
ASSOCIATION FOR AUTOMATED REASONINGNEWSLETTERNo. 31 December 1995From the AAR President, Larry Wos...This issue includes several articles on new techniques and new attacks on long-standing prob-lems. I �nd it most satisfying to end this year with one of our largest AAR newsletters.Many of our readers may be familiar with the special series on automated reasoning that ispublished by Kluwer. Included in this AAR Newsletter is an announcement of a forthcoming book(with a description of its contents) in this series. The cited book, entitled Piton: A Mechani-cally Veri�ed Assembly-Level Language, will appeal to a wide audience. Kluwer is contemplatingo�ering AAR members a special discount for the book. If you are interested, contact our AARsecretary, Robert Vero�, at vero�@cs.unm.edu.Another Crack in a Tough NutWilliam McCune, Argonne National Laboratory(mccune@mcs.anl.gov)John McCarthy's famous memo \A Tough Nut for Proof Procedures" [1,2] contains a challengeto automatically prove that a checkerboard (8�8), with two squares in opposite corners removed,cannot be covered with dominoes. He gives a set of �rst-order predicate logic sentences statingthat the mutilated board can be covered; the challenge is to show the set unsatis�able.These days, most interest in the puzzle is for 2n�2n; n > 0 boards and in automatic discoveryof the parity argument; several human and human-guided-mechanical proofs have been reported(see [2] for a summary). Also, the 8 � 8 theorem has been encoded directly into propositionallogic and proved by several propositional provers (see [2]).Our proof is for the 8 � 8 board and is essentially a propositional proof. We use MACE[3], a program that searches for �nite models of �rst-order statements. To show McCarthy's setunsatis�able, we do a bit of meta-reasoning, then MACE automatically does the main part of theproof. The meta-reasoning arises because MACE shows that the set has no model of size 8 ratherthan showing that it has no model of any size.Here is the MACE input we use.list(usable).S(0,1). S(1,2). S(2,3). S(3,4). S(4,5). S(5,6). S(6,7). % 1-S(x,y) | x < y. % 21



-(x < y) | -(y < z) | -S(x,z). % 3bG1(x,y) | G2(x,y) | G3(x,y) | G4(x,y) | G5(x,y). % 6-G1(x,y) | -G2(x,y). % 7-G1(x,y) | -G3(x,y). % 7-G1(x,y) | -G4(x,y). % 7-G1(x,y) | -G5(x,y). % 7-G2(x,y) | -G3(x,y). % 8-G2(x,y) | -G4(x,y). % 8-G2(x,y) | -G5(x,y). % 8-G3(x,y) | -G4(x,y). % 9-G3(x,y) | -G5(x,y). % 9-G4(x,y) | -G5(x,y). % 10-S(x1,x2) | -G1(x1,y) | G3(x2,y). % 13-S(x1,x2) | G1(x1,y) | -G3(x2,y). % 13-S(y1,y2) | -G2(x,y1) | G4(x,y2). % 14-S(y1,y2) | G2(x,y1) | -G4(x,y2). % 14-G3(0,y). -G1(7,y). -G2(x,7). -G4(x,0). % 15end_of_list.formula_list(usable).all x all y (G5(x,y) <-> (x=0 & y=0) | (x=7 & y=7)). % 11, 12end_of_list.(The comments refer to the numbering in McCarthy's memo; we don't need axioms 3a, 4, and5, because \=" and \<" are built in.) The intended domain is 0{7, and the squares are indexed(row,column). S is the successor relation, G1(x,y) means that squares (x; y) and (x + 1; y) areare covered by a domino; similarly, G2(x,y) is for (x; y) and (x; y+ 1), G3(x,y) is for (x; y) and(x� 1; y), and G4(x,y) is for (x; y) and (x; y � 1). G5(x,y) means that (x; y) is not covered.The constants 0{7 must be distinct by axioms 1, 2, and the relations \=" and \<". Therefore,any model of the set must have size at least 8. In fact, MACE assumes that 0{7 are elements ofthe domain, and thus are distinct.Also it can be shown that if there is a model, then there is a model of size at most 8. Or, tosimplify things, we can assume the statement8x (x = 0 j x = 1 j x = 2 j x = 3 j x = 4 j x = 5 j x = 6 j x = 7):Then it is clear that all models have size 8.The meta-reasoning aside, MACE shows (in a minute or two) that the above set has no modelof size 8, and the proof is complete. (Of course, this is one of those questionable proofs byexhaustive search; I estimate that a corresponding propositional resolution proof has more than5 million of steps.) MACE works by reducing, for a given domain size, the �rst order statementinto a propositional statement, then a propositional decision procedure checks for unsatis�ability.Although there is nothing really new here, the proof I o�er seems to be closest yet to answeringthe challenge precisely as put forth in McCarthy's memo.2



MACE is freely available for most UNIX systems [3]. Thanks to Peter Andrews for remindingme of this problem.References1. J. McCarthy, \A Tough Nut for Proof Procedures", Memo No. 16, Stanford Arti�cialIntelligence Project, 1964.2. J. McCarthy, http://www-formal.stanford.edu/jmc/nut.html, 1995.3. W. McCune, MACE, http://www.mcs.anl.gov/home/mccune/ar/mace/, 1994.The TPTP Problem Library, Release v1.2.0Geo� Sutcli�eDepartment of Computer Science, James Cook University, Australiageo�@cs.jcu.edu.auandChristian SuttnerInstitut fuer Informatik, TU Muenchen, Germanysuttner@informatik.tu-muenchen.deThe TPTP (Thousands of Problems for Theorem Provers) Problem Library is a library oftest problems for automated-theorem proving (ATP) systems, using the clause normal form of�rst-order logic. The TPTP supplies the ATP community with the following:� A comprehensive library of the ATP test problems that are available today, in order toprovide an overview and a simple, unambiguous reference mechanism.� A comprehensive list of references and other interesting information for each problem.� New generalized variants of problems whose original presentation is hand-tailored towardsa particular automated proof.� Arbitrary-size instances of generic problems (e.g., the pigeon-holes problem).� A utility to convert the problems to existing ATP formats. Currently the 3TAP, KIF, lean-TAP, METEOR, MGTP, OTTER, PTTP, SETHEO, and SPRFN formats are supported,and the utility can easily be extended to produce any format required.� General guidelines outlining the requirements for ATP system evaluation.Release v1.2.0 of the TPTP is now available. It contains 2,758 problems in 25 domains. Here'swhat's new in v1.2.0 (after v1.1.3): 3



� 267 new problems, in the domains BOO COL GRP MSC PUZ ROB SYN.� 49 bug �xes done, in the domains COL LCL PUZ ROB SYN.� Generic problems (e.g., the N-queens problem) are now handled by problem generators,which allow the automatic generation of any desired problem size.� The % syntax �eld has been reordered in all �les.� The tptp2X utility has been extended and improved in various ways:{ Installation and use of tptp2X have been simpli�ed.{ tptp2X now updates the % Syntax �eld after transformations.{ There are three new output formats: 3TAP, KIF, and leanTAP.{ Problem generation has been integrated into tptp2X.{ The syntax for specifying equality axiom removal has changed.{ The syntax for specifying OTTER format output has changed.{ A new syntax conversion option for the SETHEO system has been added.� The TPTP technical report has been substantially revised.The TPTP is regularly updated with new problems, additional information, and enhancedutilities. To register as a TPTP user, or to receive information on obtaining TPTP by anonymousftp, please contact one of the following: Geo� Sutcli�e, geo�@cs.jcu.edu.au (Fax: +61-77-814029),or Christian Suttner, suttner@informatik.tu-muenchen.de (Fax: +49-89-526502).Implementing Subsumption in PrologGeo� Sutcli�e, Department of Computer Science, James Cook Universitygeo�@cs.jcu.edu.auProlog is a convenient language in which to implement ATP systems for �rst-order logicbecause the formulae to be manipulated can be represented directly as Prolog terms. In the logicprogramming community there is some debate as to the desirability of using Prolog variables torepresent the logic variables in that data, but doing so does make life easy in many respects.In particular, clauses are easily represented as lists of Prolog terms, using some pre�x operatorsto indicate the signs and Prolog terms for the atoms of the literals. For example, in the TPTPproblem library a sample clause (from PUZ001-1.p) is[--lives(X),++richer(X,agatha),++hates(butler,X)]Given an ATP system that represents clauses this way, subsumption between clauses is (always?)required for acceptable performance. I have played with various Prolog implementations of sub-sumption. Below is the most elegant version I have come up with (the most elegant is notnecessarily the fastest, but Prolog programmers know that \elegance is not optional"). I wouldbe interested to hear of anything neater. 4



%----------------------------------------------------------------------%----Check every member of the first list is a member of the secondall_members([],_).all_members([H|T],L):-member(H,L),all_members(T,L).%----------------------------------------------------------------------%----Check if a list of literals subsumed anotherliterals_subsume(SubsumingLiterals,SubsumedLiterals):-%----Enforce theta rule for length, if you want% length(SubsumingLiterals,SubsumingLength),% length(SubsumedLiterals,SubsumedLength),% SubsumedLength >= SubsumingLength,%----Verify to avoid instantiating variables\+ \+ (numbervars(SubsumedLiterals,0,_),all_members(SubsumingLiterals,SubsumedLiterals)).%----------------------------------------------------------------------Call for PapersRTA-96The Seventh Conference on Rewriting Techniques and Applications will take place on July27{30, 1996, at Rutgers University, New Jersey. Papers are solicited in any of the following orrelated areas:Term rewriting systems Symbolic and algebraic computationConstrained rewriting and deduction Equational programming languagesString and graph rewriting Completion techniquesRewrite-based theorem proving Uni�cation and matching algorithmsConditional and typed rewriting Constraint solvingHigher-order rewriting Architectures for rewritingIn addition to full research papers (15 pages), descriptions of new working systems (4 proceed-ings pages) and problem sets that provide realistic, interesting challenges in the �eld of rewritingtechniques are also welcome. Papers on new applications of rewriting techniques are particularlyencouraged. Submissions must reach the program chair no later than January 15, 1996: HaraldGanzinger, RTA96, Max Planck Institute for Computer Science, Im Stadtwald, D-66123 Saar-bruecken, Germany; e-mail: rta96@mpi-sb.mpg.de; fax: +49 681 302-5401; telephone: +49 681302-5360. 5



CADE-13The Thirteenth International Conference on Automated Deduction will be held at RutgersUniversity, in New Brunswick, New Jersey, on July 30{August 3, 1996.The CADE conferences are the major forum for the presentation of new research in all aspectsof automated deduction. Original research papers, descriptions of working reasoning systems,and problem sets that provide innovative, challenging tests for automated reasoning systems, aresolicited.CADE conferences cover all aspects of automated deduction, including �rst vs. higher-orderlogics, classical vs. non-classical logics, special vs. general-purpose inference, and interactive vs.automatic systems. Speci�c topics of interest include resolution, sequent calculus, decision proce-dures, uni�cation, rewrite rules, and mathematical induction. Also of interest are any applicationsof automated deduction, including deductive databases, logic and functional programming, com-monsense reasoning, and software and hardware development. Papers on commercial or industrialapplications of automated deduction are especially encouraged.CADE-13 will be held from Tuesday, July 30, to Saturday, August 3. It will be held as part ofthe Federated Logic Conference (FLoC'96) to be held at Rutgers University, New Brunswick, NewJersey, USA, from Saturday, July 27, to Saturday, August 3. As well as CADE, other conferencesparticipating in FLoC'96 will be CAV (Conference on Computer-Aided Veri�cation), LICS (IEEESymposium on Logic in Computer Science), and RTA (Conference on Rewriting Techniques andApplications). The goal of FLoC is to battle fragmentation of the technical community by bringingtogether synergetic conferences that relate logic to computer science.The Proceedings of CADE-13 will be published by Springer-Verlag in their Lecture Notesin Arti�cial Intelligence Series. Research papers should not exceed 15 (�fteen) proceedingspages. System descriptions and problem sets should not exceed 5 (�ve) proceedings pages.Springer style �les should be used if possible. These can be obtained early September fromhttp://www.research.att.com/lics/FLoC.Submission deadline is January 12, 1996. Authors should send four copies of their submissionto the program co-chairs. Further information about the conference may be obtained from theCADE-13 World Wide Web site: http://www.research.att.com/lics/FLoC.Program Co-Chairs: Michael McRobbie and John Slaney, Centre for Information ScienceResearch, The Australian National University, ACT 0200, Australia Tel: [+61] 6-2492035, Fax:[+61] 6-2490747, e-mail: cade13@cisr.anu.edu.au.GOEDEL'96The GOEDEL'96 conference will be held on August 25{29, 1996, in Brno, Czech Republic(birthplace of Kurt Goedel). The aim of the conference is to hold tribute to Kurt Goedel byarranging a scienti�c event presenting a forum for papers relevant to foundational aspects of logicin mathematics, computer science, philosophy, and physics|areas in
uenced by Kurt Goedel'swork. Both original scienti�c papers are sought for the conference, as well as research workin history connected with Goedel's work. For further information, see the World Wide Web6



http://www.�.muni.cz/ zlatuska/goedel96.html.Announcing the Availability of More Nqthm-Checked TheoremsBob Boyer and J MooreIn addition to the theorems in the \examples" directory distributed with Nqthm-1992. thefollowing Nqthm-checked theorems are available:� Much of the `Clinc Stack'{ The FM9001 microprocessor (Brock & Hunt, with contributions from Kaufmann)[fm9001-piton/fm9001-replay.events]{ The Piton assembler (Moore) [fm9001-piton/piton.events]{ The \big-add" Piton example (Moore) [fm9001-piton/big-add.events]{ A Piton program that wins at Nim (Wilding) [fm9001-piton/nim-piton.events]� A Paris-Harrington Ramsey theorem (Kunen) [kunen/paris-harrington.events]� An illustration of the surprising power of EVAL$ (Kunen) [kunen/induct.events] (surprisingto Boyer and Moore anyway)� The arithmetic-geometric mean theorem (Kaufmann & Pecchiari) [numbers/arithmetic-geometric-mean.events]� The mutilated checkerboard theorem in the general N � N case (Subramanian) [subra-manian/mutilated-checkerboard.events]� A simple real-time system, the classic train example (Young) [young/train.events]� A theorem about coin tossing probabilities (Kaufmann) [numbers/tossing.events]� A proof of correctness of a real-time scheduling algorithm (Wilding) [numbers/scheduler.events]Some documentation for some of the above proof e�orts may be found as follows:FM9001 microprocessor http://www.cli.com/hardware/fm9001.htmlPiton assembler http://www.cli.com/reports/�les/022.psNim playing program in Piton http://www.cli.com/reports/�les/078.psParis-Harrington Ramsey http://www.cs.wisc.edu/ kunen/ramsey.psEVAL$ http://www.cs.wisc.edu/ kunen/nqthm.psArithmetic-geometric mean http://www.cli.com/reports/�les/100.psReal-time train http://www.cli.com/reports/�les/093.psMutilated checkerboard ftp://ftp.cli.com/pub/nqthm/nqthm-1992/examples/subramanian/mutilated-checkerboard.psReal-time scheduling ftp://ftp.cli.com/home/wilding/scheduler-proof.ps7



The source �les for these theorems, named within square brackets above, may be obtainedindividually from the directoryftp://ftp.cli.com/pub/nqthm/nqthm-1992/examples/or altogether in the single �leftp://ftp.cli.com/pub/nqthm/nqthm-1992/1995-examples.tar.Z.Also included on the tar �le are new \driver" �les for doing a replay of all the examples underNqthm-1992, both these new examples and those previously distributed with Nqthm-1992. AGnu Emacs TAGS �le for all the event commands in all the examples is also provided.For information on obtaining the Nqthm prover itself, seeftp://ftp.cli.com/pub/nqthm/nqthm-1992/nqthm-1992.announcement.An Erratum for Some Errata toAutomated Theorem Proving ProblemsFrancis Je�rey PelletierDepartment of Computing Science, University of Alberta,Edmonton, Alberta, Canada T6G 2H1. e-mail je�p@cs.ualberta.caGeo� Sutcli�eDepartment of Computer Science, James Cook University,Townsville, Queensland, Australia 4811. e-mail geo�@cs.jcu.edu.au1 IntroductionIn 1986 Pelletier [7] published an annotated list of logic problems, intended as an aid for students,developers, and researchers to test their automated theorem proving (ATP) systems. The 75problems in the list are subdivided into propositional logic (Problems 1{17), monadic-predicatelogic (Problems 18{34), full predicate logic without identity and functions (Problems 35{47),full predicate logic with identity but without functions (Problems 48{55), full predicate logic withidentity and arbitrary functions (Problems 56{70), and problems to use in studying computationalcomplexity of ATP systems (Problems 71{75). The problems were chosen partially for theirhistorical interest and partially for their abilities to test di�erent aspects of ATP systems. Theproblems were also assigned an intuitive \degree of di�culty", relativized to the type of problem.All the problems are presented in a \natural form" (which is here also called the \�rst-order form"or FOF), and most of them are also given in an equivalent negated conclusion clause normal form(CNF). The CNF versions of the problems are all in the TPTP Problem Library [12, 13], and arethus conveniently available to ATP system developers who use the CNF form.11The TPTP Problem Library can be obtained through the World Wide Web (WWW) URLs:http://www.cs.jcu.edu.au/ftp/users/GSutcli�e/TPTP.HTMLhttp://wwwjessen.informatik.tu-muenchen.de/�suttner/tptp.html8



2 The ErratumShortly after the publication of [8], Art Quaife and John Pollock sent Je� Pelletier lists of errorsoccurring in the problems. These errata (and some others) were published in [9]. (Researchersthinking of using the problems should most de�nitely consult the Errata!) In particular, Prob-lem 62 was \corrected". Since then a few researchers have written to Pelletier questioning thevalidity of some of the problems (usually not saying whether they were working with the naturalFOF or the CNF), but he always maintained that they were valid, since they were provable withTHINKER [6, 7], his natural deduction-based ATP system. So he said that these researcherseither had an inferior ATP system or were not looking at the Errata. Recently, however, Geo�Alexander reported to Geo� Sutcli�e that he was unable to �nd a proof of the \corrected" CNFversion of Problem 62. This report caused Geo� Sutcli�e to attempt, and fail, to prove it withOTTER [5]. Geo� Alexander then pointed out to Geo� Sutcli�e that the \corrected" CNF versionof Problem 62 in [9] does not contain any negative clauses. Geo� used Geo�'s insight to convinceJe� that not all was well with even the \corrected" version of Problem 62. Since the \corrected"natural FOF of Problem 62 is provable by THINKER (and by John Pollock's system, Oscar [10,11]), but the CNF version of the problem is satis�able, the obvious conclusion is that this CNFversion was constructed incorrectly.There are various reasons why it is not possible to establish exactly went wrong: Pelletier'soriginal clausi�er is no longer available, and other clausi�ers (e.g., Sutcli�e's and OTTER's)apparently use algorithms di�erent from Pelletier's and from each other, and generate di�erentsets of clauses. In the end it was concluded that the CNF version of Problem 62 in the Erratawas generated from the unnegated-conclusion of the natural form. As with the original errata,Pelletier again takes responsibility for this further erratum.In discovering this erratum in the Errata, yet another 
aw was discovered. The natural formof Problem 62 in [9] has an ! (implication) as the main connective, whereas the original versionin [8] has an$ (equivalence). Further, Problem 62 is one of four variations on the same problem,and all the others (Problems 17, 33, 38) have an $ as main connective in their natural forms. Itis clearly intended that Problem 62 should also have an $ as its main connective in the naturalform. Thus both the CNF and FOF versions of Problem 62 in [9] are incorrect (although theFOF, unlike the CNF, is nonetheless still a theorem).3 The CorrectionThe correct version of Problem 62 is (following the format of [8], + is disjunction, & is conjunction,u, v, w, x, y, and z are variables, (Ax) is a universally quanti�ed x, (Ex) is an existentiallyquanti�ed x, f is a function symbol, P is a predicate letter, a is a constant, and skN are Skolemconstants generated in the clausi�cation): 9



Problem 62Natural FOF Negated Conclusion CNF(Ax)[(Pa&(Px! Pf(x)))! Pf(f(x))] Pa$ Px + Pf(f(x)) + :Pa(Ax)[(:Pa+ Px + Pf(f(x)))& Pf(f(x)) + :Pa + :Pf(x)(:Pa + :Pf(x) + Pf(f(x)))] :Pf(f(sk1)) + :Pf(f(sk2))Pf(sk1) + Pf(sk2) + :Psk1 + :Psk2Pf(sk1) + :Psk1 + :Pf(f(sk2))Pf(sk2) + :Psk2 + :Pf(f(sk1))(The Negated Conclusion CNF is TPTP problem SYN084-2.p.)4 The Related ProblemsRecall that the four problems (Problems 17, 33, 38, 62) are variations on a theme. The themewas set in [2, p. 59]. In discussing their natural deduction system IMPLY, they say:IMPLY is incomplete in many ways. For example, although it can prove the skolemizedformula(P0&(Px! Pf(x))! Pf(f(x)))it cannot handle the following equivalent formula(:P0 + Px + Pf(f(x)))&(:P0 + :Pf(x) + Pf(f(x)))because the substitution [0/x] satisfying the �rst conclusion does not satisfy the second.Now, it is di�cult to know exactly what points the authors intend to make in this quotation,especially with their use of \can prove" and \cannot handle", but at least they seem to be sayingthat IMPLY would not be able to prove the equivalence of the two formulas. It is exactly thisequivalence (adding explicit universal quanti�ers and using the constant a rather than 0) thatProblem 62 addresses.The quote also says that the �rst formula is \skolemized". Again, it is di�cult to know whatthe authors mean by this, since it is not possible to interpret the f 's occurring in it as Skolemfunctions: the f(f(x)) would not be interpretable that way. However, it is possible to remove thefunctions by using equivalent formulas. For example, Pf(x) can be replaced by(1) 9y(Rxy&8z(Rxz ! y = z)&Py)where R is a new predicate not mentioned elsewhere in the problem. [8] does not present a versionof Problem 62 using this substitution, but instead gives a `weaker' version in which the uniquenessof the function is sacri�ced by omitting the middle conjunct of (1). Rather than saying that theunique thing to which x is R-related is a P , the weaker version says instead that there is somethingto which x is R-related and that thing is a P . In this scheme, Pf(x) is replaced by(2) 9y(Rxy&Py) 10



It turns out that the e�ects of the uniqueness presuppositions of the function symbols in Problem62 are the same on both sides of the equivalence sign in the natural form, so these functions canbe uniformly replaced by relations in accordance with (2) and still yield a theorem. This wasdone in [8] in order to provide a relational predicate logic problem without identity and withoutfunction symbols. This is Problem 38 in [8], where only the natural form is given.Problem 38 Natural FOF(Ax)[(Pa&(Px! (Ey)(Py&Rxy)))! (Ez)(Ew)(Pz&Rxw&Rwz)]$(Ax)[(:Pa+ Px + (Ez)(Ew)(Pz&Rxw&Rwz))&(:Pa+ :(Ey)(Py&Rxy) + (Ez)(Ew)(Pz&Rxw&Rwz))]The shortest Negated Conclusion CNF we know for Problem 38 contains 46 clauses, and isrelegated to the Appendix below.Further examination of the natural FOF of Problem 38 reveals that the logical contribution ofthe parts of this formula that say there is something to which x is R-related is the same on eachside of the equivalence. Occurrences of these sub-formulas can therefore be uniformly replacedby constants, and the result will still be a theorem. Thus the same problem can be stated as atheorem in monadic predicate logic, which is Problem 33 in [8]:Problem 33Natural FOF Negated Conclusion CNF(Ax)[Pa&(Px! Pb)! Pc] Pa$ :Pa + Px+ Pc+ Py(Ax)[(:Pa+ Px+ Pc)& :Pa + :Pb+ Pc(:Pa + :Pb+ Pc)] :PcPb+ :Pd+ :Pe:Pa + Pb+ Pc+ Px+ :Pd:Pa + Pb+ Pc+ Px+ :Pe(The Negated Conclusion CNF is TPTP problem SYN063-1.p.)A better clausi�cation is produced by Sutcli�e's clausi�er, which reduces the natural form toa trivial Negated Conclusion CNF:Problem 33 Negated Conclusion CNFPaPc+ :Pa:Pc11



(These clauses are TPTP problem SYN063-2.p.)It is well known [1] (see 3, pp. 174{180] for an exposition) that a monadic logic formula is atheorem so long as it is not falsi�able with a domain of size 2N , where N is the number of distinctpredicates (constants being treated as predicates also). This means that monadic logic problemsare really propositional logic problems. But this monadic logic problem is a particularly easyproblem: it is (modulo the translation of constants in Problem 33 to predicates) a substitutioninstance of the following propositional logic theorem, which is Problem 17 in [8].Problem 17Natural FOF Negated Conclusion CNF(p&(q ! r)! s] p$ :p+ q + s(:p+ q + s) :p+ :r + s(:p+ :r + s)) :s:q + r(The Negated Conclusion CNF is TPTP problem SYN047-1.p.)It therefore seems that the IMPLY system of [2] is unable to solve a simple propositionalequivalence.5 ConclusionIt is interesting to note the varying degrees of di�culty that provers have with Problem 38 (i.e., therelational predicate logic problem without identity and without function symbols). The naturalFOF version of Problem 38 is proved quite easily by THINKER. In contrast, OTTER is unable to�nd a proof of the natural FOF version (which OTTER clausi�es to 55 clauses) or of the 46 clauseNegated Conclusion CNF, after one hour of DEC station 5000 CPU time, i.e., using fairly largeresources. SETHEO [4] is similarly unsuccessful with the 46 clause version. These observationscon�rm that an essentially easy FOF problem can become a di�cult CNF problem.A Negated Conclusion CNFs for Problem 38PaPx+ Py + Psk1(y) + Psk3(x) + :PaPx+ Py + Psk1(y) + Rx; sk4(x) + :PaPx+ Py + Psk1(y) + Rsk4(x); sk3(x) + :PaPx+ Py + Psk3(x) + Ry; sk2(y) + :PaPx+ Py +Rx; sk4(x) +Ry; sk2(y) + :PaPx+ Py +Ry; sk2(y) + Rsk4(x); sk3(K) + :Pa12



Px+ Psk1(x) + Psk5(y) + :Pz + :Pa+ :Ry; zPx+ Psk1(x) + Ry; sk6(y) + :Pz + :Pa+ :Ry; zPx+ Psk1(x) + Rsk6(y); sk5(y) + :Pz + :Pa+ :Ry; zPx+ Psk5(y) + Rx; sk2(x) + :Pz + :Pa+ :Ry; zPx+Ry; sk6(y) + Rx; sk2(x) + :Pz + :Pa+ :Ry; zPx+Rx; sk2(x) +Rsk6(y); sk5(y) + :Pz + :Pa+ :Ry; zPx+ Py + Psk3(x) + Rsk2(y); sk1(y) + :PaPx+ Py +Rx; sk4(x) +Rsk2(y); sk1(y) + :PaPx+ Py +Rsk2(y); sk1(y) + Rsk4(x); sk3(x) + :PaPx+ Psk1(y) + Psk3(x) + :Pz + :Pa+ :Ry; zPx+ Psk3(x) + Ry; sk2(y) + :Pz + :Pa+ :Ry; zPx+ Psk1(y) + Rx; sk4(x) + :Pz + :Pa+ :Ry; zPx+Rx; sk4(x) +Ry; sk2(y) + :Pz + :Pa+ :Ry; zPx+ Psk3(x) + Rsk2(y); sk1(y) + :Pz + :Pa+ :Ry; zPx+Rx; sk4(x) +Rsk2(y); sk1(y) + :Pz + :Pa+ :Ry; zPx+ Psk1(y) + Rsk4(x); sk3(x) + :Pz + :Pa+ :Ry; zPx+Ry; sk2(y) + Rsk4(x); sk3(x) + :Pz + :Pa+ :Ry; zPx+Rsk2(y); sk1(y) + Rsk4(x); sk3(x) + :Pz + :Pa+ :Ry; zPx+ Psk5(y) + Rsk2(x); sk1(x) + :Pz + :Pa+ :Ry; zPx+Ry; sk6(y) + Rsk2(x); sk1(x) + :Pz + :Pa+ :Ry; zPx+Rsk2(x); sk1(x) + Rsk6(y); sk5(y) + :Pz + :Pa+ :Ry; zPsk1(x) + Psk5(y) + :Pz + :Pu+ :Pa+ :Ry; z + :Rx; uPsk5(x) + Ry; sk2(y) + :Pz + :Pu+ :Pa+ :Rx; z + :Ry; uPsk1(x) + Ry; sk6(y) + :Pz + :Pu+ :Pa+ :Ry; z + :Rx; uRx; sk6(x) +Ry; sk2(y) + :Pz + :Pu+ :Pa+ :Rx; z + :Ry; uPsk5(x) + Rsk2(y); sk1(y) + :Pz + :Pu+ :Pa+ :Rx; z + :Ry; uRx; sk6(x) +Rsk2(y); sk1(y) + :Pz + :Pu+ :Pa+ :Rx; z + :Ry; uPsk1(x) + Rsk6(y); sk5(y) + :Pz + :Pu+ :Pa+ :Ry; z + :Rx; uRx; sk2(x) +Rsk6(y); sk5(y) + :Pz + :Pu+ :Pa+ :Ry; z + :Rx; uRsk2(x); sk1(x) + Rsk6(y); sk5(y) + :Pz + :Pu+ :Pa+ :Ry; z + :Rx; uPsk10 + Psk8 + :Psk7 + :Psk9Psk8 + Rsk9; sk10 + :Psk7 + :Psk9Psk10 + Rsk7; sk8 + :Psk7 + :Psk9Rsk7; sk8 + Rsk9; sk10 + :Psk7 + :Psk9Psk8 + :Px+ :Psk7 + :Ry; x+ :Rsk9; yRsk7; sk8 + :Px+ :Psk7 + :Ry; x+ :Rsk9; yPsk10 + :Px+ :Psk9 + :Ry; x+ :Rsk7; y 13



Rsk9; sk10 + :Px+ :Psk9 + :Ry; x+ :Rsk7; y:Px+ :Py + :Rz; x+ :Ru; y + :Rsk7; u+ :Rsk9; z(These clauses are TPTP problem SYN067-3.p.)References1. P. Bernays and M. Sch�on�nkel. Zum Entscheidungsproblem der mathematischen Logik. Math-ematische Annalen, 99:342{372, 1928.2. W. Bledsoe, R. Boyer, and W. Henneman. Computer proofs of limit theorems. Arti�cialIntelligence, 3:27{60, 1972.3. D. Kalish, R. Montague, and G. Mar. Logic: Techniques of Formal Reasoning. Harcourt BraceJovanovich, 1980.4. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance TheoremProver. J. Automated Reasoning, 8(2):183{212, 1992.5. W. W. McCune. OTTER 3.0 Reference Manual and Guide. Technical Report ANL-94/6,Argonne National Laboratory, 1994.6. F. J. Pelletier. Completely non-clausal, completely heuristically driven, automated theoremproving. Department Computing Science TR82-7, University of Alberta, 1982.7. F. J. Pelletier. Thinker. In J. H. Siekmann, editor, Proceedings of the 8th International Con-ference on Automated Deduction:701{702. Springer Verlag, Lecture Notes in Arti�cial Intelligence230, 1985.8. F. J. Pelletier. Seventy-�ve problems for testing automatic theorem provers. J. AutomatedReasoning, 2:191{216, 1986.9. F. J. Pelletier. Errata. J. Automated Reasoning, 4:235{236, 1988.10. J. L. Pollock. How to Build a Person. Bradford/MIT Press, 1989.11. J. L. Pollock. Interest driven suppositional reasoning. J. Automated Reasoning, 6(4):419{461,1990.12. G. Sutcli�e, C. B. Suttner, and T. Yemenis. The TPTP Problem Library. In A. Bundy, editor,Proceedings of the 12th International Conference on Automated Deduction:252{266. SpringerVerlag, Lecture Notes in Arti�cial Intelligence 814, 1994.13. C. B. Suttner and G. Sutcli�e. The TPTP Problem Library (TPTP v1.2.0). Technical Re-port AR-95-03 (Technical Report 95/6), Institut f�ur Informatik, Technische Universit�at M�unchen(Department of Computer Science, James Cook University), 1995.14



New Book AvailablePiton: A Mechanically Veri�ed Assembly-Level Language, by J Strother Moore, is about how toprove that one practical programming language is correctly implemented on a conventional mi-croprocessor. The programming language, called Piton, is a stack-based assembly-level languagewith recursive subroutine calls, symbolic names, and several di�erent data types, including num-bers, arrays, and addresses. The microprocessor on which Piton is implemented is the FM9001,a 32-bit general purpose microprocessor with 16 general purpose 32-bit wide registers, four 1-bitcondition code registers, designated \carry," \zero," \over
ow," and \negative," and up to 232words of memory. The FM9001 is interesting in part because it has been formally veri�ed at theregister-transfer level and it has been fabricated.Piton is implemented via a compiler that maps a system of Piton programs and data into abinary image for the FM9001. The compiler works in several passes, including one that converts asymbolic relocatable image to absolute binary. The compiler is written as a recursive function inthe Lisp-like Boyer-Moore logic. A theorem is proved establishing that the compiler is \correct"in the sense the same answers can be gotten by either of two routes: interpreting the assemblycode or executing the binary on FM9001.The book is unconventional because all of the foregoing is ultimately couched in a mathematicalformalism. That is, the semantics of both Piton and the binary machine are presented as systemsof mathematical equations describing the operations of the two abstract machines. The correctnessformula was proved mechanically with the Boyer-Moore theorem prover.The formal logic is explained informally before much use is made of it. Everything elseis explained informally as well. Nevertheless, the mathematical formalization is o�ered as thede�nitive expression of the speci�cation. Thus, this is really two intertwined books, one writtenin English and the other written in the formal logic.For whom is this book written? The �rst prerequisite is an open mind with respect tothe question of what mathematics can bring to the production of reliable computing systems. Notheorem can be proved about a physical device. If one is inclined toward the view that this workis irrelevant because it proves a theorem about two mathematical models, then obviously thisbook isn't for that reader.The informal book has been written for the computer scientist or computer science student.Knowledge of fundamental programming concepts is taken for granted. Thus, the reader shouldbe familiar with such concepts as registers, memory, program counters, addresses, push downstacks, arrays, trees, lists, atomic symbols, jumps, conditionals, and subroutine call. Also, it isassumed that the reader is familiar the elementary mathematical concept of function. Even in theinformal parts, it is assumed that the reader is willing to deal with some formal notation, namely,that for function application, including expressions built up from nested function applications.Finally, it would be helpful to be comfortable with the notion of recursively de�ned mathematicalfunctions.As for the formal book, virtually no computer science background is required. After all, themain theorem has been proved by a machine. Thus, except for the Nqthm logic (which is explainedhere only informally), everything one needs to understand Piton, the FM9001, the compiler, and15



the theorem is explicitly presented in complete detail. Nothing is taken for granted beyond theability to read the formulas in the logic (and a good memory for details).About ordering the book: The price is not yet certain, but it is expected to be about $160.We are exploring with Kluwer the possibility of o�ering a discount to readers; such a discount willdepend on the number of orders. Interested readers should send e-mail to vero�@cs.unm.edu.Call for Papers: Special Issue of the Journal of Automated ReasoningDeepak Kapur and DongmingWang have issued a call for papers for a special issue on computeralgebra (CA) and automated theorem proving (ATP), to be published in the Journal of AutomatedReasoning. Original research papers describing recent advances and new insights on all aspectsof coupling CA and ATP are solicited. Speci�c topics of interest include incorporating ATPmechanisms and tools into CA systems, combining CA and ATP systems, and applications ofcombined systems. The deadline for submission is May 15, 1996. All submitted papers will berefereed according to the JAR refereeing process. The special issue is expected to appear in 1997.Authors are invited to submit 3 copies of their manuscripts to Prof. Deepak Kapur, Depart-ment of Computer Science, State University of New York, Albany, NY 12222, Fax: (1) 518 4425638, e-mail: kapur@cs.albany.edu, or to Dr. Dongming Wang, LIFIA{IMAG{CNRS, 46, avenueF�elix Viallet, 38031 Grenoble Cedex, France; Fax: (33) 76 57 46 02, e-mail: wang@li�a.imag.fr.The Passing of Three PioneersLarry WosWith deep sadness, I report the passing this year of three of the pioneers of the �eld. Withinthe recent weeks, Woody Bledsoe (with whom I shared many gratifying discussions) succumbedto a long illness. No replacement can be found.Before him, Alonzo Church and Hao Wang passed away. Church died August 11, 1995, inHudson, Ohio at the age of 92. Memorial contributions may be made to the Association forSymbolic Logic (1409 West Green Street, Urbana, IL 61801) and marked \For the Alonzo ChurchFund".Hao Wang died in the spring of this year. He will be remembered for his work in mathematicallogic and his contributions to the beginnings of automated theorem proving in a signi�cant man-ner. A session at the GOEDEL '96 conference (see elsewhere in this issue) is planned in honor ofHao Wang.
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