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Part IA Tutorial Introduction1 Program CompositionProgram Composition Notation (PCN) is both a programming language and a par-allel programming system. As the name suggests, both the language and the pro-gramming system center on the notion of program composition.Most programming languages emphasize techniques used to develop individualcomponents (blocks, procedures, modules). In PCN, the focus of attention is thetechniques used to put components together (i.e., to compose them). This is illus-trated in the following �gure, which shows a combining form being used to composethree programs.This focus on combining forms is important for several reasons. First, it encour-ages reuse of parallel code: a single combining form can be used to develop manydi�erent parallel programs. Second, it facilitates reuse of sequential code: parallelprograms can be developed by composing existing modules written in languages suchas Fortran and C. Third, it simpli�es development, debugging, and optimization, byexposing the basic structure of parallel programs.It appears likely that a large proportion of all parallel programs can be devel-oped with a relatively small number of combining forms. However, PCN does notattempt to enumerate potential combining forms. Instead, it provides a core set ofthree primitive composition operators | parallel, sequential, and choice composi-tion | in a core programming notation. This is a simple, high-level programminglanguage. More sophisticated combining forms (providing, for example, divide-and-conquer, self-scheduling, or domain decomposition strategies) can be implementedas user-de�ned extensions to this core notation. Such extensions are referred to astemplates or user-de�ned composition operators. Program development, both withthe core notation and with templates, is supported by a portable toolkit. These threecomponents of the PCN system are illustrated in Figure 1.This tutorial provides a detailed description of the core programming notationand toolkit, and an introduction to the use of templates in parallel programming.1



Application−specific
composition operators

Core Programming Notation

Portable ToolkitFigure 1: PCN System Structure1.1 Core Programming NotationThe core PCN programming notation is a simple, high-level language that pro-vides three basic composition operators: parallel, sequential, and choice. Thelanguage provides two types of variable: conventional, or mutable variables, andsingle-assignment, or de�nitional variables. Other distinctive features of the lan-guage include extensive use of recursion, support for both numeric and symboliccomputing, and an interface to sequential languages such as Fortran and C. Thesyntax is similar to that of C.1.2 ToolkitThe PCN toolkit provides support for each stage of the parallel program develop-ment process. It comprises a compiler, linker, foreign language interface, standardlibraries, process mapping tools, programmable transformation system, symbolicdebugger, execution pro�ler, and trace analyzer. These facilities are all machineindependent and can run on a wide variety of uniprocessors, multiprocessors, andmulticomputers. They are supported by a run-time system that provides basicmachine-dependent facilities.Compiler The compiler translates PCN programs to a machine-independent, low-level form (PCN object code). An interface to the C preprocessor allows macros,conditional compilation constructs, and the like to be used in PCN programs.Linker and Foreign Language Interface The PCN linker combines PCN ob-ject code (i.e., PCN compiler output), foreign object code that is called from PCN2



(i.e., C or Fortran compiler output), libraries, and the PCN run-time system intoa single executable program. This permits C and Fortran procedures to be inte-grated seamlessly into PCN programs, and PCN programs to be executed similar toprograms written in other languages.Standard libraries A set of standard libraries provides access to Unix facilities(e.g., I/O) and other capabilities.Virtual Topology tools These support process mapping on a variety of virtualmachines, and templates for writing reusable parallel code.PDB PDB is the PCN symbolic debugger. It includes specialized support fordebugging of concurrent programs.Gauge Gauge is an execution pro�ler for programs written in PCN and otherlanguages. It includes run-time system support for collecting and saving pro�les,and an X windows based graphical tool for interactive exploration of pro�le data.Upshot Upshot is a trace analysis tool for programs written in PCN and otherlanguages. It includes run-time system support for collecting and saving traces, andan X windows based graphical tool for interactive exploration of trace data.1.3 Cross ReferenceThe basic constructs of the PCN language are described in the following sections.� Syntax: x 4.2 and Appendix F.� Sequential composition: x 4.3.� Mutable Variables: x 4.3.� Parallel composition: x 4.4.� De�nitional Variables: x 4.4.� Choice composition: x 4.5.The components of the PCN toolkit are described in the following sections.� Compiler: x 3.1, x 7.� Foreign interface and linker: x 8.� Process mapping tools: x 10.� Templates: x 12. 3



� Debugging facilities: x 14.� PDB: x 15.� Gauge: x 16.� Upshot: x 17.� Standard libraries: x 18.Machine-speci�c aspects of the PCN toolkit are described in xx 19{23. Ad-ditional documentation on the PCN language, toolkit, and applications is cited inx 24.The host-control program, a utility for managing execution of PCN programson networks, is described in a separate document. See x 24 for more information.2 Getting StartedWe assume that PCN is already installed on your computer. (If it is not, read thedocumentation provided with the PCN software release.) You will need to knowwhere PCN is installed. Normally, this will be /usr/local/pcn, but some systemsmay place PCN in a di�erent location.Before you can use PCN, you must tell your Unix environment where to �ndthe PCN software. If you are using the standard Unix C-shell (csh), you add oneline to the end of the �le .cshrc in your home directory. If PCN has been installedin /usr/local/pcn, this line isset path = ($path /usr/local/pcn/bin)The environment variable path tells the Unix shell where to �nd the various PCNprograms (compiler, linker, etc.). This shell command adds the directory containingthe various PCN executables to your shell's search path.If you use either the Bourne shell (sh) or the Korn shell (ksh) then you willneed to add the following commands to the end of the �le .profile in your homedirectory. PATH=$PATH:/usr/local/pcn/binexport PATHYou may have to log out and log in again for these changes to take e�ect.4



3 An Example ProgramWe are now ready to compile and run our �rst PCN program. The syntax of PCNis similar to that of the C programming language in many respects. Hence, it isappropriate that our �rst program print \Hello world." (the �rst C program inseveral well-known texts does just this).Module program1.pcnmain(argc,argv,exit_code){; stdio:printf("Hello world.\n", {}, d),exit_code = 0}A PCN program consists of one or more modules. Each module is contained ina separate �le with a .pcn su�x. Our example program consists of a single module,program1, contained in a �le program1.pcn. (We'll learn more about modules later.)This example program has one procedure, main. Its three arguments are thenumber of command line arguments (argc), a list of those arguments (argv), anda variable to be used for a return code (exit code). These are described in moredetail in x 3.4.This procedure makes what is called an intermodule call: it calls the printfprocedure in the stdio module to print \Hello world ." The stdio module isdistributed with the PCN system; it provides many of the functions of the Unix\standard I/O" library (x 18.2).3.1 Compiling a ProgramThe PCN compiler, pcncomp, is used to compile a PCN module. In general, thePCN compiler is invoked very much like most Unix based C and Fortran compilers.Because our program is contained in a �le program1.pcn, we typepcncomp -c program1.pcnWhen compiling program1.pcn, the PCN compiler will produce the �le program1.pam.The .pam �le contains PCN object code. These .pam �les are analogous to the .o�les that are produced by most C and Fortran compilers. However, unlike .o object�les, the .pam �les are completely machine independent: the PCN object code thatis compiled for one machine will work on any other machine without recompilation.3.2 Linking a ProgramNow that we have program1.pam which contains the PCN object code for our ex-ample program, we must use the PCN linker to combine this .pam �le with librariesof procedures such as the stdio module and with the PCN run-time system. Theresult of running the PCN linker will be an executable program.5



The PCN linker will be run by pcncomp when the -c argument is not passed topcncomp. This is the same convention as is used in most C and Fortran compilersto invoke the Unix linker (ld).To link the example program, myprogram, we typepcncomp program1.pam -o myprogram -mm program1As with most C and Fortran compilers, the -o speci�es that the name of theexecutable produced by the linker will be named myprogram. For the moment, ignorethe -mm program1 
ag. This will be descussed in (x 3.4).The PCN linker is relatively slow. During program development you may wishto use PCN's dynamic loading capability. This feature allows you to avoid havingto relink a program when PCN �les are changed. It is described in x 15.9.For information on linking PCN programs that call C or Fortran procedures,see x 8. For more information on using the PCN compiler and linker in general, seex 25.3.3 Running a ProgramTo execute a PCN program, you can just run it like any other program. For example,to run myprogram you would type the following, where % is the Unix shell prompt:% myprogramHello world.%In the subsequent examples, text typed by the user is written in italic andprogram output in roman.Command line arguments can be passed to PCN programs as they would be toa C program. For example, the following program prints out the �rst few commandline arguments.Module program2.pcnmain(argc, argv, exit_code){? argc == 3, argv ?= [ a1, a2, a3 ] ->{; stdio:printf("%s\n%s\n%s\n", {a1, a2, a3}, _),exit_code = 0},default -> {; exit_code = 1 }}After this program is compiled as described above, it can be run as follows:6



% program2 arg2 \another arg"program2arg2another arg%The PCN run-time system has a number of run-time con�gurable parametersthat can be controlled by command line arguments. In order to keep these run-timesystem's arguments from interfering with the program's arguments, all argumentsup to but not including the �rst -pcn argument will be passed to the program.All arguments after the -pcn argument will be passed to the run-time system. Forexample, suppose you run a PCN program as follows:my program my arg1 my arg2 -pcn -n 2This would cause my arg1 and my arg2 to be passed to the PCN program, and -nand 2 to the run-time system.A complete list of these run-time system parameters, and a brief description oftheir meaning, can be obtained by using the -h argument, for example:my program -pcn -h3.4 The main() ProcedureEvery program must have an entry point. This is the procedure that is initiallycalled when a program is executed. In PCN, this entry point is modeled after C.By default, the following PCN procedure is called when a PCN program isexecuted: main:main(argc, argv, exit code)where:� argc is the argument count (an integer), as in C.� argv is a list of the arguments. As in C, each argument is a string. A list isa PCN data type, which is described in x 4.8.� exit code is unde�ned. The program should set this to an integer exit statusbefore terminating.As with C programs, this exit status can be used by a Unix shell script ormake�le to determine whether execution \succeeded" (exit code = 0) or \failed"(exit code 6= 0).By default, a procedure named main, in a module named main, will be called tostart execution of the program. An alternate main module and/or main procedure7



can be speci�ed when linking by using the -mm and -mp 
ags, respectively. Forexample, if you wish p:my main(...) to be the entry point, you might link yourprogram by runningpcncomp p.pam -o my program -mm p -mp my mainThe -mm p 
ag says to use p as the main module, and the -mp my main 
ag says touse my main as the main procedure.When running on multiple PCN nodes, this main procedure is only called onnode 0. It is the responsibility of the PCN program to run procedures on othernodes. This issue is discussed in section x 10.Getting started with PCN:� PCN programs are contained in �les with a .pcn su�x; compila-tion produces a �le with a .pam su�x. This .pam �le contains thePCN object code for this program, and is machine independent.� We compile programs by running pcncomp -c file.pcn.� We link programs by running pcncomp file.pam -mm file -oprogram.� PCN programs are executed just like other programs.� The default entry point to a PCN program is the main() proce-dure in the main module (i.e., main.pcn). The -mm and -mp linkerarguments can be used to change the main module and main pro-cedure, respectively.� Command line arguments that come before the -pcn argumentare passed to the PCN program via the argc and argv argumentsto the main procedure. Arguments after the -pcn argument arepassed to the PCN run-time system.� The last argument to the main procedure should be set to aninteger exit status by the program.4 The PCN LanguageThe programming language Program Composition Notation (PCN) is an integralpart of the PCN programming system: it is used to express concurrent algorithmsand to compose code written in sequential languages. Like any programming lan-guage, PCN has a distinct syntax that must be mastered in order to write programs.However, the key to understanding PCN is understanding the concurrent program-ming model that it implements. Before presenting the PCN language, we introduce8



this model and the fundamental concurrent programming concepts on which it isbased.4.1 Concurrent Programming ConceptsParallel programming is often considered \hard." However, experience shows thatprogramming models that adhere to the following principles can signi�cantly reducethe complexity of parallel programming.First-Class Concurrency: Concurrent execution should be a �rst-class citizen ina programming model, not something appended to a sequential model.Controlled nondeterminism: The result computed by a procedure should befully determined by the procedure's inputs, except when explicitly speci�edotherwise by the programmer.Compositionality: It should be easy to understand both isolated program com-ponents and larger programs formed by the concurrent composition of thesecomponents.Mapping independence: The way in which components of a concurrent computa-tion are mapped to a parallel computer should not change the result computed.PCN uses four simple ideas to realize a parallel programming model based onthese principles. De�nitional variables provide an abstract, machine-independentmodel of both communication and synchronization. Concurrent composition is thefundamental mechanism used to build up complex programs from simpler compo-nents. Nondeterministic choice is used to specify nondeterministic actions whenrequired. Encapsulation of state change allows state change to be integrated intoconcurrent computations without compromising deterministic execution.De�nitional Variables. A single mechanism is provided for the exchange of in-formation between concurrently executing program components (processes): thede�nitional variable. A de�nitional variable is initially unde�ned, can be assignedat most a single value, and subsequently cannot change. A process that requiresthe value of a de�nitional variable waits (suspends) until the variable is de�ned. Ifa process tries to assign a value to a de�nitional variable that is already de�ned, arun-time warning will be generated, and the assignment will fail.De�nitional variables can be used both to communicate values and to syn-chronize actions. If two concurrent processes, a producer and a consumer, share ade�nitional variable, then a value provided by the producer for this variable is au-tomatically communicated to the consumer. Execution of the consumer is blockeduntil the value is provided.The de�nitional variable has several bene�ts for concurrent programming. First,it avoids the nondeterminism that is so often associated with concurrency: choicesmade within program components on the basis of de�nitional variables cannot9



change. This means that components can be understood in isolation, as errors causedby time-dependent interactions cannot arise. Second, shared de�nitional variablesprovide a clearly de�ned and delineated interface between concurrently executingprocesses: interaction can occur only if processes share variables. Third, the de�ni-tional variable provides for mapping independence: processes sharing a de�nitionalvariable may interact irrespective of their location in a parallel computer.Concurrent Composition. Complex programs are developed by the concurrentcomposition of simpler components. Hence, an application can be viewed as consist-ing of a (potentially large) number of lightweight execution threads. These executeconcurrently, communicate via de�nitional variables, and block when required datais unavailable.It is often desirable that the number of threads be larger than the number ofprocessors, as this can allow the compiler and run-time system to adopt 
exiblescheduling strategies that overlap computation and communication, thus maskinglatency and improving parallel e�ciency.Nondeterministic Choice. The use of de�nitional variables as a communicationmechanism avoids errors arising from time-dependent interactions: a choice made onthe basis of a de�nitional variable cannot change. Hence, concurrent computationsare deterministic. This is an important property that greatly simpli�es parallelprogramming.Nevertheless, it is sometimes useful to be able to specify nondeterministic exe-cution, particularly in reactive applications. Nondeterminism is integrated into theprogramming model in a tightly controlled way. A form of guarded command is usedto de�ne the conditions under which a process may perform various actions. Onlyif the conditions associated with two or more actions are not mutually exclusive isexecution nondeterministic.Encapsulation of State Change. The familiar concepts of state change andsequencing that underlie sequential languages such as Fortran and C are also im-portant in parallel programming: many algorithms are most e�ciently speci�ed inthese terms. However, state change must be carefully controlled if we are to avoidintroducing unwanted nondeterminism.The approach adopted in PCN is to insist that state change be encapsulatedwithin sequential threads. Data structures that may be subject to state changecannot be shared by concurrently executing program components. This restrictionprevents concurrent updates to state, which in turn avoids the possibility of time-dependent behavior.Programming Model Summary. Execution of a parallel program forms a setof concurrently executing lightweight processes (threads) which communicate andsynchronize by reading and writing shared de�nitional variables. Individual threadsmay apply the usual sequential programming techniques of state change and se-10



quencing. Execution is deterministic, unless specialized operators are invoked tomake nondeterministic choices.Key concurrent programming concepts:� De�nitional variables� Concurrent composition� Controlled nondeterministic choice� Encapsulation of state change4.2 PCN SyntaxThe syntax of PCN is modeled on that of the C programming language. In addition,the C preprocessor is applied to programs, so macros, conditional compilation, and�le inclusion constructs can be used as in C (x 7). In the following, we make frequentreference to C when explaining features of PCN. However, these references are forillustrative purposes only, and a familiarity with C is not required to understand thismaterial. A complete BNF grammar for the PCN syntax is provided in Appendix F.Data Types. PCN's three simple data types | character, integer, and double-precision 
oating-point number (char, int, and double) | are as in C. One-dimensional arrays of these data types are also supported. Arrays are indexed fromzero, as in C. There is also a complex data type, the tuple. This is introduced inx 4.8. A distributed variant of the tuple, the port, is described in x 11.Constants. PCN uses the same character, integer, double precision 
oating point,and string constant conventions as ANSI C. Please consult your favorite ANSI C ref-erence (e.g. The C Programming Language, Second Edition, Kernighan and Ritchie,1988, pp. 193-194) for more speci�cs on these conventions.Strings. Strings are represented as character arrays, as in C. A character arrayA representing a string S of length k contains the ASCII representation of thecharacters of S in A[0]::A[k � 1] and the null character (\0) in A[k]. A constantstring is denoted by the characters of the string between quotes; for example, "PCN"is a string consisting of the three characters: P, C, and N (followed by the nullcharacter). The empty string is denoted by "".Expressions. Arithmetic expressions are as in C, except that the only operatorsare modulus, addition, subtraction, multiplication, and division (%, +, �, �, and=). The length function returns the number of elements in an array or 1 (one) ifapplied to a single number or character. User de�ned functions (see below) can alsobe called, except in guard expressions. The following are all valid expressions.11



(1 + x)%y i * length(g) 29 - x/gOperator precedence and associativity are as in C. The following table summarizesprecedence and associativity rules. Operators on the same line have the same prece-dence, while rows are in order of decreasing precedence. Parentheses () can be usedto override these default rules.Operators Associativity{ (negation of numbers) length right to left� / % left to right+ { left to rightVariable Names. Variable names are as in C. A variable name is a characterstring formed from the set fa-z,A-Z,0-9, g and starting with a letter or an under-score (\ "). Case is signi�cant and there is no maximum length. The following areall valid variable names. value 2 Last Item xSee Appendix C for a list of reserved words that cannot be used as variable names.Comments. A comment begins with /* and ends with */, as in C.Procedures. A procedure de�nition consists of a heading followed by a declara-tion section followed by a block. The heading is the procedure name and a list ofarguments (i.e., formal parameters), as in C. All arguments are passed by reference,unlike in C where arguments can be passed by value. The declaration section isa set of declarations for arguments and local variables. The scope of a variable isthe procedure in which it appears: all variables appearing in a procedure are eitherarguments or local variables of the procedure. In particular, there is no notion of aglobal variable.The body of a procedure consists of a composition of blocks. The block isthe basic component from which procedures are constructed. A block is either acomposition, an assignment statement, a de�nition statement, an implication, or aprocedure call. These constructs will be de�ned shortly.Functions. A function consists of the keyword function followed by a functionde�nition. A function de�nition has the same syntax as a procedure de�nition,except that it may include calls to the primitive return(r) to specify a returnvalue, r. The return value of a function must be a de�nitional variable. Functionscannot be used within guards.Delimiters The blocks within a composition must be separated by either a comma(,) or a semicolon (;). In addition, trailing delimiters (i.e., delimiters after the lastblock in a composition) are legal. 12



Declarations. A declaration consists of a type (char, int, or double) followedby one or more variable names, each with an optional su�x to denote an array.An array su�x for a local variable has the form [size], where size is an integer, aconstant integer expression, or a variable from the procedure's argument list (i.e.,the array size will be determined at run-time). An array su�x for a variable thatis one of the procedure's arguments has the form []. The following are all validdeclarations.int a[size]; double b[10], c[], d; char c;We shall see that declarations are not provided for all variables: the de�nitionalvariables used in PCN for communication and synchronization are distinguished bya lack of declaration.4.3 Sequential Composition and Mutable VariablesWe now explore the PCN language proper. We shall view PCN as providing threerelated sets of constructs. First, there are the composition operators | parallel,sequential, and choice | which encode three fundamental ways of putting programcomponents together. Second, there are two types of variables: conventional ormutable variables , and single-assignment or de�nitional variables. Third, there arespecialized language features introduced to support symbolic processing: tuples andrecursion.We �rst introduce the two components that will be most familiar to manyreaders: sequential composition and mutable variables.The sequential composition operator is used to specify that a set of statementsshould be executed sequentially, in the order written in the program. In languagessuch as Fortran and C, this is of course the normal mode of execution. However, asPCN also allows for other sorts of composition, we distinguish it by a special syntax.A sequential composition has the general formf ; block0, ..., blockk gwhere \;" is the sequential composition operator and block0, ..., blockk are otherblocks.If no composition operator is used for a block, then the PCN compiler willinterpret this as a sequential block..A mutable variable in PCN, like a variable in Fortran or C, is declared to havesome type (char, int, or double), initially has some arbitrary (unknown) value,and can be modi�ed many times during its lifetime, by means of an assignmentstatement. An assignment statement is represented as follows,variable := expressionwhere variable is a mutable variable or an element of a mutable array.13



Example. The procedure swap exchanges the values stored at the ith and jthpositions of an integer array. Its three arguments | array, i, and j| are declaredto be an integer array and single integers, respectively. A local variable temp is alsodeclared. The three assignments are placed in a sequential composition, to ensurethat they execute in the correct order.The procedure swaptest can be used to execute swap. This procedure declaresa local integer array a[3] and local integer variables i and j; initializes the arrayto contain the integers 0, 1, 2, i to contain 1, and j to contain 2; calls a pro-cedure stdio:printf to display the contents of a; calls swap to exchange the ithand jth components; and �nally calls stdio:printf again to display the modi�edarray. Note that since procedure arguments are passed by reference, the array a inswaptest is the same data structure as array in swap. Note also that in swaptest,the sequential composition operator ensures that both the assignments to a and thecalls to stdio:printf occur in the correct order.swap(array,i,j)int array[], i, j, temp;{; temp := array[j],array[j] := array[i],array[i] := temp}swaptest()int a[3], i, j;{; a[0] := 0, a[1] := 1, a[2] := 2,i := 1, j := 2,stdio:printf("Before: %d %d %d\n",{a[0],a[1],a[2]},_),swap(a,i,j),stdio:printf("After: %d %d %d\n",{a[0],a[1],a[2]},_)}Role of Sequential Composition. The example illustrates the two primary ap-plications of sequential composition in PCN: sequencing of updates to mutable vari-ables and sequencing of I/O operations.4.4 Parallel Composition and De�nitional VariablesWe now consider two related constructs that may be unfamiliar to some readers:parallel composition and de�nitional variables.The parallel composition operator speci�es that a set of statements are to beexecuted concurrently. A parallel composition has the general formf jj block0, ..., blockkg14



where jj is the parallel composition operator and block0, ..., blockk are other blocks.Execution within a parallel composition is fair: that is, it is guaranteed that exe-cution of each block will eventually progress (unless that block has terminated).Execution of a parallel composition terminates when all of its constituent blockshave terminated.Concurrent computations initiated within a parallel composition must be ableto exchange data and synchronize their activities. It is important to understandthat this cannot be achieved by using mutable variables (at least not without theintroduction of complex locking mechanisms), as the order of read and write oper-ations in a parallel composition, and hence the result of such operations, is not ingeneral well de�ned.Concurrent computations communicate and synchronize by means of de�ni-tional or single-assignment variables. We have already come across de�nitional vari-ables in the introduction to this chapter. Here, we consider them in more detail.De�nitional variables are represented in the same way as mutable variables,with one exception: a solitary underscore character (\ ") is used to represent ananonymous de�nitional variable. Each occurrence of \ " represents a unique vari-able.De�nitional variables are not declared. Any variable occurring in a procedurethat is not explicitly declared in the procedure's declaration section is a de�nitionalvariable. De�nitional variables initially have a special unde�ned value. They can bede�ned once, by means of a de�nition statement, and then cannot be modi�ed. Thede�nition statement is represented asvariable = expression,where variable is a de�nitional variable. Note that a de�nition of the form x =y is allowed; this establishes y as an alias for x, so that any prior or subsequentde�nition for y also applies to x.Example: Simple Divide and Conquer. The following program implements asimple divide-and-conquer strategy. As none of the variables in this procedure aredeclared, we see that all are de�nitional. Variables prob and soln are arguments;the rest are local to the procedure. When executed, procedure div and conq im-mediately executes a parallel composition containing four procedure calls. Theseexecute concurrently, with execution order constrained only by availability of data.Variable prob is input and soln output. Procedure split consumes prob and hencewill block until an input value is available. Likewise, the solve procedures blockuntil l prob and r prob are de�ned by split. Once the two calls to solve producevalues for l soln and r soln, the combine procedure can proceed to produce soln.15



div_and_conq(prob,soln){|| split(prob,l_prob,r_prob),solve(l_prob,l_soln),solve(r_prob,r_soln),combine(l_soln,r_soln,soln)}Properties of De�nitional Variables� Have as initial value a special \unde�ned" value.� Read operations block until the variable is given a value.� Are de�ned (\written") by the de�nition operator (\=").� Once de�ned, cannot be modi�ed.� Can be shared by procedures in a parallel composition.� Are not explicitly declared.� Can take on values of type char, int, double, or tuple.It is instructive to compare mutable and de�nitional variables, as in the follow-ing table. De�nitional MutableInitial value Special \unde�ned" value Arbitrary valueDe�ned by De�nition operator (=) Assignment operator (:=)Read operation Blocks if unde�ned Always succeedsCan be written Once Many timesParallel composition Can share Cannot shareExplicitly declared No YesTypes tuple, int, double, char int, double, charRole of Parallel Composition. It is important to understand the distinct rolesof the parallel and sequential composition operators. Parallel composition exposesopportunities for concurrent execution; sequential composition constrains executionorder so as to sequence I/O operations or assignments to mutable variables. Ingeneral, it is a good idea to expose as much concurrency as possible in an application,as this provides the compiler and run-time system with maximum 
exibility whenmaking scheduling decisions. In particular, they can seek to reduce the cost ofremote data accesses by overlapping computation and communication.16



4.5 Choice CompositionThe third and �nal composition operator that we consider is the choice compositionoperator, \?". A choice composition has the general formf ? guard0 �> block0, ..., guardk �> blockkgwhere each guardi is a sequence of one or more tests. Valid tests includea < b, a > b, a <= b, a >= b : arithmetic comparisona == b, a != b : equality and inequality testsint(a), char(a), double(a), tuple(a) : type testsdata(a) : synchronization test? = : tuple matchdefault : default actionWe refer to a single \guard �> block" as an implication.Choosing between Alternatives. Choice composition provides a mechanism forchoosing between alternatives. In this respect it may be regarded as a parallel if-then-else or guarded command. Each guard speci�es the conditions that must besatis�ed for the associated block to be executed. At most one of these blocks willbe executed; which one depends on the result of guard evaluation.A choice composition is executed as follows. Each guard is evaluated from leftto right. A guard succeeds if all of its tests succeed. If one or more guards succeed,exactly one of the corresponding blocks is chosen to be executed.For example, the procedure max executes either z = x or z = y, depending onthe value of x and y, and hence de�nes z to be the larger of x and y.Module max.pcn: Version 1max(x,y,z){? x >= y -> z = x,x < y -> z = y}Synchronization. Choice composition also provides a synchronization mecha-nism. A test suspends when evaluated if it requires the value of an unde�nedde�nitional variable (e.g., x < 3, where x is unde�ned). Otherwise, it succeedsor fails depending on the value of its arguments.A guard is evaluated from left to right. If any test suspends, the guard suspends.If any test fails, the guard fails. If all tests succeed, the guard succeeds.17



If some guards suspend and all other guards fail, execution of the choice com-position is suspended until more data is available. If all guards fail, execution ofthe choice composition terminates without doing anything. Hence, a call to theprocedure max given above will suspend until both x and y have values, and thenproceed as follows. If both x and y are numbers, the procedure executes either the�rst or second implication, depending on the values of x and y. If either x or y isnot a number, the procedure terminates without doing anything.The guard test default succeeds only if all other guards in a choice compo-sition fail. For example, consider the following alternative formulation of the maxprocedure.Module max.pcn: Version 2max(x,y,z){? x >= y -> z = x,default -> z = y}The two versions of max give the same behavior if x and y are numbers. If either x ory is not a number, however, the �rst program terminates without executing eitherimplication, while the second program selects the second implication.Choice composition rules:� Evaluate each guard left to right.� If any test suspends/fails, guard suspends/fails.� If all tests succeed, guard succeeds.� If all guards fail, process terminates.� If no guards succeed and some suspend, process suspends.� If some guards succeed, execute one implication body.� If all other tests fail, the default guard test succeeds.Nondeterministic Choice. Choice composition also provides a mechanism bywhich nondeterminism is introduced into PCN programs. Nondeterministic choiceis rarely required in parallel programming. However, it can be important in reactiveapplications.We �rst illustrate the use of nondeterministic choice with a trivial example.We may rewrite the max procedure given earlier as follows. Note that the twoimplications are not mutually exclusive. If x == y, either implication may be taken.18



This program is nondeterministic in the sense that the action that it performs isnot determined solely by its input, although of course the answer computed is stilldetermined precisely by the input.max(x,y,z){? x >= y -> z = x,x <= y -> z = y}We now consider a reactive programming example. A procedure switch hastwo de�nitional inputs corresponding to the outputs of two sensors in a mechanicaldevice. If either sensor is activated, the corresponding input variable will be given avalue. The switch procedure is to return a result value if either sensor is activated,with the value specifying which sensor was activated.switch(sensor1,sensor2,alarm){? data(sensor1) -> alarm = 1,data(sensor2) -> alarm = 2}The guard test data succeeds as soon as its argument has a value. Hence, the outputvariable alarm takes value 1 if sensor1 is activated and 2 if sensor2 is activated.It can take either value if both are activated.Choice Composition is used for three purposes:� Choosing between alternatives.� Synchronization.� Nondeterministic choice.4.6 De�nitional Variables as Communication ChannelsConsider two procedure calls (processes), a producer and a consumer, that share ade�nitional variable, x. producer(x), consumer(x)The two processes can use the shared variable to communicate data, simply byperforming read and write operations on the variable. For example, assume that theproducer is de�ned to write the variable, as follows.19



producer(x)fjj x = "hello" gThe de�nition x = "hello" has the e�ect of communicating the message "hello"to the consumer. The consumer receives this value simply by reading (examining)the variable. For example, the following consumer procedure checks to see whetherx has the value hello. Note the use of choice composition and the default guard.consumer(x)f? x == "hello" � > stdio:printf("Hello",fg, ),default � > stdio:printf("Huh?",fg, )gThe shared de�nitional variable x is used here to both communicate a value be-tween the producer and consumer and to synchronize the actions of these processes.The shared de�nitional variable can be thought of as a communication channel.The use of de�nitional variables to specify communication has two advantages.First, it avoids the distinction that is made in many parallel languages between inter-processor and intraprocessor communication. This means that no special \packing"or \unpacking" operations need be performed when communicating. This in turnfacilitates the retargetting of programs to di�erent parallel computers. Second, itprovides great 
exibility in the communication strategies that can be speci�ed. Inparticular, it is possible (as we shall see below) to include variables in data structuresand hence to establish dynamic communication structures.An apparent di�culty of this formalism is that each de�nitional variable can beused only to communicate a single value. Fortunately, this is not the case. We showin x 4.9 below how a single shared variable can be used to communicate a stream ofmessages between processes.4.7 Specifying Repetitive ActionsWe have now encountered the constructs used in PCN to express concurrent andsequential execution, communication between concurrent computations, and statechange within sequential computations. We need one more construct before we canbuild large programs, namely, a mechanism for specifying repeated actions.You are probably familiar with the use of iteration to specify repetition. Forexample, in Fortran we may write do i=1,10 to specify 10 repetitions of a loop, withi ranging from 1 to 10. PCN provides a similar construct, called quanti�cation. Aquanti�cation has the general formf op i over low .. high :: block gand speci�es that block should be executed once for each i in the range low..high,either concurrently (if op = jj) or sequentially (if op = ;).A quanti�cation is useful when specifying iterative computations involving mu-table variables (or ports { see x 11). However, the most commonly used iterative20



construct in PCN is recursion. You will be familiar with recursion if you have usedC (or Prolog, Strand, or Lisp); it tends to be more verbose than iteration, buthas the advantages of allowing richer repetition structures and of working well withde�nitional variables.We introduce the use of recursion in PCN with a simple example. Considerthe following procedure, which computes the sum of the elements with indices in therange from..to in array. This procedure is de�ned in terms of a choice compositionwith a parallel composition as the body of the �rst implication and a simple de�nitionstatement as the body of the second implication.Module sumarray.pcn: Version 1sum_array(from,to,array,sum){? from <= to ->{|| sum_array(from+1,to,array,sumrest),sum = array[from] + sumrest},from > to -> sum = 0}The �rst implication states that if from <= to, then the sum of elements from..tois the value of element array[from] plus the sum of elements from+1..to. Thesecond implication de�nes the sum to be 0 in the case when from > to.This procedure uses recursion to repeat the summation over all the elementsof the array. A recursive procedure normally speci�es two alternative courses ofaction: continuation and termination. These are combined in a choice compositionwith guards specifying associated continuation and termination conditions.In the example, the continuation action consists of summing array[index]and sumrest, and making a recursive call to sum array to compute sumrest; theseactions are to be performed if from <= to. The termination action consists ofde�ning sum = 0; this is to be performed if from > to.Recursive procedure speci�es:� Termination condition and actions.� Continuation condition and actions.Parallel algorithms based on divide-and-conquer techniques frequently makemultiple recursive calls to the same procedure. For example, the following programimplements a divide-and-conquer algorithm for summing the elements of an array.The task of summing an array is recursively decomposed into the tasks of summingthe left and right subarrays. 21



Module sumarray.pcn: Version 2sum_array(from,to,array,sum){? from < to ->{|| sum_array(from,(from+to)/2,array,sumleft),sum_array((from+to)/2+1,to,array,sumright),sum = sumleft + sumright},from == to -> sum = array[from]}This example makes apparent the advantages of recursion as a repetition con-struct in a parallel language: the doubly recursive formulation of sum array exposesconcurrency that is not directly available in an iterative solution.4.8 TuplesThe programs presented thus far have all dealt with simple data structures: charac-ters, integers, double precision numbers, and arrays of the same. These data struc-tures will be familiar to most readers from sequential languages such as Fortran andC. PCN also provides another sort of data structure called the tuple. Similar datastructures are used in symbolic languages such as Prolog, Strand, or Lisp.A tuple is a de�nitional data structure used to group together other de�nitionaldata structures. A tuple has the general formf term0, ..., termk�1 g (k � 0)where term0, ..., termk�1 are de�nitional data structures. The following are all validtuples. fa,bg f"abc"g fg f12,f13,fggg f5.2,"def"gNote that tuples can be nested: in the fourth tuple on the preceding line, thetuple fg is nested inside the tuple f13,fgg, which is in turn nested inside the tuplef12,f13,fggg. Note also that tuples can contain elements of di�erent types.It is useful to think of tuples as representing trees. A tuple ft0, ..., tk�1grepresents a tree with a root and k o�spring.
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0 The tuples listed above can be drawn as follows.22



{     ,     }             {     }       { }        {     ,     }                   {     ,     }  

a                b         "abc"              12        {     ,     }       5.2         "def" 

13             { } Building Tuples. Tuples can be written in a program, either as an argument toa procedure call or as the right-hand side of a de�nition statement. For example,the block fjj proc(1,fx,y,fzgg), x = "abc", y = f123g ginvokes a procedure proc with the tuple f"abc",f123g,fzgg as its second argument.Alternatively, the primitive operation make tuple can be used to build a tupleof speci�ed size, with each argument a de�nitional variable. For example, the callmake tuple(3,tup)de�nes tup to be the three-tuple f , , g.Accessing Tuples. Tuple elements can be referenced in the same way as arrayelements: t[i] is element i of a tuple t, for 0 � i < length(t). Hence, the statementsmake tuple(3,tup), tup[0] = "abc", tup[1] = f123g, tup[2] = fzgproduce the tuple passed as an argument to proc previously.The guard test \?=" (match) can be used to decompose a tuple into its con-stituent components. A match has the general formtup ?= ft0, ..., tk�1g,where the ti are either new de�nitional variables or nonvariable terms. A matchsucceeds if tup has arity k and each of its arguments matches the correspondingti, suspends if tup is not de�ned or if one of the matches with a ti suspends,and fails otherwise. A new de�nitional variable ti is created with the value of thecorresponding tup argument.For example, the matchtup ?= f"abc", a, fbggsucceeds if tup = f"abc",f123g,fzgg, de�ning a = f123g and b = z. It suspendsif tup = fx,f123g,fzgg, as the �rst element of the matching typle is "abc", but the�rst element of tup is the unde�ned variable x. It fails if tup = f"def",f123g,fzgg,as the �rst element of the right-hand tuple ("abc") does not match the �rst elementof tup ("def"). 23



The match operator does not perform uni�cation. That is, if the term on theleft-hand side of the match contains unde�ned variables, those variables will not bede�ned to the values that appear in the same location on the right-hand side of thematch. The only de�nitional variables that will be given values during a match arethe new de�nitional variables that appear on the right-hand side of the match.Variables that appear in right-hand side of match must be new de�nitionalvariables. They may not be de�nitional variables that already exist outside of thisimplication (i.e., the choice of the choice block that contains this match). The scopeof these new de�nitional variables is the implication in which this match resides{ they cannot be used outside of this implication. Therefore, to propogate a newvariable that is created during the match to a de�nitional variable that is outsideof the implication in which the match appears, you must assign the new variableto the outside de�nitional variable from within the body of the implication. Thisis illustrated in the following example which uses a match operator to extract theelements of the tuple, t. Those tuple elements are then used outside the scope ofthe implication in which the match appears.Procedure tuple1tuple1(t){|| {? t ?= {tmp_a, tmp_b} ->{|| a = tmp_a, b = tmp_b },default ->{|| a = 0, b = 0 }},r(a,b)}Comparing Tuples. The guard tests == and != can be used to compare tuplesas well as strings, numbers, and arrays. An equality test x == y succeeds if x andy are tuples with the same arity and corresponding subterms are also equal. Theequality test is applied to subterms left to right, depth �rst; if any subterm test failsor suspends, the overall test also fails or suspends, respectively. The test also fails ifx and y have di�erent arities. An inequality test x != y succeeds if x == y wouldfail, fails if x == y would succeed, and suspends otherwise.List Notation. A list is a two-tuple in which the �rst element represents thehead of the list and the second element the tail. By convention, the zero-tuple (fg)represents the empty list. For example, the structure f1,f2,f3,fgggg is the listcontaining the numbers 1, 2, and 3.This notation is clumsy, so PCN provides an alternative syntax: a list fh,tgmay be written as [hjt], the empty list as [ ], a list such as f1,f2,f3,fgggg as[1, 2, 3], and a list such as f1,f2,f3,tailggg as [1, 2, 3jtail].24



Example: List Length. The procedure listlen computes the length len of alist l. For example, a call listlen([1,2,3,4],len) gives the result len = 4. Notethe use of an auxiliary procedure listlen1, which accumulates the length so far inacc and then returns the �nal result as len.listlen(l,len){|| listlen1(l,0,len)}listlen1(l,acc,len){? l ?= [_|l1] -> listlen1(l1,acc+1,len),default -> len = acc}Example: Building a List. The procedure buildlist builds a list l of lengthlen. For example, a call buildlist(4,l) gives the result l = [4,3,2,1].buildlist(len,l){? len > 0 ->{|| l = [len|l1],buildlist(len-1,l1)},default -> l = []}Example: List Transducer. The procedure listadd is an example of whatis called a list transducer. It traverses one list and constructs another containingthe result of applying a simple operation to each element in the �rst list: in thiscase, the operation is simply to add one to each element. For example, a calllistadd([1,2,3,4],nl) gives the result nl = [2,3,4,5].listadd(l,nl){? l ?= [e|l1] ->{|| nl = [e+1|nl1],listadd(l1,nl1)},default -> nl = []} 25



4.9 Stream CommunicationWe have seen how two or more concurrent computations that share a de�nitionalvariable can use that variable to exchange data. The producer of the data simplyde�nes the shared variable to be the data to be communicated (e.g., x = "hello").The consumer(s) of the data can then use the data in computation.A shared de�nitional variable would not be very useful if it could be used only toexchange a single value. Fortunately, there are simple techniques that allow a singlede�nitional variable to be used to communicate many values. The most importantof these is the stream. A stream is a data structure that permits communication ofa sequence of messages from a producer to one or more consumers. A stream actslike a queue: the producer places elements on one end, and the consumer(s) takethem o� the other.By convention, stream communication is implemented in PCN in terms of liststructures. Imagine a producer and a consumer sharing a variable x. The producerde�nes x = [msgjxt] and the consumer matches x ?= [msgjxt]. The e�ect of theseoperations is to both communicate msg to the consumer and create a new sharedvariable xt that can be used for further communication. This process can be re-peated arbitrarily often to communicate a stream of messages from the producer tothe consumer. Hence, a stream is a list structure, incrementally constructed by aproducer and deconstructed by a consumer. The empty list ([]) is used to representthe end of a stream.Example: Summing Squares. We illustrate the stream communication protocolin a program that computes the sum of the squares of the integers from 1 to N. Wedecompose this problem into two subproblems: constructing a stream of squaresand summing a stream of numbers. The �rst subproblem is solved by the proceduresquares, which recursively produces a stream (i.e., list) of messages N2, (N-1)2,..., 1. The second subproblem is solved by the procedures sum and sum1, whichrecursively consume this stream (list). The auxiliary procedure sum1 accumulatesthe sum so far in sofar and returns the �nal result as sum.Note the structure of the producer (squares) and consumer (sum1) proceduresin the following program. Both are recursively de�ned. In the producer, the recursivecase incrementally constructs a list sqs of squares by de�ning sqs = [n*njsqs1]and calling squares to compute sqs1; the termination case de�nes sqs = []. In theconsumer, the recursive case deconstructs a list ints of integers by matching ints?= [ijints1] and calling sum1 to consume the rest of the messages; the terminationcase returns a result.
26



Module sumsquares.pcnsum_squares(N,sum){|| squares(N,sqs), sum(sqs,sum) }squares(n,sqs) /* Producer: */{? n > 0 -> {|| sqs = [n*n|sqs1], /* Produce element, */squares(n-1,sqs1) /* & recurse */},n == 0 -> sqs = [] /* Close list. */}sum(ints,sum){|| sum1(ints,0,sum)}sum1(ints,sofar,sum) /* Consumer: */{? ints ?= [i|ints1] -> /* Consume element, */sum1(ints1,sofar+i,sum), /* & recurse */ints ?= [] -> sum = sofar /* End of list: stop*/}Send/Receive Operations. Some readers may �nd it useful to think of a streamas an abstract data type on which four operations are de�ned: send, close, recv,and closed. The �rst two are procedure calls used by a stream producer, andthe latter two are guard tests used by a stream consumer. All take a de�nitionalvariable (s) as an argument; send and recv also return a new de�nitional variable(s1) representing a new stream to be used for the next communication.send(s,msg,s1): Send msg on stream s, returning as s1 anew stream for subsequent communication.close(s): Close stream s.recv(s,msg,s1): Succeed if a message is pending on streams, de�ning msg to be the message and s1 the newstream.closed(s): Succeed if stream s has been closed.These operations can be de�ned by the following macros.File sendrecv.h#define send(s,msg,s1) s = [msgjs1]#define close(s) s = [ ]#define recv(s,msg,s1) s ?= [msgjs1] /* Guard test */#define closed(s) s == [ ] /* Guard test */27



These de�nitions can be placed in a �le (e.g., sendrecv.h) and included in yourprograms, if you prefer to think in terms of send and recv operations instead ofde�nition and match operations on streams. For example, the squares and sum1procedures presented previously (module sumsquares.pcn) can be rewritten as fol-lows. #include "sendrecv.h" /* Include macros */squares(n,sqs){? n > 0 -> {|| send(sqs,n*n,sqs1),squares(n-1,sqs1)},n == 0 -> close(sqs)}sum1(ints,sofar,sum){? recv(ints,i,ints1) -> sum1(ints1,sofar+i,sum),closed(ints) -> sum = sofar}However, it would be a mistake to think of lists as simply a clumsy notation forstreams, and to restrict your use of streams to the four basic operations provided insendrecv.h. The fact that streams are data structures that can be manipulated inthe same way as any other data structure provides enormous 
exibility.Example: Stream Filter. We illustrate this 
exibility with a list transducerthat �lters a stream x, generating a stream y identical to x but with no consec-utive duplicates. (For example, a call filter([1,1,4,3,5,5,2],y) de�nes y =[1,4,3,5,2].)This is not a complex example. However, it illustrates several stream-processingstrategies. Note in particular the use of the match operator to check for two pend-ing messages (as follows: x?=[msg1,msg2jx1]), the pushing of unused elements backonto the stream in the recursive calls (e.g., filter([msg2jx1],y)), and the de�ni-tion of y to be all remaining elements of x in the termination case (y = x).
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filter(x,y){? x ?= [msg1,msg2|x1] ->{? msg1 == msg2 -> filter([msg2|x1],y),default -> {|| y = [msg1|y1],filter([msg2|x1],y1)}},default -> y = x /* x is [msg] or [] */}4.10 Advanced Stream HandlingThe stream construct provides direct support for one-to-one communication, that is,communication between a single producer and a single consumer. It also supportsbroadcast communication, that is, generation of a single stream to be received byseveral consumers. For example, in the compositionfjj producer(s), consumer(s), consumer(s) g,both consumers receive any values generated by the producer.Three other communication patterns are also important in practical applica-tions: many-to-one, one-to-many, and bidirectional. The �rst and second are sup-ported in PCN by specialized primitives. The third is achieved by means of aspecialized programming technique.Mergers: Many-to-One Communication. A merger is a PCN system programthat allows the construction of an output stream that is the nondeterministic inter-leaving of a dynamically varying number of input streams. (The merger is hencethe second source of nondeterminism in PCN, with choice composition being the�rst.) The only constraint on message order in the output stream is that the orderof messages from individual input streams be preserved. A merger is created with aprocedure call of the form sys:merger(in,out),where in is an initial input stream and out is the output stream. An additionalinput stream newin is registered with the merger by appending a message of theform f"merge",newing to any open input stream. An input stream is closed inthe usual way (s = []); the output stream is closed automatically when all inputstreams are closed.The following code fragment illustrates the use of the merger. This organizescommunication between two producer processes and a single consumer, so that theconsumer receives on instream an intermingling of the streams generated by thetwo producers. 29



{|| producer(s1), producer(s2)instream = [{"merge",s1},{"merge",s2}],sys:merger(instream,outstream),consumer(outstream)}Note that the merger must be able to determine whether each input message isa f"merge", g term. Hence, messages of the form var or fvar,termg (where var isan unde�ned variable) should not be sent to a merger: these will cause the mergerto delay until var is given a value.Distributors: One-to-Many Communication. A distributor is a PCN systemprogram that routes each message received on its input stream to one of severaloutput streams. A message of the form fN,Msgg causes the distributor to route Msgto the Nth output stream. A distributor is created with a call of the formsys:distribute(N,In),where N is the number of output streams needed and In is the input stream. Messagescan then be sent to the distributor to register output streams. We register a streamS as the Nth output stream by sending a message with the formf"attach",N,S,Doneg,where Done is a de�nitional variable that is de�ned by the distributor to signal thatthe stream S has been registered.We request the distributor to route a message Msg to the Nth output stream bysending the following message: fN, MsggWe request the distributor to broadcast a message Msg to all output streams bysending the following message: f"all", MsggIt is important to ensure that a stream has been registered before requestingthat a message be routed to that stream. One way of doing this is to register allstreams with the distributor before sending any messages. The following programachieves this. A call make distributor(in,ss) creates a distributor with ss asits output streams. (The number of streams in ss is computed by the proceduresys:list length de�ned in x 18.1.) The input stream in is passed to this distrib-utor only after all output streams have been registered.30



make_distributor(in,ss){|| sys:list_length(ss,len),sys:distribute(len,tod),register(0,ss,tod,in)}register(i,ss,tod,in){? ss ?= [s|ss1] ->{|| tod = [{"attach",i,s,done}|tod1],data(done) -> register(i+1,ss1,tod1,in)},ss ?= [] -> tod = in}If the input stream to the distributor is closed (In = []), then the distributorcloses all registered output streams and shuts down.Two-Way Communication. Many parallel algorithms require two-way commu-nication between concurrently executing processes. In some cases, this can beachieved by de�ning two communication streams, one for use in each direction.However, it is also possible to achieve two-way communication with a single de�ni-tional variable, by using a technique called an incomplete message.We introduce the incomplete message technique with a simple example. Con-sider a program input capable of providing boundary conditions for two di�erentnumerical models (e.g., spectral and �nite di�erence). This can be composed witha procedure implementing a particular numerical model, as follows.input(xs), model(xs)The de�nitional variable xs will be used to implement a stream.The �rst thing that input does is to query the program it is composed with, todetermine that program's input requirements. It does this by sending a message ofthe form f"what input",responseg,where response is an unde�ned de�nitional variable. The other program (whichof course must be ready to accept such a message) de�nes response to specify therequired input type, allowing the �rst program to read response and generate theappropriate input data.Possible de�nitions for input and model are as follows. In this example, themodel procedure speci�es that it expects input in terms of spectral coe�cients byde�ning response = "spectral". This communication causes the input procedureto execute spectral input. 31



input(x){|| x = [{"what_input",response}|xs],{? response == "spectral" -> spectral_input(xs),response == "finite_diff" -> fd_input(xs)}}model(x){? x ?= [{"what_input",response}|xs] ->{|| response = "spectral",process_input(xs)}}In this example, a single shared variable, xs, has been used to achieve two-waycommunication. This is a simple example of a very powerful programming techniquethat can be used to establish a wide variety of communication patterns. The keyidea is for one process to de�ne a shared variable to be a tuple containing \holes"(unde�ned variables). Consumer(s) of this tuple can then �ll in these holes (de�nethe variables) to communicate additional values to the original producer or even toother consumers.We use a more complex example to strengthen understanding of the incompletemessage technique. Consider the problem of exploring a large search space with aheuristic search method. Assume that it is possible to de�ne multiple searchers,each capable of exploring part of the search space, and that individual searchers canimprove their e�ciency by exploiting global information about the best-known par-tial solution. We collect and disseminate global information by de�ning a controllerprocess to which each searcher periodically sends information about its current bestpartial solution. The controller responds to each such message by updating its viewof the best partial solution and returning the best known partial solution.A PCN implementation of this search method provides each searcher with astream to the controller and uses a merger to combine the multiple searcher streamsinto a single controller input stream. For example, the following code links twosearchers and a controller.{|| searcher(s1), searcher(s2),sys:merger([{"merge",s1},{"merge",s2}],s),controller(s)}The searcher is de�ned as follows. A call to first attempt yields an initialapproximate solution (value), which is passed to the recursively de�ned proceduresearch. The search procedure sends the approximate local solution to the con-troller in a fvalue,responseg tuple, where response is an unde�ned de�nitional32



variable used to communicate information back from the controller to the searcher.Depending on the response received from the controller, the searcher either termi-nates or calls next attempt and repeats the process.The controller receives a stream of approximate solutions from the workers. Itprocesses each message by calling improve estimate to improve its own estimateof the global best solution, and returning either this estimate or the signal "stop"(indicating that a solution has been found) to the searcher.searcher(trials){|| first_attempt(value),search(trials,value)}search(trials,value){|| trials = [{value,response}|trials1],{? response == "stop" -> trials1 = [],default ->{|| next_attempt(value,response,next_value),search(trials1,next_value)}}}controller(trials,bound)trials ?= [{value,response}|trials1] ->{|| improve_estimate(bound,value,newbound,result),{? result == "solution" -> response = "stop",default -> response = newbound},controller(trials1,newbound)}Specialized Communication Structures:� Many-to-one: merger.� One-to-many: distributor.� Bidirectional: incomplete message.4.11 Interfacing Parallel and Sequential CodeThe two worlds of parallel and sequential, de�nitional and mutable, have so far beenregarded as distinct. In practice, the two worlds must interact whenever a sequential33



program component is integrated into a concurrent program. Such interactionsare governed by three simple rules. The �rst restricts the way in which mutablevariables can be used within parallel blocks, while the second and third specifycopying operations performed by the PCN compiler when data is transferred betweenthe de�nitional and mutable worlds by de�ning a de�nition in terms of a mutable,or vice versa. This copying avoids aliasing between state maintained in di�erentsequential threads, and hence ensures that state change within individual threadsdoes not lead to time-dependent interactions with concurrently executing processes.Mutable Variables and Parallel Composition. Mutable variables may occurin parallel compositions, but only if their usage obeys the following rule.Rule 1: A mutable variable can be shared by blocks in a parallel com-position only if no block modi�es the variable.This restriction prevents errors resulting from time-dependent, nondeterministicupdates to a mutable variable (i.e., race conditions). The restriction is not currentlyenforced by the compiler, and so the programmer must be careful to ensure that allprograms are valid.Note that there is no similar restriction on the use of de�nitional variableswithin sequential blocks.Mutable ! De�nition. The following rule states what happens when a de�ni-tional variable is de�ned in terms of a mutable variable.Rule 2: When a mutable occurs on the right-hand side of a de�nitionstatement, the current value of the mutable is snapshotted (copied), andthe de�nition then proceeds as if a de�nitional value were involved.For example, in the following code, c = 5 and d = 4 when computation iscomplete.proc1(c,d)int a;{; a := 3,c = 2 + a,a := 4d = a}Snapshotting a mutable array creates a de�nitional copy of the array that canbe read but not modi�ed. For example, in the following, c is de�ned to be a copy34



of the mutable array a. Subsequent changes to a do not a�ect the value of thede�nitional array c.proc2(c,d)int a[5];{; initialize(a),c = a,...}De�nition ! Mutable. The following rule states what happens when a mutablevariable is assigned an expression involving a de�nitional variable.Rule 3: When a de�nitional variable occurs on the right-hand side ofan assignment, the assignment suspends until the variable has a valueand then proceeds.For example, if c is a de�nition with value 3 in the following program, then ahas value 5 after the assignment.proc3(a,c)int a, b;{; b := 2a := b + c}Note that if the right-hand side of the assignment is not an expression, then theassignment will copy the de�nitional value into the mutable variable. For example,in the following code fragment, the de�nitional value c is copied into the mutablearray a. The array a can be modi�ed subsequently without a�ecting c.int a[5];a := cExample. The following example illustrates the use of copying to avoid aliasing.The procedure proc has two de�nitional arguments: it produces as output the resultof applying a transformation solve to input. It calls the procedure solve to e�ectthe transformation; this is de�ned to operate on mutable data structures. Hence,proc declares a local mutable array temp, assigns temp the value input, appliessolve to temp, and then de�nes output to be the updated value of temp. Twocopying operations take place, from input to temp and from temp to output.35



proc(input,output)double temp[SIZE];{; temp := input,solve(temp),output = temp}4.12 ReviewPCN encourages a compositional approach to parallel programming, in which com-plex programs are built up by the parallel composition of simpler components. Pro-gram components composed in parallel execute concurrently. They communicateby reading and writing de�nitional (single-assignment) variables. The use of de�ni-tional variables avoids time-dependent interactions, allowing individual componentsto be understood in isolation. In addition, read and write operations on de�nitionalvariables can be implemented e�ciently on both shared-memory and distributed-memory parallel computers. Hence, parallel composition and de�nitional variablesaddress three of the concerns listed at the beginning of this chapter: concurrency,compositionality, and mapping independence.The choice operator is used to encode conditional execution and synchroniza-tion. It also provides a means of introducing controlled nondeterminism into pro-grams. (The merger is the other mechanism used to specify nondeterministic actionsin PCN programs.)The sequential composition operator and mutable variables together provide amechanism for integrating state change into de�nitional programs. This state changemay be performed in PCN or in lower-level sequential languages.A �nal aspect of PCN which may be unfamiliar to some readers is its use oftuples and recursion. These constructs provide support for symbolic processing.They augment arrays, iteration, and other language constructs provided by lan-guages such as Fortran and C for numeric processing. An increasing number ofapplications have both numeric (regular, 
oating-point) and symbolic (irregular,rule-based) components. PCN's symbolic processing capabilities are intended tosupport such mixed-mode applications.5 Programming ExamplesWe present PCN programs that solve programming problems concerned with listand tree manipulation, sorting, and a two-point boundary value problem.5.1 List and Tree Manipulation36



Membership in a List. Develop a program member with arguments e, l, and r,where l is a list, and at termination of execution of the program, r = TRUE if andonly if e appears in list l. Assume that FALSE = 0 and TRUE = 1, to be consistentwith C. #define TRUE 1#define FALSE 0member(e,l,r){? l ?= [v|l1], v == e -> r = TRUE,l ?= [v|l1], v != e -> member(e,l1,r),l ?= [] -> r = FALSE}Membership in a List (Mutables). Now consider a program with the samespeci�cation, except that e and r are now mutables. The mutable r is to be set toTRUE or FALSE; e (and of course l) should not be changed.#define TRUE 1#define FALSE 0member(e,l,r)int e, r;{? l ?= [v|l1], v == e -> r := TRUE,l ?= [v|l1], v != e -> member(e,l1,r),l ?= [] -> r := FALSE}The only di�erence between the two programs is the addition of the type declarationsand the substitution of the := operator.Reversal of a List. Develop a program reverse with arguments x, b, and e,which de�nes b to be the list of elements in x, in reverse order, concatenated withe. For example, if x = ["A","B"] and e = ["C","D"], then b is to be de�ned as["B","A","C","D"]. (The name b stands for the beginning of the reversed list, ande stands for the end of the reversed list.)reverse(x,b,e){? x ?= [v|xs] -> reverse(xs,b,[v|e]),x ?= [] -> b = e} 37



This program can be used to simply reverse a list by calling it with e = []. Forexample, a call reverse([1,2,3],b,[]) yields b = [3,2,1].The reverse procedure illustrates an important programming technique calledthe di�erence list. A call to reverse constructs a list b consisting of the valuescomputed by reverse followed by the values provided as e. This allows lists con-structed in several computations to be concatenated without further computation.For example, the callsreverse([1,2,3],b,e), reverse([4,5,6],e,[])construct the list [3,2,1,6,5,4].Height of a Binary Tree. Develop a program height with arguments t and z,where t is a binary tree, and z is to be de�ned to be the height of the tree. A tree tis either the empty tuple, fg, or a 3-tuple fleft, val, right g, where left andright are the left and right subtrees of t.height(t,z){? t ?= {left, _, right} ->{|| height(left, l), height(right, r),{? l >= r -> z = l+1,l < r -> z = r+1}},t ?= {} -> z = 0}The program can be read as follows. The height of a nonempty tree is 1 plus thelarger of the heights of the left and right subtrees. (The heights of the subtrees aredetermined by two recursive calls to height.) The height of an empty tree is 0.Preorder Traversal of a Binary Tree. Develop a program preorder with ar-guments t, b, and e, where t is a binary tree, and b and e are lists. Binary trees arerepresented using tuples, as in the last example. List b is to be the list consisting ofthe val of all nodes of the tree in preorder, concatenated with list e. (A traversal ofa tree in preorder visits the root, then the left subtree, and �nally the right subtree.)
38



preorder(t,b,e){? t ?= {left,val,right} ->{|| b = [val|m1],preorder(left,m1,m2),preorder(right,m2,e)},t ?= {} -> b = e}The program uses the di�erence list technique introduced previously in the reverseexample: each call to preorder constructs a list b consisting of the elements in itssubtree t followed by the supplied list e.5.2 QuicksortWe present an implementation of the well-known quicksort algorithm, qsortD, whichuses lists of de�nitional variables; later, we provide an in-place quicksort, qsortM,that uses mutable arrays. It is instructive to compare the two programs: the de�-nitional program is signi�cantly shorter and easier to understand than the mutableprogram. However, it makes less e�cient use of memory.De�nitional Quicksort. Program qsortD has two input arguments, x and e, andone output argument, b: x and e are de�nitional variables that are not de�ned bythe program, and b is a de�nitional variable that is de�ned by the program. All threeare lists of numbers. The output b is speci�ed to be the list x sorted in increasingorder, concatenated with list e. For example if e = [5, 4] and x = [2, 1], thenb = [1, 2, 5, 4]. If e is the empty list, then b is x sorted in increasing order.
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qsortD(x,b,e){? x ?= [mid|xs] ->{|| part(mid,xs,left,right),qsortD(left,b,[mid|m]),qsortD(right,m,e)},x ?= [] -> b = e}part(mid,xs,left,right){? xs ?= [hd|tl] ->{? hd <= mid ->{|| left = [hd|ls], part(mid,tl,ls,right) },hd > mid ->{|| right = [hd|rs], part(mid,tl,left,rs) }},xs ?= [] -> {|| left = [], right = [] }}The qsortD procedure operates as follows. If x is nonempty, let mid be its �rstelement and let xs be the remaining elements. The call part(mid,xs,left,right)de�nes left to be the list of values of xs that are at most mid, and right to bethe list of values of xs that exceed mid. Call qsortD(right,m,e), thus de�ning mto be the sorted list of right appended to e. Call qsortD(left,b,[mid|m]), thusde�ning b to be the sorted list of left followed by mid followed by m. Otherwise, ifx is the empty list, then de�ne b to be e.The part procedure operates as follows. If xs is not empty, then let hd andtl be the head and tail (respectively) of xs. If hd is at most mid, de�ne ls andright by part(mid,tl,ls,right), and de�ne left as hd followed by ls. If hdexceeds mid, de�ne left and rs by part(mid,tl,left,rs), and de�ne right ashd followed by rs. If xs is the empty list, de�ne left and right to be empty lists.In-Place Quicksort. Program qsortM has two input parameters, l, and r, bothof which are de�nitional variables, and one input-output parameter C, which is aone-dimensional mutable array of integers. Let Cinit be the initial value of C, andlet Cfinal be the value of C on termination of the program. Then Cfinal is to bea permutation of Cinit, where Cfinal[l, : : :, r] is Cinit[l, : : :, r] in increasingorder, and the other elements of C are to remain unchanged. (If l � r then Cfinalis Cinit.) 40



qsortM(l,r,C)int C[];{? l < r ->{; split(l,r,C,mid),qsortM(l,mid-1,C),qsortM(mid+1,r,C)}}split(l,r,C,mid)int C[], left, right, temp;{? l <= r ->{; left := l+1, right := r, s = C[l],part1(l,r,C,s,left,right), temp := l,swap(temp,right,C), mid = right}}part1(l,r,C,s,left,right)int C[], left, right;{? left <= right ->{; left_rightwards(r,C,s,left),right_leftwards(l+1,C,s,right),{? left <= right ->{; swap(left,right,C),left := left + 1,right := right - 1}},part1(l,r,C,s,left,right)}}left_rightwards(r,C,s,left)int C[], left;{? left <= r, C[left] <= s ->{; left := left+1, left_rightwards(r,C,s,left) }}right_leftwards(l,C,s,right)int C[], right;{? right >= l, C[right] > s ->{; right := right-1, right_leftwards(l,C,s,right) }}swap(i,j,C)int i, j, C[], temp;{; temp := C[i], C[i] := C[j], C[j] := temp }41



Execution of split(l,r,C,mid) permutes C and assigns a value to mid suchthat l � mid � r, and such that all elements in C[l, : : :, mid-1] are at mostC[mid], and all elements in C[mid+1, : : :, r] exceed C[mid].The program qsortM operates as follows. If l � r, then qsortM takes no action,leaving C unchanged. If l < r, then split is called, and after split terminatesexecution, C[l, : : :, mid-1] and C[mid+1, : : :, r] are sorted independently.The split program operators as follows. If l > r, then split terminatesexecution without taking any action. If l � r, then program split(l,r,C,mid)calls part1(l,r,C,s,left,right) after setting left = l+1, right = r and s =C[l]; program part leaves s unchanged, modi�es left and right, and permuteselements of C[l+1, : : :, r] so that, at termination of part1, left = right +1, andall elements in C[l+1, : : :, right] are at most s, and all elements in C[right+1,: : :, r] exceed s.After termination of part1, program swap is called to exchange C[l] (whichis s) with C[right]. After the swap, all elements in C[l, : : :, right-1] are atmost s, and C[right] = s, and all elements in C[right+1, : : :, r] exceed s. Theprogram terminates after mid is de�ned as right.Program part1 moves left rightwards and right leftwards until they cross(i.e., left = right+1).5.3 Two-Point Boundary Value ProblemOur last programming example is a solution to a more substantial numerical prob-lem. The problem that we consider arises when solving the linear boundary valueproblem in ordinary di�erential equations, namely,y0 = M(t)y + q(t); t 2 [a; b]; y 2 Rn;such that Bay(a) +Bby(b) = d:In most algorithms designed to solve this problem, the most computationally inten-sive task is the construction and solution of a linear algebraic system of equations,which typically has the form26666664 Ba BbA1 C1A2 C2. . . . . .Ak Ck 3777777526666664 y1y2y3...yk+1 37777775 = 26666664 df1f2...fk 37777775 :Here each of the blocks has dimension n � n, and k is often substantially largerthan n. Construction of this system is trivially parallelizable. A more substantialchallenge is to solve it in a parallel computing environment. It is important that thesolution process be stable in a numerical sense; otherwise, the computed answer maybe hopelessly inaccurate. Simple algorithms such as block elimination are thereforenot appropriate. The algorithm described here uses a \structured orthogonal factor-ization" technique, in which orthogonal transformations are used to compress each42



two successive block rows of the linear system into a single block row. This producesa \reduced" system that has the same structure as the original system, but is halfthe size. The compression process can be applied recursively until a small system" Ba Bb~A1 ~C1 # " y1yk+1 # = " d~f1 #remains.The PCN code that implements this algorithm creates a set of k processesconnected in a tree structure. A wave of computation starts at the k/2 leaves of thetree and proceeds up the tree to the root. The leaves perform the initial compressiondescribed above, while at the higher levels of the tree the compression is appliedrecursively, and at the root the small system above is solved. Finally, computationpropagates down the tree to recover the remaining elements of the solution vector.Input to the PCN code is provided at each leaf i (0 � i < k=2) as two n � nblocks (Ai and Ci) and one n vector (fi), and at the root as two n � n blocks (Baand Bb) and one n vector (d).The PCN code consists of two main parts. The �rst part is the code that cre-ates the process tree. This creates a root process and calls a doubly recursive treeprocedure to create k=2 leaf processes and k=2�1 nonleaf processes. Shared de�-nitional variables (strm, left, right) establish communication channels betweenthe nodes in the tree.solve(k,t0,t1){|| root(strm),tree(strm,{t0,t1},1,k/2)}tree(strm,as,from,to){? from == to -> leaf(from*2,strm,as),from < to ->{|| mid=from+(to-from)/2,nonleaf(left,right,strm),tree(left,as,from,mid),tree(right,as,mid+1,to)}}The second part of the program de�nes the actions performed by the leaf,nonleaf, and root processes. We consider the leaf process �rst. A single leafprocess initializes two sets of blocks | a1, c1, f1) and (a2, c2, f2 | and thencalls compress to produce a, c, f. It sends a message to its parent containing thecomputed values and slots for return values (ybot, ytop) which will be computedby its parent. The recover procedure delays until values are received for ybot andytop, and then computes the solution, y.43



leaf(id,parent,as)double a1[MM],c1[MM],f1[M],a2[MM],c2[MM],f2[M],a[MM],c[MM],f[M],y[M],r[MM];{? as ?= {t0,t1} ->{; init_(id-1,a1,c1,f1,t0,t1),init_(id,a2,c2,f2,t0,t1),compress_(a1,c1,f1,a2,c2,f2,a,c,f,r),parent={a,c,f,ybot,ytop},recover(a1,c1,f1,r,ybot,ytop,y)}}The nonleaf procedure receives messages from left and right o�spring. It callscompress to compress the a1, c1, f1 and a2, c2, f2 received from its o�spring,producing a,c,f. These newly compressed values are communicated to the parentin the process tree. Once values for ytop and ybot are produced by the parent, therecover operation can proceed, producing ymid; values are then returned to the leftand right o�spring by the four de�nition statements.nonleaf(left,right,parent)double ymid[M],a[MM],c[MM],f[M],r[MM];{? left ?= {a1,c1,f1,ybot1,ytop1},right ?= {a2,c2,f2,ybot2,ytop2} ->{; compress_(a1,c1,f1,a2,c2,f2,a,c,f,r),parent={a,c,f,ybot,ytop},recover_(a1,c1,f1,r,ybot,ytop,ymid),ybot1=ymid, ytop1=ytop,ybot2=ybot, ytop2=ymid}}The root process receives a single message containing the completely reducedblocks. It calls comp root to perform the �nal computation, producing ybot1 andytop1 which it returns to its o�spring with two de�nitions.
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root(child)double ybot1[M],ytop1[M],ba[MM],bb[MM],brhs[M];{? child ?= {a,c,f,ybot,ytop} ->{; init_root_(m,ba,bb,brhs),comp_root_(a,c,f,ba,bb,brhs,ybot1,ytop1),ytop=ytop1, ybot=ybot1}}6 ModulesRecall from x 3 that a PCN program consists of one or more modules. Each moduleis contained in a separate �le with a .pcn su�x. A module contains zero or moreprocedures.Procedures in one module can invoke procedures in other modules by means ofintermodule calls. An intermodule call has the following general form.module:procedure name(arg0, ..., argn)A procedure can be invoked by an intermodule call only if it has been exportedby the module in which it is de�ned. By default, all procedures in a module areexported. However, you can specify that only a subset of the procedures in a moduleare to be exported, by providing one or more -exports directives. An exportsdirective has the general form-exports(proc0, ..., prock)and speci�es that the module in which it appears exports procedures named by thestrings proc0, ..., prock. For example, the directive -exports("procA","procB")names procA and procB as exported.In general, it is good practice to provide an -exports statement in each module,and to export only those procedures that are called from other modules. This allowsthe compiler to generate more compact object code.7 The C PreprocessorThe PCN compiler applies the C language preprocessor (cpp) to each PCN modulebefore compiling it. Hence, PCN programs can make use of cpp's capabilities, suchas include �les, macros, and conditional compilation. All three of these capabilitiesare used in the following example program.45



Module cpp ex.pcn-exports("go")#include <pcn\_stdio.h>#define ARRAY_SIZE 10go()double a[ARRAY_SIZE];{;#ifdef OLD_VERSIONstdio:printf("Old version\n",{},_),#elsestdio:printf("New version\n",{},_),#endifdo_something_with_array(a)}When the PCN compiler applies cpp to a PCN program, it automatically de�nesthe symbol \PCN" and a symbol that represents the target architecture for whichyou are compiling (i.e., sun4, rs6000, next040, ipsc860, etc). These symbols canbe used for conditional compilation. For example, the following header �le can beused in both PCN and C components of a program, hence ensuring that the symbolARRAY SIZE is de�ned in the same manner everywhere. The #ifndef means thatthe declaration of my c procedure() is used only in the C compilation.File cpp ex.h#define ARRAY_SIZE 10#ifndef PCN#ifdef sun4#include "sun4_only_hdr.h"#endif /* sun4 */extern void my_c_procedure();#endif /* PCN */In this example, ARRAY SIZE will be de�ned to be the value 10 in both PCNand C programs that include this header �le. Also, if the C program is compiledusing pcncomp (i.e., pcncomp -c file.c), the procedure my c procedure() will bedeclared in the C program, and the header �le sun4 only hdr.h will be included inthe C program when compiling for a sun4 architecture.We can pass additional arguments to cpp when compiling PCN programs. Forexample, suppose we wish OLD VERSION to be de�ned when compiling the programcpp ex.pcn shown above. This can be achieved by using the -D 
ag when compilingwith pcncomp as follows: 46



pcncomp -c cpp ex.pcn -DOLD VERSION8 Integrating Foreign CodeProgramming examples presented thus far have focused on the use of PCN to com-pose procedures written in PCN. Exactly the same syntax and techniques can alsobe used to compose procedures written in other (\foreign") languages. Fortran andC are currently supported.We deal here with the PCN/foreign interface, the mechanism used to importforeign procedures, and the mechanism used to link foreign object code with thePCN run-time system.8.1 PCN/Foreign InterfaceThe PCN/foreign interface is de�ned as follows:� The actual parameters in a call to a foreign program can be mutables orde�nitional variables of type char, int, or double, or arrays of these types.� Execution of a foreign procedure delays until all de�nitional arguments havevalues.� All parameter passing is by reference.� A foreign procedure cannot modify de�nitional arguments.The last restriction is not currently enforced by the compiler, so the programmermust be careful to ensure that all programs satisfy this constraint.Note that a consequence of this de�nition is that all output generated by aforeign procedure must be returned in mutable arguments. Su�cient storage mustbe allocated for these mutables prior to calling the foreign procedure.Two important di�erences exist between the execution of PCN and foreignprocedures called from PCN. First, PCN procedures can execute even if not all de�-nitional arguments do have values. Indeed, they can compute values for de�nitionalarguments. In contrast, foreign procedure calls delay until all de�nitional argumentshave values, and can modify mutable arguments only. Second, PCN procedures canbe passed tuples as arguments, whereas foreign procedures can be passed simpletypes only.C. As parameter passing is by reference, arguments to a C procedure called fromPCN must be declared as pointers. That is, the PCN types char, int, and doublecorrespond to the C language types char *, int *, and double *.47



Fortran. The PCN types char, int, and double correspond to the Fortran typesCHARACTER, INTEGER, and DOUBLE. As Fortran also passes arguments by reference,no special treatment of arguments is required. It is necessary to append the su�x` ' to the name of a Fortran procedure called from PCN.For example, the following PCN procedure calls a C procedure natural log(a,b)to compute b = ln(a) and a Fortran procedure power(a,b,c) to compute c = ab.Note the ` ' su�x on the call to power and the use of a local mutable tmp for theresult of the natural log computation.Module foreign.pcnproc(a,b,c)double a,b,c,tmp;{; natural_log(a,tmp), power_(tmp,b,c)}The C and Fortran procedures invoked by this program can be written as follows.File cfile.c#include <math.h>void natural_log(a,b)double *a,*b;{ *b = log(*a); }File ffile.fSUBROUTINE POWER(A,B,C)DOUBLE PRECISION A,B,CC = A**BRETURNEND8.2 Compiling with Foreign CodeWhen compiling PCN code that contains calls to foreign procedures, you need not doanything special to distinguish the foreign calls from normal PCN procedure calls.Instead, the PCN compiler assumes that any nonintermodule calls (i.e., calls that donot specify a module) to procedures not de�ned in that module are calls to foreignprocedures. For example, this is what you see when you compile the foreign.pcnprogram shown above: 48



% pcncomp -c foreign.pcnNotice: Call to foreign procedure - natural logNotice: Call to foreign procedure - power%The C and Fortran source �les can be compiled as normal to produce object �les(.o �les). Alternatively, pcncomp can be used to compile Fortran and C programs.For example: pcncomp -c cfile.cand pcncomp -c ffile.fThe use of pcncomp to compile C and Fortran source �les is recommended, sincethis compile command will work on any machine, no matter what the actual namesof the C and Fortran compilers on the particular machines. In addition, pcncompknows how to deal with Fortran programs that use C preprocessor directives (i.e.,#define, #include, etc.). These source �les should use a .F su�x. Some Fortrancompilers know how to deal with .F �les directly, in which case pcncomp just runsthe Fortran compiler on the .F �le. However, if a Fortran compiler cannot handle a.F �le, pcncomp will �rst run the �le through cpp before calling the Fortran compiler.8.3 Linking with Foreign CodeOnce all of your PCN source �les are compiled to PCN object (.pam) �les, and yourC and Fortran source �les are compiled to foreign object (.o) �les, you must usepcncomp to link everything into an executable program.To do this, simply add the .o �les to the pcncomp link line, for examplepcncomp pcncode.pam ccode.o -o myprogram -mm pcncodeIn addition, if you are linking Fortran object code, you must also add a -fortran
ag to the link command. This ensures that Fortran initialization code is added tothe executable program. For example, to link the example program above, you type:pcncomp foreign.pam cfile.o ffile.o -o foreign -mm foreign -fortranLike most compilers, pcncomp will also accept foreign libraries, which can bespeci�ed either by adding the appropriate .a �le to the link line, or by using the -land -L 
ags, for example:pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode libmine.a -lgFor a complete list of the arguments to pcncomp, type:pcncomp -h49



8.4 Multilingual ProgrammingThis simple foreign interface allows sequential code (currently, Fortran and C aresupported) to be integrated into PCN programs as procedure calls, indistinguishablefor most purposes from calls to PCN procedures. Thus, we do not need to throwaway the many years of investment in sequential code and compiler developmentwhen moving to parallel computers. Fortran and C are good sequential languagesbut are less well suited to parallel programming. Experience suggests that PCN is agood parallel language; nevertheless, it cannot compete with Fortran and C in codebase and compiler technology. Multilingual programming permits us to take the bestfrom each approach, using PCN for mapping, communication, and scheduling, andFortran and C for sequential computation.8.5 De�ciency of Foreign InterfaceA de�ciency of the Fortran interface is that no special allowance is made for \com-mon" data (in Fortran programs) or \global" variables (in C programs). Each phys-ical processor has a single copy of all common/global data declared in an applicationprogram, and every process on a processor has access to that data. Hence, whilePCN data structures are encapsulated in processes to prevent concurrent access, thesame protection is not provided for common/global data. It is the programmer'sresponsibility to avoid errors arising from concurrent access. Experience shows thatprogrammers deal with this problem in one of two ways.First, if an application is of moderate size, or is being developed from scratch,they often choose to eliminate common/global data altogether. This may be achievedby allocating arrays in PCN and passing them to the di�erent foreign procedures.Although this approach requires substantial changes to the application, the bulk ofthe existing foreign code can be retained, and the full 
exibility of PCN is availableto the programmer.Second, if substantial rewriting of an application is not possible, programmersmaintain common/global data in its usual form and use PCN to organize operationson this data in a way that avoids nondeterminate interactions. Although certainoperations are then more di�cult (e.g., process migration is complicated, and theprogrammer must check for race conditions manually), other bene�ts of the PCNapproach still apply.9 Higher-Order Programs Using MetacallsPCN provides simple support for higher-order programming. In particular, it allowsmodule and procedure names in procedure calls to be substituted with variables,which can then be de�ned to be strings at run time. Variables are distinguishedfrom strings in procedure calls by the use of enclosing back quotes, as follows...., `op`(...), ... /* op is a variable */50



..., m:`op`(...), ... /* op is a variable */..., `mod`:f(...), ... /* mod is a variable */..., `mod`:`op`(...), ... /* mod & op are variables */This sort of call is termed a metacall.We illustrate the use of these higher-order features with a procedure map listthat applies a supplied operator to each element of a list, collecting the results ofthese computations in an output list. The supplied operator is assumed to be aprocedure name (e.g., "f"); the map list procedure invokes this procedure withtwo arguments (e.g., f(e,v)).map_list(op,list,vals){? list ?= [e|l1] ->{|| `op`(e,v),vals = [v|v1],map_list(op,l1,v1)},list ?= [] -> vals = []}For example, if the procedure square is de�ned assquare(e,v) {|| v = e*e }then a call map_list("square",[1,2,3],vals) will de�ne vals to be the list[1,4,9].The map list procedure will work correctly only if the supplied operator (op) islocated in the same module as map list. The following program is more general: itallows the supplied operator to be a mod:proc(arg) term. Note the use of quotingin the match operation.map_list2(op,list,vals){? list ?= [e|l1], op ?= `mod`:`proc`(arg) ->{|| `mod`:`proc`(arg,e,v),vals = [v|v1],map_list2(op,l1,v1)},list ?= [] -> vals = []}Metacalls present a small problem to the PCN linker. The PCN linker normallyincludes in the executable program only those PCN procedures that it can determinewill be called. However, since metacalls are procedure calls for which you do not51



specify the call target until run-time, the linker may not be able to determine thata metacalled procedure is called and therefore will not link in that procedure. Tohandle this situation, two additional PCN source directives are supported:-metacalls(mod1:proc1, mod1:proc2, ...): This tells the linker that if the mod-ule containing this directive is included in the executable, then so shouldmod1:proc1(), mod1:proc2(), etc.-proc metacalls(source proc, mod1:proc1, mod1:proc2, ...): This tells thelinker that if the procedure source proc() is included in the executable, thenso should mod1:proc1(), mod1:proc2(), etc.10 Process MappingParallel compositions de�ne concurrent processes; shared de�nitional variables de-�ne how these processes communicate and synchronize. Together with the sequentialcode executed by the di�erent processes, these components de�ne a concurrent al-gorithm that can be executed and debugged on a uniprocessor computer. However,we do not yet have a parallel program: we must �rst specify how these processes areto be mapped to the processors of a parallel computer.Important features of PCN are that the mapping can be speci�ed by the pro-grammer and that the choice of mapping a�ects only the performance, not thecorrectness, of the program. In other words, the process mapping strategy appliedin an application can change performance but cannot change the result computed.(The only exceptions to this rule are if foreign code uses global variables | e.g.,common blocks | or if PCN code includes nondeterministic procedures.)For this reason, it is common to develop PCN programs in two stages. First,program logic is developed and debugged on a workstation, without concern forprocess mapping. Second, a process mapping strategy is speci�ed and its e�ciencyis evaluated on a parallel computer, typically by using the Gauge execution pro�ler.The following language features are used when writing code to de�ne processmappings.Information Functions. When de�ning mappings, we sometimes require infor-mation about the computer on which a process is executing. This information isprovided by the primitive functions topology(), nodes(), and location().topology(): Returns a tuple describing the type of the computer, for examplef"mesh",16,32g or f"array",512g.nodes(): Returns the number of nodes in the computer.location(): Returns the location of the process on the computer.52



Location Functions. Mapping is speci�ed by annotating procedure calls withsystem- or user-de�ned location functions, using the in�x operator \@". These func-tions are evaluated to identify the node on which an annotated call is to execute;unannotated calls execute on the same node as the procedure that called them. Forexample, the following two function de�nitions implement the location functionsnode(i) and mesh node(i,j), which compute the location of a procedure that is tobe mapped to the ith node of an array and the (i,j)th node of a mesh, respectively.Note the use of a match (?=) to access the components of the mesh topology type.The per cent character, \%", is the modulus operator.Example location functions: loc.pcnfunction node(i){|| return( i%nodes() ) }function mesh_node(i, j){? topology() ?= {"mesh", rows, cols} ->return( (i*rows + j)%nodes() ),default -> error()}The following composition uses the function node(i) to locate the procedurecalls p(x) and c(x).fjj p(x) @ node(10), c(x) @ node(20)gLocation functions are often used in the iterative construct called quanti�cation(see x 4.7).The following two procedures use quanti�cations and the location functionsde�ned previously to execute the procedure work in every node of an array andmesh, respectively. For example, a call to array on a 1024-processor computer willcreate 1024 instances of work(), one per processor. (In practice, we may choose touse a more e�cient tree-based spawning algorithm on a large machine.)
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Examples of quanti�cationarray(){|| i over 0 .. nodes()-1 ::work() @ node(i)}mesh(){? topology() ?= {"mesh", rows, cols} ->{|| i over 0 .. rows-1 ::{|| j over 0 .. cols-1 ::work() @ mesh_node(i, j)}},default -> error()}Virtual Topologies and Map Functions. The ability to specify mapping bymeans of location functions would be of limited value if these mappings had to bespeci�ed with respect to a speci�c computer. Not only might this computer have atopology that was inconvenient for our application, but the resulting program wouldnot be portable.PCN overcomes this di�culty by allowing the programmer to de�ne mappingswith respect to convenient virtual topologies rather than a particular physical topol-ogy. A virtual topology consists of one or more virtual processors or nodes, plusa type indicating how these nodes are organized. For example, 512 nodes may beorganized as a one-dimensional array, a 32� 16 mesh, etc.The embedding of a virtual topology in another physical or virtual topology isspeci�ed by a system- or user-de�ned map function. A map function is evaluatedin the context of an existing topology; it returns a tuple containing three values:the type of the new embedded topology, the size of the new topology, and thefunction that is to be used to locate each new topology node in the existing topology.For example, the following function embeds a mesh of size rows�cols in an arraytopology; the mapping will be performed with the location function node providedpreviously in program loc.pcn. Note that the map function does not check whetherthe new topology \�ts" in the old topology. It is quite feasible to create a virtualtopology with more nodes than the physical topology on which it will execute.
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Example Map Functionfunction mesh_in_array(rows, cols){? topology ?= {"array", n} ->{|| type = {"mesh", rows, cols},size = rows*cols,map_fn = {"call",{":","loc","node"},[],[]},return( {type, size, map_fn} )},default -> error()}The assignment to the variable map fn de�nes the function (in this case, loc:node())that is to be used to compute the location of each new virtual node. The syntax forthis is var = f"call",f":",module,procedureg,[arg0,...,argn],[]gand speci�es that the location function module:procedure(arg0,...,argn) is tobe used. The procedure arguments supplied in this \call" tuple will be prepended tothe arguments that are supplied when the metacall using this \call" tuple is made.This ugly syntax is due to a current limitation in the compiler that will beremedied in a future release.We use the in�x operator \in" to specify the map functions that will generatethe virtual topologies used in di�erent components of a program. For example, ifthe mesh procedure speci�ed previously is executed on an array computer, we mayinvoke it as follows. mesh() in mesh in array(rows,cols)This map function, mesh in array, embeds a virtual mesh computer of size rows�colsin the array computer.Virtual topologies and map functions allow us to develop applications withrespect to a convenient and portable virtual topology. When moving to a newmachine, it is frequently possible to obtain adequate performance with just a naiveembedding of this virtual topology. For example, our applications invariably treatall computers as linear arrays, regardless of their actual topology, and neverthelessachieve good performance. If communication locality were important (for example,if we moved to a machine without cut-through routing), we would probably haveto develop a map function that provides a more specialized embedding. This cangenerally be achieved without changing the application code.55



11 Port ArraysRecall that individual processes communicate by reading and writing shared de�ni-tional variables, as in the composition fjj producer(x), consumer(x)g. The portarray provides a similar mechanism for use when composing sets of processes.A port array is an array of de�nitional variables that has been distributed acrossthe nodes of a virtual topology. A declaration \port A[N];" creates a port arrayA with N elements, distributed blockwise across the nodes of the virtual topology inwhich the port array is declared. (That is, elements are located on virtual topologynodes in contiguous, equal-sized blocks.) N must be an integer multiple of nodes().Elements of a port array are accessed by indexing, in the same way as ordinaryarrays; the elements can be used as ordinary de�nitional variables. Each element ofa port array can only be accessed via indexing twice. This restriction allows memoryoccupied by port arrays to be reclaimed automatically.The following procedure uses port arrays for two purposes: �rst, to provide eachring node() process with de�nitional variables for use as input and output streams;and second, to establish internal communication streams between neighboring pro-cesses, so that each process has two streams, one shared with each neighbor. Theith node of this structure is given elements I[i] and O[i] of the two port arraysI and O passed as parameters (for communication with the outside world), and twoelements of the local port array S. As in the C programming language, the dimensionof an array passed as an argument is not speci�ed. Notice the use of the informa-tion function, nodes() (x 10), to de�ne a port array with one element per virtualtopology node.Example of Ports: ring.pcnring(I, O)port S[nodes()], I[], O[];{|| i over 0 .. nodes()-1 ::ring_node(I[i], O[i], S[i], S[(i+1)%nodes()]) @ node(i)}The process structure created by a call to this procedure in a four-processorvirtual topology can be represented as follows, with the solid lines indicating ex-ternal port connections and the dotted lines internal streams. The box separatesthe internals of the process structure from what is visible to other processes. Thering node procedure executed by each process can use the four de�nitional variablespassed as arguments to communicate with other processes.56
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S[1] S[2 S[3] S[0]S[2]12 Reuse of Parallel CodeThe ability to reuse existing code is vital to productive programming. The PCNsystem supports two forms of reuse: reuse of sequential code written in C or Fortran,and reuse of parallel code written in PCN. The former, which is discussed in x 8,is important when migrating existing sequential applications to parallel computers;the latter is becoming increasingly important as our parallel code base grows.Cells. Our approach to the reuse of parallel code is based on what we term asoftware cell: a set of processes created within a virtual topology to perform somedistinct function such as a reduction or a mesh computation, and provided withone or more port arrays for communication with other program components. Wehave already seen several examples of cells: for instance, the procedure ring in thepreceding section implements a cell that performs ring pipeline computations.The interface to a PCN cell consists simply of the port arrays and de�nitionalvariables that are its arguments. A cell de�nition does not name the processors onwhich it will execute, the processes with which it will communicate, or the timeat which it expects to execute. These decisions are encapsulated in the code thatcomposes cells to create parallel programs: a virtual topology speci�es the numberand identity of processors, port arrays specify communication partners, and the PCNcompiler handles scheduling. As we will see in subsequent examples, the simplicityof this interface allows cells to be reused in many di�erent contexts.Templates. The ring cell would be more useful if the code to be executed at eachnode could be speci�ed as a parameter. This is possible through the use of metacalls(x 9), and in this case we refer to the cell de�nition as a template, as it encodes awhole family of similar cells. For example, the following is a template version ofring. The procedure to be executed is passed as the parameter op, which is quotedin the body to indicate that it is used as a variable.57



Example Templatering(op, I, O)port S[nodes()], I[], O[];{|| i over 0 .. nodes()-1 ::`op`(I[i], O[i], S[(i+1)%nodes()], S[i]) @ node(i)}This template invokes the supplied procedure with four de�nitional variablesas additional arguments. For example, if op has the value nbody(p), then a proce-dure call nbody(p,d1,d2,d3,d4) (d1..d4 being the variables from the port array)is invoked on each node of the virtual topology. All parameters to op must be def-initional variables; it is the programmer's responsibility to ensure that the numberand type of these parameters match op's de�nition.Example. We illustrate how cells and templates are composed to construct com-plete applications. We make use of the ring template and also the following simpleinput and output cells: load reads values from a �le and sends them to successiveelements of the port array P; store writes to a �le values received on successiveelements of port array Q. Both use the sequential composition operator to sequenceI/O operations.load(file, P)port P[];{; i over 0 .. nodes()-1 ::{; read(file, stuff),P[i] = stuff}}store(file, Q)port Q[];{; i over 0 .. nodes()-1 ::write(file, Q[i])}We compose the three cells to obtain a procedure compose that reads datafrom infile, executes a user-supplied function in the ring pipeline (e.g., a naiveN-body algorithm), and �nally writes results to outfile. Note that although weuse a parallel composition, data dependencies will force the three stages to executein sequence. However, if load were to output a stream of values rather than a singlevalue per node, then the three stages could execute concurrently, as a pipeline.58



compose(param, infile, outfile)port P1[nodes()], P2[nodes()];{|| load(infile, P1),ring(nbody(param), P1, P2),store(outfile, P2)}Data 
ows from load to ring via port array P1 and from ring to store viaport array P2. This is illustrated in the following �gure, which shows the processstructure created in a four-node topology.
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P2The complete program executes in an array topology (\compose(param,if,of) in array()")and will create a ring with one process per node of that topology.13 Using Multiple ProcessorsA PCN program annotated with process mapping directives will execute correctlyon a single processor. However, in order for the mapping directives to improve (ordegrade!) performance, it is necessary to run the program on multiple processors.The syntax used to start PCN on multiple processors varies according to thetype of parallel computer. On multicomputers, we are generally required �rst toallocate a number of nodes and then to load the program in these nodes. For exam-ple, on the Intel iPSC/860, we must log into the host computer (System ResourceManager: SRM) and type the following commands to allocate 64 nodes, run theprogram, and �nally free the allocated nodes.59



% getcube -t 64% load myprogram ; waitcube% killcube% relcubeOn multiprocessors (e.g., a shared-memory Sun multiprocessor), we generallyneed only to add a -n 
ag to the command line when running the program. Forexample, to run on 4 processors, we type the following.% myprogram myargs -pcn -n 4The -pcn argument tells the run-time system that all subsequent arguments arerun-time system arguments (not arguments meant for the user's program). The -n4 run-time system argument says to run this program on 4 processors.The -n option can also be used to spawn multiple communicating PCN nodeson a uniprocessor workstation. This is not normally useful, however, as all nodeswill just multitask on that workstation's simple processor. However, this option canbe useful for debugging purposes under certain circumstances.When running on a network, we generally need to either list on the commandline the names of the computers on which to run nodes, or provide a con�guration�le indicating the names of the computers on which PCN is to run. See x 23 formore information about running PCN on networks.For details about how to use PCN on your computer, turn to the discussion ofmachine dependencies in xx 19{23.14 Debugging PCN ProgramsPCN provides a rich set of facilities for locating syntactic, logical, and performanceerrors in programs.14.1 Syntax ErrorsSyntax errors are detected and reported by the compiler. An error message consistsof the �le name, a line number, and a message indicating the type of error.Warning messages are also generated by the compiler to indicate type mis-matches between procedure de�nitions and calls, etc. It is good programming prac-tice to write programs that do not generate warnings.60



14.2 Logical ErrorsSupport for detection of logical errors is provided by the debugging version of thePCN run-time system. To use this version, you must add a -pdb argument to thepcncomp link line. Use of this version is recommended during program development.This debugging version provides a wide range of capabilities, including1. Bounds checking is performed on all array and tuple accesses.2. Checks are made for circular references, such as would be caused by fjjA=B,B=Ag.3. The data immediately preceding and following data structures that are passedto foreign procedures are checked for validity upon return from the foreignprocedure. This can help in locating array bounds violations in foreign code.4. If you add a -gc after foreign as a run-time system command line argu-ment (i.e., after the -pcn argument), a \garbage collection" (a technique forreclaiming unused storage) is invoked immediately after every foreign proce-dure call. This can help in tracking down foreign code that is corrupting PCN'sinternal data structures. A garbage collection involves a full consistency checkof PCN's data structures. Since pure PCN code should never corrupt thesedata structures, a garbage collection failure while using this feature normallyindicates that the previously called foreign procedure wrote outside its properbounds. If the run-time system crashes with this feature turned on, the fatalerror message that is printed will contain the name of the last foreign procedurethat was called.5. PCN object �les (i.e., .pam �les) can be dynamically loaded into an executableat run-time. This feature eliminates the need to relink your program each timeyou modify a PCN source �le, and therefore can greatly speed the debug cycleof PCN programs. See x 15.9 for the details of this feature.6. Typing Control-C (^C) during program execution provides access to the PCNsymbolic debugger, PDB (x 15).Additional, low-level logical debugging support is provided by command linearguments that cause the PCN run-time system to print detailed information aboutindividual procedure calls. These facilities are described in x 27; their use is notrecommended in normal circumstances. This low-level debugging support can alsobe accessed through PDB variables.14.3 Performance ErrorsWe use the term performance error to refer to programs that compute correct an-swers but for some reason do not make e�cient use of available computer resources.Two tools are integrated with the PCN system to assist in the detection of perfor-mance errors: Gauge and Upshot. These are described in x 16 and x 17, respectively.61



Gauge is an execution pro�ler: it collects information about the amount of timethat each processor spends in di�erent parts of a program. It also collects procedurecall counts, message counts, and idle-time information. Two properties of Gaugemake it particularly useful: pro�ling information is collected automatically, withoutany programmer intervention, and the volume of information collected does notincrease with execution time. A powerful data exploration tool permits graphicalexploration of pro�le data.Upshot is a more low-level tool that can provide insights into the �ne-grainedoperation of parallel programs. Upshot requires that the programmer instrumenta program with calls to event logging primitives. These events are recorded andwritten to a �le when a program runs. A graphical trace analysis tool then allowsthe programmer to identify temporal dependencies between events.
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Part IIReference Material15 PDB: A Symbolic Debugger for PCNDebuggers play an important role when programming in any language, includingPCN. However, PCN is considerably di�erent from sequential languages such as Cand Fortran. For example, PCN uses both light weight processes and data
ow syn-chronization extensively. Therefore, a PCN debugger must have special capabilitiesdesigned to meet PCN's atypical requirements.PDB, the PCN debugger, �ts this bill. It incorporates features found in mostdebuggers, such as the ability to set breakpoints on procedures, interrupt execu-tion, and examine program arguments. In addition, it incorporates capabilities thatsupport atypical features of PCN, such as light weight processes and data
ow syn-chronization. In particular, PDB allows you to examine enabled and suspendedprocesses and to control the order in which processes are scheduled for execution.15.1 The PCN to Core PCN TransformationThe operation of PDB is complicated by the fact that the PCN run-time systemdoes not support PCN directly, but rather a simpler language called core PCN,which lacks sequential composition and nested blocks. The PDB debugger operateson core PCN rather than PCN; hence, some understanding of the transformationsused by the compiler to translate PCN to core PCN is necessary before PDB can beused e�ectively.Nested Blocks. Nested blocks within PCN programs (except for sequential orparallel blocks nested in a top-level choice block) are replaced with calls to separateauxiliary procedures that contain these blocks. An auxiliary procedure is given thename of the procedure from which it was extracted, followed by an integer su�x.The choice of integer su�x is somewhat arbitrary; in general, however, su�xes areassigned in the order in which the corresponding auxiliary procedure calls appear inthe original procedure.Sequential Composition. Additional auxiliary procedures may be introduced as\wrappers" on operations occurring in sequential compositions. A wrapper delaysexecution of an operation until previous computations in the sequential compositionhave completed.Wrappers are also generated to encode calls to primitive operations for whicharguments may not be available at run time. Such wrappers delay computationuntil de�nitional arguments are de�ned. For example, a wrapper for the assignmentx:=y, where y is a de�nition, will delay execution until y has a value.Wrappers are named in the same manner as other auxiliary procedures: with aprocedure name followed by a number. 63



Sequencing Variables. Every procedure has two additional variables added toits argument list. These variables are used for sequencing of procedure calls. Theyare commonly referred to as the Left and Right sequencing variables. A procedurewill suspend until its Left variable is de�ned. When the procedure and its o�springhave completed execution, Right is de�ned to be the same as Left. These variablesoften (but not always) occur at the end of the argument list.Within a sequential block, the Right variable of one procedure call is the sameas the Left variable of the next. This ensures that procedures execute in strictsequence. For example, the sequential blockExample of a sequential blockp(){; q(),r(),s()}is transformed to a procedure similar to the following.Example of a transformed sequential blockp(L,R)data(L) ->{|| q(L,M1),r(M1,M2),s(M2,R)}Within a parallel block, all procedure calls use the parent procedure's Leftvariable as their own Left, and a temporary variable as their Right. The temporaryRight variables are passed to a barrier procedure which de�nes the Right variablefor the parallel block when all of the temporary variable have been de�ned. Forexample, the parallel blockExample of a parallel blockp(){|| q(),r(),s()}is transformed to a procedure similar to the following (where p.1 is the barrierprocedure). 64



Example of a transformed parallel blockp(L,R)data(L) ->{|| q(L,M1),r(L,M2),s(L,M3),p.1(M1,M2,M3,R)}p.1(M1,M2,M3,R)data(M1), data(M2) -> R = M3Barrier Processes. As demonstrated in the preceding example, the PCN com-piler sometimes generates calls to special barrier procedures. These are used to orga-nize synchronization of procedures in a parallel block. These auxiliary programs arenamed in the same manner as other auxiliary procedures created by the compiler.However, they can usually be distinguished by the fact that all but one of theirarguments are the Right synchronization variables of other procedures. Fortunately,these auxiliary barrier procedures can generally be ignored when debugging.Wildcards. A procedure name is a mod:procedure pair. Some PDB commandsthat take procedure names as arguments allow the use of a limited form of a wildcardfacility to specify a set of procedures. An asterisk (*) placed at the end of a procedurename designates all procedures that begin with the speci�ed name. For example,mod:program1* designates all procedures in module mod whose names begin withprogram1. The degenerative case of a procedure wildcard is simply a * (e.g., mod:*).In this case, all procedures within the appropriate module are speci�ed.Module names can also be speci�ed with this limited wildcard facility. Forexample, a module wildcard of env* designates all modules whose names start withenv, and a simple * designates all loaded modules.15.2 Obtaining Transformed CodeAs described in x 15.1, a PCN program is transformed to core PCN before execution.When debugging programs with PDB it is often helpful to have this transformedversion of the code available for reference, since that transformed version is reallythe code that is being executed.When compiling your PCN program, you can have the compiler dump thetransformed version of your program simply by adding a -dumpafter basic 
ag tothe pcncomp compile line. Assuming the original PCN program is named prog.pcn,a �le named prog.basic.dump will be created that contains a nicely formattedrepresentation of the transformed PCN program.65



15.3 Naming ProcessesExecution of a PCN program can create a large number of lightweight processes.Each process executes a PCN procedure | either a procedure named in the originalsource, or an auxiliary procedure introduced by the transformation to core PCN.In order to simplify the task of distinguishing between the many processes thatmay be created during execution of a program, PDB associates three distinct labelswith each process.1. The name of the procedure that the process is executing (nonunique).2. An instance number (unique).3. The process reduction in which the process was created (nonunique).Note: A reduction is one completed execution of a process. The run-time systemkeeps a reductions counter that it increments after each reduction.As we shall see in x15.5, PDB also provides information about the status of aprocess, for example, whether it is able to execute or is waiting for data.15.4 Using the DebuggerLinking with PDB run-time system. To use PDB, you must link your programwith the PDB version of the run-time system. This is accomplished by simply addinga -pdb argument to the pcncomp link command.-pdb command line argument. When you run your program, if you add a-pdb run-time system command line argument (i.e., after the -pcn argument), yourprogram will be interrupted and control passed to PDB before any PCN proceduresare executed.Control-C. Once your program is running, you can enter PDB by interrupting theprogram with an interrupt signal. This signal is typically invoked by typing Control-C (^C). If you interrupt your program while it is executing a foreign procedure, thatforeign procedure will be completed before control is passed to PDB.Once control is passed to the debugger, PDB commands can then be used toexamine the state of the computation, set breakpoints on PDB procedures, en-able/disable debugging on procedures, or resume execution of the PCN program.Once resumed, normal PCN execution continues until you interrupt the programexecution again or until a breakpoint is encountered, causing control to revert backto the debugger. It is also possible to specify that control pass to the debugger if theactive queue becomes empty. This is accomplished by setting the debugger variableempty queue break (x 15.7)..pdbrc When a program that is linked with the PDB version of the run-timesystem starts up, it searches for a .pdbrc �le in the current directory, and then inyour home directory (~). Any PDB commands found in such a �le are executed.This feature allows the state of PDB to be initialized every time PDB is run.66



Abbreviating PDB Commands. PDB commands can be abbreviated to theshortest string that uniquely identi�es the command. (There are a few exceptionsto this rule. For example, since the show command is typically used extensively, itcan be abbreviated to s, even though s does not uniquely identify this command.)To �nd out the shortest abbreviation for PDB commands, use the PDB helpfacility by typing help at the PDB command prompt.Help. PDB has extensive online help | type help at the PDB command promptfor more information.15.5 Examining the State of a ComputationWe now describe the PDB commands used to examine the state of a PCN compu-tation. For you to understand how these commands work, we need to say a littlebit about how the PCN run-time system manages execution of PCN programs.Queues. The PCN run-time system manages the execution of processes created toexecute procedure calls in parallel blocks. Like a simple computer operating system,it selects processes from an active queue and executes them either until they blockbecause of a read operation on an unde�ned de�nitional variable or until a timesliceis exceeded. In the former case, the process is moved to a variable suspension queueassociated with the unde�ned de�nitional variable (unless the process requires twoor more variables, in which case it is moved to a global suspension queue). In thelatter case (a timeslice), the process is moved to the end of the active queue. PDBalso maintains a fourth pending queue. This is used to hold processes from the activequeue that the user has indicated are to be delayed (i.e., removed from considerationby the PCN scheduler).In summary, every PCN process is to be found on one of the following fourqueues:active The active queue contains processes that may be scheduled for execution.pending The pending queue contains processes that the user has tagged to be de-layed. These cannot be executed until returned to the active queue.globsusp The global suspension queue contains processes that are suspended onmore than one variable.varsusp The variable suspension queue contains processes that are suspended onjust one variable.When describing commands, we shall use the notation <queue> to represent aqueue selector| one of active, pending, globsusp, and varsusp; or suspension(both globsusp and varsusp) and all (all process queues).We shall also use the notation <process> to represent a process speci�cation;this is one of the following: 67



� n: n is an integer, representing an index into a process queue;� m � n: m and n are integers, representing a range of indices into a processqueue;� #n: n is an integer, representing a process instance number;� ^n: n is an integer, representing the reduction during which a process wascreated;� Uh: h is a hexadecimal number, representing an unde�ned variable that issomewhere in a process's argument list;� modulename:blockname, representing all processes of a given name;� all.As noted in x 15.1, a limited wildcard facility allows a single <process> speci�er torepresent several processes.Examining Queue Contents. The summary, list, and show commands allowthe user to examine the four process queues at increasing levels of detail. Thesecommands (and the queue-manipulation commands described in the next section)operate only on processes executing procedures for which debugging is enabled. Theset of enabled procedures is initially all procedures; the set can be modi�ed by usingthe debug and nodebug PDB commands.In the following descriptions, all arguments that are listed within square brack-ets ([ ]) are optional:summary [<queue>] [<process>]: prints a summary of the contents of the des-ignated <process> on the designated <queue>. This includes module andprocedure names (sorted by module and then procedure) and the number ofoccurrences of each procedure on each queue.list [<queue>] [<process>]: prints a short listing of the processes speci�ed by<process> on the speci�ed <queue>.show [<queue>] [<process>]: prints a detailed description of the processes speci�edby <process> in the speci�ed <queue>. If the process is on the variablesuspension queue, the variable that it requires in order to continue executionis also shown.Modifying Queues. The move and switch commands are used to control howprocesses in the active queue are selected for execution. They can be applied onlyto the active and pending queues.move <queue> <process> [<where>]: This moves zero or more designated pro-cesses in a designated queue (active or pending) to immediately before po-sition where in the same queue. If where is end, then the designated processesare moved to the end of the queue. By default, <where> is end.68



switch <queue> <process> [<where>]: This moves zero or more designated pro-cesses from a designated queue (active or pending) to the other queue (i.e.,pending or active, respectively), inserting them immediately before positionwhere. If where is end, the designated processes are placed at the end of thequeue. By default, <where> is end.15.6 BreakpointsPDB allows breakpoints to be set on PCN procedures. When a process that isexecuting a procedure for which a breakpoint is set is scheduled for execution, therun-time system will interrupt the program and pass control to PDB.Note that a process may be scheduled for execution several times before it isable to complete. For example, a process may be scheduled but will subsequentlysuspend because of an unde�ned variable. When that variable is later de�ned, theprocess will again be scheduled. A breakpoint on that process's procedure will causea break into PDB each time the process is scheduled.The break, delete, enable, and disable commands control breakpoints, andstatus prints information about breakpoints.break [<module>:<procedure> ...]: Set a breakpoint on the speci�ed procedure.If no procedures are given, then all current breakpoints are listed.delete [<breakpoint number> ...]: Delete the speci�ed breakpoint number. Thebreakpoint number can be determined by running the break command withno arguments. If no breakpoints are given, then all breakpoints will be deleted.disable <breakpoint number> ...: Disable (but do not delete) the speci�ed break-point.enable <breakpoint number> ...: Enable the speci�ed breakpoint.status [<module>:<procedure> ...]: Print breakpoint status information aboutthe specifed procedure(s).15.7 Debugger VariablesPDB maintains a number of internal variables that can be included in some PDBcommands and, in some cases, modi�ed by the programmer. PDB variables aredistinguished in expressions by a pre�x $.Modi�able Variables. The following variables can be used to control aspects ofPDB's behavior. They can be modi�ed within PDB by using the \=" command.$print array size: An integer representing the maximum size (i.e., number ofelements) of an array displayed by print.$print tuple depth: An integer representing the maximum depth of a tuple dis-played by print. 69



$print tuple width: An integer representing the maximum width (i.e., number ofelements) of a tuple displayed by print.$emulator dl: An integer representing the emulator debug level. This turns onthe printing of debugging information in the main emulator loop. It takes aninteger value between 0 and 9, where 0 is no debugging and 9 is the mostdebugging. See x 27 for more information on this variable.$gc dl: An integer representing the garbage collection debug level. This turns onthe printing of debugging information in the garbage collector. It takes aninteger value between 0 and 9, where 0 is no debugging and 9 is the mostdebugging. See x 27 for more information on this variable.$parallel dl: An integer representing the parallel code debug level. This turns onthe printing of debugging information in the parallel emulator code. It takesan integer value between 0 and 9, where 0 is no debugging and 9 is the mostdebugging. See x 27 for more information on this variable.$global dl: An integer representing the global debug level. This turns on theprinting of debugging information not covered by the $emulator dl, $gc dl,or $parallel dl debug setting. It takes an integer value between 0 and 9,where 0 is no debugging and 9 is the most debugging. See x 27 for moreinformation on this variable.$reduction break: An integer representing the next reduction at which to breakinto PDB.$empty queue break: A Boolean value. When this value is set to yes, the systemwill break into PDB whenever the process queues are empty, and thereforethere are no schedulable processes. When this value is set to no, the systemwill not break into PDB whenever the process queues are empty.$print orphaned: A Boolean value. When this value is set to yes, the system willprint out a warning when it encounters an orphan process (x 15.10) during agarbage collection.Read-Only Variables. The following variables contain information about variousaspects of the state of the computation. They can be included in expressions butcannot be modi�ed directly.$module: The name of the current module (i.e., �rst process on the active queue).$procedure: The name of the current procedure (i.e., �rst process on the activequeue).$args: The arguments of the current process. Note that this variable is de�ned onlyat the entry to a block.$instance: The instance number of the current process.70



$reduction : The reduction during which the current process was created.$current reduction: The current reduction number.15.8 Miscellaneous CommandsThis section describes miscellaneous debugger commands that were not described inother parts of this manual.In the following, <expr> denotes either a PCN variable name (to be interpretedin the context of the current process) or a constant.abort: Abort execution of the PCN run-time system. See also continue, next, andquit.continue: Continue with next process (head of the active queue). See also abort,next and quit.debug <module>:<procedure> ...: Enable debugging in the speci�ed module:procedure.See also nodebug.help [<topic> :] Give help for topic. If topic is left o�, then general help will begiven.load <�lename>: Load the .pam �le, �lename, into the run-time system.modules: List the names of the modules that are currently loaded in the system,indicating for each whether it was compiled in debug mode (in the currentPCN release, this column always says \n") and whether debugging is enabled.next: Execute the next process (head of the active queue), and then break into thedebugger again when it has completed. See also abort, continue, and quit.nodebug <module>: Disable debugging in the speci�ed module:procedure. See alsodebug.print <expr>: Print the given expression. An expression is a variable, integer,real, or string. <expr> is either a single expression or a comma-separated listof expressions that is enclosed in parentheses.procedures <module>:<procedure> ...: Print various information about the spec-i�ed procedure(s).quit: Quit from the debugger; disable debugging on all modules. See also abort,continue, and next.source <�lename>: Execute the PDB commands that are in the �le �lename.vars: List the names and values of all PDB variables.71



15.9 Dynamic Loading of .pam FilesThe PCN linker is relatively slow. In order to accelerate the modify-compile-link-test program development cycle, PDB supports dynamic loading of PCN object �les(i.e., .pam �les), which eliminates the link step from this cycle when PCN �les aremodi�ed.When a .pam �le is dynamically loaded into a running program, the proceduresin that �le simply replace previously linked versions of those procedures. If thereare procedures in this .pam �le that did not previously exist in the executable, thenthey will be added.The -pdb 
ag must be passed to the linker (via pcncomp) if dynamic loading isto be used. The -link all 
ag is also recommended. The latter 
ag tells the linkerto include all procedures in all modules named on the command line, rather thanjust those procedures reachable from the entry point. This ensures that standardlibraries, such as sys and stdio, are included in their entirety. Thus, you can dy-namically load code that calls library procedures that were not called in the originalprogram.For example, you might link your program with the command:pcncomp -pdb -link all mymod1.pam mymod2.pam -mm mymod1 -o myprogramThere are two ways in which .pam �les can be dynamically loaded:From the command line: You can use the -load command line argument tocause a set of .pam �les to be dynamically loaded before any PCN proceduresare executed. For example, the commandmyprogram myargs -pcn -load mymod1.pam:mymod2.pamwill dynamically load the procedures in mymod1.pam and mymod2.pam intomyprogram, overwriting those provided at link time.From the PDB prompt.: The load command descibed in x 15.8 will dynamiclyload .pam �les into the executable. This, of course, means that you can dy-namically load .pam �les from a .pdbrc �le, which is a useful feature if you arerepeatedly running the program and do not wish to type the -load commandline argument each time.15.10 Orphan ProcessesAn orphan is a process suspended on a variable for which there are no potentialproducers (more precisely, a variable to which no other process possesses a reference).Such a process can never be scheduled for execution. A program that generatesorphan processes is not necessarily erroneous. However, it is good programmingpractice to ensure that orphans are not generated (i.e., that all processes in a programterminate). 72



Orphan processes can be detected by the garbage collector invoked by the PCNrun-time system to reclaim space occupied by inaccessible data structures. Normally,the garbage collector destroys these processes silently. However, the PDB version ofthe PCN run-time system prints a warning message for each orphan encountered.The PDB variable, $print orphaned, can be used to disable these orphan pro-cess messages (see x 15.7).16 The Gauge Execution Pro�lerGauge is an execution pro�ler for PCN programs. It collects pro�le data such as thetime spent in each procedure on each node, the number of times each procedure iscalled, idle times, and internode message counts and volumes. This pro�le data cansubsequently be graphically displayed by using an interactive data exploration tool.16.1 Linking a Program for Pro�lingIn order to collect a Gauge pro�le on a program, you must �rst link your programwith a version of the run-time system that supports pro�ling. To do this, simplyadd a -profile to your pcncomp link command, for example:pcncomp myprogram.pam -o myprogram -mm myprogram -profileBy default, only procedures from the the user's modules, the stdio library, andsys library are pro�led; the system modules used to implement process mapping,etc., are ignored. However, you have full control over which modules will be pro�led,through the use of linker arguments:-no nmp: Turns on full pro�ling, including system modules.-nmp <module>: Turns o� pro�ling on the module. (NMP stands for No ModulePro�le.)16.2 Pro�le Data CollectionA pro�le is generated by executing your program with a -gauge and/or -gauge filecommand line argument. The pro�le will be performed on all nodes, and on allmodules for which pro�ling was enabled during linking. If the -gauge 
ag is used,the pro�le will be written into the �le profile.cnt. The -gauge file 
ag allowsa di�erent �lename to used. For example, the following command runs myprogramand writes a pro�le into the �le myprof.cnt.myprogram -pcn -gauge file myprof.cnt73



16.3 Snapshot Pro�lesBy default, a pro�le will be taken only at the end of the run and is cumulativefor the entire run. However, it is sometimes useful to examine several pro�les ofyour program collected at various stages of execution. This can be accomplished bycalling profile snapshot(snapshot name)in your program, where snapshot name is a string that will be used to name thesnapshot. A call to this foreign procedure on any node will cause a snapshot pro�leto be generated on all nodes. (Note that this means that it is a serious mistaketo call profile snapshot() on every node; this will generate P snapshots, eachinvolving all P processors.) Each snapshot is cumulative { the pro�le is not resetafter a snapshot, so procedure executions times, etc., include the times from previoussnapshots.A call to profile snapshot() has no e�ect unless you have linked with thepro�ling version of the run-time system (i.e., used the -profile 
ag when linking),and you have enabled pro�ling (i.e., used the -gauge or -gauge file command line
ag). Hence, calls to profile snapshot() can be maintained in a program andenabled when required from the command line.16.4 Data ExplorationGauge provides an X-windows-based graphical interactive tool for exploring pro�ledata collected by using the methods described above. This tool combines three sortsof data to provide detailed information about execution time on a per-procedure andper-processor basis, idle time, number of messages, volume of messages and otherprogram execution statistics. These data are� instruction counts collected by the compiler,� pro�le data collected by the run-time system when a pro�le is taken, and� information about the computer on which the program was run.The Gauge analysis tool gets the �rst and second of these from the .cnt �lethat is produced by the run-time system when a pro�le is taken. The third is takenfrom the host �le which may need to be speci�ed by the user (see x16.5).The data exploration tool is invoked by typing the following Unix command:gaugeThis creates a top-level window with three parts. The top section of the window isa command window. You can click the left mouse button on one of the commandsto obtain help, to exit, or to invoke the gauge analysis window. The middle sectionindicates the current directory. The bottom window gives a list of .cnt and .cnt.Z74



(compressed .cnt) �les and directories in the current directory. Files are selectedby pressing the left mouse button while the pointer is over the �le name. If you wishto change selections, just press the left mouse button over a di�erent �le, or no �leif you want to eliminate all selections.The directory window serves two purposes. If you select a .cnt �le in thedirectory window using the left mouse button and then select the Gauge commandfrom the top row of buttons, Gauge is invoked on that �le. Gauge can also beinvoked on a .cnt or .cnt.Z �le by double-clicking on its name in the directorywindow. Double-clicking on a directory name opens that directory, thus allowingnavigation of the directory system.Gauge has an online help facility. To use it, select the \help" button on anywindow. Either the scroll bar or the page-down (Control-v) and page-up (Meta-v)commands can be used to position the help text within the help window. When�nished, you can dismiss the help screen using the close button on the bottom ofthe screen. If you leave the screen up, it will be reused to display the next helpmessage.Occasionally something might go wrong, and Gauge will generate a warningmessage in a popup window. Nothing else can be done until this window is dismissedby clicking the left mouse button in it.The only command-line arguments recognized by Gauge are those recognizedby the X Toolkit Intrinsics. This means that X-windows arguments such as -iconcan be used.16.5 The Host DatabaseWhen you invoke Gauge on a .cnt or .cnt.Z �le, a warning message may be dis-played indicating that your machine does not appear in the host database. (Clickon the warning window to make it disappear.) This means that you must add themachine on which your application was run to the host database that Gauge accessesto determine various machine characteristics when displaying performance data.The program pcnhost is provided to simplify the task of adding entries to thehost database. A call to this program has the formpcnhost machinetypeor pcnhost -h hostname machinetypeThe machinetype argument speci�es an architecture type for machine computerhostname. If a host name is not speci�ed, the name of the machine on which thepcnhost command is executed is added to the database. The following machinetypes are currently supported:� symmetry-b, symmetry: Sequent Symmetry Rev. B� sparcstation-1, ss1, sun4: A Sun SPARCstation 175



� sun3: A Sun 3 workstation� next040: A NeXT workstation� iris: An SGI Iris workstation� s2010: A Symult s2010 multicomputer� rs6000: An IBM RS/6000 workstation� ipsc860: An Intel iPSC/860 (i860 processing nodes)� ipscii: An Intel iPSC/II (386 nodes)Note that updates to the database are not synchronized. If more than oneupdate is being made simultaneously, information can be lost.16.6 X ResourcesGauge requires a resource �le to operate properly. This should be in$(INSTALL DIR)/lib/app-defaults/gaugewhere $(INSTALL DIR) is the directory where gauge has been installed (typically,/usr/local/pcn). The commandxrdb -merge $(INSTALL DIR)/lib/app-defaults/gaugeshould be added to one's .xinitrc or .xsession �le. If a color workstation is beingused, xrdb -merge $(INSTALL DIR)/lib/app-defaults/gauge.serveris also needed. Of course, any customized resource �les could be used.Alternatively, you can run xrdb gauge before running gauge. The xrdb gaugeprogram simply executes the two xrdb commands shown above.17 The Upshot Trace AnalyzerUpshot is a trace collection and analysis tool. There are three steps that you needto perform in order to use Upshot with PCN:1. Instrument a program.2. Run your instrumented program and collect a log.3. Analyze the log. 76



The last step requires that you obtain and install the X windows based Upshotlog event analysis tool. You can obtain it by anonymous ftp from:info.mcs.anl.govin the directory pub/upshot17.1 Instrumenting a ProgramYou instrument your program by adding calls to procedures which, when executed,log a timestamped event. An event consists of a type and an optional task identi�erand data value. You can instrument PCN, C, and Fortran code.To instrument your program, you must �rst add:#include "pcn upshot.h"to PCN and C source �les that will contain event logging calls.Then, the following calls can be added to your PCN, C, and/or Fortran sourceto log Upshot events:� LOG EVENT(event type)� LOG TASK EVENT(task id, event type)� LOG TASK EVENT DATA(task id, event type, data val)In these calls, task id and event type are positive integers, and data val is aninteger. None of these calls return a value.17.2 Compiling and Linking the Instrumented ProgramIn PCN and C code, the above-mentioned LOG* calls are actually macros that callthe correct procedures if the C preprocessor variable UPSHOT is de�ned, and whichdo nothing if it is not. Therefore, when compiling your PCN and C source withthese calls, you need to add a -DUPSHOT argument to have them take e�ect:pcncomp -c pcnsource.pcn -DUPSHOTpcncomp -c csource.c -DUPSHOTIn Fortran, the above-mentioned LOG* calls are just calls to procedures thatare de�ned in the run-time system. Therefore, you can compile your instrumentedFortran source as usual: pcncomp -c fsource.fWhen linking a program that contains event logging calls, you must add a-profile 
ag to the pcncomp link command:pcncomp pcnsource.pam csource.o -mm pcnsource -profile -o myprogram77



17.3 Collecting a LogA program that contains event logging calls stores events in memory when it isexecuted. When it completes execution, it writes these events to �les, one perprocessor.A program only collects a log if the -upshot command line argument is speci�ed.For example: myprogram myargs -pcn -upshotThis causes a log �le to be written for each node on which the program is running.These �les are called log.0, log.1, etc. The pre�x of the log �lename can bechanged by using the -upshot file 
ag.By default, a program only allocates memory for 10,000 events. An error isreported if more than this number of events are logged. The maximum number oflog events can be changed by using the -upshot log size 
ag.The following example collects a log during the execution of myprogram, putsthe logs in �les with a mylog pre�x, and can record a maximum of 20,000 log events:myprogram myargs -pcn -upshot file mylog -upshot log size 2000017.4 Analyzing a LogAs previously mentioned, execution of a program with the -upshot argument pro-duces one log �le for each node, for example, log.0, log.1, etc. These �les mustbe merged by using the Unix command mergelogs to create a single log �le, forexample, mergelogs log.* > logWe can then call the Upshot visualization program to display a set of time lines,one per processor, with the various events logged by our program displayed on theappropriate time lines: upshot -l logFrequently, we are not interested in the events themselves but rather in execu-tion states de�ned in terms of starting events and ending events. For example, wemight de�ne a \busy" state as starting when an event is logged indicating that amessage has been received on a stream, and ending when an event is logged indicat-ing that a response has been sent. We de�ne states in a states �le, specifying eachstate in terms of a unique integer identi�er, a starting and an ending event type, acolor, and a label, for example:File my.sts1 10 11 blue init_ico2 12 13 red init_rh3 14 15 pink init_geo4 16 17 yellow get_side78



Upshot does not support nested states. That is, it is not meaningful for a traceto include sequences in which two start state events occur without an interveningend state event.The name of any state �le is speci�ed to Upshot by means of the -s commandline option, as follows. upshot -l log -s my.sts18 Standard LibrariesThe sys and stdio modules are distributed with the PCN system and may be calledfrom within user programs to invoke a variety of useful functions. They are invokedvia intermodule calls.In the following discussion, the notations # and " on program arguments denoteinput and output arguments, respectively.18.1 System UtilitiesThe sys module provides the following general utility procedures.merger(Is#,Os") merges messages appearing on input stream Is to produce outputstream Os. If the input stream Is contains a message of the form f"merge",Sg,then the stream S is also merged with Os. The output stream Os is closed whenall merged input streams are closed. (Cf. x 4.10 for more details.)distribute(N#,Is#) distributes messages received on input stream Is to N outputstreams; output streams are numbered 0 to N-1. (Cf. x 4.10 for more details.)The distributor may receive three types of message on input stream Is:f"attach",N1#,S#,D"g causes stream S to be attached to output stream num-bered N1; D is de�ned when the action is complete to signify that messagesmay subsequently be forwarded to stream S.fN2#,M#g causes the message M to be appended to output stream numberedN2.f"all",M#g causes the message M to be appended to all of the output streams.(I.e., Broadcast the message to all output streams.)When the input stream Is is closed, all output streams are closed. (Cf. x 4.10for more details.)hash(N#,Is#) creates a hash table of size N and receives messages on input streamIs. Four messages may be sent to a hash table:79



f"add",K#,V#,S"g causes the value V to be added to the hash table under keyK; if there was already an entry for key K, then status S=0; otherwise S=1.f"lookup",K#,V",S"g causes a lookup operation on key K. If there is an entryfor key K, then V is the associated value and status S=1; otherwise S=0.f"del",K#,V"g deletes the entry for key K and returns the value V associatedwith the entry if one existed; otherwise returns -1.f"dump",L",D"g dumps the contents of the hash table into a list L and de�nesD when the operation is complete.integer to list(I#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list con-taining the integers of the ASCII representation of integer I.list to integer(L#,I") I is de�ned to be the integer that is represented by theASCII values (integers) in the list L.integer to string(I#,S") S is de�ned to be the string that represents the integerI.string to integer(S#,I") I is de�ned to be the integer that is represented by thestring S.double to list(D#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list contain-ing the integers of the ASCII representation of the double D.list to double(L#,D") D is de�ned to be the double that is represented by theASCII values (integers) in the list L.double to string(D#,S") S is de�ned to be the string that represents the doubleD.string to double(S#,D") D is de�ned to be the double that is represented by thestring S.list to string(L#,S") S is de�ned to be the string that is represented by theASCII values (integers) in the list L.string to list(S#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list contain-ing the integers of the ASCII characters in the string S.list to tuple(L#,T") T is de�ned to be the tuple with elements speci�ed by listL.tuple to list(T#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list containingthe arguments of tuple T.integer to double(I#,D") D is de�ned to be the double cast of the integer I.double to integer(D#,I") I is de�ned to be the integer cast of the double D.80



list length(L#,Len") Len is de�ned to be the length (integer) of the list L.list concat(L1#,L2#,Lout") Lout is de�ned to be the concatenation of list L1followed by list L2.list member(element#,list#,status") status is de�ned to be the integer 1 ifelement is a member of the list list, and the integer 0 if it is not.left shift(Src#,N#,Dest") Dest is de�ned to be the integer Src left shifted Nbits. (Dest = Src << N)right shift(Src#,N#,Dest") Dest is de�ned to be the integer Src right shifted Nbits. (Dest = Src >> N)ones complement(Src#,Dest") Dest is de�ned to be the one's complement of theinteger Src. (Dest = ~Src)bitwise and(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise and of integersSrc1 and Src2. (Dest = Src1 & Src2)bitwise or(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise inclusive or ofintegers Src1 and Src2. (Dest = Src1 | Src2)bitwise xor(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise exclusive or ofintegers Src1 and Src2. (Dest = Src1 ^ Src2)double cast(From#,To") To is de�ned to be the double cast of the integer or doubleFrom.integer cast(From#,To") To is de�ned to be the integer cast of the integer ordouble From.abs(From#,To") To is de�ned to be the absolute value of From. If From is a double,then To will be a double. If From is an integer, then To will be an integer.string length(S#,Len") Len is de�ned to be the length (integer) of the string S.string concat(S1#,S2#,Sout") Sout is de�ned to be the string that is the con-catenation of string S1 followed by string S2.string list concat(string list#,separator#,Sout") string list is a list ofstrings, and separator is a string. Sout is de�ned to be the string that isthe concatenation of the strings in string list with the separator betweeneach.find substring(string#,substring#,index") index is de�ned to be the integerlocation (starting with 0) of the �rst occurence of the string substring in thestring string, or -1 if substring is not a substring of string.81



find substring reverse(string#,substring#,index") index is de�ned to be theinteger location (starting with 0) of the last occurance of the string substringin the string string, or -1 if substring is not a substring of string.substring(string#,start#,len#,substring") substring is de�ned to be thesubstring of string starting at location start (numbering starts with 0) withthe length len. If len is -1, then the substring starting at start through theend of string will be extracted.18.2 Standard I/OThe stdio module provides a set of PCN procedures that are analogous to theC language standard input/output (stdio) library. It is important to realize thatcalls to stdio are sequenced only if they occur within a sequential block. Outputgenerated by parallel calls to printf or other output procedures may be interleaved.Most of the stdio procedures take an output argument, status. This argumentshould be an unde�ned variable when the call is made. It will be de�ned by thestdio procedure to an appropriate return code. This argument can be used both tocheck the status of the I/O call and to sequence subsequent execution if necessary.The stdio procedures that deal with �les rather than the keyboard or screenrequire a �le pointer (fp) argument. This argument should be a mutable of typeFILE (de�ned in the C header �le pcn stdio.h).18.2.1 ReferenceWe now summarize the procedures provided by the stdiomodule. The arguments toall of these procedures follow as closely as possible their corresponding C procedures.Please refer to a C programming manual for more complete descriptions.fopen(filename#,type#,fp",status") opens the �le named filename. The �le isopened for the given type of I/O operation, where type is a string containingan appropriate combination of "r", "w", "a'', and "+". The mutable fp isassigned to be the �le pointer. status is de�ned to be 0 if the open succeeds;otherwise it will be set to the error number (C errno).freopen(filename#,type#,fp"#,status") like fopen(), except that it substitutesthe named �le in place of the open stream, fp. This is typically used to attachthe preopened stdin, stdout, and stderr to speci�ed �les.fdopen(fildes#,type#,fp",status") opens the �le with the integer �le descriptorfildes. The other arguments are the same as for fopen().fclose(fp#,status") closes the �le designated by fp. status is de�ned to be EOFif there is an error.fflush(fp#,status") 
ushes all bu�ered data for the output �le designated by fpto be written to that �le. The �le remains open. status is de�ned to be EOFif there is an error. 82



putc(c#,fp#,status") appends the character c to the designated output streamfp. status is de�ned to be the character written, or EOF if there is an error.fputc(c#,fp#,status") is the same as putc().putchar(c#,status") is the same as putc() to standard output (the screen).puts(s#,fp#,status") appends the string s followed by a newline to standardoutput. status is de�ned to be EOF if there is an error.fputs(s#,fp#,status") appends the string s (not followed by a newline) to thedesignated output stream fp. status is de�ned to be EOF if there is an error.printf(format#,args#,status") prints formatted output to standard output. Theformat string accepts the same format as the C language's printf() proce-dure, with two additions: it can contain a %t, which means to print a groundedterm, and %lt, which means to print an ungrounded term. The %t and %ltcan also take an integer immediately after the %, which means to print only tothat depth. The args argument is a tuple of all the arguments to printf, asrequired by the format. (Since PCN procedures cannot take a variable num-ber of arguments, as in C, all of the data arguments must be combined into asingle argument using a PCN tuple.) status is de�ned to be the number ofcharacters written, or EOF if there is an error.fprintf(fp#,format#,args#,status") is the same as printf(), except that out-put will go to fp rather than to standard output.sprintf(buf",format#,args#,status") is the same as printf(), except that theoutput is placed into the de�nitional variable buf.getc(fp#,c") gets one character from the input stream fp and de�nes it to c. c isde�ned to be EOF on end of �le or an error.fgetc(fp#,c") is the same as getc().getchar(c") is the same as getc() from standard input (the keyboard).ungetc(c#,fp#,status") pushes the character c back onto the input stream fp.status is de�ned to be the pushed character, or EOF if there is an error.gets(s",status") reads a string from standard input and de�nes it to s. Thestring is terminated by a newline character, which is replaced in s by a nullcharacter. status is de�ned to be the number of characters read, or EOFupon end of �le.fgets(s",n#,fp#,status") reads n � 1 characters, or up through a newline char-acter, whichever comes �rst, from the stream fp and de�nes it to s as a string.The newline is not removed as in gets(). status is de�ned to be the numberof characters read, or EOF upon end of �le.83



scanf(format#,args",status") is similar to the scanf() procedure in C. It takesits input from standard input and places the values that it reads in the de�-nitional variables contained in the tuple args. Note: This procedure does notsupport the %t argument for term scanning.fscanf(fp#,format#,args",status") is the same as scanf(), except that theinput comes from the passed stream, fp.sscanf(buf#,format#,args",status") is the same as scanf(), except that theinput comes from the passed bu�er, buf.stdout(fp") assigns the mutable fp to be the �le pointer for standard output(stdout).stdin(fp") assigns the mutable fp to be the �le pointer for standard input (stdin).stderr(fp") assigns the mutable fp to be the �le pointer for standard error (stderr).fseek(fp#,offset#,whence#,status") calls the C fseek function with the fp,offset, and whence arguments to set the position for the next input or outputoperation on this �le. The status argument is de�ned to be 0 if the operationcompletes successfully, or -1 if it fails.ftell(fp#,offset") calls the C ftell function with the fp argument. The offsetargument is de�ned to be the o�set from the beginning of the �le to the currentposition, or -1 if there is an error.rewind(fp#) calls the C rewind function with the fp argument to set the positionto the beginning for the next input or output operation on this �le. This isequivalent to fseek(fp,0,0, ).fread(buf",size#,nitems#,fp#,status") reads nitems of data, each of sizebytes in length, from the stream fp. buf is de�ned to a character array con-taining this data. status is de�ned to be the number of items actually read,or 0 upon EOF or error.fwrite(buf#,size#,nitems#,fp#,status") writes nitems of data, each of sizebytes in length, to the stream fp. buf is a character array containing the datato be written. status is de�ned to be the number of items actually written,or 0 upon EOF or error.access(path#,mode#,status") checks the given �le, path for accessibility accord-ing to mode. mode is the inclusive or of the bits R OK, W OK, and X OK {read, write, and execute (search) permissions, respectively. A mode of F OK(i.e., 0) tests whether the directories leading to the �le can be searched andthe �le exists. status is de�ned it 0 if the �le is accessible.remove(filename#,status") removes the speci�ed filename. status is de�nedto 0 if the operation succeeded. 84



rename(oldname#,newname#,status") rename the �le oldname to newname. statusis de�ned to 0 if the operation succeeded.18.2.2 ExamplesOpening and Closing Files. The following examples illustrates the use of thefopen, fclose, stderr, and fprintf procedures. Note the include statement forpcn stdio.h, which includes a de�nition for FILE.#include <pcn_stdio.h>open_test(fname)FILE fp, err;{; stdio:fopen(fname, "r", fp, status),{? status == 0 ->{; stdio:printf("File \"%s\" opened\n",{fname},_),/* ... */stdio:fclose(fp,_)},default ->{; stdio:stderr(err),stdio:fprintf(err,"Error opening \"%s\" for reading\n",{fname},_)}}}Writing to a File. This example opens a �le ptest for writing, writes the char-acters ABC to this �le, and then closes the �le.#include <pcn_stdio.h>putc_test()FILE fp;{; stdio:fopen("ptest","w",fp,_),stdio:putc('A',fp,_),stdio:putc('B',fp,_),stdio:putc('C',fp,_),stdio:fclose(fp,_)} 85



Writing to the Screen. This example writes the characters ABC followed by anewline character to the screen (standard input).#include <pcn_stdio.h>putchar_test(){; stdio:putchar('A',_),stdio:putchar('B',_),stdio:putchar('C',_),stdio:putchar('\n',_)}Printing to the Screen. The following program uses the printf command toprint a variety of terms of the screen. Note the use of the %t format command toprint arbitrary terms. When executed, the program acts as follows.Str: A stringReal: -1.230000List: ["A string",-1.230000,f"a",1,2,3g]Tup: f"a",1,2,3gThe program can be modi�ed to write the same text to a �le by adding an fopencall, substituting fprintf for printf throughout, and �nally closing the �le.Module p test.pcn#include <pcn_stdio.h>printf_test(){; str = "A string",r = 0 - 1.23, /* No unary minus in PCN */tup = {"a",1,2,3},ls = [str,r,tup],stdio:printf("Str: %s\nReal: %f\n",{str,r},_),stdio:printf("List: %t\nTup: %t\n",{ls,tup},_)}Creating Strings. We illustrate the use of the sprintf command to create astring. When executed, the sprintf test procedure prints the string file 5.86



#include <pcn_stdio.h>sprintf_test(){; i = 5,stdio:sprintf(mystring,"file_%d",{i},_),stdio:printf("mystring = %s\n",{mystring},_)}Reading Characters. This example shows the use of the stdin and getc proce-dures to read a series of characters from the keyboard (standard input). The pro-cedure getc test prints a prompt, reads characters until an end of line is reached,and then prints the result.Enter line: my lineLine entered: my lineThe program can also be written by using the getchar procedure (which readsdirectly from standard input), avoiding the need for the call to stdin.Module r test.pcn#include <pcn_stdio.h>getc_test()FILE fp;{; stdio:stdin(fp),stdio:printf("Enter line: ",{},_),getc_test1(fp,ls),sys:list_to_string(ls,str),stdio:printf("\nLine entered: %s\n",{str},_)}getc_test1(fp,ls)FILE fp;{; stdio:getc(fp,ch),{? ch == '\n' -> ls = [],default ->{; ls = [ch|ls1],getc_test1(fp,ls1)}}} 87



19 Cross-CompilingPcncomp supports cross-compilation. For example, if a Sun has the necessary C andFortran cross-compilers for the Intel iPSC/860, the Sun version of pcncomp can beused to compile PCN programs for the iPSC/860.To cross-compile PCN programs for some machine, add a -target target nameargument to pcncomp compile and link commands. For example, the following com-mands compile and link a program containing C, Fortran, and PCN source on theIntel iPSC/860:% pcncomp -c my c.c -target ipsc860% pcncomp -c my f.f -target ipsc860% pcncomp -c my pcn.pcn -target ipsc860% pcncomp my pcn.pam my c.o my f.o -mm my pcn-o myprogram -target ipsc860Alternatively, the native C and Fortran cross-compiler (i.e., icc and if77 on theiPSC/860) can be used directly, instead of through pcncomp, to compile the Fortranand C portions of the program. The advantage to using pcncomp is that you neednot know the cross-compiler's name, location, and special arguments. Those detailsare taken care of by pcncomp, based on the cross-compilation con�guration when itis installed.Specifying a cross-compilation target of \default" (i.e., -target default) isequivalent to not supplying a -target argument at all. This can be useful in writingportable Make�les, as described in x 26.20 Intel iPSC/860 Speci�csTo compile a PCN program for the Intel iPSC/860, follow the cross-compilationinstructions in x 19, using a target of \ipsc860".The resulting iPSC/860 executable program can be run by logging into theiPSC/860 host (SRM), allocating an appropriately sized cube, and loading the pro-gram. Once PCN terminates, we free the cube. In the following example, we assumethat the host is called gamma: 88



% rlogin gamma% getcube -t 4% load myprogram; waitcube% killcube% relcubeIf you wish to supply arguments to your program, those arguments must bepart of the load command:% load myprogram myargs -pcn -gauge; waitcube21 Intel Touchstone DELTA Speci�csTo compile a PCN program for the Intel Touchstone DELTA, follow the cross-compilation instructions in x 19, using a target of \delta".Before you can run the resulting DELTA executable program, you must copy itonto the DELTA's CFS �lesystem using either ftp or rcp.Then you can log into the DELTA and run the program via the mexec com-mand. This command speci�es the height and width of the submesh to allocate,and the executable to load on the nodes in the submesh. For example, the followingcommand would load myprogram onto a 4 by 8 node mesh:% mexec "-t(4,8)" -f myprogramIf you wish to supply arguments to your program, those arguments must bepart of the -f 
ag:% mexec "-t(4,8)" -f "myprogram myargs -pcn -gauge"
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22 Sequent Symmetry Speci�csRunning PCN on the Sequent Symmetry is similar to running PCN on a workstation.The pcncomp command, used for compiling and linking, is identical to that describedthroughout this manual.The -n run-time system command line argument is used to run PCN withseveral nodes. For example, the following command runs myprogram on 10 nodes:% myprogram -pcn -n 10The Symmetry has two di�erent C compilers that can be used to compile Cforeign code. They are cc and atscc. atscc should be used if it is available, asit supposedly produces better code than the standard cc compiler. Fortran codeshould be compiled by using the fortran compiler. However, if you use pcncomp tocompiler your C and Fortran code, then you need not worry about these details.23 Network Speci�csThe network version of PCN (net-PCN) uses Berkeley stream interprocess commu-nication (TCP sockets) to communicate between nodes. A node can run on anymachine that supports TCP. Hence, a single PCN computation can run on severalworkstations of a particular type, several workstations of di�ering types, severalprocessors of a multiprocessor, or a mix of workstations and multiprocessor nodes.Current restrictions are listed in x 23.6.Net-PCN currently operates on the NeXT, Sun, DECstation, HP9000, IBMRS/6000, and SGI Iris.Using net-PCN is the same as using PCN on other platforms except that theuser must specify on which machines PCN nodes are to run and may also be requiredto specify where on those machines PCN is to be found and the commands necessaryfor running net-PCN nodes on the given machines.There are several di�erent ways of starting net-PCN, each appropriate for dif-ferent types of network. We shall consider each of these in turn, starting with theeasiest. First, we provide some background information on the Unix remote shellcommand rsh, which is used to start net-PCN nodes.23.1 Using rshThe Unix remote shell command rsh is a mechanism by which a process on onemachine (e.g., my-host) can start a process on another machine (e.g., my-node). Aremote shell command can proceed only if my-host has been given permission tostart processes on my-node. There are two ways in which this permission can begranted. 90



� The �le /etc/hosts.equiv exists on my-node and contains an entry for my-host.This �le must be created by the system administrator.� The �le .rhosts exists in the home directory of the user running the remoteshell on my-node and contains a line of the formmy-host usernamewhere username is the name of the user login on my-host. This �le is createdby the user.Some sites disallow the use of .rhosts �les. If .rhosts usage is disallowedand the host machine is not in /etc/hosts.equiv, remote shells cannot be used tocreate remote processes. Alternative mechanisms must be used, as described below.The full syntax of the rsh command is as follows:rsh hostname -l username command argumentsThe username here is the login to be used on the remote machine. If username is notspeci�ed, it defaults to the login name of the user on the local machine. Furthermore,if the login name used on the local machine is di�erent from the login name on theremote machine, the .rhosts �le for the account on the remote machine must havean entry allowing access for that account on the host machine.23.2 Specifying Nodes on the Command LineThe simplest way to start PCN on a network of machines is to use the -nodes <nodelist>command line argument, where nodelist is a colon-separated list of machine nameson which PCN nodes are to run. For example,myprogram -pcn -nodes pelican:raven:ploverwill run myprogram on four nodes, with one node on the machine from which thiscommand is run (the host) and one node on each of the machines named in thenodelist: pelican, raven, and plover.This startup method works only if1. rsh (x 23.1) works from the host to each machine in nodelist, and2. each of the nodes shares a common �lesystem with the host. The reason forthis is that the host runs each node in the directory in which pcn is invoked.If the host and a node have di�erent �lesystems, the rsh used to start up thatnode is likely to fail.If any of these conditions does not hold, then net-PCN must be started by usingone of the alternative methods described below.Note that we can always create multiple nodes on a single processor by usingthe -n command line 
ag. The command91



mypcn -pcn -n nnodesforks nnodes - 1 nodes on the local machine (resulting in a total of nnodes pro-cesses) which communicate by using sockets. This feature can be useful for debug-ging purposes, or on multiprocessing machines.23.3 Using a PCN Startup FileThe second net-PCN startup method that we consider can be used if nodes do notshare a common �le system with the host. However, it still requires that rsh workfrom the host to each node.This method uses a startup �le to de�ne the locations of remote PCN nodeprocesses. Lines in this �le identify the machines on which nodes are to be started.Startup File Syntax. A line of the formfork n-nodescauses n-nodes node processes to be started on the local machine. These nodescommunicate with the other nodes via sockets, even though they are on the samemachine as the host.A line of the formexec n-nodes: command -pcn $ARGS$causes command to be executed. command is the command that invokes PCN onthe appropriate machine. The host process replaces $ARGS$ at run time with thenecessary arguments to PCN to cause it to start n-nodes node processes.Blank lines in startup �les and lines starting with whitespace, %, or # are ignored.Examples of Startup Files. A startup �le containing the linesfork 1exec 1: rsh fulmar myprogram -pcn $ARGS$starts one node on the local machine (in addition to the host node) and one nodeon the host fulmar, using the PCN executable called myprogram.A startup �le containing the lineexec 1: rsh fulmar -l bob myprogram -pcn $ARGS$starts one node using the program called myprogram on host fulmar using the PCNexecutable pcn and the account for username bob. If we assume the PCN host isbeing run by user olson on host host-machine, then the .rhosts �le in the homedirectory of user bob on fulmar must contain the entryhost-machine olson92



A startup �le containing the lineexec 3: rsh fulmar "cd /home/olson/pcn; ./myprogram -pcn $ARGS$"runs three nodes on fulmar of the PCN executable myprogram after changing to thedirectory /home/olson/pcn.A startup �le containing the lineexec 2: sh -c 'echo "myprogram -pcn $ARGS$ &" | rsh fulmar /bin/sh'is a more complex example that starts up two nodes on fulmar. This example has thedesirable side e�ect that the rsh process exits after starting the PCN node, whereasin the other examples the rsh will not complete until the node process completes.Using a Startup File. We execute net-PCN with a startup �le pcn-startup byusing the -s run-time system command line argument:myprogram -pcn -s pcn-startup23.4 Starting net-PCN without rshIf your computer system does not support the use of rsh, you will need to startremote nodes by hand or by using a utility called host-control. See the sepa-rate manual: R. Olson, Using host-control, Argonne National Laboratory TechnicalMemo ANL/MCS-TM-154.23.5 Ending a ComputationNormally all nodes of a net-PCN computation will exit upon completion of thecomputation or upon abnormal termination of PCN. If for some reason this is notthe case, you must log on to each machine that was executing a net-PCN node andmanually kill the PCN process.23.6 Limitations of net-PCNNumber of Nodes. The number of nodes available in a net-PCN computation islimited by the number of �le descriptors available to a process (an operating system-imposed limit). On modern versions of Unix, there are generally more than sixty�le descriptors available. Hence, in practice, the number of �le descriptors is notlikely to be a major problem.Heterogeneous Networks. Currently, no support exists for executing net-PCNbetween machines with di�erent byte orders and/or di�erent 
oating-point repre-sentations. Net-PCN does execute correctly between di�erent machines if they usethe same byte-ordering and 
oating point representation (we have run net-PCNsuccessfully between Sun 3, Sun 4, and NeXT computers). However, you must be93



careful when using foreign code in this case because, for example, structure packingin C may di�er between di�erent compilers.24 Further ReadingPCN Language This text provides an introduction to the PCN language and adiscussion of techniques used to reason about PCN program:M. Chandy and S. Taylor, An Introduction to Parallel Programming,Jones and Bartlett, 1991.This paper describes the PCN language, including recent extensions for processmapping and templates, as well as surveying major applications:I. Foster, R. Olson, and S. Tuecke, Productive Parallel Programming:The PCN Approach, Scienti�c Programming, Vol. 1, 1992, pp. 51{66.Programming and Proof Techniques The following book provides a readableand entertaining presentation of many of the basic parallel programming techniquesused in PCN:I. Foster and S. Taylor, Strand: New Concepts in Parallel Program-ming, Prentice Hall, Englewood Cli�s, N.J., 1989.The proof theory for PCN is based in part on that for Unity, which is described indetail in M. Chandy and J. Misra, Parallel Program Design: A Foundation,Addison-Wesley, 1988.Software cells, templates, and parallel software reuse are discussed in:I. Foster, Information Hiding in Parallel Programs, Preprint MCS-P290-0292, Argonne National Laboratory, 1992.PCN Toolkit The Program Transformation Notation (PTN) tool is described inI. Foster, Program Transformation Notation: A Tutorial, TechnicalReport ANL-91/38, Argonne National Laboratory, 1991.The host-control program used to manage network implementations of PCN isdescribed inR. Olson, Using host-control, Technical Memo ANL/MCS-TM-154,Argonne National Laboratory, 1992.94



PCN Implementation The techniques used to compile PCN for parallel com-puters and to implement templates are described inI. Foster and S. Taylor, A Compiler Approach to Scalable ConcurrentProgram Design, Preprint MCS-P306-0492, Argonne National Labora-tory, 1992.A detailed description of the PCN run-time system can be found inI. Foster, S. Tuecke, and S. Taylor, A Portable Run-Time System forPCN, Technical Memo ANL/MCS-TM-137, Argonne National Labora-tory, 1991.The design, implementation, and use of the Gauge performance analysis system aredescribed inC. Kesselman, Integrating Performance Analysis with PerformanceImprovement in Parallel Programs, Ph.D. thesis, UCLA, 1991.A description of the Upshot trace analyzer can be found inV. Herrarte and E. Lusk, Studying Parallel Program Behavior withUpshot, Technical Report ANL-91/15, Argonne National Laboratory,1991.Applications Papers describing PCN applications includeI. Chern and I. Foster, Design and Parallel Implementation of TwoMethods for Solving PDEs on the Sphere, Proc. Conf. on Parallel Com-putational Fluid Dynamics, Stuttgart, Germany, Elsevier Science Pub-lishers B.V., 1992, pp. 83{96.D. Harrar, H. Keller, D. Lin, and S. Taylor, Parallel Computationof Taylor-Vortex Flows, Proc. Conf. on Parallel Computational FluidDynamics, Stuttgart, Germany, Elsevier Science Publishers B.V., 1991,pp. 193{206.I. Foster and J. Michalakes, MPMM: A Massively Parallel MesoscaleModel, Proc. 5th ECMWF Workshop on Parallel Processing in Meteo-rology, ECMWF, Reading, England, 1992.
95



Part IIIAdvanced Topics25 pcncomp and the PCN linkerFor a complete list of the arguments to pcncomp, run:pcncomp -hIn general, pcncomp tries to follow the normal Unix conventions for C and Fortrancompiler arguments.PCN linker. The PCN linker, which is called by pcncomp, does not replace thestandard Unix linker, ld. Instead, it operates at a higher level than ld. The PCNlinker's primary function is to coalesce the PCN object code contained in the .pam�les and turn it into machine object code that can be passed to ld to be linked withthe run-time system, the user's foreign object code, and system libraries.This is accomplished by creating a C source �le that contains initialized Cdata structures with names known to the run-time system. This C �le is thencompiled and linked with everything else to produce an executable program. The C�le is usually named with a \pcnt " pre�x, followed by the name of the executableprogram that we are creating.The PCN linker is a new feature of PCN version 2.0. Its advantages comparedto techniques used in earlier releases include a standalone executable, faster startupon large parallel computers, faster intermodule calls, faster compilation, and greaterease of use. A signi�cant disadvantage is slower linking. This is a problem particu-larly during the debugging stage of program development. To alleviate this problem,a limited form of dynamic loading of .pam �les is supported by PDB. This removesthe time-consuming link step from the debug cycle, yet preserves all of the advan-tages of the PCN linker during production runs. See x 15.9 for details on dynamicloading of .pam �les, and x 26 on how to exploit the creation of the pcnt �le toreduce the link time when debugging foreign code.26 Make�leThis section provides an example Make�le for use with PCN programs. We alsoprovide some discussion of the Make�le, including some \tricks" to reduce link times.96



Example Make�lePAMS = pcncode.pamOBJS = fcode.o ccode.oPCNT = pcnt_myprogramMAIN_MOD = pcncodePROG_NAME = myprogramFORTRAN = -fortranFLAVOR =PCN_BASE = /usr/local/pcnTARGET = defaultPCNCOMP = $(PCN_BASE)/bin/pcncompPCNCOMPFLAGS = $(FORTRAN) $(FLAVOR) -target $(TARGET)all: $(PROG_NAME)pams: $(PAMS)objs: $(OBJS)$(PCNT).c: $(PAMS)$(PCNCOMP) $(PCNCOMPFLAGS) $(PAMS) -o $(PCNT).c \-pcnt -mm $(MAIN_MOD)$(PROG_NAME): $(PCNT).o $(OBJS)$(PCNCOMP) $(PCNCOMPFLAGS) $(PCNT).o $(OBJS) \-o $(PROG_NAME).SUFFIXES: .pcn .pam .c .o .f.pcn.pam:$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.pcn.c.o: $(PCNCOMP) $(PCNCOMPFLAGS) -c $*.c.f.o: $(PCNCOMP) $(PCNCOMPFLAGS) -c $*.fclean: rm -f *.pam *.mod *~ $(PROG_NAME) *.dump pcnt* *.o97



Portability. Since pcncomp is used to compile the C and Fortran source �les, thisMake�le is highly portable. The details of the actual C and Fortran compiler names,their locations, special arguments that they take, etc., are handled automatically bypcncomp.Adaptability. The entire Make�le is parameterized by the �rst seven variablesat the top of the Make�le. It can be quickly adapted to di�erent programs. Inaddition, these variables can easily be overridden from the command line to createPDB and/or pro�ling versions of the program. For example, to create a version ofthe program that is linked with the PDB run-time system, you would run:make FLAVOR=-pdbCross-compilation. Cross-compilation to di�erent machines is simple with thisMake�le. (See x 19 for more on cross-compilation.) By default, it will compilethe program for whatever machine the make is running on. But by overriding theTARGET variable from the command line, we can easily cross-compile the programfor di�erent machines. For example, to cross-compile for the Intel iPSC/860, youwould run: make TARGET=ipsc860Debugging 
exibility. Section x 25 discusses how the PCN linker operates. Itcreates a pcnt.c �le (a C source �le) that contains all of the necessary informationfrom the .pam �les, compiles that �le to a pcnt.o �le, and then links that pcnt.o�le with the run-time system, foreign object �les, and system libraries to create anexecutable program.When debugging foreign code, you can exploit the fact that the PCN linkercreates this intermediate pcnt �le to greatly reduce link times. If a foreign procedureis modi�ed, there is no need to create a new pcnt �le before linking. Only changesin the PCN code will a�ect the pcnt �le. So, instead of creating a new pcnt �leeach time foreign code is modi�ed, the one from the previous link will su�ce.When working on PCN code, link a version with PDB by running:make "FLAVOR=-pdb -link all"This will give you a version of the program that you can use with dynamic loadingto quickly debug your PCN code without having to relink after each change (seex 15.9).27 Run-Time System Debugging OptionsThe PDB version of the run-time system incorporates a variety of low-level executiontracing facilities. These facilities are controlled through the following four debug-98



level variables. The value of each variable can range from 0 to 9, with 0 meaning notrace output and 9 maximum trace output.Emulator Debug Level: This controls debugging information in the main pro-cess scheduling loop. For example, level 2 causes all intermodule calls to beprinted, level 3 additionally prints the entry and exit of foreign procedures,and level 9 prints a complete trace of the PCN abstract machine instructionbeing executed.Garbage Collector Debug Level: This controls debugging information in thegarbage collector. For example, level 2 causes a short summary to be printedeach time a garbage collection occurs.Parallel Debug Level: This controls debugging information relating to the par-allel aspects of the system. For example, level 5 causes debugging informationabout the low-level message handling between nodes to be printed.Global Debug Level: This controls debugging information not covered by theother three variables. For example, level 1 causes startup parameters andboot arguments to be printed.The four debug levels can be manipulated in two ways. On a single node,they can be modi�ed through the use of the PDB variables ($emulator dl, $gc dl,$parallel dl, and $global dl) described in x 15.7.The debug levels can also be set from the command line. The following run-timesystem command line arguments (i.e., they must appear after the -pcn argument)set the various debug levels on all nodes, including the host.-d <level> : This sets all debug levels.-e <level> : This sets the emulator debug level. It overrides the level set by the-d 
ag.-g <level> : This sets the garbage collector debug level. It overrides the level setby the -d 
ag.-p <level> : This sets the parallel debug level. It overrides the level set by the-d 
ag.The following argument enables low-level trace information after a speci�ednumber of procedure calls.-r <reduction number> : Do not print any debugging output until the numberof procedure calls given by reduction number has been executed.The following command line arguments can be used to set debug levels selec-tively in di�erent nodes of a multiprocessor.99



-node <node number> : Apply the following node debug level 
ags only to a par-ticular node, node number. If this argument is not used or node number is -1,then apply the following node debug level 
ags to all nodes.-nd <level> : This sets all debug levels on the appropriate node(s).-ne <level> : This sets the emulator debug level on the appropriate node(s). Itoverrides the level set by the -nd 
ag.-ng <level> : This sets the garbage collector debug level on the appropriatenode(s). It overrides the level set by the -nd 
ag.-np <level> : This sets the parallel debug level on the appropriate node(s). Itoverrides the level set by the -nd 
ag.-nr <reduction number> : Do not print any debugging output on the appropriatenode(s) until the reduction number reduction has been reached.For example, the following command would set the emulator debug level to 3and the garbage collector debug level to 2 on node 5 of a 10-node run.myprogram -pcn -n 10 -ne 3 -ng 2 -node 5All debugging messages are preceded by the node number from which the mes-sage originated and reduction number on that node when the message was printed.When debug levels are set on multiple nodes simultaneously the debugging outputfrom these nodes will be interleaved. The node and reduction number can help yousort out these interleaved messages.Interleaving problems can be avoided by telling the run-time system to logall debugging messages to �les, instead of to the screen, by putting a -log on thecommand line. The system will then create a Logs directory into which all debuggingoutput will be printed. Further, the debugging output from each node will be putin a separate �le in this Logs directory.
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Part IVAppendicesA Obtaining the PCN SoftwareThe PCN software is available by anonymous FTP from Argonne National Labo-ratory, in the pub/pcn directory on info.mcs.anl.gov. The latest version of thisdocument is also available at the same location. The following session illustrateshow to obtain the software in this way.% ftp info.mcs.anl.govConnected to anagram.mcs.anl.gov.220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.Name (info.mcs.anl.gov:XXX): anonymous331 Guest login ok, send ident as password.Password: /* Type your user name here */230- Guest login ok, access restrictions apply.Argonne National Laboratory Mathematics & Computer Science DivisionAll transactions with this server, info.mcs.anl.gov, are logged.230 Local time is Fri Nov 8 18:26:39 1992ftp> cd pub/pcn250 CWD command successful.ftp> ls200 PORT command successful.150 Opening ASCII mode data connection for file list.pcn v2.0.tar.ZREADMEpcn prog.ps.Zpcn prog.tar.Z226 Transfer complete.78 bytes received in 1.3e-05 seconds (5.9e+03 Kbytes/s)ftp> binary200 Type set to I.ftp> get pcn v2.0.tar.Z200 PORT command successful.150 Opening BINARY mode data connection for pcn v2.0.tar.Z (XXX bytes).226 Transfer complete.local: pcn v2.0.tar.Z remote: pcn v2.0.tar.ZXXX bytes received in YY seconds (ZZ Kbytes/s)ftp> quit221 Goodbye. 101



B Supported MachinesThe following table lists the machines on which PCN is currently supported, alongwith the architecture name.Architecture Machine namedelta Intel Touchstone Deltaipsc860 Intel iPSC/860iris Silicon Graphics Irisnext040 NeXTrs6000 IBM RS/6000sun4 Sun 4 (SPARC based)
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C Reserved WordsThe following words may not be used as variable names or procedure names in PCNprograms.append streamcharclose streamdatadecrement streamdefaultdirectivedoubleexportsforeigninit recvinit sendintlengthlocationnodesoverPCNstreamstream sendstream recvtopologytuplep *pdb *PCN *
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D Deprecated and Incompatible Features1. Under v1.2.2, a common way to write a tuple that has a string in the �rstelement of the tuple as a label was to write it in pre�x notation, such aslabel(a,b). This is equivalent to writing the tuple in the in�x notation,f``label'',a,bg. However, in v2.0, writing tuples in this pre�x form isdiscouraged because its syntax is identical to that of functions, which are nowsupported in v2.0. Instead, it is recommended that you always write tuplesusing in�x notation.2. The sys:list length() procedure (which was undocumented under v1.2.2but sometimes used) has had its argument order changed between v1.2.2 andv2.0, in order to make it follow the convention used in all other libraries thatthe return argument is always the last argument.3. The stdio:scanf() procedure no longer supports %t for term scanning.4. The -foreign() directive is ignored under v2.0. All information about whichforeign object �les and libraries to link must be speci�ed on the command linewhen linking with pcncomp.5. The PCN PATH environment variable is ignored under v2.0. Since .pam �les areno longer loaded dynamically when they are �rst referenced, this is no longerneeded.6. The sizeof() command has been changed to length(). It returns the numberof elements in an array, or the arity of a tuple. (This change occurred in v1.2.2.)7. Meta operations now use `var` (matching back quotations) instead of 'var (un-matched single quote) to denote a string that is to be interpreted as a variablename. (This change occurred in v1.2.2.)
104



E Common QuestionsWhat does it mean when PCN prints an Illegal tag message? This usu-ally means that PCN internal data structure has been corrupted somehow. Theusual way in which this happens is that user code writes past the beginning or endof an array (either in PCN or foreign code).To help detect this situation: If you use arrays in your PCN code then you cando bounds checking by running the program under pcn.pdb. If you use arrays inFortran code, many Fortran compilers have a 
ag to turn on bounds checking (alsoknown as range checking).See x 14 for information on debugging PCN programs.Why is the PCN linker so slow? See x 25 for information on how the linkerworks. Also, see x 15.9 and x 26 for tips on reducing link times when debugging.
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F PCN SyntaxThe following syntactic conventions are employed in this expanded BNF:nonterminal ::= production[ ] Surround an optional element.f g Surround an element that may occur zero or more times.j Separates alternatives.boldface Indicates reserved words.\quotes" Indicate characters that appear literally.The symbols unsigned-integer, unsigned-real, character-string, and identi�er denoteterminal symbols and are not de�ned further here.Comments are delineated by the start-comment symbol /* and the end-commentsymbol */.Compilation Modulecompilation-module ::= program-or-directive f program-or-directive gprogram-or-directive ::= program-declaration j directiveDirectivedirective ::= \-" directive-name \(" directive-arguments \)"directive-name ::= identi�erdirective-arguments ::= [ directive-argument f \," directive-argument g ]directive-argument ::= termProgram Declarationprogram-declaration ::= program-heading mutable-declarations program-bodyprogram-heading ::= program-heading-modi�ers identi�er \(" formal-parameters \)"program-heading-modi�ers::= [ identi�er f \," identi�er g ]formal-parameters ::= [ formal-parameter f \," formal-parameter g ]formal-parameter ::= identi�ermutable-declarations ::= f mutable-type mutable-declaration-list \;" gmutable-type ::= int j double j char j portmutable-declaration-list ::= mutable-declaration f \," mutable-declaration g106



mutable-declaration ::= identi�er [ \[" [ expression ] \]" ]program-body ::= sequential-composition jparallel-composition jchoice-compositionBlockblock ::= assignment-statement jde�nition-statement jprogram-call jsequential-composition jparallel-composition jchoice-composition jquanti�cationassignment-statement ::= variable \:=" expressionde�nition-statement ::= variable \=" termprogram-call ::= local-program-call jremote-program-call jremap-program-call jmeta-program-callfunction-call ::= local-program-call jremote-program-calllocal-program-call ::= simple-program-callremote-program-call ::= simple-program-call "@" simple-program-callremap-program-call ::= simple-program-call in simple-program-callmeta-program-call ::= ` identi�er `simple-program-call ::= program-speci�er \(" actual-parameters \)"107



program-speci�er ::= [ module-name \:" ] program-namemodule-name ::= quoted-identi�erprogram-name ::= quoted-identi�eractual-parameters ::= [ actual-parameter f \," actual-parameter g ]actual-parameter ::= termannotation ::= unsigned-integer j character-string j quoted-identi�erquoted-identi�er ::= ` identi�er ` j identi�erNote: The single backquote characters in the preceding line indicate literally that character.Quanti�cationquanti�cation::= identi�er over expression \.." expression \::" blockSequential Compositionsequential-composition ::= \f" \;" block f \," block g \g"Parallel Compositionparallel-composition ::= \f" \jj" block f \," block g \g"Choice Compositionchoice-composition ::= guarded-block j\f" \?" guarded-block f \," guarded-block g \g"guarded-block ::= guards ! blockguards ::= guard-list j defaultguard-list ::= guard f conditional-and guard gconditional-and ::= \,"guard ::= pattern-match j equality-test j relational-test j data-test108



pattern-match ::= identi�er \?=" patternpattern ::= tuple-pattern j list-patterntuple-pattern ::= \f" pattern-elements \g" jidenti�er \(" pattern-elements \)"list-pattern ::= \[" pattern-elements \]" j\[" pattern-element-list \j" pattern-element \]"pattern-elements ::= [ pattern-element-list ]pattern-element-list ::= pattern-element f \," pattern-element gpattern-element ::= signed-number j character-string j identi�er j patternequality-test ::= equality-operand \==" equality-operand jequality-operand \!=" equality-operandequality-operand ::= expression j character-string j empty-tuple j empty-listempty-tuple ::= \f" \g"empty-list ::= \[" \]"relational-test ::= relational-operand \<" relational-operand jrelational-operand \>" relational-operand jrelational-operand \<=" relational-operand jrelational-operand \>=" relational-operandrelational-operand ::= expressiondata-test ::= int \(" term \)" jdouble \(" term \)" jchar \(" term \)" jtuple \(" term \)" jdata \(" term \)"Variablevariable ::= identi�er [ \[" index \]" ]index ::= unsigned-integer j identi�er109



Expressionexpression ::= adding-expressionadding-expression ::= multiplying-expression jadding-expression \+" multiplying-expression jadding-expression \�" multiplying-expressionmultiplying-expression ::= primary-expression jmultiplying-expression \*" primary-expression jmultiplying-expression \/" primary-expression jmultiplying-expression \%" primary-expressionprimary-expression ::= signed-number jvariable jlength \(" identi�er \)" jfunction-call j\(" expression \)"signed-number ::= [ "�" ] unsigned-integer j[ "�" ] unsigned-realTermterm ::= expression jcharacter-string jtuple-constructor jlist-constructortuple-constructor ::= \f" elements \g" jidenti�er \(" elements \)"list-constructor ::= \[" elements \]" j\[" element-list \j" element \]"elements ::= [ element-list ]element-list ::= element f \," element gelement ::= signed-number j character-string j variable jtuple-constructor j list-constructor
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