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in EUV Applications 

 

V. Sizyuk, A. Hassanein, V. Morozov, and T. Sizyuk 

 

Abstract 

 

 The HEIGHTS integrated model has been developed as an instrument for simulation and 

optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) 

lithography. The model combines three general parts: hydrodynamics, radiation transport, and 

heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich 

formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit 

schemes with sparse matrix technology. All model parts consider physical processes in three-

dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was 

estimated, and it was found that this effect could be neglected for laser intensities relevant to 

EUV (up to ~1012 W/cm2). All applied schemes were tested on analytical problems separately. 

Benchmark modeling of the full EUV source problem with a planar tin target showed good 

correspondence with experimental and theoretical data. Preliminary results are presented for tin 

droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV 

properties of source is discussed. 

 

 

Introduction 

 

 Ever since the invention of the transistor in 1947 and the integrated circuit (IC) in the late 

1950s, semiconductor technology has undergone rapid advances. From a basic technical point of 

view, developments have been straightforward. They have mainly involved putting more and 

smaller transistors on integrated circuits. More transistors allow increased functionality, and 

smaller size allows increased switching speed and less power consumption for each transistor. 

The whole process has conformed to Moore's law, formulated by Gordon Moore in 1965 [1]. 
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Moore stated that the number of components per IC roughly doubles every second year. In recent 

decades, the single most important driver of Moore's law has been the inventions of 

microlithography. This lithographic process generates a semiconductor wafer partially covered 

with photoresist so that the uncovered regions are available for different kinds of processing, such 

as etching, ion implantation, or metallization. One of the most important lithographic processes is 

exposure, when light shines on select parts of the resist and microelectronic elements are formed 

[2]. Resolution of an optical system, such as projection-lithography system, is traditionally 

determined by the Rayleigh criterion,  

 

   
NA

Resolution λ61.0= ,             (1) 

 

where λ  is the wavelength of the light and  is the numerical aperture of the optical system 

(

NA

maxsinθ=NA  for vacuum). However, the Rayleigh criterion treats the ability to resolve two 

point sources and not the printability of semiconductor structures. In this case, the object size is 

 

 
NA

k sizeObject λ
= ,  (2) 

 

where the "k-factor" is introduced [2]. According to Eq. (2) minimal component size can be 

achieved by increasing the numerical aperture or decreasing the wavelength or k-factor. Until 

about 1993-1994, k  was stable at 0.8; it has since been decreased to almost 0.4 by using binary 

masks [3]. As illustrated in Table 1, there has been a continuous increase in NA and decrease in 

wavelength over the years. 
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Table 1. Progress with lithography instruments [2] 

Wavelength, 
nm 

NA Year Light Source 

436 0.30 1982 Hg arc lamp (g-line) 

365 0.45 1990 Hg arc lamp (i-line) 

365 0.60 1994 Hg arc lamp (i-line) 

248 0.50 1994 Hg arc lamp or KrF eximer laser 

248 0.60 1997 KrF eximer laser 

248 0.70 1999 KrF eximer laser 

193 0.60 1999 ArF eximer laser 

193 0.75 2001 ArF eximer laser 

 

Increasing the NA causes problems with the depth of focus (DOF), as illustrated in Fig. 1. The 

DOF should be larger than the photoresist coating 

thickness for optimal performance. Alignment difficulties 

arise when the distance over which the image is sharp is 

only slightly larger than the resist thickness. Several ways 

exist for further improvement in semiconductor 

technology. The two most important are utilizing the 

smallest wavelength available with projection lithography 

and utilizing ion- and electron-beam lithography. Figure 2 

shows present-day limitations on line thickness as a 

function of used radiation wavelength. Both ion- and 

electron-beam projection have the inherent drawback that 

they cannot fulfill resolution and throughput demands at the same time, because of the repelling 

nature of similarly charged particles.  Application of noncharged photons has no such limitation. 

Use of extreme ultraviolet light (wavelength between 10 and 15 nm) is a promising solution for 

this reason.  

Fig. 1. Schematic of depth of focus 
(defined as the distance over which 
the focus is smallest).
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Fig. 2. Minimal reproducible line thickness: 1 – diffraction limit for proximity lithography with 
gap of 10 μm; 2 – diffraction limit for projection lithography for NA = 0.4; 3 – diffraction 
limit for proximity lithography with gap of 1 μm; 4a and 4b  - photoelectron scattering 
limit for electron-beam lithography (theory and experiment, respectively). 

 

 EUV light is absorbed very strongly in most materials, including gases; thus, all optics 

and the source should be placed into a vacuum. For the same reason lenses cannot be used: 

optical systems should consist of mirrors. Because reflection of a single surface is very low 

(about 4%), stacked multilayers are used, for which the reflection adds up. The EUV light can be 

generated in several methods: discharge produced plasma (DPP), laser produced plasma (LPP), 

or synchrotron radiation. Each method has benefits and problems. In order to meet the 

requirements of the Intel Lithography Roadmap goals for high-volume manufacturing [4] and 

International SEMATECH's EUV Source Program goal [5], the EUV source is required to have a 

power of 80-120 W at a wavelength of 13.5 nm (2% bandwidth). Various LPP and DPP devices 

are under investigation by different research groups. At present, several of the EUV sources come 

close to the power level demanded by commercial chip manufacturers. The coefficient of 

efficiency (CE) of generating EUV radiation is the key factor in successful development of the 

source. Many additional factors are important to the EUV device efficiency: plasma material, 

form and size of the radiated area, collectable solid angle, debris amount, etc. Because many 

physical processes are involved and many technical problems need to be solved when optimizing 
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a particular EUV device, a laboratory experiment would be very expensive, and only computer 

modeling can generate a complete picture within a reasonable time and at a reasonable cost. 

Ideally, an integrated physical model should be developed specifically for simulating plasma 

behavior in DPP and LPP devices. The model should include the atomic physics, hydrodynamics, 

radiation transport, heat conduction and EUV analysis. The EUV source should be modeled 

completely: from the energy input mechanism and plasma formation, to EUV output from the 

pinch or laser target and the collector system reflection. Each physical process should be 

described adequately, and each physical problem should be solved by the most advanced 

numerical scheme. The intermediate focus of a manufacturer's EUVL stepper can be predicted in 

that case most correctly.  

 This report describes a three-dimensional integrated model, called HEIGHTS, for 

modeling of LPP devices. The model is based on previous work in simulating of DPP devices by 

the HEIGHTS team [6-8]. This report describes the general model construction, derivation of 

initial equations, development of numerical schemes, organization of computer code, results from 

test samples, and parallel version implementation. The influence of a generated magnetic field is 

discussed. Results of modeling are presented for a spherical tin target and a three-laser-beam 

assembly.  

 

 

1. General Laws of Plasma Motion 

 

 To construct a flexible integrated physical model, one must to minimize (as much as 

possible) the number of general laws, develop a hierarchy of physical processes, and construct a 

simple mechanism for the incorporation of new processes. For this reason, the HEGHTS model 

was created from first principles and does not include final results from other projects. The 

conservation law of any parameter q  can be given in differential form:  

 

 0=⋅∇+
∂
∂

qt
q F ,  (1.1) 
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where  is the flux of this parameter. By considering plasma matter as a continuous, 

compressible medium, we expanded Eq. (1.1) and obtained the following expressions for 

conservation of mass, pulse, and total energy: 

qF

 

 

( )

( )

( )[ ] ,0

,0

,0

=+⋅∇+
∂

∂

=+⋅∇+
∂
∂

=⋅∇+
∂
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hh
h

h

pe
t

e

p
t

t

v

vvv

v

ρρ

ρρ

 (1.2) 

 

where, 

ρ - density of plasma, 

v - velocity of plasma, 

hp  - hydrodynamic pressure, and 

he = int

2

2
ev

+
ρ  - sum of kinetic and internal energy densities of plasma. 

The equation set (1.2) describes convective motion of a compressible homogeneous medium. 

Later, this basic set will be expanded to consider the plasma as a mixture of electron and ion 

gases. Additional external forces and sources will be added, and dissipative terms will be taken 

into account. All physical expressions and all transformation use Gaussian units, unless stated 

otherwise.  

 In laboratory plasma experiments, any electromagnetic sources can have an external 

influence on the plasma, and electric currents can be generated spontaneously by intensive 

heating of local plasma areas. Any current can be the source of a magnetic field in the plasma, 

and this magnetic field is the source of forces that disturb the initial plasma. This self-consistent 

process should be included in the hydrodynamic equation set (1.2). Moreover, the conservative 

form of the set should not be changed. For this reason, it is appropriate to introduce an additional 

conservative variable: magnetic field B. An additional equation for the introduced variable should 

be written and the corresponding forces added into the equation set (1.2). The HEIGHTS general 

equation set does not operate with currents directly because of the conservative form of the initial 

equation. Any external force  can be added into (1.2) as follows: exF
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In the general case of magnetic hydrodynamics, external forces can be expressed as forces that 

act on the unit charge, such as force field strength . It may be given as the sum of three forces: 

Lorenz, electrical field, and Hall force: 

E

 

 BjjBvE ×++×−=
ρ

η ch
c
1 . (1.4) 

 

To simplify the equation transformation, we can rewrite the vector form of (1.3) to the 

component tensor form in the Cartesian coordinate system. Covariant and contravariant 

components of the tensor are equivalent in the orthonormalized Cartesian system. We can speak 

here about matrices and not about tensors because there is no difference between superscripts and 

subscripts. However, we use the tensor technique of summations for this case. At the end of the 

transformations, the results will be generalized to the tensor case in the arbitrary coordinate 

system. Then, we specially use subscripts for all terms to emphasize the particular case. Use of 

tensor calculus makes the governing equations more flexible for practical applications.  

 

1.1. Continuity Equation 

 

The mass conservation equation keeps its form in the magnetohydrodynamics (MHD) 

case 

 

 ( ) 0=
∂
∂

+
∂
∂

k
k

v
xt

ρρ . (1.1.1) 
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Here and elsewhere we have in mind summation by repeating index. 

 

1.2. Equation of Motion 

 

 Only the Lorenz force is taken into account by transformations of the equation of motion. 

This is possible to do with the local electrical neutrality approximation. Electrons and ions can 

have different energy (temperature), but the total charge of the plasma in the calculating cell we 

can assume as zero. In that way, BvF ×=
c
q

ex   =>  BjF ×=
cex
1 .  By using Ampere's law, 

 

 ⎟
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+=
tc
DjB πμ 4rot . (1.2.1) 

 

Neglecting the displacement current 
t∂

∂D , we can write the initial equation of motion for the 

system (1.3) for the MHD case in vector form: 

 

   ( ) ( ) 0
4

1
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In tensor form, it is 
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We transform the additional magnetic term: 
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We can write the equation of motion as 
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The term on the right side of Eq. (1.2.3) is the divergence of magnetic field . In analytical 

formulations, this term is equal to zero. However, the divergence is not equal to zero in 

numerical calculations because of truncation errors. In modern numerical schemes [

B

B

9,10], this 

term is used to correct the solution and to stabilize the divergence B near zero. The effect of 

nonzero  is called "numerical" Dirac monopole. By combining the hydrodynamic pressure 

with "magnetic pressure", we can write the expression in conservative form: 

B⋅∇
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In the more exploitable vector formulation we have 
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1.3. Energy Equation 

 

By taking into account Eq. (1.4), we derive the energy equation in vector form from the 

equation set (1.3) as 

 

 ( )[ ] Ejv ⋅=+⋅∇+
∂
∂

hh
h pe
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e
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Combining this equation with Ampere's law without omitted displacement current 
t∂

∂D  in Eq. 

(1.2.1) gives the vector equation 
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At this stage the Hall term is not included in the energy equation. We assume that this term is 

small in the case of the plasma for EUV lithographic purposes, but we reserve it for future 

possible use of the Hall effect. Converting to tensor form, we have 
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For subsequent reductions, we use Faraday's law with the current of the numerical magnetic 

monopole:  
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Faraday's law allows us to split the magnetic term n
k

p
knp E

x
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∂

∂
ε

πμ4
 in Eq. (1.3.4): 
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Lorenz and resistance terms of field strength, Eq. (1.4), can be written in tensor form 
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This transformed term is then equal to the needed to add to the energy equation, Eq. (1.3.2b): 
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The  underlined terms above can be combined with the hydrodynamics energy and pressure.  The 

final expression for energy is 
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where  
πμ8

2Bee htot += ,    
πμ8

2Bpp htot += . (1.3.7a) 

 

The vector formulation of the energy equation without resistive term splitting is 
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1.4. Faraday's Equation 

 

The hydrodynamic equations set must be closed with the equation for external force, 

which can be obtained from Faraday's equation (1.3.4) for magnetic force. Faraday's equation 

should be reduced to the conservative form just as the magnetic field conservation law. For such 

a transformation, we use Eq. (1.4) with Lorenz and resistance terms in the tensor 

form
m

l
pmllmpmlp x

BcBv
c

E
∂
∂

+−= ε
πμ
ηε

4
1 : 

 12



 

0
4

1
=

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−
∂
∂

+
∂

∂

k

k
i

m

l
pmllmpml

k
ikp

i

x
Bv

x
BcBv

cx
c

t
B ε

πμ
ηεε  

 

( ) 0
4

2

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

−
∂

∂

k

k
i

m

l
pml

k
ikplmpml

k
ikp

i

x
Bv

x
Bc

x
Bv

xt
B ε

πμ
ηεεε  

 

( ) 0
4

2

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

−
∂

∂

k

k
i

m

l

k
pmlpiklm

k
pmlpik

i

x
Bv

x
Bc

x
Bv

xt
B

πμ
ηεεεε  

 

( ) ( ) ( ) 0
4

2

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−+
∂
∂

−−
∂

∂

k

k
i

m

l

k
kmilklimlm

k
kmilklim

i

x
Bv

x
Bc

x
Bv

xt
B

πμ
ηδδδδδδδδ  

 

( ) ( )
k

k
i

m

l

k
kmil

m

l

k
klimlm

k
kmillm

k
klim

i

x
Bv

x
Bc

xx
Bc

x
Bv

x
Bv

xt
B

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

+
∂
∂

−
∂

∂
πμ
ηδδ

πμ
ηδδδδδδ

44

22

 

( ) ( )
k

k
i

k

i

ki

k

k
ik

k
ki

k

i

x
Bv

x
Bc

xx
Bc

x
Bv

x
Bv

xt
B

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

+
∂
∂

−
∂

∂
πμ
η

πμ
η

44

22

. 

 

The final conservative form of Faraday's equation with the numerical "Dirac monopole" is 
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The vector form of this equation without splitting of the resistive term can be given as 
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From Eqs. (1.3) - (1.4.1), it is possible to write a general system of  MHD equations in 

orthonormalized Cartesian coordinates: 
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  (1.4.2) 

where  
πμ8

2Bee htot += ,    
πμ8

2Bpp htot += , and 3,2,1,, =mki .                             

 

The equation set (1.4.2) may be directly used for 3D TVD-LF calculations in the Cartesian 

coordinate system. For 2D calculations, however, the equation set (1.4.2) must be changed to 

another coordinate system, including curvilinear non-orthogonal coordinates. For this case, the 

equation set (1.4.2) must be transformed to the general tensor form. Bear in mind that  and iv iB  

are contravariant vectors and kx∂∂  is a covariant derivative. As a result,  is a twice 

contravariant tensor, and  a thrice contravariant tensor. We exclude resistivity terms 

from Eqs. (1.4.2) because of its large dimensions and consider this problem in the next section. 

We use the following: 

kivv
mmk vBB
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∂ , (1.4.3) 

 0∇=
∂
∂
t

. 

 

With this notation, we can represent the general MHD system as 
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The equation set (1.4.4a) describes, in general tensor form, ideal MHD equations (without 

resistivity terms) in all curvilinear coordinates, including nonorthogonal. The next section shows 

the detailed transformation of these equations for the cylindrical orthonormalized coordinate 

system. The derived equation set corresponds to the expression in vector form, which is using in 

most astrophysical applications:  
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2. Cylindrical Case of MHD Equations 

 

 The cylindrical case holds a central place in most practical applications. The HEIGHTS 

code uses the cylindrical coordinate system for modeling DPP devices [6-8] and for calculating 

LPP devices [11]. Applying cylindrical symmetry to DPP and LPP devices, we derived a general 

set of MHD equations (1.4.2) in an axisymmetric geometry (r, ϕ, z). Plasma motion was 

neglected along the ϕ direction, and we assumed that the magnetic field has only one component 

. The case of theta-pinch can be easily obtained from the general equations presented in the 

cylindrical coordinate system.  

ϕB
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2.1. Continuity Equation 

 

 

 For transformation of the equation set (1.4.4) in any coordinate system, one must define 

the covariant derivative of the contravariant components of the tensor or vector in the new 

coordinate system { }kq , . As is well known, the covariant derivative of contravariant 

components is the same as the physical derivative. For contravariant vector components, this 

derivative can be written as [

3,2,1=k

12] 
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where  represents Christoffel symbols of the second kind. For the cylindrical coordinate 

system, only two symbols are nonzero: 

j
nkΓ

 

 
r
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−=Γϕϕ   and  
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1

=Γϕ
ϕ . (2.1.2) 

 

Similarly, it is possible to define covariant derivatives for double and triple contravariant tensors 

in Eq. (2.1.1) [13]: 
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The transformation for the triple contravariant tensor with two equal indices is presented for 

convenience. Equations (2.1.1) and (2.1.2) can be used in Eq. (1.4.4) for the case of cylindrical 

coordinates (here and later we include only nonzero Christoffel symbols): 
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The final result is 
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2.2. Equation of Motion 
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The magnetic term with tensor ki BB  can be represented similarly: 
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These equations can be rewritten with divergence of the magnetic field:  

 

 k
k

r BB ;4
1
πμ

− =  ( )
z

BBB
r

B
r

rB
r

B zrrrr

∂
∂

−
∂
∂

−
∂

∂
−

πμϕπμπμ

ϕ

444
, 

 k
kBB ;4

1 ϕ

πμ
−   =  ( )

z
BBB

r
B

r
rB

r
B zr

∂
∂

−
∂
∂

−
∂

∂
−

πμϕπμπμ

ϕϕϕϕ

444
, (2.2.7) 

 k
k

z BB ;4
1
πμ

− =  ( )
z

BBB
r

B
r

rB
r

B zzzrz

∂
∂

−
∂
∂

−
∂

∂
−

πμϕπμπμ

ϕ

444
. 

 

From Eqs. (2.2.1)-(2.2.7), we can write the final equation of motion in the cylindrical coordinate 

system in projection to the r, ϕ, and z axes: 
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2.3. Energy Equation 

 

Energy conservation in a cylindrical system can be obtained by splitting the term 
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triple contravariant tensor. From Eq. (2.1.4) we have 
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As the tensor is a simple scalar, we can write mmvB
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In this way, the final expression for energy in a cylindrical system of coordinates is 
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2.4. Faraday's Equation 

 

Analogously to the velocity tensors Eqs. (2.2.1)-(2.2.3), the magnetic field terms can be 

transformed: 

 20
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By index change, we have the following: 
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Finally, the equations for Faraday's law in the cylindrical coordinate system with magnetic field 

divergence stabilizer are 
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2.5. Magnetic Diffusion Terms 

 

Modeling of laboratory plasma applications demands consideration of non-ideal diffusive 

magnetic problems. Dissipation of magnetic energy appears in the form of Joule heat in the 

energy equation and the diffusive term in Faraday's equation. These terms can be transformed to 

the cylindrical case from Eqs. (1.16b) and (1.17b): 
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Faraday's equation with resistivity term splitting yields 
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2.6. Case Studies for Cylindrical Symmetry 

 

In this section we present MHD equations for practical application in the two most 

exploitable cases: Z-pinch and Θ-pinch. In the first case, it is assumed that the plasma current is 

strongly parallel to the z-axis and one is uniform along the ϕ-axis. At the same time, the current 

can have a gradient in the r and z directions. The magnetic field has only one ϕ-projection in this 

ideal symmetric case. This idealization does not remove general plasma processes. Hence, we can 

have the z-gradient of the magnetic field ϕB as a result of the current z-gradient (for example, by 

fluctuation of resistivityη ). In this case, we have the z-gradient of magnetic tension 
πμ

ϕϕ

4r
BB

−  and 

a Rayleigh-Taylor type instability. On the basis of these assumptions, the final MHD system for 

Z-pinch symmetry that is used in HEIGHTS is given by 
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 In the Θ-pinch cylindrical symmetry case, we assume that the plasma current has an 

azimuth component only and is uniform along the ϕ-axis. At the same time, the current can have 

a gradient in the r and z directions. The magnetic field has only two projections in this ideal 

symmetric case: Br and Bz. This idealization does not remove general plasma processes. The 

resulting equations for this case are as follows:  
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3. Nonconvective Terms 

 

 The ideal MHD equation set (1.20) can be used to solve a limited physical problem such 

as a dense space plasma [10, 14, 15], to conduct theoretical investigations of instabilities [16-18] 

or to simplify real devices [19,20]. Key in modeling DPP or LPP devices, however, is 

representing the correct energy exchange and taking into account the main dissipative processes. 

It is essential to understand the transport processes, such as particle diffusion, heat conduction 

across the magnetic field, electric resistivity, and radiation transport. These processes occur as a 

result of plasma interactions, which may be described in terms of either binary collisions between 

particles or collective effects involving the scattering of particles by plasma waves. In general, 

the state of a fully ionized plasma of electrons and ions can be specified in terms of the velocity 
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distribution functions, which satisfy the kinetic equation for electrons and ions. In the 

approximation of no collisions, this equation is commonly referred to as the Vlasov or the 

collisionless Boltzmann equation. This description of ions and electrons in terms of distribution 

functions is often more detailed than is required. When the plasma is close to equilibrium, it is 

sufficient to describe the plasma in terms of macroscopic variables and the equation set (1.20). 

Additional nonconvective terms can be represented in the right side of the conservation law 

equations or transformed to additional dissipative fluxes. In the second case, Eq. (1.1) can be 

expanded to 

 

 ( ) 0~ =−⋅∇+
∂
∂

qqt
q FF ,  (3.1) 

 

where qF~  is the dissipative flux. At present, the HEIGHTS code includes three main dissipation 

sources: heat transport, magnetic diffusion, and radiation transport.  The general MHD equation 

set taking into account these processes in Eq. (3.1) is given as  
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(3.2) 

 

where λ  is thermal conductivity, η  the  resistivity, and S  the radiation flux. At first sight, the 

conservative equation set (3.2) can be easily solved with one of the numerous methods developed 

for the hyperbolic conservation law equations [

rad

10, 14, 15, 21]. However, direct use of convective 

hydrodynamic numerical schemes to (3.2) leads to nonphysical oscillations. The solutions can be 

obtained by use of time steps that are so small as to have no practical applications. The problem 

is that Eqs. (3.2) and (3.1) are not fully hyperbolic because the dissipative flux qF~  adds 

"parabolicity" to the system. A powerful approach that HEIGHTS utilizes for this problem is a 
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splitting method [22-24], which involves decoupling the full model into a separate component for 

each process, employing specialized numerical methods to solve each component, and coupling 

the resulting solutions. Thus, the MHD equations are solved as a decoupled set of hyperbolic and 

parabolic equations. At each time step Eq. (3.1) is split into decoupled subproblems (which may 

involve different meshes and solution methods) corresponding to the different physical processes 

(plasma flow, transport, diffusion, etc.) that occur within the computational domain or in 

individual regions. 

 The splitting algorithm has been used in the HEIGHTS numerical solution of Eq. (3.2) to 

separate the contributions from heat conduction, magnetic diffusion, and radiation transport. 

These processes redistribute internal energy and magnetic flux in the plasma.  

 

 

3.1. Heat Conduction 

 

 Heat conduction in the plasma is one of the most important physical processes that should 

be taken into account when modeling experimental plasma behavior. Energy redistribution 

because of heat spread leads to major changes in the thermal conditions of real plasma devices. 

Decoupled from Eq. (3.2), the system heat conduction equation can be given as 

 

 0=∇∇−
∂
∂ T

t
e λ . (3.1.1) 

 

For the 3D case in a Cartesian grid, we can write this as follow: 
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− zyxtT
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where  is specific heat at constant pressure. With this parabolic equation, implicit numerical 

schemes are the most effective methods for obtaining results. However, these schemes have a 

pc
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limiting factor and an appreciable disadvantage: they require extensive computer memory. 

Consideration of full 3D schemes is most critical. To avoid this problem the HEIGHTS code uses 

sparse matrix technology. The idea of excluding zero elements from the final linear equations 

matrix [25] is key to this theory. 

We used a grid of gradually varying cell size by imposing unequal grid spacing 

2121 −+ −=Δ iii xxx , 2121 −+ −=Δ jjj yyy , and 2121 −+ −=Δ kkk zzz in the x, y, and z directions, 

respectively.  The subscripts 21+i , 21+j , and 21+k  refer to quantities defined on the cell 

interfaces 21+ix , 21+jy , and 21+kz .  Cell centers ( ) 22121 −+ += iii xxx ,  ( ) 22121 −+ += jjj yyy , and 

( ) 22121 −+ += kkk zzz  are specified at positions ( )kji ,, .  We used standard notation for evaluating 

the function  defined at cell centers n
kjiT ,, ( )kji ,,  and time level n.  We assumed time spacing  

with intervals .  The spatial derivatives were approximated at each point 

nt

nnn ttt −=Δ +1 ( )kji ,,  by 

using centered differences with truncation error of order 2=o .  

The spatial derivative of temperature in the x-direction at  can be approximated as ix
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Analogous approximation along the y- and z-axes follows after reduction to the common 

expression: 
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where the coefficients are 
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Equation (3.1.4) can be rewritten in simple matrix form as 

 

 . (3.1.5) DTA =⋅

 

 We assume that the plasma parameters do not change during one time step; the linear 

equations include specific heat  and density  with n time steps.  Equation (3.1.5) is a 

closed system, where the number of unknown values equals the number of linear equations if the 

boundary conditions are determined.  In general, boundary conditions on any border Γ are given 

by 

{ }
n

jipc ,
n

ji,ρ

( )tTfTT ,
ΓΓΓ

=+∇ βλα , where the numerical parameters α and β specify the situation at 

the Γ border for given a heat flux (α = 1, β = 1), given temperature (α = 0, β = 1), or heat flux as 

a function of temperature.  The simplest case of thermally isolated borders can be realized as 
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equivalences 
( )

0=
∂
∂

=Γ constxx
T ,  

( )
0=

∂
∂

=Γ constyy
T , and 

( )
0=

∂
∂

=Γ constzz
T .  A more comprehensive 

discussion of boundary conditions is presented in [26].  Numerical simulation with the implicit 

scheme is unconditionally stable, and in combined schemes the limiting factor on the time step is 

usually the explicit part (the convection stage in our case).  Ideal MHD calculations demand 

Courant-Friedrich-Levi conditions for the explicit algorithm [27].  In the heat conduction 

equation the time step limiter can be used: 
λ

ρ
2

min~
2

pcx
t

Δ
Δ , where Δx is the minimal cell size. 

In Fig. 3, we present the matrix expression for the heat conduction equation in the simplest 3 × 3 

× 3 domain, where zero elements are shown as empty cells.  The linear system is sparse and 

seven-diagonal.  The coefficient matrix size is n·m·k × n·m·k × n·m·k, where n, m, and k are the 

cell amounts along the x-, y-, and z-axes.  In our LPP problem, the largest grid size was 60 × 60 × 

60 cells, which produces a coefficient matrix of about 1.0·1016 elements.  This large sparse matrix 

has an extremely large number of zero elements. The structure of the matrix is invariable, with 

linear equations that describe nonuseful cells.  Key to computational efficiency is to store and 

operate on only nonzero entries of the matrix.  Several mathematic libraries (e.g., NAG, IMSL, 

and PARDISO) are used for solution of linear equation systems with a band or sparse matrix.  

MUMPS and SuperLU codes allow parallel solution of the system of linear equations given in 

(3.1.5) [28]. Calculations for the complex domain need special code for implementation of 

boundary conditions and exclusion of nonuseful domain areas.  If the computational domain does 

not change during the simulation time (no motion of any device walls), the best calculational 

method is to analyze the domain form before the start of the main computer program, and to 

prepare templates of needed matrices.  In contrast to the explicit algorithm, where it is possible to 
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have a separate module of boundary conditions, the implicit code requires embedding of the 

linear coefficients A and D during construction of matrices A and D. 

Fig. 3. Detail matrix construction for domain 3 × 3 × 3. Empty cells correspond to zero 
elements.  

 

3.2. Magnetic Diffusion and Magnetic Source  

 

 The magnetic diffusion equation is similar to the heat conduction equation: 
 

 ( ) 0
4

2

=×∇×∇+
∂
∂ BB η

πμ
c

t
. (3.2.1) 

 

The three-dimensional case has no discontinuities and can be solved analogously to the heat 

conduction, Section 3.1. The 2D cylindrical geometry is more complicated because of the 

discontinuity at . An implicit numerical method is considered in this section for application 0=r

 31



to cylindrical geometry and to the problem of the discontinuity at the zero point. Following the 

equation set in Section 2.5, we can give Eq. (3.2.1) for this case as 
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where the magnetic field B has one component along the ϕ-axis. The first space derivation term 

in this equation can be approximated as 
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The linear coefficients in Eq. (3.2.3) cannot be determined if 021 =±ir . In other words, the 

magnetic field derivation is not defined at the zero point. However, the requirement of the 

equivalence of the left- and right-side derivatives and the calculation of the limit to zero yield a 

full description of the numerical function behavior near the singularity point 0
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Implementation of Eq. (3.2.4) conditions in (3.2.3) provides coefficients for the first cell of the 

computational domain: 
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The second space derivation term (z-axis) in Eq. (3.2.2) has no exclusions and can be solved 

similarly to heat conduction 
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Finally, after transformations, Eq. (3.2.2) can be represented as a linear equation system: 
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where coefficients A  and are calculated from corresponding : D C
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 The time steps for implicit magnetic diffusion algorithms are discussed in [29].  

Conditions on the external borders of the domain are determined by various physical processes.  

Most useful are the following: current rcIB 2=
Γ

; symmetry 
( )
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∂

∂

=Γ constrr
rB , 

( )
0=

∂
∂

=Γ constzz
B ; 

and conducting wall 0=
Γ

B . 

 The self-generated magnetic fields in laser-produced plasmas are of much theoretical and 

experimental interest because of their role in the design of inertial confinement fusion targets [30-

32]. Interest in this area arises from the large number of transport characteristics (e.g., thermal 

transport, lateral plasma flow, and fast plasma blowoff), which affect the performance of the 

target. These, in turn, are related to the properties of large-scale magnetic fields generated in the 

system. Based on these properties, the HEIGHTS package takes into account the magnetic field 

source term in the Faraday equation (1.17b): 
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Here,  and  are the concentration and temperature of electrons. Numerical simulations have 

been undertaken to investigate the influence of the self-generated magnetic field on plasma 

parameters and on the EUV output for a laser radiation power of 10

en eT

11 − 1012 W/cm2. Numerical 

simulations of the LPP device with droplet and planar targets showed a very small dependence of 

the plasma parameters on the thermomagnetic source for the laser radiation power [11].  
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3.3. Radiation Transport 

 

 Data obtained for the temperature and radiation flux fields in star photospheres was 

applied to the calculation of star luminance [33]. Radiation transport theory was created on the 

basis of this classical problem, from which numerical methods and approximations of the 

radiation transport equation solution were developed [34]. Stationary stars are huge gaseous 

objects that are heated from several thousands degrees on their surface up to millions in the 

center. Massive heated gaseous spheres of that kind radiate only from their surface. Gas in the 

star body is optically very thick, and space around the star is optically very thin. This situation 

enables a simple approximation of the radiation transport equation: diffusion approximation, 

radiative heat conduction, forward-reverse, and so forth. A laboratory plasma has a specific place 

in this regard. Such a plasma is usually a nonstationary object, where an intermediate variant is 

present: not thick and not thin optically. Simple approximations are invalid as a rule for most 

practical applications. Advanced physical models and numerical methods should be applied to 

obtaining correct results. The HEIGHTS system uses two approaches: direct Gauss integration of 

the radiation transport equation and a Monte Carlo model with a weight factor hierarchy. Direct 

solution of the radiation transport equation is more correct in a certain sense but has a serious 

disadvantage: it is very expensive. Thus, it is applied only as a test for Monte Carlo calculations. 

 Direct Gauss Integration. The main goal of this method is to obtain the radiation flux in 

every cell of the MHD mesh and its divergence: 

 

 radrad SQ
r

⋅∇= . (3.3.1) 

 

The divergence indicates the loss of radiation energy in some cells and adding of radiation energy 

in other cells. Radiation flux is integrated by a spectrum (or quantum of energy) and is an angular 

variable. It depends on the distribution of thermodynamic parameters (temperature and density) 

in the entire volume under consideration: 
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where  is the spectral radiation intensity and EI
→

Ω  is a unit vector in the direction of quanta 

distribution . Suppose n is a normal vector to the unit element, which quanta cross (see Fig. 4). 

The projection of the radiation flux vector onto n is 

s
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π

cos
)4(

 

For the solid angle  ϕθθ ddd sin=Ω , it is possible to obtain 

the expression: 

 

                    , ∫ ∫=
π π

θθθθϕϕ
2

0 0

sincos),( dIdS EE

                                                          

where ϕ and θ are the angles that determine the direction of 

the quanta distribution. 
Fig. 4. Integration scheme. 

  

  

 In the case of cylindrical symmetry, the spectral flux at the point with coordinates r0 and 

z0 is described by the expression 

 

 ,  (3.3.4a) ∫ ∫=
π π

θθθθϕϕ
0 0

sincos),(2 dIdS EE

 

where the symmetry of the quanta distribution on the corner ϕ is taken into account. Here, ϕ is 

the angle between the projection of the direction  to the plane, perpendicular to the -axis and 

normal to the cylindrical surface; and 

s z

θ  is the angle between the direction s  and the -axis (Fig. 

5).  

z
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Fig. 5. Cylindrical geometry case.

 

For projections of the radiation flux on the radial r- and axial z-axis we have 
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The spectral radiation intensity IE(r0, z0, ϕ, θ) is found from the solution of the radiation transport 

equation (RTE): 

  

 EEabsEpEemi
E IkIk

ds
dI

−= . (3.3.5) 

 

Here, Eabsκ  is a spectral absorption coefficient for quanta with energy E, Eemiκ  is a spectral 

emission coefficient, IE is the spectral intensity, and IEp is the spectral equilibrium intensity. RTE 

represents the energy conservation law for the radiation intensity. The equilibrium intensity IEp is 

defined by the Planck function: 
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Equation (3.3.5) is a one-dimensional differential equation relative to the intensity along the ray 

of the quanta distribution. A formal solution of a Cauchy problem is given for this equation: 

 

∫ ∫∫ −+−=
s

s

s

s
EabsEemiEp

s

s
EabsEE dsdssksksIdssksIsI

00 '
0 '}'')''(exp{)'()'(}')'(exp{)()( ,  (3.3.7) 

 

which expresses the fact that the intensity at any point in a given direction is the result of the 

emission at all anterior points , reduced by the factor                   

to allow for absorption by intervening matter. 

's }')'(exp{
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∫−
s

s
Eabs dssk

 The RTE solution is determined by the temperature and density on the ray (they 

determine the spectral coefficients and the equilibrium intensity) and does not depend on the 

geometry of the plasma. 

 Equation (3.3.5) can be written as 
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where dskd abs=τ . This leads to 
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The numerical approximation of Eq. (3.3.9) was obtained by discretization of the integration half-

lines. At the same time, we assume that the changing of temperature and density (and 
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accordingly, the spectral coefficients) is insignificant within the one-cell boundaries. Then, the 

spectral intensity value on the observation ray is found by integration of values in the cells using 
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from which 
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Integrating yields 
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and 
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In view of the chosen discretization, the Planck function derivative is a constant value in each 

cell. Thus, 
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Here )( 11 −− −=−=Δ iiabsiii ssκτττ  is the optical absorption thickness of the cell for quanta with 

energy E. 
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 Using Eq. (3.3.10), we can calculate the spectral intensity along the radiation ray. Next, 

we derive  the spectral components of the radiation flux in the point. All quanta of energies must 

be integrated to find the total components of the radiation flux: 
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Taking into consideration Eqs. (3.3.4b) and (3.3.4c), we obtain 
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 Integration by Spectrum: The total radiation flux in the point is found by angular 

integration of the total intensity values from Eqs. (3.3.11) and (3.3.12). The total intensity is the 

result of integrating by the energy quanta: 
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The energy spectrum grouping is used to obtain a numerical approximation of the last integral 

solution. Each group Ek is defined by the boundary values of energy quanta Ek и Ek+1 and the 

mean group absorption and emission coefficients. Then, the total radiation intensity is found by 

summation of the intensity values, obtained for the spectral groups: 
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Based on Eq. (3.3.9), we integrate the Planck function for each group by its boundary values: 
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Estimation of the quantum energy, which can be ignored with a given error (~ 10-4) is carried out 

to reduce the calculation time before integrating the intensity along the ray. The following 

inequality can be used: 
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Maximal value of temperature Tmax along the ray is found for that inequality. The approximate 

integral value is calculated as ∫
∞

=
−0

43
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dxx , from which it follows that                
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This estimation allows us to determine the energy group and all following energy groups whose 

contributions are less than 10-4. These groups are not taken into account when the intensity 

integration along the ray is carried out. Tables of absorption and emission coefficients with the 

detailed resolution on the quanta energy, density, and temperature are used when the intensity for 

the spectral group is calculated.  

 Integration by Ray: We need to know the temperature and density distributions on the ray 

to calculate the intensity along the half-line from Eq. (3.3.10). For this reason, the ray is divided 

into equal cells Δl from the starting point ( r0, z0 )  to the exit from the hydrodynamic mesh. We 

assume that the change of temperature and density (and accordingly, the spectral coefficients) is 

insignificant within the bounds of one cell. In the first step the coordinates of the boundary points 

are calculated relative to the r- and z-axes. The coordinates depend on the angles ϕ and θ (they 

determine the ray direction).  The z-coordinate can be obtained next. Since the distance from the 
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ray starting point ( r0, z0 )  to point ( ri, zi )  is equal to Δl * i and since the z0 coordinate is known, 

for angle 
2

0 πθ <<  (Fig. 6), 

 

 θθ cos**cos* 0000 ilzZZAZCZAZBZz iiii Δ+=+=+== . 

 

For angle πθπ
<<

2
  (Fig. 7), 

 

 θθ cos**cos* 00000 ilzZZAZCZAZBZz iii Δ−=−=−== . 

 

 

Fig. 6. z-coordinate for 
2

0 πθ << . 

 

Fig.7. z-coordinate for πθπ
<<

2
. 

 

 

 

 

 

 

 

 

 

 

The r-coordinate is calculated in the next step. It is needed to obtain the projection of the segment 

|Z0Zi| onto the rϕ - plane: θsin*i*lRR i Δ=0 . The |R0B| distance is given by 

22
00 OBORBR −= , where OB  is the nearest distance from the coordinate center to the ray 

(Figs. 8 and 9): ϕsin*0OROB = . Then, for  
2

0 πϕ <<  (Fig. 8) ii RRBRBR 00 += . 
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Fig. 8. Ray expansion for 
2

0 πϕ << . Fig. 9. Ray expansion for πϕπ
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. 

 

 

 

 

 

 

 

 

 

 

 

For  πϕπ
<<

2
 (Fig. 9), depending on the location of the point ri, we have ii RRBRBR 00 −=          

or BRRRBR ii 00 −= . Now, we find the r-coordinate of the point by using the distances  

22
iii BROBORr +== . 

 Knowing the point coordinates allows us to determine the temperature and density values 

by using the MHD plasma parameters at these cell points. Next, we determine which cell of the 

hydrodynamic mesh the point belongs to. As assumed earlier, temperature and density in the 

bounds of one cell are constant. From this MHD data we can calculate absorption and emission 

coefficients in the ray points (from the tables) and obtain the equilibrium intensity. Then, the 

intensity by the observation ray is calculated with Eq. (3.3.10).  

 Integration by Angles: The total intensity is integrated by the angles ϕ and θ within the 

ranges πϕ ≤≤0   and  πθ ≤≤0 . The total components of the radiation flux are calculated in the 

point by Eqs. (3.3.11) and (3.3.12). Integrals over angles are approximated by the Gauss 

quadrature method: 
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Here, Ci are weights of the Gauss quadrature, and ξi,j are abscissas (changing from -1 up to 1). 

The splitting is carried out at nodal values ϕi and θj equal to )1(
2 ii ξπϕ +=  and  )1(

2 ij ξπθ += . 

 Expressions for calculating the flux components are written with Eq. (3.3.15) as follows: 
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 The HEIGHTS code can vary in order of angular quadrature. Depending on the given 

order of Gauss quadrature, the integration can be carried out by 8, 12, 16, 20, 24, 32, 64, 80, or 96 

points of an angular grid. Accordingly, the total flux value in each point is calculated by 

integration of the intensity in the direction of 64, 144, 400, 576, 1024, 4096, 6400 or 9216 

observation rays, going out from the point. The angular integration accuracy increases with 

increasing order of Gauss. But the calculation time increases greatly, too. Abscissas and weights 

for integration by Gauss quadrature are determined in advance and are kept in the tables of values 

in the positive half-range, from which the arrays of values in the range from -1 to 1 are generated. 

 Sequential Algorithm of the Radiation Flux: To take into account heat radiation energy 

redistribution, the MHD task includes calculation of the radiation flux and its divergence based 

on current temperature and density field. The MHD task is solved in two-dimensional space, but 

the radiation flux is calculated in a 3D volume. However in consequence of the cylindrical 

symmetry HEIGHTS algorithm can use the grid partitioning of two-dimensional MHD space in 

the procedure of the radiation flux calculating and we can get the flux values in central points of 

the hydrodynamic mesh. 

 Solving the problem is divided into subtasks: 

1. Input initial data – the size of MHD mesh, the optical characteristics tables (energy groups 

bounds, absorption and emission coefficients), the order of Gauss quadrature. 
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2. Initialization of the workspace – the construction of calculation mesh, which is similar to 

the MHD mesh, the preparation of the abscissas and weights arrays in compliance with 

chosen order of Gauss quadrature. 

3. Organization of the cycle for the radiation flux components calculating in central points of 

all mesh cells by z-axial and r-radial axis. It includes the following:  

• Determination of the thermodynamic parameters distribution on the ray, going out 

from central point ( r0, z0 ) on given angles ϕi, θj  (temperature T(r0, z0, ϕi, θj) and 

density ρ( r0, z0, ϕi, θj )). 

• Obtaining of the necessary integration limits by quanta energy Emax, depending on 

maximal temperature on the ray Tmax( r0, z0, ϕi, θj ) using (3.3.14). 

• Calculation of the equilibrium intensity values for each spectral group by (3.3.13) 

and the intensity integration I Ek ( r0, z0, ϕi, θj ) by the ray at point ( r0, z0 ) using 

(3.3.10).  

• Integration of the intensity by the energy groups: 
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• Integration of the intensity by the angles using (3.3.16) and (3.3.17):     
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4. Calculation of the flux divergence, taking into account the cylindrical symmetry by 

formula: 
z

SrS
rr

S Z
R ∂

∂
+

∂
∂

=⋅∇ )(1r
. 

Since the same optical characteristics tables and grid partitioning are used during the total process 

of the MHD task solving subtasks 1 and 2 are executed at first call of the flux calculating 

procedure only. Each call of the procedure is conducted by the transfer of current temperature 

and density values in central points of the hydrodynamic mesh to it. 

 

Monte Carlo Radiation Transport. As stated in Section 3.3, HEIGHTS can use two approaches 

to calculate radiation transport: direct Gauss integration of the radiation transport equation and 
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Monte Carlo technique with weight factors hierarchy. Each method has its own advantages and 

disadvantages. Test calculations show that both methods give good coordinated results and can 

be used selectively. Because Monte Carlo calculations demand smaller computational 

capabilities, this method was used for the basic simulation, and direct integration was used to 

verify our results. 

By considering radiation transport processes, we need to indicate two general aspects. 

Radiation fluxes should be determined for (1) correction of the plasma thermal energy and, as a 

result, correction of the plasma motion in device, and (2) investigation of the final useful part of 

the plasma radiation. These problems involve different requirements for the flux data and as a 

result require different numerical techniques for solving the photon transport problem. Correct 

calculation of the energy space redistribution in the full spectrum plays a leading role in the 

solution of the first problem. The model describes radiation transport adequately only if it takes 

into account the optical thickness of the plasma over a wide spectral range. One must divide the 

full spectrum of the plasma in the working diapason of the device into narrow spectral ranges 

with separation of strongest lines. The total spectral range must be optimized to accurate 

describing of the radiation energy redistribution using reasonable computational capability. As 

practice calculations show, MHD results have an acceptable error by the total number of spectral 

ranges about ~103. These opacities will be inapplicable for detailed investigations in spectral 

band of plasma focus devices 13.5±2% nm. Hence two sets of optical opacities are needed: 

general (for full energy redistribution calculations) and detailed (for a specific spectral band). 

MHD simulations execute by application of general tables. Density and temperature fields are 

obtained during simulation. The second stage of calculations involves investigations in the 

working spectral band of the device, where prepared density and temperature fields.  The detailed 

set of optical opacities is used there. 

 Emission of Photons. Monte Carlo methods work by following the evolution of test 

particles and have the advantage of being relatively straightforward to apply to complex 

geometries (Fig. 10). We used a numerical algorithm with a weight hierarchy of statistical 

accumulated events. Two major weight categories were allocated: normalization of emitted 

photon "bundles" relative to the most radiated cell of computational domain, and normalization of 

the photon bundle magnitudes relative to the optical thickness of cell. The first weight coefficient 

enables us to detail the emission process by neglecting the cold cell emission. 
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Fig. 10. Monte Carlo presentation of emission-absorption process for (a) 2D cylindrical geometry, and (b) 3D case. 

 

With the second coefficient, "idle" processes are ignored: situations with emitting and absorption 

in one cell (absorbed lines). These coefficients allowed us to decrease significantly the 

computational burden. As preliminary calculations at a strongly nonuniform mesh showed, a 

third weight coefficient can be useful. The volume of the emitting cell can be so small that the 

amount needed to simulation photon bundles will not enough to the proper results. The volume 

weight coefficient increases the computation accuracy in this case. 

 As is well known [34], one needs to integrate the emission coefficient  with Planck's 

function 

emk

( )ωB  in the full spectrum to obtain the number N of photons emitted in space (from 

the volume unit in the time unit):  
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After substitution and change of variables we obtain the follow expression that is convenient for 

numerical calculations: 
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where 

E - energy of emitted photon [eV]; 

maxmin , EE  - spectral range [eV]; 

( )ρ,,TEkem  - emission coefficient [cm-1]; 

T - plasma temperature [eV]; 

ρ - plasma density [g/cm3] 

h = 6.58217×10-16  [eV⋅s] - Planck's constant; 

c =2.9979×1010  [cm/s] – speed of light. 

From the cell volume, temperature, and density we calculate the total amount of photons that 

arise in the time unit:  
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where  is the volume of cell (i,,j,k).  kjiV ,,

 

The HEIGHTS code uses the Simpson's integration method: 
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For a reasonable degree of accuracy, we need . 10≥M

The most critical point of Monte Carlo simulation algorithm is a search of most radiated cell. 
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An incorrect choice follows to the wrong weight coefficient and, as a result, to a decrease in the 

efficiency of the calculations. We use a function  in our numerical algorithm. 

Unfortunately, simple functions for the density, temperature and cell volume do not always give 

correct results. Hence, we use the cited function for the first time step only.  The calculations 

subsequently use information about photon emission obtained from the previous time step. This 

technique significantly increases the efficiency of the calculations. The total amount of photons 

in most radiated cell is used for initial normalization of photon bundles. A reasonable degree of 

accuracy requires any amount of emission test simulation not less than . Based on this 

assumption the first weight coefficient of photon bundle is 

cellL VTF 42ρ=

simN

 

 
simN

N
W

max

1 = . (3.3.23) 

 
maxN  is the integral (3.3.21) in the most radiated cell. To obtain good accuracy for the radiation 

transport calculations, we need  ~10simN 3.  

 With the Monte Carlo radiation transport method, one can simulate situation in which a 

spectral band is absorbed greatly within one cell volume. The Monte Carlo algorithm brings to 

the "idle tests" in this case. The particle energy is subtracted from the cell energy by emission 

simulation and is added by absorption in the same cell. A second weight coefficient is introduced 

to solve this problem: 

 

 { } ( ) ikjikjinabs
n

kji rTEkW Δ= ,,,,,,2 ,, ρ . (3.3.24) 

 

{
n

kjiW ,,2 }  is the weight coefficient of the nth spectral range in the cell (i,j,k); ( )kjikjinabs TEk ,,,, ,, ρ  is 

the absorption coefficient of the nth spectral range in the cell (i,j,k); and   is the characteristic 

size of the cell. If the expression (3.3.24) is less than 1, the second coefficient is equivalent to 1. 

 It is possible to avoid simulations in absorbed lines. On the basis of the presented theory, 

the following algorithm was developed for Monte Carlo modeling of photon emission: 

irΔ
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1. The total amount of emitted photons is calculated in the most radiated cell by integration 

range-by-range: 
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This expression assumes that the emission coefficient ( )maxmax ,, ρTEk nem  is constant within one 

spectral range. M  is the total number of ranges.  

2. The first weight coefficient  is calculated by the formula (3.3.23). 1W

3. The spectral range distribution of emitted photons is obtained  for the (i,j,k) cell: 

 

 
( )

∫
+

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

1
,,

1

2
223

,,,,,
,, 1

,, k

k

kji

E

E

T
E

kjikjinemjin
kji dEeE

c
TEkV

N
π

ρ
h

. (3.3.26) 

 

4. The spectral range distribution of the second weight coefficient is determined for the (i,j,k) 

cell by the formula (3.3.24). 

5. Taking into account obtained weight factors, we can calculate the total sum of Monte Carlo 

emission tests in  the (i,j,k) cell: 
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6. We need to normalize the emission spectra on unit for the photon energy: 
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We assume that the photon energies were distributed equiprobability within one spectral 

range. Hence, linear interpolation was used to sample the emitted particle energy . Taking phE
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into account both weight factors gives energy of the photon bundle  as a 

function of the spectral range number . The range number is determined with the real physical 

energy of photon . The value  is subtracted from the cell energy by the emission process 

and added by the absorption process.  

{
n

kjiph
sim
ph WWEE ,,21= }

n

phE sim
phE

 Photons Transition: It is important in the simulation to choose properly the start position 

of the sampled photon bundle within the domain cell and the initial direction of motion [35]. 

Axisymmetric geometry sampling of the start coordinates along z axis is equiprobable 

(analogously x, y and z in Cartesian 3D). Curvature of space should be taken into account along 

the r axis: as one approached the cell volume decreases by constant step rΔ  (see Fig. 11). These 

facts follow to expressions: 

 

 ( 121 zzzz −+= )ξ , (3.3.29) 

 ( )2
1

2
2

2
1 rrrr −+= ξ , (3.3.30) 

 

where 

1r ,  are the left and right borders of cell along r axis correspondingly; 2r

1z ,  are the left and right borders of cell along z axis correspondingly; 2z

ξ is the random number within the interval [0,1]. 

Equiprobable space directions (azimuth angle ϕ  and axial angle θ  in Fig. 10) are sampled with 

standard method: 

 

 πξϕ 2= , (3.3.31) 

 12cos −= ξθ . 

 

 Photons Absorption: Attenuation of light intensity as a result of matter absorption is 

described by the expression  [
( )∫

=
−

l

as dllk

eII 0

,

0

ω

36] or, in photon number terms 
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 . (3.3.32) ( ) ( )
( )∫

=
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l

abs dllk

eNN 0

,
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ω

ωω

 

Here ( )ω0N  is the initial number of photons with frequency ω  and l  is the path length. 

 

 

 

 

 

 

 

 

 

                                                                  (a)                                                                   (b) 

 
Fig. 11. Probability density distributions of photon start coordinates along axes within 

one computational domain cell: (a) r-axis; (b) Z-axis.  

 

By considering the photon path within one cell (where the absorption coefficient is independent 

of the coordinates) we can calculate the attenuation as 

 

 . (3.3.33) ( ) ( ) ( )lkabseNN ωωω −= 0

 

The absorption/transition probability of the photon by path length  in the cell (i,j,k) following 

the expression (3.3.32) is given 

l
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For complete simulation of the absorption process, we need to have the absorption coefficient 

(which depends on the matter parameters in the computational domain cell and on the photon 

energy), and we need to know the photon path length in this cell. The photon path length within 

the cell can be obtained by consecutive solution of equation systems for the cell borders. For the 

more complicated case of cylindrical symmetry, these equations are [37] 

 

 , (3.3.35) 
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Here,  is the start position of photon, is the final position (intersection with  

border or  border of cell), 

( 000 ,, zyx ) ),,( zyx jz

ir θ  is the axial angle, ϕ  is the azimuth angle. The photon path length 

 is the minimum at the system (3.3.35)-(3.3.36) solutions.  l

 After sampling the and  energies, photon transition of computational domain 

cells is simulated by checking each cell on absorption. Summation of all test results 

phE sim
phE

∑=
kji

sim
kjiNN

,,
,,  

presents information about the energy redistribution in the computational domain due to radiation 

transport. Installation of additional counters at the cell borders enables us to calculate radiation 

fluxes in matter. We can easily obtain the radiation fluxes on surfaces with complicated 

geometry. Investigation of radiation spectra requires additional registration of the energy 

distributions of the absorbed photons. Our numerical technique has universality both for radiated 

objects geometry and spectral bands applications. Depending on the problem, one can investigate 

energy redistribution over a wide range or can calculate radiation transport in a narrow band by 

detailed resolution of each spectral line. 
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3.4. Laser Radiation Absorption 

 

 Ideally, the laser absorption by a target should be treated in two phases: first by the cold, 

unperturbed target and then by the target having a plasma layer in front of the remaining solid 

target. Most of the hydrodynamics codes developed for infrared, visible, or UV lasers interaction 

consider the plasma creation as instantaneous, at last compared to the driving laser duration. In 

this approximation, the laser interacts only with the expanding plasma because the beam is 

reflected at the critical density, typically about a hundred times lower than the solid density. 

Figures 12 and 13 present HEIGHTS calculations of the 10× attenuation of the initial laser beam 

intensity for a Xe target. The figures show the depth of penetration for wave lengths λ = 1.064 

μm and λ = 0.53 μm, respectively, which are use extensively in LPP devices for EUV 

lithography [38-41]. For most parts of the modeling, inverse bremsstrahlung was proposed as the 

process by which the laser radiation was absorbed by the plasma electrons [42, 43].  

The HEIGHTS package uses, for the laser radiation absorption simulation, the Monte 

Carlo technology presented in Section 3.3. Advanced schemes allow one to model the laser 

beams distributed in time and space, focused in any space point. Reflection processes are taken 

into account.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Depth of the 10× laser beam attenuation in Xe plasma for λ = 1.064 μm. 
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 The laser beam is considered as directional flux of the macro-photons. The separate 

macro-photon has the same properties (absorption, reflection probability, etc.) of the one real 

laser radiation photon. However, the action of each real photon cannot be simulated because of 

large number of real photons in the beam, and the action (energy transport) of each group photon 

is combined into the macro-photon action. The number of real photons  in the macro-

photon can be estimated from the total number of available macro-photons   

macroW

macroN

 

 
macro

real
macro W

NN = ,   
ph

las
real E

PN = .  (3.4.1) 

 

Here  is the momentary laser power, and  is the energy of one real laser radiation photon. lasP phE

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 13. Depth of the 10× laser beam attenuation in Xe plasma for λ = 0.53 μm. 

 

The HEGHTS package considers the time distribution of the laser pulse power. In the case of 

square time distribution, the laser pulse power is  

 

 
pulse

pulse
las t

Q
P = , (3.4.2) 
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where the energy of the pulse  is distributed uniformly in the pulse duration . Gaussian 

distribution in time can be expressed as a time function: 

pulseQ pulset
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σ .  (3.4.3) 

 

This equation assumes, that the pulse duration is tpulset σ2= . The maximal power  can be 

calculated from the integral (see Fig. 14) 
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Fig. 14. Gaussian distribution of the laser pulse energy in time.  

 

 Assuming a round laser beam cross-section, one can choose the space distribution of the 

laser radiation flux to be uniform and Gaussian along the radius. Most applications have Gaussian 

space distribution [44] 
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where taken into account pulse power distribution in time ( )tPlas . There is also proposed that 

radius of beam is equal sbeamr σ=  in Eq. (3.4.5). Double integration of the Gauss distribution has 

the analytical solution 
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and hence the laser intensity in case of Gaussian space distribution can be given as 

 

 ( ) ( )
⎭
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⎫

⎩
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2

2 exp,
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las rtPtrI
σπσ

. (3.4.7) 

 

Equation (3.4.7) loses an exponential term in the case of square space distribution.  

 The HEIGHTS package has a computation module for controlling the directional and 

focusing the characteristics of a laser beam set. Figure 15 presents a 3D computation domain 

directed onto the target laser beam. 

 

 

 

 

 

 

 

 

 

 

 Fig. 15. Laser beam determination in the three-dimensional space. 
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For a full description of the laser beam, we need to define the coordinates of the initial laser beam 

point , the radius of the beam at initial point , the final point , and the 

final radius . Additionally, we should define where the focus point  of the laser beam is 

located: inside or outside the [ segment. These five items define the space geometry of the 

laser beam completely. A parallel laser beam can be defined with  and focus location 

outside the  segment. Following this simple method for determining the laser beam 

position, the numerical algorithm should simulate the start point coordinate and direction for each 

laser radiation photon (by conservation of the time and space distributions). The photons initial 

position can be simulated easily in an adjuvant (primed) 3D Cartesian coordinate system, which 

was used for the conversion between laboratory and primed coordinate systems. The primed 

coordinate system was selected so that the 

( 1111 ,, zyxO ) )

]

]

1r ( 2222 ,, zyxO

2r F

21OO

21 rr =

[ 21OO

z′ -axis was parallel to the laser beam axis and the x′ -

axis was located on the plane. The position relationship of two systems and yx0 S S ′ can be 

described by using two Euler angles Θ  and Φ  only [46]. The third Euler angle is equal to 

zero because the -axis coincides with the line of nodes located on the plane. Hence, 

arbitrariness is correct in the case of the equiprobable distribution of the laser beam photons in 

the azimuth direction and no strong requirements on the orientation of the -axis. The junction 

between the systems of coordinates can be expressed in matrix form as follows 

Ψ

x′ yx0
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where the Euler angles  and  can be calculated from the laser beam axis orientation in the  

system: 

Θ Φ S
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Additionally, shift between the start plane of photons and point of origin in the primed system S ′  

( ) ( ) ( )2
21

2
21

2
211 zzyyxxzz −+−+−−′=′Δ  is taken into account. In accordance with (3.4.5)-

(3.4.7) we obtained equations for simulating the square space distribution of the laser beam with 

radius sσ : 
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and for Gaussian distribution 
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Here 1ξ  and 2ξ  are independent random numbers in the interval [0, 1]. 

 As was mentioned earlier the HEGHTS model considers laser absorption in a plasma 

cloud. Therefore, inverse bremsstrahlung was assumed as the main process by which the laser 

radiation was absorbed by the plasma electrons. The classical value for the absorption coefficient 

 characterizing this collisional absorption mechanism is [las
absk 47] 

 

 ( )
( ) ( ) 2122232

62

123
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abs

Tkmc

eZnk
−

Λ
= , (3.4.12) 

 

where , , , and  are the electron charge, density, mass and temperature respectively;  

is the ionic charge;  is the light speed; 

e en em eT Ze

c ν  is the frequency of laser light; 
e

e
p m

en
π

ν
2

=  is the 

plasma frequency; and  is the Boltzmann constant. The Coulomb logarithm is given by [Bk 48] 
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Condition νν ≥p  in any space point is used for simulating the photon reflection. The new 

direction of motion is sampled isotropic. 

 

 

4. Total Variation Diminishing Solution. 

 

 Total variation diminishing (TVD) schemes ensure that the total variation in the 

calculated area does not increase with time [21]: 

 

 ∑∑ +
+
+ Δ≤Δ

j

n
j

j

n
j UU 21

1
21 . (4.1) 

 

As is well known, predictor-corrector schemes are unstable and need the addition of an energy 

dissipation mechanism at the front of the shock waves [26]. It can be artificial diffusion, 

viscosity, etc. The coefficients of the mechanism can be tuned to get better results, but that 

problem-dependent approach is not in the spirit of modern shock-capturing schemes. The TVD 

method is a particular case of essentially non oscillatory (ENO) schemes. There is no generation 

of nonphysical oscillations along the shock waves in these solutions. Mechanisms of numerical 

(mathematical) dissipation with automatic feedback allow transformation of shock wave kinetic 

energy in heat energy in this case. The scheme can solve shock waves within 2-4 cells.  

 We present a general approach for constructing a TVD-LF scheme for the 1D case of the 

hyperbolic conservation law for any variable U . More detailed HEIGHTS numerical schemes for 

2D and 3D cases are presented in Appendix 1 and 2. As indicated above, the differential form of 

the conservation law equation can be given for any conservative variable U for the 1D case: 
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The computational mesh was defined as having unequal spacing 2121 −+ −=Δ iii xxx , where the 

subscripts 21−i  and 21+i  refer to quantities defined on the cell interfaces.  Cell centers 

( ) 22121 −+ += iii xxx  are specified at positions i.  The code uses standard notation for evaluating 

the function  defined at cell centers i and time level n.  A time spacing , with intervals 

, was assumed.  Explicit algorithms expect calculation of  values only from 

the neighbor cells data on time level n. Data from neighbor cells should be enough for 

determining fluxes 

n
iU nt

nnn ttt −=Δ +1 1+n
iU

final
iF 21±  on the cell borders to calculate the next time level values 

 

 ( final
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Final fluxes final
iF 21±  are composed of two parts: main fluxes LR

iF 21±  and TVD corrections 21±Φ i . 

Main fluxes are an average of left and right fluxes on any cell interface ( )R
i

L
i

LF
i FFF 212121 2

1
±±± += . 

The correction term is based on the concept of the maximum propagation speed  of 

information in direction x. In the case of hydrodynamics it is the speed of sound, . The MHD 

case takes into account Alfven waves speed, also. (For details of this problem, see [

max
xc

acv

9, 21]). We 

express for the case of HD and MHD with one component of the magnetic field B  as follows: 

 

 acxx vvc +=max ,   
πμρ4

2
2max Bvvc acxx ++= . (4.4) 

  

Here ρ  is the mass density. Below we present expressions only for one border cell 21+i . The 

expression is analogous to the left border 21−i . Consequently it is possible to show the equation 

for the final flux: 
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where  
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This numerical scheme has a second-order approximation in time and space. The second-order 

approximation in time is achieved by using a Hancock predictor step. Following this, we 

calculated the left and right 21+iU  values from the data obtained in the predictor step 21+= nt  
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where limited differences are defined as minmod- functions or other slope limiters [21] of the 

differences U
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In the full step, upwinded left and right states, denoted by L
iU 21+  and R

iU 21+ , are formed from 

values on the predictor step 21+n
iU  and 21
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The cell border values are calculated analogously (4.6): 
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The easiest way to extend the one-dimensional numerical scheme to more space dimensions is to 

use dimensional (operator) splitting [49, 21]. A multidimensional problem is simply split into a 

sequence of one-dimensional problems. Assuming that , , and  are temporally and 

spatially second-order operators that evolve the one-dimensional equations  

xL yL zL
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one can apply these 1D operators one by one in alternating order as 
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for 3D expansion. The HEIGHTS package uses a modified version of the operator splitting 

method [6, 7] where realized componentwise decomposition of fluxes. An expanded 13-cell 

template is used for the 2D case and 33-cell for the 3D case. Boundary conditions are defined 

separately for each direction of the decomposed fluxes. Appendixes 1 and 2 present more detailed 

applications of this method to the 2D and 3D case, respectively. 

 

5. Two-Temperature Approximation 

 

 Because inverse bremsstrahlung is the main mechanism of laser radiation absorption in 

plasma, the electrons are the main recipient of the laser radiation energy. The maximal energy 

that can be transmitted from one particle to another particle by elastic interaction is given by [50] 
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where  and  are the mass and energy of the bullet particle, and  is the mass of the recoil 

particle. The transmission coefficient for the equal particles (electron-electron or ion-ion) reaches 

~1.0. The transmission between electron and ion (Xe

1m 1E 2m

+ for example) is much smaller, ~ 1.6·10ei
trC -

5. These estimations show that energy transfer between the same particles is considerably higher; 

that is, by laser heating of the plasma electrons, the thermal energy will be transferred from the 

electrons to the ions with a time delay. The temperature of the electrons will differ from that of 

the ions because laser heating is a very fast process as a rule. Describing the laser plasma as a 

mixture of two gases (electronic and ionic) is more correct and enables one to explain numerous 

physical phenomena of laser heating: electrons overheating and acceleration, magnetic field 

generation, and so forth. The final MHD equation set (3.2) should be expanded to consider of 

these plasma component. The three conservation law equations should be split (mass density, 

pulse, energy density) to obtain electron and ion parts.  

 The HEGHTS model takes into account the principle of electro-neutrality of plasma. This 

approach neglects local charge separation and enables one to split the energy equation only. The 

continuity and pulse equations consider plasma motion as a whole. Moreover, it was found that 

the best way for total energy control is to solve the energy equation for the whole plasma. The 

energy of the plasma components is separated by the introduction of an additional energy 

equation for ions, which takes into account the mechanism of energy exchange between the ionic 

and electronic parts. The additional ion energy equation operates with the ion particles in the 

ideal gas approximation. The nonideal part (ionization energy) is included in the electronic part 

and is summarized in the total plasma energy equation. The expanded general MHD equation set 

in a two-temperature approximation used in the HEIGHTS package is given by 
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where are incorporated the source of laser energy , the energy exchange between electron and 

ion plasma components, and the magnetic source term. Also included heat conductions for ions 

and electrons [

lasQ
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where 
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with the cyclotron frequencies expressed as 
ie

ie mc
eB

=Ω .  The Coulomb logarithm is given by 

(3.4.13). As was determined by numerical experiment, the ion part of heat transport is 

significantly smaller in comparison to the electron part and can be neglected.  

The magnetic diffusion and Joule heating can be determined with the Spitzer resistivity 

expression [48] 

 

 
( )

Λ= ln
82

1 2
3

3

Ze
Tk
m

eB

eπη .  (5.6) 

 

The electron-ion energy exchange was considered as a function of electron and ion gas 

temperatures [51] 
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where the time between electron interactions is 
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Numerical experiments with laser power fluxes up to 1012 W/cm2 (typical of those used for EUV 

lithography) showed a small influence of the thermally generated magnetic field on the plasma 

behavior and on the EUV output. (See Appendixes 3, 4, and 5 which give the hydrodynamics 

equation sets for the cases with and without magnetic field generation.) The cases that take into 

account the magnetic field can be used for numerical experiments with laser plasma in an 

externally induced magnetic field (i.e., for debris mitigation).  
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6. Validation and Benchmarking 

To validate the model and benchmark the code, we solved several test problems and 

compared the results with known analytical and experimental data. The calculation blocks were 

tested separately (TVD-LF, thermal conductivity, radiation transport etc.). We also tested 

combined action of numerical blocks in various alternations of blocks to check stability of results.  

Moreover, the full model of LPP device was provided and compared with available data. 

 

6.1. Testing of the TVD-LF Numerical Scheme 

To validate the convective block and to test our numerical scheme with the hydrodynamics 
fluxes directional decomposition (see Section 4), we computed the supersonic air flow around a 
sphere and compared it to published data. The thermodynamic properties of air were considered 
in an ideal gas approximation (one temperature) with adiabatic constant 4.1=γ : 
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Here μ  is molar mass of gas and R  is universal gas constant. We tested the two-dimensional 
TVD-LF numerical algorithm, presented in Appendix 1, after excluding of the magnetic field. 
Figure 16 shows the excellent agreement between tabulated data [52] and computation by our 
scheme of density distribution in the shock wave in front of the sphere for the flow velocity 1.5 
M.  
 

 

 

 

 

 

 

 

 

 

 
Fig. 16. Density distribution in the front of the air blasted (1.5M) sphere. Comparison 

to tabulated data [52].  
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We compared the results from the total variation diminishing scheme with experimental data. 

Figure 17a presents a shadowgraph of the ½-inch sphere that flows through air at M=1.53 [53]. 

Figure 17b presents the TVD-LF calculations, which give identical location and angles for the 

shock wave fronts. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                          a)                                                                                     b) 

 Fig. 17. Air blasting (1.53M) of sphere. a) A shadowgraph catches a ½ -inch sphere in 
free flight through air [53]; b) Calculated with TVD-LF density distribution.  

 

 

6.2. Validation of the Implicit Sparse Matrix Scheme  

 

 To validate the implicit numerical scheme that solves the parabolic part of the general 

MHD equation set, we calculated two test problems and compared the results with known 

analytical data [54].  The first test problem describes heat transport into the semi-restricted 

computational domain with thermal conductivity .  The power dependence of 

conductivity allows analytical solution of the heat transport problem 

αλλ T0=
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Test calculations were performed for the pa

uniform and appreciably nonuniform 

meshes.  Figure 18 presents time-step 

calculations for the implicit algorithm with 

uniform mesh and Δz = 10

rameter set α = 2, λ0 = 0.5, z1 = 0, and D = 5 on 

-2.  The heat front 

at time moment t = 0.1 is shown.  The 

scheme remains stable for very large time 

steps.  Analytical results and numerical 

simulation solutions for this heat transport 

problem were satisfactorily fit by Δt ≤ 10-4 

Fig.18. Heat front distribution calculated with different time 
steps.  Uniform mesh Δz = 0.01. Time moment t = 0.1. 
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with the implicit method.  We also constructed a simple explicit numerical scheme and obtained 

similar results to the implicit scheme but only by using time steps smaller than Δt ≤ 10-6.  Larger 

time steps caused oscillations and numerical scheme disturbances.  Accordingly, the difference 

between implicit and explicit time steps is two orders of magnitude.   

Fig. 19. Heat front evolution.  Nonuniform mesh; time step Δt = 10-4. 

The implicit algorith  meshes.  The 

 second numerical test investigated the "stopped" temperature wave, obtained from 

m retains stability by using the appreciably nonuniform

evolution of the heat front on a nonuniform mesh is presented in Fig. 19.  The calculations were 

carried out with time step Δt = 10-4.  The analytical and numerical simulation results compare 

very well. 

 The

Eq. (6.2.1) at intervals z > 0, and 0 < t < C with initial and boundary conditions given by 
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The temperature front evolution in this case is 

 ( )( )
( )

( )
⎪
⎩

⎪
⎨

>

≤≤⎥
⎦

⎢
⎣ −+=

1

1
0

1

zz ,                                    0

0  ,  
22, zz

tCtzT αλ . (6.2.5) 

 

nalytical and numerical simulation results were compared for coefficients α = 2, λ0 = 0.5, z1 = 

idation of the numerical 

ulat

e electrode at 200  

⎧ ⎤⎡ −
12zz

α
α

A

0.5, and C = 0.1125.  Figure 20 presents 

calculations obtained by an implicit scheme 

with time step Δt = 10-4 on uniform spatial 

mesh Δz = 10-4. 

 Our val

sim ions with analytical results showed 

stability and accuracy for artificial problems.  

However, computation for real devices is of 

much more interest.  We thus compared results 

for a discharge plasma device calculated by 

both the implicit and explicit schemes.  A 

detailed description of the discharge device is 

given in [8].  Figure 21 includes temperature 

and magnetic field distributions around the devic

computational procedure combined magnetic field input with external current and excluded the 

electrode area from the domain.  The plasma motion was calculated by the implicit scheme and 

by substitution of heat and magnetic diffusion fluxes directly into the MHD explicit scheme [

Fig. 20. "Stopped" temperature wave.  Time step Δt = 10-4.  
Uniform mesh Δt = 10 . -2

ns after discharge start.  The

6, 

7].  The results obtained by both schemes compared well.  Figure 22 shows cross-sections of 

temperature and magnetic fields distributions calculated by both schemes for z = 1.5 cm in Figure 

21.  The independent implicit scheme has a number of advantages over the direct MHD explicit 

method.  Of vital importance is the ability to use much longer time steps.  The curves in Figure 

22 were calculated with time step Δt = 5 ps for the implicit method and Δt = 5·10 -2 ps for the 

explicit method.  The time step is strongly confined with heat transport in areas of small plasma 

density.  These areas are usually the back of the magnetic "snow plow". 
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 The explicit scheme is very unstable in heat transport calculations for rarefied plasma.  

One can explain this result by considering the mechanism of thermal conductivity: hot particles 

transfer energy into neighbor cells, as a result of chaotic thermal motions.   

 

 

 

 

 

 

 

 

 

 

 

 Fig. 21. Plasma parameter distributions around electrode at t= 200 ns: 
(a) temperature field (eV) and (b) magnetic field (kG). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22. Plasma parameter distributions along R-axis at t = 200 ns: 

 
(a) temperature field (eV) and (b) magnetic field (kGs).

 

 The explicit scheme works well if the particles arrive and exchange energy in the adjacent 

cells only during one time step.  This scheme is not able to consider energy redistribution in the 
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next nearest cells.  The consecutive energy transport is taken into account.  The frequency of 

particle interactions declines by decreasing of density, and the time of flight through the cell is 

appreciably shorter.  The explicit scheme includes non-useful time steps in the described case.  

This is related to the physical concept of the Courant-Friedrich-Levy (CFL) conditions.  A similar 

unstable situation takes place by consideration of magnetic diffusion during the stage of plasma 

compression near the zero point on the radial axis [55].  Additional procedures are needed for 

damping nonphysical oscillations in the explicit case.  However, the explicit method allowed us 

to simulate plasma motion in discharge-produced plasma devices of several constructions [8].  

We note the stability of the numerical algorithm in combination with other processes of energy or 

magnetic field transport, such as radiation transport, thermomagnetic source, and laser beam 

interactions. 

 

 

6.3. Radiation Transport  

 

 It is important to test the radiation transport part on a practical application. Simple tests 

(as a "black body") give a qualitative evaluation only. Hence, 

we investigated a plasma focus device radiation problem using 

the HEIGHTS radiation transport block benchmark. We 

considered convergence and accuracy of solution obtained with 

a Monte Carlo method and with direct Gauss integration of 

radiation equation (3.3.5). Figure 23 presents schematically the 

geometry of the device and initial data from the numerical 

experiment.  The working gas temperature and density fields 

were saved during plasma focus pinching and were used as 

initial data for solving the radiation transport problem. 

Radiation fluxes were calculated with different methods and 

different accuracy: z-radiation flux along AB  surface and r-

radiation flux along BC  surface. We used an equidistant mesh 

along the z-axis and a nonuniform fine mesh near zero point 

Fig. 23. Plasma focus device geometry. 
Coordinate system organization. 
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along the r-axis. Both methods give a bigger deviation of solution near point A : to the smaller 

calculated cell corresponds a smaller number of particles in MCRT or angles in DRT.  

 Figure 24 presents convergence of the radiation transport solution with the Monte Carlo 

method by increasing the total number of used macro-photons (see Section 3.3). One can see that 

5·105 macro-photons give satisfactory accuracy.  

 

 

 

 

 

 

 

 

 

 

 

                                                              (a)                                                                        (b) 

 Fig. 24. Convergence tendency by using the Monte Carlo method for 
RT calculations: (a) R-flux on |BC| surface; (b) Z-flux on |AB| surface. 

 

 

 

                                    

 

 

 

 

 

 

 

                                                              (a)                                                                        (b) 

 
Fig. 25. Convergence tendency by using Gauss direct integration method for RT 
calculations: (a) R-flux on |BC| surface; (b) Z-flux on |AB| surface 
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A similar trend is presented in Fig. 25 for the direct integration scheme. The figure shows that 

satisfactory results can be obtained with the direct integration method with 64×64 angles. Both 

methods converge to the same solution, presented in Fig. 26.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                              (a)                                                                       (b) 

 
Fig. 26. Comparison of Monte Carlo and direct integration solutions of the plasma focus 
RT problem: (a) R-flux on |BC| surface; (b) Z-flux on |AB| surface.  

 

The quantitative and qualitative behaviors of the radiation flux are the same, despite the Monte 

Carlo method being significantly faster: by approximately a factor 300. This result also confirms 

the high accuracy and reliability of the implementation of the methods.  

 

 

6.4. Final Benchmark 

 

 Final benchmarking was done for a completely EUV lithography application. The EUV 

output was calculated from the LPP device with planar geometry of the target and compared to 

published the data for tin target [56]. The arrangement of the experiment is shown schematically 

in Fig. 27.  
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Fig. 27. Design of benchmarked LPP device. 

The device used in the assembly and modeled with the HEIGHTS code was an Nd:YAG laser, 

delivering 0.3J at 1.064 μm in a 7.5 ns pulse. Laser light was focused onto the target surface at 

normal incidence by an aberration- and chromatic corrected lens with a 20.3 cm focal length. The 

laser radiation intensity level was controlled by tuning the laser spot radius. The minimum spot 

size at the target was about 20 μm. 

 The physical and mathematical model assembled for this problem included all the blocks 

described in this report: TVD-LF hydrodynamics, implicit sparse matrix solution for parabolic 

terms, Monte Carlo radiation transport, Monte Carlo laser absorption, and Monte Carlo modeling 

of EUV output registration. The model was tested with two and three dimension numerical 

schemes, with equal results. Also were tested several variants of spatial meshes: for 2D 100×250 

cells with minimal size of cell in region of interest ~1μm and 65×110 with size ~5μm; for 3D 

40×40×45 cells with cell size ~10μm for big spot sizes only. A final parameter that served as a 

criterion for the code work evaluation was the total EUV output into 2π sr solid angle, that is, the 

CE of the LPP device: 

 

 %100
2.2

1.14.13

⋅
⋅

=
±

eVQ
Qc

las

eVnm
EUV

EUV , (6.4.1) 

 

where is the amount of EUV radiation energy registered in the 2.2 eV bandwidth 

centered at 134 Å. The efficiency is normalized on 1 eV. Opacities and atomic data used for 

radiation transport and EUV calculations are described in detail in [

eVnm
EUVQ 1.14.13 ±

57, 58, 6-8].  
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Figure 28 presents a comparison of experimental results [56], well-known theoretical data 

(LASNEX [59]), and results simulated by the HEIGHTS package.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 28. Efficiency of LPP device with tin planar target. Comparison of 

experimental and theoretical data [56].  

 

As shown, the HEIGHTS numerical results agree well with the published data. The numerical 

scheme demonstrated stability of results with changing spatial discretization and with expanding 

to the full 3D structure. These results indicate that the full 3D HEIGHTS package can be used 

effectively to study complex three-dimensional magnetohydrodynamics problems. 

 

 

7. Results and Discussion 

 

We focused our numerical investigations on a tin target because of its current interest as a source 

for λ=13.5 nm EUV lithography [60-62]. For the final benchmarking test (see Section 6.4), we 

considered the influence on the CE of three factors: dependence on a wavelength of laser, target 

geometry, and laser beam geometry. We present here our key results. Initial conditions (laser 

parameters, target size, etc.) of our numerical simulations were determined to be close to known 

experimental data [63-66].  
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To select the most effective laser wavelength for EUV on tin, we simulated the interaction of a 

single laser beam with a droplet target. Figure 29 schematically shows the geometry of the first 

numerical experiment.   

 

 

 

 

 

 

 

 

 
Fig. 29. Single laser beam interaction with the Sn droplet target.  

 

The spherical tin target had a 100 μm diameter and was located at the point of origin of a 2D 

cylindrical coordinate system. The laser beam coincided with the z-axis. The laser pulse, which is 

square in time, was simulated with a total energy up to 230 mJ and duration 10 ns. The space 

Gaussian distribution of the laser beam (see Eq. (3.4.5)) allowed us to achieve laser power 

density in the laser spot up to 3⋅1011 W/cm2 by sσ = 50 μm. Three laser wavelengths were tested: 

355, 532, and 1064 nm. Typical density, temperature, and velocity of plasma are plotted in Fig. 

30. Distributions are shown for the case λ = 1064 nm, Epulse = 45 mJ, time moment 9 ns after the 

laser pulse start. 

 

 

 

 

 

 

 

 

                                                                                                                             (a) 
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                                                                               (b)                                                               (c) 

 
Fig. 30. (a) Density, (b) temperature, and (c) velocity of tin plasma distributions at 9.0 ns.  

 Single laser case: energy of laser pulse 45 mJ, wavelength 1064 nm. 
 

The efficiency of the simulated EUV device is shown in Fig. 31 as a function of the radiation 

power density.  The CE was calculated as the ratio of total EUV output (13.5±2% nm band) into 

2π sr solid angle to the energy of the initial laser pulse.  

 

 

 

 

 

 

 

 

 

 
Fig. 31. Efficiency of the LPP device as a function of   

radiation power density by tin droplet target.
 

 

An ideal variant of light source for EUV lithography is a small spherical object with enough 

density and an optimal temperature for the given material for EUV output. This approach is used 

in recent investigations [67, 68] for improving EUV output efficiency, that is, the first part of this 
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problem: possible target materials for effective radiation at the 13.5 nm area on the background 

of the total spectrum. However, the second part of the problem consists in the formation and 

efficient confinement of the EUV plasma in these optimal conditions (temperature plus enough 

density). Typical axial distributions of the temperature, density, and EUV flux are plotted in Fig. 

32 for the case of a droplet target and single laser.  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 32. Distributions of the density, temperature, and EUV 
flux along the laser beam axis at the 9.0 ns time moment. 

 

As shown, the EUV output region is a thin layer between areas with high temperature but small 

density and high density but small temperature. Increasing this region thickness enables us to 

solve the second part of the EUV CE problem. Different target materials have their own EUV 

region size, which appears in different sizes of EUV source images [69]. Our preliminary 

calculations show a very thin EUV layer for a lithium target. Laser radiation is absorbed actively 

by the target surface plasma and overheats the surface because lithium has only three electrons. 

The greater part of the laser energy is deposited in this overheated area. The remaining part is 

distributed in the full target because ~1 eV lithium is transparent enough for laser radiation. 

Moreover, the hot external plasma layer actively absorbs EUV radiation from the thin EUV 

region. As a result, these negative factors can appreciably decrease the position of the element as 

a candidate for laser target material. Two approaches can be used to avoid these factors: 

application of more complex targets where the material combines clusters, and an increase of the 

heated plasma density. The first approach is actively being investigated [70]. We consider the 
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second approach in our numerical simulations. The authors of Ref. [71] observed increasing the 

EUV emission near the wall close to the laser target. In our opinion this effect is concerned with 

confinement of motion of the heated plasma. The density of the hot plasma increases near the 

wall, and a new EUV region appears at this area. Reference [71] is not so applicable in the full 

problem sense: additional wall creates additional shield for EUV output and decreases the final 

CE. A better way is the produce a transparent (for EUV) wall that can confine plasma.  

 To achieve these conditions and to examine of our hypothesis, we constructed the space- 

distributed laser beam assembly shown in Fig. 33.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 33. Three-beam LPP device. ϕ - radial angle, θ - axial angle  

 

If our hypothesis is correct, the three laser beams in Fig. 33 can effectively confine the plasma 

density by any optimal axial angle θ. The proposed laser beam configuration should organize 

along the z-axis the plasma jet confined in the radial direction. The case θ = 0 corresponds to a 

single-laser device construction. The 3D problem was simulated for a tin droplet with diameter 

100 nm. Energy of pulse (45 mJ) was distributed in equal parts between three lasers started at one 

time. The duration of the pulse was 10 ns. The laser wavelength was 1064 nm. Initial conditions 

of this numerical experiment correspond to the most optimal single-laser case shown in Fig. 31. 

The square distribution of laser energy in time and the Gaussian distribution in space were used 

in this numerical experiment. Influence of the plasma confinement on the efficiency of LPP 

device is plotted in Fig. 34 as the dependence from the axial angle θ. 
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 Fig. 34. Efficiency of the three-beam LPP device as a function of axial 
angle (green line). Maximal temperature of plasma (red line). 

 

 The second numerical experiment confirms the existence of the optimal axial angle (θ ~ 

30°), where plasma confinement gives an advantage in the EUV output CE. As we assumed, a 

new plasma jet appears and obtains energy in area between the laser beams. The efficiency of the 

three-beam device should be higher in comparison to the single-beam device only with enough 

laser pulse energy: optimal plasma temperature and density cannot be achieved in the central jet 

with an initially cold plasma. We plotted EUV efficiency dependence on the laser pulse energy 

(Fig. 35) for the optimal axial angle θ = 30° and obtained confirmation of this statement. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 35. Efficiency of the three-beam LPP device as a function of 

the total pulses energy for the axial angle θ = 30°.  
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Figure 36 presents temperature fields in x-y-plane cross-sections that belong to the maximal 

temperature point (see Fig. 34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 36. Temperature fields for (x-y) cross-section in point of maximal 
temperature at 9 ns. One-laser case corresponds θ = 0°.  

 

The plasma motion initiated with three laser beams is illustrated in Fig. 37. Here are presented (z-

x) cross-sections of density, temperature, and velocity fields. The black arrow indicates the 

direction of the formed plasma jet. 
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                                                                                                                    c) 

plasma 
jet 

 
Fig. 37. (a) Density, (b) temperature, and (c) velocity  of tin plasma distributions at 40.0 ns in z-x plane.  

Three-laser case: energy of lasers pulse 45 mJ, wavelength 1064 nm, θ = 30°.
 

 

The initiation of the plasma jet with this method involved application of three laser beams, 

precise adjustment, time synchronization, and so on. Moreover, the plasma confinement is not so 

effective (Fig. 37). Taking into account these disadvantages, we increased CE from ~2.0 to ~2.2 

% (Fig. 34).  

 Modern development of laser instruments has resulted in creation of the hollow laser 

beams [72-75]. We used the hollow laser beam in our numerical experiment to accelerate of the 

plasma jet confinement and to avoid the disadvantages 

noted for the three-laser construction. Figure 38 presents 

such an LPP device with a planar tin target and with a 

hollow laser beam as an energy source. We assumed 

initiation, confinement, and energy supply of the 

cumulative plasma jet inside the hollow laser beam of 

the device. Following our hypothesis, the dense plasma 

jet should be initiated at the target surface with round 

heating and should be confined with more heated plasma 

of the cylindrical laser body. In a numerical experiment, 

we investigated the CE of the new device as a function 

of the hole and beam ratio, namely, the ratio ξ of the 
Fig. 38. Hollow beam LPP device. 
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hole radius to the external radius of the laser beam. In this case, ξ = 0 corresponds to the laser 

beam without a hole, and ξ = 1 corresponds to the infinitesimal laser body. We assumed equal 

laser pulse energy (300 mJ), laser pulse duration (7.5 ns), and radiation power density in the laser 

body (5.73⋅1010 W/cm2). Square distributions of laser pulse energy were assumed in time and in 

space. The numerical experiment was conducted with a 2D cylindrical geometry. 

 As expected, we obtained generation of the plasma jet inside the hollow laser beam. 

Moreover, we observed pinching of plasma on the laser beam axis. Figure 39 presents the most 

distinctive density, temperature, and velocity distributions of the hollow-laser-produced plasma 

in the r-z plane for the radius ratio ξ = 0.7.  
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jet 

 

 Fig. 39. (a) Density, (b) temperature, and (c) velocity  of tin plasma distributions at 7.0 ns in z-r plane. 
 Hollow-laser-beam case: energy of lasers pulse 300 mJ, wavelength 1064 nm, ξ = 0.7. 
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In comparison to three-laser case (Fig. 37), the plasma jet inside the hollow laser beam is well-

defined and much more accelerated. To consider cumulative character of the plasma jet inside the 

laser beam, we carried out numerical experiments with conditions close to those described in 

Section 6.4, that is, we calculated the EUV output in the 2.2 eV bandwidth centered at 134 Å. 

The radiation energy distribution in laser beam (Sec. 6.4) was Gaussian in space. The Gaussian 

space distribution is close to the real experimental laser beam parameters and gives a higher CE 

in comparison to the simple square distribution. We did not have the space distribution of the 

laser radiation density for the new hollow laser beams and carried out our numerical experiment 

with the hollow beam on the square distribution. Hence, the data in the Fig. 28 for the hollow-

beam results cannot be compared directly. However, the results show that the hollow-beam laser 

abruptly increases the EUV output coefficient efficiency. Figure 40 shows an increase of the CE 

by a factor of 1.16 for the nonoptimized square distribution case. The three-laser case (Fig. 34) 

has a factor 1.1 increase.  

 

 

 

 

 

 

 

 

 

 

 Fig. 40. Efficiency of the hollow beam LPP device as a function 
of the radius ratio ξ = rhole/rbeam for the planar Sn target.  

 

We believe that the obtained effect should be used to increase the CE of industrial LPP sources 

for EUV lithography.  
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Summary and Conclusion 

 

The main contributions of this work are as follows: 

Theoretical Model: Physical models were developed to simulate the main processes that 

occur in EUV lithography LPP devices: MHD model of the plasma motion, theoretical 

models of the magnetic diffusion and thermal conduction in plasma, radiation transport 

model, and laser absorption model. 

Model Implementation: Theoretical models were adopted for numerical solution in the one- 

and two-temperature approximations. Cylindrical symmetrical two-dimensional and three-

dimensional cases were considered. 

Numerical Scheme: An algorithm based on separation by physical processes was developed. 

For each physical process, the most efficient numerical scheme was constructed. 

Hydrodynamic processes were simulated based on the total variation diminishing scheme in 

the Lax-Friedrich formulation; an implicit scheme with the sparse matrix solver was 

developed for magnetic diffusion and heat conduction problems; and Monte Carlo methods 

were used for simulation of radiation transport and laser absorption processes. 

Application: The integrated computer code HEIGHTS was developed for simulating physical 

processes that occur by interaction of the laser beam with matter. The computer code was 

optimized for calculations of the EUV output of the LPP devices for lithography purposes. 

The HEIGHTS code was used to investigate the influence of complex spatial effects of 

plasma motion on the final coefficient of efficiency of the LPP device. 

Benchmarking: The HEIGHTS package was tested and benchmarked with known analytical 

and experimental data. The separate computation models and the whole code were tested. 

 

We obtained the following results:  

1. The LPP device with spatially distributed laser beams was modeled. The optimal spatial 

location of the three beams was obtained in a 3D numerical experiment to increase the total 

EUV output from a tin droplet target. The coefficient efficiency was increased as a result of 

plasma confinement with the laser beam assembly.  
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2. The effect of the cumulative plasma jet formation inside of hollow laser beam was observed 

in a computer simulation. The coefficient of efficiency increased by a factor of 1.16 on the 

planar tin target. 

 

 We conclude that the obtained spatial effects should be used to increase the efficiency of 

industrial LPP sources for EUV lithography. We also note that the theoretical model and 

integrated code HEIGHTS showed wide capabilities and flexibility. The model and code 

therefore can be used for: optimization of obtained data, investigation of LPP devices with 

complex geometry and structure targets, study of the combined influence of spatial effects and 

target structure on the final EUV output, and registration of the EUV source size and form. 
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Appendix 1 

Two-dimensional cylindrical symmetric case of MHD equations. TVD-LF numerical 

scheme 
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Appendix 2 

Three-dimensional case of HD. TVD-LF numerical scheme 

 

( ) ( ) ( )
Ω=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

zyxt
UHUGUFU ,  where 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

tot

z

y

x

e
v
v
v

U
ρ
ρ
ρ
ρ

, , , , , ( )

( )⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
=

htotx

zx

yx

hx

x

pev
vv
vv

pv
v

ρ
ρ
ρ
ρ

2

UF ( )

( )⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+=

htoty

zy

hy

xy

y

pev
vv

pv
vv

v

ρ
ρ
ρ
ρ

2UG ( )

( )⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

htotz

hz

yz

xz

z

pev
pv

vv
vv

v

2ρ
ρ
ρ
ρ

UH

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0
0

Ω

and  
2

2vρ
+== ihtot eee .  

 

 

 
              ( 1 )                                                              ( 2 )                                                               ( 3 ) 

 

 

 

 
      ( 4 )                   ( 5 )                                      ( 6 )                   ( 7 )                                       ( 8 )                    ( 9 ) 

 

 

 

 

 
                               ( 10 )                                                              ( 11 )                                   ( 12 ) 

 

 

 

 

( ) ( ) ( ) kji
nLR

kji
LR

kji
k

n
LR

kji
LR

kji
j

n
LR

kji
LR

kji
i

n
n

kji
n

kji tHH
z
tGG

y
tFF

x
tUU ,,21,,21,,,21,,21,,,21,,21,,

1
,, ΩΔ+−

Δ
Δ

−−
Δ
Δ

−−
Δ
Δ

−= −+−+−+
+

 
Box1 

 
Box2 

 
Box3 

 
Box4 

 
Box5 

 
Box6 

 
Predictor 

 91



Box1 

 

 

 
                                                                                     ( 1 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                            ( 4 )                   ( 5 ) 

( ) ( )( )

( ) ( )( )LR
kji

LR
kji

R
kji

L
kji

LR
kji

LR
kji

LR
kji

R
kji

L
kji

LR
kji

UcUFUFF

UcUFUFF

,,21,,21,,21,,21,,21

,,21,,21,,21,,21,,21

2
1
2
1

−−−−−

+++++

Δ−+=

Δ−+=

L
kji

R
kji

LR
kji

L
kji

R
kji

LR
kji

UUU

UUU

,,21,,21,,21

,,21,,21,,21

−−−

+++

−=Δ

−=Δ
{ }

{ } LR
kji

LR
kjiLR

kjix
LR

kji

LR
kji

LR
kjiLR

kjix
LR

kji

p
vc

p
vc

,,21

,,21
,,21,,21

,,21

,,21
,,21,,21

−

−
−−

+

+
++

+=

+=

ρ
γ

ρ
γ

( )

( )R
kji

L
kji

LR
kji

R
kji

L
kji

LR
kji

UUU

UUU

,,21,,21,,21

,,21,,21,,21

2
1
2
1

−−−

+++

+=

+=

x
kji

n
kji

R
kji

x
kji

n
kji

L
kji

x
kji

n
kji

R
kji

x
kji

n
kji

L
kji

UUU

UUU

UUU

UUU

,,
21

,,,,21

,,1
21
,,1,,21

,,1
21
,,1,,21

,,
21

,,,,21

2
1
2
1
2
1
2
1

Δ−=

Δ+=

Δ−=

Δ+=

+
−

−
+

−−

+
+

++

+
+

 

 

 

 92



Box2 

 

 

 
                                                                                     ( 2 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                            ( 6 )                   ( 7 ) 

( ) ( )( )

( ) ( )( )LR
kji

LR
kji

R
kji

L
kji

LR
kji

LR
kji

LR
kji

R
kji

L
kji

LR
kji

UcUGUGG

UcUGUGG

,21,,21,,21,,21,,21,

,21,,21,,21,,21,,21,

2
1
2
1

−−−−−

+++++

Δ−+=

Δ−+=

L
kji

R
kji

LR
kji

L
kji

R
kji

LR
kji

UUU

UUU

,21,,21,,21,

,21,,21,,21,

−−−

+++

−=Δ

−=Δ
{ }

{ } LR
kji

LR
kjiLR

kjiy
LR

kji

LR
kji

LR
kjiLR

kjiy
LR

kji

p
vc

p
vc

,21,

,21,
,21,,21,

,21,

,21,
,21,,21,

−

−
−−

+

+
++

+=

+=

ρ
γ

ρ
γ

( )

( )R
kji

L
kji

LR
kji

R
kji

L
kji

LR
kji

UUU

UUU

,21,,21,,21,

,21,,21,,21,

2
1
2
1

−−−

+++

+=

+=

y
kji

n
kji

R
kji

y
kji

n
kji

L
kji

y
kji

n
kji

R
kji

y
kji

n
kji

L
kji

UUU

UUU

UUU

UUU

,,
21

,,,21,

,1,
21
,1,,21,

,1,
21
,1,,21,

,,
21

,,,21,

2
1
2
1
2
1
2
1

Δ−=

Δ+=

Δ−=

Δ+=

+
−

−
+
−−

+
+
++

+
+

 

 

 

 93



Box3 

 

 

 
                                                                                     ( 3 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                            ( 8 )                   ( 9 ) 

( ) ( )( )

( ) ( )( )LR
kji

LR
kji

R
kji

L
kji

LR
kji

LR
kji

LR
kji

R
kji

L
kji

LR
kji

UcUHUHH

UcUHUHH

21,,21,,21,,21,,21,,

21,,21,,21,,21,,21,,

2
1
2
1

−−−−−

+++++

Δ−+=

Δ−+=

L
kji

R
kji

LR
kji

L
kji

R
kji

LR
kji

UUU

UUU

21,,21,,21,,

21,,21,,21,,

−−−

+++

−=Δ

−=Δ
{ }

{ } LR
kji

LR
kjiLR

kjiz
LR

kji

LR
kji

LR
kjiLR

kjiz
LR

kji

p
vc

p
vc

21,,

21,,
21,,21,,

21,,

21,,
21,,21,,

−

−
−−

+

+
++

+=

+=

ρ
γ

ρ
γ

( )

( )R
kji

L
kji

LR
kji

R
kji

L
kji

LR
kji

UUU

UUU

21,,21,,21,,

21,,21,,21,,

2
1
2
1

−−−

+++

+=

+=

z
kji

n
kji

R
kji

z
kji

n
kji

L
kji

z
kji

n
kji

R
kji

z
kji

n
kji

L
kji

UUU

UUU

UUU

UUU

,,
21

,,21,,

1,,
21
1,,21,,

1,,
21

1,,21,,

,,
21

,,21,,

2
1
2
1
2
1
2
1

Δ−=

Δ+=

Δ−=

Δ+=

+
−

−
+

−−

+
+

++

+
+

 

 

 

 94
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Appendix 3 

 

Full MHD equations set for 2D cylindrical symmetry in two temperature approximation 
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Here for the plasma is assumed the magnetic permeability μ  = 1. Total energy is given by 

, where  is the ions internal energy;  is the electrons internal 

energy; is the energy of ionization; 

magkinionizeitot eeeeee ++++= ie ee

ionize
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2vekin
ρ

=  is the kinetic energy; 
π8

2Bemag =  is the 

magnetic energy; mageimaghtot pppppp ++=+=  is the total pressure;  is the hydrodynamic 

pressure;  is the ions pressure;  is the electrons pressure; 
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2Bpmag =  is the magnetic 

pressure;  is the laser radiation heating term (see Section 3.4);  is the radiation transport 

term, discussed in Section 3.3; and and  are the heat conduction terms of electrons and 

ions correspondingly (Sections 3.1 and 5). Magnetic diffusion term for energy equation is Joule 

heat is given 
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Magnetic diffusion term for Faraday equation  and magnetic source term  is discussed 

in Section 3.2. Expression for the electron-ion energy interchange  can be found in Section 5 

(see equation 5.7).  

mdifQ msQ

eiQ

The full MHD equations set (A3.1) presented in short matrix form for TVD-LF numerical 

scheme (see Appendix 1) are 
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Appendix 4 

 

HD equations set for 2D cylindrical symmetry in two temperature approximation. No 

magnetic field 
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The total energy does not include magnetic field part kinionizeitot eeeee +++= , where  is the 

ions internal energy;  is the electrons internal energy;  is the energy of ionization; 
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ee ionize
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2vekin
ρ

= is the kinetic energy; eihtot pppp +==  is the total pressure;  is the hydrodynamic 

pressure;  is the ions pressure;  is the electrons pressure;  is the laser radiation heating 

term (see Section 3.4);  is the radiation transport term, discussed in Section 3.3; and and 

 are the heat conduction terms of electrons and ions correspondingly (Sections 3.1 and 5). 

Expression for the electron-ion energy interchange  is presented in Section 5 (see equation 

5.7).  
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 The full MHD equations set (A4.1) presented in short matrix form for TVD-LF numerical 

scheme (see Appendix 1) is given 
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Appendix 5 

 

HD equations set for full 3D geometry in two temperature approximation. No magnetic 

field 
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The total energy does not include magnetic field part: kinionizeitot eeeee +++= , where  is the 

ions internal energy;  is the electrons internal energy;  is the energy of ionization; 

ie

ee ionize

2

2vekin
ρ

= is the kinetic energy; eihtot pppp +==  is the total pressure;  is the hydrodynamic 

pressure;  is the ions pressure;  is the electrons pressure;  is the laser radiation heating 

term (see Section 3.4);  is the radiation transport term, discussed in Section 3.3; and and 

 are the heat conduction terms of electrons and ions correspondingly (Sections 3.1 and 5). 

Expression for the electron-ion energy interchange  is presented in Section 5 (see equation 

5.7).  
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The full MHD equations set (A5.1) presented in short matrix form for TVD-LF numerical 

scheme (see Appendix 2) is given 
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