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Heights Integrated Model as Instrument for Simulation of Hydrodynamic,
Radiation Transport, and Heat Conduction Phenomena of Laser-Produced Plasma

in EUV Applications

V. Sizyuk, A. Hassanein, V. Morozov, and T. Sizyuk

Abstract

The HEIGHTS integrated model has been developed as an instrument for simulation and
optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV)
lithography. The model combines three general parts: hydrodynamics, radiation transport, and
heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich
formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit
schemes with sparse matrix technology. All model parts consider physical processes in three-
dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was
estimated, and it was found that this effect could be neglected for laser intensities relevant to
EUV (up to ~10" W/cm?). All applied schemes were tested on analytical problems separately.
Benchmark modeling of the full EUV source problem with a planar tin target showed good
correspondence with experimental and theoretical data. Preliminary results are presented for tin
droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV

properties of source is discussed.

Introduction

Ever since the invention of the transistor in 1947 and the integrated circuit (IC) in the late
1950s, semiconductor technology has undergone rapid advances. From a basic technical point of
view, developments have been straightforward. They have mainly involved putting more and
smaller transistors on integrated circuits. More transistors allow increased functionality, and
smaller size allows increased switching speed and less power consumption for each transistor.

The whole process has conformed to Moore's law, formulated by Gordon Moore in 1965 [1].



Moore stated that the number of components per IC roughly doubles every second year. In recent
decades, the single most important driver of Moore's law has been the inventions of
microlithography. This lithographic process generates a semiconductor wafer partially covered
with photoresist so that the uncovered regions are available for different kinds of processing, such
as etching, ion implantation, or metallization. One of the most important lithographic processes is
exposure, when light shines on select parts of the resist and microelectronic elements are formed
[2]. Resolution of an optical system, such as projection-lithography system, is traditionally

determined by the Rayleigh criterion,

Resolution = 0.611, (1)
NA

where A is the wavelength of the light and NA is the numerical aperture of the optical system

(NA=sind@_, for vacuum). However, the Rayleigh criterion treats the ability to resolve two

point sources and not the printability of semiconductor structures. In this case, the object size is
. i A
Object size =k—, (2)
NA

where the "k-factor" is introduced [2]. According to Eq. (2) minimal component size can be
achieved by increasing the numerical aperture or decreasing the wavelength or K-factor. Until
about 1993-1994, k was stable at 0.8; it has since been decreased to almost 0.4 by using binary
masks [3]. As illustrated in Table 1, there has been a continuous increase in NA and decrease in

wavelength over the years.



Table 1. Progress with lithography instruments [2]

Wavelength, NA Year Light Source
nm
436 0.30 1982 Hg arc lamp (g-line)
365 0.45 1990 Hg arc lamp (i-line)
365 0.60 1994 Hg arc lamp (i-line)
248 0.50 1994 Hg arc lamp or KrF eximer laser
248 0.60 1997 KrF eximer laser
248 0.70 1999 KrF eximer laser
193 0.60 1999 ArF eximer laser
193 0.75 2001 ArF eximer laser

Increasing the NA causes problems with the depth of focus (DOF), as illustrated in Fig. 1. The

DOF should be larger than the photoresist coating
thickness for optimal performance. Alignment difficulties
arise when the distance over which the image is sharp is
only slightly larger than the resist thickness. Several ways
exist for further improvement in semiconductor
technology. The two most important are utilizing the
smallest wavelength available with projection lithography
and utilizing ion- and electron-beam lithography. Figure 2
shows present-day limitations on line thickness as a
function of used radiation wavelength. Both ion- and

electron-beam projection have the inherent drawback that

]: DOF

Fig. 1. Schematic of depth of focus
(defined as the distance over which
the focus is smallest).

they cannot fulfill resolution and throughput demands at the same time, because of the repelling

nature of similarly charged particles. Application of noncharged photons has no such limitation.

Use of extreme ultraviolet light (wavelength between 10 and 15 nm) is a promising solution for

this reason.
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Fig. 2. Minimal reproducible line thickness: 1 — diffraction limit for proximity lithography with
gap of 10 um; 2 — diffraction limit for projection lithography for NA = 0.4; 3 — diffraction
limit for proximity lithography with gap of 1 um; 4a and 4b - photoelectron scattering
limit for electron-beam lithography (theory and experiment, respectively).

EUYV light is absorbed very strongly in most materials, including gases; thus, all optics
and the source should be placed into a vacuum. For the same reason lenses cannot be used:
optical systems should consist of mirrors. Because reflection of a single surface is very low
(about 4%), stacked multilayers are used, for which the reflection adds up. The EUV light can be
generated in several methods: discharge produced plasma (DPP), laser produced plasma (LPP),
or synchrotron radiation. Each method has benefits and problems. In order to meet the
requirements of the Intel Lithography Roadmap goals for high-volume manufacturing [4] and
International SEMATECH's EUV Source Program goal [5], the EUV source is required to have a
power of 80-120 W at a wavelength of 13.5 nm (2% bandwidth). Various LPP and DPP devices
are under investigation by different research groups. At present, several of the EUV sources come
close to the power level demanded by commercial chip manufacturers. The coefficient of
efficiency (CE) of generating EUV radiation is the key factor in successful development of the
source. Many additional factors are important to the EUV device efficiency: plasma material,
form and size of the radiated area, collectable solid angle, debris amount, etc. Because many

physical processes are involved and many technical problems need to be solved when optimizing



a particular EUV device, a laboratory experiment would be very expensive, and only computer
modeling can generate a complete picture within a reasonable time and at a reasonable cost.
Ideally, an integrated physical model should be developed specifically for simulating plasma
behavior in DPP and LPP devices. The model should include the atomic physics, hydrodynamics,
radiation transport, heat conduction and EUV analysis. The EUV source should be modeled
completely: from the energy input mechanism and plasma formation, to EUV output from the
pinch or laser target and the collector system reflection. Each physical process should be
described adequately, and each physical problem should be solved by the most advanced
numerical scheme. The intermediate focus of a manufacturer's EUVL stepper can be predicted in
that case most correctly.

This report describes a three-dimensional integrated model, called HEIGHTS, for
modeling of LPP devices. The model is based on previous work in simulating of DPP devices by
the HEIGHTS team [6-8]. This report describes the general model construction, derivation of
initial equations, development of numerical schemes, organization of computer code, results from
test samples, and parallel version implementation. The influence of a generated magnetic field is
discussed. Results of modeling are presented for a spherical tin target and a three-laser-beam

assembly.

1. General Laws of Plasma Motion

To construct a flexible integrated physical model, one must to minimize (as much as
possible) the number of general laws, develop a hierarchy of physical processes, and construct a
simple mechanism for the incorporation of new processes. For this reason, the HEGHTS model
was created from first principles and does not include final results from other projects. The

conservation law of any parameter g can be given in differential form:

%w.r«q:o, (1.1)



where F, is the flux of this parameter. By considering plasma matter as a continuous,

compressible medium, we expanded Eq. (1.1) and obtained the following expressions for

conservation of mass, pulse, and total energy:

apv+V-(pvv+ ph):O, (1.2)

where,
p - density of plasma,
v - velocity of plasma,
P, - hydrodynamic pressure, and
2

€,= )

+¢, . - sum of kinetic and internal energy densities of plasma.

The equation set (1.2) describes convective motion of a compressible homogeneous medium.
Later, this basic set will be expanded to consider the plasma as a mixture of electron and ion
gases. Additional external forces and sources will be added, and dissipative terms will be taken
into account. All physical expressions and all transformation use Gaussian units, unless stated
otherwise.

In laboratory plasma experiments, any electromagnetic sources can have an external
influence on the plasma, and electric currents can be generated spontaneously by intensive
heating of local plasma areas. Any current can be the source of a magnetic field in the plasma,
and this magnetic field is the source of forces that disturb the initial plasma. This self-consistent
process should be included in the hydrodynamic equation set (1.2). Moreover, the conservative
form of the set should not be changed. For this reason, it is appropriate to introduce an additional
conservative variable: magnetic field B. An additional equation for the introduced variable should
be written and the corresponding forces added into the equation set (1.2). The HEIGHTS general
equation set does not operate with currents directly because of the conservative form of the initial

equation. Any external force F,, can be added into (1.2) as follows:



P 4v-(pv)

0,
ot

0
EPV‘FV'(pVV‘th):FEX, (13)

aaith-i_v'[v(eh + ph)]:V'Fex'

In the general case of magnetic hydrodynamics, external forces can be expressed as forces that
act on the unit charge, such as force field strength E . It may be given as the sum of three forces:

Lorenz, electrical field, and Hall force:
1 R
E=——vxB+nj+—jxB. (1.4)
c Y

To simplify the equation transformation, we can rewrite the vector form of (1.3) to the
component tensor form in the Cartesian coordinate system. Covariant and contravariant
components of the tensor are equivalent in the orthonormalized Cartesian system. We can speak
here about matrices and not about tensors because there is no difference between superscripts and
subscripts. However, we use the tensor technique of summations for this case. At the end of the
transformations, the results will be generalized to the tensor case in the arbitrary coordinate
system. Then, we specially use subscripts for all terms to emphasize the particular case. Use of

tensor calculus makes the governing equations more flexible for practical applications.
1.1. Continuity Equation

The mass conservation equation keeps its form in the magnetohydrodynamics (MHD)

casc

P9 (pv,)=0. (1.1.1)



Here and elsewhere we have in mind summation by repeating index.
1.2. Equation of Motion

Only the Lorenz force is taken into account by transformations of the equation of motion.
This is possible to do with the local electrical neutrality approximation. Electrons and ions can

have different energy (temperature), but the total charge of the plasma in the calculating cell we

q

1 :
can assume as zero. In that way, F, = EV xB => F, = < jxB. By using Ampere's law,

rotB:ﬁ(4;zj+a—Dj. (1.2.1)
c ot

. . oD . . . .
Neglecting the displacement current R we can write the initial equation of motion for the

system (1.3) for the MHD case in vector form:

2pv+V(pvv+ ph)—L(VxB)xB:O. (1.2.2a)
ot 4z

In tensor form, it is

0 0 1 oB
V. +— vV, +D.0, )J———¢. —n B =0. 1.2.2b
8t pV| axk (IOVI k ph ik ) 47Z'/J guk (‘gjpn 8Xp J k ( )
We transform the additional magnetic term:
oB, oB, o, oB, o oB, oB, o
Eiik € jpn an By = €1i€ion a By _(5kp5in ~ 010 )an By = 64,0in an By — 00 a By =
2 2
:%Bk_é‘iki B_ = G(Bin)_Bi aBk_5ik ¢ B_ .
OX, ox, | 2 OX, OX, ox, | 2



We can write the equation of motion as

2
2IOVi +i(p‘/ivk)+i phé‘ik + & é‘ik - 1 6(BkBi) == 1 Bi GBk . (1.2.3)
ot OX, OX, 8nu ) A4mu\ OX, 4 OX,

The term on the right side of Eq. (1.2.3) is the divergence of magnetic field B. In analytical
formulations, this term is equal to zero. However, the divergence Bis not equal to zero in
numerical calculations because of truncation errors. In modern numerical schemes [9,10], this
term is used to correct the solution and to stabilize the divergence B near zero. The effect of
nonzero V-B is called "numerical" Dirac monopole. By combining the hydrodynamic pressure

with "magnetic pressure", we can write the expression in conservative form:

gpvi +i PViVy + POy — B, :_LBi B (1.2.4a)
ot OX, 4ru 4z OX,

B 2
Pot = P + :

8mu

In the more exploitable vector formulation we have

PV vl pyvep, -8 |- L pv.B). (1.2.4b)
ot 4 4ru

1.3. Energy Equation

By taking into account Eq. (1.4), we derive the energy equation in vector form from the

equation set (1.3) as

oe :
a—th+v-[v(eh+ p,)]=jE. (1.3.1)



Combining this equation with Ampere's law without omitted displacement current Y in Eq.

(1.2.1) gives the vector equation

%+V-[V(eh +p,)]=-2(VxB)-E. (1.3.2a)
ot 4z

At this stage the Hall term is not included in the energy equation. We assume that this term is
small in the case of the plasma for EUV lithographic purposes, but we reserve it for future
possible use of the Hall effect. Converting to tensor form, we have

%, c, ®

0 p
+—|Vv (e, + =——&u —E,- 1.3.2b
ot an [ k( h T Pn )] 471'/1 nkp an n ( )
. 9 E, o8B, o
With the help of —(5knp Ean)= Bpépn — — Enénkp — We can transform the right side of
OXy OXy OXy
Eq. (1.3.2b),
oB
¢ rE, - B, B © O EB,) (1.3.3)

(C; fa—
4 P ox, " dmu P OPUox,  dmu ox,

For subsequent reductions, we use Faraday's law with the current of the numerical magnetic

monopole:

o8B
viE=—1B ligp) — o En_ 1% 1, B (1.3.4)
cot ¢ OX, c ot ¢ " ox

oB
Faraday's law allows us to split the magnetic term Lgknp —2E, in Eq. (1.3.4):
4 OX,

10



oB
~Lpg P lgy B ¢ 0 Ep) (1.3.5)
Amu ot 4nu OX,  4mu OX,

Lorenz and resistance terms of field strength, Eq. (1.4), can be written in tensor form

n nml

E,= —lgnmlvm = L/ B, and added to Eq. (1.3.5):
Cc 4r, X

m

oB
1 B, p 1 BV, 0B, N 1 0 (g
4 ot 4rnu OX,  4mu OX,

¢ 0 0B
knp‘c"nmIvapr)_maxk (77 knp Enmi aXI Bpj:

m

o( B? 1 oB 1 0 c’ 0 oB
:__£ ]__B v <+ ( npkgnmlv B B ) —2_(778npk€nmlax_|8pj=

ot\8zu ) 4mu P P ox,  Amu ox, 167° u* 0x, N
o( B? 1 oB
R - prp ‘ ([5pm5kl 5pI5km}\/ B B )
ot\ 8y ) 4nmu OX, 47w OX,
c’ oB
Faxk (77[5pm5| _5plé‘km]§8p] -
o( B? 1 B, 1 0 1 0
=T __prp <+ (5pm5klvalBp)___(5pI5kamBpr)_
ot\8zu ) 4nu OX,  4mu OX, 47y OX,

2 2
B C2 < UL ) B, |+ Cz zi né‘plé‘km@Bp -
167 1 8Xk OX 167~ 1" OX, ()

m

2
__9| B —Lprp B, 1 2 (BkBmvm)—Li(kaB)
ot\ 8zu ) 4nu X,  4mu OX, 47y OX,

c’ 0 aB ¢’ o [ 0B,
- 2 2 Bm + 2 2 n B, |=
167~ 1~ OX, 8X 167~ 1~ O, \ ~ OX,
__ 0 B’ N 0 BkBme_VkB2 1 B v 6Bk+
ot\ 8z ) ox \ 4mu dru ) Amu " P OX,

0 c’ 0B* ¢’ 0B,
+ 2 2|77 - 2 |77 By || -
X | 327" u oX, ) 16z u OX,,

11



This transformed term is then equal to the needed to add to the energy equation, Eq. (1.3.2b):

2 2
ai+£[vk(eh + ph)]z—g B |+ | BBaVu _wB) 1 B,V, By, (1.3.6)
ot 0x, ot\8zu ) ox \ 4nu 4 ) Anu OX,

0 c’ oB* c’ OB,
+ 2 2|1 - > 2|77 B,
OX, | 327~ 1 oX, ) léx”u OX,

The underlined terms above can be combined with the hydrodynamics energy and pressure. The

final expression for energy is

%y O B,B,V,, c’ B, c’ oB’ 1 oB,
oV, (B + P ) | 1 Bu | =55 5| 7 - ByV, ’
ot X, 4mu 16 u”\  OX, 327 OX, 4ru OX,

2 2
where e, =€, + > Pt = Pp Tt
8mu 8

(1.3.7a)

The vector formulation of the energy equation without resistive term splitting is

2
%+V.|iv(etot + ptot)_ﬁ[V.B].B.kc—n(VxB)x B:| = —L(V-B)-(V'B).

ot 167° 11 Aru

(1.3.7b)

1.4. Faraday's Equation

The hydrodynamic equations set must be closed with the equation for external force,
which can be obtained from Faraday's equation (1.3.4) for magnetic force. Faraday's equation
should be reduced to the conservative form just as the magnetic field conservation law. For such
a transformation, we use Eq. (1.4) with Lorenz and resistance terms in the tensor

cny . oB,

1
formE, =——¢ Vv, B, + |
P c ™ dmu " OX,
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%+Ceikpi —lgpmlva, L on € o %, +V, B, =0
ot X\ € 4 OX

Bl 2 e 2o B

ot ™ ox, 0 ox \ 4z "™ ox X,
2
%_Spikgpmli(VmBI)—l_gpikgpml 0 [ ¢ %5, +V; % =0
ot OX, X, \ 4mu OX,, OX,

B P 6 C277 oB oB
C (88 648 )—— (v By )+ (51 — 545 V=0
at (6inda — i km)axk (v, B, )+ ( "m}a k(47z,u 8ij+v

2
%_@mékli(VmB|)+§i|§kmi(VmB|)+5im5k|i x % — 01O — 0 (cn B -V %,
4mu OX,, oX, \ 4mu 6X 8Xk

ot OX, OX, OX,

2 2
ﬁ—i(VB) 0 (VkBi)+ 0 C?]aBk _ 0 C?]aBi :—Vi@.
ot 0X, OX OX \ 4 0%, ) OX, \ 4 OX, Xy

The final conservative form of Faraday's equation with the numerical "Dirac monopole" is

aB 0
ot axk

0217 B, c’n @ v By (14.1a)
47w ox,  Amu OX, Yox, o

[ka BV

The vector form of this equation without splitting of the resistive term can be given as

2
a—B+V (VB—BV)+ ¢
ot 4ru

Vx(nVxB)=-v(V-B). (1.4.1b)

From Egs. (1.3) - (1.4.1), it is possible to write a general system of MHD equations in

orthonormalized Cartesian coordinates:
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—_—+— =0

a o (ov,)

0 0 B, B. 1 oB
- 4+ — V, + 5 — kT = — B k

ot pvl an (pvl k ptot ik 472’[1] 472_/1 i 6Xk

08y O BB, V., ¢’ oB c? oB® 1 oB
R — Vk[etot+ptot]_ X + 2 2 n . Bm - 2 2 n :__prp_k
ot 0OXx, 4mu 16z u™|  OX, 3277 u OX, Amu OX,

2 2

%+i v,B, —B,v, + C'n 9B _ ¢’ 3B, :—viaﬂ,

ot OX, dmu OX;  4mu OX, OXy

(1.4.2)

2 2
B :
where €, =€, +——, P, =P, +—.and i,k,m=1,2,3.
8mu 8mu

The equation set (1.4.2) may be directly used for 3D TVD-LF calculations in the Cartesian
coordinate system. For 2D calculations, however, the equation set (1.4.2) must be changed to
another coordinate system, including curvilinear non-orthogonal coordinates. For this case, the

equation set (1.4.2) must be transformed to the general tensor form. Bear in mind that v' and B'
are contravariant vectors and 0/0x* is a covariant derivative. As a result, V'v* is a twice
contravariant tensor, and B¥B™v"™ a thrice contravariant tensor. We exclude resistivity terms

from Eqgs. (1.4.2) because of its large dimensions and consider this problem in the next section.

We use the following:

divv =2% =V, V¥,

ov' i

87:ka 5 (143)
0

E = VO .

With this notation, we can represent the general MHD system as

14



V0p+Vk(pvk):O
ki
Vo(p‘/i)+vk(mivk+ptot5ik_8 > j:_41 B'V, B

Bka”m“ 1”” . (1.4.42)
Voetot +Vk Vk [etot + ptot]_ Y == BmeVkBk
4ru 4mu

V,B' +V, (VB -B*' )=—v'V,B"

The equation set (1.4.4a) describes, in general tensor form, ideal MHD equations (without
resistivity terms) in all curvilinear coordinates, including nonorthogonal. The next section shows
the detailed transformation of these equations for the cylindrical orthonormalized coordinate
system. The derived equation set corresponds to the expression in vector form, which is using in

most astrophysical applications:

op

DL 1v-(pv)=0

V- (ov)

opv BB 1
Friy. —— |=——B(V B
oy, (pvv+pmt 4muj Lnvp)

} : 1 (1.4.4b)
B9 e ) (BB () (v
U 47

%—?W-(vB—Bv):—v(V-B)

2. Cylindrical Case of MHD Equations

The cylindrical case holds a central place in most practical applications. The HEIGHTS
code uses the cylindrical coordinate system for modeling DPP devices [6-8] and for calculating
LPP devices [11]. Applying cylindrical symmetry to DPP and LPP devices, we derived a general
set of MHD equations (1.4.2) in an axisymmetric geometry (I, ¢, z). Plasma motion was
neglected along the ¢ direction, and we assumed that the magnetic field has only one component

B,. The case of theta-pinch can be easily obtained from the general equations presented in the

cylindrical coordinate system.

15



2.1. Continuity Equation

For transformation of the equation set (1.4.4) in any coordinate system, one must define

the covariant derivative of the contravariant components of the tensor or vector in the new
coordinate system {qk }, k=1,2,3. As is well known, the covariant derivative of contravariant

components is the same as the physical derivative. For contravariant vector components, this

derivative can be written as [12]

i .
b LOA L pian, 2.1.1)
© hoog

where T} represents Christoffel symbols of the second kind. For the cylindrical coordinate

system, only two symbols are nonzero:

r’ __! and l"r‘/;:%. (2.1.2)

(44 r

Similarly, it is possible to define covariant derivatives for double and triple contravariant tensors

in Eq. (2.1.1) [13]:

k 4
. Kij N ) : S
A9 = LR A T A LT A (2.14)
© hoog

The transformation for the triple contravariant tensor with two equal indices is presented for
convenience. Equations (2.1.1) and (2.1.2) can be used in Eq. (1.4.4) for the case of cylindrical

coordinates (here and later we include only nonzero Christoffel symbols):
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or r og oz r o ror r 0g oz
(2.1.5a)
The final result is
op 10 N 1 0 o( .,
2~ \r S )+ — =0. 2.1.5b
et e (e (o) (2.1.5b)

2.2. Equation of Motion

By taking into account that v'v¥ is the double contravariant tensor, we can revise Eq

(2.1.5) as follow

(o) =o)L Ao ) LABY) e -

(4 Z

_0 pvrvr)+l a(pvrv¢’)+ a(pva2)+ AT vt
or r ogp 0z r r

_dlpev) vt 1l alevvt) preve
or r r oo oz r

:lg(rp\/rvr)+la(ﬂvr\/¢)+a(pvrvz)_pv(pvw ’ 221

ror r ogp 0z r

hL@(ﬂ;:vf)+hi5(ﬂa\/;v‘/’)+hLa(ﬂg/:vz)+rr¢;pvrv¢, +T0 VvP =

[ z

(IOV@Vk );k -

_dlpevt) 1alpeve) olpev) et it
or r Op oz r r

_alpv) v 1alovve) alvvt) v
or r r oe oz r
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0 ; la(pv“’vq") a(pv‘/’vz) ovv?
—Fa(rpv“’v )+F op ’ oz ! r

: (2.2.2)

_ a(vav“)+ Ve +la(pvzv‘”)+ a(pvzvz):li(rpvzvr)+la(pvzv‘”)+ a(vavZ)
or rr O oz ror r Op oz

(2.2.3)

The magnetic term with tensor B'B* can be represented similarly:

B"B* 1o(rB'B") 1 0 (BB o(B'B*) B’B?
_ =__- - - + , (2.2.4)
dru ), ror\ 4rzu r op\ 4zu oz\ 4ru rdzu
B BB _ 1o(rB’B") 1 0(B’B”) 0(B’B”) B'B’ (2.2.5)
Ay )., ror\ 4zu rop\ 4nu oz\ 4rnu rdmu’ o
zpk nr Ine Inz
_ZBJ _ _105(rBB _li[BB _Q(BB) 2.26)
), ror\ 4zu rop\ 4nu oz\ 4rnu

These equations can be rewritten with divergence of the magnetic field:

1 gege_ B alBT) B oB® BB

Aru K _r47r,u or _r47z,u op _47z,u oz’

| gege _ _ B° rB7) BY oB® B OB
__ L ogepr = - _ _

, 22.7)
4mu ’ rdzu or rdzu op 4mu 0Oz
1 gege _ B aBY) B aBY B B
4 K rdzu or rdzu 0o 4mu 01

From Egs. (2.2.1)-(2.2.7), we can write the final equation of motion in the cylindrical coordinate

system in projection to the r, ¢, and z axes:
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o' 10 . B'B") 10 (o, B'B”) 0 ., B'B*} op, pv°v® B?B”
| pv'V" - | pv'V’ - +—| V'V - + - + =
4 rop 4ru oz 4 or r rdzu

B" o(rB") B' @B° B' 0B’
_r47r,u or _r47z,u op _47z,u 0z
oV’ +lgr[pv“’vr ~ BwBr}rli

ot ror 4 rop

B* o(B") B? oB® B? B

rdzu or _I’47r,u op _47z,u 0z

aﬂz_klir' p\/zv"_BZBr +li IOVZV‘/’_BZBW +g pVZVZ+p _E —
4 rop Az 0z  4u

?R? PR 'v? rRe
BBj aa( WVZ_BBj_pVV ,B'B”_
Z

(/7v¢7 + — +_ =
(pv P 4 4u r rdzu

~_B* 4(B") B oB” B’ B
rdzu or rdmu 0 4mu oz

(2.2.8)

2.3. Energy Equation

B*B™y"
4z

Energy conservation in a cylindrical system can be obtained by splitting the term — as a

triple contravariant tensor. From Eq. (2.1.4) we have

kpmy,m
(BkBmvm);k=LM+FﬁkB”Bmvm+Fn”;BkB”vm+Fn”;BkBmv”=

h, 09"
_aB'Bv), o(B'Bv*) alBBv) 14(B°B'v) 14(B"BvY) 14(B°BYV),
or or or r op r op r op

o8BV a(B*Bv*) a(B'BV’)
0z 0z 0z

+1“(;¢,B“’B¢’vr +Ff;B¢’Brv“’ +F(;¢B¢’Brv“’ +Fr‘fﬂB¢’B"’vr=

+1“r";,BrB’vr +Fr"jpBrB‘”v"’ +1“;’;B'BZVZ+

_aB'Bv), aB'Bv) alBBv) 1a(B°B'v) 10(B"Bv?) 14(B°B*V)

_l’_
or r op r op r op
Ip Ty, IR @y,P Ip? rpr IR oye 7,,2
LoB*B'V") a(B*B*v*) a(B’BV BBV BBV )
oz (674 oz r r r
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PR® ?RE PRM\2 PRP
B B/#+B/B/\1¢_B By B B
r r r

r

=%§(r8 B'V' )+ iaar (rB'B‘/’v‘/’)+%§(rB'BZVZ)+
,1oBBv) 10(B8v) 14(8°B'v*) a(BB'v') o(BB"v*) a(B'BV')_
r o9 r op r op oz oz oz

%g[rBr(B'v' +B%v? + BZVZ)]+%%[B¢(BWr +B%v? + BZVZ)]+%[BZ(BWr +B%v? + Bzvz)]

=10 [rBva]+ : [BWBV]+£[BZBV] .
ror oz
As the tensor B™v™ is a simple scalar, we can write

BB™™ 1 o ] 1 0 o,
4 _‘er[rB BV]‘rW (,)[ BBy ]+ Tﬂg[BB] (2.3.1)

e+ Pocdle = 5 0V P L b o e St ) 232)

e @33

In this way, the final expression for energy in a cylindrical system of coordinates is

oe

10 B'Bv 10 B’Bv
=t v (e, + Py ) ——— | b+ ——qv7 e + + (234
at r ar{ |: ( tot ptOt) 472;[,[ :|} r a { [ tot ptOt] 472'/,[ } ( )

o |, B'Bv|_ Bv 0 _ Bv 09.,1 Bv 9.
+E{V [et°t+pwt]_ 47[;1}_ r47r,u8r[ ] I’47z,u@g0[ ] 47z,uaZ[B ]

2.4. Faraday's Equation

Analogously to the velocity tensors Egs. (2.2.1)-(2.2.3), the magnetic field terms can be

transformed:
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i), - o) 1olve) alve) vBr v _
’ r 8@ oz r r

- li(rvar)+%a(wBr)+ olver) ver

ror o oz r
(VkB‘”) _ a(VrB¢)+18(V(”B"’)+a(VZB¢)+V¢Br +Vrpr _
'k P oo pe . :
= li(rVrB¢)+la(v5”B€”)+a(VzB¢)+V¢Br
ror r op oz r
(VkBZ) _ 8(VrBZ)+16(V"’BZ)+G(VZBZ)+V'BZ _
'k P oo pe -
1 g dlre), )
ror r ogp oz

By index change, we have the following:

o), - L2 (), L8], olEv) B
K r or r op 0z r
Bv), = L2 (mrye), LABV) 0BY) BV
w ror r op 01 r
) = L0 (gne), L0BV) aBv?)
(BV);k rar(rBV)+r 6(0 + oz

B Vf{li(rgf)+lM+a(iz)}

ox* ror r op oz

o 0B :{1 0 g}y 1 BY), BZ)}W

ox*  |ror r oo oz
Vzﬂz{li(rBr)-FlM‘i‘@}vz
OX ror r oo oz

21



OB 10 ([,or o 10V?B —BV'] 0B —BV'] V'BY By
ot +FE{M ]}+F 0 ’ oz At A
{12 1), )

ror r op 0z
08" 10 -Bov] o Br Bv'| o) L1oE°), alB?)
ot r op 6r r oe oz
B 10 {[V 8B ] 10vBr 8] olvBY-BN?] vBT BV _
a o ro r op oz r ro
_V‘/’{li(rBr)+lM+a(iz)}

ror r op 0z

o8’ +li{r[vr8"’ - B'V“’B+ 5[\,sz — BZv(p]+ VBT BV =—V‘”{%§(r8')+l@+@}

ot ror oz r r r oe 0z

OB’ 18{[\, 5 B ]+ 1a[v¢’BZ—B¢vZ]+a[vw=

ot ror op oz
L {1 2 fem)s 1a(B¢)+@}
or r op 0z
oB" +li{r[vrBz—Br Z]} la[VWBZ BWV] IM @
ot ror op rar r op 0z

Finally, the equations for Faraday's law in the cylindrical coordinate system with magnetic field

divergence stabilizer are

o sabee—o], dv o] (10 g, 100), o)
ror

ot r op 0z r op 0z

oB? li{r[vfsfﬂ—vaw]}+a["zB¢_BzV¢]+V¢Br BV _ {rar( 8} 1a(s?), 1 }}

ot ror 0z r r oe
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oB* 10 {r[vrBz_Brvz]}+18[V“’Bz—Bwvz]:_vz{li(rgr)JMJr@}. 2.4.1)
r 0z

+__
ot ror op ror r op

2.5. Magnetic Diffusion Terms

Modeling of laboratory plasma applications demands consideration of non-ideal diffusive
magnetic problems. Dissipation of magnetic energy appears in the form of Joule heat in the

energy equation and the diffusive term in Faraday's equation. These terms can be transformed to

the cylindrical case from Egs. (1.16b) and (1.17b):
2 2 B r z P r
& V[yvxB)xB] = — & Ol g BB B0 gy B
167" p 16727 u"r or i oz or r \or op
2 (or r z 1)
C2 : 0 UB— i(qu,)_aB g 10B° 0B N
loz“u'r o | 7| r \or op r op oz
2 z [ r z
& Ol e 1B BT g BB sy
167~ " oz r op or oz or

Faraday's equation with resistivity term splitting yields

2 2 r r z
C VxpvxB= & 101N 0 (gey nB | 0, B B g,
4mu Az | r Op| r or 0z or

2 z ® r]
L {3{268 ) ai} g{ﬁ(mw)_z@}é .

4oz v 0p oz | or|ror r op ||
2 r z z o]
TR A L L B M | S (2.5.2)
Arur | or 0z or op|r Op oz |
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2.6. Case Studies for Cylindrical Symmetry

In this section we present MHD equations for practical application in the two most
exploitable cases: Z-pinch and ®-pinch. In the first case, it is assumed that the plasma current is
strongly parallel to the z-axis and one is uniform along the ¢-axis. At the same time, the current
can have a gradient in the r and z directions. The magnetic field has only one ¢-projection in this
ideal symmetric case. This idealization does not remove general plasma processes. Hence, we can
have the z-gradient of the magnetic field B as a result of the current z-gradient (for example, by

B’B”
rdzu

and

fluctuation of resistivity 7). In this case, we have the z-gradient of magnetic tension —

a Rayleigh-Taylor type instability. On the basis of these assumptions, the final MHD system for
Z-pinch symmetry that is used in HEIGHTS is given by

2t S

OV 10 ( .\ O( ..\ Py BB

ot +F8_r(pv Y )+ 0z (pv Y ) 8:’t rdzu

8 g a Z\,r a Zy,Z

%"'%gr(/)\/ v )+E(’D\/ Vi + ptot)ZO (2.6.1)

e, 10| 1., c’nB? [ 0 o1, c’nB? | oB?
¢+__{r[v (etot + ptot)]_LI:_(rBw)}}"FE{v [etot + ptot]_n—|: or }}:0

ot ror 167° u* | or 167° 1*

@ 2 2 [
BT O ype - C O (el Llyege CN B
ot or r4zu or oz 4ru o1

In the ®-pinch cylindrical symmetry case, we assume that the plasma current has an
azimuth component only and is uniform along the ¢-axis. At the same time, the current can have
a gradient in the r and z directions. The magnetic field has only two projections in this ideal
symmetric case: B" and B’. This idealization does not remove general plasma processes. The

resulting equations for this case are as follows:
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o 100 N (.,
ot rar(pv ) (’OV )

o 1o o BB P B o(rB") B B’
ot ror oz 4mu or rdzu or 4 07
o 10 ( +gpvv o BB B o(r8') B* B

ot ror 0z 4u rdzy or 4ru oz

4ru 16z u*\ oz or

r ry,r Z\,L 2 z r z
—aemt +l§{r|:vr(etot + ptot)_ 5 (B VB )+ cB (aB — B ]}}4‘ (2.6.2)

] B:(B'vV' +BYV') B’ [an_aBZ]}:

0 )
+—V | + -
az{ [ews + P v 167°u*\ 6z or

_(B'v +B%?)o(rB") (B'v' +Bv*)oB
rdmu or 4ru 0z

r 2 r z r z
OB, 0 g guy_Cn[oB"_oB7||__ . [10lB) o8
ot oz 4| oz or r or 0z

z 2 r z r z
oB +1£ (vBr_Bry 4 S B’ B L\ la!rB !+6B .
ot ror Aru\ oz or r or 0z

3. Nonconvective Terms

The ideal MHD equation set (1.20) can be used to solve a limited physical problem such

as a dense space plasma [10, 14, 15], to conduct theoretical investigations of instabilities [16-18]

or to simplify real devices [19,20]. Key in modeling DPP or LPP devices, however, is

representing the correct energy exchange and taking into account the main dissipative processes.

It is essential to understand the transport processes, such as particle diffusion, heat conduction

across the magnetic field, electric resistivity, and radiation transport. These processes occur as a

result of plasma interactions, which may be described in terms of either binary collisions between

particles or collective effects involving the scattering of particles by plasma waves. In general,

the state of a fully ionized plasma of electrons and ions can be specified in terms of the velocity
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distribution functions, which satisfy the kinetic equation for electrons and ions. In the
approximation of no collisions, this equation is commonly referred to as the Vlasov or the
collisionless Boltzmann equation. This description of ions and electrons in terms of distribution
functions is often more detailed than is required. When the plasma is close to equilibrium, it is
sufficient to describe the plasma in terms of macroscopic variables and the equation set (1.20).
Additional nonconvective terms can be represented in the right side of the conservation law
equations or transformed to additional dissipative fluxes. In the second case, Eq. (1.1) can be

expanded to

Z-?+V-(Fq—ﬁq)=0, (3.1)

where IN*“q is the dissipative flux. At present, the HEIGHTS code includes three main dissipation

sources: heat transport, magnetic diffusion, and radiation transport. The general MHD equation

set taking into account these processes in Eq. (3.1) is given as

Z—'?+V-(pv)20
opv BB 1
v, -— |=———B(V-B (3.2)
ot + (pvv-i_ptot 471}“} A ( )
2
%+V~{v(ewt P (B B 2(vXB)xB_WT_s,ad}:_L(v.B).(v.B)
Yo} 167~ p 4mu

2
B V. (VB=Bv)+-—Vx(7VxB)=—v(V-B),
ot Aru

where A is thermal conductivity, 7 the resistivity, and S_, the radiation flux. At first sight, the

rad
conservative equation set (3.2) can be easily solved with one of the numerous methods developed
for the hyperbolic conservation law equations [10, 14, 15, 21]. However, direct use of convective
hydrodynamic numerical schemes to (3.2) leads to nonphysical oscillations. The solutions can be

obtained by use of time steps that are so small as to have no practical applications. The problem

is that Egs. (3.2) and (3.1) are not fully hyperbolic because the dissipative flux IN?q adds

"parabolicity" to the system. A powerful approach that HEIGHTS utilizes for this problem is a
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splitting method [22-24], which involves decoupling the full model into a separate component for
each process, employing specialized numerical methods to solve each component, and coupling
the resulting solutions. Thus, the MHD equations are solved as a decoupled set of hyperbolic and
parabolic equations. At each time step Eq. (3.1) is split into decoupled subproblems (which may
involve different meshes and solution methods) corresponding to the different physical processes
(plasma flow, transport, diffusion, etc.) that occur within the computational domain or in
individual regions.

The splitting algorithm has been used in the HEIGHTS numerical solution of Eq. (3.2) to
separate the contributions from heat conduction, magnetic diffusion, and radiation transport.

These processes redistribute internal energy and magnetic flux in the plasma.

3.1. Heat Conduction

Heat conduction in the plasma is one of the most important physical processes that should
be taken into account when modeling experimental plasma behavior. Energy redistribution
because of heat spread leads to major changes in the thermal conditions of real plasma devices.

Decoupled from Eq. (3.2), the system heat conduction equation can be given as

® YT =0, (3.1.1)
ot

For the 3D case in a Cartesian grid, we can write this as follow:

8 o . 8 o .0
< pe Tt Ay e N -2 22Tt
pt (t.x,y,2) o (t.x,y,2) 3y 3y (t.x,y,2),

o , 0
-——A—TI(t,x,y,2)=0, 3.1.2
545, Tbxy.2) (3.1.2)

where ¢ is specific heat at constant pressure. With this parabolic equation, implicit numerical

schemes are the most effective methods for obtaining results. However, these schemes have a
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limiting factor and an appreciable disadvantage: they require extensive computer memory.
Consideration of full 3D schemes is most critical. To avoid this problem the HEIGHTS code uses
sparse matrix technology. The idea of excluding zero elements from the final linear equations
matrix [25] is key to this theory.

We used a grid of gradually varying cell size by imposing unequal grid spacing
AX; = Xivn = Xiyn> AY;=VYjun —Yjpn. and Az, =2,,,,-2,,in the X, y, and z directions,
respectively. The subscripts i +1/2, j+1/2, and k+1/2 refer to quantities defined on the cell
interfaces X;,y,, Yj.y>and z,,,,. Cell centers x; = (xm/2 +Xiy )/2, y, = (yjﬂ/2 +Yin )/2 , and
Z, = (Zk+l ot 2y )/ 2 are specified at positions (i, j,k). We used standard notation for evaluating

the function T, defined at cell centers (i, j,k) and time level n. We assumed time spacing t"

with intervals At" =t""' —t". The spatial derivatives were approximated at each point (i, J, k) by
using centered differences with truncation error of order 0=2.

The spatial derivative of temperature in the x-direction at X, can be approximated as

o , 0 X x x
[&’151- (t. %, Z)l’j’k =CTi i G T + Gk (3.1.3)
where
X _ 24 1k x __ 2[/1i+1/2,j,k (Ax;_, +Ax)+ Aiy ik (Ax,, +AX, )]
bOAX(Ax +AX)T AX; (AX, +AX NAXy,, +AX,) ’
X _ 2/1i+1/2,j,k
’ AXI (AXHI +AXI)

Analogous approximation along the y- and z-axes follows after reduction to the common

expression:

n+l n+l n+l n+l n+l n+l (13 S
A,j,k—lTi,j,k—l + A,j—l,kTi,j—l,k + A—l,j,kTi—l,j,k + A,j,kTi,j,k + A+l,j,kTi+l,j,k + A,j+1,kTi,j+1,k + A,j,k+1Ti,j,k+1 - Di,j,k ’ (3 1 4)

where the coefficients are
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A= li’j’k“/z A= /1LJ'*1/2J< A= ﬁ'i—l/z,j,k
YAz Az +Az,) Ay Ay ayg) A (A +AX)

Ci j,kpiljj,k N Ak N i ik N Aok
A" Az (Az, +Az) Az (Az,, +Az,)  Ay;(Ay, +Ay;)
Ai,j,k == )
A2k N Ak N Ak
ij(ijH +ij) AX; (AXH +Axi) AX; (Axm +Axi)
4 j.k+1/2 A j+1/2,k /1i+1/2 ik
Ai,', = = ’ A| j+ = . : ’ Ai+,', = - and
Het Azk(AZk+l +Azk) e ij(AyJ'+1 +ij) H AX; (Axi+1+AXi)
D,y =- Cir:'j,kpirjj,kTi?j,k
" 2At"
Equation (3.1.4) can be rewritten in simple matrix form as
A-T=D. (3.1.5)

We assume that the plasma parameters do not change during one time step; the linear

equations include specific heat Cg{i, j) and density pi'jj with n time steps. Equation (3.1.5) is a

closed system, where the number of unknown values equals the number of linear equations if the

boundary conditions are determined. In general, boundary conditions on any border I" are given

by 05/1VT|r + ﬂT|r = f(T r,t), where the numerical parameters « and g specify the situation at

the I" border for given a heat flux (e =1, = 1), given temperature (¢ = 0, = 1), or heat flux as

a function of temperature. The simplest case of thermally isolated borders can be realized as
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o,

I'(x=const) ay

=0, and a =0. A more comprehensive

T'(y=const) Z I'(z=const)

. oT
equivalences —
OX

discussion of boundary conditions is presented in [26]. Numerical simulation with the implicit
scheme is unconditionally stable, and in combined schemes the limiting factor on the time step is
usually the explicit part (the convection stage in our case). Ideal MHD calculations demand

Courant-Friedrich-Levi conditions for the explicit algorithm [27]. In the heat conduction

2
AX°C,p

Syt where Ax is the minimal cell size.

equation the time step limiter can be used: At~ min

In Fig. 3, we present the matrix expression for the heat conduction equation in the simplest 3 x 3
x 3 domain, where zero elements are shown as empty cells. The linear system is sparse and
seven-diagonal. The coefficient matrix size is n'm-'k x n'm-k x n'm-k, where n, m, and k are the
cell amounts along the x-, y-, and z-axes. In our LPP problem, the largest grid size was 60 x 60 x
60 cells, which produces a coefficient matrix of about 1.0-10'® elements. This large sparse matrix
has an extremely large number of zero elements. The structure of the matrix is invariable, with
linear equations that describe nonuseful cells. Key to computational efficiency is to store and
operate on only nonzero entries of the matrix. Several mathematic libraries (e.g., NAG, IMSL,
and PARDISO) are used for solution of linear equation systems with a band or sparse matrix.
MUMPS and SuperLU codes allow parallel solution of the system of linear equations given in
(3.1.5) [28]. Calculations for the complex domain need special code for implementation of
boundary conditions and exclusion of nonuseful domain areas. If the computational domain does
not change during the simulation time (no motion of any device walls), the best calculational
method is to analyze the domain form before the start of the main computer program, and to

prepare templates of needed matrices. In contrast to the explicit algorithm, where it is possible to
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have a separate module of boundary conditions, the implicit code requires embedding of the

linear coefficients A and D during construction of matrices A and D.

AvBa|  [And A T D,
A AaulAsl (A Ay T D...
AulAsd A A T.. D,

B Alha| A A To Dy,
PP N 7 W 1 S W [ W Bz T... D..,
A Ao A Ass, Aerf T D..,

A [ A T D,

A, LA oo B [ A 1A, T... D..,

A, gor[Ass A, T D..,

A, Al |A 1A, T,.. D,.
A Avalon A |A A T.o D..
Acul AcolAin A Ase T D...

A A A A A Ao T | D...

, A, A P A A, Ao x T,| wm | D,

gz Al |AwmlAr Ay L T. D...

A, A, A [ A T D...

A, A 1A | Ay A, T D...

A, -V R W7 la, T D...

A Al A T Diss

1A, Al ArelBse| A T.. D...

A AolB s [ T.. D..

A 1A Al A T D,

A, A, B [AesB| A T.es D...

A, A, 1A s B s Tow D..

A 1A, A x| Tiw D,..

1A, A, A s A T. D...

A, A A T.. D...

Fig. 3. Detail matrix construction for domain 3 x 3 x 3. Empty cells correspond to zero
elements.

3.2. Magnetic Diffusion and Magnetic Source

The magnetic diffusion equation is similar to the heat conduction equation:

2
6_B+ ¢ Vx(anB)=0. (3.2.1)
ot 4nu

The three-dimensional case has no discontinuities and can be solved analogously to the heat
conduction, Section 3.1. The 2D cylindrical geometry is more complicated because of the

discontinuity at r =0. An implicit numerical method is considered in this section for application
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to cylindrical geometry and to the problem of the discontinuity at the zero point. Following the

equation set in Section 2.5, we can give Eq. (3.2.1) for this case as

0 c’n 0 0 c’n o
T omB(trz)-= T2 B(tr.z)=0. (322)

where the magnetic field B has one component along the ¢-axis. The first space derivation term

in this equation can be approximated as

(5%% rB(t,r, 2)1,,- = C/B,;+C;B,;+C;B,,,;, (3.2.3)
where
2t r_ { Mhopt Phaph
' orouAn(Ar +An) M AL (AL + AL ) 1A (Ar +AT)
C, = 2411 forr_, #0,ie., i>1.

r-i+1/2Ari (Ari + Ari+1 )

The linear coefficients in Eq. (3.2.3) cannot be determined if r,,, =0. In other words, the

magnetic field derivation is not defined at the zero point. However, the requirement of the

equivalence of the left- and right-side derivatives and the calculation of the limit to zero yield a

full description of the numerical function behavior near the singularity pointB| _ =0,

0B
or

Bl
or|

+

lim 7 OB _c'n . 0B
0 4zur or  2mu 0 or

(3.2.4)
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Implementation of Eq. (3.2.4) conditions in (3.2.3) provides coefficients for the first cell of the

computational domain:

2773/2 ifi N 4771/2, j v 2773/2, il

Cr=0,Cl=- , Cl=
! : ry, AL (AL +An) A T r,An(Ar +Ar)

fori=1. (3.2.5)

The second space derivation term (z-axis) in Eq. (3.2.2) has no exclusions and can be solved

similarly to heat conduction

[6 niB(t,r,z)j =C/B,,,+C;B,; +C;B,

3.2.6
oz 0 i (3.26)

i,j+l°

where
CZ _ 277i,j—1/2 7 2[77| j+1/2(Azj 1+AZ )+ 77|J -1/2 (AZJ+1 +Azj)]
YoazlAaz +Az) Az Az +Az )Az,, + Az, ’
J J ] J i i i
Cz 277| j+1/2
Yoaz(azg, Az

Finally, after transformations, Eq. (3.2.2) can be represented as a linear equation system:

A| 1, jBlmllj A| JB|n;rl + A|+1 jBIr-]%—JIIJ A\ i- lBln;rll A\ j+l Bln;r-:-l = D i,j> (327)

where coefficients A and D are calculated from corresponding C :
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4mu

Ai—l,j :CIr’ Ai,j :C2r+sz_AtnC2 >

A"'l,j = C3r > A,j—l = Clz ’ A,jﬂ = C3Z 5 (328)

dmB;

i,j__ AtnC2 :

The time steps for implicit magnetic diffusion algorithms are discussed in [29].

Conditions on the external borders of the domain are determined by various physical processes.

Lo, B

Most useful are the following: current B|F =21/rc; symmetry a8 5
I'(r=const) Z

I'(z=const)
and conducting wall B| =0.

The self-generated magnetic fields in laser-produced plasmas are of much theoretical and
experimental interest because of their role in the design of inertial confinement fusion targets [30-
32]. Interest in this area arises from the large number of transport characteristics (e.g., thermal
transport, lateral plasma flow, and fast plasma blowoff), which affect the performance of the
target. These, in turn, are related to the properties of large-scale magnetic fields generated in the
system. Based on these properties, the HEIGHTS package takes into account the magnetic field

source term in the Faraday equation (1.17b):

2
B . .(vB=Bv)+-
ot

V><(77V><B)+%Vne xVT, =—v(V-B). (3.2.9)
4ru en,

Here, n, and T, are the concentration and temperature of electrons. Numerical simulations have

been undertaken to investigate the influence of the self-generated magnetic field on plasma
parameters and on the EUV output for a laser radiation power of 10'' — 10'> W/cm®. Numerical
simulations of the LPP device with droplet and planar targets showed a very small dependence of

the plasma parameters on the thermomagnetic source for the laser radiation power [11].
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3.3. Radiation Transport

Data obtained for the temperature and radiation flux fields in star photospheres was
applied to the calculation of star luminance [33]. Radiation transport theory was created on the
basis of this classical problem, from which numerical methods and approximations of the
radiation transport equation solution were developed [34]. Stationary stars are huge gaseous
objects that are heated from several thousands degrees on their surface up to millions in the
center. Massive heated gaseous spheres of that kind radiate only from their surface. Gas in the
star body is optically very thick, and space around the star is optically very thin. This situation
enables a simple approximation of the radiation transport equation: diffusion approximation,
radiative heat conduction, forward-reverse, and so forth. A laboratory plasma has a specific place
in this regard. Such a plasma is usually a nonstationary object, where an intermediate variant is
present: not thick and not thin optically. Simple approximations are invalid as a rule for most
practical applications. Advanced physical models and numerical methods should be applied to
obtaining correct results. The HEIGHTS system uses two approaches: direct Gauss integration of
the radiation transport equation and a Monte Carlo model with a weight factor hierarchy. Direct
solution of the radiation transport equation is more correct in a certain sense but has a serious
disadvantage: it is very expensive. Thus, it is applied only as a test for Monte Carlo calculations.

Direct Gauss Integration. The main goal of this method is to obtain the radiation flux in

every cell of the MHD mesh and its divergence:

Qrad :V'grad' (331)

The divergence indicates the loss of radiation energy in some cells and adding of radiation energy
in other cells. Radiation flux is integrated by a spectrum (or quantum of energy) and is an angular
variable. It depends on the distribution of thermodynamic parameters (temperature and density)

in the entire volume under consideration:

S=[SedE, Se=[l.QdQ, (33.2)
0 'y 4
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where | is the spectral radiation intensity and € is a unit vector in the direction of quanta

distribution S. Suppose n is a normal vector to the unit element, which quanta cross (see Fig. 4).

The projection of the radiation flux vector onto n is

S, = j|E cos@ dQ. (3.3.3)
(47)

For the solid angle dQ =sin@dé& de, it is possible to obtain

Q the expression:

/ e 2 V4
j o Se = [do[1.(p.0)cos0sin0 do,
0 0

where ¢ and 0 are the angles that determine the direction of

the quanta distribution.
Fig. 4. Integration scheme.

In the case of cylindrical symmetry, the spectral flux at the point with coordinates ry and

7 1s described by the expression
S, =2jd(pj|E(¢,9)cosesin9 do, (3.3.4a)
0 0

where the symmetry of the quanta distribution on the corner ¢ is taken into account. Here, ¢ is
the angle between the projection of the direction S to the plane, perpendicular to the z -axis and
normal to the cylindrical surface; and & is the angle between the direction S and the z -axis (Fig.

5).
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Fig. 5. Cylindrical geometry case.

For projections of the radiation flux on the radial r- and axial z-axis we have

See (1,2,) =2 [dg [cos psin® 0 I (1,,2,,0,0)d0 , (3.3.4b)
0 0

Sse (1,,2,)=2 [dg [cos@sin@ 1. (r,,2,,0,0)d6. (3.3.4¢)
0 0

The spectral radiation intensity Ig(ro, o, @, 0) is found from the solution of the radiation transport

equation (RTE):

di,

dS = Reemi I

Ep _kEable : (335)
Here, x,, 1s a spectral absorption coefficient for quanta with energy E, x,, 1S a spectral

emission coefficient, Ig is the spectral intensity, and Ig, is the spectral equilibrium intensity. RTE
represents the energy conservation law for the radiation intensity. The equilibrium intensity I, 1s

defined by the Planck function:
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eKT _l eI(T _1
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(&7 1) =

. E
iy X (€ =D, where x=—. (33.6)

Ep PP FEREE
Equation (3.3.5) is a one-dimensional differential equation relative to the intensity along the ray

of the quanta distribution. A formal solution of a Cauchy problem is given for this equation:

() = I (s, >exp{i,[kEws<s>ds }+—lep<s>kEam(s )exp{i,[kEws(s”>ds”}ds . (33.7)

So So

which expresses the fact that the intensity at any point in a given direction is the result of the

emission at all anterior points s, reduced by the factor exp{—f Keans (S')dS' }

to allow for absorption by intervening matter.

The RTE solution is determined by the temperature and density on the ray (they
determine the spectral coefficients and the equilibrium intensity) and does not depend on the
geometry of the plasma.

Equation (3.3.5) can be written as

dl; K dl;  «x
S Kabs(’(eml Ep_IEjord__ emIIEp IE (3.3.8)

d abs 2 K abs

where dz =k, ds. This leads to

keml (T )

l.(7) = 1.(z,) exp{— jdr}+j = Ep(r')exp{—jdr”}dr’. (3.3.9)

abs

The numerical approximation of Eq. (3.3.9) was obtained by discretization of the integration half-

lines. At the same time, we assume that the changing of temperature and density (and
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accordingly, the spectral coefficients) is insignificant within the one-cell boundaries. Then, the

spectral intensity value on the observation ray is found by integration of values in the cells using

k () G T
le(r) = 1o (z, e + k—”j o expi-[deya

from which

le (7)) = 1e (7 )e " + M ]L le, (7') d{exp{—]ldr"} }

kabs (Ti ) T,

Integrating yields

kabs (Ti )

Ti-1

I (7)) = IE(Ti—l)ei(TiirH) + Ml:IEp (7)- IEp (7)) g ) ]L CXp {_]ldz—”} dl Ep (T')]

and

kemi (Ti )

_ —(7-7i1)
le(z) =1e(7 e + K, (7))

{IEp (2) -1 (7)) — [ expi-[dr} Ep<r'))‘dr‘].

Ti-1

In view of the chosen discretization, the Planck function derivative is a constant value in each

cell. Thus,

-Ar I Ep (-1 Ep (7i1) (1 e
AT,

(2 = le(r e + M{I@&i)—up(me

. (3.3.10
kabs(Ti) ):| ( )

Here Az, =7, —7, , =K,.(S, —S; ;) 1s the optical absorption thickness of the cell for quanta with

energy E.
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Using Eq. (3.3.10), we can calculate the spectral intensity along the radiation ray. Next,
we derive the spectral components of the radiation flux in the point. All quanta of energies must

be integrated to find the total components of the radiation flux:
Se(fy,2,) = [Sre(r,,2)dE , S (1,,2,) =[Sz (r,2,)dE .
0 0

Taking into consideration Egs. (3.3.4b) and (3.3.4c), we obtain

Sq(y,29) =2 [dg [cos g sin’ QDIE(rO,zO,(p,e)dE} de, (3.3.11)
0 0 0

S,(r,,2,)=2 Id(p jcos@ sin@ DIE(I’O,ZO,gp,G)dE} do. (3.3.12)
0 0 0

Integration by Spectrum: The total radiation flux in the point is found by angular
integration of the total intensity values from Eqgs. (3.3.11) and (3.3.12). The total intensity is the

result of integrating by the energy quanta:
| = [1e(t,2,,0,0)dE
0

The energy spectrum grouping is used to obtain a numerical approximation of the last integral
solution. Each group Ex is defined by the boundary values of energy quanta Ex u Ex:; and the
mean group absorption and emission coefficients. Then, the total radiation intensity is found by

summation of the intensity values, obtained for the spectral groups:

Ek+1

1=>" [ 1e(t,,2),0,0)dE .
k g

Based on Eq. (3.3.9), we integrate the Planck function for each group by its boundary values:
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I, = : dE = dx . 3.3.13
WP arient et -l ar’c’n® ! e -1 ( )

Estimation of the quantum energy, which can be ignored with a given error (~ 10™) is carried out
to reduce the calculation time before integrating the intensity along the ray. The following

inequality can be used:

TIEpdE <104TIEpdE, or T;;Cix <104T xox

E, 0 =

Maximal value of temperature Ty, along the ray is found for that inequality. The approximate

00 3 4
integral value is calculated as I dxl = 71[—5 , from which it follows that
e —

0

_SI 15 e [x? +3x2 + 6%, +6] < 10, where X, _TE—k. (3.3.14)
7 Xk

max

This estimation allows us to determine the energy group and all following energy groups whose
contributions are less than 10™. These groups are not taken into account when the intensity
integration along the ray is carried out. Tables of absorption and emission coefficients with the
detailed resolution on the quanta energy, density, and temperature are used when the intensity for
the spectral group is calculated.

Integration by Ray: We need to know the temperature and density distributions on the ray
to calculate the intensity along the half-line from Eq. (3.3.10). For this reason, the ray is divided
into equal cells 4l from the starting point ( 1, z,) to the exit from the hydrodynamic mesh. We
assume that the change of temperature and density (and accordingly, the spectral coefficients) is
insignificant within the bounds of one cell. In the first step the coordinates of the boundary points
are calculated relative to the r- and z-axes. The coordinates depend on the angles ¢ and 6 (they

determine the ray direction). The z-coordinate can be obtained next. Since the distance from the
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ray starting point ( 1,,2,) to point ( 1j, z; ) is equal to Al * i and since the z,coordinate is known,

for angle O<6’<% (Fig. 6),
7, =|BZ,|=|AZ,| +|CZ,|=|AZ,| +|Z,Z;|*cos & = z, + Al *i*cos 6 .
For angle %<6’<7z (Fig. 7),

7, =|BZ;|=|AZ,|-|CZ,|=|AZ,|-|Z,Z;|*cos @ = 7, — Al *i *cos 6.

ZA ZA
Z;
AN
8

Z, C C Z;
R R

A B A B
> < »

. . T T

Fig. 6. z-coordinate for 0 < 8 < S Fig.7. z-coordinate for B} <O<r.

The r-coordinate is calculated in the next step. It is needed to obtain the projection of the segment

|ZoZi| onto the re- plane:|R,R[=Al*i*sing. The [RB| distance is given by

IR,B|=+/|OR,|" ~|OB|" , where |OB] is the nearest distance from the coordinate center to the ray

(Figs. 8 and 9): |OB|=|OR|*sin¢ . Then, for 0< ¢ <% (Fig. 8) |BR;| =|R,B|+|R,Ry|-
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Fig. 8. Ray expansion for () < ¢ < E . Fig. 9. Ray expansion for E <Q<T.

For %< ¢ <7z (Fig. 9), depending on the location of the point rj, we have |BR;|=|R,B|—|R,R||

or |BR,|=|R,R/|-|R,B|. Now, we find the r-coordinate of the point by using the distances

r, =|OR,|=/|0B|" +|BR,|" .

Knowing the point coordinates allows us to determine the temperature and density values
by using the MHD plasma parameters at these cell points. Next, we determine which cell of the
hydrodynamic mesh the point belongs to. As assumed earlier, temperature and density in the
bounds of one cell are constant. From this MHD data we can calculate absorption and emission
coefficients in the ray points (from the tables) and obtain the equilibrium intensity. Then, the
intensity by the observation ray is calculated with Eq. (3.3.10).

Integration by Angles: The total intensity is integrated by the angles ¢ and 0 within the

ranges 0 <@ <7z and 0<6@ <x.The total components of the radiation flux are calculated in the

point by Egs. (3.3.11) and (3.3.12). Integrals over angles are approximated by the Gauss

quadrature method:

b 1
A=| f(x)dx=b;2a:[f(§)d§=b_7azi: £(£)C, . (3.3.15)
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Here, C; are weights of the Gauss quadrature, and &;; are abscissas (changing from -1 up to 1).
The splitting is carried out at nodal values @; and 6; equal to ¢, = %(1 +¢&) and 60, = %(1 +&).

Expressions for calculating the flux components are written with Eq. (3.3.15) as follows:

2
7 :
SR(rO,zo)=7 E C, E cosgsin® 0 1(r,,2,,4,,£,) C, (3.3.16)
i j

2
SZ(rO,ZO):%ZCiZcosﬁsinﬁ 1(r,,20,£,€,) C, .- (3.3.17)
i i

The HEIGHTS code can vary in order of angular quadrature. Depending on the given
order of Gauss quadrature, the integration can be carried out by 8, 12, 16, 20, 24, 32, 64, 80, or 96
points of an angular grid. Accordingly, the total flux value in each point is calculated by
integration of the intensity in the direction of 64, 144, 400, 576, 1024, 4096, 6400 or 9216
observation rays, going out from the point. The angular integration accuracy increases with
increasing order of Gauss. But the calculation time increases greatly, too. Abscissas and weights
for integration by Gauss quadrature are determined in advance and are kept in the tables of values
in the positive half-range, from which the arrays of values in the range from -1 to 1 are generated.
Sequential Algorithm of the Radiation Flux: To take into account heat radiation energy
redistribution, the MHD task includes calculation of the radiation flux and its divergence based
on current temperature and density field. The MHD task is solved in two-dimensional space, but
the radiation flux is calculated in a 3D volume. However in consequence of the cylindrical
symmetry HEIGHTS algorithm can use the grid partitioning of two-dimensional MHD space in
the procedure of the radiation flux calculating and we can get the flux values in central points of
the hydrodynamic mesh.
Solving the problem is divided into subtasks:
1. Input initial data — the size of MHD mesh, the optical characteristics tables (energy groups

bounds, absorption and emission coefficients), the order of Gauss quadrature.
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2. Initialization of the workspace — the construction of calculation mesh, which is similar to

the MHD mesh, the preparation of the abscissas and weights arrays in compliance with

chosen order of Gauss quadrature.

3. Organization of the cycle for the radiation flux components calculating in central points of

all mesh cells by z-axial and r-radial axis. It includes the following:

Determination of the thermodynamic parameters distribution on the ray, going out
from central point ( 15,2, ) on given angles ¢;, 6; (temperature T(ro, zo, @i, 0;) and
density p( 1o, Zo, i, 6;)).

Obtaining of the necessary integration limits by quanta energy E.x, depending on
maximal temperature on the ray Tmax( To, Zo, @i, 0;) using (3.3.14).

Calculation of the equilibrium intensity values for each spectral group by (3.3.13)
and the intensity integration I gx ( 1o, Zo, @i, 0; ) by the ray at point ( 1o, o ) using
(3.3.10).

Integration of the intensity by the energy groups:

N
I(ro’z()a¢ia0j) :Z IEk (r0,20,¢i, 9])
k=1
Integration of the intensity by the angles using (3.3.16) and (3.3.17):

,Z )— ZC Zcosgpsm o1 (r),2,8,¢;)C;

,2,) =2 Zc Zcosesmel (N 245&,€4) C;

4. Calculation of the flux divergence, taking into account the cylindrical symmetry by

formula: V- S———(rS )+
ro

10 0S,
0z

Since the same optical characteristics tables and grid partitioning are used during the total process
of the MHD task solving subtasks 1 and 2 are executed at first call of the flux calculating
procedure only. Each call of the procedure is conducted by the transfer of current temperature

and density values in central points of the hydrodynamic mesh to it.

Monte Carlo Radiation Transport. As stated in Section 3.3, HEIGHTS can use two approaches

to calculate radiation transport: direct Gauss integration of the radiation transport equation and
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Monte Carlo technique with weight factors hierarchy. Each method has its own advantages and
disadvantages. Test calculations show that both methods give good coordinated results and can
be used selectively. Because Monte Carlo calculations demand smaller computational
capabilities, this method was used for the basic simulation, and direct integration was used to
verify our results.

By considering radiation transport processes, we need to indicate two general aspects.
Radiation fluxes should be determined for (1) correction of the plasma thermal energy and, as a
result, correction of the plasma motion in device, and (2) investigation of the final useful part of
the plasma radiation. These problems involve different requirements for the flux data and as a
result require different numerical techniques for solving the photon transport problem. Correct
calculation of the energy space redistribution in the full spectrum plays a leading role in the
solution of the first problem. The model describes radiation transport adequately only if it takes
into account the optical thickness of the plasma over a wide spectral range. One must divide the
full spectrum of the plasma in the working diapason of the device into narrow spectral ranges
with separation of strongest lines. The total spectral range must be optimized to accurate
describing of the radiation energy redistribution using reasonable computational capability. As
practice calculations show, MHD results have an acceptable error by the total number of spectral
ranges about ~10°. These opacities will be inapplicable for detailed investigations in spectral
band of plasma focus devices 13.5+2% nm. Hence two sets of optical opacities are needed:
general (for full energy redistribution calculations) and detailed (for a specific spectral band).
MHD simulations execute by application of general tables. Density and temperature fields are
obtained during simulation. The second stage of calculations involves investigations in the
working spectral band of the device, where prepared density and temperature fields. The detailed
set of optical opacities is used there.

Emission of Photons. Monte Carlo methods work by following the evolution of test
particles and have the advantage of being relatively straightforward to apply to complex
geometries (Fig. 10). We used a numerical algorithm with a weight hierarchy of statistical
accumulated events. Two major weight categories were allocated: normalization of emitted
photon "bundles" relative to the most radiated cell of computational domain, and normalization of
the photon bundle magnitudes relative to the optical thickness of cell. The first weight coefficient

enables us to detail the emission process by neglecting the cold cell emission.

46



Umivainn Coaficimt, Vom

et '
EMENSION 7

N~ a start V

T

=Y

v
/// 0
final 74

cell 4
qfforption

Vs '
V.4
L

rd

'

a) b)

Fig. 10. Monte Carlo presentation of emission-absorption process for (a) 2D cylindrical geometry, and (b) 3D case.

With the second coefficient, "idle" processes are ignored: situations with emitting and absorption
in one cell (absorbed lines). These coefficients allowed us to decrease significantly the
computational burden. As preliminary calculations at a strongly nonuniform mesh showed, a
third weight coefficient can be useful. The volume of the emitting cell can be so small that the
amount needed to simulation photon bundles will not enough to the proper results. The volume
weight coefficient increases the computation accuracy in this case.

As is well known [34], one needs to integrate the emission coefficient k,, with Planck's

function B(a)) in the full spectrum to obtain the number N of photons emitted in space (from

the volume unit in the time unit):

N :47zjkeL(C")dw. (3.3.18)
y  ho
ho' (2o Y

B(a))=47[3cz (eT —1j : (3.3.19)
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After substitution and change of variables we obtain the follow expression that is convenient for

numerical calculations:

3_2.2

Emax 2( E -l
N = jM[eT —1] dE  [em’s], (3.3.20)
h'r-c

Emin

where

E - energy of emitted photon [eV];
E . ,E__ -spectral range [eV];

K...(E,T,p) - emission coefficient [cm™];

T - plasma temperature [eV];

p - plasma density [g/cm’]

h=6.58217x10"® [eV-s] - Planck's constant;

€=2.9979x10" [cm/s] — speed of light.

From the cell volume, temperature, and density we calculate the total amount of photons that

arise in the time unit;

-1
Ean k. (EaTi O, _k)Ez T.E.
Nijx =Vijx h;‘;[zcz’” e —1| dE, (3.3.21)

Emm

where Viik is the volume of cell (i,,},K).

The HEIGHTS code uses the Simpson's integration method:
’ b-a
I f(x)dx z6—M{f0 +fyy +2(F, et )+ 4(F + e £y, ) (3.3.22)

For a reasonable degree of accuracy, we need M >10.

The most critical point of Monte Carlo simulation algorithm is a search of most radiated cell.
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An incorrect choice follows to the wrong weight coefficient and, as a result, to a decrease in the
efficiency of the calculations. We use a function F_ = p’T*V_, in our numerical algorithm.
Unfortunately, simple functions for the density, temperature and cell volume do not always give
correct results. Hence, we use the cited function for the first time step only. The calculations
subsequently use information about photon emission obtained from the previous time step. This
technique significantly increases the efficiency of the calculations. The total amount of photons
in most radiated cell is used for initial normalization of photon bundles. A reasonable degree of

accuracy requires any amount of emission test simulation not less than N . Based on this

assumption the first weight coefficient of photon bundle is

_Nmax
= N .

W, (3.3.23)

sim

N ™ is the integral (3.3.21) in the most radiated cell. To obtain good accuracy for the radiation

transport calculations, we need N ~10°.

With the Monte Carlo radiation transport method, one can simulate situation in which a
spectral band is absorbed greatly within one cell volume. The Monte Carlo algorithm brings to
the "idle tests" in this case. The particle energy is subtracted from the cell energy by emission
simulation and is added by absorption in the same cell. A second weight coefficient is introduced

to solve this problem:
Wz?i,j,k} = Kaps (En9Ti,j,k9pi,j,k )Ari . (3.3.24)

W, x is the weight coefficient of the nth spectral range in the cell (i,j,K); Ky (En,T.,j,k ,pi,j’k) is

the absorption coefficient of the nth spectral range in the cell (i,j,k); and Ar, is the characteristic

size of the cell. If the expression (3.3.24) is less than 1, the second coefficient is equivalent to 1.
It is possible to avoid simulations in absorbed lines. On the basis of the presented theory,

the following algorithm was developed for Monte Carlo modeling of photon emission:
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1. The total amount of emitted photons is calculated in the most radiated cell by integration

range-by-range:

E -1

max M Ek+l m
N e — k_(E.T™ pom)[ E2e’ —1]| dE. 32
h37zzczkzz:, em( ns > P )é[ e d (3.3.25)

This expression assumes that the emission coefficient K., (En,Tmax, pma") is constant within one

spectral range. M is the total number of ranges.
2. The first weight coefficient W, is calculated by the formula (3.3.23).

3. The spectral range distribution of emitted photons is obtained for the (i,j,k) cell:

-1
V, ko (Enn T2 i) o
Nir:lj’k — 1,] em(h;”;(’:gk pl,],k) I EZ(eT,J,k IJ dE . (33_26)

4. The spectral range distribution of the second weight coefficient is determined for the (i,],k)
cell by the formula (3.3.24).
5. Taking into account obtained weight factors, we can calculate the total sum of Monte Carlo

emission tests in the (i,],k) cell:

sim 13 Nirji,k
R (3.3.27)

1 n=1 Y¥o(i jk}

6. We need to normalize the emission spectra on unit for the photon energy:

N" M
P=—— - ic, P =1, n=LM. (3.3.28)
WW,i 5Nk -

We assume that the photon energies were distributed equiprobability within one spectral

range. Hence, linear interpolation was used to sample the emitted particle energy E . Taking
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into account both weight factors gives energy of the photon bundle E;',:" =E WW,i ;) as a

function of the spectral range numbern. The range number is determined with the real physical
energy of photon E . The value E;',:" is subtracted from the cell energy by the emission process
and added by the absorption process.

Photons Transition: It is important in the simulation to choose properly the start position
of the sampled photon bundle within the domain cell and the initial direction of motion [35].
Axisymmetric geometry sampling of the start coordinates along z axis is equiprobable
(analogously X, y and z in Cartesian 3D). Curvature of space should be taken into account along
the r axis: as one approached the cell volume decreases by constant step Ar (see Fig. 11). These

facts follow to expressions:

2=2,+&(z,-17,), (3.3.29)

r:1/r12+§ir22—rl2 ) (3.3.30)

where

I, I, are the left and right borders of cell along r axis correspondingly;

Z,,z, are the left and right borders of cell along z axis correspondingly;

£ is the random number within the interval [0,1].

Equiprobable space directions (azimuth angle ¢ and axial angle & in Fig. 10) are sampled with

standard method:

¢ =275, (3.3.31)
cos@=2&—1.

Photons Absorption: Attenuation of light intensity as a result of matter absorption is

I
~[Kes (e,1)cl

described by the expression | =1,e ° [36] or, in photon number terms
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N(w)=N,(w)e ° . (3.3.32)

P, = const

[ ]
\ 4
\ 4

N

Zi-1/2 Zz +12 ¥, i-12 ¥, i ¥, i+12

(a) (b)

Fig. 11. Probability density distributions of photon start coordinates along axes within

one computational domain cell: (a) r-axis; (b) Z-axis.

By considering the photon path within one cell (where the absorption coefficient is independent

of the coordinates) we can calculate the attenuation as
N(@)=N,(@)e =" (3.3.33)

The absorption/transition probability of the photon by path length | in the cell (i,j,k) following

the expression (3.3.32) is given

, 3.3.34
) ( )
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For complete simulation of the absorption process, we need to have the absorption coefficient
(which depends on the matter parameters in the computational domain cell and on the photon
energy), and we need to know the photon path length in this cell. The photon path length within
the cell can be obtained by consecutive solution of equation systems for the cell borders. For the

more complicated case of cylindrical symmetry, these equations are [37]

X=X, +Isinfcosgp

y=Y,+Isinfsing (3335
z=17,+lcosd o
=1

X=X, +Isinfcos¢

y=Y,+Isinfsing (3.3.36)
z=17,+lcosd ' o
x2+y2:ri2

Here, (XO, Yos ZO) is the start position of photon, (X, Y,z)is the final position (intersection with z;
border or I, border of cell), @ is the axial angle, ¢ is the azimuth angle. The photon path length

| is the minimum at the system (3.3.35)-(3.3.36) solutions.

After sampling the E and E;ihm energies, photon transition of computational domain

cells is simulated by checking each cell on absorption. Summation of all test results N = Z N fij”jk
i),k

presents information about the energy redistribution in the computational domain due to radiation
transport. Installation of additional counters at the cell borders enables us to calculate radiation
fluxes in matter. We can easily obtain the radiation fluxes on surfaces with complicated
geometry. Investigation of radiation spectra requires additional registration of the energy
distributions of the absorbed photons. Our numerical technique has universality both for radiated
objects geometry and spectral bands applications. Depending on the problem, one can investigate

energy redistribution over a wide range or can calculate radiation transport in a narrow band by

detailed resolution of each spectral line.
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3.4. Laser Radiation Absorption

Ideally, the laser absorption by a target should be treated in two phases: first by the cold,
unperturbed target and then by the target having a plasma layer in front of the remaining solid
target. Most of the hydrodynamics codes developed for infrared, visible, or UV lasers interaction
consider the plasma creation as instantaneous, at last compared to the driving laser duration. In
this approximation, the laser interacts only with the expanding plasma because the beam is
reflected at the critical density, typically about a hundred times lower than the solid density.
Figures 12 and 13 present HEIGHTS calculations of the 10 attenuation of the initial laser beam
intensity for a Xe target. The figures show the depth of penetration for wave lengths A = 1.064
um and A = 0.53 pm, respectively, which are use extensively in LPP devices for EUV
lithography [38-41]. For most parts of the modeling, inverse bremsstrahlung was proposed as the
process by which the laser radiation was absorbed by the plasma electrons [42, 43].

The HEIGHTS package uses, for the laser radiation absorption simulation, the Monte
Carlo technology presented in Section 3.3. Advanced schemes allow one to model the laser
beams distributed in time and space, focused in any space point. Reflection processes are taken

into account.
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Fig. 12. Depth of the 10™ laser beam attenuation in Xe plasma for A = 1.064 um.
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The laser beam is considered as directional flux of the macro-photons. The separate
macro-photon has the same properties (absorption, reflection probability, etc.) of the one real
laser radiation photon. However, the action of each real photon cannot be simulated because of
large number of real photons in the beam, and the action (energy transport) of each group photon

is combined into the macro-photon action. The number of real photons W, in the macro-

macro

photon can be estimated from the total number of available macro-photons N ..

P
Nmacro :W rea > Nreal = Elas : (341)
macro ph
Here B, is the momentary laser power, and E , is the energy of one real laser radiation photon.
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Fig. 13. Depth of the 10" laser beam attenuation in Xe plasma for A = 0.53 pm.

The HEGHTS package considers the time distribution of the laser pulse power. In the case of

square time distribution, the laser pulse power is

R%=?“”, (3.4.2)

pulse
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where the energy of the pulse Q,, is distributed uniformly in the pulse duration t ., . Gaussian
distribution in time can be expressed as a time function:
t-o,)
I:)Ias (t) = Po exp{_ ( O_zt) } : (343)
t

This equation assumes, that the pulse duration is t ., =20,. The maximal power P, can be

pulse

calculated from the integral (see Fig. 14)

(3.4.4)

t

0 o, 20,

Fig. 14. Gaussian distribution of the laser pulse energy in time.

Assuming a round laser beam cross-section, one can choose the space distribution of the
laser radiation flux to be uniform and Gaussian along the radius. Most applications have Gaussian

space distribution [44]
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1(r,t)= |0(t)exp{—r—22}, (3.4.5)
(o)

where taken into account pulse power distribution in time P, (t) There is also proposed that

radius of beam is equal I, = o, in Eq. (3.4.5). Double integration of the Gauss distribution has

eam

the analytical solution

0 S

2
)= [ 0o - fis =1, 0 346)
and hence the laser intensity in case of Gaussian space distribution can be given as
Pas (t ?
1(r.t)= L(z)exp{—r—z} . (34.7)
o

Equation (3.4.7) loses an exponential term in the case of square space distribution.
The HEIGHTS package has a computation module for controlling the directional and
focusing the characteristics of a laser beam set. Figure 15 presents a 3D computation domain

directed onto the target laser beam.

Fig. 15. Laser beam determination in the three-dimensional space.
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For a full description of the laser beam, we need to define the coordinates of the initial laser beam
point O, (X1 Y02, ) , the radius of the beam at initial point r,, the final point O, (Xz, Y,,Z, ) , and the
final radius r,. Additionally, we should define where the focus point F of the laser beam is
located: inside or outside the [0,0z]segment. These five items define the space geometry of the
laser beam completely. A parallel laser beam can be defined with r, =r, and focus location
outside the [0,0,] segment. Following this simple method for determining the laser beam
position, the numerical algorithm should simulate the start point coordinate and direction for each
laser radiation photon (by conservation of the time and space distributions). The photons initial
position can be simulated easily in an adjuvant (primed) 3D Cartesian coordinate system, which
was used for the conversion between laboratory and primed coordinate systems. The primed
coordinate system was selected so that the z'-axis was parallel to the laser beam axis and the X'-
axis was located on the x0y plane. The position relationship of two systems Sand S'can be
described by using two Euler angles ® and ® only [46]. The third Euler angle W is equal to
zero because the X'-axis coincides with the line of nodes located on the x0y plane. Hence,
arbitrariness is correct in the case of the equiprobable distribution of the laser beam photons in
the azimuth direction and no strong requirements on the orientation of the X'-axis. The junction

between the systems of coordinates can be expressed in matrix form as follows

X cos® —cosOsind® sinOsind X'
y|=|sin® cos@cos® —sin@®sind |x|y']|, (3.4.8)
Z 0 sin® cos® 7'

where the Euler angles ® and @ can be calculated from the laser beam axis orientation in the S

system:

Z, — 1, cos® = Y=Y,
\/(X1 —X, )2 +(y1 -Y, )2 +(21 —Z, )2 \/(Xl — X% )2 +(y1 -Y, )2

cos® =

(3.4.9)

\/(Xl_xz)2+(y1_y2)2 sin® =

Vo =%+ -y +(z-2,) YOG +(y -y,

sin® =
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Additionally, shift between the start plane of photons and point of origin in the primed system S’

AZ'=1] —\/(X1 —X, ) +(y, —y,) +(z,—z,)° is taken into account. In accordance with (3.4.5)-

(3.4.7) we obtained equations for simulating the square space distribution of the laser beam with

radius o,:

X'= O'S\/f_1 cos(27¢,)

) ) (3.4.10)
y' = 0,\J& sin(27Z,)
and for Gaussian distribution
X' =0/~ In& cos(27E, ) (3.4.11)

y' =0\~ In& sin(27¢,)

Here &, and &, are independent random numbers in the interval [0, 1].

As was mentioned earlier the HEGHTS model considers laser absorption in a plasma
cloud. Therefore, inverse bremsstrahlung was assumed as the main process by which the laser

radiation was absorbed by the plasma electrons. The classical value for the absorption coefficient

k las

abs

characterizing this collisional absorption mechanism is [47]

1672ZnZe’ In A(v)

klas — ,
3cv?(27m kT, )3/2 (1 -v, /V2 )1/2

abs

(3.4.12)

where €, n,, m,, and T, are the electron charge, density, mass and temperature respectively; Ze

2

is the ionic charge;C is the light speed; v is the frequency of laser light; v = |—= is the
zm

e

plasma frequency; and Kg is the Boltzmann constant. The Coulomb logarithm is given by [48]
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1nA=ln[% ML} (3.4.13)

n, Ze’

Condition v, >v in any space point is used for simulating the photon reflection. The new

direction of motion is sampled isotropic.

4. Total Variation Diminishing Solution.

Total variation diminishing (TVD) schemes ensure that the total variation in the

calculated area does not increase with time [21]:

Z\Au B Z\AU s - (4.1)
J J

As 1s well known, predictor-corrector schemes are unstable and need the addition of an energy
dissipation mechanism at the front of the shock waves [26]. It can be artificial diffusion,
viscosity, etc. The coefficients of the mechanism can be tuned to get better results, but that
problem-dependent approach is not in the spirit of modern shock-capturing schemes. The TVD
method is a particular case of essentially non oscillatory (ENO) schemes. There is no generation
of nonphysical oscillations along the shock waves in these solutions. Mechanisms of numerical
(mathematical) dissipation with automatic feedback allow transformation of shock wave kinetic
energy in heat energy in this case. The scheme can solve shock waves within 2-4 cells.

We present a general approach for constructing a TVD-LF scheme for the 1D case of the
hyperbolic conservation law for any variable U . More detailed HEIGHTS numerical schemes for
2D and 3D cases are presented in Appendix 1 and 2. As indicated above, the differential form of

the conservation law equation can be given for any conservative variable U for the 1D case:

ou (x,t)+6F(U)
ot oX

=0. (4.2)
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The computational mesh was defined as having unequal spacing AX; =X, —X; ,, where the

subscripts i—1/2 and i+1/2 refer to quantities defined on the cell interfaces. Cell centers

X; = (Xm/2 + X2 )/ 2 are specified at positions i. The code uses standard notation for evaluating

the function U;" defined at cell centers i and time level n. A time spacing t", with intervals
At" =t"' —t", was assumed. Explicit algorithms expect calculation of U™ values only from

the neighbor cells data on time level n. Data from neighbor cells should be enough for

determining fluxes Fifl?;" on the cell borders to calculate the next time level values

n+ n Atn ina ina
UM =U, —E(Fijl/; —F.ma). (4.3)

final

Final fluxes F.;, are composed of two parts: main fluxes FiiLlez and TVD corrections @, .

Main fluxes are an average of left and right fluxes on any cell interface Fj, = %(Fitm +F5 )

The correction term is based on the concept of the maximum propagation speed c;** of

information in direction X. In the case of hydrodynamics it is the speed of sound, v,.. The MHD

case takes into account Alfven waves speed, also. (For details of this problem, see [9, 21]). We

express for the case of HD and MHD with one component of the magnetic field B as follows:

B2
cr =|vx|+ V2 + ) (4.4)
\ 4rmup

Here p is the mass density. Below we present expressions only for one border cell i+1/2. The

cmax |vx| + |vaC ,

X =

expression is analogous to the left border i —1/2. Consequently it is possible to show the equation

for the final flux:

ina 1
R =5(Fil-_+1/2 + FiEI/Z - CiLJrRl/zAU iLfl/2)’ (4.5)

i+1/2
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where
1
Fi+L1/2 = F(U iL+1/2 )a Fifl/z = F(U iFjrl/z)? U iLj/z = E(U iL+1/z +U iFi1/2 )a and AU iL+T/2 = Uiil/z _Ufn/z-

This numerical scheme has a second-order approximation in time and space. The second-order
approximation in time is achieved by using a Hancock predictor step. Following this, we

calculated the left and right U;,,, values from the data obtained in the predictor step t =n+ 1/2

UL, =ur” +%AUi“ L UR, =Ume - Laur (4.6)

i+1 i+1
2

where limited differences are defined as minmod- functions or other slope limiters [21] of the

U differences
AU, = minmod(AU/",,,AU", ), AU, =minmod(AU",,,AU, ,) 4.7)

—yn

i+l

AUin—l/z :Uin _Uin—l , AU in+1/z =U;

i+1

-U/, AUin+3/2 =U]]

i+2

In the full step, upwinded left and right states, denoted by Uilh/z and Ui'il/z , are formed from

values on the predictor step U™ and U""*:

i+l

U inﬂ/2 =U in _i_::[F (U in+L1/2 )_ F (U inj/z )] , U in++1l/2 =U in+1 _§[F (U in+3/2 )_ F (U inﬁ/z )] (4.8)

i+1

The cell border values are calculated analogously (4.6):
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n n 1 n n n 1 n
Ui+L1/z =U, +5Aui ’ Ui—Ff/z =U, _EAUi (4.9)
u®r, =u’ —lAUn u',,=U/ JrlAUn

i+1/2 7 M+l i+l 2 i+3/2 7 i+l 7 i+l

The easiest way to extend the one-dimensional numerical scheme to more space dimensions is to
use dimensional (operator) splitting [49, 21]. A multidimensional problem is simply split into a

sequence of one-dimensional problems. Assuming thatL,, L,, and L, are temporally and

y’

spatially second-order operators that evolve the one-dimensional equations

oU OF,
—+ =0
ot Ox
oF
U %y (4.10)
ot oy
ou N oF, _ 0
ot oz
one can apply these 1D operators one by one in alternating order as
U™ =L,LLU™=LLLLLLU" (4.11)

for 3D expansion. The HEIGHTS package uses a modified version of the operator splitting
method [6, 7] where realized componentwise decomposition of fluxes. An expanded 13-cell
template is used for the 2D case and 33-cell for the 3D case. Boundary conditions are defined
separately for each direction of the decomposed fluxes. Appendixes 1 and 2 present more detailed

applications of this method to the 2D and 3D case, respectively.

5. Two-Temperature Approximation

Because inverse bremsstrahlung is the main mechanism of laser radiation absorption in
plasma, the electrons are the main recipient of the laser radiation energy. The maximal energy

that can be transmitted from one particle to another particle by elastic interaction is given by [50]
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_LmzzElzctrEla (51)
(m, +m,)

max

where m, and E, are the mass and energy of the bullet particle, and m, is the mass of the recoil
particle. The transmission coefficient for the equal particles (electron-electron or ion-ion) reaches

~1.0. The transmission between electron and ion (Xe" for example) is much smaller, CZ' ~ 1.6-10"

r
> These estimations show that energy transfer between the same particles is considerably higher;
that is, by laser heating of the plasma electrons, the thermal energy will be transferred from the
electrons to the ions with a time delay. The temperature of the electrons will differ from that of
the ions because laser heating is a very fast process as a rule. Describing the laser plasma as a
mixture of two gases (electronic and ionic) is more correct and enables one to explain numerous
physical phenomena of laser heating: electrons overheating and acceleration, magnetic field
generation, and so forth. The final MHD equation set (3.2) should be expanded to consider of
these plasma component. The three conservation law equations should be split (mass density,
pulse, energy density) to obtain electron and ion parts.

The HEGHTS model takes into account the principle of electro-neutrality of plasma. This
approach neglects local charge separation and enables one to split the energy equation only. The
continuity and pulse equations consider plasma motion as a whole. Moreover, it was found that
the best way for total energy control is to solve the energy equation for the whole plasma. The
energy of the plasma components is separated by the introduction of an additional energy
equation for ions, which takes into account the mechanism of energy exchange between the ionic
and electronic parts. The additional ion energy equation operates with the ion particles in the
ideal gas approximation. The nonideal part (ionization energy) is included in the electronic part
and is summarized in the total plasma energy equation. The expanded general MHD equation set

in a two-temperature approximation used in the HEIGHTS package is given by
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8—erV-(pV)=0

ot
6,0_V+V_ PVV + pwt_ﬁ z—LB(V-B)
ot Aru Aru
2
%+V- V(etot + ptm)—L(V-B)-B+%(V><B)><B—/le VT, -4, VT, =S4 | =
ot 4ru 167~ u

(5.2)
:Qlas _41 (VB)(VB)
7

mene

%+V'[V(ei+pi)_/1iVTi]=3 (kBTe_kBTi)

ite

V x (ryvx13)+%Vne xVT, =—v(V-B),
dru en,

2
B V. (vB=Bv)+-S
at

where are incorporated the source of laser energy Q,,, the energy exchange between electron and

ion plasma components, and the magnetic source term. Also included heat conductions for ions

and electrons [51]

1o 25nT.k; 1 Q- 25nTk; 1

e 2 ’ i P (53)
48.7.m, 14 25Q; 48.y.m, 1+6.25(2i
ﬁe(4ﬂe _9)7/62 ﬂi27i2
where
) = 4v2ze*n InA , - 4y27e'n; InA (5.4)
kTP ST |
13 15(T Y (m "
ﬁe :\/5+_, IBi =\/§+_ _l _€ (5.5)
4 2T, m;
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. . eB . o
with the cyclotron frequencies expressed as €.; =——. The Coulomb logarithm is given by

Cme/i

(3.4.13). As was determined by numerical experiment, the ion part of heat transport is
significantly smaller in comparison to the electron part and can be neglected.
The magnetic diffusion and Joule heating can be determined with the Spitzer resistivity

expression [48]

3
z°m,

1
— | ——_7Ze’InA. 5.6
2 8(kBTe)3 ' ( )

77:

The electron-ion energy exchange was considered as a function of electron and ion gas

temperatures [51]
—= (kg T, —kgT,), (5.7)

where the time between electron interactions is

3/2
o 3\/m—e(kBTe) (58)

* aJ27ezZ’nInA’

Numerical experiments with laser power fluxes up to 10'> W/cm? (typical of those used for EUV
lithography) showed a small influence of the thermally generated magnetic field on the plasma
behavior and on the EUV output. (See Appendixes 3, 4, and 5 which give the hydrodynamics
equation sets for the cases with and without magnetic field generation.) The cases that take into
account the magnetic field can be used for numerical experiments with laser plasma in an

externally induced magnetic field (i.e., for debris mitigation).
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6. Validation and Benchmarking

To validate the model and benchmark the code, we solved several test problems and
compared the results with known analytical and experimental data. The calculation blocks were
tested separately (TVD-LF, thermal conductivity, radiation transport etc.). We also tested
combined action of numerical blocks in various alternations of blocks to check stability of results.

Moreover, the full model of LPP device was provided and compared with available data.

6.1. Testing of the TVD-LF Numerical Scheme

To validate the convective block and to test our numerical scheme with the hydrodynamics
fluxes directional decomposition (see Section 4), we computed the supersonic air flow around a
sphere and compared it to published data. The thermodynamic properties of air were considered
in an ideal gas approximation (one temperature) with adiabatic constant y =1.4 :

7 P PV2 M Py,
V. = , = —1)e —F—o , r=>---" 6.1.1
ac ph (7 )( h B j pR ( )

Here u is molar mass of gas and R is universal gas constant. We tested the two-dimensional

TVD-LF numerical algorithm, presented in Appendix 1, after excluding of the magnetic field.
Figure 16 shows the excellent agreement between tabulated data [52] and computation by our
scheme of density distribution in the shock wave in front of the sphere for the flow velocity 1.5
M.

2.5 q
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1.5 A

Density, p/p,

1.0 +

1.0 12 1.4 1.6 18 2.0
R Axis, x/R,

Fig. 16. Density distribution in the front of the air blasted (1.5M) sphere. Comparison
to tabulated data [52].
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We compared the results from the total variation diminishing scheme with experimental data.
Figure 17a presents a shadowgraph of the ’2-inch sphere that flows through air at M=1.53 [53].
Figure 17b presents the TVD-LF calculations, which give identical location and angles for the

shock wave fronts.

Density p/p,
4.0 2.37
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2.4 1.88
- 1.64
& 08 ’
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Z 0.8 1.15
=
0.91
-24 0.67
0.42
-4.0
222 -0.70  0.82 230 382 5.34
z Axis, z/R,
a) b)

Fig. 17. Air blasting (1.53M) of sphere. a) A shadowgraph catches a % -inch sphere in
free flight through air [53]; b) Calculated with TVD-LF density distribution.

6.2. Validation of the Implicit Sparse Matrix Scheme

To validate the implicit numerical scheme that solves the parabolic part of the general
MHD equation set, we calculated two test problems and compared the results with known

analytical data [54]. The first test problem describes heat transport into the semi-restricted

computational domain with thermal conductivity4A=A4,T“. The power dependence of

conductivity allows analytical solution of the heat transport problem
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ﬂ=ﬁ/10T“£,forz>0,t>0 (6.2.1)
ot oz 0z

with initial and boundary conditions

ql/a
T(O,t):{i—D(zl +Dt)| ,t>0 (6.2.2)
0 _
D T
ai
T(2,0)= [70(21 —z)_ ,0<z<7,
0 , 1>,
given by
oD la
T(2t)= [l_O(DHZl —z)} ,0<z<z,+Dt 62.3)
0 , 2>12,+Dt

Test calculations were performed for the parameter set ¢ = 2, 4o = 0.5, 2; =0, and D = 5 on

uniform and appreciably nonuniform

meshes.  Figure 18 presents time-step 35 ]

lalalo
calculations for the implicit algorithm with 30 1™

| HDL\Q& Analytical
uniform mesh and Az = 10”. The heat front 25 ] B, o At=10"

) A At=10"
at time moment t = 0.1 is shown. The 20 ] dg":g& 8 At=10
15 - B

scheme remains stable for very large time

Temperature, a.u.

steps.  Analytical results and numerical 1.0 - LEK
simulation solutions for this heat transport

. I
0.5 - &E
problem were satisfactorily fit by At < 10™ L 1 it

0.0 0.2 0.4 0.6 0.8 1.0
Z axis, a.u.

Fig.18. Heat front distribution calculated with different time
steps. Uniform mesh Az =0.01. Time moment t =0.1.
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with the implicit method. We also constructed a simple explicit numerical scheme and obtained
similar results to the implicit scheme but only by using time steps smaller than At < 10°. Larger
time steps caused oscillations and numerical scheme disturbances. Accordingly, the difference

between implicit and explicit time steps is two orders of magnitude.

4.0 4

3.5 4 g ol

o, Analytical
3.0 - o ©  Numerical

2.5 4 Ry
2.0 4 .
1.5 - |

1.0 -

Temperature, a.u.

0.5 -

0.0 1

1 v T ¥ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Z axis, a.u.

Fig. 19. Heat front evolution. Nonuniform mesh: time step At = 10,

The implicit algorithm retains stability by using the appreciably nonuniform meshes. The
evolution of the heat front on a nonuniform mesh is presented in Fig. 19. The calculations were
carried out with time step At = 10™*. The analytical and numerical simulation results compare
very well.

The second numerical test investigated the "stopped" temperature wave, obtained from

Eq. (6.2.1) at intervals z > 0, and 0 <t < C with initial and boundary conditions given by

la
al
T(0,t)= ! , 0<t<C, 6.2.4
©01) {2/10(a+2)(0—t)} = (624)
la
a(z, - z)
— 0<t<C
T(2.0)= L%(mz)J IR
0 ,Z>Z,
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The temperature front evolution in this case is

la
a(21 _2)2 ):' 0<z< 21

T(zt)= {22,0(a+2)(C —t
0 ,Z>Z,

(6.2.5)

Analytical and numerical simulation results were compared for coefficients o =2, 4o = 0.5, 71 =
0.5, and C = 0.1125. Figure 20 presents

calculations obtained by an implicit scheme 16 |

with time step At = 10 on uniform spatial 14 ]
= | Analytical
mesh Az = 10_4. ~ 12 4 © Numerical
L . $ 10 -
Our validation of the numerical 5
~N 8 o
) . . . s
simulations with analytical results showed &% .
2 i
stability and accuracy for artificial problems. g 4
. . ) =
However, computation for real devices is of 2 -
much more interest. We thus compared results 0 oy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

for a discharge plasma device calculated by .
Z axis, a.u.

both the implicit and explicit schemes. A

detailed description of the discharge device is  Fig. 20. "Stopped" temperature wave. Time step At= 10",
given in [8]. Figure 21 includes temperature Uniform mesh At = 10

and magnetic field distributions around the device electrode at 200 ns after discharge start. The
computational procedure combined magnetic field input with external current and excluded the
electrode area from the domain. The plasma motion was calculated by the implicit scheme and
by substitution of heat and magnetic diffusion fluxes directly into the MHD explicit scheme [6,
7]. The results obtained by both schemes compared well. Figure 22 shows cross-sections of
temperature and magnetic fields distributions calculated by both schemes for z = 1.5 cm in Figure
21. The independent implicit scheme has a number of advantages over the direct MHD explicit
method. Of vital importance is the ability to use much longer time steps. The curves in Figure
22 were calculated with time step At = 5 ps for the implicit method and At = 5:10  ps for the
explicit method. The time step is strongly confined with heat transport in areas of small plasma

density. These areas are usually the back of the magnetic "snow plow".

71



The explicit scheme is very unstable in heat transport calculations for rarefied plasma.
One can explain this result by considering the mechanism of thermal conductivity: hot particles

transfer energy into neighbor cells, as a result of chaotic thermal motions.
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Fig. 21. Plasma parameter distributions around electrode at t= 200 ns:
(a) temperature field (¢V) and (b) magnetic field (kG).
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Fig. 22. Plasma parameter distributions along R-axis at t = 200 ns:

(a) temperature field (eV) and (b) magnetic field (kGs).

The explicit scheme works well if the particles arrive and exchange energy in the adjacent

cells only during one time step. This scheme is not able to consider energy redistribution in the
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next nearest cells. The consecutive energy transport is taken into account. The frequency of
particle interactions declines by decreasing of density, and the time of flight through the cell is
appreciably shorter. The explicit scheme includes non-useful time steps in the described case.
This is related to the physical concept of the Courant-Friedrich-Levy (CFL) conditions. A similar
unstable situation takes place by consideration of magnetic diffusion during the stage of plasma
compression near the zero point on the radial axis [55]. Additional procedures are needed for
damping nonphysical oscillations in the explicit case. However, the explicit method allowed us
to simulate plasma motion in discharge-produced plasma devices of several constructions [8].
We note the stability of the numerical algorithm in combination with other processes of energy or
magnetic field transport, such as radiation transport, thermomagnetic source, and laser beam

interactions.

6.3. Radiation Transport

It is important to test the radiation transport part on a practical application. Simple tests

(as a "black body") give a qualitative evaluation only. Hence,

we investigated a plasma focus device radiation problem using “1 .

the HEIGHTS radiation transport block benchmark. We \\\._\
considered convergence and accuracy of solution obtained with A 1B
a Monte Carlo method and with direct Gauss integration of /,f'

radiation equation (3.3.5). Figure 23 presents schematically the

geometry of the device and initial data from the numerical cathode
experiment. The working gas temperature and density fields
were saved during plasma focus pinching and were used as

initial data for solving the radiation transport problem.

B

Radiation fluxes were calculated with different methods and ':::,@:_-’_E/‘E 4D

different accuracy: z-radiation flux along |AB| surface and r- e

Fig. 23. Plasma focus device geometry.

radiation flux along |BC| surface. We used an equidistant mesh . e
Coordinate system organization.

along the z-axis and a nonuniform fine mesh near zero point
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along the r-axis. Both methods give a bigger deviation of solution near point A: to the smaller
calculated cell corresponds a smaller number of particles in MCRT or angles in DRT.

Figure 24 presents convergence of the radiation transport solution with the Monte Carlo
method by increasing the total number of used macro-photons (see Section 3.3). One can see that

5-10° macro-photons give satisfactory accuracy.
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Fig. 24. Convergence tendency by using the Monte Carlo method for
RT calculations: (a) R-flux on |BC]| surface; (b) Z-flux on |AB| surface.
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Fig. 25. Convergence tendency by using Gauss direct integration method for RT
calculations: (a) R-flux on |BC]| surface; (b) Z-flux on |AB| surface
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A similar trend is presented in Fig. 25 for the direct integration scheme. The figure shows that
satisfactory results can be obtained with the direct integration method with 64x64 angles. Both
methods converge to the same solution, presented in Fig. 26.

x10'
x1 ﬂs 18
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=== MCRT, 5x10° photons
== DRT, 64 angles
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i
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R - Radiation Flux, Wiem'
Z - Radiation Flux, W/em®
=

1.0 2.0 3.0 4.0 0 0.4 0.8 1.2
R Distance, cm

(a) (b)

7. Distance, cm

Fig. 26. Comparison of Monte Carlo and direct integration solutions of the plasma focus
RT problem: (a) R-flux on |BC]| surface; (b) Z-flux on |AB| surface.

The quantitative and qualitative behaviors of the radiation flux are the same, despite the Monte
Carlo method being significantly faster: by approximately a factor 300. This result also confirms

the high accuracy and reliability of the implementation of the methods.

6.4. Final Benchmark

Final benchmarking was done for a completely EUV lithography application. The EUV
output was calculated from the LPP device with planar geometry of the target and compared to
published the data for tin target [56]. The arrangement of the experiment is shown schematically

in Fig. 27.
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Fig. 27. Design of benchmarked LPP device.

The device used in the assembly and modeled with the HEIGHTS code was an Nd:YAG laser,
delivering 0.3J at 1.064 um in a 7.5 ns pulse. Laser light was focused onto the target surface at
normal incidence by an aberration- and chromatic corrected lens with a 20.3 cm focal length. The
laser radiation intensity level was controlled by tuning the laser spot radius. The minimum spot
size at the target was about 20 um.

The physical and mathematical model assembled for this problem included all the blocks
described in this report: TVD-LF hydrodynamics, implicit sparse matrix solution for parabolic
terms, Monte Carlo radiation transport, Monte Carlo laser absorption, and Monte Carlo modeling
of EUV output registration. The model was tested with two and three dimension numerical
schemes, with equal results. Also were tested several variants of spatial meshes: for 2D 100x250
cells with minimal size of cell in region of interest ~Ium and 65x110 with size ~5um; for 3D
40x40x45 cells with cell size ~10um for big spot sizes only. A final parameter that served as a
criterion for the code work evaluation was the total EUV output into 27 sr solid angle, that is, the

CE of the LPP device:

13.4nm £ 1.1eV

Copy == .100%, 6.4.1
BV TQu 228V (6.4.1)

where Qpv™ "' is the amount of EUV radiation energy registered in the 2.2 eV bandwidth

centered at 134 A. The efficiency is normalized on 1 eV. Opacities and atomic data used for

radiation transport and EUV calculations are described in detail in [57, 58, 6-8].
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Figure 28 presents a comparison of experimental results [56], well-known theoretical data

(LASNEX [59]), and results simulated by the HEIGHTS package.

TIN

0.8F
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0.6

{EIGHTS

0.4f i i

CE, %/eV

Laser: 0.3 J, 7.5 ns, 1.064 um

lnlﬁ lﬂ“ l|]I2

Intensity, W/em®

Fig. 28. Efficiency of LPP device with tin planar target. Comparison of
experimental and theoretical data [56].

As shown, the HEIGHTS numerical results agree well with the published data. The numerical
scheme demonstrated stability of results with changing spatial discretization and with expanding
to the full 3D structure. These results indicate that the full 3D HEIGHTS package can be used

effectively to study complex three-dimensional magnetohydrodynamics problems.

7. Results and Discussion

We focused our numerical investigations on a tin target because of its current interest as a source
for A=13.5 nm EUYV lithography [60-62]. For the final benchmarking test (see Section 6.4), we
considered the influence on the CE of three factors: dependence on a wavelength of laser, target
geometry, and laser beam geometry. We present here our key results. Initial conditions (laser
parameters, target size, etc.) of our numerical simulations were determined to be close to known

experimental data [63-66].
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To select the most effective laser wavelength for EUV on tin, we simulated the interaction of a

single laser beam with a droplet target. Figure 29 schematically shows the geometry of the first

numerical experiment.
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Fig. 29. Single laser beam interaction with the Sn droplet target.

The spherical tin target had a 100 um diameter and was located at the point of origin of a 2D
cylindrical coordinate system. The laser beam coincided with the z-axis. The laser pulse, which is
square in time, was simulated with a total energy up to 230 mJ and duration 10 ns. The space
Gaussian distribution of the laser beam (see Eq. (3.4.5)) allowed us to achieve laser power
density in the laser spot up to 3-10"" W/cm?® by o= 50 um. Three laser wavelengths were tested:
355, 532, and 1064 nm. Typical density, temperature, and velocity of plasma are plotted in Fig.

30. Distributions are shown for the case A = 1064 nm, E,ysc = 45 mJ, time moment 9 ns after the

laser pulse start.
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Fig. 30. (a) Density, (b) temperature, and (c) velocity of tin plasma distributions at 9.0 ns.

Single laser case: energy of laser pulse 45 mJ, wavelength 1064 nm.

The efficiency of the simulated EUV device is shown in Fig. 31 as a function of the radiation

power density. The CE was calculated as the ratio of total EUV output (13.5+2% nm band) into

27 sr solid angle to the energy of the initial laser pulse.

droplet & =100 pm TIN
X . . . . .

1.89

- - -
B k. =

CE, % / 2n sr

[~ % = 1064 nm |
—&— L = 531 nm
—&— L = 355 nm

=
]

0.6
0 0.5 1 1.5 2 .5 3

Laser Intensity, W Yem® x10

Fig. 31. Efficiency of the LPP device as a function of

radiation power density by tin droplet target.

An ideal variant of light source for EUV lithography is a small spherical object with enough
density and an optimal temperature for the given material for EUV output. This approach is used

in recent investigations [67, 68] for improving EUV output efficiency, that is, the first part of this
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problem: possible target materials for effective radiation at the 13.5 nm area on the background
of the total spectrum. However, the second part of the problem consists in the formation and
efficient confinement of the EUV plasma in these optimal conditions (temperature plus enough
density). Typical axial distributions of the temperature, density, and EUV flux are plotted in Fig.

32 for the case of a droplet target and single laser.

9.0 “S —&— Density | | —& Temperature | | —=— EUV Radiation |

12
x 10
107 3 50

e
®

20 |

».
h
Temperature, e}’

Density, I/em®
EUV Radiation, W/em®

™

10 10° 10
Distance, cm

Fig. 32. Distributions of the density, temperature, and EUV
flux along the laser beam axis at the 9.0 ns time moment.
As shown, the EUV output region is a thin layer between areas with high temperature but small
density and high density but small temperature. Increasing this region thickness enables us to
solve the second part of the EUV CE problem. Different target materials have their own EUV
region size, which appears in different sizes of EUV source images [69]. Our preliminary
calculations show a very thin EUV layer for a lithium target. Laser radiation is absorbed actively
by the target surface plasma and overheats the surface because lithium has only three electrons.
The greater part of the laser energy is deposited in this overheated area. The remaining part is
distributed in the full target because ~1 eV lithium is transparent enough for laser radiation.
Moreover, the hot external plasma layer actively absorbs EUV radiation from the thin EUV
region. As a result, these negative factors can appreciably decrease the position of the element as
a candidate for laser target material. Two approaches can be used to avoid these factors:
application of more complex targets where the material combines clusters, and an increase of the

heated plasma density. The first approach is actively being investigated [70]. We consider the
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second approach in our numerical simulations. The authors of Ref. [71] observed increasing the
EUV emission near the wall close to the laser target. In our opinion this effect is concerned with
confinement of motion of the heated plasma. The density of the hot plasma increases near the
wall, and a new EUV region appears at this area. Reference [71] is not so applicable in the full
problem sense: additional wall creates additional shield for EUV output and decreases the final
CE. A better way is the produce a transparent (for EUV) wall that can confine plasma.

To achieve these conditions and to examine of our hypothesis, we constructed the space-

distributed laser beam assembly shown in Fig. 33.
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Fig. 33. Three-beam LPP device. ¢ - radial angle, 0 - axial angle

If our hypothesis is correct, the three laser beams in Fig. 33 can effectively confine the plasma
density by any optimal axial angle 0. The proposed laser beam configuration should organize
along the z-axis the plasma jet confined in the radial direction. The case 6 = 0 corresponds to a
single-laser device construction. The 3D problem was simulated for a tin droplet with diameter
100 nm. Energy of pulse (45 mJ) was distributed in equal parts between three lasers started at one
time. The duration of the pulse was 10 ns. The laser wavelength was 1064 nm. Initial conditions
of this numerical experiment correspond to the most optimal single-laser case shown in Fig. 31.
The square distribution of laser energy in time and the Gaussian distribution in space were used
in this numerical experiment. Influence of the plasma confinement on the efficiency of LPP

device is plotted in Fig. 34 as the dependence from the axial angle 0.

81



60

50+

404

30+

CE, % / 2n sr

201

Max Temperature, e}’

101

0-angle, deg

Fig. 34. Efficiency of the three-beam LPP device as a function of axial

angle (green line). Maximal temperature of plasma (red line).
The second numerical experiment confirms the existence of the optimal axial angle (6 ~
30°), where plasma confinement gives an advantage in the EUV output CE. As we assumed, a
new plasma jet appears and obtains energy in area between the laser beams. The efficiency of the
three-beam device should be higher in comparison to the single-beam device only with enough
laser pulse energy: optimal plasma temperature and density cannot be achieved in the central jet
with an initially cold plasma. We plotted EUV efficiency dependence on the laser pulse energy

(Fig. 35) for the optimal axial angle 8 = 30" and obtained confirmation of this statement.
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Fig. 35. Efficiency of the three-beam LPP device as a function of
the total pulses energy for the axial angle 6 = 30".
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Figure 36 presents temperature fields in x-y-plane cross-sections that belong to the maximal

temperature point (see Fig. 34).
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Fig. 36. Temperature fields for (x-y) cross-section in point of maximal
temperature at 9 ns. One-laser case corresponds 6 =0,

The plasma motion initiated with three laser beams is illustrated in Fig. 37. Here are presented (z-

X) cross-sections of density, temperature, and velocity fields. The black arrow indicates the

direction of the formed plasma jet.
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Fig. 37. (a) Density, (b) temperature, and (c) velocity of tin plasma distributions at 40.0 ns in z-x plane.

Three-laser case: energy of lasers pulse 45 mJ, wavelength 1064 nm, 0 = 30",

The initiation of the plasma jet with this method involved application of three laser beams,

precise adjustment, time synchronization, and so on. Moreover, the plasma confinement is not so

effective (Fig. 37). Taking into account these disadvantages, we increased CE from ~2.0 to ~2.2

% (Fig. 34).

Modern development of laser instruments has resulted in creation of the hollow laser

beams [72-75]. We used the hollow laser beam in our numerical experiment to accelerate of the
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Fig. 38. Hollow beam LPP device.

plasma jet confinement and to avoid the disadvantages
noted for the three-laser construction. Figure 38 presents
such an LPP device with a planar tin target and with a
hollow laser beam as an energy source. We assumed
initiation, confinement, and energy supply of the
cumulative plasma jet inside the hollow laser beam of
the device. Following our hypothesis, the dense plasma
jet should be initiated at the target surface with round
heating and should be confined with more heated plasma
of the cylindrical laser body. In a numerical experiment,
we investigated the CE of the new device as a function

of the hole and beam ratio, namely, the ratio & of the
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hole radius to the external radius of the laser beam. In this case, § = 0 corresponds to the laser
beam without a hole, and & = 1 corresponds to the infinitesimal laser body. We assumed equal
laser pulse energy (300 mJ), laser pulse duration (7.5 ns), and radiation power density in the laser
body (5.73-10"° W/cm?). Square distributions of laser pulse energy were assumed in time and in
space. The numerical experiment was conducted with a 2D cylindrical geometry.

As expected, we obtained generation of the plasma jet inside the hollow laser beam.
Moreover, we observed pinching of plasma on the laser beam axis. Figure 39 presents the most
distinctive density, temperature, and velocity distributions of the hollow-laser-produced plasma

in the r-z plane for the radius ratio & = 0.7.
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Fig. 39. (a) Density, (b) temperature, and (c) velocity of tin plasma distributions at 7.0 ns in z-r plane.

Hollow-laser-beam case: energy of lasers pulse 300 mJ, wavelength 1064 nm, & =0.7.
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In comparison to three-laser case (Fig. 37), the plasma jet inside the hollow laser beam is well-
defined and much more accelerated. To consider cumulative character of the plasma jet inside the
laser beam, we carried out numerical experiments with conditions close to those described in
Section 6.4, that is, we calculated the EUV output in the 2.2 eV bandwidth centered at 134 A.
The radiation energy distribution in laser beam (Sec. 6.4) was Gaussian in space. The Gaussian
space distribution is close to the real experimental laser beam parameters and gives a higher CE
in comparison to the simple square distribution. We did not have the space distribution of the
laser radiation density for the new hollow laser beams and carried out our numerical experiment
with the hollow beam on the square distribution. Hence, the data in the Fig. 28 for the hollow-
beam results cannot be compared directly. However, the results show that the hollow-beam laser
abruptly increases the EUV output coefficient efficiency. Figure 40 shows an increase of the CE
by a factor of 1.16 for the nonoptimized square distribution case. The three-laser case (Fig. 34)

has a factor 1.1 increase.
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Fig. 40. Efficiency of the hollow beam LPP device as a function
of the radius ratio & = ,01e/Tpeam fOr the planar Sn target.

We believe that the obtained effect should be used to increase the CE of industrial LPP sources
for EUV lithography.
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Summary and Conclusion

The main contributions of this work are as follows:

Theoretical Model: Physical models were developed to simulate the main processes that

occur in EUV lithography LPP devices: MHD model of the plasma motion, theoretical
models of the magnetic diffusion and thermal conduction in plasma, radiation transport
model, and laser absorption model.

Model Implementation: Theoretical models were adopted for numerical solution in the one-

and two-temperature approximations. Cylindrical symmetrical two-dimensional and three-
dimensional cases were considered.

Numerical Scheme: An algorithm based on separation by physical processes was developed.

For each physical process, the most efficient numerical scheme was constructed.
Hydrodynamic processes were simulated based on the total variation diminishing scheme in
the Lax-Friedrich formulation; an implicit scheme with the sparse matrix solver was
developed for magnetic diffusion and heat conduction problems; and Monte Carlo methods
were used for simulation of radiation transport and laser absorption processes.

Application: The integrated computer code HEIGHTS was developed for simulating physical
processes that occur by interaction of the laser beam with matter. The computer code was
optimized for calculations of the EUV output of the LPP devices for lithography purposes.
The HEIGHTS code was used to investigate the influence of complex spatial effects of
plasma motion on the final coefficient of efficiency of the LPP device.

Benchmarking: The HEIGHTS package was tested and benchmarked with known analytical

and experimental data. The separate computation models and the whole code were tested.

We obtained the following results:

1.

The LPP device with spatially distributed laser beams was modeled. The optimal spatial
location of the three beams was obtained in a 3D numerical experiment to increase the total
EUV output from a tin droplet target. The coefficient efficiency was increased as a result of

plasma confinement with the laser beam assembly.

87



2. The effect of the cumulative plasma jet formation inside of hollow laser beam was observed
in a computer simulation. The coefficient of efficiency increased by a factor of 1.16 on the

planar tin target.

We conclude that the obtained spatial effects should be used to increase the efficiency of
industrial LPP sources for EUV lithography. We also note that the theoretical model and
integrated code HEIGHTS showed wide capabilities and flexibility. The model and code
therefore can be used for: optimization of obtained data, investigation of LPP devices with
complex geometry and structure targets, study of the combined influence of spatial effects and

target structure on the final EUV output, and registration of the EUV source size and form.
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Two-dimensional cylindrical symmetric case of MHD equations. TVD-LF numerical
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Appendix 2

Three-dimensional case of HD. TVD-LF numerical scheme
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Appendix 3

Full MHD equations set for 2D cylindrical symmetry in two temperature approximation
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Here for the plasma is assumed the magnetic permeability x4 = 1. Total energy is given by

ot =€ +€, €y T Euin + Emag » Where €, 1s the ions internal energy; e, is the electrons internal

ioniz mag °

2 2

\/A .. .
PV is the kinetic energy; € =8_ is the
V4

energy; €,.,1S the energy of ionization; e, =—— mag

magnetic energy; Pi = Py + Prag = Pi + Pe + Pray 18 the total pressure; p, is the hydrodynamic

2
pressure; p; is the ions pressure; p, is the electrons pressure; p,., :8— is the magnetic
V4

pressure; Q. is the laser radiation heating term (see Section 3.4); Q,,, 1s the radiation transport
term, discussed in Section 3.3; and Qg .and Q,; are the heat conduction terms of electrons and

ions correspondingly (Sections 3.1 and 5). Magnetic diffusion term for energy equation is Joule

heat is given
0 = C L(&_le ) (A3.2)
Totex” |t or oz) | '
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Magnetic diffusion term for Faraday equation Q, ., and magnetic source term Q. is discussed

in Section 3.2. Expression for the electron-ion energy interchange Q. can be found in Section 5

(see equation 5.7).
The full MHD equations set (A3.1) presented in short matrix form for TVD-LF numerical

scheme (see Appendix 1) are

6—U+13[rF(U)]+ 240) + 0G(U) _ Q, (A3.3)
ot ror or 0z
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Appendix 4

HD equations set for 2D cylindrical symmetry in two temperature approximation. No

magnetic field

aa—’t’ —ai(pvr)+%(pvz)=0

) B )

DL L2 v )+ 2wyt + g )=0 (A1)
P L o+ P+ o+ P ) Qs+ Que Qs+ Qe
L GRY I ORI

The total energy does not include magnetic field part e, =€, +€, +€,,, +€,,, where €, is the

ioniz

ions internal energy; e, is the electrons internal energy; e is the energy of ionization;

e ioniz

v o : : :
€4in :’OTls the kinetic energy; p,, = P, = P; + P, is the total pressure; p, is the hydrodynamic

pressure; p; is the ions pressure; p, is the electrons pressure; Q,,, is the laser radiation heating
term (see Section 3.4); Q_, is the radiation transport term, discussed in Section 3.3; and Q,, . and
Qu,; are the heat conduction terms of electrons and ions correspondingly (Sections 3.1 and 5).

Expression for the electron-ion energy interchange Q. is presented in Section 5 (see equation

5.7).
The full MHD equations set (A4.1) presented in short matrix form for TVD-LF numerical

scheme (see Appendix 1) is given

-Q, (A4.2)
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where

| Qui + Qun;

PV
vV

r

pviv'

Vr (etot + ptot )

Qlas + ch,e + ch,i + Qrad

Vr(ei + pi) i
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-
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Appendix 5

HD equations set for full 3D geometry in two temperature approximation. No magnetic

field

opVv
op  9pVy  OPYy 0PV,
ot  Ox oy 0z

opV, Vv
9PV, +i(,0vf+ pt0t)+ PVxVy +apVsz -0
ot 0x oy 0z
opVv, OpVV, . 0 (pv2+ 5 )+ opV,V, 0o
y tot
ot oX oy 0z (A5.1)

OpV,V
opV, +5PVZVX L Py +i(PVf + ptot):()
oo ox 9y oz

08y . O 0 0

_attm + ox (Vx [etot + Prot ])‘l'a(vy [etot * Prot ])+E(Vz [etot + Prot ]): Qlas + ch,e + ch,i + Qfad
oe, 0 0 0 -

EJF ox (v,[e; + p; )+ dy (Vy le + p‘])+ 0z (v, [ + Py )= Qu + Qu,

The total energy does not include magnetic field part: e, =€, +¢€, +¢€,

ioniz

ot +8,,, where e, is the

ions internal energy; e, is the electrons internal energy; e is the energy of ionization;

e ioniz

v o : : :
i :’OTls the kinetic energy; p,, = P, = P; + P, is the total pressure; p, is the hydrodynamic

pressure; p; is the ions pressure; p, is the electrons pressure; Q,, is the laser radiation heating
term (see Section 3.4); Q_, is the radiation transport term, discussed in Section 3.3; and Q,, . and
Q,; are the heat conduction terms of electrons and ions correspondingly (Sections 3.1 and 5).

Expression for the electron-ion energy interchange Q. is presented in Section 5 (see equation

5.7).
The full MHD equations set (AS5.1) presented in short matrix form for TVD-LF numerical

scheme (see Appendix 2) is given
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ou | oF(U) .\ oG(U) .\ oH(U)

= =Q, (A4.2)
ot oX oy 0z
where
ey | PV, 1 [ev. ]
PVy Py + P PV, A
2
U= pvy ,F: pvxvy , G: pvy+ptot , H: pvzzvy
pVZ pVXVZ pVyVZ IDVZ + ptot
etot VX (etot + ptot) Vy (etot + ptot) Vz (etot + ptot)
L& _Vx(ei + pi) | _Vy(ei + pi) | |V, (ei + pi)
"o -
0
Q 0 AS5.3
- 0 ( * )
Qlas + ch,e + ch,i + Qrad
| Qe +Qp |
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