Association for Automated Reasoning NEWSLETTER

No. 32
March 1996

From the AAR President, Larry Wos...

This issue begins with three notes about CADE. The first is a reminder that an important vote on the new bylaws will be held at the 1996 meeting. The second note is about the proposed site for CADE-15. The third is a call for nominations for the prestigious Herbrand award, to be presented at CADE-13. Since CADE is one of the leading conferences in automated deduction, I urge AAR members to read each note most carefully.

Also included in this issue of the $A A R$ newsletter is an article by one of our frequent contributors, Li Dafa. Using his ANDP system, he has now produced an automated natural deduction proof of the formalization of the so-called halting problem-a problem that has appeared periodically in our newsletter since 1987.

A request: I would like to know whether you, as an AAR member, would prefer to "receive" our newsletter on the Web rather than in paper form. Specifically, we would have AAR Newsletter Web pages that would include new articles as they were accepted. We would give hot links to appropriate calls for papers. Please let our editor Gail Pieper (pieper@mcs.anl.gov) know your opinion on this matter.

CADE-13 to Hold Vote on New Bylaws

A vote will be held at the 1996 meeting of CADE to determine whether a new set of bylaws should be adopted for CADE. The vote will be by secret ballot.

So that the voters can make an informed decision, we have put the proposed bylaws and the existing ones on the World Wide Web. See http://www.cs.albany.edu/~nvm/cade.html.

Proposals for Sites for CADE-15 Solicited
 Alan Bundy, President, CADE Inc.

CADE Inc. invites proposals to host the 15th Conference on Automated Deduction (CADE15). CADE- 15 will be held in early to mid-summer 1998 in Europe. Proposals are due by July 1 , 1996, and a final decision will be made by September 1, 1996. Proposals will be evaluated in relation to a number of site selection criteria, which include suitability of site and facilities, strength of local automated reasoning research, costs, and availability of local sponsorship. Further details are available on request from the CADE Inc. Secretary, Neil Murray (nvm@cs.albany.edu).

Nominations for Herbrand Award
Alan Bundy, President, CADE Inc.

The Herbrand Award is given by CADE Inc. to honor an person or a group of people for exceptional contributions to the field of automated deduction. Previous awards have been made at CADE-11 to Larry Wos and at CADE-12 to Woody Bledsoe. Nominations for the award can be made at any time to the CADE Inc. president, Alan Bundy (A.Bundy@ed.ac.uk). Nominations should consist of a letter of up to 2000 words from the principal nominator, describing the nominee's contribution, along with letters of up to 2000 words of endorsement from two other seconders. The winner is selected by the CADE Trustees, the current Programme Committee, and the previous winners.

In order to ensure enough time for selection in time for CADE-13, nominations should reach Bundy by April 30. E-mail nominations are preferred.

Call for Papers

FMCAD '96

The International Conference on Formal Methods in Computer-Aided Design '96 (FMCAD ${ }^{\prime} 96$) will be held in Palo Alto, California, on November 6-8, 1996. FMCAD '96 is a forum for presenting state-of-the-art tools and techniques based on formal methods for computer-aided design of hardware. A special focus of this conference will be on the integration of complementary techniques and tools. Specific areas of interest to AAR members include the following.

- New hardware verification techniques based on theorem proving, state exploration, modelchecking, and BDDs
- Hybrid approaches that integrate synthesis and verification or different verification techniques
- Formal verification techniques for hardware description languages, such as VHDL, Verilog
- Case studies and application of formal methods in industry

This conference is a sequel in a series of IFIP WG 10.2/10.5 sponsored conferences with similar themes that have been held most recently in 1992 and 1994 under the banner "Theorem Provers in Circuit Design." The intended audience includes workers in the field of hardware verification and synthesis as well as practicing digital designers with an interest in formal methods.

Authors may submit research papers (15 pages) or tutorials (15 pages) in Postscript to fmcad $96 @ c s l . s r i . c o m$, or may send seven hard-copies to the following (submission deadline is April 15, 1996):

Papers	Tutorials
Mandayam Srivas	Albert Camilleri
Re: FMCAD '96	Re: FMCAD '96
SRI International (EL-262)	Hewlett-Packard Co. M/S 5596
333 Ravenswood Avenue	8000 Foothills Boulevard
Menlo Park, CA 94025	Roseville, CA 95747-5596
E-mail: srivas@csl.sri.com	E-mail: ac@hprpcd.rose.hp.com
Tel: +1 415-859-6136	Tel : +1 916 785 8488
Fax: +1 415-859-2844	Fax : +1916 785 3096

Theorem Proving in Higher-Order Logics

The 1996 International Conference on Theorem Proving in Higher-Order Logics will be held on August 27-30, 1996, in Turku, Finland. Authors are invited to submit papers on all aspects of theorem proving, particularly those relating to higher-order logics or to proof systems based on secure mechanizations of logic. These include advances in theorem-proving technology, proof automation and decision procedures, applications of mechanized theorem proving, development and extension of higher-order logics, and novel industrial applications of theorem provers.

Submissions are invited in two categories: A-full research paper, and B - informal progress report. Category A papers are due March 15, 1996; these will be refereed and, if accepted, published in the conference proceedings. Category B papers will be distributed in an informal proceedings at the workshop. All papers are due April 14, 1996.

E-mail submissions to orgcom@abo.fi (in PostScript form) are encouraged. Paper copies may be sent to the Department of Computer Science, Abo Akademi University, Lemminkaisenkatu 14a, FIN-20520 Turku, Finland.

FroCoS'96

The first international workshop on Frontiers of Combining Systems will be held on March 26-29, 1996, in Munich, Germany. In various areas of logic, computation, language processing, and artificial intelligence there is an obvious need for using specialized formalisms and inference mechanisms for special tasks. In order to be usable in practice, these specialized systems must be combined, and they must be integrated into general-purpose systems. The development of general techniques for the combination and integration of special systems has been initiated in many areas, and the workshop Frontiers of Combining Systems intends to offer a common forum for these research activities.

Topics of the workshop are

- combination of logics (e.g., modal logics, logics in AI)
- combination of constraint solving techniques
- integration of equational and other theories into deductive systems
- combination of term rewriting systems
- integration of data structures into CLP formalisms and deduction processes
- hybrid systems in computational linguistics, knowledge representation, natural language semantics, and human computer interaction
- logic modeling of multi-agent systems.

Invited speakers include A. Colmerauer, D. Gabbay, U. Glaesser, and M. Stickel. For further information, see http://www.cis.uni-muenchen.de/hot/frocos $96 . h t m 1$ or contact K. U. Schulz, CIS, University of Munich, Wagmuellerstr. 23, D-80538 Muenchen, Germany; e-mail: schulz@cis.unimuenchen.de.

An Automated Natural Deduction Proof of the Formalization of the Halting Problem Li Dafa
Dept. of Applied Mathematics
Tsinghua University
Beijing 100084
CHINA(PRC)
e-mail: 1df@s1000e.dcs.tsinghua.edu.cn

In [5] we suggested using the following three formulas as premises of the halting problem, the first two of which are from $[1,2,3]$. Let P_{i} stand for the i th premise, $i=1,2,3$. Then the formalization of the halting problem is as follows.

The English statement for the halting problem is given in $[1,2,3]$. The notation is as follows:

Ax: x is an algorithm
$\mathrm{Cx}: \mathrm{x}$ is a computer program in some programming language
Dxyz: x is able to decide whether y halts given input z
$\mathrm{H}_{2} \mathrm{xy}$: x halts on given input y
$\mathrm{H}_{3} \mathrm{xyz}$: x halts on given input the pair $\langle y, z\rangle$
Oxy :x outputs y
P_{1} (for premise 1):

$$
\exists x[A x \wedge \forall y[C y \rightarrow \forall z D x y z]] \rightarrow \exists w[C w \wedge \forall y[C y \rightarrow \forall z D w y z]]
$$

P_{2} (for premise 2):

$$
\forall w[[C w \wedge \forall u[C u \rightarrow \forall v D w u v]] \rightarrow
$$

$$
\left.\forall y \forall z\left[\left[\left[C y \wedge H_{2} y z\right] \rightarrow\left[H_{3} w y z \wedge O w g\right]\right] \wedge\left[\left[C y \wedge \sim H_{2} y z\right] \rightarrow\left[H_{3} w y z \wedge O w b\right]\right]\right]\right]
$$

P_{3} (for premise 3):
$\forall w\left[C w \& \forall y \forall z\left[\left[C y \& H_{2} y z \rightarrow H_{3} w y z \& O w g\right] \&\left[C y \& \sim H_{2} y z \rightarrow H_{3} w y z \& O w b\right]\right]\right.$
$\left.\rightarrow \exists v\left[C v \& \forall y\left[\left[C y \& H_{3} w y y \& O w g \rightarrow \sim H_{2} v y\right] \&\left[C y \& H_{3} w y y \& O w b \rightarrow H_{2} v y \& O v b\right]\right]\right]\right]$

The conclusion is that an algorithm to solve the halting problem does not exist.

$$
\text { That is, } \sim \exists x[A x \wedge \forall y[C y \rightarrow \forall z D x y z]] .
$$

The problem is to prove that $P_{1} \wedge P_{2} \wedge P_{3} \rightarrow \sim \exists x[A x \wedge \forall y[C y \rightarrow \forall z D x y z]]$ is valid.

We report here a mechanical proof, in natural deduction (ND) style, of the new formalization above. The proof was found automatically by our ANDP system. It is a direct proof and consists of 74 natural deduction steps. Clearly the ND proof is readable.

In [7] Uwe Egly and Thomas Rath reported the first mechanical resolution proof of the new formalization of the halting problem. In [4] we presented a mechanical proof in natural deduction style of Burkholder's formalization of the halting problem. However, our ANDP failed to find a mechanical proof of the new formalization; we were able to give only a hand-crafted ND proof of the formalization [5]. Why did ANDP fail to prove it? After many experiments, we found that one of the reasons was that the rule CASES was applied limitlessly. If the rule CASES is applied to a disjunction, two disjuncts of it will be used as new hypotheses. We conjectured that it might produce new constants from the new hypotheses, hence many new Herbrand terms and irrelevant and redundant formulas. To address that problem, we developed the following strategies:

1. The rule CASES is first applied to premises.
2. The rule CASES is then applied to the disjunctions from which it will not produce new constants.
3. The rule CASES is then applied to short formulas.

The strategies will not affect the completeness. Numerous experiments proved that the strategies were general. Using the strategies, ANDP not only found a mechanical proof in natural deduction style of the new formalization of the halting problem but also produced the small search spaces for Burkholder's original formalization of the halting problem in [1, 2, 3] and Pelletier's 75-problems [6].

Acknowledgment

The project was supported by NSFC.

Appendix: The Mechanical Proof of the Formulation of the Halting Problem

We use (Ex), (Ax) to stand for existential quantifier and universal quantifier respectively.

```
1. P1 & P2 & P3 ASSUMED-PREMISE
2. (Ex)[Ax & (Ay)[Cy ->> (Az)Dxyz]]
    -> (Ew) [Cw & (Ay)[Cy -> (Az)Dwyz]] SIMP 1
3. (Av)[Cw & (Au)[Cu -> (Av)Dwuv]
    -> (Ay)(Az)[[Cy & H2yz -> H3wyz & Owg] & [Cy & ~H2yz
    -> H3wyz & Owb]]]
    SIMP 1
```

4. (Aw) [Cw \& (Ay) (Az) [[Cy \& H2yz -> H3wyz \& Owg] \&
[Cy \& ~H2yz \rightarrow H3wyz \& Owb]]
\rightarrow (Ev) [Cv \& (Ay) [[[Cy \& H3wyy] \& Owg -> ~H2vy] \&
[[Cy \& H3wyy] \& Owb \rightarrow H2vy \& Ovb]]]]
5. ~ (Ex) [Ax \& (Ay) [Cy $\rightarrow(A z) D x y z]]$
6. (Ew) $[\mathrm{Cw}$ \& (Ay) $\mathrm{Cy} \rightarrow(\mathrm{Az}) \mathrm{Dwyz}]]$
7. Ca1 \& (Ay) [Cy $\rightarrow(A z) D a 1 y z]$
8. Ca1
9. (Ay) [Cy $->(\mathrm{Az}) \mathrm{Da} 1 \mathrm{yz}]$
10. Ca1 \& (Ay) (Az) [[Cy \& H2yz \rightarrow H3a1yz \& Da1g] \&
[Cy \& ~H2yz -> H3a1yz \& Oa1b]]
-> (Ev) [Cv \& (Ay) [[[Cy \& H3a1yy] \& Oa1g -> ~H2vy] \&
[[Cy \& H3a1yy] \& Oa1b \rightarrow H2vy \& Ovb]]]
11. ~Ca1 v [~ (Ay) (Az) [[Cy \& H2yz \rightarrow H3a1yz \& Oa1g] \&
[Cy \& "H2yz -> H3a1yz \& Oa1b]] v
(Ev) [Cv \& (Ay) [[[Cy \& H3a1yy] \& Oa1g -> ~H2vy] \&
[[Cy \& H3a1yy] \& Oa1b \rightarrow H2vy \& Ovb]]]]
12. ~ $(\mathrm{Ay})(\mathrm{Az})[[\mathrm{Cy} \& \mathrm{H} 2 \mathrm{yz} \rightarrow \mathrm{H} 3 \mathrm{a} 1 \mathrm{yz}$ \& Da1g] \&
[Cy \& ~H2yz -> H3a1yz \& Da1b]] v
(Ev) [Cv \& (Ay) [[[Cy \& H3a1yy] \& Da1g -> ~H2vy] \&
[[Cy \& H3a1yy] \& Oa1b \rightarrow H2vy \& Ovb]]]
13. $\mathrm{Ca} 1 \&(\mathrm{Au})[\mathrm{Cu} \rightarrow(\mathrm{Av}) \mathrm{Da1uv}]$
$\rightarrow(A y)(A z)[[C y \& H 2 y z ~ \rightarrow H 3 a 1 y z ~ \& ~ D a 1 g] ~ \& ~$
[Cy \& ~H2yz -> H3a1yz \& Oa1b]]
14. ~Ca1 v [~ (Au) [Cu \rightarrow (Av) Da1uv] v
(Ay) (Az) [[Cy \& H2yz \rightarrow H3a1yz \& 0a1g] \&
[Cy \& ~H2yz -> H3a1yz \& Oa1b]]]
15. ~ $(\mathrm{Au})[\mathrm{Cu} \rightarrow(\mathrm{Av}) \mathrm{Da} 1 \mathrm{uv}] \mathrm{v}$
(Ay) (Az) [[Cy \& H2yz \rightarrow H3a1yz \& Oa1g] \&
[Cy \& ~H2yz -> H3a1yz \& Oa1b]]
16. (Ay) (Az)[[Cy \& H2yz -> H3a1yz \& Da1g] \&
[Cy \& ~H2yz -> H3a1yz \& Oa1b]]
17. (Ev) [Cv \& (Ay) [[[Cy \& H3a1yy] \& Oa1g -> ~ H 2 vy$]$ \&
[[Cy \& H3a1yy] \& Da1b \rightarrow H2vy \& 0vb]]]
18. Ca 2 \& (Ay) [[[Cy \& H3a1yy] \& Oa1g $\left.\rightarrow{ }^{\sim} \mathrm{H} 2 \mathrm{a} 2 \mathrm{y}\right]$ \&
[[Cy \& H3a1yy] \& Da1b \rightarrow H2a2y \& 0a2b]]
19. Ca 2
20. (Ay) [[[Cy \& H3a1yy] \& Oa1g $\left.\rightarrow{ }^{\sim} \mathrm{H} 2 \mathrm{a} 2 \mathrm{y}\right]$ \&
[[Cy \& H3a1yy] \& Oa1b \rightarrow H2a2y \& 0a2b]]
21. [[Ca1 \& H3a1a1a1] \& Da1g \rightarrow ~H2a2a1] \& [[Ca1 \& H3a1a1a1] \& Da1b \rightarrow H2a2a1 \& Da2b]
22. [Ca1 \& H3a1a1a1] \& Oa1g $\rightarrow{ }^{\sim} \mathrm{H} 2 \mathrm{a} 2 \mathrm{a} 1$
23. [Ca1 \& H3a1a1a1] \& Oa1b \rightarrow H2a2a1 \& 0a2b

US (a1 w) 4

LDS 148

LDS 159

LDS 1216

HYPO 17
SIMP 18

SIMP 18
SIMP 1
CASE 2
CASE 2
HYPO 6
SIMP 7
SIMP 7

IMPLICATION 10

LDS 118

US (a1 w) 3

IMPLICATION 13

US (a1 y) 20
SIMP 21
SIMP 21
24. ~Ca1 v [[${ }^{\sim} H 3 a 1 a 1 a 1$ v ~Oa1b] v H2a2a1 \& Oa2b]

IMPLICATION 23
25. [~H3a1a1a1 v ~Oa1b] v H2a2a1 \& Oa2b
26. ${ }^{\sim} \mathrm{Ca1}$ v [[$\left.\left.{ }^{\sim} \mathrm{H} 3 \mathrm{a} 1 \mathrm{a1a1} \mathrm{v}{ }^{\sim} \mathrm{Oa} \mathrm{g} \mathrm{g}\right] \mathrm{v}{ }^{\sim} \mathrm{H} 2 \mathrm{a} 2 \mathrm{a} 1\right]$
27. [$\mathrm{H} 3 \mathrm{a} 1 \mathrm{a} 1 \mathrm{a1} \mathrm{v}$ ~Oa1g] v ~H2a2a1
28. [["H3a1a1a1 v ~Oa1b] v H2a2a1] \&
[["H3a1a1a1 v ~Oa1b] v Oa2b]
29. [~H3a1a1a1 v ~Oa1b] v H2a2a1
30. "H3a1a1a1 v ~Oa1g
31. ~ H 2 a 2 a 1
32. ~H3a1a1a1 v ~Oa1b
33. (Az) [[Ca2 \& H2a2z $\rightarrow \mathrm{H} 3 \mathrm{a} 1 \mathrm{a} 2 z$ \& Da1g] \& [Ca2 \& ~H2a2z -> H3a1a2z \& Oa1b]]
34. [Ca2 \& H2a2a1 -> H3a1a2a1 \& Oa1g] \& [Ca2 \& ~H2a2a1 \rightarrow H3a1a2a1 \& Oa1b]
35. Ca2 \& H2a2a1 -> H3a1a2a1 \& Oa1g
36. Ca2 \& ~H2a2a1 -> H3a1a2a1 \& Da1b
37. ~Ca2 v [H2a2a1 v H3a1a2a1 \& Oa1b]
38. H2a2a1 v H3a1a2a1 \& Oa1b
39. H3a1a2a1 \& Da1b
40. 0a1b
41. ~H3a1a1a1
42. "Ca2 v ["H2a2a1 v H3a1a2a1 \& Oa1g]
43. ~H2a2a1 v H3a1a2a1 \& Oa1g
44. [${ }^{\sim} H 2 a 2 a 1$ v H3a1a2a1] \& [$\left.{ }^{\sim} H 2 a 2 a 1 ~ v ~ O a 1 g\right] ~$
45. ~H2a2a1 v Oa1g
46. (Az) [[Ca1 \& H2a1z -> H3a1a1z \& Da1g] \&
[Ca1 \& ~H2a1z -> H3a1a1z \& Oa1b]]
47. [Ca1 \& H2a1a1 \rightarrow H3a1a1a1 \& Oa1g] \& [Ca1 \& ~H2a1a1 -> H3a1a1a1 \& Oa1b]
48. Ca1 \& H2a1a1 -> H3a1a1a1 \& Oa1g
49. Ca1 \& ~H2a1a1 -> H3a1a1a1 \& Oa1b
50. ~Ca1 v [H2a1a1 v H3a1a1a1 \& Da1b]
51. H2a1a1 v H3a1a1a1 \& Da1b
52. "Ca1 v ["H2a1a1 v H3a1a1a1 \& Oa1g]
53. ~H2a1a1 v H3a1a1a1 \& Oa1g
54. [H2a1a1 v H3a1a1a1] \& [H2a1a1 v Oa1b]
55. H2a1a1 v H3a1a1a1
56. H2a1a1 v Oa1b
57. H2a1a1
58. H3a1a1a1 \& Oa1g
59. H3a1a1a1
60. ~H2a1a1

LDS 248
IMPLICATION 22 LDS 268

DISTRIBUTIVE-LAW 25
SIMP 28
CASE 27
CASE 27
RDS 2931

US (a2 y) 16

US (a1 z) 33
SIMP 34
SIMP 34
IMPLICATION 36
LDS 3719
LDS 3831
SIMP 39
RDS 3240
IMPLICATION 35
LDS 4219
DISTRIBUTIVE-LAW 43
SIMP 44

US (a1 y) 16

US (a1 z) 46
SIMP 47
SIMP 47
IMPLICATION 49
LDS 508
IMPLICATION 48
LDS 528
DISTRIBUTIVE-LAW 51
SIMP 54
SIMP 54
RDS 5541
LDS 5357
SIMP 58
RDS 3053

61. 0a1b	LDS 5660
62. H3a1a1a1	LDS 5560
63. ${ }^{\text {~0a1g }}$	LDS 3062
64. ${ }^{\text {H }} \mathrm{H} 2 \mathrm{a} 2 \mathrm{a} 1$	RDS 4563
65. ~H3a1a1a1 v ~0a1b	RDS 2964
66. ~0a1b	LDS 6562
67. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	~-ELIMINATION 5941
68. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	~-ELIMINATION 6166
69. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	CASES 276867
70. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	EE 1769
71. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	EE 670
72. ~ (Ex) [Ax \& (Ay) [Cy \rightarrow (Az) Dxyz]]	SAME 5
73. ~ (Ex) [Ax \& (Ay) [Cy $->$ (Az$) \mathrm{Dxyz}]]$	CASES 27271
74. P1 \& P2 \& P3 \rightarrow (Ex) [Ax \& (Ay) [C]	xyz]] CP 73

References

[1] Bruschi, M., The Halting Problem, AAR Newsletter 17, March 1991.
[2] Burkholder, L., The Halting Problem, SIGACT News 18, no. 3, Spring 1987.
[3] Burkholder, L., A 76th Automated Theorem Proving Problem, A AR Newsletter 8, April 1987.
[4] Li Dafa, A Mechanical Proof of the Halting Problem, AAR Newsletter 23, June 1993.
[5] Li Dafa, The Formalization of the Halting Problem Is Not Suitable for Describing the Halting Problem, AAR Newsletter 27, October 1994.
[6] Pelletier, F. J., Seventy-Five Problems for Testing Automatic Theorem Provers, J. Automated Reasoning 2 (1986) 191-216.
[7] Egly, U., and Rath, T., The Halting Problem: An Automatically Generated Proof, AAR Newsletter 30, August 1995.

