.e., the number of calls made to psetup with jok=FALSE.

Arguments cvode mem (void *) pointer to the cvode memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

52 Using CVODE

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSpgmrGetNumPrecSolves

Call flag = CVSpgmrGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVSpgmrGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvode memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSpgmrGetNumJtimesEvals

Call flag = CVSpgmrGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVSpgmrGetNumJtimesEvals returns the cumulative number made to
the Jacobian-vector function, jtimes.

Arguments cvode mem (void *) pointer to the cvode memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

CVSpgmrGetNumRhsEvals

Call flag = CVSpgmrGetNumRhsEvals(cvode mem, &nfevalsSG);

Description The function CVSpgmrGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsSG (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

Notes The value nfevalsSG is incremented only if the default CVSpgmrDQJtimes difference
quotient function is used.

CVSpgmrGetLastFlag

Call flag = CVSpgmrGetLastFlag(cvode mem, &lsflag);

Description The function CVSpgmrGetLastFlag returns the last return value from a cvspgmr

routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

5.5 User-callable functions 53

flag (int) the value of the last return flag from a cvspgmr function.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The optional output value has been successfully set.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR LMEM NULL The cvspgmr linear solver has not been initialized.

Notes If the cvspgmr setup function failed (CVode returned CV LSETUP FAIL), lsflag con-
tains the return value of the preconditioner setup function psetup.

If the cvspgmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag con-
tains the error return flag from SpgmrSolve and will be one of: SPGMR CONV FAIL,
indicating a failure to converge; SPGMR QRFACT FAIL, indicating a singular matrix
found during the QR factorization; SPGMR PSOLVE FAIL REC, indicating that the pre-
conditioner solve function psolve failed recoverably; SPGMR MEM NULL, indicating that
the spgmr memory is NULL; SPGMR ATIMES FAIL, indicating a failure in the Jacobian
times vector function; SPGMR PSOLVE FAIL UNREC, indicating that the preconditioner
solve function psolve failed unrecoverably; SPGMR GS FAIL, indicating a failure in the
Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the matrix R was
found to be singular during the QR solve phase.

5.5.7 CVODE reinitialization function

The function CVodeReInit reinitializes the main cvode solver for the solution of a problem, where
a prior call to CVodeMalloc has been made. The new problem must have the same size as the
previous one. CVodeReInit performs the same input checking and initializations that CVodeMalloc
does, but does no memory allocation, assuming that the existing internal memory is sufficient for
the new problem.

The use of CVodeReInit requires that the maximum method order, maxord, is no larger for
the new problem than for the problem specified in the last call to CVodeMalloc. This condition
is automatically fulfilled if the multistep method parameter lmm is unchanged (or changed from
CV ADAMS to CV BDF) and the default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate Set calls, as described
in §5.5.2

CVodeReInit

Call flag = CVodeReInit(cvode mem, f, t0, y0, itol, reltol, abstol);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvode.

Arguments cvode mem (void *) pointer to the cvode memory block.

f (CVRhsFn) is the C function which computes f in the ODE. This function
has the form f(N, t, y, ydot, f data) (for full details see §5.6).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

itol (int) is one of CV SS, CV SV, or CV WF, where itol=SS indicates scalar rel-
ative error tolerance and scalar absolute error tolerance, while itol=CV SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each component of the ODE. If itol=CV WF, the arguments
reltol and abstol are ignored and the user is expected to provide a func-
tion to evaluate the error weight vector W from (3.6). See CVodeSetEwtFn
in §5.5.4.

reltol (realtype) is the relative error tolerance.

54 Using CVODE

abstol (void *) is a pointer to the absolute error tolerance. If itol=CV SS,
abstol must be a pointer to a realtype variable. If itol=CV SV, abstol
must be an N Vector variable.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC Memory space for the cvode memory block was not allocated through
a previous call to CVodeMalloc.

CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also prints an error message to the file specified by
the optional input errfp.

! It is the user’s responsibility to provide compatible itol and abstol arguments.

5.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
provides the error weight vector, (optionally) a function that provides Jacobian related information
for the linear solver (if Newton iteration is chosen), and (optionally) one or two functions that define
the preconditioner for use in the spgmr algorithm.

5.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

CVRhsFn

Definition typedef void (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,

void *f data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

f data is a pointer to user data — the same as the f data parameter passed to
CVodeSetFdata.

Return value A CVRhsFn function type does not have a return value.

Notes Allocation of memory for ydot is handled within cvode.

5.6.2 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =
√

(1/N)
∑N

1 Wi · vi. The function type CVEwtFn is defined as follows:

CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *e data);

Purpose This function computes the WRMS error weights for the vector y.

5.6 User-supplied functions 55

Arguments y is the value of the vector for which the WRMS norm must be computed.

ewt is the output vector containing the error weights.

e data is a pointer to user data — the same as the e data parameter passed to
CVodeSetEwtFn.

Return value A CVEwtFn function type must return 0 if it successfuly set the error weights and −1
otherwise. In case of failure, a message is printed and the integration stops.

Notes Allocation of memory for ewt is handled within cvode.

! The error weight vector must have all components positive. It is the user’s
responsiblity to perform this test and return −1 if it is not satisfied.

5.6.3 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e. CVDense is called in Step
7 of §5.4), the user may provide a function of type CVDenseJacFn defined by

CVDenseJacFn

Definition typedef void (*CVDenseJacFn)(long int N, DenseMat J, realtype t,

N Vector y, N Vector fy, void *jac data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J = ∂f/∂y (or an approximation to it).

Arguments N is the problem size.

J is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the vector f(t, y).

jac data is a pointer to user data — the same as the jac data parameter passed to
CVDenseSetJacData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVDenseJacFn as temporary storage or work space.

Return value A CVDenseJacFn function type does not have a return value.

Notes A user-supplied dense Jacobian function must load the N by N dense matrix J with an
approximation to the Jacobian matrix J at the point (t, y). Only nonzero elements
need to be loaded into J because J is set to the zero matrix before the call to the
Jacobian function. The type of J is DenseMat.

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write
dense matrix elements without making explicit references to the underlying represen-
tation of the DenseMat type. DENSE ELEM(J, i, j) references the (i, j)-th element
of the dense matrix J (i, j= 0 . . . N − 1). This macro is for use in small problems
in which efficiency of access is not a major concern. Thus, in terms of indices m and
n running from 1 to N , the Jacobian element Jm,n can be loaded with the state-
ment DENSE ELEM(J, m-1, n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a
pointer to the storage for the jth column of J (j= 0 . . . N − 1), and the elements
of the jth column are then accessed via ordinary array indexing. Thus Jm,n can be
loaded with the statements col n = DENSE COL(J, n-1); col n[m-1] = Jm,n. For
large problems, it is more efficient to use DENSE COL than to use DENSE ELEM. Note
that both of these macros number rows and columns starting from 0, not 1.

56 Using CVODE

The DenseMat type and the accessor macros DENSE ELEM and DENSE COL are docu-
mented in §8.1.
If the user’s CVDenseJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the CVodeGet* functions described in §5.5.6.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.6.4 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand is called in
Step 7 of §5.4), the user may provide a function of type CVBandJacFn defined as follows:

CVBandJacFn

Definition typedef void (*CVBandJacFn)(long int N, long int mupper,

long int mlower, BandMat J, realtype t,

N Vector y, N Vector fy, void *jac data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the banded Jacobian J = ∂f/∂y (or a banded approximation
to it).

Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

J is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the vector f(t, y).

jac data is a pointer to user data — the same as the jac data parameter passed to
CVBandSetJacData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVBandJacFn as temporary storage or work space.

Return value A CVBandJacFn function type does not have a return value.

Notes A user-supplied band Jacobian function must load the band matrix J of type BandMat
with the elements of the Jacobian J(t, y) at the point (t,y). Only nonzero elements
need to be loaded into J because J is preset to zero before the call to the Jacobian
function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the BandMat type. BAND ELEM(J, i, j) references the (i, j)th
element of the band matrix J, counting from 0. This macro is for use in small problems
in which efficiency of access is not a major concern. Thus, in terms of indices m and n
running from 1 to N with (m,n) within the band defined by mupper and mlower, the
Jacobian element Jm,n can be loaded with the statement BAND ELEM(J, m-1, n-1)

= Jm,n. The elements within the band are those with -mupper ≤ m-n ≤ mlower.
Alternatively, BAND COL(J, j) returns a pointer to the diagonal element of the jth
column of J, and if we assign this address to realtype *col j, then the ith element of
the jth column is given by BAND COL ELEM(col j, i, j), counting from 0. Thus for
(m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J, n-1);

5.6 User-supplied functions 57

BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the jth column can also
be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type BandMat. The array col n can be
indexed from −mupper to mlower. For large problems, it is more efficient to use the
combination of BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the
dense case, these macros all number rows and columns starting from 0, not 1.

The BandMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §8.2.
If the user’s CVBandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the CVodeGet* functions described in §5.5.6.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.6.5 Jacobian information (SPGMR matrix-vector product)

If an iterative spgmr linear solver is selected (CVSpgmr is called in step 7 of §5.4) the user may
provide a function of type CVSpgmrJacTimesVecFn in the following form:

CVSpgmrJacTimesVecFn

Definition typedef int (*CVSpgmrJacTimesVecFn)(N Vector v, N Vector Jv, realtype t,

N Vector y, N Vector fy,

void *jac data, N Vector tmp);

Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the vector f(t, y).

jac data is a pointer to user data — the same as the jac data parameter passed to
CVSpgmrSetJacData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the Jacobian times vector function should be 0 if success-
ful. Any other return value will result in an unrecoverable error of the spgmr generic
solver, in which case the integration is halted.

Notes If the user’s CVSpgmrJacTimesVecFn function uses difference quotient approxima-
tions, it may need to access quantities not in the call list. These include the cur-
rent stepsize, the error weights, etc. To obtain these, use the CVodeGet* functions
described in §5.5.6. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundialstypes.h.

5.6.6 Preconditioning (SPGMR linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system
Pz = r where P may be either a left or a right preconditioner matrix. This function must be of
type CVSpgmrPrecSolveFn, defined as follows:

58 Using CVODE

CVSpgmrPrecSolveFn

Definition typedef int (*CVSpgmrPrecSolveFn)(realtype t, N Vector y, N Vector fy,

N Vector r, N Vector z,

realtype gamma, realtype delta,

int lr, void *p data, N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the vector f(t, y).

r is the right-hand side vector of the linear system.

z is the output vector computed.

gamma is the scalar γ appearing in the Newton matrix M = I − γJ .

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r − Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 < delta.
To obtain the N Vector ewt, call CVodeGetErrWeights (see §5.5.6).

lr is an input flag indicating whether the preconditioner solve function is to use
the left preconditioner (lr=1) or the right preconditioner (lr=2);

p data is a pointer to user data — the same as the p data parameter passed to the
function CVSpgmrSetPrecData.

tmp is a pointer to memory allocated for a variable of type N Vector which can be
used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), negative for an unrecoverable error (in
which case the integration is halted).

5.6.7 Preconditioning (SPGMR Jacobian data)

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed,
then this needs to be done in a user-supplied C function of type CVSpgmrPrecSetupFn, defined as
follows:

CVSpgmrPrecSetupFn

Definition typedef int (*CVSpgmrPrecSetupFn)(realtype t, N Vector y, N Vector fy,

booleantype jok, booleantype *jcurPtr,

realtype gamma, void *p data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function evaluates and/or preprocesses Jacobian related data needed by the pre-
conditioner.

Arguments The arguments of a CVSpgmrPrecSetupFn are as follows:

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the vector f(t, y).

jok is an input flag indicating whether Jacobian-related data needs to be recom-
puted. The jok argument provides for the re-use of Jacobian data in the
preconditioner solve function. jok == FALSE means that Jacobian-related

5.7 Rootfinding 59

data must be recomputed from scratch. jok == TRUE means that Jacobian
data, if saved from the previous call to this function, can be reused (with
the current value of gamma). A call with jok == TRUE can only occur after
a call with jok == FALSE.

jcurPtr is a pointer to an output integer flag which is to be set to TRUE if Jacobian
data was recomputed or to FALSE if Jacobian data was not recomputed, but
saved data was reused.

gamma is the scalar γ appearing in the Newton matrix M = I − γP .

p data is a pointer to user data, the same as the p data parameter passed to
CVSpgmrSetPrecData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVSpgmrPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), negative for an unrecoverable error (in
which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn

user function with the same (t,y) arguments. Thus the preconditioner setup function
can use any auxiliary data that is computed and saved during the evaluation of the
ODE right hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpgmrPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the CVodeGet* functions described in §5.5.6.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.7 Rootfinding

While integrating the IVP, cvode has the capability of finding the roots of a set of user-defined func-
tions. This section describes the user-callable functions used to initialize and define the rootfinding
problem and obtain solution information, and it also describes the required additional user-supplied
function.

5.7.1 User-callable functions for rootfinding

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g, g data);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are
to be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

nrtfn (int) is the number of root functions gi.

60 Using CVODE

g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)
whose roots are sought. See §5.7.2 for details.

g data (void *) pointer to the user data for use by the user’s root function g.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.

CV MEM NULL The cvode mem argument was NULL.

CV MEM FAIL A memory allocation failed.

CV RTFUNC NULL The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvode memory block.

rootsfound (int *) the indices of the user functions gi found to have a root. For
i = 0, . . . ,nrtfn−1, rootsfound[i]= 1 if gi has a root, and = 0 if not.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes ! The user must allocate memory for the vector rootsfound.

CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls to the user
root function g.

Arguments cvode mem (void *) pointer to the cvode memory block.

ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

5.7.2 User-supplied function for rootfinding

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef void (*CVRootFn)(realtype t, N Vector y, realtype *gout,

void *g data);

Purpose This function computes a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are to be found during the integration.

Arguments t is the current value of the independent variable.

5.8 Preconditioner modules 61

y is the current value of the dependent variable vector, y(t).

gout is the output array, of length nrtfn, with components gi(t, y).

g data is a pointer to user data — the same as the g data parameter passed to
CVodeSetGdata.

Return value A CVRootFn function type does not have a return value.

Notes Allocation of memory for gout is handled within cvode.

5.8 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvode provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

5.8.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner based on difference quotients of the ODE
right-hand side function f. It generates a band matrix of bandwidth ml+mu+1, where the number
of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth)
are specified by the user and uses this to form a preconditioner for use with the Krylov linear solver
in cvspgmr. Although this matrix is intended to approximate the Jacobian ∂f/∂y, it may be a
very crude approximation. The true Jacobian need not be banded, or its true bandwidth may be
larger than ml +mu +1, as long as the banded approximation generated here is sufficiently accurate
to speed convergence as a preconditioner.

In order to use the cvbandpre module, the user need not define any additional functions. Besides
the header files required for the integration of the ODE problem (see §5.3), to use the cvbandpre

module, the main program must include the header file cvbandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module and describes the
sequence of calls in the user main program. Steps that are unchanged from the user main program
presented in §5.4 are grayed-out.

1. Set problem dimensions

2. Set vector of initial values

3. Create cvode object

4. Set optional inputs

5. Allocate internal memory

6. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths mu and ml and call

bp data = CVBandPrecAlloc(cvode mem, N, mu, ml);

to allocate memory for and initialize a data structure bp data to be passed to the cvspgmr

linear solver.

7. Attach the cvspgmr linear solver

flag = CVBPSpgmr(cvode mem, pretype, maxl, bp data);

The function CVBPSpgmr is a wrapper around the cvspgmr specification function CVSpgmr and
performs the following actions:

•Attaches the cvspgmr linear solver to the main cvode solver memory;

62 Using CVODE

•Sets the preconditioner data structure for cvbandpre;

•Sets the preconditioner setup function for cvbandpre;

•Sets the preconditioner solve function for cvbandpre;

The arguments pretype and maxl are described below. The last argument of CVBPSpgmr is the
pointer to the cvbandpre data returned by CVBandPrecAlloc.

8. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to cvspgmr optional input functions.

9. Advance solution in time

10. Deallocate memory for solution vector

11. Free the cvbandpre data structure

CVBandPrecFree(bp data);

12. Free solver memory

The three user-callable functions that initialize, attach, and deallocate the cvbandpre precon-
ditioner module (steps 6, 7, and 11 above) are described in more detail below.

CVBandPrecAlloc

Call bp data = CVBandPrecAlloc(cvode mem, N, mu, ml);

Description The function CVBandPrecAlloc initializes and allocates memory for the cvbandpre

preconditioner.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

mu (long int) upper half-bandwidth of the problem Jacobian approximation.

ml (long int) lower half-bandwidth of the problem Jacobian approximation.

Return value If successful, CVBandPrecAlloc returns a pointer to the newly created cvbandpre

memory block (of type void *). If an error occurred, CVBandPrecAlloc returns NULL.

Notes The banded approximate Jacobian will have its nonzeros only in locations (i, j) with
−ml ≤ j − i ≤ mu.

CVBPSpgmr

Call flag = CVBPSpgmr(cvode mem, pretype, maxl, bp data);

Description The function CVBPSpgmr links the cvbandpre data to the cvspgmr linear solver and
attaches the latter to the cvode memory block.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to
use the default value CVSPGMR MAXL= 5.

bp data (void *) pointer to the cvbandpre data structure.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The cvspgmr initialization was successful.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR ILL INPUT The preconditioner type pretype is not valid.

CVSPGMR MEM FAIL A memory allocation request failed.

CV PDATA NULL The cvbandpre preconditioner has not been initialized.

5.8 Preconditioner modules 63

CVBandPrecFree

Call CVBandPrecFree(bp data);

Description The function CVBandPrecFree frees the pointer allocated by CVBandPrecAlloc.

Arguments The only argument of CVBandPrecFree is the pointer to the cvbandpre data struc-
ture (of type void *).

Return value The function CVBandPrecFree has no return value.

The following three optional output functions are available for use with the cvbandpre module:

CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(bp data, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the cvbandpre real and integer
workspace sizes.

Arguments bp data (void *) pointer to the cvbandpre data structure.

lenrwBP (long int) the number of realtype values in the cvbandpre workspace.

leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV PDATA NULL The cvbandpre preconditioner has not been initialized.

Notes In terms of problem size N , and smu = min(N − 1, mu+ml), the actual size of the real
workspace is (2 ml + mu + smu +2)N realtype words, and the actual size of the
integer workspace is N integer words.

CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(bp data, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls to the user
right-hand side function for finite difference banded Jacobian approximation used
within cvbandpre’s preconditioner setup function.

Arguments bp data (void *) pointer to the cvbandpre data structure.

nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV PDATA NULL The cvbandpre preconditioner has not been initialized.

5.8.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvode lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution
of many such problems is motivated by the nature of the underlying linear system of equations
(3.4) that must be solved at each time step. The linear algebraic system is large, sparse, and
structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial
preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method is
usually unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [15] and
is included in a software module within the cvode package. This module works with the parallel
vector module nvector parallel and generates a preconditioner that is a block-diagonal ma-
trix with each block being a band matrix. The blocks need not have the same number of super-

64 Using CVODE

and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is
then assigned to one of the M processors to be used to solve the ODE system. The basic idea is to
isolate the preconditioning so that it is local to each processor, and also to use a (possibly cheaper)
approximate right-hand side function. This requires the definition of a new function g(t, y) which
approximates the function f(t, y) in the definition of the ODE system (3.1). However, the user may
set g = f . Corresponding to the domain decomposition, there is a decomposition of the solution
vector y into M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends
on ym and also on components of blocks ym′ associated with neighboring subdomains (so-called
ghost-cell data). Let ȳm denote ym augmented with those other components on which gm depends.
Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM)]T (5.1)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM] (5.2)

where
Pm ≈ I − γJm (5.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mu + ml +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block
of g, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if
the couplings in the ODE system outside a certain bandwidth are considerably weaker than those
within the band. Reducing mu and ml while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping
the outer Jacobian elements into the computed elements within the band, and requires more caution
and experimentation.

The solution of the complete linear system

Px = b (5.4)

reduces to solving each of the equations

Pmxm = bm (5.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
The cvbbdpre module calls two user-provided functions to construct P : a required function

gloc (of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and
which is computed locally, and an optional function cfn (of type CVCommFn) which performs all
inter-process communication necessary to evaluate the approximate right-hand side g. These are
in addition to the user-supplied right-hand side function f. Both functions take as input the same
pointer f data as that passed by the user to CVodeSetFdata and passed to the user’s function f,
and neither function has a return value. The user is responsible for providing space (presumably
within f data) for components of y that are communicated by cfn from the other processors, and
that are then used by gloc, which is not expected to do any communication.

CVLocalFn

Definition typedef void (*CVLocalFn)(long int Nlocal, realtype t, N Vector y,

N Vector glocal, void *f data);

5.8 Preconditioner modules 65

Purpose This function computes g(t, y). It loads the vector glocal as a function of t and y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

glocal is the output vector.

f data is a pointer to user data — the same as the f data parameter passed to
CVodeSetFdata.

Return value A CVLocalFn function type does not have a return value.

Notes This function assumes that all inter-processor communication of data needed to cal-
culate glocal has already been done, and this data is accessible within f data.

The case where g is mathematically identical to f is allowed.

CVCommFn

Definition typedef void (*CVCommFn)(long int Nlocal, realtype t,

N Vector y, void *f data);

Purpose This function performs all inter-processor communications necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

f data is a pointer to user data — the same as the f data parameter passed to
CVodeSetFdata.

Return value A CVCommFn function type does not have a return value.

Notes The cfn function is expected to save communicated data in space defined within the
structure f data.

Each call to the cfn function is preceded by a call to the right-hand side function f

with the same (t, y) arguments. Thus cfn can omit any communications done by f

if relevant to the evaluation of glocal. If all necessary comunication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecAlloc (see below).

Besides the header files required for the integration of the ODE problem (see §5.3), to use the
cvbbdpre module, the main program must include the header file cvbbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §5.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create cvode object

5. Set optional inputs

6. Allocate internal memory

7. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq, mldq and mukeep, mlkeep and call

66 Using CVODE

bbd data = CVBBDPrecAlloc(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory for and initialize a data structure bbd data to be passed to the cvspgmr

linear solver. The last two arguments of CVBBDPrecAlloc are the two user-supplied functions
described above.

8. Attach the cvspgmr linear solver

flag = CVBBDSpgmr(cvode mem, pretype, maxl, bbd data);

The function CVBPSpgmr is a wrapper around the cvspgmr specification function CVSpgmr and
performs the following actions:

•Attaches the cvspgmr linear solver to the main cvode solver memory;

•Sets the preconditioner data structure for cvbbdpre;

•Sets the preconditioner setup function for cvbbdpre;

•Sets the preconditioner solve function for cvbbdpre;

The arguments pretype and maxl are described below. The last argument of CVBBDSpgmr is the
pointer to the cvbbdpre data returned by CVBBDPrecAlloc.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to cvspgmr optional input functions.

10. Advance solution in time

11. Deallocate memory for solution vector

12. Free the cvbbdpre data structure

CVBBDPrecFree(bbd data);

13. Free solver memory

14. Finalize MPI

The three user-callable functions that initialize, attach, and deallocate the cvbbdpre preconditioner
module (steps 7, 8, and 12 above) are described next.

CVBBDPrecAlloc

Call bbd data = CVBBDPrecAlloc(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecAlloc initializes and allocates memory for the cvbbdpre

preconditioner.

Arguments cvode mem (void *) pointer to the cvode memory block.

local N (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Ja-
cobian block.

5.8 Preconditioner modules 67

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely=

√
unit roundoff, which

can be specified by passing dqrely= 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all inter-process com-
munication required for the computation of g(t, y).

Return value If successful, CVBBDPrecAlloc returns a pointer to the newly created cvbbdpre mem-
ory block (of type void *). If an error occurred, CVBBDPrecAlloc returns NULL.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it
is replaced with 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the
Jacobian of the local block of g, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

CVBBDSpgmr

Call flag = CVBBDSpgmr(cvode mem, pretype, maxl, bbd data);

Description The function CVBBDSpgmr links the cvbbdpre data to the cvspgmr linear solver and
attaches the latter to the cvode memory block.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to
use the default value CVSPGMR MAXL= 5.

bbd data (void *) pointer to the cvbbdpre data structure.

Return value The return value flag (of type int) is one of

CVSPGMR SUCCESS The cvspgmr initialization was successful.

CVSPGMR MEM NULL The cvode mem pointer is NULL.

CVSPGMR ILL INPUT The preconditioner type pretype is not valid.

CVSPGMR MEM FAIL A memory allocation request failed.

CV PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPrecFree

Call CVBBDPrecFree(bbd data);

Description The function CVBBDPrecFree frees the pointer allocated by CVBBDPrecAlloc.

Arguments The only argument of CVBBDPrecFree is the pointer to the cvbbdpre data structure
(of type void *).

Return value The function CVBBDPrecFree has no return value.

The cvbbdpre module also provides a reinitialization function to allow solving a sequence of prob-
lems of the same size with cvspgmr/cvbbdpre, provided there is no change in local N, mukeep,
or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvode for a
subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn.

68 Using CVODE

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(bbd data, mudq, mldq, dqrely, gloc, cfn);

Description The function CVBBDPrecReInit reinitializes the cvbbdpre preconditioner.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all inter-process com-
munication required for the computation of g(t, y).

Return value The return value of CVBBDPrecReInit is always CV SUCCESS.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced with 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(bbd data, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.

leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV PDATA NULL The cvbbdpre preconditioner has not been initialized.

Notes In terms of local N and smu = min(local N - 1, mukeep + mlkeep), the actual size
of the real workspace is (2 mlkeep + mukeep + smu +2) local N realtype words,
and the actual size of the integer workspace is local N integer words. These values
are local to the current processor.

CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(bbd data, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls to the user gloc
function due to the finite difference approximation of the Jacobian blocks used within
cvbbdpre’s preconditioner setup function.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

ngevalsBBDP (long int) the number of calls to the user gloc function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV PDATA NULL The cvbbdpre preconditioner has not been initialized.

5.9 FCVODE, a Fortran-C interface module 69

The costs associated with cvbbdpre also include nlinsetups LU factorizations, nlinsetups
calls to cfn, and npsolves banded backsolve calls, where nlinsetups and npsolves are optional
cvode outputs (see §5.5.6).

Similar block-diagonal preconditioners could be considered with different treatment of the blocks
Pm. For example, incomplete LU factorization or an iterative method could be used instead of
banded LU factorization.

5.9 FCVODE, a Fortran-C interface module

The fcvode interface module is a package of C functions which support the use of the cvode solver,
for the solution of ODE systems dy/dt = f(t, y), in a mixed Fortran/C setting. While cvode is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to cvode for both
the serial and the parallel nvector implementations.

5.9.1 FCVODE routines

The user-callable functions, with the corresponding cvode functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to NV New Serial.

– FNVINITP (defined by nvector parallel) interfaces to NV New Parallel.

– FNVFREES (defined by nvector serial) interface to NV Destroy Serial.

– FNVFREEP (defined by nvector parallel) interfaces to NV Destroy Parallel.

• Interface to the main cvode module

– FCVMALLOC interfaces to CVodeCreate, CVodeSet* functions, and CVodeMalloc.

– FCVREINIT interfaces to CVodeReInit and CVodeSet* functions.

– FCVODE interfaces to CVode, CVodeGet* functions, and to the optional output functions
for the selected linear solver module.

– FCVDKY interfaces to the interpolated output function CVodeGetDky.

– FCVFREE interfaces to CVodeFree.

– FCVEWTSET interfaces to CVodeSetEwtFn.

• Interface to the linear solver modules

– FCVDIAG interfaces to CVDiag

– FCVDENSE interfaces to CVDense.

– FCVDENSESETJAC interfaces to CVDenseSetJacFn.

– FCVBAND interfaces to CVBand.

– FCVBANDSETJAC interfaces to CVBandSetJacFn.

– FCVSPGMR interfaces to CVSpgmr and spgmr optional input functions.

– FCVSPGMRREINIT interfaces to spgmr optional input functions.

– FCVSPGMRSETJAC interfaces to CVSpgmrSetJacTimesVecFn.

– FCVSPGMRSETPREC interfaces to CVSpgmrSetPreconditioner.

The user-supplied functions, each listed with the corresponding interface function which calls it
(and its type within cvode), are as follows:

70 Using CVODE

fcvode routine (Fortran) cvode function (C) cvode function type
FCVFUN FCVf CVRhsFn

FCVEWT FCVEwtSet CVEwtFn

FCVDJAC FCVDenseJac CVDenseJacFn

FCVBJAC FCVBandJac CVBandJacFn

FCVPSOL FCVPSol CVSpgmrPrecSolveFn

FCVPSET FCVPSet CVSpgmrPrecSetupFn

FCVJTIMES FCVJtimes CVSpgmrJacTimesVecFn

In contrast to the case of direct use of cvode, and of most Fortran ODE solvers, the names of
all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-
language program.

Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user rou-
tines called by them, appear as dummy names which are mapped to actual values by a series
of definitions in the header files fcvode.h and fcvbbd.h. By default, those mapping definitions
depend in turn on the C macro F77 FUNC defined in the header file config.h by configure. How-
ever, the set of flags — SUNDIALS CASE UPPER, SUNDIALS CASE LOWER, SUNDIALS UNDERSCORE NONE,
SUNDIALS UNDERSCORE ONE, and SUNDIALS UNDERSCORE TWO can be explicitly defined in config.h

when configuring sundials via the --with-f77underscore and --with-f77case options to over-
ride the default behavior if necessary (see Chapter 2). Either way, the names into which the dummy
names are mapped are in upper or lower case and have up to two underscores appended.

The user must also ensure that variables in the user Fortran code are declared in a manner
consistent with their counterparts in cvode. All real variables must be declared as REAL, DOUBLE
PRECISION, or perhaps as REAL*n, where n denotes the number of bytes, depending on whether
cvode was built in single, double or extended precision (see Chapter 2). Moreover, some of the
Fortran integer variables must be declared as INTEGER*4 or INTEGER*8 according to the C type
long int. These integer variables include: the array of integer optional inputs and outputs (IOPT),
problem dimensions (NEQ, NLOCAL, NGLOBAL), and Jacobian half-bandwidths (MU, ML, MUDQ, and MLDQ).
This is particularly important when using cvode and the fcvode package on 64-bit architectures.

5.9.2 FCVODE optional input and output

In order to keep the number of user-callable fcvode interface routines to a minimum, optional
inputs and outputs to the cvode solver and to related modules are not accessed through individual
functions, but rather through a pair of arrays, IOPT of integer type and ROPT of real type. Table 5.3
lists the entries in these two arrays and specifies the fcvode user-callable routine which sets/accesses
the corresponding optional variable, as well as the cvode optional function which is actually called.
For more details on the optional inputs and outputs, see §5.5.4 and §5.5.6.

5.9.3 Usage of the FCVODE interface module

The usage of fcvode requires calls to six or seven interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved.
These function calls and user routines are summarized separately below. Some details are omitted,
and the user is referred to the description of the corresponding cvode functions for information on
the arguments of any given user-callable interface routine, or of a given user-supplied function called
by an interface function. The usage of fcvode with preconditioner modules is described in later
subsections.

Steps marked with [S] in the instructions below apply to the serial nvector implementation
(nvector serial) only, while those marked with [P] apply to nvector parallel.

1. Right-hand side specification

5.9 FCVODE, a Fortran-C interface module 71

Table 5.3: Description of the fcvode optional input-output arrays IOPT and ROPT

Integer input-output array IOPT

Index Optional input Optional output cvode function
cvode main solver

1 MAXORD CVodeSetMaxOrd

2 MXSTEP CVodeSetMaxNumSteps

3 MXHNIL CVodeSetMaxHnilWarns

4 NST CVodeGetNumSteps

5 NFE CVodeGetNumRhsEvals

6 NSETUPS CVodeGetNumLinSolvSetups

7 NNI CVodeGetNumNonlinSolvIters

8 NCFN CVodeGetNumNonlinSolvConvFails

9 NETF CVodeGetNumErrTestFails

10 QU CVodeGetLastOrder

11 QCUR CVodeGetCurrentOrder

12, 13 LENRW, LENIW CVodeGetWorkSpace

14 SLDET CVodeSetStabLimDet

15 NOR CVodeGetNumStabLimOrderReds

22 MAXERRTESTFAILS CVodeSetMaxErrTestFails

23 MAXNONLINITERS CVodeSetMaxNonlinIters

24 MAXCONVFAILS CVodeSetMaxConvFails

25 NGE CVodeGetNumGEvals

cvdense linear solver
16, 17 LRW, LIW CVDenseGetWorkSpace

18 NJE CVDenseGetNumJacEvals

26 LS FLAG CVDenseGetLastFlag

cvband linear solver
16, 17 LRW, LIW CVBandGetWorkSpace

18 NJE CVBandGetNumJacEvals

26 LS FLAG CVBandGetLastFlag

cvdiag linear solver
16, 17 LRW, LIW CVDiagGetWorkSpace

26 LS FLAG CVDiagGetLastFlag

cvspgmr linear solver
16, 17 LRW, LIW CVSpgmrGetWorkSpace

18 NPE CVSpgmrGetNumPrecEvals

19 NLI CVSpgmrGetNumLinIters

20 NPS CVSpgmrGetNumPrecSolves

21 NCFL CVSpgmrGetNumConvFails

26 LS FLAG CVSpgmrGetLastFlag

Real input-output array ROPT

Index Optional input Optional output cvode function
1 H0 CVodeSetInitStep

2 HMAX CVodeSetMaxStep

3 HMIN CVodeSetMinStep

4 HU CVodeGetLastStep

5 HCUR CVodeGetCurrentStep

6 TCUR CVodeGetCurrentTime

7 TOLSF CVodeGetTolScaleFactor

8 TSTOP CVodeSetStopTime

9 NONLINCONVCOEF CVodeSetNonlinConvCoef

10 UROUND unit roundoff

72 Using CVODE

The user must in all cases supply the following Fortran routine

SUBROUTINE FCVFUN(T, Y, YDOT)

DIMENSION Y(*), YDOT(*)

It must set the YDOT array to f(t, y), the right-hand side of the ODE system, as function of T= t
and the array Y= y.

2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS(NEQ, IER)

where NEQ is the size of vectors and IER is a return completion flag which is set to 0 on success
and −1 if a failure occurred.

[P] To initialize the parallel vector module, the user must make the following call:

CALL FNVINITP(NLOCAL, NGLOBAL, IER)

in which the arguments are: NLOCAL the local size of vectors on this processor, NGLOBAL the
system size (and the global size of vectors, that is the sum of all values of NLOCAL). The return
completion flag IER is set on 0 upon successful return and on −1 otherwise. Note that if MPI
was initialized by the user, the communicator must be set to MPI COMM WORLD. If not, this routine
initializes MPI and sets the communicator equal to MPI COMM WORLD.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FCVMALLOC

Call CALL FCVMALLOC(T0, Y0, METH, ITMETH, IATOL, RTOL, ATOL, INOPT,

& IOPT, ROPT, IER)

Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes cvode.

Arguments T0 is the initial value of t.
Y0 is an array of initial conditions.
METH specifies the basic integration method: 1 for Adams (nonstiff) or 2 for

BDF (stiff).
ITMETH specifies the nonlinear iteration method: 1 for functional iteration or 2

for Newton iteration.
IATOL specifies the type for absolute tolerance ATOL: 1 for scalar or 2 for array.

If IATOL= 3, the arguments RTOL and ATOL are ignored and the user is
expected to subsequently call FCVEWTSET and provide the function FCVEWT.

RTOL is the relative tolerance (scalar).
ATOL is the absolute tolerance (scalar or array).
INOPT is the optional input flag: 0 if none or 1 if optional inputs are used.
IOPT is an array of length 40 for integer optional inputs and outputs.
ROPT is an array of length 40 for real optional inputs and outputs.

Return value IER is a return completion flag. Values are 0 for successful return and−1 otherwise.
See printed message for details in case of failure.

5.9 FCVODE, a Fortran-C interface module 73

Notes The optional inputs and outputs associated with the main cvode integrator are
listed in Table 5.3. If any of the optional inputs are used, the others must be set
to zero to indicate default values.

As an alternative to providing tolerances in the call to FCVMALLOC, the user may provide a routine
to compute the error weights used in the WRMS norm evaluations. If supplied, it must have
the following form:

SUBROUTINE FCVEWT (Y, EWT, IER)

DIMENSION Y(*), EWT(*)

It must set the positive components of the error weight vector EWT for the calculation of the
WRMS norm of Y. On return, set IER=0 if FCVEWT was successful, and nonzero otherwise.

If the FCVEWT routine is provided, then, following the call to FCVMALOC, the user must make the
call:

CALL FCVEWTSET (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied error weight routine. The argument IER is an
error return flag which can be 0 for success or non-zero if an error occurred.

4. Linear solver specification

In the case of a stiff system, the implicit BDF method involves the solution of linear systems
related to the Jacobian J = ∂f/∂y of the ODE system. cvode presently includes four choices
for the treatment of these systems, and the user of fcvode must call a routine with a specific
name to make the desired choice.

[S] Diagonal approximate Jacobian

This choice is appropriate when the Jacobian can be well approximated by a diagonal matrix.
The user must make the call:

CALL FCVDIAG(IER)

IER is an error return flag set on 0 on success or −1 if a memory failure occurred. There is no
additional user-supplied routine. Optional outputs specific to the diag case listed in Table 5.3.

[S] Dense treatment of the linear system

The user must make the call:

CALL FCVDENSE(NEQ, IER)

The argument IER is an error return flag which can be 0 for success , −1 if a memory allocation
failure occurred, or −2 for illegal input. As an option when using the dense linear solver,
the user may supply a routine that computes a dense approximation of the system Jacobian
J = ∂f/∂y. If supplied, it must have the following form:

SUBROUTINE FCVDJAC (NEQ, T, Y, FY, DJAC, EWT, H, WK1, WK2, WK3)

DIMENSION Y(*), FY(*), EWT(*), DJAC(NEQ,*), WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store
it columnwise in DJAC. FY contains f(t, y). The vectors WK1, WK2, and WK3 of length NEQ are
provided as work space for use in FCVDJAC.

If the user’s FCVDJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the

74 Using CVODE

unit roundoff, which can be obtained as the optional output ROPT(10), passed from the calling
program to this routine using COMMON.

If the FCVDJAC routine is provided, then, following the call to FCVDENSE, the user must make the
call:

CALL FCVDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER
is an error return flag which can be 0 for success or non-zero if an error occurred.

Optional outputs specific to the dense case are listed in Table 5.3.

[S] Band treatment of the linear system

The user must make the call:

CALL FCVBAND (NEQ, MU, ML, IER)

The arguments are: MU, the upper half-bandwidth; ML, the lower half-bandwidth; and IER an
error return flag which can be 0 for success , −1 if a memory allocation failure occurred, or −2
in case an input has an illegal value.

As an option when using the band linear solver, the user may supply a routine that computes a
band approximation of the system Jacobian J = ∂f/∂y. If supplied, it must have the following
form:

SUBROUTINE FCVBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC,

& EWT, H, WK1, WK2, WK3)

DIMENSION Y(*), FY(*), EWT(*), BJAC(MDIM,*), WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N

array BJAC with the Jacobian matrix at the current (t,y) in band form. Store in BJAC(k,j) the
Jacobian element Ji,j with k = i − j + MU + 1, k = 1 · · ·ML + MU + 1 and j = 1 · · ·N . FY

contains f(t, y). The vectors WK1, WK2, and WK3 of length NEQ are provided as work space for use
in FCVBJAC.

If the user’s FCVBJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROPT(10), passed from the calling
program to this routine using COMMON.

If the FCVBJAC routine is provided, then, following the call to FCVBAND, the user must make the
call:

CALL FCVBANDSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER
is an error return flag which can be 0 for success or non-zero if an error occurred.

Optional outputs specific to the band case are listed in Table 5.3.

[S][P] SPGMR treatment of the linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must make the
call

CALL FCVSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)

The arguments are as follows. IPRETYPE specifies the preconditioner type: 0 for no precondi-
tioning, 1 for left only, 2 for right only, or 3 for both sides. IGSTYPE indicates the Gram-Schmidt

5.9 FCVODE, a Fortran-C interface module 75

process type: 1 for modified G-S or 2 for classical G-S. MAXL is the maximum Krylov subspace
dimension (0 indicates default). DELT is the linear convergence tolerance factor (0.0 indicates
default). IER is an error return flag which can be 0 to indicate success, −1 if a memory allocation
failure occurred, or −2 to indicate an illegal input.

As an option when using the spgmr linear solver, the user may supply a routine that computes
the product of the system Jacobian J = ∂f/∂y and a given vector v. If supplied, it must have
the following form:

SUBROUTINE FCVJTIMES (V, FJV, T, Y, FY, EWT, H, WORK, IER)

DIMENSION V(*), FJV(*), Y(*), FY(*), EWT(*), WORK(*)

Typically this routine will use only NEQ, T, Y, V, and FJV. It must compute the product vector
Jv, where the vector v is stored in V, and store the product in FJV. On return, set IER=0 if
FCVJTIMES was successful, and nonzero otherwise. FY contains f(t, y). The vector WORK, of
length NEQ, is provided as work space for use in FCVJTIMES.

If the user’s FCVJTIMES uses difference quotient approximations, it may need to use the error
weight array EWT and current stepsize H in the calculation of suitable increments. It may also
need the unit roundoff, which can be obtained as the optional output ROPT(10), passed from
the calling program to this routine using COMMON.

If the FCVJTIMES routine is provided, then, following the call to FCVSPGMR, the user must make
the call:

CALL FCVSPGMRSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian times vector approximation. The
argument IER is an error return flag which can be 0 for success or non-zero if an error occurred.

If preconditioning is to be done (IPRETYPE 6= 0), then, following the call to FCVSPGMR, the user
must call

CALL FCVSPGMRSETPREC(FLAG, IER)

with FLAG 6= 0, and the user program must include the following routine for solution of the
preconditioner linear system:

SUBROUTINE FCVPSOL(T, Y, FY, VT, GAMMA, EWT, DELTA, R, LR, Z, IER)

DIMENSION Y(*), FY(*), VT(*), EWT(*), R(*), Z(*)

It must solve the preconditioner linear system Pz = r, where r = R is input, and store the
solution z in Z. Here P is the left preconditioner if LR=1 and the right preconditioner if LR=2.
The preconditioner (or the product of the left and right preconditioners if both are nontrivial)
should be an approximation to the matrix I−γJ , where I is the identity matrix, J is the system
Jacobian, and γ = GAMMA.

The arguments EWT and DELTA are input and provide the error weight array and a scalar tolerance,
respectively, for use by FCVPSOL if it uses an iterative method in its solution. In that case, the
residual vector ρ = r − Pz of the system should be made less than DELTA in weighted `2 norm,
i.e.

√

∑

(ρi ∗ EWT[i])2 < DELTA. The argument VT is a work array of length NEQ for use by this
routine.

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FCVPSET(T, Y, FY, JOK, JCUR, GAMMA, EWT, H, V1, V2, V3, IER)

DIMENSION Y(*), FY(*), EWT(*), V1(*), V2(*), V3(*)

76 Using CVODE

It must perform any evaluation of Jacobian-related data and preprocessing needed for the so-
lution of the preconditioner linear systems by FCVPSOL. The input argument JOK allows for
Jacobian data to be saved and reused: If JOK=0, this data should be recomputed from scratch.
If JOK=1, a saved copy of it may be reused, and the preconditioner constructed from it. On
return, set JCUR=1 if Jacobian data was computed, and 0 otherwise. Also on return, set IER=0
if FCVPSET was successful, set IER positive if a recoverable error occurred, and set IER negative
if a non-recoverable error occurred.

If the user’s FCVPSET uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROPT(10), passed from the calling
program to this routine using COMMON.

! If the user calls FCVSPGMRSETPREC, the routine FCVPSET must be provided, even if it’s
empty.

Optional outputs specific to the spgmr case are listed in Table 5.3.

If a sequence of problems of the same size is being solved using the spgmr linear solver, then
following the call to FCVREINIT (see below), a call to the FCVSPGMR routine may or may not
be needed. If there is a change in input arguments other than MAXL, then the user program
should call the routine FCVSPGMRREINIT which reinitializes the spgmr linear solver, but without
reallocating its memory. The arguments of FCVSPGMRREINIT routine have the same names and
meanings as those of FCVSPGMR routine. Finally, if the value of MAXL is being changed, then a
call to FCVSPGMR must be made.

5. Problem solution

Carrying out the integration is accomplished by making calls as follows:

CALL FCVODE(TOUT, T, Y, ITASK, IER)

The arguments are as follows. TOUT specifies the next value of t at which a solution is desired
(input). T is the value of t reached by the solver on output. Y is an array containing the computed
solution on output. ITASK is a task indicator and should be set to 1 for normal mode (overshoot
TOUT and interpolate), to 2 for one-step mode (return after each internal step taken), to 3 for
normal mode with the additional tstop constraint, or to 4 for one-step mode with the additional
constraint tstop. IER is a completion flag and will be set to a positive value upon successful re-
turn or to a negative value if an error occurred. These values correspond to the CVode returns (see
§5.5.3) as follows: 0: CV SUCCESS, 1: CV TSTOP RETURN, 2: CV ROOT RETURN, −1: CV MEM NULL,
−2: Cv ILL INPUT, −3: CV NO MALLOC, −4: CV TOO MUCH WORK, −5: CV TOO MUCH ACC, −6:
CV ERR FAILURE, −7: CV CONV FAILURE, −8: CV LINIT FAIL, −9: CV LSETUP FAIL, and −10:
CV LSOLVE FAIL from CVode (see §5.5.3). The current values of the optional outputs are avail-
able in IOPT and ROPT (see Table 5.3).

6. Additional solution output

To obtain a derivative of the solution, of order up to the current method order, make the following
call:

CALL FCVDKY(T, K, DKY, IER)

where T is the value of t at which solution derivative is desired, K is the derivative order (0 ≤ K

≤ QU), and DKY is an array containing the computed K-th derivative of y on return. The value T
must lie between TCUR-HU and TCUR. The return flag IER is set to 0 upon successful return or to
a negative value to indicate an illegal input.

7. Problem reinitialization

5.9 FCVODE, a Fortran-C interface module 77

To re-initialize the cvode solver for the solution of a new problem of the same size as one already
solved, make the following call:

CALL FCVREINIT(T0, Y0, IATOL, RTOL, ATOL, INOPT, IOPT, ROPT, IER)

The arguments have the same names and meanings as those of FCVMALLOC. FCVREINIT performs
the same initializations as FCVMALLOC, but does no memory allocation, using instead the existing
internal memory created by the previous FCVMALLOC call. The call to specify the linear system
solution method may or may not be needed.

8. Memory deallocation

To free the internal memory created by the call to FCVMALLOC, make the call

CALL FCVFREE

and then, depending on the nvector version (serial or parallel), either

CALL FNVFREES

or

CALL FNVFREEP

respectively.

5.9.4 Usage of the FCVROOT interface to rootfinding

The fcvroot interface package allows programs written in Fortran to use the rootfinding feature
of the cvode solver module. The user-callable functions in fcvroot, with the corresponding cvode

functions, are as follows:

• FCVROOTINIT interfaces to CVodeRootInit.

• FCVROOTINFO interfaces to CVodeGetRootInfo.

• FCVROOTFREE interfaces to CVodeRootInit.

In order to use the rootfinding feature of cvode, the following call must be made, after calling
FCVMALLOC but prior to calling FCVODE, to allocate and initialize memory for the FCVROOT module:

CALL FCVROOTINIT (NRTFN, IER)

The arguments are as follows: NRTFN is the number of root functions. IER is a return completion
flag; its values are 0 for success, −1 if the CVODE memory was NULL, and −11 if a memory allocation
failed.

To specifiy the functions whose roots are to be found, the user must define the following routine:

SUBROUTINE FCVROOTFN (T, Y, G)

DIMENSION Y(*), G(*)

It must set the G array, of length NRTFN, with components gi(t, y), as a function of T= t and the
array Y= y.

When making calls to FCVODE to solve the ODE system, the occurrence of a root is flagged by
the return value IER = 2. In that case, if NRTFN > 1, the functions gi which were found to have a
root can be identified by making the following call:

78 Using CVODE

CALL FCVROOTINFO (NRTFN, INFO, IER)

The arguments are as follows: NRTFN is the number of root functions. INFO is an integer array of
length NRTFN with root information. IER is a return completion flag; its values are 0 for success,
negative if there was a memory failure. The returned values of INFO(i) (i= 1, . . . , NRTFN) are 0 or
1, such that INFO(i) = 1 if gi was found to have a root, and INFO(i) = 0 otherwise.

The total number of calls made to the root function FCVROOTFN, denoted NGE, can be obtained
from IOPT(25). If the fcvode/cvode memory block is reinitialized to solve a different problem via
a call to FCVREINIT, then the counter NGE is reset to zero.

To free the memory resources allocated by a prior call to FCVROOTINIT make the following call:

CALL FCVROOTFREE

See §5.7 for additional information on the rootfinding feature.

5.9.5 Usage of the FCVBP interface to CVBANDPRE

The fcvbp interface sub-module is a package of C functions which, as part of the fcvode inter-
face module, support the use of the cvode solver with the serial nvector serial module and
the cvbandpre preconditioner module (see §5.8.1), for the solution of ODE systems in a mixed
Fortran/C setting.

The user-callable functions in this package, with the corresponding cvode and cvbandpre

functions, are as follows:

• FCVBPINIT interfaces to CVBandPrecAlloc.

• FCVBPSPGMR interfaces to CVBPSpgmr and spgmr optional input functions.

• FCVBPREINIT interfaces to CVBandPrecReInit.

• FCVBPOPT interfaces to cvbandpre optional output functions.

• FCVBPFREE interfaces to CVBandPrecFree.

As with the rest of the fcvode routines, the names of the user-supplied routines are mapped to
actual values through a series of definitions in the header file fcvbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.9.3 are grayed-out.

1. Right-hand side specification

2. nvector module initialization

3. Problem specification

4. Linear solver specification

To initialize the cvbandpre preconditioner, make the following call:

CALL FCVBPINIT(NEQ, MU, ML, IER)

The arguments are as follows. NEQ is the problem size. MU and ML are the upper and lower
half-bandwidths of the band matrix that is retained as an approximation of the Jacobian. IER

is a return completion flag. A value of 0 indicates success, while a value of −1 indicates that a
memory failure occurred.

To specify the spgmr linear system solver and use the cvbandpre preconditioner, make the
following call:

CALL FCVBPSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)

5.9 FCVODE, a Fortran-C interface module 79

Its arguments are the same as those of FCVSPGMR (see step 4 in §5.9.3).
Optionally, to specify that spgmr should use the supplied FCVJTIMES, make the call

CALL FCVSPGMRSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 4 in §5.9.3 for details).

5. Problem solution

6. cvbbdpre Optional outputs

Optional outputs specific to the spgmr solver are NPE, NLI, NPS, NCFL, LRW, and LIW, stored
in IOPT(16) · · · IOPT(21), respectively. To obtain the optional outputs associated with the
cvbandpre module, make the following call:

CALL FCVBPOPT(LENRPW, LENIPW, NFE)

The arguments returned are as follows. LENRPW is the length of real preconditioner work space,
in realtype words. LENIPW is the length of integer preconditioner work space, in integer words.
NFE is the number of f(t, y) evaluations (calls to FCVFUN) for finite difference banded Jacobian
approximation.

7. Memory deallocation

To free the internal memory created by the call to FCVBPINIT, before calling FCVFREE and
FNVFREEP, the user must call

CALL FCVBPFREE

5.9.6 Usage of the FCVBBD interface to CVBBDPRE

The fcvbbd interface sub-module is a package of C functions which, as part of the fcvode interface
module, support the use of the cvode solver with the parallel nvector parallel module and
the cvbbdpre preconditioner module (see §5.8.2), for the solution of ODE systems in a mixed
Fortran/C setting.

The user-callable functions in this package, with the corresponding cvode and cvbbdpre func-
tions, are as follows:

• FCVBBDINIT interfaces to CVBBDPrecAlloc.

• FCVBBDSPGMR interfaces to CVBBDSpgmr and spgmr optional input functions.

• FCVBBDREINIT interfaces to CVBBDPrecReInit.

• FCVBBDOPT interfaces to cvbbdpre optional output functions.

• FCVBBDFREE interfaces to CVBBDPrecFree.

In addition to the Fortran right-hand side function FCVFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within cvbbdpre or cvode):

fcvbbd routine (Fortran) cvode function (C) cvode function type
FCVLOCFN FCVgloc CVLocalFn

FCVCOMMF FCVcfn CVCommFn

FCVJTIMES FCVJtimes CVSpgmrJacTimesVecFn

80 Using CVODE

As with the rest of the fcvode routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on
flags discussed above in §5.9.1, the names of the user-supplied routines are mapped to actual values
through a series of definitions in the header file fcvbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.9.3 are grayed-out.

1. Right-hand side specification

2. nvector module initialization

3. Problem specification

4. Linear solver specification

To initialize the cvbbdpre preconditioner, make the following call:

CALL FCVBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)

The arguments are as follows. NLOCAL is the local size of vectors on this processor. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian
blocks by difference quotients. These may be smaller than the true half-bandwidths of the
Jacobian of the local block of g, when smaller values may provide greater efficiency. MU and ML

are the upper and lower half-bandwidths of the band matrix that is retained as an approximation
of the local Jacobian block. These may be smaller than MUDQ and MLDQ. DQRELY is the relative
increment factor in y for difference quotients (optional). A value of 0.0 indicates the default,√
unit roundoff. IER is a return completion flag. A value of 0 indicates success, while a value of
−1 indicates that a memory failure occurred or that an input had an illegal value.

To specify the spgmr linear system solver and use the cvbbdpre preconditioner, make the
following call:

CALL FCVBBDSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)

Its arguments are the same as those of FCVSPGMR (see step 4 in §5.9.3).
Optionally, to specify that spgmr should use the supplied FCVJTIMES, make the call

CALL FCVSPGMRSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 4 in §5.9.3 for details).

5. Problem solution

6. cvbbdpre Optional outputs

Optional outputs specific to the spgmr solver are NPE, NLI, NPS, NCFL, LRW, and LIW, stored
in IOPT(16) · · · IOPT(21), respectively. To obtain the optional outputs associated with the
cvbbdpre module, make the following call:

CALL FCVBBDOPT(LENRPW, LENIPW, NGE)

The arguments returned are as follows. LENRPW is the length of real preconditioner work space,
in realtype words. This size is local to the current processor. LENIPW is the length of integer
preconditioner work space, in integer words. This size is local to the current processor. NGE is
the number of g(t, y) evaluations (calls to FCVLOCFN) so far.

5.9 FCVODE, a Fortran-C interface module 81

7. Problem reinitialization

If a sequence of problems of the same size is being solved using the spgmr linear solver in
combination with the cvbbdpre preconditioner, then the cvode package can be re-initialized for
the second and subsequent problems by calling FCVREINIT, following which, a call to FCVBBDINIT
may or may not be needed. If the input arguments are the same, no FCVBBDINIT call is needed.
If there is a change in input arguments other than MU, ML, or MAXL, then the user program should
make the call

CALL FCVBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)

This reinitializes the cvbbdpre preconditioner, but without reallocating its memory. The argu-
ments of the FCVBBDREINIT routine have the same names and meanings as those of FCVBBDINIT.
If the value of MU or ML is being changed, then a call to FCVBBDINIT must be made. Finally,
if MAXL is being changed, then a call to FCVBBDSPGMR must be made; in this case the spgmr

memory is reallocated.

8. Memory deallocation

To free the internal memory created by the call to FCVBBDINIT, before calling FCVFREE and
FNVFREEP, the user must call

CALL FCVBBDFREE

Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two
provided within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

84 Description of the NVECTOR module

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module also defines and implements the vector operations acting on
N Vector. These routines are nothing but wrappers for the vector operations defined by a particular
nvector implementation, which are accessed through the ops field of the N Vector structure. To
illustrate this point we show below the implementation of a typical vector operation from the generic
nvector module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines a function N VCloneVectorArray which

creates (by cloning) an array of count variables of type N Vector, each of the same type as an
existing N Vector. Its prototype is

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

and its definition is based on the implementation-specific N VClone operation. An array of variables
of type N Vector can be destroyed by calling N VDestroyVectorArray, whose prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should
be unique to that implementation in order to permit using more than one nvector module
(each with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used
to access different parts in the content field of the newly defined N Vector.

85

Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not copy the vector, but rather allocates
storage for the new vector.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded linear solvers, as well as the interfaces to the
banded preconditioners provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a con-
tiguous array of realtype. This routine is only used in the interfaces
to the dense linear solver.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n− 1. The yi may not be tested
for 0 values. It should only be called with an x that is guaranteed to
have all nonzero components.

continued on next page

86 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z:
zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, y);

Sets the components of the N Vector y to be the absolute values of
the components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine
may not check for division by 0. It should be called only with an x

which is guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.

N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
continued on next page

6.1 The NVECTOR SERIAL implementation 87

continued from last page

Name Usage and Description

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the
components of the N Vector x, with prior testing for zero values:
zi = 1.0/xi, i = 0, . . . , n − 1. This routine returns TRUE if all com-
ponents of x are nonzero (successful inversion) and returns FALSE oth-
erwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if
ci = 1, xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint
on xi if ci = 0. This routine returns FALSE if any element failed the
constraint test, TRUE if all passed. It also sets a mask vector m, with
elements equal to 1.0 where the constraint test failed, and 0.0 where
the test passed. This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundialstypes.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, and a boolean flag own data which specifies the ownership
of data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The
suffix S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

88 Description of the NVECTOR module

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1 and provides the following user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VCloneEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array by using an
existing N Vector as a template.

N_Vector N_VCloneEmpty_Serial(N_Vector w);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VNewVectorArray Serial

This function creates an array of count serial vectors.

N_Vector *N_VNewVectorArray_Serial(int count, long int vec_length);

• N VNewVectorArrayEmpty Serial

This function creates an array of count serial vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Serial(int count, long int vec_length);

6.2 The NVECTOR PARALLEL implementation 89

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Serial or with N VNewVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• ! The nvector serial constructor functions N VNewEmpty Serial, N VCloneEmpty Serial,
N VMake Serial, and N VNewVectorArrayEmpty Serial set the field own data = FALSE. The
functions N VDestroy Serial and N VDestroyVectorArray Serial will not attempt to free
the pointer data for any N Vector with own data set to FALSE. In such a case, it is the user’s
responsibility to deallocate the data pointer.

• ! To maximize efficiency, vector operations in the nvector serial implementation that
have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector con-
tent structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

90 Description of the NVECTOR module

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part
of v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the
vector v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vec-
tors.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the
local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 and provides the following user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

6.2 The NVECTOR PARALLEL implementation 91

• N VCloneEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array by using an
existing N Vector as a template.

N_Vector N_VCloneEmpty_Parallel(N_Vector w);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VNewVectorArray Parallel

This function creates an array of count parallel vectors.

N_Vector *N_VNewVectorArray_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewVectorArrayEmpty Parallel

This function creates an array of count parallel vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Parallel or with N VNewVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
local component array via v data = NV DATA P(v) and then access v data[i] within the loop
than it is to use NV Ith P(v,i) within the loop.

• ! The nvector parallel constructor functions N VNewEmpty Parallel, N VMake Parallel,
N VCloneEmpty Parallel, and N VNewVectorArrayEmpty Parallel set the field own data =
FALSE. The functions N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• ! To maximize efficiency, vector operations in the nvector parallel implementation
that have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsability to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

92 Description of the NVECTOR module

6.3 NVECTOR functions used by CVODE

In Table 6.2 below, we list the vector functions in the nvector module within the cvode package.
The table also shows, for each function, which of the code modules uses the function. The cvode

column shows function usage within the main integrator module, while the remaining seven columns
show function usage within each of the four cvode linear solvers, the cvbandpre and cvbbdpre

preconditioner modules, and the fcvode module.
There is one subtlety in the cvspgmr column hidden by the table. The dot product function

N VDotProd is called both within the implementation file cvspgmr.c for the cvspgmr solver and
within the implementation files spgmr.c and iterative.c for the generic spgmr solver upon which
the cvspgmr solver is implemented. Also, although N VDiv and N VProd are not called within the
implementation file cvspgmr.c, they are called within the implementation file spgmr.c and so are
required by the cvspgmr solver module. This issue does not arise for the other three cvode linear
solvers because the generic dense and band solvers (used in the implementation of cvdense and
cvband) do not make calls to any vector functions and cvdiag is not implemented using a generic
diagonal solver.

At this point, we should emphasize that the cvode user does not need to know anything about
the usage of vector functions by the cvode code modules in order to use cvode. The information
is presented as an implementation detail for the interested reader.

Table 6.2: List of vector functions usage by cvode code modules

c
v
o
d
e

c
v
d
e
n
s
e

c
v
b
a
n
d

c
v
d
ia

g

c
v
s
p
g
m
r

c
v
b
a
n
d
p
r
e

c
v
b
b
d
p
r
e

f
c
v
o
d
e

N VClone X X X

N VDestroy X X X

N VSpace X

N VGetArrayPointer X X X X X

N VSetArrayPointer X X

N VLinearSum X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X X X

N VMin X

N VCompare X

N VInvTest X

The vector functions listed in Table 6.1 that are not used by cvode are: N VWL2Norm, N VL1Norm,
N VWrmsNormMask, N VConstrMask, and N VMinQuotient. Therefore a user-supplied nvector mod-
ule for cvode could omit these five functions.

Chapter 7

Providing Alternate Linear Solver
Modules

The central cvode module interfaces with the linear solver module to be used by way of calls to
four routines. These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes
are as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification routine (like those described
in §5.5.2) which will attach the above four routines to the main cvode memory block. Note that of
the four interface routines, only the lsolve routine is required. The lfree routine must be provided
only if the solver specification routine makes any memory allocation.

These four routines that interface between cvode and the linear solver module necessarily have
fixed call sequences. Thus, a user wishing to implement another linear solver within the cvode

package must adhere to this set of interfaces. The following is a complete description of the call
list for each of these routines. Note that the call list of each routine includes a pointer to the main
cvode memory block, by which the routine can access various data related to the cvode solution.
The contents of this memory block are given in the file cvode impl.h (but not reproduced here, for
the sake of space).

Initialization routine. The type definition of linit is

linit

Definition int (*linit)(CVodeMem cv mem);

Purpose The purpose of linit is to complete initializations for specific linear solver, such as
counters and statistics.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

Return value An linit function should return 0 if it has successfully initialized the cvode linear
solver and −1 otherwise.

Notes If an error does occur, an appropriate message should be sent to cv mem->cv errfp.

Setup routine. The type definition of lsetup is

94 Providing Alternate Linear Solver Modules

lsetup

Definition int (*lsetup)(CVodeMem cv mem, int convfail, N Vector ypred,

N Vector fpred, booleantype *jcurPtr,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It
may re-compute Jacobian-related data is it deems necessary.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

convfail is an input flag used to indicate any problem that occurred during the
solution of the nonlinear equation on the current time step for which the
linear solver is being used. This flag can be used to help decide whether
the Jacobian data kept by a cvode linear solver needs to be updated or
not. Its possible values are:

• CV NO FAILURES: this value is passed to lsetup if either this is the first
call for this step, or the local error test failed on the previous attempt
at this step (but the Newton iteration converged).

• CV FAIL BAD J: this value is passed to lsetup if (a) the previous New-
ton corrector iteration did not converge and the linear solver’s setup
routine indicated that its Jacobian-related data is not current, or (b)
during the previous Newton corrector iteration, the linear solver’s solve
routine failed in a recoverable manner and the linear solver’s setup rou-
tine indicated that its Jacobian-related data is not current.

• CV FAIL OTHER: this value is passed to lsetup if during the current
internal step try, the previous Newton iteration failed to converge even
though the linear solver was using current Jacobian-related data.

ypred is the predicted y vector for the current cvode internal step.

fpred is the value of the right-hand side at ypred, i.e. f(tn, ypred).

jcurPtr is a pointer to a boolean to be filled in by lsetup. The function should set
*jcurPtr = TRUE if its Jacobian data is current after the call and should
set *jcurPtr = FALSE if its Jacobian data is not current. If lsetup calls for
re-evaluation of Jacobian data (based on convfail and cvode state data),
it should return *jcurPtr = TRUE unconditionally; otherwise an infinite
loop can result.

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value The lsetup routine should return 0 if successful, a positive value for a recoverable
error, and a negative value for an unrecoverable error.

Solve routine. The type definition of lsolve is

lsolve

Definition int (*lsolve)(CVodeMem cv mem, N Vector b, N Vector weight,

N Vector ycur, N Vector fcur);

Purpose The routine lsolve must solve the linear equation Mx = b, where M is some ap-
proximation to I − γJ , J = (∂f/∂y)(tn, ycur) and the right-hand side vector b is
input.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the reciprocals of the
Wi of (3.6).

95

ycur is a vector that contains the solver’s current approximation to y(tn).

fcur is a vector that contains f(tn, ycur).

Return value lsolve returns a positive value for a recoverable error and a negative value for an
unrecoverable error. Success is indicated by a 0 return value.

Memory deallocation routine. The type definition of lfree is

lfree

Definition void (*lfree)(CVodeMem cv mem);

Purpose The routine lfree should free up any memory allocated by the linear solver.

Arguments The argument cv mem is the cvode memory pointer of type CVodeMem.

Return value This routine has no return value.

Notes This routine is called once a problem has been completed and the linear solver is no
longer needed.

Chapter 8

Generic Linear Solvers in
SUNDIALS

In this chapter, we describe three generic linear solver code modules that are included in cvode,
but which are of potential use as generic packages in themselves, either in conjunction with the use
of cvode or separately. These modules are:

• The dense matrix package, which includes the matrix type DenseMat, macros and functions
for DenseMat matrices, and functions for small dense matrices treated as simple array types.

• The band matrix package, which includes the matrix type BandMat, macros and functions for
BandMat matrices, and functions for small band matrices treated as simple array types.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
spgmr are only summarized briefly, since they are less likely to be of direct use in connection with
cvode. The functions for small dense matrices are fully described, because we expect that they will
be useful in the implementation of preconditioners used with the combination of cvode and the
cvspgmr solver.

8.1 The DENSE module

8.1.1 Type DenseMat

The type DenseMat is defined to be a pointer to a structure with a size and a data field:

typedef struct {

long int size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a
dense matrix, while the data field is a two dimensional array used for component storage. The
elements of a dense matrix are stored columnwise (i.e columns are stored one on top of the other in
memory). If A is of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given
by the expression (A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros
below allow a user to efficiently access individual matrix elements without writing out explicit data
structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL macro. Users should use these macros
whenever possible.

98 Generic Linear Solvers in SUNDIALS

8.1.2 Accessor Macros

The following two macros are defined by the dense module to provide access to data in the DenseMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N × N DenseMat A, 0 ≤ j ≤ N − 1. The type
of the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above,
col j may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is
referenced by col j[i].

8.1.3 Functions

The following functions for DenseMat matrices are available in the dense package. For full details,
see the header file dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;

• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

8.1.4 Small Dense Matrix Functions

The following functions for small dense matrices are available in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th
column of a. The location a[0] contains a pointer to n2 contiguous locations which contain
the elements of a.

8.1 The DENSE module 99

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in
the array if successful. It returns NULL if the memory request could not be satisfied.

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation
matrix, L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper
triangular matrix, then the upper triangular part of a (including its diagonal) contains U
and the strictly lower triangular part of a contains the multipliers, I − L.

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization. In this case it returns the column index (numbered from one) at which it
encountered the zero.

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU-
factored and the pivot array p has been set by a successful call to gefa(a,n,p). The solution
x is written into the b array.

• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally
appear on paper. It is intended as a debugging tool with small values of n. The elements are
printed using the %g option. A blank line is printed before and after the matrix.

100 Generic Linear Solvers in SUNDIALS

8.2 The BAND module

8.2.1 Type BandMat

The type BandMat is the type of a large band matrix A (possibly distributed). It is defined to be a
pointer to a structure defined by:

typedef struct {

long int size;

long int mu, ml, smu;

realtype **data;

} *BandMat;

The fields in the above structure are:

• size is the number of columns (which is the same as the number of rows);

• mu is the upper half-bandwidth, 0 ≤ mu ≤ size−1;

• ml is the lower half-bandwidth, 0 ≤ ml ≤ size−1;

• smu is the storage upper half-bandwidth, mu ≤ smu ≤ size−1. The BandFactor routine writes
the LU factors into the storage for A. The upper triangular factor U, however, may have an
upper half-bandwidth as big as min(size−1,mu+ml) because of partial pivoting. The smu field
holds the upper half-bandwidth allocated for A.

• data is a two dimensional array used for component storage. The elements of a band matrix
of type BandMat are stored columnwise (i.e. columns are stored one on top of the other in
memory). Only elements within the specified half-bandwidths are stored.

If we number rows and columns in the band matrix starting from 0, then

– data[0] is a pointer to (smu+ml+1)*size contiguous locations which hold the elements
within the band of A

– data[j] is a pointer to the uppermost element within the band in the j-th column. This
pointer may be treated as an array indexed from smu−mu (to access the uppermost
element within the band in the j-th column) to smu+ml (to access the lowest element
within the band in the j-th column). Indices from 0 to smu−mu−1 give access to extra
storage elements required by BandFactor.

– data[j][i-j+smu] is the (i, j)-th element, j−mu ≤ i ≤ j+ml.

The macros below allow a user to access individual matrix elements without writing out explicit
data structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer into the
j-th column of elements can be obtained via the BAND COL macro. Users should use these macros
whenever possible.

See Figure 8.1 for a diagram of the BandMat type.

8.2.2 Accessor Macros

The following three macros are defined by the band module to provide access to data in the BandMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N×N band matrix A, where 0 ≤ i, j ≤ N−1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

8.2 The BAND module 101

A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for a band matrix of type BandMat. Here A is an N × N
band matrix of type BandMat with upper and lower half-bandwidths mu and ml, respectively. The
rows and columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted
A(i,j). The greyed out areas of the underlying component storage are used by the BandFactor

and BandBacksolve routines.

102 Generic Linear Solvers in SUNDIALS

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned
by the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to
(A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction
with BAND COL to reference the j-th column through col j. The index (i,j) should satisfy
j−(A->mu) ≤ i ≤ j+(A->ml).

8.2.3 Functions

The following functions for BandMat matrices are available in the band package. For full details, see
the header file band.h.

• BandAllocMat: allocation of a BandMat matrix;

• BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve;

• BandFactor: LU factorization with partial pivoting;

• BandBacksolve: solution of Ax = b using LU factorization;

• BandZero: load a matrix with zeros;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandAddI: increment a matrix by the identity matrix;

• BandFreeMat: free memory for a BandMat matrix;

• BandFreePiv: free memory for a pivot array;

• BandPrint: print a BandMat matrix to standard output.

8.3 The SPGMR module

The spgmr package, in the files spgmr.h and spgmr.c, includes an implementation of the scaled
preconditioned GMRES method. A separate code module, iterative.h and iterative.c, contains
auxiliary functions that support spgmr, and also other Krylov solvers to be added later. For full
details, including usage instructions, see the files spgmr.h and iterative.h.

Functions. The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package iterative.h and iterative.c:

8.3 The SPGMR module 103

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

Chapter 9

CVODE Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

9.1 CVODE input constants

cvode main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV FUNCTIONAL 1 Nonlinear system solution through functional iterations.
CV NEWTON 2 Nonlinear system solution through Newton iterations.
CV SS 1 Scalar relative tolerance, scalar absolute tolerance.
CV SV 2 Scalar relative tolerance, vector absolute tolerance.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.
CV NORMAL TSTOP 3 Solver returns at specified output time, but does not proceed

past the specified stopping time.
CV ONE STEP TSTOP 4 Solver returns after each successful step, but does not proceed

past the specified stopping time.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

9.2 CVODE output constants

cvode main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV MEM NULL -1 The cvode mem argument was NULL.

106 CVODE Constants

CV ILL INPUT -2 One of the function inputs is illegal.
CV NO MALLOC -3 The cvode memory was not allocated by a call to

CVodeMalloc.
CV TOO MUCH WORK -4 The solver took mxstep internal steps but could not reach

tout.
CV TOO MUCH ACC -5 The solver could not satisfy the accuracy demanded by the

user for some internal step.
CV ERR FAILURE -6 Error test failures occurred too many times during one internal

time step or minimum step size was reached.
CV CONV FAILURE -7 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
CV LINIT FAIL -8 The linear solver’s initialization function failed.
CV LSETUP FAIL -9 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -10 The linear solver’s solve function failed in an unrecoverable

manner.
CV MEM FAIL -11 A memory allocation failed.
CV RTFUNC NULL -12 The user-supplied root function is NULL.
CV NO SLDET -13 The stability limit detection algorithm was not activated.
CV BAD K -14 The derivative order k is larger than the order used.
CV BAD T -15 The time t s outside the last step taken.
CV BAD DKY -16 The output derivative vector is NULL.
CV PDATA NULL -17 The preconditioner module has not been initialized.

cvdense linear solver module

CVDENSE SUCCESS 0 Successful function return.
CVDENSE MEM NULL -1 The cvode mem argument was NULL.
CVDENSE LMEM NULL -2 The cvdense linear solver has not been initialized.
CVDENSE ILL INPUT -3 The cvdense solver is not compatible with the current nvec-

tor module.
CVDENSE MEM FAIL -4 A memory allocation request failed.

cvband linear solver module

CVBAND SUCCESS 0 Successful function return.
CVBAND MEM NULL -1 The cvode mem argument was NULL.
CVBAND LMEM NULL -2 The cvband linear solver has not been initialized.
CVBAND ILL INPUT -3 The cvband solver is not compatible with the current nvec-

tor module.
CVBAND MEM FAIL -4 A memory allocation request failed.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvec-

tor module.
CVDIAG MEM FAIL -4 A memory allocation request failed.

cvspgmr linear solver module

CVSPGMR SUCCESS 0 Successful function return.
CVSPGMR MEM NULL -1 The cvode mem argument was NULL.

9.2 CVODE output constants 107

CVSPGMR LMEM NULL -2 The cvspgmr linear solver has not been initialized.
CVSPGMR ILL INPUT -3 The cvspgmr solver is not compatible with the current nvec-

tor module.
CVSPGMR MEM FAIL -4 A memory allocation request failed.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL -2 The Jacobian tims vector function failed.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.

Bibliography

[1] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE, a Variable-Coefficient ODE Solver.
SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.

[2] P. N. Brown and A. C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems.
J. Appl. Math. & Comp., 31:49–91, 1989.

[3] G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R.
Cash and I. Gladwell, editors, Computational Ordinary Differential Equations, pages 323–356,
Oxford, 1992. Oxford University Press.

[4] G. D. Byrne and A. C. Hindmarsh. A Polyalgorithm for the Numerical Solution of Ordinary
Differential Equations. ACM Trans. Math. Softw., 1:71–96, 1975.

[5] G. D. Byrne and A. C. Hindmarsh. User Documentation for PVODE, An ODE Solver for
Parallel Computers. Technical Report UCRL-ID-130884, LLNL, May 1998.

[6] G. D. Byrne and A. C. Hindmarsh. PVODE, An ODE Solver for Parallel Computers. Intl. J.
High Perf. Comput. Apps., 13(4):254–365, 1999.

[7] S. D. Cohen and A. C. Hindmarsh. CVODE User Guide. Technical Report UCRL-MA-118618,
LLNL, September 1994.

[8] S. D. Cohen and A. C. Hindmarsh. CVODE, a Stiff/Nonstiff ODE Solver in C. Computers in
Physics, 10(2):138–143, 1996.

[9] K. L. Hiebert and L. F. Shampine. Implicitly Defined Output Points for Solutions of ODEs.
Technical Report SAND80-0180, Sandia National Laboratories, February 1980.

[10] A. C. Hindmarsh. Detecting Stability Barriers in BDF Solvers. In J.R. Cash and I. Gladwell,
editor, Computational Ordinary Differential Equations, pages 87–96, Oxford, 1992. Oxford Uni-
versity Press.

[11] A. C. Hindmarsh. Avoiding BDF Stability Barriers in the MOL Solution of Advection-
Dominated Problems. Appl. Num. Math., 17:311–318, 1995.

[12] A. C. Hindmarsh. The PVODE and IDA Algorithms. Technical Report UCRL-ID-141558,
LLNL, December 2000.

[13] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw., (submitted), 2004.

[14] A. C. Hindmarsh and R. Serban. Example Programs for CVODE v2.2.0. Technical report,
LLNL, 2004. UCRL-SM-208110.

[15] A. C. Hindmarsh and A. G. Taylor. PVODE and KINSOL: Parallel Software for Differential
and Nonlinear Systems. Technical Report UCRL-ID-129739, LLNL, February 1998.

110 BIBLIOGRAPHY

[16] K. R. Jackson and R. Sacks-Davis. An Alternative Implementation of Variable Step-Size Mul-
tistep Formulas for Stiff ODEs. ACM Trans. Math. Softw., 6:295–318, 1980.

[17] K. Radhakrishnan and A. C. Hindmarsh. Description and Use of LSODE, the Livermore Solver
for Ordinary Differential Equations. Technical Report UCRL-ID-113855, LLNL, march 1994.

Index

Adams method, 11
ADAMS Q MAX, 32

band generic linear solver
functions, 102
macros, 100–102
type BandMat, 100

BAND COL, 56, 102
BAND COL ELEM, 56, 102
BAND ELEM, 56, 100
BandMat, 23, 56, 100
BDF method, 11
BDF Q MAX, 32
BIG REAL, 22, 87

CLASSICAL GS, 39
CV ADAMS, 25, 53
CV BAD DKY, 40
CV BAD K, 40
CV BAD T, 40
CV BDF, 25, 53
CV CONV FAILURE, 30, 76
CV ERR FAILURE, 30, 76
CV FUNCTIONAL, 26, 35
CV ILL INPUT, 26, 29, 32–36, 54
Cv ILL INPUT, 76
CV LINIT FAIL, 30, 76
CV LSETUP FAIL, 30, 76
CV LSOLVE FAIL, 30, 76
CV MEM FAIL, 26
CV MEM NULL, 26, 29, 30, 32–36, 40, 42–47, 54, 60,

76
CV NEWTON, 26, 35
CV NO MALLOC, 29, 54, 76
CV NO SLDET, 45
CV NORMAL, 29
CV NORMAL TSTOP, 29
CV ONE STEP, 29
CV ONE STEP TSTOP, 29
CV PDATA NULL, 62, 63, 67, 68
CV ROOT RETURN, 29, 76
CV SS, 26, 36, 53
CV SUCCESS, 26, 29, 30, 32–36, 40, 42–47, 54, 60,

63, 68, 76
CV SV, 26, 36, 53

CV TOO MUCH ACC, 30, 76
CV TOO MUCH WORK, 30, 76
CV TSTOP RETURN, 29, 76
CV WF, 26, 53
cvband linear solver

Jacobian approximation used by, 37
nvector compatibility, 27
optional input, 37
optional output, 48–49
selection of, 27
use in fcvode, 74

cvband linear solver
memory requirements, 48

CVBand, 24, 27, 27, 56
cvband.h, 23
CVBAND ILL INPUT, 28
CVBAND LMEM NULL, 37, 48, 49
CVBAND MEM FAIL, 28
CVBAND MEM NULL, 27, 37, 48, 49
CVBAND SUCCESS, 27, 37, 48, 49
CVBandDQJac, 37
CVBandGetLastFlag, 49
CVBandGetNumJacEvals, 49
CVBandGetNumRhsEvals, 49
CVBandGetWorkSpace, 48
CVBandJacFn, 56
cvbandpre preconditioner

description, 61
optional output, 63
usage, 61–62
user-callable functions, 62–63

CVBandPrecAlloc, 62
CVBandPrecFree, 63
CVBandPrecGetNumRhsEvals, 63
CVBandPrecGetWorkSpace, 63
CVBandSetJacFn, 37
cvbbdpre preconditioner

description, 64
optional output, 68–69
usage, 65–66
user-callable functions, 66–68
user-supplied functions, 64–65

CVBBDPrecAlloc, 66
CVBBDPrecFree, 67
CVBBDPrecGetNumGfnEvals, 68

112 INDEX

CVBBDPrecGetWorkSpace, 68
CVBBDPrecReInit, 68
CVBBDSpgmr, 67
CVBPSpgmr, 61, 62, 66
cvdense linear solver

Jacobian approximation used by, 37
nvector compatibility, 27
optional input, 37
optional output, 47–48
selection of, 27
use in fcvode, 73

cvdense linear solver
memory requirements, 47

CVDense, 24, 27, 27, 55
cvdense.h, 22
CVDENSE ILL INPUT, 27
CVDENSE LMEM NULL, 37, 47, 48
CVDENSE MEM FAIL, 27
CVDENSE MEM NULL, 27, 37, 47, 48
CVDENSE SUCCESS, 27, 37, 47, 48
CVDenseDQJac, 37
CVDenseGetLastFlag, 48
CVDenseGetNumJacEvals, 47
CVDenseGetNumRhsEvals, 48
CVDenseGetWorkSpace, 47
CVDenseJacFn, 55
CVDenseSetJacFn, 37
cvdiag linear solver

Jacobian approximation used by, 28
optional output, 49–50
selection of, 28
use in fcvode, 73

cvdiag linear solver
memory requirements, 50

CVDiag, 24, 27, 28
cvdiag.h, 23
CVDIAG ILL INPUT, 28
CVDIAG LMEM NULL, 50
CVDIAG MEM FAIL, 28
CVDIAG MEM NULL, 28, 50
CVDIAG SUCCESS, 28, 50
CVDiagGetLastFlag, 50
CVDiagGetNumRhsEvals, 50
CVDiagGetWorkSpace, 50
CVEwtFn, 54
cvode, 1

motivation for writing in C, 1
package structure, 17
relationship to cvode, pvode, 1
relationship to vode, vodpk, 1

cvode linear solvers
built on generic solvers, 27
cvband, 27
cvdense, 27

cvdiag, 28
cvspgmr, 28
header files, 22
implementation details, 19
list of, 17–19
nvector compatibility, 21
selecting one, 27

CVode, 21, 25, 29
cvode.h, 22
CVodeCreate, 25
CVodeFree, 25, 26
CVodeGetActualInitStep, 44
CVodeGetCurrentOrder, 43
CVodeGetCurrentStep, 44
CVodeGetCurrentTime, 44
CVodeGetDky, 40
CVodeGetErrWeights, 45
CVodeGetEstLocalErrors, 45
CVodeGetIntegratorStats, 46
CVodeGetLastOrder, 43
CVodeGetLastStep, 44
CVodeGetNonlinSolvStats, 47
CVodeGetNumErrTestFails, 43
CVodeGetNumGEvals, 60
CVodeGetNumLinSolvSetups, 43
CVodeGetNumNonlinSolvConvFails, 46
CVodeGetNumNonlinSolvIters, 46
CVodeGetNumRhsEvals, 42
CVodeGetNumStabLimOrderReds, 45
CVodeGetNumSteps, 42
CVodeGetRootInfo, 60
CVodeGetTolScaleFactor, 45
CVodeGetWorkSpace, 42
CVodeMalloc, 26, 53
CVodeReInit, 53
CVodeRootInit, 59
cvodes, 21
CVodeSetErrFile, 30
CVodeSetEwtFn, 36
CVodeSetFdata, 32
CVodeSetInitStep, 33
CVodeSetIterType, 35
CVodeSetMaxConvFails, 35
CVodeSetMaxErrTestFails, 34
CVodeSetMaxHnilWarns, 33
CVodeSetMaxNonlinIters, 35
CVodeSetMaxNumSteps, 32
CVodeSetMaxOrder, 32
CVodeSetMaxStep, 34
CVodeSetMinStep, 33
CVodeSetNonlinConvCoef, 35
CVodeSetStabLimDet, 33
CVodeSetStopTime, 34
CVodeSetTolerances, 36

INDEX 113

CVRhsFn, 26, 53, 54
CVRootFn, 60
cvspgmr linear solver

Jacobian approximation used by, 38
optional input, 38–40
optional output, 50–53
preconditioner setup function, 38, 58
preconditioner solve function, 38, 57
selection of, 28
use in fcvode, 74

cvspgmr linear solver
memory requirements, 51

CVSpgmr, 25, 27, 28
cvspgmr.h, 23
CVSPGMR ILL INPUT, 28, 39, 62, 67
CVSPGMR LMEM NULL, 38, 39, 51–53
CVSPGMR MEM FAIL, 28, 62, 67
CVSPGMR MEM NULL, 28, 38, 39, 51–53, 62, 67
CVSPGMR SUCCESS, 28, 38, 39, 51–53, 62, 67
CVSpgmrDQJtimes, 38
CVSpgmrGetLastFlag, 52
CVSpgmrGetNumConvFails, 51
CVSpgmrGetNumJtimesEvals, 52
CVSpgmrGetNumLinIters, 51
CVSpgmrGetNumPrecEvals, 51
CVSpgmrGetNumPrecSolves, 52
CVSpgmrGetNumRhsEvals, 52
CVSpgmrGetWorkSpace, 51
CVSpgmrJacTimesVecFn, 57
CVSpgmrPrecSetupFn, 58
CVSpgmrPrecSolveFn, 57
CVSpgmrSet, 38
CVSpgmrSetDelt, 39
CVSpgmrSetGSType, 39
CVSpgmrSetJacTimesFn, 38
CVSpgmrSetPrecType, 39

denaddI, 99
denalloc, 98
denallocpiv, 99
dencopy, 99
denfree, 99
denfreepiv, 99
denprint, 99
denscale, 99
dense generic linear solver

functions
large matrix, 98
small matrix, 98–99

macros, 98
type DenseMat, 97

DENSE COL, 55, 98
DENSE ELEM, 55, 98
DenseMat, 22, 55, 97

denzero, 99

e data, 55
error control

order selection, 14
step size selection, 13–14

error message, 30

f data, 32, 54, 65
FCVBAND, 74
FCVBANDSETJAC, 74
FCVBBDFREE, 81
FCVBBDINIT, 80
FCVBBDOPT, 80
FCVBBDREINIT, 81
FCVBBDSPGMR, 80
FCVBJAC, 74
FCVBPFREE, 79
FCVBPINIT, 78
FCVBPOPT, 79
FCVBPSPGMR, 78
FCVDENSE, 73
FCVDENSESETJAC, 74
FCVDIAG, 73
FCVDJAC, 73
FCVDKY, 76
FCVEWT, 73
FCVEWTSET, 73
FCVFREE, 77
FCVFUN, 72
FCVJTIMES, 75
FCVMALLOC, 73
FCVMALLOC, 72
FCVODE, 76
fcvode interface module

interface to the cvbandpre module, 78–79
interface to the cvbbdpre module, 79–81
optional input and output, 70
rootfinding, 77–78
usage, 70–77
user-callable functions, 69
user-supplied functions, 69

FCVPSET, 75
FCVPSOL, 75
FCVREINIT, 77
FCVSPGMR, 74
FCVSPGMRSETJAC, 75, 79, 80
FCVSPGMRSETPREC, 75
FNVFREEP, 77
FNVFREES, 77
FNVINITP, 72
FNVINITS, 72

g data, 61
gefa, 99

114 INDEX

generic linear solvers
band, 100
dense, 97
spgmr, 102
use in cvode, 19

gesl, 99
GMRES method, 28, 39, 102
Gram-Schmidt procedure, 39

half-bandwidths, 27, 56–57, 62, 66
header files, 22, 61, 65

IOPT, 70, 71
itask, 25, 29
iter, 26, 35
itol, 26, 36, 53

Jacobian approximation function
band

difference quotient, 37
use in fcvode, 74
user-supplied, 37, 56–57

dense
difference quotient, 37
use in fcvode, 73
user-supplied, 37, 55–56

diagonal
difference quotient, 28

Jacobian times vector
difference quotient, 38
use in fcvode, 75
user-supplied, 38, 57

linit, 93
lmm, 26, 53
lsode, 1

maxl, 28, 62, 67
maxord, 32, 53
memory requirements

cvband linear solver, 48
cvbandpre preconditioner, 63
cvbbdpre preconditioner, 68
cvdense linear solver, 47
cvdiag linear solver, 50
cvode solver, 42
cvspgmr linear solver, 51

MODIFIED GS, 39
MPI, 2

N VCloneEmpty Parallel, 91
N VCloneEmpty Serial, 88
N VCloneVectorArray, 84
N VDestroyVectorArray, 84
N VDestroyVectorArray Parallel, 91

N VDestroyVectorArray Serial, 89
N Vector, 22, 83, 83
N VMake Parallel, 91
N VMake Serial, 88
N VNew Parallel, 90
N VNew Serial, 88
N VNewEmpty Parallel, 90
N VNewEmpty Serial, 88
N VNewVectorArray Parallel, 91
N VNewVectorArray Serial, 88
N VNewVectorArrayEmpty Parallel, 91
N VNewVectorArrayEmpty Serial, 88
N VPrint Parallel, 91
N VPrint Serial, 89
nonlinear system

definition, 11
Newton convergence test, 12–13
Newton iteration, 12

norm
weighted root-mean-square, 12

NV COMM P, 90
NV CONTENT P, 89
NV CONTENT S, 87
NV DATA P, 90
NV DATA S, 88
NV GLOBLENGTH P, 90
NV Ith P, 90
NV Ith S, 88
NV LENGTH S, 88
NV LOCLENGTH P, 90
NV OWN DATA P, 90
NV OWN DATA S, 88
NVECTOR module, 83
nvector.h, 22
nvector parallel.h, 22
nvector serial.h, 22

optional input
band linear solver, 37
dense linear solver, 37
iterative linear solver, 38–40
solver, 30–36

optional output
band linear solver, 48–49
band-block-diagonal preconditioner, 68–69
banded preconditioner, 63
dense linear solver, 47–48
diagonal linear solver, 49–50
interpolated solution, 40
iterative linear solver, 50–53
solver, 40–47

output mode, 14

portability, 22

INDEX 115

Fortran, 70
PREC BOTH, 28, 39
PREC LEFT, 28, 39, 62, 67
PREC NONE, 28, 39
PREC RIGHT, 28, 39, 62, 67
preconditioning

advice on, 19, 28–29
band-block diagonal, 64
banded, 61
setup and solve phases, 19
user-supplied, 38, 57, 58

pretype, 28, 39, 62, 67
pvode, 1

RCONST, 22
realtype, 22
reinitialization, 53
right-hand side function, 54
Rootfinding, 15, 25, 59, 77
ROPT, 70, 71

SMALL REAL, 22
spgmr generic linear solver

description of, 102
functions, 102
support functions, 102–103

Stability limit detection, 14
step size bounds, 33–34
SUNDIALS CASE LOWER, 70
SUNDIALS CASE UPPER, 70
SUNDIALS UNDERSCORE NONE, 70
SUNDIALS UNDERSCORE ONE, 70
SUNDIALS UNDERSCORE TWO, 70
sundialstypes.h, 22, 22

tolerances, 12, 26, 36, 54

UNIT ROUNDOFF, 22
User main program

cvbandpre usage, 61
cvbbdpre usage, 65
cvode usage, 23
fcvbbd usage, 80
fcvbp usage, 78
fcvode usage, 70

vode, 1
vodpk, 1

