Actual source code: da3.c
1: #define PETSCDM_DLL
2: /*
3: Code for manipulating distributed regular 3d arrays in parallel.
4: File created by Peter Mell 7/14/95
5: */
7: #include src/dm/da/daimpl.h
11: PetscErrorCode DAView_3d(DA da,PetscViewer viewer)
12: {
14: PetscMPIInt rank;
15: PetscTruth iascii,isdraw;
18: MPI_Comm_rank(((PetscObject)da)->comm,&rank);
20: PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_ASCII,&iascii);
21: PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_DRAW,&isdraw);
22: if (iascii) {
23: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",
24: rank,da->M,da->N,da->P,da->m,da->n,da->p,da->w,da->s);
25: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
26: da->xs,da->xe,da->ys,da->ye,da->zs,da->ze);
27: #if !defined(PETSC_USE_COMPLEX)
28: if (da->coordinates) {
29: PetscInt last;
30: PetscReal *coors;
31: VecGetArray(da->coordinates,&coors);
32: VecGetLocalSize(da->coordinates,&last);
33: last = last - 3;
34: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %G %G %G : Upper right %G %G %G\n",
35: coors[0],coors[1],coors[2],coors[last],coors[last+1],coors[last+2]);
36: VecRestoreArray(da->coordinates,&coors);
37: }
38: #endif
39: PetscViewerFlush(viewer);
40: } else if (isdraw) {
41: PetscDraw draw;
42: PetscReal ymin = -1.0,ymax = (PetscReal)da->N;
43: PetscReal xmin = -1.0,xmax = (PetscReal)((da->M+2)*da->P),x,y,ycoord,xcoord;
44: PetscInt k,plane,base,*idx;
45: char node[10];
46: PetscTruth isnull;
48: PetscViewerDrawGetDraw(viewer,0,&draw);
49: PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
50: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
51: PetscDrawSynchronizedClear(draw);
53: /* first processor draw all node lines */
54: if (!rank) {
55: for (k=0; k<da->P; k++) {
56: ymin = 0.0; ymax = (PetscReal)(da->N - 1);
57: for (xmin=(PetscReal)(k*(da->M+1)); xmin<(PetscReal)(da->M+(k*(da->M+1))); xmin++) {
58: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
59: }
60:
61: xmin = (PetscReal)(k*(da->M+1)); xmax = xmin + (PetscReal)(da->M - 1);
62: for (ymin=0; ymin<(PetscReal)da->N; ymin++) {
63: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
64: }
65: }
66: }
67: PetscDrawSynchronizedFlush(draw);
68: PetscDrawPause(draw);
70: for (k=0; k<da->P; k++) { /*Go through and draw for each plane*/
71: if ((k >= da->zs) && (k < da->ze)) {
72: /* draw my box */
73: ymin = da->ys;
74: ymax = da->ye - 1;
75: xmin = da->xs/da->w + (da->M+1)*k;
76: xmax =(da->xe-1)/da->w + (da->M+1)*k;
78: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
79: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
80: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
81: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
83: xmin = da->xs/da->w;
84: xmax =(da->xe-1)/da->w;
86: /* put in numbers*/
87: base = (da->base+(da->xe-da->xs)*(da->ye-da->ys)*(k-da->zs))/da->w;
89: /* Identify which processor owns the box */
90: sprintf(node,"%d",rank);
91: PetscDrawString(draw,xmin+(da->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
93: for (y=ymin; y<=ymax; y++) {
94: for (x=xmin+(da->M+1)*k; x<=xmax+(da->M+1)*k; x++) {
95: sprintf(node,"%d",(int)base++);
96: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
97: }
98: }
99:
100: }
101: }
102: PetscDrawSynchronizedFlush(draw);
103: PetscDrawPause(draw);
105: for (k=0-da->s; k<da->P+da->s; k++) {
106: /* Go through and draw for each plane */
107: if ((k >= da->Zs) && (k < da->Ze)) {
108:
109: /* overlay ghost numbers, useful for error checking */
110: base = (da->Xe-da->Xs)*(da->Ye-da->Ys)*(k-da->Zs); idx = da->idx;
111: plane=k;
112: /* Keep z wrap around points on the dradrawg */
113: if (k<0) { plane=da->P+k; }
114: if (k>=da->P) { plane=k-da->P; }
115: ymin = da->Ys; ymax = da->Ye;
116: xmin = (da->M+1)*plane*da->w;
117: xmax = (da->M+1)*plane*da->w+da->M*da->w;
118: for (y=ymin; y<ymax; y++) {
119: for (x=xmin+da->Xs; x<xmin+da->Xe; x+=da->w) {
120: sprintf(node,"%d",(int)(idx[base]/da->w));
121: ycoord = y;
122: /*Keep y wrap around points on drawing */
123: if (y<0) { ycoord = da->N+y; }
125: if (y>=da->N) { ycoord = y-da->N; }
126: xcoord = x; /* Keep x wrap points on drawing */
128: if (x<xmin) { xcoord = xmax - (xmin-x); }
129: if (x>=xmax) { xcoord = xmin + (x-xmax); }
130: PetscDrawString(draw,xcoord/da->w,ycoord,PETSC_DRAW_BLUE,node);
131: base+=da->w;
132: }
133: }
134: }
135: }
136: PetscDrawSynchronizedFlush(draw);
137: PetscDrawPause(draw);
138: } else {
139: SETERRQ1(PETSC_ERR_SUP,"Viewer type %s not supported for DA 3d",((PetscObject)viewer)->type_name);
140: }
141: return(0);
142: }
144: #if 0
145: EXTERN PetscErrorCode DAPublish_Petsc(PetscObject);
146: #endif
150: /*@C
151: DACreate3d - Creates an object that will manage the communication of three-dimensional
152: regular array data that is distributed across some processors.
154: Collective on MPI_Comm
156: Input Parameters:
157: + comm - MPI communicator
158: . wrap - type of periodicity the array should have, if any. Use one
159: of DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, DA_XYPERIODIC, DA_XYZPERIODIC, DA_XZPERIODIC, or DA_YZPERIODIC.
160: . stencil_type - Type of stencil (DA_STENCIL_STAR or DA_STENCIL_BOX)
161: . M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value
162: from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
163: . m,n,p - corresponding number of processors in each dimension
164: (or PETSC_DECIDE to have calculated)
165: . dof - number of degrees of freedom per node
166: . lx, ly, lz - arrays containing the number of nodes in each cell along
167: the x, y, and z coordinates, or PETSC_NULL. If non-null, these
168: must be of length as m,n,p and the corresponding
169: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
170: the ly[] must N, sum of the lz[] must be P
171: - s - stencil width
173: Output Parameter:
174: . inra - the resulting distributed array object
176: Options Database Key:
177: + -da_view - Calls DAView() at the conclusion of DACreate3d()
178: . -da_grid_x <nx> - number of grid points in x direction, if M < 0
179: . -da_grid_y <ny> - number of grid points in y direction, if N < 0
180: . -da_grid_z <nz> - number of grid points in z direction, if P < 0
181: . -da_processors_x <MX> number of processors in x direction
182: . -da_processors_y <MY> number of processors in y direction
183: . -da_processors_z <MZ> number of processors in z direction
184: . -da_refine_x - refinement ratio in x direction
185: . -da_refine_y - refinement ratio in y direction
186: - -da_refine_y - refinement ratio in z direction
188: Level: beginner
190: Notes:
191: The stencil type DA_STENCIL_STAR with width 1 corresponds to the
192: standard 7-pt stencil, while DA_STENCIL_BOX with width 1 denotes
193: the standard 27-pt stencil.
195: The array data itself is NOT stored in the DA, it is stored in Vec objects;
196: The appropriate vector objects can be obtained with calls to DACreateGlobalVector()
197: and DACreateLocalVector() and calls to VecDuplicate() if more are needed.
199: .keywords: distributed array, create, three-dimensional
201: .seealso: DADestroy(), DAView(), DACreate1d(), DACreate2d(), DAGlobalToLocalBegin(), DAGetRefinementFactor(),
202: DAGlobalToLocalEnd(), DALocalToGlobal(), DALocalToLocalBegin(), DALocalToLocalEnd(), DASetRefinementFactor(),
203: DAGetInfo(), DACreateGlobalVector(), DACreateLocalVector(), DACreateNaturalVector(), DALoad(), DAView(), DAGetOwnershipRange()
205: @*/
206: PetscErrorCode DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,PetscInt M,
207: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,PetscInt *lx,PetscInt *ly,PetscInt *lz,DA *inra)
208: {
210: PetscMPIInt rank,size;
211: PetscInt xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0,Xs,Xe,Ys,Ye,Zs,Ze,start,end,pm;
212: PetscInt left,up,down,bottom,top,i,j,k,*idx,nn,*flx = 0,*fly = 0,*flz = 0;
213: PetscInt n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
214: PetscInt n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
215: PetscInt *bases,*ldims,x_t,y_t,z_t,s_t,base,count,s_x,s_y,s_z;
216: PetscInt tM = M,tN = N,tP = P;
217: PetscInt sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
218: PetscInt sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
219: PetscInt sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0,refine_x = 2, refine_y = 2, refine_z = 2;
220: DA da;
221: Vec local,global;
222: VecScatter ltog,gtol;
223: IS to,from;
227: *inra = 0;
228: #ifndef PETSC_USE_DYNAMIC_LIBRARIES
229: DMInitializePackage(PETSC_NULL);
230: #endif
232: if (dof < 1) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Must have 1 or more degrees of freedom per node: %D",dof);
233: if (s < 0) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Stencil width cannot be negative: %D",s);
235: PetscOptionsBegin(comm,PETSC_NULL,"3d DA Options","DA");
236: if (M < 0){
237: tM = -M;
238: PetscOptionsInt("-da_grid_x","Number of grid points in x direction","DACreate3d",tM,&tM,PETSC_NULL);
239: }
240: if (N < 0){
241: tN = -N;
242: PetscOptionsInt("-da_grid_y","Number of grid points in y direction","DACreate3d",tN,&tN,PETSC_NULL);
243: }
244: if (P < 0){
245: tP = -P;
246: PetscOptionsInt("-da_grid_z","Number of grid points in z direction","DACreate3d",tP,&tP,PETSC_NULL);
247: }
248: PetscOptionsInt("-da_processors_x","Number of processors in x direction","DACreate3d",m,&m,PETSC_NULL);
249: PetscOptionsInt("-da_processors_y","Number of processors in y direction","DACreate3d",n,&n,PETSC_NULL);
250: PetscOptionsInt("-da_processors_z","Number of processors in z direction","DACreate3d",p,&p,PETSC_NULL);
251: PetscOptionsInt("-da_refine_x","Refinement ratio in x direction","DASetRefinementFactor",refine_x,&refine_x,PETSC_NULL);
252: PetscOptionsInt("-da_refine_y","Refinement ratio in y direction","DASetRefinementFactor",refine_y,&refine_y,PETSC_NULL);
253: PetscOptionsInt("-da_refine_z","Refinement ratio in z direction","DASetRefinementFactor",refine_z,&refine_z,PETSC_NULL);
254: PetscOptionsEnd();
255: M = tM; N = tN; P = tP;
257: PetscHeaderCreate(da,_p_DA,struct _DAOps,DA_COOKIE,0,"DA",comm,DADestroy,DAView);
258: da->ops->globaltolocalbegin = DAGlobalToLocalBegin;
259: da->ops->globaltolocalend = DAGlobalToLocalEnd;
260: da->ops->localtoglobal = DALocalToGlobal;
261: da->ops->createglobalvector = DACreateGlobalVector;
262: da->ops->getinterpolation = DAGetInterpolation;
263: da->ops->getcoloring = DAGetColoring;
264: da->ops->getmatrix = DAGetMatrix;
265: da->ops->refine = DARefine;
266: da->ops->coarsen = DACoarsen;
267: da->ops->getaggregates = DAGetAggregates;
269: da->dim = 3;
270: da->interptype = DA_Q1;
271: da->refine_x = refine_x;
272: da->refine_y = refine_y;
273: da->refine_z = refine_z;
274: PetscMalloc(dof*sizeof(char*),&da->fieldname);
275: PetscMemzero(da->fieldname,dof*sizeof(char*));
277: MPI_Comm_size(comm,&size);
278: MPI_Comm_rank(comm,&rank);
280: if (m != PETSC_DECIDE) {
281: if (m < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);}
282: else if (m > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);}
283: }
284: if (n != PETSC_DECIDE) {
285: if (n < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);}
286: else if (n > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);}
287: }
288: if (p != PETSC_DECIDE) {
289: if (p < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);}
290: else if (p > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);}
291: }
293: /* Partition the array among the processors */
294: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
295: m = size/(n*p);
296: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
297: n = size/(m*p);
298: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
299: p = size/(m*n);
300: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
301: /* try for squarish distribution */
302: m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
303: if (!m) m = 1;
304: while (m > 0) {
305: n = size/(m*p);
306: if (m*n*p == size) break;
307: m--;
308: }
309: if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
310: if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
311: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
312: /* try for squarish distribution */
313: m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
314: if (!m) m = 1;
315: while (m > 0) {
316: p = size/(m*n);
317: if (m*n*p == size) break;
318: m--;
319: }
320: if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
321: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
322: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
323: /* try for squarish distribution */
324: n = (int)(0.5 + sqrt(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
325: if (!n) n = 1;
326: while (n > 0) {
327: p = size/(m*n);
328: if (m*n*p == size) break;
329: n--;
330: }
331: if (!n) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
332: if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
333: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
334: /* try for squarish distribution */
335: n = (PetscInt)(0.5 + pow(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
336: if (!n) n = 1;
337: while (n > 0) {
338: pm = size/n;
339: if (n*pm == size) break;
340: n--;
341: }
342: if (!n) n = 1;
343: m = (PetscInt)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
344: if (!m) m = 1;
345: while (m > 0) {
346: p = size/(m*n);
347: if (m*n*p == size) break;
348: m--;
349: }
350: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
351: } else if (m*n*p != size) SETERRQ(PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
353: if (m*n*p != size) SETERRQ(PETSC_ERR_PLIB,"Could not find good partition");
354: if (M < m) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
355: if (N < n) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
356: if (P < p) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);
358: /*
359: Determine locally owned region
360: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
361: */
362: if (!lx) { /* user decided distribution */
363: PetscMalloc(m*sizeof(PetscInt),&lx);
364: flx = lx;
365: for (i=0; i<m; i++) {
366: lx[i] = M/m + ((M % m) > (i % m));
367: }
368: }
369: x = lx[rank % m];
370: xs = 0;
371: for (i=0; i<(rank%m); i++) { xs += lx[i];}
372: if (m > 1 && x < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Column width is too thin for stencil! %D %D",x,s);
374: if (!ly) { /* user decided distribution */
375: PetscMalloc(n*sizeof(PetscInt),&ly);
376: fly = ly;
377: for (i=0; i<n; i++) {
378: ly[i] = N/n + ((N % n) > (i % n));
379: }
380: }
381: y = ly[(rank % (m*n))/m];
382: if (n > 1 && y < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Row width is too thin for stencil! %D %D",y,s);
383: ys = 0;
384: for (i=0; i<(rank % (m*n))/m; i++) { ys += ly[i];}
386: if (!lz) { /* user decided distribution */
387: PetscMalloc(p*sizeof(PetscInt),&lz);
388: flz = lz;
389: for (i=0; i<p; i++) {
390: lz[i] = P/p + ((P % p) > (i % p));
391: }
392: }
393: z = lz[rank/(m*n)];
394: if (p > 1 && z < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Plane width is too thin for stencil! %D %D",z,s);
395: zs = 0;
396: for (i=0; i<(rank/(m*n)); i++) { zs += lz[i];}
397: ye = ys + y;
398: xe = xs + x;
399: ze = zs + z;
401: /* determine ghost region */
402: /* Assume No Periodicity */
403: if (xs-s > 0) Xs = xs - s; else Xs = 0;
404: if (ys-s > 0) Ys = ys - s; else Ys = 0;
405: if (zs-s > 0) Zs = zs - s; else Zs = 0;
406: if (xe+s <= M) Xe = xe + s; else Xe = M;
407: if (ye+s <= N) Ye = ye + s; else Ye = N;
408: if (ze+s <= P) Ze = ze + s; else Ze = P;
410: /* X Periodic */
411: if (DAXPeriodic(wrap)){
412: Xs = xs - s;
413: Xe = xe + s;
414: }
416: /* Y Periodic */
417: if (DAYPeriodic(wrap)){
418: Ys = ys - s;
419: Ye = ye + s;
420: }
422: /* Z Periodic */
423: if (DAZPeriodic(wrap)){
424: Zs = zs - s;
425: Ze = ze + s;
426: }
428: /* Resize all X parameters to reflect w */
429: x *= dof;
430: xs *= dof;
431: xe *= dof;
432: Xs *= dof;
433: Xe *= dof;
434: s_x = s*dof;
435: s_y = s;
436: s_z = s;
438: /* determine starting point of each processor */
439: nn = x*y*z;
440: PetscMalloc((2*size+1)*sizeof(PetscInt),&bases);
441: ldims = (PetscInt*)(bases+size+1);
442: MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
443: bases[0] = 0;
444: for (i=1; i<=size; i++) {
445: bases[i] = ldims[i-1];
446: }
447: for (i=1; i<=size; i++) {
448: bases[i] += bases[i-1];
449: }
451: /* allocate the base parallel and sequential vectors */
452: da->Nlocal = x*y*z;
453: VecCreateMPIWithArray(comm,da->Nlocal,PETSC_DECIDE,0,&global);
454: VecSetBlockSize(global,dof);
455: da->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs);
456: VecCreateSeqWithArray(MPI_COMM_SELF,da->nlocal,0,&local);
457: VecSetBlockSize(local,dof);
459: /* generate appropriate vector scatters */
460: /* local to global inserts non-ghost point region into global */
461: VecGetOwnershipRange(global,&start,&end);
462: ISCreateStride(comm,x*y*z,start,1,&to);
464: left = xs - Xs;
465: bottom = ys - Ys; top = bottom + y;
466: down = zs - Zs; up = down + z;
467: count = x*(top-bottom)*(up-down);
468: PetscMalloc(count*sizeof(PetscInt)/dof,&idx);
469: count = 0;
470: for (i=down; i<up; i++) {
471: for (j=bottom; j<top; j++) {
472: for (k=0; k<x; k += dof) {
473: idx[count++] = (left+j*(Xe-Xs))+i*(Xe-Xs)*(Ye-Ys) + k;
474: }
475: }
476: }
477: ISCreateBlock(comm,dof,count,idx,&from);
478: PetscFree(idx);
480: VecScatterCreate(local,from,global,to,<og);
481: PetscLogObjectParent(da,to);
482: PetscLogObjectParent(da,from);
483: PetscLogObjectParent(da,ltog);
484: ISDestroy(from);
485: ISDestroy(to);
487: /* global to local must include ghost points */
488: if (stencil_type == DA_STENCIL_BOX) {
489: ISCreateStride(comm,(Xe-Xs)*(Ye-Ys)*(Ze-Zs),0,1,&to);
490: } else {
491: /* This is way ugly! We need to list the funny cross type region */
492: /* the bottom chunck */
493: left = xs - Xs;
494: bottom = ys - Ys; top = bottom + y;
495: down = zs - Zs; up = down + z;
496: count = down*(top-bottom)*x + (up-down)*(bottom*x + (top-bottom)*(Xe-Xs) + (Ye-Ys-top)*x) + (Ze-Zs-up)*(top-bottom)*x;
497: PetscMalloc(count*sizeof(PetscInt)/dof,&idx);
498: count = 0;
499: for (i=0; i<down; i++) {
500: for (j=bottom; j<top; j++) {
501: for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
502: }
503: }
504: /* the middle piece */
505: for (i=down; i<up; i++) {
506: /* front */
507: for (j=0; j<bottom; j++) {
508: for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
509: }
510: /* middle */
511: for (j=bottom; j<top; j++) {
512: for (k=0; k<Xe-Xs; k += dof) idx[count++] = j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
513: }
514: /* back */
515: for (j=top; j<Ye-Ys; j++) {
516: for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
517: }
518: }
519: /* the top piece */
520: for (i=up; i<Ze-Zs; i++) {
521: for (j=bottom; j<top; j++) {
522: for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
523: }
524: }
525: ISCreateBlock(comm,dof,count,idx,&to);
526: PetscFree(idx);
527: }
529: /* determine who lies on each side of use stored in n24 n25 n26
530: n21 n22 n23
531: n18 n19 n20
533: n15 n16 n17
534: n12 n14
535: n9 n10 n11
537: n6 n7 n8
538: n3 n4 n5
539: n0 n1 n2
540: */
541:
542: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
543:
544: /* Assume Nodes are Internal to the Cube */
545:
546: n0 = rank - m*n - m - 1;
547: n1 = rank - m*n - m;
548: n2 = rank - m*n - m + 1;
549: n3 = rank - m*n -1;
550: n4 = rank - m*n;
551: n5 = rank - m*n + 1;
552: n6 = rank - m*n + m - 1;
553: n7 = rank - m*n + m;
554: n8 = rank - m*n + m + 1;
556: n9 = rank - m - 1;
557: n10 = rank - m;
558: n11 = rank - m + 1;
559: n12 = rank - 1;
560: n14 = rank + 1;
561: n15 = rank + m - 1;
562: n16 = rank + m;
563: n17 = rank + m + 1;
565: n18 = rank + m*n - m - 1;
566: n19 = rank + m*n - m;
567: n20 = rank + m*n - m + 1;
568: n21 = rank + m*n - 1;
569: n22 = rank + m*n;
570: n23 = rank + m*n + 1;
571: n24 = rank + m*n + m - 1;
572: n25 = rank + m*n + m;
573: n26 = rank + m*n + m + 1;
575: /* Assume Pieces are on Faces of Cube */
577: if (xs == 0) { /* First assume not corner or edge */
578: n0 = rank -1 - (m*n);
579: n3 = rank + m -1 - (m*n);
580: n6 = rank + 2*m -1 - (m*n);
581: n9 = rank -1;
582: n12 = rank + m -1;
583: n15 = rank + 2*m -1;
584: n18 = rank -1 + (m*n);
585: n21 = rank + m -1 + (m*n);
586: n24 = rank + 2*m -1 + (m*n);
587: }
589: if (xe == M*dof) { /* First assume not corner or edge */
590: n2 = rank -2*m +1 - (m*n);
591: n5 = rank - m +1 - (m*n);
592: n8 = rank +1 - (m*n);
593: n11 = rank -2*m +1;
594: n14 = rank - m +1;
595: n17 = rank +1;
596: n20 = rank -2*m +1 + (m*n);
597: n23 = rank - m +1 + (m*n);
598: n26 = rank +1 + (m*n);
599: }
601: if (ys==0) { /* First assume not corner or edge */
602: n0 = rank + m * (n-1) -1 - (m*n);
603: n1 = rank + m * (n-1) - (m*n);
604: n2 = rank + m * (n-1) +1 - (m*n);
605: n9 = rank + m * (n-1) -1;
606: n10 = rank + m * (n-1);
607: n11 = rank + m * (n-1) +1;
608: n18 = rank + m * (n-1) -1 + (m*n);
609: n19 = rank + m * (n-1) + (m*n);
610: n20 = rank + m * (n-1) +1 + (m*n);
611: }
613: if (ye == N) { /* First assume not corner or edge */
614: n6 = rank - m * (n-1) -1 - (m*n);
615: n7 = rank - m * (n-1) - (m*n);
616: n8 = rank - m * (n-1) +1 - (m*n);
617: n15 = rank - m * (n-1) -1;
618: n16 = rank - m * (n-1);
619: n17 = rank - m * (n-1) +1;
620: n24 = rank - m * (n-1) -1 + (m*n);
621: n25 = rank - m * (n-1) + (m*n);
622: n26 = rank - m * (n-1) +1 + (m*n);
623: }
624:
625: if (zs == 0) { /* First assume not corner or edge */
626: n0 = size - (m*n) + rank - m - 1;
627: n1 = size - (m*n) + rank - m;
628: n2 = size - (m*n) + rank - m + 1;
629: n3 = size - (m*n) + rank - 1;
630: n4 = size - (m*n) + rank;
631: n5 = size - (m*n) + rank + 1;
632: n6 = size - (m*n) + rank + m - 1;
633: n7 = size - (m*n) + rank + m ;
634: n8 = size - (m*n) + rank + m + 1;
635: }
637: if (ze == P) { /* First assume not corner or edge */
638: n18 = (m*n) - (size-rank) - m - 1;
639: n19 = (m*n) - (size-rank) - m;
640: n20 = (m*n) - (size-rank) - m + 1;
641: n21 = (m*n) - (size-rank) - 1;
642: n22 = (m*n) - (size-rank);
643: n23 = (m*n) - (size-rank) + 1;
644: n24 = (m*n) - (size-rank) + m - 1;
645: n25 = (m*n) - (size-rank) + m;
646: n26 = (m*n) - (size-rank) + m + 1;
647: }
649: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
650: n0 = size - m*n + rank + m-1 - m;
651: n3 = size - m*n + rank + m-1;
652: n6 = size - m*n + rank + m-1 + m;
653: }
654:
655: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
656: n18 = m*n - (size - rank) + m-1 - m;
657: n21 = m*n - (size - rank) + m-1;
658: n24 = m*n - (size - rank) + m-1 + m;
659: }
661: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
662: n0 = rank + m*n -1 - m*n;
663: n9 = rank + m*n -1;
664: n18 = rank + m*n -1 + m*n;
665: }
667: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
668: n6 = rank - m*(n-1) + m-1 - m*n;
669: n15 = rank - m*(n-1) + m-1;
670: n24 = rank - m*(n-1) + m-1 + m*n;
671: }
673: if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
674: n2 = size - (m*n-rank) - (m-1) - m;
675: n5 = size - (m*n-rank) - (m-1);
676: n8 = size - (m*n-rank) - (m-1) + m;
677: }
679: if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
680: n20 = m*n - (size - rank) - (m-1) - m;
681: n23 = m*n - (size - rank) - (m-1);
682: n26 = m*n - (size - rank) - (m-1) + m;
683: }
685: if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
686: n2 = rank + m*(n-1) - (m-1) - m*n;
687: n11 = rank + m*(n-1) - (m-1);
688: n20 = rank + m*(n-1) - (m-1) + m*n;
689: }
691: if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
692: n8 = rank - m*n +1 - m*n;
693: n17 = rank - m*n +1;
694: n26 = rank - m*n +1 + m*n;
695: }
697: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
698: n0 = size - m + rank -1;
699: n1 = size - m + rank;
700: n2 = size - m + rank +1;
701: }
703: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
704: n18 = m*n - (size - rank) + m*(n-1) -1;
705: n19 = m*n - (size - rank) + m*(n-1);
706: n20 = m*n - (size - rank) + m*(n-1) +1;
707: }
709: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
710: n6 = size - (m*n-rank) - m * (n-1) -1;
711: n7 = size - (m*n-rank) - m * (n-1);
712: n8 = size - (m*n-rank) - m * (n-1) +1;
713: }
715: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
716: n24 = rank - (size-m) -1;
717: n25 = rank - (size-m);
718: n26 = rank - (size-m) +1;
719: }
721: /* Check for Corners */
722: if ((xs==0) && (ys==0) && (zs==0)) { n0 = size -1;}
723: if ((xs==0) && (ys==0) && (ze==P)) { n18 = m*n-1;}
724: if ((xs==0) && (ye==N) && (zs==0)) { n6 = (size-1)-m*(n-1);}
725: if ((xs==0) && (ye==N) && (ze==P)) { n24 = m-1;}
726: if ((xe==M*dof) && (ys==0) && (zs==0)) { n2 = size-m;}
727: if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
728: if ((xe==M*dof) && (ye==N) && (zs==0)) { n8 = size-m*n;}
729: if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}
731: /* Check for when not X,Y, and Z Periodic */
733: /* If not X periodic */
734: if ((wrap != DA_XPERIODIC) && (wrap != DA_XYPERIODIC) &&
735: (wrap != DA_XZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
736: if (xs==0) {n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;}
737: if (xe==M*dof) {n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
738: }
740: /* If not Y periodic */
741: if ((wrap != DA_YPERIODIC) && (wrap != DA_XYPERIODIC) &&
742: (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
743: if (ys==0) {n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;}
744: if (ye==N) {n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
745: }
747: /* If not Z periodic */
748: if ((wrap != DA_ZPERIODIC) && (wrap != DA_XZPERIODIC) &&
749: (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
750: if (zs==0) {n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;}
751: if (ze==P) {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
752: }
754: /* If star stencil then delete the corner neighbors */
755: if (stencil_type == DA_STENCIL_STAR) {
756: /* save information about corner neighbors */
757: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
758: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
759: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
760: sn26 = n26;
761: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 =
762: n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
763: }
766: PetscMalloc((Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt),&idx);
767: PetscLogObjectMemory(da,(Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt));
769: nn = 0;
771: /* Bottom Level */
772: for (k=0; k<s_z; k++) {
773: for (i=1; i<=s_y; i++) {
774: if (n0 >= 0) { /* left below */
775: x_t = lx[n0 % m]*dof;
776: y_t = ly[(n0 % (m*n))/m];
777: z_t = lz[n0 / (m*n)];
778: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
779: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
780: }
781: if (n1 >= 0) { /* directly below */
782: x_t = x;
783: y_t = ly[(n1 % (m*n))/m];
784: z_t = lz[n1 / (m*n)];
785: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
786: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
787: }
788: if (n2 >= 0) { /* right below */
789: x_t = lx[n2 % m]*dof;
790: y_t = ly[(n2 % (m*n))/m];
791: z_t = lz[n2 / (m*n)];
792: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
793: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
794: }
795: }
797: for (i=0; i<y; i++) {
798: if (n3 >= 0) { /* directly left */
799: x_t = lx[n3 % m]*dof;
800: y_t = y;
801: z_t = lz[n3 / (m*n)];
802: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
803: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
804: }
806: if (n4 >= 0) { /* middle */
807: x_t = x;
808: y_t = y;
809: z_t = lz[n4 / (m*n)];
810: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
811: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
812: }
814: if (n5 >= 0) { /* directly right */
815: x_t = lx[n5 % m]*dof;
816: y_t = y;
817: z_t = lz[n5 / (m*n)];
818: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
819: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
820: }
821: }
823: for (i=1; i<=s_y; i++) {
824: if (n6 >= 0) { /* left above */
825: x_t = lx[n6 % m]*dof;
826: y_t = ly[(n6 % (m*n))/m];
827: z_t = lz[n6 / (m*n)];
828: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
829: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
830: }
831: if (n7 >= 0) { /* directly above */
832: x_t = x;
833: y_t = ly[(n7 % (m*n))/m];
834: z_t = lz[n7 / (m*n)];
835: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
836: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
837: }
838: if (n8 >= 0) { /* right above */
839: x_t = lx[n8 % m]*dof;
840: y_t = ly[(n8 % (m*n))/m];
841: z_t = lz[n8 / (m*n)];
842: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
843: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
844: }
845: }
846: }
848: /* Middle Level */
849: for (k=0; k<z; k++) {
850: for (i=1; i<=s_y; i++) {
851: if (n9 >= 0) { /* left below */
852: x_t = lx[n9 % m]*dof;
853: y_t = ly[(n9 % (m*n))/m];
854: /* z_t = z; */
855: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
856: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
857: }
858: if (n10 >= 0) { /* directly below */
859: x_t = x;
860: y_t = ly[(n10 % (m*n))/m];
861: /* z_t = z; */
862: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
863: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
864: }
865: if (n11 >= 0) { /* right below */
866: x_t = lx[n11 % m]*dof;
867: y_t = ly[(n11 % (m*n))/m];
868: /* z_t = z; */
869: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
870: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
871: }
872: }
874: for (i=0; i<y; i++) {
875: if (n12 >= 0) { /* directly left */
876: x_t = lx[n12 % m]*dof;
877: y_t = y;
878: /* z_t = z; */
879: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
880: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
881: }
883: /* Interior */
884: s_t = bases[rank] + i*x + k*x*y;
885: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
887: if (n14 >= 0) { /* directly right */
888: x_t = lx[n14 % m]*dof;
889: y_t = y;
890: /* z_t = z; */
891: s_t = bases[n14] + i*x_t + k*x_t*y_t;
892: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
893: }
894: }
896: for (i=1; i<=s_y; i++) {
897: if (n15 >= 0) { /* left above */
898: x_t = lx[n15 % m]*dof;
899: y_t = ly[(n15 % (m*n))/m];
900: /* z_t = z; */
901: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
902: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
903: }
904: if (n16 >= 0) { /* directly above */
905: x_t = x;
906: y_t = ly[(n16 % (m*n))/m];
907: /* z_t = z; */
908: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
909: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
910: }
911: if (n17 >= 0) { /* right above */
912: x_t = lx[n17 % m]*dof;
913: y_t = ly[(n17 % (m*n))/m];
914: /* z_t = z; */
915: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
916: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
917: }
918: }
919: }
920:
921: /* Upper Level */
922: for (k=0; k<s_z; k++) {
923: for (i=1; i<=s_y; i++) {
924: if (n18 >= 0) { /* left below */
925: x_t = lx[n18 % m]*dof;
926: y_t = ly[(n18 % (m*n))/m];
927: /* z_t = lz[n18 / (m*n)]; */
928: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
929: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
930: }
931: if (n19 >= 0) { /* directly below */
932: x_t = x;
933: y_t = ly[(n19 % (m*n))/m];
934: /* z_t = lz[n19 / (m*n)]; */
935: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
936: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
937: }
938: if (n20 >= 0) { /* right below */
939: x_t = lx[n20 % m]*dof;
940: y_t = ly[(n20 % (m*n))/m];
941: /* z_t = lz[n20 / (m*n)]; */
942: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
943: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
944: }
945: }
947: for (i=0; i<y; i++) {
948: if (n21 >= 0) { /* directly left */
949: x_t = lx[n21 % m]*dof;
950: y_t = y;
951: /* z_t = lz[n21 / (m*n)]; */
952: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
953: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
954: }
956: if (n22 >= 0) { /* middle */
957: x_t = x;
958: y_t = y;
959: /* z_t = lz[n22 / (m*n)]; */
960: s_t = bases[n22] + i*x_t + k*x_t*y_t;
961: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
962: }
964: if (n23 >= 0) { /* directly right */
965: x_t = lx[n23 % m]*dof;
966: y_t = y;
967: /* z_t = lz[n23 / (m*n)]; */
968: s_t = bases[n23] + i*x_t + k*x_t*y_t;
969: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
970: }
971: }
973: for (i=1; i<=s_y; i++) {
974: if (n24 >= 0) { /* left above */
975: x_t = lx[n24 % m]*dof;
976: y_t = ly[(n24 % (m*n))/m];
977: /* z_t = lz[n24 / (m*n)]; */
978: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
979: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
980: }
981: if (n25 >= 0) { /* directly above */
982: x_t = x;
983: y_t = ly[(n25 % (m*n))/m];
984: /* z_t = lz[n25 / (m*n)]; */
985: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
986: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
987: }
988: if (n26 >= 0) { /* right above */
989: x_t = lx[n26 % m]*dof;
990: y_t = ly[(n26 % (m*n))/m];
991: /* z_t = lz[n26 / (m*n)]; */
992: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
993: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
994: }
995: }
996: }
997: base = bases[rank];
998: {
999: PetscInt nnn = nn/dof,*iidx;
1000: PetscMalloc(nnn*sizeof(PetscInt),&iidx);
1001: for (i=0; i<nnn; i++) {
1002: iidx[i] = idx[dof*i];
1003: }
1004: ISCreateBlock(comm,dof,nnn,iidx,&from);
1005: PetscFree(iidx);
1006: }
1007: VecScatterCreate(global,from,local,to,>ol);
1008: PetscLogObjectParent(da,gtol);
1009: PetscLogObjectParent(da,to);
1010: PetscLogObjectParent(da,from);
1011: ISDestroy(to);
1012: ISDestroy(from);
1013: da->stencil_type = stencil_type;
1014: da->M = M; da->N = N; da->P = P;
1015: da->m = m; da->n = n; da->p = p;
1016: da->w = dof; da->s = s;
1017: da->xs = xs; da->xe = xe; da->ys = ys; da->ye = ye; da->zs = zs; da->ze = ze;
1018: da->Xs = Xs; da->Xe = Xe; da->Ys = Ys; da->Ye = Ye; da->Zs = Zs; da->Ze = Ze;
1020: VecDestroy(local);
1021: VecDestroy(global);
1023: if (stencil_type == DA_STENCIL_STAR) {
1024: /*
1025: Recompute the local to global mappings, this time keeping the
1026: information about the cross corner processor numbers.
1027: */
1028: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
1029: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1030: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1031: n26 = sn26;
1033: nn = 0;
1035: /* Bottom Level */
1036: for (k=0; k<s_z; k++) {
1037: for (i=1; i<=s_y; i++) {
1038: if (n0 >= 0) { /* left below */
1039: x_t = lx[n0 % m]*dof;
1040: y_t = ly[(n0 % (m*n))/m];
1041: z_t = lz[n0 / (m*n)];
1042: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1043: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1044: }
1045: if (n1 >= 0) { /* directly below */
1046: x_t = x;
1047: y_t = ly[(n1 % (m*n))/m];
1048: z_t = lz[n1 / (m*n)];
1049: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1050: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1051: }
1052: if (n2 >= 0) { /* right below */
1053: x_t = lx[n2 % m]*dof;
1054: y_t = ly[(n2 % (m*n))/m];
1055: z_t = lz[n2 / (m*n)];
1056: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1057: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1058: }
1059: }
1061: for (i=0; i<y; i++) {
1062: if (n3 >= 0) { /* directly left */
1063: x_t = lx[n3 % m]*dof;
1064: y_t = y;
1065: z_t = lz[n3 / (m*n)];
1066: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1067: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1068: }
1070: if (n4 >= 0) { /* middle */
1071: x_t = x;
1072: y_t = y;
1073: z_t = lz[n4 / (m*n)];
1074: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1075: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1076: }
1078: if (n5 >= 0) { /* directly right */
1079: x_t = lx[n5 % m]*dof;
1080: y_t = y;
1081: z_t = lz[n5 / (m*n)];
1082: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1083: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1084: }
1085: }
1087: for (i=1; i<=s_y; i++) {
1088: if (n6 >= 0) { /* left above */
1089: x_t = lx[n6 % m]*dof;
1090: y_t = ly[(n6 % (m*n))/m];
1091: z_t = lz[n6 / (m*n)];
1092: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1093: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1094: }
1095: if (n7 >= 0) { /* directly above */
1096: x_t = x;
1097: y_t = ly[(n7 % (m*n))/m];
1098: z_t = lz[n7 / (m*n)];
1099: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1100: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1101: }
1102: if (n8 >= 0) { /* right above */
1103: x_t = lx[n8 % m]*dof;
1104: y_t = ly[(n8 % (m*n))/m];
1105: z_t = lz[n8 / (m*n)];
1106: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1107: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1108: }
1109: }
1110: }
1112: /* Middle Level */
1113: for (k=0; k<z; k++) {
1114: for (i=1; i<=s_y; i++) {
1115: if (n9 >= 0) { /* left below */
1116: x_t = lx[n9 % m]*dof;
1117: y_t = ly[(n9 % (m*n))/m];
1118: /* z_t = z; */
1119: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1120: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1121: }
1122: if (n10 >= 0) { /* directly below */
1123: x_t = x;
1124: y_t = ly[(n10 % (m*n))/m];
1125: /* z_t = z; */
1126: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1127: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1128: }
1129: if (n11 >= 0) { /* right below */
1130: x_t = lx[n11 % m]*dof;
1131: y_t = ly[(n11 % (m*n))/m];
1132: /* z_t = z; */
1133: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1134: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1135: }
1136: }
1138: for (i=0; i<y; i++) {
1139: if (n12 >= 0) { /* directly left */
1140: x_t = lx[n12 % m]*dof;
1141: y_t = y;
1142: /* z_t = z; */
1143: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1144: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1145: }
1147: /* Interior */
1148: s_t = bases[rank] + i*x + k*x*y;
1149: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
1151: if (n14 >= 0) { /* directly right */
1152: x_t = lx[n14 % m]*dof;
1153: y_t = y;
1154: /* z_t = z; */
1155: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1156: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1157: }
1158: }
1160: for (i=1; i<=s_y; i++) {
1161: if (n15 >= 0) { /* left above */
1162: x_t = lx[n15 % m]*dof;
1163: y_t = ly[(n15 % (m*n))/m];
1164: /* z_t = z; */
1165: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1166: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1167: }
1168: if (n16 >= 0) { /* directly above */
1169: x_t = x;
1170: y_t = ly[(n16 % (m*n))/m];
1171: /* z_t = z; */
1172: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1173: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1174: }
1175: if (n17 >= 0) { /* right above */
1176: x_t = lx[n17 % m]*dof;
1177: y_t = ly[(n17 % (m*n))/m];
1178: /* z_t = z; */
1179: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1180: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1181: }
1182: }
1183: }
1184:
1185: /* Upper Level */
1186: for (k=0; k<s_z; k++) {
1187: for (i=1; i<=s_y; i++) {
1188: if (n18 >= 0) { /* left below */
1189: x_t = lx[n18 % m]*dof;
1190: y_t = ly[(n18 % (m*n))/m];
1191: /* z_t = lz[n18 / (m*n)]; */
1192: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1193: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1194: }
1195: if (n19 >= 0) { /* directly below */
1196: x_t = x;
1197: y_t = ly[(n19 % (m*n))/m];
1198: /* z_t = lz[n19 / (m*n)]; */
1199: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1200: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1201: }
1202: if (n20 >= 0) { /* right below */
1203: x_t = lx[n20 % m]*dof;
1204: y_t = ly[(n20 % (m*n))/m];
1205: /* z_t = lz[n20 / (m*n)]; */
1206: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1207: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1208: }
1209: }
1211: for (i=0; i<y; i++) {
1212: if (n21 >= 0) { /* directly left */
1213: x_t = lx[n21 % m]*dof;
1214: y_t = y;
1215: /* z_t = lz[n21 / (m*n)]; */
1216: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1217: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1218: }
1220: if (n22 >= 0) { /* middle */
1221: x_t = x;
1222: y_t = y;
1223: /* z_t = lz[n22 / (m*n)]; */
1224: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1225: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1226: }
1228: if (n23 >= 0) { /* directly right */
1229: x_t = lx[n23 % m]*dof;
1230: y_t = y;
1231: /* z_t = lz[n23 / (m*n)]; */
1232: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1233: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1234: }
1235: }
1237: for (i=1; i<=s_y; i++) {
1238: if (n24 >= 0) { /* left above */
1239: x_t = lx[n24 % m]*dof;
1240: y_t = ly[(n24 % (m*n))/m];
1241: /* z_t = lz[n24 / (m*n)]; */
1242: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1243: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1244: }
1245: if (n25 >= 0) { /* directly above */
1246: x_t = x;
1247: y_t = ly[(n25 % (m*n))/m];
1248: /* z_t = lz[n25 / (m*n)]; */
1249: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1250: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1251: }
1252: if (n26 >= 0) { /* right above */
1253: x_t = lx[n26 % m]*dof;
1254: y_t = ly[(n26 % (m*n))/m];
1255: /* z_t = lz[n26 / (m*n)]; */
1256: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1257: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1258: }
1259: }
1260: }
1261: }
1262: /* redo idx to include "missing" ghost points */
1263: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
1264:
1265: /* Assume Nodes are Internal to the Cube */
1266:
1267: n0 = rank - m*n - m - 1;
1268: n1 = rank - m*n - m;
1269: n2 = rank - m*n - m + 1;
1270: n3 = rank - m*n -1;
1271: n4 = rank - m*n;
1272: n5 = rank - m*n + 1;
1273: n6 = rank - m*n + m - 1;
1274: n7 = rank - m*n + m;
1275: n8 = rank - m*n + m + 1;
1277: n9 = rank - m - 1;
1278: n10 = rank - m;
1279: n11 = rank - m + 1;
1280: n12 = rank - 1;
1281: n14 = rank + 1;
1282: n15 = rank + m - 1;
1283: n16 = rank + m;
1284: n17 = rank + m + 1;
1286: n18 = rank + m*n - m - 1;
1287: n19 = rank + m*n - m;
1288: n20 = rank + m*n - m + 1;
1289: n21 = rank + m*n - 1;
1290: n22 = rank + m*n;
1291: n23 = rank + m*n + 1;
1292: n24 = rank + m*n + m - 1;
1293: n25 = rank + m*n + m;
1294: n26 = rank + m*n + m + 1;
1296: /* Assume Pieces are on Faces of Cube */
1298: if (xs == 0) { /* First assume not corner or edge */
1299: n0 = rank -1 - (m*n);
1300: n3 = rank + m -1 - (m*n);
1301: n6 = rank + 2*m -1 - (m*n);
1302: n9 = rank -1;
1303: n12 = rank + m -1;
1304: n15 = rank + 2*m -1;
1305: n18 = rank -1 + (m*n);
1306: n21 = rank + m -1 + (m*n);
1307: n24 = rank + 2*m -1 + (m*n);
1308: }
1310: if (xe == M*dof) { /* First assume not corner or edge */
1311: n2 = rank -2*m +1 - (m*n);
1312: n5 = rank - m +1 - (m*n);
1313: n8 = rank +1 - (m*n);
1314: n11 = rank -2*m +1;
1315: n14 = rank - m +1;
1316: n17 = rank +1;
1317: n20 = rank -2*m +1 + (m*n);
1318: n23 = rank - m +1 + (m*n);
1319: n26 = rank +1 + (m*n);
1320: }
1322: if (ys==0) { /* First assume not corner or edge */
1323: n0 = rank + m * (n-1) -1 - (m*n);
1324: n1 = rank + m * (n-1) - (m*n);
1325: n2 = rank + m * (n-1) +1 - (m*n);
1326: n9 = rank + m * (n-1) -1;
1327: n10 = rank + m * (n-1);
1328: n11 = rank + m * (n-1) +1;
1329: n18 = rank + m * (n-1) -1 + (m*n);
1330: n19 = rank + m * (n-1) + (m*n);
1331: n20 = rank + m * (n-1) +1 + (m*n);
1332: }
1334: if (ye == N) { /* First assume not corner or edge */
1335: n6 = rank - m * (n-1) -1 - (m*n);
1336: n7 = rank - m * (n-1) - (m*n);
1337: n8 = rank - m * (n-1) +1 - (m*n);
1338: n15 = rank - m * (n-1) -1;
1339: n16 = rank - m * (n-1);
1340: n17 = rank - m * (n-1) +1;
1341: n24 = rank - m * (n-1) -1 + (m*n);
1342: n25 = rank - m * (n-1) + (m*n);
1343: n26 = rank - m * (n-1) +1 + (m*n);
1344: }
1345:
1346: if (zs == 0) { /* First assume not corner or edge */
1347: n0 = size - (m*n) + rank - m - 1;
1348: n1 = size - (m*n) + rank - m;
1349: n2 = size - (m*n) + rank - m + 1;
1350: n3 = size - (m*n) + rank - 1;
1351: n4 = size - (m*n) + rank;
1352: n5 = size - (m*n) + rank + 1;
1353: n6 = size - (m*n) + rank + m - 1;
1354: n7 = size - (m*n) + rank + m ;
1355: n8 = size - (m*n) + rank + m + 1;
1356: }
1358: if (ze == P) { /* First assume not corner or edge */
1359: n18 = (m*n) - (size-rank) - m - 1;
1360: n19 = (m*n) - (size-rank) - m;
1361: n20 = (m*n) - (size-rank) - m + 1;
1362: n21 = (m*n) - (size-rank) - 1;
1363: n22 = (m*n) - (size-rank);
1364: n23 = (m*n) - (size-rank) + 1;
1365: n24 = (m*n) - (size-rank) + m - 1;
1366: n25 = (m*n) - (size-rank) + m;
1367: n26 = (m*n) - (size-rank) + m + 1;
1368: }
1370: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
1371: n0 = size - m*n + rank + m-1 - m;
1372: n3 = size - m*n + rank + m-1;
1373: n6 = size - m*n + rank + m-1 + m;
1374: }
1375:
1376: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
1377: n18 = m*n - (size - rank) + m-1 - m;
1378: n21 = m*n - (size - rank) + m-1;
1379: n24 = m*n - (size - rank) + m-1 + m;
1380: }
1382: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
1383: n0 = rank + m*n -1 - m*n;
1384: n9 = rank + m*n -1;
1385: n18 = rank + m*n -1 + m*n;
1386: }
1388: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
1389: n6 = rank - m*(n-1) + m-1 - m*n;
1390: n15 = rank - m*(n-1) + m-1;
1391: n24 = rank - m*(n-1) + m-1 + m*n;
1392: }
1394: if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
1395: n2 = size - (m*n-rank) - (m-1) - m;
1396: n5 = size - (m*n-rank) - (m-1);
1397: n8 = size - (m*n-rank) - (m-1) + m;
1398: }
1400: if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
1401: n20 = m*n - (size - rank) - (m-1) - m;
1402: n23 = m*n - (size - rank) - (m-1);
1403: n26 = m*n - (size - rank) - (m-1) + m;
1404: }
1406: if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
1407: n2 = rank + m*(n-1) - (m-1) - m*n;
1408: n11 = rank + m*(n-1) - (m-1);
1409: n20 = rank + m*(n-1) - (m-1) + m*n;
1410: }
1412: if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
1413: n8 = rank - m*n +1 - m*n;
1414: n17 = rank - m*n +1;
1415: n26 = rank - m*n +1 + m*n;
1416: }
1418: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
1419: n0 = size - m + rank -1;
1420: n1 = size - m + rank;
1421: n2 = size - m + rank +1;
1422: }
1424: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
1425: n18 = m*n - (size - rank) + m*(n-1) -1;
1426: n19 = m*n - (size - rank) + m*(n-1);
1427: n20 = m*n - (size - rank) + m*(n-1) +1;
1428: }
1430: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
1431: n6 = size - (m*n-rank) - m * (n-1) -1;
1432: n7 = size - (m*n-rank) - m * (n-1);
1433: n8 = size - (m*n-rank) - m * (n-1) +1;
1434: }
1436: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
1437: n24 = rank - (size-m) -1;
1438: n25 = rank - (size-m);
1439: n26 = rank - (size-m) +1;
1440: }
1442: /* Check for Corners */
1443: if ((xs==0) && (ys==0) && (zs==0)) { n0 = size -1;}
1444: if ((xs==0) && (ys==0) && (ze==P)) { n18 = m*n-1;}
1445: if ((xs==0) && (ye==N) && (zs==0)) { n6 = (size-1)-m*(n-1);}
1446: if ((xs==0) && (ye==N) && (ze==P)) { n24 = m-1;}
1447: if ((xe==M*dof) && (ys==0) && (zs==0)) { n2 = size-m;}
1448: if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
1449: if ((xe==M*dof) && (ye==N) && (zs==0)) { n8 = size-m*n;}
1450: if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}
1452: /* Check for when not X,Y, and Z Periodic */
1454: /* If not X periodic */
1455: if (!DAXPeriodic(wrap)){
1456: if (xs==0) {n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;}
1457: if (xe==M*dof) {n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
1458: }
1460: /* If not Y periodic */
1461: if (!DAYPeriodic(wrap)){
1462: if (ys==0) {n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;}
1463: if (ye==N) {n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
1464: }
1466: /* If not Z periodic */
1467: if (!DAZPeriodic(wrap)){
1468: if (zs==0) {n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;}
1469: if (ze==P) {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
1470: }
1472: nn = 0;
1474: /* Bottom Level */
1475: for (k=0; k<s_z; k++) {
1476: for (i=1; i<=s_y; i++) {
1477: if (n0 >= 0) { /* left below */
1478: x_t = lx[n0 % m]*dof;
1479: y_t = ly[(n0 % (m*n))/m];
1480: z_t = lz[n0 / (m*n)];
1481: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t -s_x - (s_z-k-1)*x_t*y_t;
1482: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1483: }
1484: if (n1 >= 0) { /* directly below */
1485: x_t = x;
1486: y_t = ly[(n1 % (m*n))/m];
1487: z_t = lz[n1 / (m*n)];
1488: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1489: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1490: }
1491: if (n2 >= 0) { /* right below */
1492: x_t = lx[n2 % m]*dof;
1493: y_t = ly[(n2 % (m*n))/m];
1494: z_t = lz[n2 / (m*n)];
1495: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1496: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1497: }
1498: }
1500: for (i=0; i<y; i++) {
1501: if (n3 >= 0) { /* directly left */
1502: x_t = lx[n3 % m]*dof;
1503: y_t = y;
1504: z_t = lz[n3 / (m*n)];
1505: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1506: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1507: }
1509: if (n4 >= 0) { /* middle */
1510: x_t = x;
1511: y_t = y;
1512: z_t = lz[n4 / (m*n)];
1513: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1514: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1515: }
1517: if (n5 >= 0) { /* directly right */
1518: x_t = lx[n5 % m]*dof;
1519: y_t = y;
1520: z_t = lz[n5 / (m*n)];
1521: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1522: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1523: }
1524: }
1526: for (i=1; i<=s_y; i++) {
1527: if (n6 >= 0) { /* left above */
1528: x_t = lx[n6 % m]*dof;
1529: y_t = ly[(n6 % (m*n))/m];
1530: z_t = lz[n6 / (m*n)];
1531: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1532: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1533: }
1534: if (n7 >= 0) { /* directly above */
1535: x_t = x;
1536: y_t = ly[(n7 % (m*n))/m];
1537: z_t = lz[n7 / (m*n)];
1538: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1539: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1540: }
1541: if (n8 >= 0) { /* right above */
1542: x_t = lx[n8 % m]*dof;
1543: y_t = ly[(n8 % (m*n))/m];
1544: z_t = lz[n8 / (m*n)];
1545: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1546: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1547: }
1548: }
1549: }
1551: /* Middle Level */
1552: for (k=0; k<z; k++) {
1553: for (i=1; i<=s_y; i++) {
1554: if (n9 >= 0) { /* left below */
1555: x_t = lx[n9 % m]*dof;
1556: y_t = ly[(n9 % (m*n))/m];
1557: /* z_t = z; */
1558: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1559: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1560: }
1561: if (n10 >= 0) { /* directly below */
1562: x_t = x;
1563: y_t = ly[(n10 % (m*n))/m];
1564: /* z_t = z; */
1565: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1566: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1567: }
1568: if (n11 >= 0) { /* right below */
1569: x_t = lx[n11 % m]*dof;
1570: y_t = ly[(n11 % (m*n))/m];
1571: /* z_t = z; */
1572: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1573: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1574: }
1575: }
1577: for (i=0; i<y; i++) {
1578: if (n12 >= 0) { /* directly left */
1579: x_t = lx[n12 % m]*dof;
1580: y_t = y;
1581: /* z_t = z; */
1582: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1583: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1584: }
1586: /* Interior */
1587: s_t = bases[rank] + i*x + k*x*y;
1588: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
1590: if (n14 >= 0) { /* directly right */
1591: x_t = lx[n14 % m]*dof;
1592: y_t = y;
1593: /* z_t = z; */
1594: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1595: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1596: }
1597: }
1599: for (i=1; i<=s_y; i++) {
1600: if (n15 >= 0) { /* left above */
1601: x_t = lx[n15 % m]*dof;
1602: y_t = ly[(n15 % (m*n))/m];
1603: /* z_t = z; */
1604: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1605: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1606: }
1607: if (n16 >= 0) { /* directly above */
1608: x_t = x;
1609: y_t = ly[(n16 % (m*n))/m];
1610: /* z_t = z; */
1611: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1612: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1613: }
1614: if (n17 >= 0) { /* right above */
1615: x_t = lx[n17 % m]*dof;
1616: y_t = ly[(n17 % (m*n))/m];
1617: /* z_t = z; */
1618: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1619: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1620: }
1621: }
1622: }
1623:
1624: /* Upper Level */
1625: for (k=0; k<s_z; k++) {
1626: for (i=1; i<=s_y; i++) {
1627: if (n18 >= 0) { /* left below */
1628: x_t = lx[n18 % m]*dof;
1629: y_t = ly[(n18 % (m*n))/m];
1630: /* z_t = lz[n18 / (m*n)]; */
1631: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1632: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1633: }
1634: if (n19 >= 0) { /* directly below */
1635: x_t = x;
1636: y_t = ly[(n19 % (m*n))/m];
1637: /* z_t = lz[n19 / (m*n)]; */
1638: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1639: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1640: }
1641: if (n20 >= 0) { /* right belodof */
1642: x_t = lx[n20 % m]*dof;
1643: y_t = ly[(n20 % (m*n))/m];
1644: /* z_t = lz[n20 / (m*n)]; */
1645: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1646: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1647: }
1648: }
1650: for (i=0; i<y; i++) {
1651: if (n21 >= 0) { /* directly left */
1652: x_t = lx[n21 % m]*dof;
1653: y_t = y;
1654: /* z_t = lz[n21 / (m*n)]; */
1655: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1656: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1657: }
1659: if (n22 >= 0) { /* middle */
1660: x_t = x;
1661: y_t = y;
1662: /* z_t = lz[n22 / (m*n)]; */
1663: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1664: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1665: }
1667: if (n23 >= 0) { /* directly right */
1668: x_t = lx[n23 % m]*dof;
1669: y_t = y;
1670: /* z_t = lz[n23 / (m*n)]; */
1671: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1672: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1673: }
1674: }
1676: for (i=1; i<=s_y; i++) {
1677: if (n24 >= 0) { /* left above */
1678: x_t = lx[n24 % m]*dof;
1679: y_t = ly[(n24 % (m*n))/m];
1680: /* z_t = lz[n24 / (m*n)]; */
1681: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1682: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1683: }
1684: if (n25 >= 0) { /* directly above */
1685: x_t = x;
1686: y_t = ly[(n25 % (m*n))/m];
1687: /* z_t = lz[n25 / (m*n)]; */
1688: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1689: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1690: }
1691: if (n26 >= 0) { /* right above */
1692: x_t = lx[n26 % m]*dof;
1693: y_t = ly[(n26 % (m*n))/m];
1694: /* z_t = lz[n26 / (m*n)]; */
1695: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1696: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1697: }
1698: }
1699: }
1700: PetscFree(bases);
1701: da->gtol = gtol;
1702: da->ltog = ltog;
1703: da->idx = idx;
1704: da->Nl = nn;
1705: da->base = base;
1706: da->ops->view = DAView_3d;
1707: da->wrap = wrap;
1708: *inra = da;
1710: /*
1711: Set the local to global ordering in the global vector, this allows use
1712: of VecSetValuesLocal().
1713: */
1714: ISLocalToGlobalMappingCreateNC(comm,nn,idx,&da->ltogmap);
1715: ISLocalToGlobalMappingBlock(da->ltogmap,da->w,&da->ltogmapb);
1716: PetscLogObjectParent(da,da->ltogmap);
1718: da->ltol = PETSC_NULL;
1719: da->ao = PETSC_NULL;
1721: if (!flx) {
1722: PetscMalloc(m*sizeof(PetscInt),&flx);
1723: PetscMemcpy(flx,lx,m*sizeof(PetscInt));
1724: }
1725: if (!fly) {
1726: PetscMalloc(n*sizeof(PetscInt),&fly);
1727: PetscMemcpy(fly,ly,n*sizeof(PetscInt));
1728: }
1729: if (!flz) {
1730: PetscMalloc(p*sizeof(PetscInt),&flz);
1731: PetscMemcpy(flz,lz,p*sizeof(PetscInt));
1732: }
1733: da->lx = flx;
1734: da->ly = fly;
1735: da->lz = flz;
1737: DAView_Private(da);
1738: return(0);
1739: }
1743: /*@C
1744: DACreate - Creates an object that will manage the communication of regular array data that is distributed across some processors
1745: in 1, 2 or 3 dimensions
1747: Collective on MPI_Comm
1749: See the manual pages for the routines for each dimension.
1751: Level: beginner
1753:
1754: .keywords: distributed array, create, three-dimensional
1756: .seealso: DACreate1d(), DACreate2d(), DACreate3d(), DAGetOwnershipRange()
1758: @*/
1759: PetscErrorCode DACreate(MPI_Comm comm,PetscInt dim,DAPeriodicType wrap,DAStencilType stencil_type,PetscInt M,
1760: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,PetscInt *lx,PetscInt *ly,PetscInt *lz,DA *inra)
1761: {
1764: if (dim == 3) {
1765: DACreate3d(comm,wrap,stencil_type,M,N,P,m,n,p,dof,s,lx,ly,lz,inra);
1766: } else if (dim == 2) {
1767: DACreate2d(comm,wrap,stencil_type,M,N,m,n,dof,s,lx,ly,inra);
1768: } else if (dim == 1) {
1769: DACreate1d(comm,wrap,M,dof,s,lx,inra);
1770: }
1771: return(0);
1772: }