Actual source code: aijnode.c

  1: /*$Id: aijnode.c,v 1.125 2001/04/10 19:35:19 bsmith Exp $*/
  2: /*
  3:   This file provides high performance routines for the AIJ (compressed row)
  4:   format by taking advantage of rows with identical nonzero structure (I-nodes).
  5: */
  6: #include "src/mat/impls/aij/seq/aij.h"                
  7: #include "src/vec/vecimpl.h"

  9: EXTERN int Mat_AIJ_CheckInode(Mat);
 10: EXTERN int MatSolve_SeqAIJ_Inode(Mat,Vec,Vec);
 11: EXTERN int MatLUFactorNumeric_SeqAIJ_Inode(Mat,Mat *);

 13: EXTERN int MatMult_SeqAIJ(Mat,Vec,Vec);
 14: EXTERN int MatMultAdd_SeqAIJ(Mat,Vec,Vec,Vec);
 15: EXTERN int MatSolve_SeqAIJ(Mat,Vec,Vec);
 16: EXTERN int MatLUFactorNumeric_SeqAIJ(Mat,Mat*);
 17: EXTERN int MatGetRowIJ_SeqAIJ(Mat,int,PetscTruth,int*,int**,int**,PetscTruth*);
 18: EXTERN int MatRestoreRowIJ_SeqAIJ(Mat,int,PetscTruth,int*,int**,int**,PetscTruth*);
 19: EXTERN int MatGetColumnIJ_SeqAIJ(Mat,int,PetscTruth,int*,int**,int**,PetscTruth*);
 20: EXTERN int MatRestoreColumnIJ_SeqAIJ(Mat,int,PetscTruth,int*,int**,int**,PetscTruth*);

 22: static int Mat_AIJ_CreateColInode(Mat A,int* size,int ** ns)
 23: {
 24:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
 25:   int        ierr,i,count,m,n,min_mn,*ns_row,*ns_col;

 28:   n      = A->n;
 29:   m      = A->m;
 30:   ns_row = a->inode.size;
 31: 
 32:   min_mn = (m < n) ? m : n;
 33:   if (!ns) {
 34:     for (count=0,i=0; count<min_mn; count+=ns_row[i],i++);
 35:     for(; count+1 < n; count++,i++);
 36:     if (count < n)  {
 37:       i++;
 38:     }
 39:     *size = i;
 40:     return(0);
 41:   }
 42:   PetscMalloc((n+1)*sizeof(int),&ns_col);
 43: 
 44:   /* Use the same row structure wherever feasible. */
 45:   for (count=0,i=0; count<min_mn; count+=ns_row[i],i++) {
 46:     ns_col[i] = ns_row[i];
 47:   }

 49:   /* if m < n; pad up the remainder with inode_limit */
 50:   for(; count+1 < n; count++,i++) {
 51:     ns_col[i] = 1;
 52:   }
 53:   /* The last node is the odd ball. padd it up with the remaining rows; */
 54:   if (count < n)  {
 55:     ns_col[i] = n - count;
 56:     i++;
 57:   } else if (count > n) {
 58:     /* Adjust for the over estimation */
 59:     ns_col[i-1] += n - count;
 60:   }
 61:   *size = i;
 62:   *ns   = ns_col;
 63:   return(0);
 64: }


 67: /*
 68:       This builds symmetric version of nonzero structure,
 69: */
 70: static int MatGetRowIJ_SeqAIJ_Inode_Symmetric(Mat A,int **iia,int **jja,int ishift,int oshift)
 71: {
 72:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
 73:   int        *work,*ia,*ja,*j,nz,nslim_row,nslim_col,m,row,col,*jmax,n,ierr;
 74:   int        *tns,*tvc,*ns_row = a->inode.size,*ns_col,nsz,i1,i2,*ai= a->i,*aj = a->j;

 77:   nslim_row = a->inode.node_count;
 78:   m         = A->m;
 79:   n         = A->n;
 80:   if (m != n) SETERRQ(1,"MatGetRowIJ_SeqAIJ_Inode_Symmetric: Matrix shoul be square");
 81: 
 82:   /* Use the row_inode as column_inode */
 83:   nslim_col = nslim_row;
 84:   ns_col    = ns_row;

 86:   /* allocate space for reformated inode structure */
 87:   PetscMalloc((nslim_col+1)*sizeof(int),&tns);
 88:   PetscMalloc((n+1)*sizeof(int),&tvc);
 89:   for (i1=0,tns[0]=0; i1<nslim_col; ++i1) tns[i1+1] = tns[i1]+ ns_row[i1];

 91:   for (i1=0,col=0; i1<nslim_col; ++i1){
 92:     nsz = ns_col[i1];
 93:     for (i2=0; i2<nsz; ++i2,++col)
 94:       tvc[col] = i1;
 95:   }
 96:   /* allocate space for row pointers */
 97:   PetscMalloc((nslim_row+1)*sizeof(int),&ia);
 98:   *iia = ia;
 99:   PetscMemzero(ia,(nslim_row+1)*sizeof(int));
100:   PetscMalloc((nslim_row+1)*sizeof(int),&work);

102:   /* determine the number of columns in each row */
103:   ia[0] = oshift;
104:   for (i1=0,row=0 ; i1<nslim_row; row+=ns_row[i1],i1++) {

106:     j    = aj + ai[row] + ishift;
107:     jmax = aj + ai[row+1] + ishift;
108:     i2   = 0;
109:     col  = *j++ + ishift;
110:     i2   = tvc[col];
111:     while (i2<i1 && j<jmax) { /* 1.[-xx-d-xx--] 2.[-xx-------],off-diagonal elemets */
112:       ia[i1+1]++;
113:       ia[i2+1]++;
114:       i2++;                     /* Start col of next node */
115:       while(((col=*j+ishift)<tns[i2]) && (j<jmax)) ++j;
116:       i2 = tvc[col];
117:     }
118:     if(i2 == i1) ia[i2+1]++;    /* now the diagonal element */
119:   }

121:   /* shift ia[i] to point to next row */
122:   for (i1=1; i1<nslim_row+1; i1++) {
123:     row        = ia[i1-1];
124:     ia[i1]    += row;
125:     work[i1-1] = row - oshift;
126:   }

128:   /* allocate space for column pointers */
129:   nz   = ia[nslim_row] + (!ishift);
130:   PetscMalloc(nz*sizeof(int),&ja);
131:   *jja = ja;

133:  /* loop over lower triangular part putting into ja */
134:   for (i1=0,row=0; i1<nslim_row; row += ns_row[i1],i1++) {
135:     j    = aj + ai[row] + ishift;
136:     jmax = aj + ai[row+1] + ishift;
137:     i2   = 0;                     /* Col inode index */
138:     col  = *j++ + ishift;
139:     i2   = tvc[col];
140:     while (i2<i1 && j<jmax) {
141:       ja[work[i2]++] = i1 + oshift;
142:       ja[work[i1]++] = i2 + oshift;
143:       ++i2;
144:       while(((col=*j+ishift)< tns[i2])&&(j<jmax)) ++j; /* Skip rest col indices in this node */
145:       i2 = tvc[col];
146:     }
147:     if (i2 == i1) ja[work[i1]++] = i2 + oshift;

149:   }
150:   PetscFree(work);
151:   PetscFree(tns);
152:   PetscFree(tvc);
153:   return(0);
154: }

156: /*
157:       This builds nonsymmetric version of nonzero structure,
158: */
159: static int MatGetRowIJ_SeqAIJ_Inode_Nonsymmetric(Mat A,int **iia,int **jja,int ishift,int oshift)
160: {
161:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
162:   int        *work,*ia,*ja,*j,nz,nslim_row,n,row,col,ierr,*ns_col,nslim_col;
163:   int        *tns,*tvc,*ns_row = a->inode.size,nsz,i1,i2,*ai= a->i,*aj = a->j;

166:   nslim_row = a->inode.node_count;
167:   n         = A->n;

169:   /* Create The column_inode for this matrix */
170:   Mat_AIJ_CreateColInode(A,&nslim_col,&ns_col);
171: 
172:   /* allocate space for reformated column_inode structure */
173:   PetscMalloc((nslim_col +1)*sizeof(int),&tns);
174:   PetscMalloc((n +1)*sizeof(int),&tvc);
175:   for (i1=0,tns[0]=0; i1<nslim_col; ++i1) tns[i1+1] = tns[i1] + ns_col[i1];

177:   for (i1=0,col=0; i1<nslim_col; ++i1){
178:     nsz = ns_col[i1];
179:     for (i2=0; i2<nsz; ++i2,++col)
180:       tvc[col] = i1;
181:   }
182:   /* allocate space for row pointers */
183:   PetscMalloc((nslim_row+1)*sizeof(int),&ia);
184:   *iia = ia;
185:   PetscMemzero(ia,(nslim_row+1)*sizeof(int));
186:   PetscMalloc((nslim_row+1)*sizeof(int),&work);

188:   /* determine the number of columns in each row */
189:   ia[0] = oshift;
190:   for (i1=0,row=0; i1<nslim_row; row+=ns_row[i1],i1++) {
191:     j   = aj + ai[row] + ishift;
192:     col = *j++ + ishift;
193:     i2  = tvc[col];
194:     nz  = ai[row+1] - ai[row];
195:     while (nz-- > 0) {           /* off-diagonal elemets */
196:       ia[i1+1]++;
197:       i2++;                     /* Start col of next node */
198:       while (((col = *j++ + ishift) < tns[i2]) && nz > 0) {nz--;}
199:       i2 = tvc[col];
200:     }
201:   }

203:   /* shift ia[i] to point to next row */
204:   for (i1=1; i1<nslim_row+1; i1++) {
205:     row        = ia[i1-1];
206:     ia[i1]    += row;
207:     work[i1-1] = row - oshift;
208:   }

210:   /* allocate space for column pointers */
211:   nz   = ia[nslim_row] + (!ishift);
212:   PetscMalloc(nz*sizeof(int),&ja);
213:   *jja = ja;

215:  /* loop over matrix putting into ja */
216:   for (i1=0,row=0; i1<nslim_row; row+=ns_row[i1],i1++) {
217:     j   = aj + ai[row] + ishift;
218:     i2  = 0;                     /* Col inode index */
219:     col = *j++ + ishift;
220:     i2  = tvc[col];
221:     nz  = ai[row+1] - ai[row];
222:     while (nz-- > 0) {
223:       ja[work[i1]++] = i2 + oshift;
224:       ++i2;
225:       while(((col = *j++ + ishift) < tns[i2]) && nz > 0) {nz--;}
226:       i2 = tvc[col];
227:     }
228:   }
229:   PetscFree(ns_col);
230:   PetscFree(work);
231:   PetscFree(tns);
232:   PetscFree(tvc);
233:   return(0);
234: }

236: static int MatGetRowIJ_SeqAIJ_Inode(Mat A,int oshift,PetscTruth symmetric,int *n,int **ia,int **ja,PetscTruth *done)
237: {
238:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
239:   int        ierr,ishift;

242:   *n     = a->inode.node_count;
243:   if (!ia) return(0);

245:   ishift = a->indexshift;
246:   if (symmetric) {
247:     MatGetRowIJ_SeqAIJ_Inode_Symmetric(A,ia,ja,ishift,oshift);
248:   } else {
249:     MatGetRowIJ_SeqAIJ_Inode_Nonsymmetric(A,ia,ja,ishift,oshift);
250:   }
251:   return(0);
252: }

254: static int MatRestoreRowIJ_SeqAIJ_Inode(Mat A,int oshift,PetscTruth symmetric,int *n,int **ia,int **ja,PetscTruth *done)
255: {

259:   if (!ia) return(0);
260:   PetscFree(*ia);
261:   PetscFree(*ja);
262:   return(0);
263: }

265: /* ----------------------------------------------------------- */

267: static int MatGetColumnIJ_SeqAIJ_Inode_Nonsymmetric(Mat A,int **iia,int **jja,int ishift,int oshift)
268: {
269:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
270:   int *work,*ia,*ja,*j,nz,nslim_row, n,row,col,ierr,*ns_col,nslim_col;
271:   int *tns,*tvc,*ns_row = a->inode.size,nsz,i1,i2,*ai= a->i,*aj = a->j;

274:   nslim_row = a->inode.node_count;
275:   n         = A->n;

277:   /* Create The column_inode for this matrix */
278:   Mat_AIJ_CreateColInode(A,&nslim_col,&ns_col);
279: 
280:   /* allocate space for reformated column_inode structure */
281:   PetscMalloc((nslim_col + 1)*sizeof(int),&tns);
282:   PetscMalloc((n + 1)*sizeof(int),&tvc);
283:   for (i1=0,tns[0]=0; i1<nslim_col; ++i1) tns[i1+1] = tns[i1] + ns_col[i1];

285:   for (i1=0,col=0; i1<nslim_col; ++i1){
286:     nsz = ns_col[i1];
287:     for (i2=0; i2<nsz; ++i2,++col)
288:       tvc[col] = i1;
289:   }
290:   /* allocate space for column pointers */
291:   PetscMalloc((nslim_col+1)*sizeof(int),&ia);
292:   *iia = ia;
293:   PetscMemzero(ia,(nslim_col+1)*sizeof(int));
294:   PetscMalloc((nslim_col+1)*sizeof(int),&work);

296:   /* determine the number of columns in each row */
297:   ia[0] = oshift;
298:   for (i1=0,row=0; i1<nslim_row; row+=ns_row[i1],i1++) {
299:     j   = aj + ai[row] + ishift;
300:     col = *j++ + ishift;
301:     i2  = tvc[col];
302:     nz  = ai[row+1] - ai[row];
303:     while (nz-- > 0) {           /* off-diagonal elemets */
304:       /* ia[i1+1]++; */
305:       ia[i2+1]++;
306:       i2++;
307:       while (((col = *j++ + ishift) < tns[i2]) && nz > 0) {nz--;}
308:       i2 = tvc[col];
309:     }
310:   }

312:   /* shift ia[i] to point to next col */
313:   for (i1=1; i1<nslim_col+1; i1++) {
314:     col        = ia[i1-1];
315:     ia[i1]    += col;
316:     work[i1-1] = col - oshift;
317:   }

319:   /* allocate space for column pointers */
320:   nz   = ia[nslim_col] + (!ishift);
321:   PetscMalloc(nz*sizeof(int),&ja);
322:   *jja = ja;

324:  /* loop over matrix putting into ja */
325:   for (i1=0,row=0; i1<nslim_row; row+=ns_row[i1],i1++) {
326:     j   = aj + ai[row] + ishift;
327:     i2  = 0;                     /* Col inode index */
328:     col = *j++ + ishift;
329:     i2  = tvc[col];
330:     nz  = ai[row+1] - ai[row];
331:     while (nz-- > 0) {
332:       /* ja[work[i1]++] = i2 + oshift; */
333:       ja[work[i2]++] = i1 + oshift;
334:       i2++;
335:       while(((col = *j++ + ishift) < tns[i2]) && nz > 0) {nz--;}
336:       i2 = tvc[col];
337:     }
338:   }
339:   PetscFree(ns_col);
340:   PetscFree(work);
341:   PetscFree(tns);
342:   PetscFree(tvc);
343:   return(0);
344: }

346: static int MatGetColumnIJ_SeqAIJ_Inode(Mat A,int oshift,PetscTruth symmetric,int *n,int **ia,int **ja,PetscTruth *done)
347: {
348:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
349:   int        ierr,ishift;

352:   Mat_AIJ_CreateColInode(A,n,PETSC_NULL);
353:   if (!ia) return(0);

355:   ishift = a->indexshift;
356:   if (symmetric) {
357:     /* Since the indices are symmetric it does'nt matter */
358:     MatGetRowIJ_SeqAIJ_Inode_Symmetric(A,ia,ja,ishift,oshift);
359:   } else {
360:     MatGetColumnIJ_SeqAIJ_Inode_Nonsymmetric(A,ia,ja,ishift,oshift);
361:   }
362:   return(0);
363: }

365: static int MatRestoreColumnIJ_SeqAIJ_Inode(Mat A,int oshift,PetscTruth symmetric,int *n,int **ia,int **ja,PetscTruth *done)
366: {

370:   if (!ia) return(0);
371:   PetscFree(*ia);
372:   PetscFree(*ja);
373:   return(0);
374: }

376: /* ----------------------------------------------------------- */

378: static int MatMult_SeqAIJ_Inode(Mat A,Vec xx,Vec yy)
379: {
380:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
381:   Scalar     sum1,sum2,sum3,sum4,sum5,tmp0,tmp1;
382:   Scalar     *v1,*v2,*v3,*v4,*v5,*x,*y;
383:   int        ierr,*idx,i1,i2,n,i,row,node_max,*ns,*ii,nsz,sz;
384:   int        shift = a->indexshift;
385: 
386: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
387: #pragma disjoint(*x,*y,*v1,*v2,*v3,*v4,*v5)
388: #endif

391:   if (!a->inode.size) SETERRQ(PETSC_ERR_COR,"Missing Inode Structure");
392:   node_max = a->inode.node_count;
393:   ns       = a->inode.size;     /* Node Size array */
394:   VecGetArray(xx,&x);
395:   VecGetArray(yy,&y);
396:   x    = x + shift;             /* shift for Fortran start by 1 indexing */
397:   idx  = a->j;
398:   v1   = a->a;
399:   ii   = a->i;

401:   for (i = 0,row = 0; i< node_max; ++i){
402:     nsz  = ns[i];
403:     n    = ii[1] - ii[0];
404:     ii  += nsz;
405:     sz   = n;                   /*No of non zeros in this row */
406:                                 /* Switch on the size of Node */
407:     switch (nsz){               /* Each loop in 'case' is unrolled */
408:     case 1 :
409:       sum1  = 0;
410: 
411:       for(n = 0; n< sz-1; n+=2) {
412:         i1   = idx[0];          /* The instructions are ordered to */
413:         i2   = idx[1];          /* make the compiler's job easy */
414:         idx += 2;
415:         tmp0 = x[i1];
416:         tmp1 = x[i2];
417:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
418:        }
419: 
420:       if (n == sz-1){          /* Take care of the last nonzero  */
421:         tmp0  = x[*idx++];
422:         sum1 += *v1++ * tmp0;
423:       }
424:       y[row++]=sum1;
425:       break;
426:     case 2:
427:       sum1  = 0;
428:       sum2  = 0;
429:       v2    = v1 + n;
430: 
431:       for (n = 0; n< sz-1; n+=2) {
432:         i1   = idx[0];
433:         i2   = idx[1];
434:         idx += 2;
435:         tmp0 = x[i1];
436:         tmp1 = x[i2];
437:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
438:         sum2 += v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
439:       }
440:       if (n == sz-1){
441:         tmp0  = x[*idx++];
442:         sum1 += *v1++ * tmp0;
443:         sum2 += *v2++ * tmp0;
444:       }
445:       y[row++]=sum1;
446:       y[row++]=sum2;
447:       v1      =v2;              /* Since the next block to be processed starts there*/
448:       idx    +=sz;
449:       break;
450:     case 3:
451:       sum1  = 0;
452:       sum2  = 0;
453:       sum3  = 0;
454:       v2    = v1 + n;
455:       v3    = v2 + n;
456: 
457:       for (n = 0; n< sz-1; n+=2) {
458:         i1   = idx[0];
459:         i2   = idx[1];
460:         idx += 2;
461:         tmp0 = x[i1];
462:         tmp1 = x[i2];
463:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
464:         sum2 += v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
465:         sum3 += v3[0] * tmp0 + v3[1] * tmp1; v3 += 2;
466:       }
467:       if (n == sz-1){
468:         tmp0  = x[*idx++];
469:         sum1 += *v1++ * tmp0;
470:         sum2 += *v2++ * tmp0;
471:         sum3 += *v3++ * tmp0;
472:       }
473:       y[row++]=sum1;
474:       y[row++]=sum2;
475:       y[row++]=sum3;
476:       v1       =v3;             /* Since the next block to be processed starts there*/
477:       idx     +=2*sz;
478:       break;
479:     case 4:
480:       sum1  = 0;
481:       sum2  = 0;
482:       sum3  = 0;
483:       sum4  = 0;
484:       v2    = v1 + n;
485:       v3    = v2 + n;
486:       v4    = v3 + n;
487: 
488:       for (n = 0; n< sz-1; n+=2) {
489:         i1   = idx[0];
490:         i2   = idx[1];
491:         idx += 2;
492:         tmp0 = x[i1];
493:         tmp1 = x[i2];
494:         sum1 += v1[0] * tmp0 + v1[1] *tmp1; v1 += 2;
495:         sum2 += v2[0] * tmp0 + v2[1] *tmp1; v2 += 2;
496:         sum3 += v3[0] * tmp0 + v3[1] *tmp1; v3 += 2;
497:         sum4 += v4[0] * tmp0 + v4[1] *tmp1; v4 += 2;
498:       }
499:       if (n == sz-1){
500:         tmp0  = x[*idx++];
501:         sum1 += *v1++ * tmp0;
502:         sum2 += *v2++ * tmp0;
503:         sum3 += *v3++ * tmp0;
504:         sum4 += *v4++ * tmp0;
505:       }
506:       y[row++]=sum1;
507:       y[row++]=sum2;
508:       y[row++]=sum3;
509:       y[row++]=sum4;
510:       v1      =v4;              /* Since the next block to be processed starts there*/
511:       idx    +=3*sz;
512:       break;
513:     case 5:
514:       sum1  = 0;
515:       sum2  = 0;
516:       sum3  = 0;
517:       sum4  = 0;
518:       sum5  = 0;
519:       v2    = v1 + n;
520:       v3    = v2 + n;
521:       v4    = v3 + n;
522:       v5    = v4 + n;
523: 
524:       for (n = 0; n<sz-1; n+=2) {
525:         i1   = idx[0];
526:         i2   = idx[1];
527:         idx += 2;
528:         tmp0 = x[i1];
529:         tmp1 = x[i2];
530:         sum1 += v1[0] * tmp0 + v1[1] *tmp1; v1 += 2;
531:         sum2 += v2[0] * tmp0 + v2[1] *tmp1; v2 += 2;
532:         sum3 += v3[0] * tmp0 + v3[1] *tmp1; v3 += 2;
533:         sum4 += v4[0] * tmp0 + v4[1] *tmp1; v4 += 2;
534:         sum5 += v5[0] * tmp0 + v5[1] *tmp1; v5 += 2;
535:       }
536:       if (n == sz-1){
537:         tmp0  = x[*idx++];
538:         sum1 += *v1++ * tmp0;
539:         sum2 += *v2++ * tmp0;
540:         sum3 += *v3++ * tmp0;
541:         sum4 += *v4++ * tmp0;
542:         sum5 += *v5++ * tmp0;
543:       }
544:       y[row++]=sum1;
545:       y[row++]=sum2;
546:       y[row++]=sum3;
547:       y[row++]=sum4;
548:       y[row++]=sum5;
549:       v1      =v5;       /* Since the next block to be processed starts there */
550:       idx    +=4*sz;
551:       break;
552:     default :
553:       SETERRQ(PETSC_ERR_COR,"Node size not yet supported");
554:     }
555:   }
556:   VecRestoreArray(xx,&x);
557:   VecRestoreArray(yy,&y);
558:   PetscLogFlops(2*a->nz - A->m);
559:   return(0);
560: }
561: /* ----------------------------------------------------------- */
562: /* Almost same code as the MatMult_SeqAij_Inode() */
563: static int MatMultAdd_SeqAIJ_Inode(Mat A,Vec xx,Vec zz,Vec yy)
564: {
565:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
566:   Scalar     sum1,sum2,sum3,sum4,sum5,tmp0,tmp1;
567:   Scalar     *v1,*v2,*v3,*v4,*v5,*x,*y,*z;
568:   int        ierr,*idx,i1,i2,n,i,row,node_max,*ns,*ii,nsz,sz;
569:   int        shift = a->indexshift;
570: 
572:   if (!a->inode.size) SETERRQ(PETSC_ERR_COR,"Missing Inode Structure");
573:   node_max = a->inode.node_count;
574:   ns       = a->inode.size;     /* Node Size array */
575:   VecGetArray(xx,&x);
576:   VecGetArray(yy,&y);
577:   if (zz != yy) {
578:     VecGetArray(zz,&z);
579:   } else {
580:     z = y;
581:   }

583:   x    = x + shift;             /* shift for Fortran start by 1 indexing */
584:   idx  = a->j;
585:   v1   = a->a;
586:   ii   = a->i;

588:   for (i = 0,row = 0; i< node_max; ++i){
589:     nsz  = ns[i];
590:     n    = ii[1] - ii[0];
591:     ii  += nsz;
592:     sz   = n;                   /*No of non zeros in this row */
593:                                 /* Switch on the size of Node */
594:     switch (nsz){               /* Each loop in 'case' is unrolled */
595:     case 1 :
596:       sum1  = *z++;
597: 
598:       for(n = 0; n< sz-1; n+=2) {
599:         i1   = idx[0];          /* The instructions are ordered to */
600:         i2   = idx[1];          /* make the compiler's job easy */
601:         idx += 2;
602:         tmp0 = x[i1];
603:         tmp1 = x[i2];
604:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
605:        }
606: 
607:       if(n   == sz-1){          /* Take care of the last nonzero  */
608:         tmp0  = x[*idx++];
609:         sum1 += *v1++ * tmp0;
610:       }
611:       y[row++]=sum1;
612:       break;
613:     case 2:
614:       sum1  = *z++;
615:       sum2  = *z++;
616:       v2    = v1 + n;
617: 
618:       for(n = 0; n< sz-1; n+=2) {
619:         i1   = idx[0];
620:         i2   = idx[1];
621:         idx += 2;
622:         tmp0 = x[i1];
623:         tmp1 = x[i2];
624:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
625:         sum2 += v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
626:       }
627:       if(n   == sz-1){
628:         tmp0  = x[*idx++];
629:         sum1 += *v1++ * tmp0;
630:         sum2 += *v2++ * tmp0;
631:       }
632:       y[row++]=sum1;
633:       y[row++]=sum2;
634:       v1      =v2;              /* Since the next block to be processed starts there*/
635:       idx    +=sz;
636:       break;
637:     case 3:
638:       sum1  = *z++;
639:       sum2  = *z++;
640:       sum3  = *z++;
641:       v2    = v1 + n;
642:       v3    = v2 + n;
643: 
644:       for (n = 0; n< sz-1; n+=2) {
645:         i1   = idx[0];
646:         i2   = idx[1];
647:         idx += 2;
648:         tmp0 = x[i1];
649:         tmp1 = x[i2];
650:         sum1 += v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
651:         sum2 += v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
652:         sum3 += v3[0] * tmp0 + v3[1] * tmp1; v3 += 2;
653:       }
654:       if (n == sz-1){
655:         tmp0  = x[*idx++];
656:         sum1 += *v1++ * tmp0;
657:         sum2 += *v2++ * tmp0;
658:         sum3 += *v3++ * tmp0;
659:       }
660:       y[row++]=sum1;
661:       y[row++]=sum2;
662:       y[row++]=sum3;
663:       v1       =v3;             /* Since the next block to be processed starts there*/
664:       idx     +=2*sz;
665:       break;
666:     case 4:
667:       sum1  = *z++;
668:       sum2  = *z++;
669:       sum3  = *z++;
670:       sum4  = *z++;
671:       v2    = v1 + n;
672:       v3    = v2 + n;
673:       v4    = v3 + n;
674: 
675:       for (n = 0; n< sz-1; n+=2) {
676:         i1   = idx[0];
677:         i2   = idx[1];
678:         idx += 2;
679:         tmp0 = x[i1];
680:         tmp1 = x[i2];
681:         sum1 += v1[0] * tmp0 + v1[1] *tmp1; v1 += 2;
682:         sum2 += v2[0] * tmp0 + v2[1] *tmp1; v2 += 2;
683:         sum3 += v3[0] * tmp0 + v3[1] *tmp1; v3 += 2;
684:         sum4 += v4[0] * tmp0 + v4[1] *tmp1; v4 += 2;
685:       }
686:       if (n == sz-1){
687:         tmp0  = x[*idx++];
688:         sum1 += *v1++ * tmp0;
689:         sum2 += *v2++ * tmp0;
690:         sum3 += *v3++ * tmp0;
691:         sum4 += *v4++ * tmp0;
692:       }
693:       y[row++]=sum1;
694:       y[row++]=sum2;
695:       y[row++]=sum3;
696:       y[row++]=sum4;
697:       v1      =v4;              /* Since the next block to be processed starts there*/
698:       idx    +=3*sz;
699:       break;
700:     case 5:
701:       sum1  = *z++;
702:       sum2  = *z++;
703:       sum3  = *z++;
704:       sum4  = *z++;
705:       sum5  = *z++;
706:       v2    = v1 + n;
707:       v3    = v2 + n;
708:       v4    = v3 + n;
709:       v5    = v4 + n;
710: 
711:       for (n = 0; n<sz-1; n+=2) {
712:         i1   = idx[0];
713:         i2   = idx[1];
714:         idx += 2;
715:         tmp0 = x[i1];
716:         tmp1 = x[i2];
717:         sum1 += v1[0] * tmp0 + v1[1] *tmp1; v1 += 2;
718:         sum2 += v2[0] * tmp0 + v2[1] *tmp1; v2 += 2;
719:         sum3 += v3[0] * tmp0 + v3[1] *tmp1; v3 += 2;
720:         sum4 += v4[0] * tmp0 + v4[1] *tmp1; v4 += 2;
721:         sum5 += v5[0] * tmp0 + v5[1] *tmp1; v5 += 2;
722:       }
723:       if(n   == sz-1){
724:         tmp0  = x[*idx++];
725:         sum1 += *v1++ * tmp0;
726:         sum2 += *v2++ * tmp0;
727:         sum3 += *v3++ * tmp0;
728:         sum4 += *v4++ * tmp0;
729:         sum5 += *v5++ * tmp0;
730:       }
731:       y[row++]=sum1;
732:       y[row++]=sum2;
733:       y[row++]=sum3;
734:       y[row++]=sum4;
735:       y[row++]=sum5;
736:       v1      =v5;       /* Since the next block to be processed starts there */
737:       idx    +=4*sz;
738:       break;
739:     default :
740:       SETERRQ(PETSC_ERR_COR,"Node size not yet supported");
741:     }
742:   }
743:   VecRestoreArray(xx,&x);
744:   VecRestoreArray(yy,&y);
745:   if (zz != yy) {
746:     VecRestoreArray(zz,&z);
747:   }
748:   PetscLogFlops(2*a->nz);
749:   return(0);
750: }
751: /* ----------------------------------------------------------- */
752: EXTERN int MatColoringPatch_SeqAIJ_Inode(Mat,int,int,int *,ISColoring *);

754: int Mat_AIJ_CheckInode(Mat A)
755: {
756:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
757:   int        ierr,i,j,m,nzx,nzy,*idx,*idy,*ns,*ii,node_count,blk_size;
758:   PetscTruth flag,flg;

761:   /* Notes: We set a->inode.limit=5 in MatCreateSeqAIJ(). */
762:   if (!a->inode.use) {PetscLogInfo(A,"Mat_AIJ_CheckInode: Not using Inode routines due to MatSetOption(MAT_DO_NOT_USE_INODESn"); return(0);}
763:   PetscOptionsHasName(A->prefix,"-mat_aij_no_inode",&flg);
764:   if (flg) {PetscLogInfo(A,"Mat_AIJ_CheckInode: Not using Inode routines due to -mat_aij_no_inoden");return(0);}
765:   PetscOptionsHasName(A->prefix,"-mat_no_unroll",&flg);
766:   if (flg) {PetscLogInfo(A,"Mat_AIJ_CheckInode: Not using Inode routines due to -mat_no_unrolln");return(0);}
767:   PetscOptionsGetInt(A->prefix,"-mat_aij_inode_limit",&a->inode.limit,PETSC_NULL);
768:   if (a->inode.limit > a->inode.max_limit) a->inode.limit = a->inode.max_limit;
769:   m = A->m;
770:   if (a->inode.size) {ns = a->inode.size;}
771:   else {PetscMalloc((m+1)*sizeof(int),&ns);}

773:   i          = 0;
774:   node_count = 0;
775:   idx        = a->j;
776:   ii         = a->i;
777:   while (i < m){                /* For each row */
778:     nzx = ii[i+1] - ii[i];       /* Number of nonzeros */
779:     /* Limits the number of elements in a node to 'a->inode.limit' */
780:     for (j=i+1,idy=idx,blk_size=1; j<m && blk_size <a->inode.limit; ++j,++blk_size) {
781:       nzy     = ii[j+1] - ii[j]; /* Same number of nonzeros */
782:       if (nzy != nzx) break;
783:       idy  += nzx;             /* Same nonzero pattern */
784:       PetscMemcmp(idx,idy,nzx*sizeof(int),&flag);
785:       if (flag == PETSC_FALSE) break;
786:     }
787:     ns[node_count++] = blk_size;
788:     idx += blk_size*nzx;
789:     i    = j;
790:   }
791:   /* If not enough inodes found,, do not use inode version of the routines */
792:   if (!a->inode.size && m && node_count > 0.9*m) {
793:     PetscFree(ns);
794:     A->ops->mult            = MatMult_SeqAIJ;
795:     A->ops->multadd         = MatMultAdd_SeqAIJ;
796:     A->ops->solve           = MatSolve_SeqAIJ;
797:     A->ops->lufactornumeric = MatLUFactorNumeric_SeqAIJ;
798:     A->ops->getrowij        = MatGetRowIJ_SeqAIJ;
799:     A->ops->restorerowij    = MatRestoreRowIJ_SeqAIJ;
800:     A->ops->getcolumnij     = MatGetColumnIJ_SeqAIJ;
801:     A->ops->restorecolumnij = MatRestoreColumnIJ_SeqAIJ;
802:     A->ops->coloringpatch   = 0;
803:     a->inode.node_count     = 0;
804:     a->inode.size           = 0;
805:     PetscLogInfo(A,"Mat_AIJ_CheckInode: Found %d nodes out of %d rows. Not using Inode routinesn",node_count,m);
806:   } else {
807:     A->ops->mult            = MatMult_SeqAIJ_Inode;
808:     A->ops->multadd         = MatMultAdd_SeqAIJ_Inode;
809:     A->ops->solve           = MatSolve_SeqAIJ_Inode;
810:     A->ops->lufactornumeric = MatLUFactorNumeric_SeqAIJ_Inode;
811:     A->ops->getrowij        = MatGetRowIJ_SeqAIJ_Inode;
812:     A->ops->restorerowij    = MatRestoreRowIJ_SeqAIJ_Inode;
813:     A->ops->getcolumnij     = MatGetColumnIJ_SeqAIJ_Inode;
814:     A->ops->restorecolumnij = MatRestoreColumnIJ_SeqAIJ_Inode;
815:     A->ops->coloringpatch   = MatColoringPatch_SeqAIJ_Inode;
816:     a->inode.node_count     = node_count;
817:     a->inode.size           = ns;
818:     PetscLogInfo(A,"Mat_AIJ_CheckInode: Found %d nodes of %d. Limit used: %d. Using Inode routinesn",node_count,m,a->inode.limit);
819:   }
820:   return(0);
821: }

823: /* ----------------------------------------------------------- */
824: int MatSolve_SeqAIJ_Inode(Mat A,Vec bb,Vec xx)
825: {
826:   Mat_SeqAIJ  *a = (Mat_SeqAIJ*)A->data;
827:   IS          iscol = a->col,isrow = a->row;
828:   int         *r,*c,ierr,i,j,n = A->m,*ai = a->i,nz,shift = a->indexshift,*a_j = a->j;
829:   int         node_max,*ns,row,nsz,aii,*vi,*ad,*aj,i0,i1,*rout,*cout;
830:   Scalar      *x,*b,*a_a = a->a,*tmp,*tmps,*aa,tmp0,tmp1;
831:   Scalar      sum1,sum2,sum3,sum4,sum5,*v1,*v2,*v3,*v4,*v5;

834:   if (A->factor!=FACTOR_LU) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Not for unfactored matrix");
835:   if (!a->inode.size) SETERRQ(PETSC_ERR_COR,"Missing Inode Structure");
836:   node_max = a->inode.node_count;
837:   ns       = a->inode.size;     /* Node Size array */

839:   VecGetArray(bb,&b);
840:   VecGetArray(xx,&x);
841:   tmp  = a->solve_work;
842: 
843:   ISGetIndices(isrow,&rout); r = rout;
844:   ISGetIndices(iscol,&cout); c = cout + (n-1);
845: 
846:   /* forward solve the lower triangular */
847:   tmps = tmp + shift;
848:   aa   = a_a +shift;
849:   aj   = a_j + shift;
850:   ad   = a->diag;

852:   for (i = 0,row = 0; i< node_max; ++i){
853:     nsz = ns[i];
854:     aii = ai[row];
855:     v1  = aa + aii;
856:     vi  = aj + aii;
857:     nz  = ad[row]- aii;
858: 
859:     switch (nsz){               /* Each loop in 'case' is unrolled */
860:     case 1 :
861:       sum1 = b[*r++];
862:       /*      while (nz--) sum1 -= *v1++ *tmps[*vi++];*/
863:       for(j=0; j<nz-1; j+=2){
864:         i0   = vi[0];
865:         i1   = vi[1];
866:         vi  +=2;
867:         tmp0 = tmps[i0];
868:         tmp1 = tmps[i1];
869:         sum1 -= v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
870:       }
871:       if(j == nz-1){
872:         tmp0 = tmps[*vi++];
873:         sum1 -= *v1++ *tmp0;
874:       }
875:       tmp[row ++]=sum1;
876:       break;
877:     case 2:
878:       sum1 = b[*r++];
879:       sum2 = b[*r++];
880:       v2   = aa + ai[row+1];

882:       for(j=0; j<nz-1; j+=2){
883:         i0   = vi[0];
884:         i1   = vi[1];
885:         vi  +=2;
886:         tmp0 = tmps[i0];
887:         tmp1 = tmps[i1];
888:         sum1 -= v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
889:         sum2 -= v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
890:       }
891:       if(j == nz-1){
892:         tmp0 = tmps[*vi++];
893:         sum1 -= *v1++ *tmp0;
894:         sum2 -= *v2++ *tmp0;
895:       }
896:       sum2 -= *v2++ * sum1;
897:       tmp[row ++]=sum1;
898:       tmp[row ++]=sum2;
899:       break;
900:     case 3:
901:       sum1 = b[*r++];
902:       sum2 = b[*r++];
903:       sum3 = b[*r++];
904:       v2   = aa + ai[row+1];
905:       v3   = aa + ai[row+2];
906: 
907:       for (j=0; j<nz-1; j+=2){
908:         i0   = vi[0];
909:         i1   = vi[1];
910:         vi  +=2;
911:         tmp0 = tmps[i0];
912:         tmp1 = tmps[i1];
913:         sum1 -= v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
914:         sum2 -= v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
915:         sum3 -= v3[0] * tmp0 + v3[1] * tmp1; v3 += 2;
916:       }
917:       if (j == nz-1){
918:         tmp0 = tmps[*vi++];
919:         sum1 -= *v1++ *tmp0;
920:         sum2 -= *v2++ *tmp0;
921:         sum3 -= *v3++ *tmp0;
922:       }
923:       sum2 -= *v2++ * sum1;
924:       sum3 -= *v3++ * sum1;
925:       sum3 -= *v3++ * sum2;
926:       tmp[row ++]=sum1;
927:       tmp[row ++]=sum2;
928:       tmp[row ++]=sum3;
929:       break;
930: 
931:     case 4:
932:       sum1 = b[*r++];
933:       sum2 = b[*r++];
934:       sum3 = b[*r++];
935:       sum4 = b[*r++];
936:       v2   = aa + ai[row+1];
937:       v3   = aa + ai[row+2];
938:       v4   = aa + ai[row+3];
939: 
940:       for (j=0; j<nz-1; j+=2){
941:         i0   = vi[0];
942:         i1   = vi[1];
943:         vi  +=2;
944:         tmp0 = tmps[i0];
945:         tmp1 = tmps[i1];
946:         sum1 -= v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
947:         sum2 -= v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
948:         sum3 -= v3[0] * tmp0 + v3[1] * tmp1; v3 += 2;
949:         sum4 -= v4[0] * tmp0 + v4[1] * tmp1; v4 += 2;
950:       }
951:       if (j == nz-1){
952:         tmp0 = tmps[*vi++];
953:         sum1 -= *v1++ *tmp0;
954:         sum2 -= *v2++ *tmp0;
955:         sum3 -= *v3++ *tmp0;
956:         sum4 -= *v4++ *tmp0;
957:       }
958:       sum2 -= *v2++ * sum1;
959:       sum3 -= *v3++ * sum1;
960:       sum4 -= *v4++ * sum1;
961:       sum3 -= *v3++ * sum2;
962:       sum4 -= *v4++ * sum2;
963:       sum4 -= *v4++ * sum3;
964: 
965:       tmp[row ++]=sum1;
966:       tmp[row ++]=sum2;
967:       tmp[row ++]=sum3;
968:       tmp[row ++]=sum4;
969:       break;
970:     case 5:
971:       sum1 = b[*r++];
972:       sum2 = b[*r++];
973:       sum3 = b[*r++];
974:       sum4 = b[*r++];
975:       sum5 = b[*r++];
976:       v2   = aa + ai[row+1];
977:       v3   = aa + ai[row+2];
978:       v4   = aa + ai[row+3];
979:       v5   = aa + ai[row+4];
980: 
981:       for (j=0; j<nz-1; j+=2){
982:         i0   = vi[0];
983:         i1   = vi[1];
984:         vi  +=2;
985:         tmp0 = tmps[i0];
986:         tmp1 = tmps[i1];
987:         sum1 -= v1[0] * tmp0 + v1[1] * tmp1; v1 += 2;
988:         sum2 -= v2[0] * tmp0 + v2[1] * tmp1; v2 += 2;
989:         sum3 -= v3[0] * tmp0 + v3[1] * tmp1; v3 += 2;
990:         sum4 -= v4[0] * tmp0 + v4[1] * tmp1; v4 += 2;
991:         sum5 -= v5[0] * tmp0 + v5[1] * tmp1; v5 += 2;
992:       }
993:       if (j == nz-1){
994:         tmp0 = tmps[*vi++];
995:         sum1 -= *v1++ *tmp0;
996:         sum2 -= *v2++ *tmp0;
997:         sum3 -= *v3++ *tmp0;
998:         sum4 -= *v4++ *tmp0;
999:         sum5 -= *v5++ *tmp0;
1000:       }

1002:       sum2 -= *v2++ * sum1;
1003:       sum3 -= *v3++ * sum1;
1004:       sum4 -= *v4++ * sum1;
1005:       sum5 -= *v5++ * sum1;
1006:       sum3 -= *v3++ * sum2;
1007:       sum4 -= *v4++ * sum2;
1008:       sum5 -= *v5++ * sum2;
1009:       sum4 -= *v4++ * sum3;
1010:       sum5 -= *v5++ * sum3;
1011:       sum5 -= *v5++ * sum4;
1012: 
1013:       tmp[row ++]=sum1;
1014:       tmp[row ++]=sum2;
1015:       tmp[row ++]=sum3;
1016:       tmp[row ++]=sum4;
1017:       tmp[row ++]=sum5;
1018:       break;
1019:     default:
1020:       SETERRQ(PETSC_ERR_COR,"Node size not yet supported n");
1021:     }
1022:   }
1023:   /* backward solve the upper triangular */
1024:   for (i=node_max -1 ,row = n-1 ; i>=0; i--){
1025:     nsz = ns[i];
1026:     aii = ai[row+1] -1;
1027:     v1  = aa + aii;
1028:     vi  = aj + aii;
1029:     nz  = aii- ad[row];
1030:     switch (nsz){               /* Each loop in 'case' is unrolled */
1031:     case 1 :
1032:       sum1 = tmp[row];

1034:       for(j=nz ; j>1; j-=2){
1035:         i0   = vi[0];
1036:         i1   = vi[-1];
1037:         vi  -=2;
1038:         tmp0 = tmps[i0];
1039:         tmp1 = tmps[i1];
1040:         sum1 -= v1[0] * tmp0 + v1[-1] * tmp1; v1 -= 2;
1041:       }
1042:       if (j==1){
1043:         tmp0  = tmps[*vi--];
1044:         sum1 -= *v1-- * tmp0;
1045:       }
1046:       x[*c--] = tmp[row] = sum1*a_a[ad[row]+shift]; row--;
1047:       break;
1048:     case 2 :
1049:       sum1 = tmp[row];
1050:       sum2 = tmp[row -1];
1051:       v2   = aa + ai[row]-1;
1052:       for (j=nz ; j>1; j-=2){
1053:         i0   = vi[0];
1054:         i1   = vi[-1];
1055:         vi  -=2;
1056:         tmp0 = tmps[i0];
1057:         tmp1 = tmps[i1];
1058:         sum1 -= v1[0] * tmp0 + v1[-1] * tmp1; v1 -= 2;
1059:         sum2 -= v2[0] * tmp0 + v2[-1] * tmp1; v2 -= 2;
1060:       }
1061:       if (j==1){
1062:         tmp0  = tmps[*vi--];
1063:         sum1 -= *v1-- * tmp0;
1064:         sum2 -= *v2-- * tmp0;
1065:       }
1066: 
1067:       tmp0    = x[*c--] = tmp[row] = sum1*a_a[ad[row]+shift]; row--;
1068:       sum2   -= *v2-- * tmp0;
1069:       x[*c--] = tmp[row] = sum2*a_a[ad[row]+shift]; row--;
1070:       break;
1071:     case 3 :
1072:       sum1 = tmp[row];
1073:       sum2 = tmp[row -1];
1074:       sum3 = tmp[row -2];
1075:       v2   = aa + ai[row]-1;
1076:       v3   = aa + ai[row -1]-1;
1077:       for (j=nz ; j>1; j-=2){
1078:         i0   = vi[0];
1079:         i1   = vi[-1];
1080:         vi  -=2;
1081:         tmp0 = tmps[i0];
1082:         tmp1 = tmps[i1];
1083:         sum1 -= v1[0] * tmp0 + v1[-1] * tmp1; v1 -= 2;
1084:         sum2 -= v2[0] * tmp0 + v2[-1] * tmp1; v2 -= 2;
1085:         sum3 -= v3[0] * tmp0 + v3[-1] * tmp1; v3 -= 2;
1086:       }
1087:       if (j==1){
1088:         tmp0  = tmps[*vi--];
1089:         sum1 -= *v1-- * tmp0;
1090:         sum2 -= *v2-- * tmp0;
1091:         sum3 -= *v3-- * tmp0;
1092:       }
1093:       tmp0    = x[*c--] = tmp[row] = sum1*a_a[ad[row]+shift]; row--;
1094:       sum2   -= *v2-- * tmp0;
1095:       sum3   -= *v3-- * tmp0;
1096:       tmp0    = x[*c--] = tmp[row] = sum2*a_a[ad[row]+shift]; row--;
1097:       sum3   -= *v3-- * tmp0;
1098:       x[*c--] = tmp[row] = sum3*a_a[ad[row]+shift]; row--;
1099: 
1100:       break;
1101:     case 4 :
1102:       sum1 = tmp[row];
1103:       sum2 = tmp[row -1];
1104:       sum3 = tmp[row -2];
1105:       sum4 = tmp[row -3];
1106:       v2   = aa + ai[row]-1;
1107:       v3   = aa + ai[row -1]-1;
1108:       v4   = aa + ai[row -2]-1;

1110:       for (j=nz ; j>1; j-=2){
1111:         i0   = vi[0];
1112:         i1   = vi[-1];
1113:         vi  -=2;
1114:         tmp0 = tmps[i0];
1115:         tmp1 = tmps[i1];
1116:         sum1 -= v1[0] * tmp0 + v1[-1] * tmp1; v1 -= 2;
1117:         sum2 -= v2[0] * tmp0 + v2[-1] * tmp1; v2 -= 2;
1118:         sum3 -= v3[0] * tmp0 + v3[-1] * tmp1; v3 -= 2;
1119:         sum4 -= v4[0] * tmp0 + v4[-1] * tmp1; v4 -= 2;
1120:       }
1121:       if (j==1){
1122:         tmp0  = tmps[*vi--];
1123:         sum1 -= *v1-- * tmp0;
1124:         sum2 -= *v2-- * tmp0;
1125:         sum3 -= *v3-- * tmp0;
1126:         sum4 -= *v4-- * tmp0;
1127:       }

1129:       tmp0    = x[*c--] = tmp[row] = sum1*a_a[ad[row]+shift]; row--;
1130:       sum2   -= *v2-- * tmp0;
1131:       sum3   -= *v3-- * tmp0;
1132:       sum4   -= *v4-- * tmp0;
1133:       tmp0    = x[*c--] = tmp[row] = sum2*a_a[ad[row]+shift]; row--;
1134:       sum3   -= *v3-- * tmp0;
1135:       sum4   -= *v4-- * tmp0;
1136:       tmp0    = x[*c--] = tmp[row] = sum3*a_a[ad[row]+shift]; row--;
1137:       sum4   -= *v4-- * tmp0;
1138:       x[*c--] = tmp[row] = sum4*a_a[ad[row]+shift]; row--;
1139:       break;
1140:     case 5 :
1141:       sum1 = tmp[row];
1142:       sum2 = tmp[row -1];
1143:       sum3 = tmp[row -2];
1144:       sum4 = tmp[row -3];
1145:       sum5 = tmp[row -4];
1146:       v2   = aa + ai[row]-1;
1147:       v3   = aa + ai[row -1]-1;
1148:       v4   = aa + ai[row -2]-1;
1149:       v5   = aa + ai[row -3]-1;
1150:       for (j=nz ; j>1; j-=2){
1151:         i0   = vi[0];
1152:         i1   = vi[-1];
1153:         vi  -=2;
1154:         tmp0 = tmps[i0];
1155:         tmp1 = tmps[i1];
1156:         sum1 -= v1[0] * tmp0 + v1[-1] * tmp1; v1 -= 2;
1157:         sum2 -= v2[0] * tmp0 + v2[-1] * tmp1; v2 -= 2;
1158:         sum3 -= v3[0] * tmp0 + v3[-1] * tmp1; v3 -= 2;
1159:         sum4 -= v4[0] * tmp0 + v4[-1] * tmp1; v4 -= 2;
1160:         sum5 -= v5[0] * tmp0 + v5[-1] * tmp1; v5 -= 2;
1161:       }
1162:       if (j==1){
1163:         tmp0  = tmps[*vi--];
1164:         sum1 -= *v1-- * tmp0;
1165:         sum2 -= *v2-- * tmp0;
1166:         sum3 -= *v3-- * tmp0;
1167:         sum4 -= *v4-- * tmp0;
1168:         sum5 -= *v5-- * tmp0;
1169:       }

1171:       tmp0    = x[*c--] = tmp[row] = sum1*a_a[ad[row]+shift]; row--;
1172:       sum2   -= *v2-- * tmp0;
1173:       sum3   -= *v3-- * tmp0;
1174:       sum4   -= *v4-- * tmp0;
1175:       sum5   -= *v5-- * tmp0;
1176:       tmp0    = x[*c--] = tmp[row] = sum2*a_a[ad[row]+shift]; row--;
1177:       sum3   -= *v3-- * tmp0;
1178:       sum4   -= *v4-- * tmp0;
1179:       sum5   -= *v5-- * tmp0;
1180:       tmp0    = x[*c--] = tmp[row] = sum3*a_a[ad[row]+shift]; row--;
1181:       sum4   -= *v4-- * tmp0;
1182:       sum5   -= *v5-- * tmp0;
1183:       tmp0    = x[*c--] = tmp[row] = sum4*a_a[ad[row]+shift]; row--;
1184:       sum5   -= *v5-- * tmp0;
1185:       x[*c--] = tmp[row] = sum5*a_a[ad[row]+shift]; row--;
1186:       break;
1187:     default:
1188:       SETERRQ(PETSC_ERR_COR,"Node size not yet supported n");
1189:     }
1190:   }
1191:   ISRestoreIndices(isrow,&rout);
1192:   ISRestoreIndices(iscol,&cout);
1193:   VecRestoreArray(bb,&b);
1194:   VecRestoreArray(xx,&x);
1195:   PetscLogFlops(2*a->nz - A->n);
1196:   return(0);
1197: }


1200: int MatLUFactorNumeric_SeqAIJ_Inode(Mat A,Mat *B)
1201: {
1202:   Mat        C = *B;
1203:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data,*b = (Mat_SeqAIJ *)C->data;
1204:   IS         iscol = b->col,isrow = b->row,isicol = b->icol;
1205:   int        shift = a->indexshift,*r,*ic,*c,ierr,n = A->m,*bi = b->i;
1206:   int        *bj = b->j+shift,*nbj=b->j +(!shift),*ajtmp,*bjtmp,nz,row,prow;
1207:   int        *ics,i,j,idx,*ai = a->i,*aj = a->j+shift,*bd = b->diag,node_max,nsz;
1208:   int        *ns,*tmp_vec1,*tmp_vec2,*nsmap,*pj,ndamp = 0;
1209:   Scalar     *rtmp1,*rtmp2,*rtmp3,*v1,*v2,*v3,*pc1,*pc2,*pc3,mul1,mul2,mul3;
1210:   Scalar     tmp,*ba = b->a+shift,*aa = a->a+shift,*pv,*rtmps1,*rtmps2,*rtmps3;
1211:   PetscTruth damp;
1212:   PetscReal  damping = b->lu_damping;

1215:   ierr   = ISGetIndices(isrow,&r);
1216:   ierr   = ISGetIndices(iscol,&c);
1217:   ierr   = ISGetIndices(isicol,&ic);
1218:   PetscMalloc((3*n+1)*sizeof(Scalar),&rtmp1);
1219:   ierr   = PetscMemzero(rtmp1,(3*n+1)*sizeof(Scalar));
1220:   ics    = ic + shift; rtmps1 = rtmp1 + shift;
1221:   rtmp2  = rtmp1 + n;  rtmps2 = rtmp2 + shift;
1222:   rtmp3  = rtmp2 + n;  rtmps3 = rtmp3 + shift;
1223: 
1224:   node_max = a->inode.node_count;
1225:   ns       = a->inode.size ;
1226:   if (!ns){
1227:     SETERRQ(1,"Matrix without inode information");
1228:   }

1230:   /* If max inode size > 3, split it into two inodes.*/
1231:   /* also map the inode sizes according to the ordering */
1232:   PetscMalloc((n+1)* sizeof(int),&tmp_vec1);
1233:   for (i=0,j=0; i<node_max; ++i,++j){
1234:     if (ns[i]>3) {
1235:       tmp_vec1[j] = ns[i]/2; /* Assuming ns[i] < =5  */
1236:       ++j;
1237:       tmp_vec1[j] = ns[i] - tmp_vec1[j-1];
1238:     } else {
1239:       tmp_vec1[j] = ns[i];
1240:     }
1241:   }
1242:   /* Use the correct node_max */
1243:   node_max = j;

1245:   /* Now reorder the inode info based on mat re-ordering info */
1246:   /* First create a row -> inode_size_array_index map */
1247:   PetscMalloc(n*sizeof(int)+1,&nsmap);
1248:   PetscMalloc(node_max*sizeof(int)+1,&tmp_vec2);
1249:   for (i=0,row=0; i<node_max; i++) {
1250:     nsz = tmp_vec1[i];
1251:     for (j=0; j<nsz; j++,row++) {
1252:       nsmap[row] = i;
1253:     }
1254:   }
1255:   /* Using nsmap, create a reordered ns structure */
1256:   for (i=0,j=0; i< node_max; i++) {
1257:     nsz       = tmp_vec1[nsmap[r[j]]];    /* here the reordered row_no is in r[] */
1258:     tmp_vec2[i] = nsz;
1259:     j        += nsz;
1260:   }
1261:   PetscFree(nsmap);
1262:   PetscFree(tmp_vec1);
1263:   /* Now use the correct ns */
1264:   ns = tmp_vec2;


1267:   do {
1268:     damp = PETSC_FALSE;
1269:     /* Now loop over each block-row, and do the factorization */
1270:     for (i=0,row=0; i<node_max; i++) {
1271:       nsz   = ns[i];
1272:       nz    = bi[row+1] - bi[row];
1273:       bjtmp = bj + bi[row];
1274: 
1275:       switch (nsz){
1276:       case 1:
1277:         for  (j=0; j<nz; j++){
1278:           idx         = bjtmp[j];
1279:           rtmps1[idx] = 0.0;
1280:         }
1281: 
1282:         /* load in initial (unfactored row) */
1283:         idx   = r[row];
1284:         nz    = ai[idx+1] - ai[idx];
1285:         ajtmp = aj + ai[idx];
1286:         v1    = aa + ai[idx];

1288:         for (j=0; j<nz; j++) {
1289:           idx        = ics[ajtmp[j]];
1290:           rtmp1[idx] = v1[j];
1291:           if (ajtmp[j] == r[row]) {
1292:             rtmp1[idx] += damping;
1293:           }
1294:         }
1295:         prow = *bjtmp++ + shift;
1296:         while (prow < row) {
1297:           pc1 = rtmp1 + prow;
1298:           if (*pc1 != 0.0){
1299:             pv   = ba + bd[prow];
1300:             pj   = nbj + bd[prow];
1301:             mul1 = *pc1 * *pv++;
1302:             *pc1 = mul1;
1303:             nz   = bi[prow+1] - bd[prow] - 1;
1304:             PetscLogFlops(2*nz);
1305:             for (j=0; j<nz; j++) {
1306:               tmp = pv[j];
1307:               idx = pj[j];
1308:               rtmps1[idx] -= mul1 * tmp;
1309:             }
1310:           }
1311:           prow = *bjtmp++ + shift;
1312:         }
1313:         nz  = bi[row+1] - bi[row];
1314:         pj  = bj + bi[row];
1315:         pc1 = ba + bi[row];
1316:         if (PetscAbsScalar(rtmp1[row]) < 1.e-12) {
1317:           if (b->lu_damping) {
1318:             damp = PETSC_TRUE;
1319:             if (damping) damping *= 2.0;
1320:             else damping = 1.e-12;
1321:             ndamp++;
1322:             goto endofwhile;
1323:           } else {
1324:             SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1325:           }
1326:         }
1327:         rtmp1[row] = 1.0/rtmp1[row];
1328:         for (j=0; j<nz; j++) {
1329:           idx    = pj[j];
1330:           pc1[j] = rtmps1[idx];
1331:         }
1332:         break;
1333: 
1334:       case 2:
1335:         for  (j=0; j<nz; j++) {
1336:           idx         = bjtmp[j];
1337:           rtmps1[idx] = 0.0;
1338:           rtmps2[idx] = 0.0;
1339:         }
1340: 
1341:         /* load in initial (unfactored row) */
1342:         idx   = r[row];
1343:         nz    = ai[idx+1] - ai[idx];
1344:         ajtmp = aj + ai[idx];
1345:         v1    = aa + ai[idx];
1346:         v2    = aa + ai[idx+1];
1347: 
1348:         for (j=0; j<nz; j++) {
1349:           idx        = ics[ajtmp[j]];
1350:           rtmp1[idx] = v1[j];
1351:           rtmp2[idx] = v2[j];
1352:           if (ajtmp[j] == r[row]) {
1353:             rtmp1[idx] += damping;
1354:           }
1355:           if (ajtmp[j] == r[row+1]) {
1356:             rtmp2[idx] += damping;
1357:           }
1358:         }
1359:         prow = *bjtmp++ + shift;
1360:         while (prow < row) {
1361:           pc1 = rtmp1 + prow;
1362:           pc2 = rtmp2 + prow;
1363:           if (*pc1 != 0.0 || *pc2 != 0.0){
1364:             pv   = ba + bd[prow];
1365:             pj   = nbj + bd[prow];
1366:             mul1 = *pc1 * *pv;
1367:             mul2 = *pc2 * *pv;
1368:             ++pv;
1369:             *pc1 = mul1;
1370:             *pc2 = mul2;
1371: 
1372:             nz   = bi[prow+1] - bd[prow] - 1;
1373:             PetscLogFlops(2*2*nz);
1374:             for (j=0; j<nz; j++) {
1375:               tmp = pv[j];
1376:               idx = pj[j];
1377:               rtmps1[idx] -= mul1 * tmp;
1378:               rtmps2[idx] -= mul2 * tmp;
1379:             }
1380:           }
1381:           prow = *bjtmp++ + shift;
1382:         }
1383:         /* Now take care of the odd element*/
1384:         pc1 = rtmp1 + prow;
1385:         pc2 = rtmp2 + prow;
1386:         if (*pc2 != 0.0){
1387:           pj   = nbj + bd[prow];
1388:           if (PetscAbsScalar(*pc1) < 1.e-12) {
1389:             if (b->lu_damping) {
1390:               damp = PETSC_TRUE;
1391:               if (damping) damping *= 2.0;
1392:               else damping = 1.e-12;
1393:               ndamp++;
1394:               goto endofwhile;
1395:             } else {
1396:               SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1397:             }
1398:           }
1399:           mul2 = (*pc2)/(*pc1); /* since diag is not yet inverted.*/
1400:           *pc2 = mul2;
1401:           nz   = bi[prow+1] - bd[prow] - 1;
1402:           PetscLogFlops(2*nz);
1403:           for (j=0; j<nz; j++) {
1404:             idx = pj[j] + shift;
1405:             tmp = rtmp1[idx];
1406:             rtmp2[idx] -= mul2 * tmp;
1407:           }
1408:         }
1409: 
1410:         nz  = bi[row+1] - bi[row];
1411:         pj  = bj + bi[row];
1412:         pc1 = ba + bi[row];
1413:         pc2 = ba + bi[row+1];
1414:         if (PetscAbsScalar(rtmp1[row]) < 1.e-12 || PetscAbsScalar(rtmp2[row+1]) < 1.e-12) {
1415:           if (b->lu_damping) {
1416:             damp = PETSC_TRUE;
1417:             if (damping) damping *= 2.0;
1418:             else damping = 1.e-12;
1419:             ndamp++;
1420:             goto endofwhile;
1421:           } else {
1422:             SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1423:           }
1424:         }
1425:         rtmp1[row]   = 1.0/rtmp1[row];
1426:         rtmp2[row+1] = 1.0/rtmp2[row+1];
1427:         for (j=0; j<nz; j++) {
1428:           idx    = pj[j];
1429:           pc1[j] = rtmps1[idx];
1430:           pc2[j] = rtmps2[idx];
1431:         }
1432:         break;

1434:       case 3:
1435:         for  (j=0; j<nz; j++) {
1436:           idx         = bjtmp[j];
1437:           rtmps1[idx] = 0.0;
1438:           rtmps2[idx] = 0.0;
1439:           rtmps3[idx] = 0.0;
1440:         }
1441:         /* copy the nonzeros for the 3 rows from sparse representation to dense in rtmp*[] */
1442:         idx   = r[row];
1443:         nz    = ai[idx+1] - ai[idx];
1444:         ajtmp = aj + ai[idx];
1445:         v1    = aa + ai[idx];
1446:         v2    = aa + ai[idx+1];
1447:         v3    = aa + ai[idx+2];
1448:         for (j=0; j<nz; j++) {
1449:           idx        = ics[ajtmp[j]];
1450:           rtmp1[idx] = v1[j];
1451:           rtmp2[idx] = v2[j];
1452:           rtmp3[idx] = v3[j];
1453:           if (ajtmp[j] == r[row]) {
1454:             rtmp1[idx] += damping;
1455:           }
1456:           if (ajtmp[j] == r[row+1]) {
1457:             rtmp2[idx] += damping;
1458:           }
1459:           if (ajtmp[j] == r[row+2]) {
1460:             rtmp3[idx] += damping;
1461:           }
1462:         }
1463:         /* loop over all pivot row blocks above this row block */
1464:         prow = *bjtmp++ + shift;
1465:         while (prow < row) {
1466:           pc1 = rtmp1 + prow;
1467:           pc2 = rtmp2 + prow;
1468:           pc3 = rtmp3 + prow;
1469:           if (*pc1 != 0.0 || *pc2 != 0.0 || *pc3 !=0.0){
1470:             pv   = ba  + bd[prow];
1471:             pj   = nbj + bd[prow];
1472:             mul1 = *pc1 * *pv;
1473:             mul2 = *pc2 * *pv;
1474:             mul3 = *pc3 * *pv;
1475:             ++pv;
1476:             *pc1 = mul1;
1477:             *pc2 = mul2;
1478:             *pc3 = mul3;
1479: 
1480:             nz   = bi[prow+1] - bd[prow] - 1;
1481:             PetscLogFlops(3*2*nz);
1482:             /* update this row based on pivot row */
1483:             for (j=0; j<nz; j++) {
1484:               tmp = pv[j];
1485:               idx = pj[j];
1486:               rtmps1[idx] -= mul1 * tmp;
1487:               rtmps2[idx] -= mul2 * tmp;
1488:               rtmps3[idx] -= mul3 * tmp;
1489:             }
1490:           }
1491:           prow = *bjtmp++ + shift;
1492:         }
1493:         /* Now take care of diagonal block in this set of rows */
1494:         pc1 = rtmp1 + prow;
1495:         pc2 = rtmp2 + prow;
1496:         pc3 = rtmp3 + prow;
1497:         if (*pc2 != 0.0 || *pc3 != 0.0){
1498:           pj   = nbj + bd[prow];
1499:           if (PetscAbsScalar(*pc1) < 1.e-12) {
1500:             if (b->lu_damping) {
1501:               damp = PETSC_TRUE;
1502:               if (damping) damping *= 2.0;
1503:               else damping = 1.e-12;
1504:               ndamp++;
1505:               goto endofwhile;
1506:             } else {
1507:               SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1508:             }
1509:           }
1510:           mul2 = (*pc2)/(*pc1);
1511:           mul3 = (*pc3)/(*pc1);
1512:           *pc2 = mul2;
1513:           *pc3 = mul3;
1514:           nz   = bi[prow+1] - bd[prow] - 1;
1515:           PetscLogFlops(2*2*nz);
1516:           for (j=0; j<nz; j++) {
1517:             idx = pj[j] + shift;
1518:             tmp = rtmp1[idx];
1519:             rtmp2[idx] -= mul2 * tmp;
1520:             rtmp3[idx] -= mul3 * tmp;
1521:           }
1522:         }
1523:         ++prow;
1524:         pc2 = rtmp2 + prow;
1525:         pc3 = rtmp3 + prow;
1526:         if (*pc3 != 0.0){
1527:           pj   = nbj + bd[prow];
1528:           pj   = nbj + bd[prow];
1529:           if (PetscAbsScalar(*pc2) < 1.e-12) {
1530:             if (b->lu_damping) {
1531:               damp = PETSC_TRUE;
1532:               if (damping) damping *= 2.0;
1533:               else damping = 1.e-12;
1534:               ndamp++;
1535:               goto endofwhile;
1536:             } else {
1537:               SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1538:             }
1539:           }
1540:           mul3 = (*pc3)/(*pc2);
1541:           *pc3 = mul3;
1542:           nz   = bi[prow+1] - bd[prow] - 1;
1543:           PetscLogFlops(2*2*nz);
1544:           for (j=0; j<nz; j++) {
1545:             idx = pj[j] + shift;
1546:             tmp = rtmp2[idx];
1547:             rtmp3[idx] -= mul3 * tmp;
1548:           }
1549:         }
1550:         nz  = bi[row+1] - bi[row];
1551:         pj  = bj + bi[row];
1552:         pc1 = ba + bi[row];
1553:         pc2 = ba + bi[row+1];
1554:         pc3 = ba + bi[row+2];
1555:         if (PetscAbsScalar(rtmp1[row]) < 1.e-12 || PetscAbsScalar(rtmp2[row+1]) < 1.e-12 || PetscAbsScalar(rtmp3[row+2]) < 1.e-12) {
1556:           if (b->lu_damping) {
1557:             damp = PETSC_TRUE;
1558:             if (damping) damping *= 2.0;
1559:             else damping = 1.e-12;
1560:             ndamp++;
1561:             goto endofwhile;
1562:           } else {
1563:             SETERRQ(PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot");
1564:           }
1565:         }
1566:         rtmp1[row]   = 1.0/rtmp1[row];
1567:         rtmp2[row+1] = 1.0/rtmp2[row+1];
1568:         rtmp3[row+2] = 1.0/rtmp3[row+2];
1569:         /* copy row entries from dense representation to sparse */
1570:         for (j=0; j<nz; j++) {
1571:           idx    = pj[j];
1572:           pc1[j] = rtmps1[idx];
1573:           pc2[j] = rtmps2[idx];
1574:           pc3[j] = rtmps3[idx];
1575:         }
1576:         break;

1578:       default:
1579:         SETERRQ(PETSC_ERR_COR,"Node size not yet supported n");
1580:       }
1581:       row += nsz;                 /* Update the row */
1582:     }
1583:     endofwhile:;
1584:   } while (damp);
1585:   PetscFree(rtmp1);
1586:   PetscFree(tmp_vec2);
1587:   ISRestoreIndices(isicol,&ic);
1588:   ISRestoreIndices(isrow,&r);
1589:   ISRestoreIndices(iscol,&c);
1590:   C->factor      = FACTOR_LU;
1591:   C->assembled   = PETSC_TRUE;
1592:   Mat_AIJ_CheckInode(C);
1593:   if (ndamp || b->lu_damping) {
1594:     PetscLogInfo(0,"MatLUFactorNumerical_SeqAIJ_Inode: number of damping tries %d damping value %gn",ndamp,damping);
1595:   }
1596:   PetscLogFlops(C->n);
1597:   return(0);
1598: }

1600: /*
1601:      This is really ugly. if inodes are used this replaces the 
1602:   permutations with ones that correspond to rows/cols of the matrix
1603:   rather then inode blocks
1604: */
1605: int MatAdjustForInodes(Mat A,IS *rperm,IS *cperm)
1606: {
1607:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
1608:   int        ierr,m = A->m,n = A->n,i,j,*ridx,*cidx,nslim_row = a->inode.node_count;
1609:   int        row,col,*permr,*permc,*ns_row =  a->inode.size,*tns,start_val,end_val,indx;
1610:   int        nslim_col,*ns_col;
1611:   IS         ris = *rperm,cis = *cperm;
1612:   PetscTruth flg;

1615:   PetscTypeCompare((PetscObject)A,MATSEQAIJ,&flg);
1616:   if (!flg) return(0);

1618:   if (!a->inode.size) return(0); /* no inodes so return */
1619:   if (a->inode.node_count == m) return(0); /* all inodes are of size 1 */

1621:   ierr  = Mat_AIJ_CreateColInode(A,&nslim_col,&ns_col);
1622:   ierr  = PetscMalloc((((nslim_row>nslim_col)?nslim_row:nslim_col)+1)*sizeof(int),&tns);
1623:   ierr  = PetscMalloc((m+n+1)*sizeof(int),&permr);
1624:   permc = permr + m;

1626:   ierr  = ISGetIndices(ris,&ridx);
1627:   ierr  = ISGetIndices(cis,&cidx);

1629:   /* Form the inode structure for the rows of permuted matric using inv perm*/
1630:   for (i=0,tns[0]=0; i<nslim_row; ++i) tns[i+1] = tns[i] + ns_row[i];

1632:   /* Construct the permutations for rows*/
1633:   for (i=0,row = 0; i<nslim_row; ++i){
1634:     indx      = ridx[i];
1635:     start_val = tns[indx];
1636:     end_val   = tns[indx + 1];
1637:     for (j=start_val; j<end_val; ++j,++row) permr[row]= j;
1638:   }

1640:   /* Form the inode structure for the columns of permuted matrix using inv perm*/
1641:   for (i=0,tns[0]=0; i<nslim_col; ++i) tns[i+1] = tns[i] + ns_col[i];

1643:  /*Construct permutations for columns*/
1644:   for (i=0,col=0; i<nslim_col; ++i){
1645:     indx      = cidx[i];
1646:     start_val = tns[indx];
1647:     end_val   = tns[indx + 1];
1648:     for (j = start_val; j<end_val; ++j,++col) permc[col]= j;
1649:   }

1651:   ISCreateGeneral(PETSC_COMM_SELF,n,permr,rperm);
1652:   ISSetPermutation(*rperm);
1653:   ISCreateGeneral(PETSC_COMM_SELF,n,permc,cperm);
1654:   ISSetPermutation(*cperm);
1655: 
1656:   ierr  = ISRestoreIndices(ris,&ridx);
1657:   ierr  = ISRestoreIndices(cis,&cidx);

1659:   PetscFree(ns_col);
1660:   PetscFree(permr);
1661:   ISDestroy(cis);
1662:   ISDestroy(ris);
1663:   PetscFree(tns);
1664:   return(0);
1665: }



1669: /*@C
1670:    MatSeqAIJGetInodeSizes - Returns the inode information of the SeqAIJ matrix.

1672:    Collective on Mat

1674:    Input Parameter:
1675: .  A - the SeqAIJ matrix.

1677:    Output Parameter:
1678: +  node_count - no of inodes present in the matrix.
1679: .  sizes      - an array of size node_count,with sizes of each inode.
1680: -  limit      - the max size used to generate the inodes.

1682:    Level: advanced

1684:    Notes: This routine returns some internal storage information
1685:    of the matrix, it is intended to be used by advanced users.
1686:    It should be called after the matrix is assembled.
1687:    The contents of the sizes[] array should not be changed.

1689: .keywords: matrix, seqaij, get, inode

1691: .seealso: MatGetInfo()
1692: @*/
1693: int MatSeqAIJGetInodeSizes(Mat A,int *node_count,int *sizes[],int *limit)
1694: {
1695:   Mat_SeqAIJ *a;
1696:   PetscTruth flg;
1697:   int        ierr;

1701:   PetscTypeCompare((PetscObject)A,MATSEQAIJ,&flg);
1702:   if (!flg) SETERRQ(PETSC_ERR_ARG_WRONG,"MatSeqAIJ only");
1703:   a           = (Mat_SeqAIJ*)A->data;
1704:   *node_count = a->inode.node_count;
1705:   *sizes      = a->inode.size;
1706:   *limit      = a->inode.limit;
1707:   return(0);
1708: }