
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439||||||-ANL-92/1||||||-An Integrated Database to Support Research on Escherichia coli1byAlexandra Baehr(1), George Dunham(2), Adam Ginsburg(3)Ray Hagstrom(1), David Joerg(1), Toni Kazic(3)Hideo Matsuda(1), George Michaels(2), Ross Overbeek(1)Kenn Rudd(4), Cassandra Smith(5), Ron Taylor(1,2)Kaoru Yoshida(5), Dave Zawada(6)(1) Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Ill.(2) Division of Computer Research and Technology,National Institutes of Health, Bethesda, Md.(3) Department of Genetics,Washington University, St. Louis, Mo.(4) National Center for Biotechnology Information,National Institutes of Health, Bethesda, Md(5) Department for Molecular and Cellular Biology,University of California and Lawrence Berkeley Laboratory, Berkeley, Calif.(6) Environmental Assessment and Information Sciences Division,Argonne National Laboratory, Argonne, Ill.
1This work was supported in part by the O�ce of Health and Environmental Research and in part by the O�ce ofEnergy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1

ContentsAbstract iii1 Introduction 11.1 Flexibility of a Chromosome Analysis System : 11.2 Ease of Access : 21.3 Reconciliation of Data : 21.4 Current Systems : 31.5 Prototype Database Based on Logic Programming : 32 Conceptual Framework 42.1 Objects with Positions on the Chromosome : 42.1.1 Kohara's Clones and Restriction Sites : 52.1.2 Fragments of Sequence : 62.1.3 Computed Restriction Sites : 62.1.4 Occurrences of Genes : 72.2 Predicates Common to All Objects Located on the Chromosome : : : : : : : : : : : : 102.3 The Use of Actual Sequence Data : 122.3.1 Accessing the Sequence of an Object : 122.3.2 Higher-Level Predicates to Support Scanning for Patterns in Objects : : : : : : 152.3.3 A Predicate to Support Scanning for Patterns in Translated Genes : : : : : : : 172.3.4 Predicates for Computing Codon Usage, K-mer Counts, and GC Content : : : 172.4 Interface to External Systems : 203 Encoding of Biologically Relevant Queries 213.1 Physical Map Sites in Objects : 213.2 Identi�ng Sequence Features : 223.3 Structure-Related Features : 283.4 Questions about the Overall Project Status : 334 Summary 38References 39Appendix: Supported Predicates for Querying the E. coli Database 42
ii

AbstractWe have used logic programming to design and implement a prototype database of genomicinformation for the model bacterial organism Escherichia coli. This report presents the fundamentaldatabase primitives that can be used to access and manipulate data relating to the E. coli genome.The present system, combined wit a tutorial manual, provides immediate access to the integratedknowledge base for E. coli chromosome data. It also serves as the foundation for development of moreuser-friendly interfaces that have the same retrieval power and high-level tools to analyze complexchromosome organization.

iii

1 IntroductionTwo recent advances in biotechnology have produced a pressing need to integrate and make ac-cessible large volumes of genomic information. First, large-scale chromosome mapping strategies[1, 5, 6, 8, 10, 11, 12, 18, 22, 24, 25, 28] are now being successfully used to determine the chromo-some locations of speci�c DNA sequences. Second, the development of automated DNA fragmentanalysis and sequencing machines [9, 22] has made it possible to determine the complete DNA se-quence for any organism with a small genome in a reasonable amount of time. Large-scale e�ortsat determining the complete DNA sequence of several model organisms have been targeted by thejoint DOE/NIH Human Genome Project (HGP) [7]. Though relatively little gene sequence datahas been produced by its component projects so far, approximately three gigabases of human DNAsequence will be determined in the next �fteen years. This number translates, at 2 bits per base,intoapproximately 750 megabytes of data, or about the size of the database that can �t onto a relativelycheap, commercially available hard disk drive for any desktop workstation. Thus, the scienti�c issueis not storage per se, but a mechanism for providing exible access to stored sequence informationin order to analyze it. For example, consider the process of determining large DNA sequences. Asequencing project requires extensive manipulation of the data for sequences and clones to keeptrack of experimental details. Systematic computational analysis of these data is also required todetermine the course of continued experimentation, diagnose discrepancies and errors in the data,and evaluate progress toward the goal of completing the sequenced DNA fragment. Such systematicanalysis requires reliable and exible access to the clone and sequence information. Finally, theremust be an ongoing e�ort to interpret the data which necessarily often involves manipulations ofthe data using novel methods speci�c to the questions asked. Yet because the methods used indetermining sequences and the underlying conceptual framework for analysis are changing almostdaily, an adaptable system is required that is easy and natural for practicing biologists to use whenanalyzing the data and designing experiments.1.1 Flexibility of a Chromosome Analysis SystemThe answers to many challenging questions in biology require an analysis facility that combinesinformation from di�erent subdisciplines to form a coherent picture of the genetic basis of a biolog-ical process. Indeed, a key element insuccessfully interpreting the biological \meaning" of genomicsequence datahinges on the availability of a wide spectrum of information. For example, in the as-signment of chromosomal locations for speci�c sequence in any organism, the information for clonalorigin of the sequenced fragment, the high resolution physical and genetic maps for the chromosomeand an analysis of the physical map related sites in the sequence to be located are needed. Themost complete collection of genomic data is for E. coli where ~ 30% of the chromosome has beensequenced, complete low and high resolution restriction maps are available, approximately half ofthe genes have been identi�ed, and several ordered libraries are available. This rich information baseprovides an excellent platform to explore the fundamental principles necessary to manipulate andperform comparative analysis of multiple maps to resolve the �nal chromosomal location of the newsequence information.Recent improvements in experimental technologies have facilitated a shift in focus to larger-scale projects aimed at integrating more global biological information. These include attempts toidentify all expressed genes in the bacterium Escherichia coli [23], the mouse Mus musculus [13, 16]and humans [2]. Consolidation of existing DNA sequence and restriction map data into a coherentrepresentation has been the target of research e�orts on the E. coli chromosome [3, 26] and large-scalephysical mapping of several organisms such as the bacterium E. coli [4, 15, 17, 18, 20, 27]; the yeast1

S. cerevisae [12, 19]; the fruit y Drosophila melanogaster [11]; the nematode C. elegans [29]; and allhuman chromosomes [8, 10, 22, 28]. Each of these e�orts builds on the collective research of nearlyeighty years on particular biological problems in these di�erent species. Integrating and reconcilingthese di�erent data with DNA sequence data into a knowledge base to support both broadly basedresearch and the genome projects poses a substantial challenge.To meet this challenge, developers of integrated systems of genomic information confront severalproblems that stem from the nature of the biological investigations. One major problem is that theaccepted view of the information is in a continual state of ux. This goes far beyond the automaticupdating of previous information required after every transaction. In scienti�c databases, data canbe of widely di�erent quality and even contradictory. Multiple values, or none at all (null values),for a given attribute can occur. Further, the biological concepts that underlie the organization ofthe database are in constant revision, and key conceptual elements may not have a meaning agreedupon by all users.Nevertheless, it is incorrect to think that biology is chaotic or that it lacks a common language.Instead, the instabilities reect experimental error, incompleteness of data, and controversy over themeaning of the data. Obviously, some areas of inquiry are better established than others; thus, theuniverse of discourse is heterogeneous with respect to controversy and quality, and therefore stability.This instability is extends to the questions users wish to pose: as new experimental protocols areinvented, the data types, the inferences drawn, and the questions all change. The user community isalso diverse, including DNA sequencing project managers, biochemists, and population geneticists.Each scientist has a customized set of algorithms and queries. Thus, any chromosome analysis systemthat seeks to accommodate biological information from multiple sources must be extremely exiblein both design and use.1.2 Ease of AccessThe second issue is the ease of user access. While many di�erent algorithms exist for the analysisof gene sequence information, each software package implements those algorithms using di�erentdata formats and requires the user to learn yet another set of conventions for constructing queries.Posing even relatively simple queries can require substantial e�ort. To ease this burden, variousgroups of departmental \experts" have been formed, groups to whom other scientists come for helpand instruction. However, since few departments can a�ord professional database managers, or evenformal training for their \experts," many interesting questions go unaddressed.Furthermore, one program package generally cannot be immediately used as input to another,and current software systems for genomic data analysis typically lack access to an integral databasemanagement facility that would enable the computationally naive molecular biologist to infer newdata.Therefore, any new system should allow users to formulate new queries as easily and as intuitivelyas possible and should interface with existing packages in order to maximize the amount of genomeinformation available.1.3 Reconciliation of DataThe �nal issue is the reconciliation of di�erent interpretations of the data. Genetic information andgene sequence data come from multiple sources in di�erent formats. Such sources may disagree evenon the usage of common terms. A gene in one database may be understood to be the sequence datacoding for a protein, while in another context it may include adjoining regulatory regions. Whilesynonyms are easy to recognize since most databases include suitable pointers or tables, homonyms2

require a knowledge of the biological literature to determine whether a protein in one database isthe same as another protein described in a di�erent database.These di�culties complicate the normal task of assuring data integrity. Since the data shouldbe biologically appropriate, integrity checks can and should be performed; but these require ex-pert knowledge. For example,with DNA sequence data, checks that take advantage of the analysis ofpotential protein coding reading frames (ORF's) and comparison with genetic data can be quite pow-erful in assigning a chromosome position. Therefore, a system is needed that enables the comparisonof multiple interpretations of chromosome organization.1.4 Current SystemsCurrently, data that has been sent to one of the centrally supported distribution mechanisms (e.g.,Genbank or EMBL) is accessed via one of two techniques.The researcher may use a limited set of tools to locate sequences similar to a speci�ed sequence; inparticular, tools exist that allow the researcher to search through the literature relating to a sequenceor to sequences similar to a given sequence. Alternatively, the researcher can hire a programmer towrite small, special-purpose programs designed to answer speci�c, unpredictable questions. Theformer technique is limited by the number and type of tools available. The latter technique islimited by its cost and its inability to be broadly applicable to a variety of organisms.1.5 Prototype Database Based on Logic ProgrammingThe goal of this work was to develop an enviroment to facilitate the analysis of genomic data.This enviroment requires data be easilly incorporated. To address these limitations, we have usedlogic programming to develop a prototype database of genomic information for the model bacterialorganism Escherichia coli. The system is extremely exible and is relatively simple for biologists touse.We have based our approach on logic programming for two principal reasons. First, logic program-ming enables rapid prototyping and adaptable data retrrieval. The technical problems outlined abovemake it particularly important to experiment in a restricted domain before proceeding to more com-plex databases involving multiple genomes. Second, logic programming enables the straightforwardinclusion of the query capabilities of a relational database with the ability to do pattern-matchingoperations against sequence data in a single declarative framework.The virtues of logic programming to support exible access to data are well understood. Wehave developed a logic programming workbench for genome analysis based on the language Prolog.This prototype enviroment was designed to facillitate the exploration of chromosome structure andorganization [14, 21]. While the primitives we describe for accessing the data do require some com-putational education of the user, most queries can be formulated easily with minimum instruction.Furthermore, we have already constructed a natural-language interface that demonstrates the utilityof the underlying primitives, and several graphical display interfaces writen in C to visualize thespatial relationships of the integrated data and chromosome analysis features. We shall describethese interfaces in separate documents. We believe that the features included in our current system,along with the relatively short time required to construct the system, support our decision to baseour implementation on the logic programming .This report presents the fundamental database primitives that can be used to access and manip-ulate data relating to the E. coli genome. The present system, combined with a tutorial manual,provides immediate access to the integrated knoweldge base for E. coli chromosome data and serves3

as the foundation for development of user-friendly interfaces that have the same retrieval power andhigh level tools to analyze complex chromosome organization.2 Conceptual FrameworkLike the data in all experimental biological databases, the data here should be understood to betentative. In other words, much of the data reects a temporary state of validation. Some itemsare believed to be almost certain, while others are far less determined and reect the views of thecurator. Any database provides a more-or-less accurate model of reality that can be queried. Theconclusions drawn from the model inherently reect the degree of certainty in the incorporated data.The goal of our work is to make the interrogation of the model as straightforward and as exible aspossible.The E. coli chromosome for this work is reresented as a double-stranded circular piece of DNA of�xed length. The current implementation de�nes this length at 4,672,600 bases pairs. This lengthis an extrapolation based on the high-resolution physical map of the E. coli chromosome and theknown lengths of assembled sequenced portions of the chromosome represented in the EcoSeq datacollection [27]. Oriented sequence fragments containing 1,332,986 bases have been assigned positions[26] that account for 28.5% of the chromosome.2.1 Objects with Positions on the ChromosomeThe system supports queries relating to a number of di�erent types of objects. One general categoryinvolves objects that have been assigned or mapped to positions on the chromosome. The systemsupports queries concerning the locations, directional arrangements, and distributions of such objects.Initially, the objects with positions on the chromosome that can be queried fall into the followingcategories:1. Kohara's clones - the cloned DNA fragments used by Kohara [15] to determine the high-resolution physical map of the E. coli chromosome.2. Kohara's restrictions sites - the estimated positions of restriction enzyme cut sites withinKohara's cloned E. coli DNA fragments, used to assemble the high-resolution physical map forthe E. coli genome. Those restriction enzyme sites are BamHI, Bgl1, EcoR1, EcoR5, Hind3,Kpn1, Pst1, and Pvu2.3. Fragments of sequence - the DNA sequence contigs and individual sequences that make up theRudd EcoSeq database. Many of the sequences have been assigned genome positions based acomparison of the distribution of restriction enzyme sites in sequences and the physical map.4. Restriction sites that occur within sequence fragments - the eight same restriction enzymeDNA sequence recognition sites that were used by Kohara and have been identi�ed by patternanalysis of the DNA sequence data. The sites are BamHI, GGATCC; Bgl1, GCCnnnnnGGC;EcoR1, GAATTC; Eco R5, GATATC; Hind3, AAGCTT; Kpn1, GGTACC; Pst1, CTGCAG;and Pvu2, CAGCTG.5. Genes that have been identi�ed by direct DNA sequencing - DNA sequence regions for structuralRNAs like tRNA, and rRNAs as well as protein coding regions. All genes have a length and adirection of information content that corresponds to the direction of transcription.4

Some of these objects have been assigned to sections of the chromosome that have been sequenced(e.g., all \fragments of sequence," six of Kohara's clones, and some occurrences of genes); others havebeen partially sequenced or not sequenced at all.In the following short subsections, we illustrate some of the basic queries that can be used to accessdata about these objects. the accompanying appendix contains a summary of the Prolog predicatesthat were developed to organize and manipulate this E. coli knowledge base. In a later section,we use these basic techniques to illustrate the level of interaction required to answer \higher-level"questions typical of those that might be made by a molecular biologist.2.1.1 Kohara's Clones and Restriction SitesEach of Kohara's clones has a unique identi�er. One can access the object corresponding to a speci�cidenti�er and display it using the following Prolog query:| ?- kohara_clone('[629B]18C4',Clone),display_object(Clone).4240715/4243455 2741 [629B]18C4 (Kohara clone)Here, the system displays the position (beginning/end), length, and identi�er of the clone. Tolist the set of Kohara restriction sites that occur in a given clone, one might use a query of the form| ?- kohara_clone('[531B]3C5',Clone),setof(Site,(kohara_rsite(Site),contains(Clone,Site)),Sites),display_objects(Sites).4234059/4234064 6 EcoR5 (Kohara site)4234092/4234097 6 EcoR5 (Kohara site)4234292/4234297 6 EcoR5 (Kohara site)4234440/4234450 11 Bgl1 (Kohara site)4235157/4235162 6 EcoR5 (Kohara site)4236072/4236082 11 Bgl1 (Kohara site)4236533/4236538 6 EcoR5 (Kohara site)4236665/4236675 11 Bgl1 (Kohara site)4236848/4236853 6 EcoR1 (Kohara site)4237609/4237614 6 Hind3 (Kohara site)4238177/4238182 6 Hind3 (Kohara site)4238203/4238208 6 EcoR1 (Kohara site)4238367/4238377 11 Bgl1 (Kohara site)4240268/4240273 6 EcoR1 (Kohara site)This query retrieves exactly those Kohara physical map sites associated with clone [531B]3C5and displays their locations and lengths.In the last example, we introduced the use of kohara rsite(Object) to retrieve an arbitraryKohara restriction site. The following Prolog predicate allows access to Kohara restriction sitescorresponding to a speci�c restriction enzyme:| ?- kohara_rsite(Beg,End,Enzyme).Beg = 600, End = 610, Enzyme = 'Bgl1' ;Beg = 1458, End = 1468, Enzyme = 'Bgl1' ;5

Beg = 2611, End = 2616, Enzyme = 'Pvu2' ;Beg = 3709, End = 3714, Enzyme = 'EcoR1',...By invoking kohara rsite/3 with the third argument instantiated, one can extract restrictionsites for a speci�c enzyme:| ?- kohara_rsite(Beg,End,'Not1').Beg = 25087, End = 25094 ;Beg = 679216, End = 679223 ;Beg = 786494, End = 786501...The predicates all kohara clones(Clones) and all kohara rsites(Rsites) are provided tocollect all Kohara clones or restriction enzyme map sites. In both cases, the objects are sorted basedon starting location on the chromosome.2.1.2 Fragments of SequenceKnowledge about the E. coli genome has progressed to the point where many of the isolated sequenceentries in Genbank can be assigned locations on the chromosome [Rudd]. Our knowledge baseincludes those nonoverlapping entries from the EcoSeq database, each of which has an associatedunique identi�er. To access the position and length of a speci�ed object, one would use a Prologquery of the form| ?- dna_fragment('ECOPROC',Fragment),display_object(Fragment).411369/412336 968 ECOPROC (DNA fragment)Note that what we are calling a \fragment" is a speci�ed section of the chromosome that hasbeen sequenced; to access the sequence associated with the fragment, one needs to use the toolsdescribed in Section 2.2.To access the complete set of DNA sequence fragments, one should use the predicate all dna fragments(Fragments).As with the predicates for Kohara clones and restrictions sites, the objects are ordered based on start-ing location.2.1.3 Computed Restriction SitesFor each section of the chromosome that has been sequenced, we can compute the position of restric-tion sites that occur in that region. This capability is extremely useful for comparing the arrangementof sites in a new DNA fragment against a physical map of the Kohara restriction sites. The alignmentof such restriction sites was one of the main methods of positioning fragments of sequence on thegenome. The predicates for computed restriction sites are similar to those used to access Kohararestriction sites: 6

| ?- dna_frag_rsite(Obj).Obj = dna_frag_rsite(1973976,1973981,'Acc1') ;Obj = dna_frag_rsite(1974741,1974746,'Acc1') ;Obj = dna_frag_rsite(1974347,1974352,'Acy1') ;Obj = dna_frag_rsite(1974329,1974334,'Af13')| ?- dna_frag_rsite(Beg,End,Enz).Beg = 1973976, End = 1973981, Enz = 'Acc1' ;Beg = 1974741, End = 1974746, Enz = 'Acc1'| ?- dna_frag_rsite(Beg,End,'EcoR1').Beg = 335988, End = 335993 ;Beg = 338631, End = 338636 ;Beg = 338989, End = 338994We have a large list of restriction enzymes sites that are known to the system. To computepositions any restriction enzyme site, one might use the following:| ?- restriction_site('Not1',Pattern,Cuts), format('~s~n',[Pattern]).GCGGCCGC| ?- restriction_site('AlwN1',Pattern,Cuts), format('~s~n',[Pattern]).CAGnnnCTGTo get the set of restriction sites corresponding to a set of restriction enzymes in a given object,one uses restriction sites in object/3:| ?- gene(aceE,Gene),restriction_sites_in_object(Gene,['EcoR1','BamH1','BbvS1'],Sites),display_objects(Sites).123370/123375 6 GGATCC (BamH1)123625/123629 5 GCTGC (BbvS1)123826/123830 5 GCAGC (BbvS1)123899/123904 6 GAATTC (EcoR1)124129/124133 5 GCAGC (BbvS1)124246/124250 5 GCTGC (BbvS1)124376/124380 5 GCAGC (BbvS1)...2.1.4 Occurrences of GenesThe database includes information about genes that have been sequenced, along with genes thathave been assigned positions but have not yet been sequenced. The basic notions of gene that wehave implemented are as follows: 7

structural gene - a section of the chromosome that corresponds to a \mature product." That is,if the gene codes for a protein, the section of the chromosome corresponding to the structuralgene will begin with a valid start codon and end with a valid stop codon. Otherwise, itwill correspond to a mature RNA product like tRNA or rRNA. Each gene has an associated\direction of expression," which has two possible values { \clockwise" or \counterclockwise."translated gene - a structural gene believed to code for a polypeptide. It will always be a multipleof 3 in length, will begin with a valid start codon, and will end with a valid stop codon.mapped gene - a gene that has been approximately positioned by using genetic mapping [Bach-mann], but has not yet been sequenced.known gene - either a structural gene or a mapped gene. Since the lengths of mapped genes arenot known, we represent them as points on the chromosome, while structural genes all haveknown lengths and are thought of as a contiguous section of the chromosome (the complexitiesassociated with the distinction of exons and introns are absent in the restricted case of E. coli).To access structural genes, one can use the gene/2 or gene/4 predicates:| ?- gene(Id,Obj).Id = thrA,Obj = gene(thrA,207,2669,clockwise) ;Id = thrB,Obj = gene(thrB,2671,3600,clockwise) ;Id = thrC,Obj = gene(thrC,3601,4887,clockwise)| ?- gene(Id,Beg,End,Direction).Id = thrA,Beg = 207,End = 2669,Direction = clockwise ;Id = thrB,Beg = 2671,End = 3600,Direction = clockwise ;Id = thrC,Beg = 3601,End = 4887,Direction = clockwiseTo access a gene with a speci�ed Id or Direction, one can invoke these predicates with theappropriate arguments instantiated. 8

To access all genes, one uses all genes(Genes), which binds Genes to the set of all genes,ordered by starting location (i.e., the start of the gene on the chromosome, irrespective of directionof expression).To access all translated genes, one can use translated gene/2 or translated gene/4:| ?- translated_gene(aceE,Obj).Obj = gene(aceE,123344,126004,clockwise)| ?- translated_gene(Id,Beg,End,counterclockwise).Id = gef,Beg = 16867,End = 17019 ;Id = apaH,Beg = 50814,End = 51656To access all translated genes, one usesall_translated_genes(Genes)To access a mapped gene, one uses mapped gene/2:| ?- mapped_gene(Id,Gene).Id = tolJ,Gene = mapped_gene(tolJ,'Bach.',unknown,4.0E-02,6099) ;Id = tolI,Gene = mapped_gene(tolI,'Bach.',unknown,5.0E-02,6645) ;Id = popD,Gene = mapped_gene(popD,'Bach.',unknown,8.0E-02,8284) ;...Note that the second argument is bound to a structure of the formmapped_gene(Id,Map,Direction,PositionOnMap,PositionOnChromosome)Here, 'Bach.' is a reference to the digitized Bachmann genetic map, 4.0E-02 is a position inthe units chosen by the person constructing the map (in this case, minutes), and 6099 is the bestestimate of the position on the chromosome (in terms of base pairs).To access known genes (both structural genes and mapped genes), one uses known gene/2:9

| ?- known_gene(Id,Gene).Id = thrA,Gene = gene(thrA,207,2669,clockwise) ;Id = thrB,Gene = gene(thrB,2671,3600,clockwise) ;...The predicates all known genes/1 and all mapped genes/1 are available to access entire col-lections of either known or mapped genes.2.2 Predicates Common to All Objects Located on the ChromosomeTo access the location of any object on the chromosome, one can use the location/3 predicate:| ?- gene(entA,Obj), location(Obj,Beg,End).Obj = gene(entA,636874,637620,clockwise),Beg = 636874,End = 637620Alternatively, one can use start of/2 and end of/2:| ?- gene(entA,Obj), start_of(Obj,Beg), end_of(Obj,End).Obj = gene(entA,636874,637620,clockwise),Beg = 636874,End = 637620To determine whether an object has been sequenced, one uses the sequenced/1 predicate. Thus,| ?- gene(Id,Obj), sequenced(Obj).Id = thrA,Obj = gene(thrA,207,2669,clockwise)is guaranteed to set Obj to a sequenced gene.The length of an object is computed with| ?- gene(entA,Obj), length_obj(Obj,Ln).Obj = gene(entA,636874,637620,clockwise),Ln = 747 10

The sum of the lengths of a list of objects can be computed with length objects/2:| ?- all_translated_genes(AllTranslated),length_objects(AllTranslated,Ln).AllTranslated = [gene(thrA,207,2669,clockwise), ...]Ln = 764226It is often extremely useful to be able to check whether one object contains another. This checkcan be done with contains/2. For example, to locate the Kohara clone that contains gene phnL,one could use the query| ?- gene(phnL,Gene), kohara_clone(_,Clone),contains(Clone,Gene).Gene = gene(phnL,4354686,4355366,clockwise),Clone = kohara_clone('[643]12H2',4337800,4358195)To display an object, one uses display object/1; to display a set of objects, one uses display objects/1:| ?- gene(phnL,Gene), kohara_clone(_,Clone),contains(Clone,Gene),display_object(Gene),display_objects([Gene,Clone]).4354686/4355366 681 phnL (gene) clockwise4337800/4358195 20396 [643]12H2 (Kohara clone)4354686/4355366 681 phnL (gene) clockwiseWe note that display objects/1 sorts the objects to be displayed into ascending order basedon their starting locations. Hence, the Kohara clone appears before phnL in the displayed list.We have discussed how to locate restriction sites in an object (using restriction sites in object/3).For sequenced objects, one can compute a restriction map of the object using code similar to thefollowing:| ?- gene(aceE,Gene),map_restriction_fragments(Gene,['EcoR1','Af13','BamH1'],Map),display_objects(Map).123371/123899 529 [BamH1,EcoR1] (computed rest. frag.)123900/124020 121 [EcoR1,Af13] (computed rest. frag.)To create a restriction map based on Kohara restriction sites (which can be done for eithersequenced or unsequenced objects), one uses code similar to| ?- kohara_clone('[101]9E4',Clone),kohara_map(Clone,['EcoR1','Hind3','EcoR5'],Map),display_objects(Map). 11

3710/5063 1354 [EcoR1,EcoR5] (Kohara rest. frag.)5064/5879 816 [EcoR5,EcoR5] (Kohara rest. frag.)5880/6602 723 [EcoR5,EcoR5] (Kohara rest. frag.)6603/8602 2000 [EcoR5,EcoR5] (Kohara rest. frag.)8603/8900 298 [EcoR5,Hind3] (Kohara rest. frag.)8901/13006 4106 [Hind3,EcoR1] (Kohara rest. frag.)13007/13278 272 [EcoR1,EcoR5] (Kohara rest. frag.)13279/13710 432 [EcoR5,EcoR5] (Kohara rest. frag.)13711/14439 729 [EcoR5,Hind3] (Kohara rest. frag.)14440/15322 883 [Hind3,Hind3] (Kohara rest. frag.)2.3 The Use of Actual Sequence DataOne central goal of our prototype is not only to demonstrate a capability of manipulating notonly relational data about the chromosome, but also to support an extensive sequence searchingfunctionality. As an example, one type of analysis involves the identi�cation of regions in the DNAthat could form a secondary structure known as a hairpin. Hairpin structures are characterized by aregion of sequence that is followed by a complementary sequence. These hairpin structures are oftenpart of the genetic control mechanisms. The advantage that this query facility has is that it is simpleto write a query to extract all hairpins that occur near the end of any structural gene. To do thisrequires using the relational capabilities discussed above to locate the sections of the chromosomethat correspond to the notion \near the end of a structural gene" and then having access to patternmatching functions to check for hairpins.In this section, we discuss the fairly low-level operations to access and search a sequence. Wealso discuss how to search for patterns, translate genes, and search for patterns in translated genes.We believe that these capabilities go beyond those normally o�ered by chromosomal databases andthat they are extremely useful for supporting active research about the contents of the chromosome.2.3.1 Accessing the Sequence of an ObjectTo access the sequence of the fragment, one could use| ?- dna_fragment('ECOPROC',Fragment),sequence_of(Fragment,Seq),display_object(Seq).411369/412336: sequence411369 GGTTAAATTGAAATTTGCATAAAAATTGCGGCCTATATGGATGTTGGAAC411419 CGTAAGAGAAAATGAATTTCACGGCAGGAGTGAGGCAATGGAAAAGAAAA411469 TCGGTTTTATTGGCTGCGGCAATATGGGAAAAGCCATTCTCGGCGGTCTG411519 ATTGCCAGCGGTCAGGTGCTTCCAGGGCAAATCTGGGTATACACCCCCTC411569 CCCGGATAAAGTCGCCGCCCTGCATGACCAGTTCGGCATCAACGCCGCAG411619 AATCGGCGCAAGAAGTGGCGCAAATCGCCGACATCATTTTTGCTGCCGTT411669 AAACCTGGCATCATGATTAAAGTGCTTAGCGAAATCACCTCCAGCCTGAA411719 TAAAGACTCTCTGGTCGTTTCTATTGCTGCAGGTGTCACGCTCGACCAGC411769 TTGCCCGCGCGCTGGGCCATGACCGGAAAATTATCCGCGCCATGCCGAAC12

411819 ACTCCCGCACTGGTTAATGCCGGGATGACCTCCGTAACGCCAAACGCGCT411869 GGTAACCCCAGAAGATACCGCTGATGTGCTGAATATTTTCCGCTGCTTTG411919 GCGAAGCGGAAGTAATTGCTGAGCCGATGATCCACCCGGTGGTCGGTGTG411969 AGCGGTTCTTCGCCAGCCTACGTATTTATGTTTATCGAAGCGATGGCCGA412019 CGCCGCCGTGCTGGGCGGGATGCCACGCGCCCAGGCGTATAAATTTGCCG412069 CTCAGGCGGTAATGGGTTCCGCAAAAATGGTGCTGGAAACGGGAGAACAT412119 CCGGGGGCACTGAAAGATATGGTCTGCTCACCGGGAGGCACCACCATTGA412169 AGCGGTACGCGTACTGGAAGAGAAAGGCTTCCGTGCTGCAGTGATCGAAG412219 CGATGACGAAGTGTATGGAAAAATCAGAAAAACTCAGCAAATCCTGATGA412269 CTTTCGCCGGACGTCAGGCCGCCACTTCGGTGCGGTTACGTCCGGCTTTC412319 TTTGCTTTGTAAAGCGCTHere, only the sequence of the clockwise strand of DNA is displayed. That is,sequence_of(Object,Seq)sets Seq to a \sequence object" representing the sequence of Object, anddisplay_object(AnyObject)displays any object, including a \sequence object." You can also extract any sequence by absolutecoordinates. Thus, the following works as well.| ?- sequence_at(123344,126004,Seq),display_object(Seq).123344/126004: sequence123344 ATGTCAGAACGTTTCCCAAATGACGTGGATCCGATCGAAACTCGCGACTG123394 GCTCCAGGCGATCGAATCGGTCATCCGTGAAGAAGGTGTTGAGCGTGCTC123444 AGTATCTGATCGACCAACTGCTTGCTGAAGCCCGCAAAGGCGGTGTAAAC..There is one additional type of goal to access sequence data: a goal of the form subseq(Position,Length,SubSequence,Sequence)can be used to access subsequences of a sequence. It can be used either to �nd the subsequence at agiven position in a sequence or to search for where a given SubSequence occurs in Sequence. There-fore, the following query computes all of the ten character sequences that occur at least twice in thegene aceE.| ?- gene(aceE,Gene),sequence_of(Gene,Seq),subseq(Pos1,10,SubSeq,Seq),subseq(Pos2,10,SubSeq,Seq), Pos2 > Pos1,format('~d/~d: ~s~n',[Pos1,Pos2,SubSeq]),fail.123541/124860: TGAAGAACAA123575/123604: CTGGAACGCC123744/125084: GCGGCGACCT124190/125450: GAAGGTGCTG 13

124281/125715: TGATGAACGA124631/125972: GATGCAGATA124747/125623: CTTCACCGAG125545/125851: CCTGCGTCACno| ?-This is such a common request that we have included a predicate that computes the set of suchcommon sequences:| ?- gene(aceA,Gene),common_seqs_at_least_k_long([Gene,Gene],10,Seqs),display_objects(Seqs).4246610/4246619: sequence4246610 TCCTGAATGC4246984/4246993: sequence4246984 TCCTGAATGC4246902/4246914: sequence4246902 GCGGGCATTGAGC4247289/4247301: sequence4247289 GCGGGCATTGAGCNotice that, in this case, matches are extended as far as possible (thus, the second reported matchis 13 characters long). One would normally use this with distinct objects, for example,| ?- gene(thrA,Gene),start_of(Gene,Start),StartPre is Start-100, EndInit is Start+80,common_seqs_at_least_k_long([region(StartPre,Start),region(Start,EndInit)],5,Seqs),display_objects(Seqs).129/133: sequence129 GTACA229/233: sequence229 GTACA134/138: sequence134 GGAAA278/282: sequence278 GGAAA141/145: sequence141 CAGAA247/251: sequence 14

247 CAGAA147/151: sequence147 AAAGC280/284: sequence280 AAAGC177/181: sequence177 TTTTC254/258: sequence254 TTTTCWe also allow you to look for the longest common subsequence.| ?- gene(aceE,Gene),location(Gene,Beg,End),EndPt is Beg+99,sequence_at(Beg,EndPt,Prefix),longest_common_subseq(Prefix,Prefix,Common,Pos1,Pos2),format('~d/~d ~s~n',[Pos1,Pos2,Common]).123375/123402 CGATCGAAThe answer from this query indicates that the displayed eight-character string is the longeststring that occurs twice in the �rst hundred characters of the gene aceE.2.3.2 Higher-Level Predicates to Support Scanning for Patterns in ObjectsTo properly handle requests to search for structures like hairpins or repeats, we found it necessaryto implement the ability to scan for patterns. Here, we think of a pattern as a sequence of patternunits, each of which can be1. a string of DNA characters (including the codes to represent ambiguous characters);2. a pattern unit that matches an arbitrary string of characters, where the length of the stringvaries between speci�ed bounds; and3. a pattern unit that \matches" the reverse complement of a string matched by a previous patternunit, or4. a pattern that matches a string identical to a previously matched pattern unit.Both of the last two types of pattern units allow one to specify an allowable number of mismatches,insertions, and deletions (which gives an \approximate" matching capability).For example, we would think of the patternp1=AYGG 3...5 ~p1 p1as capable of matching a sequence likeACGGTTCGCCGTACGG 15

We must encode such patterns as Prolog terms. The previous pattern would be encoded as[pvar(p1,dna("AYGG")),elipses(3,5),complement(p1,0,0,0),repeat(p1,0,0,0)]The actual format for a term encoding a pattern is as follows:1. A pattern is a list of pattern units.2. A pattern unit can be either a \raw" pattern unit or of the formpvar(Id,RawUnit)When an Id is speci�ed, it is used to allow following units to refer back to the string matchedby this pattern unit.3. A raw pattern unit must be of the form(a) dna(String)(b) elipses(Min,Max) where Min and Max give the bounds on the length of the string matched(c) complement(Id,Mis,Ins,Del), where Mis gives the number of allowed mismatches, Ins spec-i�es the number of indels that can be inserted into the string matched, and Del speci�esthe number of characters in the string being matched that can be deleted(d) repeat((Id,Mis,Ins,Del), where the parameters are just as for complement.To scan a section of the chromosome for the occurrence of a pattern, one uses the routinescan mem for pattern occurrence/4:| ?- gene(aceE,Gene),start_of(Gene,Beg),end_of(Gene,End),scan_mem_for_pattern_occurrence(Beg,End,[pvar(p1,dna("RYRYRY")),elipses(0,400),repeat(p1,1,1,0)],Occ),display_object(Occ).123436/123464: sequence123436 GCGTGC TCAGTATCTGATCGACCA ACTGCBy computing the set of such matches, one can rapidly acquire all matches of fairly complexpatterns fairly quickly (the actual pattern matching is achieved by invoking an underlying routinewritten in C). 16

2.3.3 A Predicate to Support Scanning for Patterns in Translated GenesWe have found that users wish to scan for patterns in the translated genes, as well as for patternsin the DNA sequences. Hence, we have provided a predicate to support this capability:find_pp_match(+Pat,+Gene,-PolyPepTide)Pat must be an encoding of a pattern to scan for in the translation of Gene. PolyPepTide isbound to a section of the translation that matches. Pat is a list of pattern units. Each unit is oneof the following:1. a string of 1-character amino acid codes, with ? to represent an arbitrary amino acid (e.g.,"CP???H"),2. the alternative of two patterns P1 and P2, which is represented as P1;P2The following example will illustrate:| ?- gene(thrA,Gene),find_pp_match(["RE?E",("H";"L")],Gene,Match),display_object(Match).2280/2294 15 thrA (expressed) clockwiseRELE L2.3.4 Predicates for Computing Codon Usage, K-mer Counts, and GC ContentThe database provides a facility for computing codon usage for any set of translated genes. This isachieved by using the predicatecodon_usage(Objects,Counts)where Objects is a list of translated genes, and Counts is set to a list of 65 integers. The �rstinteger is a count of the number of \invalid" codons (i.e., those that are ambiguous or unsequencedcharacters). The remaining 64 correspond to the counts of AAA, AAC, AAG, AAT, ACA,...TTT.To display the counts in a meaningful way, one can useprint_codon_usage(Counts)For example, one can get the codon usage statistics for the genes currently placed on the genomeby using | ?- all_translated_genes(Genes),codon_usage(Genes,Counts),print_codon_usage(Counts).number valid codons = 254740number invalid codons = 2 17

alanine: 24676 9.69%GCA: 5133 2.01%GCC: 6189 2.43%GCG: 9146 3.59%GCT: 4208 1.65%arginine: 14841 5.83%AGA: 291 0.11%AGG: 215 0.08%CGA: 713 0.28%CGC: 5914 2.32%CGG: 1130 0.44%CGT: 6578 2.58%asparagine: 9740 3.82%AAC: 6237 2.45%AAT: 3503 1.38%aspartic_acid: 13829 5.43%GAC: 5739 2.25%GAT: 8090 3.18%cystenine: 2736 1.07%TGC: 1592 0.62%TGT: 1144 0.45%glutamic_acid: 15961 6.27%GAA: 11170 4.38%GAG: 4791 1.88%glutamine: 11235 4.41%CAA: 3329 1.31%CAG: 7906 3.10%glycine: 19285 7.57%GGA: 1490 0.58%GGC: 8191 3.22%GGG: 2442 0.96%GGT: 7162 2.81%histidine: 5762 2.26%CAC: 2819 1.11%CAT: 2943 1.16%isoleucine: 14551 5.71%ATA: 604 0.24%ATC: 7132 2.80% 18

ATT: 6815 2.68%leucine: 25943 10.18%CTA: 747 0.29%CTC: 2596 1.02%CTG: 14682 5.76%CTT: 2392 0.94%TTA: 2563 1.01%TTG: 2963 1.16%lysine: 11835 4.65%AAA: 9040 3.55%AAG: 2795 1.10%methionine: 6885 2.70%ATG: 6885 2.70%phenylalanine: 9369 3.68%TTC: 4653 1.83%TTT: 4716 1.85%proline: 11145 4.38%CCA: 1973 0.77%CCC: 1030 0.40%CCG: 6609 2.59%CCT: 1533 0.60%serine: 13923 5.47%AGC: 3925 1.54%AGT: 1698 0.67%TCA: 1398 0.55%TCC: 2442 0.96%TCG: 2050 0.80%TCT: 2410 0.95%stop: 697 0.27%TAA: 451 0.18%TAG: 49 0.02%TGA: 197 0.08%threonine: 13465 5.29%ACA: 1304 0.51%ACC: 6436 2.53%ACG: 3297 1.29%ACT: 2428 0.95%tyrosine: 7040 2.76% 19

TAC: 3403 1.34%TAT: 3637 1.43%valine: 18436 7.24%GTA: 2873 1.13%GTC: 3724 1.46%GTG: 6816 2.68%GTT: 5023 1.97%The database also includes the capability of rapidly accumulating statistics on the occurrencesof k-mers. In the most trivial case, one can get and display the number of occurrences of each of thefour nucleotides by using| ?- all_dna_fragments(Frags),kmer_usage(Frags,1,Counts),print_kmer_usage(Counts,1),print_gc_content(Counts).A: 354898 24.29%C: 375714 25.71%G: 377757 25.85%T: 352961 24.15%Gs, Cs: 753471 51.56%As, Ts: 707859 48.44%Counts = [354898,375714,377757,352961]We support the general capability of accumulating counts for any size k-mers (although it isassumed that the user will probably not wish to stretch the point by going above 10-mers).2.4 Interface to External SystemsOur objective is to support the capability of storing and retrieving genetic data; it is certainly notour ambition to recreate the standard tools required to analyze the retrieved sequence data. That is,this system must be able to extract data that can later be processed by standard statistical packagesor data that support graphical exploration. This ability to interface to external packages can beachieved in two basic ways:1. For a very limited set of tools that require e�cient transmission of data to and from the tool,it is possible to install the C or Fortran code as \foreign predicates" which can be invokeddirectly from the Prolog environment. This is how we have integrated the version of theSmith-Waterman algorithm written by Xiaoqiu Huang and Webb Miller132. More commonly, to invoke an external tool, one simply extracts the data, writes it to a �le,and invokes a UNIX shell script that invokes the desired tool and reformats the produced datain a form accessible by the Prolog system. This is, for example, how we interface to externalsystems to plot data and how we invoke FASTA 31 (the system for rapid similarity searchesdistributed Bill Pearson). 20

The second approach is clearly more exible and o�ers the most painless way to integrate newcapabilities. Tools that perform multiple-sequence alignment and motif searching must be integratedinto systems that compute the energetic stability of secondary structures.3 Encoding of Biologically Relevant QueriesIn this section, we illustrate the functionality of the query facility established with the predicates dis-cussed in the preceding section. We have a collection of questions that are typical of those that mightbe asked by molecular biologists. We provide short routines that will produce the desired answersto illustrate the level of di�culty required. In each case, the predicates have been implemented in astraightforward manner based on the predicates presented in the appendix. Speci�cally, we presenta collection of 21 questions about the E. coli chromosome, including the query, the answer, and theProlog solution.3.1 Physical Map Sites in ObjectsThe �rst three queries deal with identi�ng physical map sites in clones and sequences.In determining a physical map for a chromosome, and in establishing the chromosome positionsof genes, it is useful to know which gene regions would be would be interrupted by digestion withspeci�c restriction enzymes.Query 1: For a specified restriction enzyme Not1, find all sequencedgenes in which Not1 occurs precisely once.% | ?- query1('Not1',Genes),display_objects(Genes).%% 785627/786892 1266 tolA (gene) clockwise% 816181/817473 1293 bioA (gene) counterclockwise% 1251391/1253088 1698 treA (gene) clockwise% 2011366/2012091 726 orf (gene) counterclockwise% 4083713/4084762 1050 glnL (gene) counterclockwise%query1(E,Genes) :-set_of_all(Gene,Id^Sites^(gene(Id,Gene),computed_restriction_sites_in_object(Gene,[E],[Sites])),Genes).Subcloning operations designed to manipulate a gene sequence often require a list of restrictionenzymes whose cut sites occur exactly once in that gene.Query 2: For a given sequenced gene thrA, find all restriction enzymesthat occur precisely once in thrA.% | ?- query2(thrA,Enzymes).% 21

% Enzymes = ['Ava1','Bbv2','Bcl1','BsaB1','BstX1','Cla1','Dde1','Drd1',% 'Ear1','EcoA','EcoP1','HgiC1','Mae1','Mst1','Nae1','Nsp3',% 'NspC1','Pvu1','Pvu2','SgrAI','SnaB1','Ssp1']query2(GeneId,Enzymes) :-gene(GeneId,Gene),set_of_all(Enz,Pattern^CutPoint^Sites^(restriction_site(Enz,Pattern,CutPoint),computed_restriction_sites_in_object(Gene,[Enz],[Sites])),Enzymes).The enzymes to use in isolating intact genes on single DNA fragments are those whose restrictionsites do not cut those genes. The following query allows us to identify that set of restriction enzymes.Query 3. For a given sequenced gene G, find the set of Kohara enzymesthat do not occur in G.% | ?- query3(thrA,Enz).%% Enz = ['BamH1','EcoR1','EcoR5','Hind3','Kpn1','Pst1']query3(GeneId,Enzymes) :-gene(GeneId,Gene),set_of_all(Enz,Kenz^(kohara_enzymes(Kenz),member(Enz,Kenz),computed_restriction_sites_in_object(Gene,[Enz],[])),Enzymes).3.2 Identi�ng Sequence FeaturesThe next collection of seven queries involves searching for patterns in DNA sequences.Much of the current work in the molecular biology involves some \reverse engineering." That is,we can often predict a short DNA sequence fragment (also known as a primer) that is characteristicof some genetic or structural trait. These DNA primers can be used as probes to determine whichclones contain the potential target genes. However, to �nd interesting clones for further study, weneed to identify the sequenced clones that contain the primers. The following query identi�es suchclones.Query 4: For a given sequence X, list all Kohara clones that contain X.% | ?-query4("GATTGCCAGTTCGCCATAATCACTCTTC",Clones),display_objects(Clones).22

%% 1957500/1977500 20001 [337]20H4 (Kohara clone)% 1969800/1988245 18446 [338]12C7 (Kohara clone)query4(String,Clones) :-set_of_all(Clone,Id^Occs^(kohara_clone(Id,Clone),subseqs_in_obj(Clone,String,Occs)),Clones).Conversely, we might like to identify those clones that do not contain a speci�c target sequence.Query 5: For a given string X, list all Kohara clones that are not knownto contain X.% | ?- query5("GATTGCC",Clones).%% Clones = [kohara_clone('[102]6H3',9400,24157),...]%query5(String,Clones) :-set_of_all(Clone,Id^Occs^(kohara_clone(Id,Clone),\+ subseqs_in_obj(Clone,String,Occs)),Clones).It is often the goal of a subcloning or a probing project to identify those short unique sequencesthat are diagnostic for a particular DNA segment. The following query allows us to identify diagnosticsequences of a speci�c length within a target clone.Query 6: Given a length K and a clone Clone, produce a sequence S thatoccurs just once in Clone.% | ?- query6(6,'[116]15A7',S), format('~s~n',[S]).%% CGCCTAquery6(K,CloneId,S) :-kohara_clone(CloneId,Clone),sequence_of(Clone,SeqObj),subseq(Pos,K,S,SeqObj), 23

\+ (member(Char,S), \+ base(Char)),\+ (subseq(Pos2,K,S,SeqObj), Pos2 =\= Pos).To con�rm that the sequence is diagnostic of the fragment, we can use the following query tocheck that the sequence does not occur in any other sequenced clone.Query 7: Given a length K and a clone Clone, give me a sequence thatoccurs just once in Clone, and never in any other Clone. Checkboth strands.% | ?- query7(12,'[116]15A7',S), format('~s~n',[S]).% ATCGCCTAATGC%query7(K,CloneId,S) :-kohara_clone(CloneId,Clone),sequence_of(Clone,SeqObj),subseq(Pos,K,S,SeqObj),\+ (member(Char,S), \+ base(Char)),domain(ecoli_genome,Beg,End),\+ (subseq_both(Pos2,K,S,seq(Beg,End),_), Pos2 =\= Pos).Certain sequences must stand in spatial relationship to one another in order for certain biologicalmechanisms to take place. For example, genes that are regulated through a coordinated controlmechanism using a common control protein usually have common control sequence motifs that occurin speci�c spatial relationships to those genes. The following query searches for a potential controlsequence with a particular spatial requirement. In a relational database, identifying sequence levelfeatures such as these normally requires an extensive, specialized programming e�ort.Query 8: List genes that contain sequence X exactly once, and theoccurrence is at least a distance of Y away from each end of the gene.% | ?- query8("TGATTTGCT",60,Genes),display_objects(Genes).%% 14285/15415 1131 dnaJ (gene) clockwise% 572030/573193 1164 int (gene) counterclockwise% 631876/632832 957 fepB (gene) counterclockwise% 995234/996436 1203 pncB (gene) counterclockwise% 1408669/1409421 753 fnr (gene) counterclockwise% 2104525/2105829 1305 hisD (gene) clockwise% 2448989/2449477 489 dedE (gene) counterclockwise% 2465017/2466087 1071 aroC (gene) counterclockwise% 2699918/2703805 3888 purL (gene) clockwise% 3610926/3611813 888 ugpA (gene) counterclockwise% 3903261/3904334 1074 recF (gene) counterclockwise% 4014398/4015594 1197 hemY (gene) counterclockwise24

%query8(X,Y,Genes) :-length(X,Ln),set_of_all(Gene,Id^SeqObj^Pos^Pos2^Dir^Dir2^Beg^End^(gene(Id,Gene), sequence_of(Gene,SeqObj),subseq_both(Pos,Ln,X,SeqObj,Dir),\+ (subseq_both(Pos2,Ln,X,SeqObj,Dir2), Pos =\= Pos2),location(Gene,Beg,End),Pos-Beg >= Y, End-Pos >= Y),Genes).The presence of localized repeated sequences often reects a common heritage of those chromo-some regions. The following query demonstrates how to search for repeats of a de�nite size within aspeci�c clone.Query 9: List all repeats of length N in Kohara clone C.% | ?- query9('[102]6H3',13,Repeats),display_objects(Repeats).%% 14556/14568: sequence% 14556 GCGATATTTTTGG% 14580/14592: sequence% 14580 GCGATATTTTTGG%% 18932/18944: sequence% 18932 TATGCCGATAAAA% 19486/19498: sequence% 19486 TATGCCGATAAAA%% 19062/19074: sequence% 19062 ACGCCGCAGTGGT% 23657/23669: sequence% 23657 ACGCCGCAGTGGT%query9(CloneId,N,Repeats) :-kohara_clone(CloneId,Clone),common_seqs_at_least_k_long([Clone,Clone],N,Repeats).Another possible \hot spot" for transcriptional control features (whether sequences or structuralfeatures) is the region between convergent genes. The following query searches for possible \hotspots."Query 10: What is the longest common sequence between two convergent25

transcripts?% | ?- query10(G1,G2,Common),% display_objects([G1,G2]), display_objects(Common),nl,fail.%% 15562/16836 1275 orf2 (gene) clockwise% 16867/17019 153 gef (gene) counterclockwise%% 16844/16847: sequence% 16844 GGGA% 16852/16855: sequence% 16852 TCCC%% 16846/16849: sequence% 16846 GATC%%%% 18719/19507 789 orf3 (gene) clockwise% 20833/21096 264 rpsT (gene) counterclockwise%% 20158/20169: sequence% 20158 GCCAGCGCTGGC%%%% 50257/50736 480 folA (gene) clockwise% 50814/51656 843 apaH (gene) counterclockwise%% 50761/50767: sequence% 50761 GCCGGAT% 50787/50793: sequence% 50787 ATCCGGC% .% .% .query10(Gene1,Gene2,Longest) :-convergent_genes(Gene1,Gene2),gap(Gene1,Gene2,Gap),((common_seqs_at_least_k_long_both_strands([Gap,Gap],8,Common),Common \== []) ->true; common_seqs_at_least_k_long_both_strands([Gap,Gap],4,Common)),keep_max(Common,Longest). 26

keep_max([H|T],Longest) :-H=common_sequence([S1|_]),length_obj(S1,Ln1),keep_max(T,Ln1,[H],Longest).keep_max([],_MaxLn,Longest,Longest).keep_max([H|T],MaxLn,MaxSet,Longest) :-H=common_sequence([S1|_]),length_obj(S1,Ln1),(Ln1 < MaxLn ->keep_max(T,MaxLn,MaxSet,Longest); (Ln1 =:= MaxLn ->keep_max(T,MaxLn,[H|MaxSet],Longest); keep_max(T,Ln1,[H],Longest))).Some transcriptional control sequences often occur just upstream of a gene. If one conjecturedthat a particular transcriptional control signal were composed of a single occurrence of a sequencein the gene together with two identical sequences at di�erent positions upstream of that gene, thefollowing query would extract the desired data.Query 11: For a gene G, find all strings of length at least 6 that occurat least twice in the first 150 characters upstream and at leastonce in the first 100 characters of G.% | ?- query11(Id,Strings),gene(Id,Gene),display_object(Gene),% display_objects(Strings).%% 84435/85307 873 leuO (gene) clockwise%% 84407/84415: sequence% 84407 GGAGTTAAG% 84425/84433: sequence% 84425 GGAGTTAAG% 84470/84478: sequence% 84470 GGAGTTAAG% .% .% .query11(GeneId,Strings) :-gene(GeneId,Gene),upstream(Gene,150,Upstream),initial(Gene,100,Initial), 27

common_seqs_at_least_k_long([Upstream,Upstream,Initial],6,Strings),Strings \== [].upstream(Gene,Ln,region(Pt1,Pt2)) :-direction(Gene,Dir), location(Gene,Beg,End),(Dir == clockwise ->Pt1 is Beg-Ln, Pt2 is Beg-1; Pt1 is End+1, Pt2 is End+Ln).initial(Gene,Ln,region(Pt1,Pt2)) :-direction(Gene,Dir), location(Gene,Beg,End),(Dir == clockwise ->Pt1 is Beg, Pt2a is Beg+Ln, min(End,Pt2a,Pt2); Pt1 is End, Pt2a is End-Ln, max(Beg,Pt2a,Pt2)).3.3 Structure-Related FeaturesThe following four queries ask about the arrangement of genes on the chromosome and about potentialstructural features such as hairpins that may be related to gene positions.According to one well-known hypothesis, there is a correlation between the direction of replicationand the strand on which genes are predominantly found [reference]. The following query retrievesthe data available to test this hypothesis.Query 12: Give the counts of clockwise genes in the region just precedingthe origin of replication and just following it, along with thepercentage of each region that is sequenced. Then, do the same forcounterclockwise genes.% | ?- query12(100000).% 3853061/3953061 100001 (region)% 1 cw genes; 33 ccw genes; 39% sequenced% 3953061/4053061 100001 (region)% 35 cw genes; 8 ccw genes; 49% sequencedquery12(Dist) :-oriC(ecoli,Origin),Left is Origin-Dist, Right is Origin+Dist,report_on_region(region(Left,Origin)),report_on_region(region(Origin,Right)).report_on_region(Region) :-genes_in_object(Region,clockwise,CWG),genes_in_object(Region,counterclockwise,CCWG),length(CWG,CWcount), length(CCWG,CCWcount),28

kmer_usage([Region],1,[A,C,G,T]),length_obj(Region,Ln),PerCent is integer(100 * ((A+C+G+T) / Ln)),display_object(Region),format('~d cw genes; ~d ccw genes; ~d% sequenced~n',[CWcount,CCWcount,PerCent]).genes_in_object(Object,Direction,Genes) :-set_of_all(Gene,Id^(gene(Id,Gene),direction(Gene,Direction),contains(Object,Gene)),Genes).Similarly, one may wish to know whether there a correlation between the direction of replicationand the frequencies of occurrences of di�erent sequences of length four (4-mers).Query 13: Consider the set of 4-mers that occur in clockwise genes just to theleft of the origin of replication and in clockwise genes just to theright. Are the frequencies of occurrence for each 4-mer about thesame? In particular, give the set of 4-mers that occur more thantwice as often (as a percentage of the length of the sequence ofclockwise genes) on one side or the other.% | ?- query13(200000).% CCTT: left=0.0012 right=0.0027% CTAG: left=0.0002 right=0.0004% TAGG: left=0.0005 right=0.0012%query13(Dist) :-oriC(ecoli,Origin),Left is Origin-Dist, Right is Origin+Dist,get_adjusted_counts(region(Left,Origin),LeftCounts),get_adjusted_counts(region(Origin,Right),RightCounts),report_disparity(LeftCounts,RightCounts).get_adjusted_counts(Region,Counts) :-genes_in_object(Region,clockwise,CWG),kmer_usage(CWG,4,[Counts1]),sumL(Counts1,Sum),adjust_to_give_fraction(Counts1,Sum,Counts).sumL(L,Sum) :- sumL(L,0,Sum).sumL([],Sum,Sum).sumL([H|T],SoFar,Sum) :- SoFar1 is SoFar+H, sumL(T,SoFar1,Sum).29

adjust_to_give_fraction([],_,[]).adjust_to_give_fraction([H|T],Sum,[Ha|Ta]) :-Ha is H / Sum,adjust_to_give_fraction(T,Sum,Ta).report_disparity(Left,Right) :- report_disparity(Left,Right,0).report_disparity([],[],_).report_disparity([Lh|Lt],[Rh|Rt],Which) :-((Lh >= 2*Rh ; Rh >= 2*Lh) ->conv_kmer(4,Which,String),format('~s: left=~4f right=~4f~n',[String,Lh,Rh]); true),Which1 is Which+1,report_disparity(Lt,Rt,Which1).A hairpin loop in a DNA molecule is a structural feature that allows a single-stranded DNAmolecule to fold back on itself to form a double-stranded stem composed of complementary basepairs: A-T, G-C. Linearly, it can be described as a sequence that is followed at some distance byits reverse complement. Hairpin loops are often identi�ed as structural signals for transcriptionalregulation. To �nd transcriptional signals common to a set of genes, we might wish to identify a setof hairpin loops that occur at the beginnings of genes. The folowing query identi�es the genes thatcontain hairpins within 20 bases of the start of the gene.Query 14: Find all hairpin loops with that occur at the start of genes.% | ?- query14(20,9).% 27228/28142 915 orf (gene) clockwise% 27208/27231: sequence% 27208 GCATTTTTT ATGGAG AAAACATGC%% 98459/99703 1245 ftsW (gene) clockwise% 98442/98479: sequence% 98442 GCGAAGGAG TTAGGTTGATGCGTTTATCT CTCCCTCGC%% 108335/111040 2706 secA (gene) clockwise% 108327/108347: sequence% 108327 ATTTTATTA TGC TAATCAAAT%% 231921/233462 1542 rrsH (gene) clockwise% 231909/231938: sequence% 231909 CATCAAACT TTTAAATTGAAG AGTTTGATC%% 736274/738322 2049 kdpB (gene) counterclockwise30

% 738321/738342: sequence% 738321 ATATTCAGT GCTC ACTCAATAT%% 1303723/1306398 2676 adhE (gene) clockwise% 1303706/1303735: sequence% 1303706 ACCTTCTAC ATAATCACGACC GTAGTAGGT%% 1320555/1321094 540 orf (gene) counterclockwise% 1321074/1321097: sequence% 1321074 AAAATCAAG AAACTG CTTCATTTT%% 2272115/2273806 1692 fruA (gene) clockwise% 2272098/2272131: sequence% 2272098 CAATCAGGC ATTTATCGACATAAAC GCCAGATTG% .% .% .query14(Dist,Stem) :-gene(_Id,Gene),once((around_start(Gene,Dist,Pt1,Pt2),scan_mem_for_pattern_occurrence(Pt1,Pt2,[pvar(p1,elipses(Stem,Stem)),elipses(3,20),complement(p1,1,0,0)],Occ),display_object(Gene), display_object(Occ),nl)),fail.query14(_,_).around_start(Gene,Dist,Pt1,Pt2) :-(direction(Gene,clockwise) ->start_of(Gene,Start),Pt1 is Start-Dist, Pt2 is Start+Dist; end_of(Gene,End),Pt1 is End-Dist, Pt2 is End+Dist).It is also possible the query the knowledge base about structural features of RNA molecules.Double-stranded hairpin stems in RNA molecules consist of the complementary base pairs A-U, G-C, and G-U. In investigating the potential structure of an RNA molecule transcribed from a knowngene in another species, we detected complementary sequences as long as 18 bases in length. Suchcomplementary sequences could form hairpins in the transcribed RNA molecules. How often do suchcomplementary sections occur? 31

Query 15: Find all hairpins with stems 18 bases in length with loops thatcould be as large as 300 bases, allowing for G-T as a "match."% | ?- query15(N).%% 85385/85402: sequence% 85385 TGCAGAATAGGTCAGACA% 85407/85424: sequence% 85407 TGTCTGGTTTATTCTGCA%% 123257/123274: sequence% 123257 GAACCTGTCTTATTGAGC% 123287/123304: sequence% 123287 GTTCAATGGGACAGGTTC%% 123258/123275: sequence% 123258 AACCTGTCTTATTGAGCT% 123286/123303: sequence% 123286 AGTTCAATGGGACAGGTT%% 123259/123276: sequence% 123259 ACCTGTCTTATTGAGCTT% 123285/123302: sequence% 123285 GAGTTCAATGGGACAGGT% .% .% .query15(N) :-set_of_all(HairPin,rna_hairpin(18,HairPin),L),length(L,N).rna_hairpin(Ln,hairpin(seq(B1,B1e)-Occ)) :-all_dna_fragments(Frags),member(Frag,Frags), format('checking ~w~n',[Frag]),location(Frag,Beg,End), End1 is End-21,subseq(B1,Ln,DNA,seq(Beg,End1)),S2 is B1+(Ln+3), E2 is S2+300, min(E2,End,E2a),to_look_for(DNA,RNAcomp),scan_mem_for_pattern_occurrence(S2,E2a,[dna(RNAcomp)],Occ),B1e is B1+(Ln-1),display_objects([seq(B1,B1e),Occ]).to_look_for(DNA,RNAcomp) :- reverse(DNA,DNAr), rna_comp(DNAr,RNAcomp).rna_comp([],[]).rna_comp([H|T],[H2|T2]) :- rna_comp_char(H,H2), rna_comp(T,T2).32

rna_comp_char(65,84). % A/Trna_comp_char(67,71). % C/Grna_comp_char(71,89). % G/Yrna_comp_char(84,82). % T/R3.4 Questions about the Overall Project StatusThis �nal group of queries are directed toward assessing the current status of the assembly of thetotal genome sequence.In the management of a large-scale sequencing project, one must know the current status withrespect to project completion. The following query identi�es which clones have been completelysequenced.Query 16: List all clones that are completely sequenced.% | ?- query16(Clones),display_objects(Clones).%% 96594/105701 9108 [110]6F3 (Kohara clone)% 3444102/3447540 3439 [630A]5F12 (Kohara clone)% 3936168/3952263 16096 [560]2A1 (Kohara clone)% 4233865/4240715 6851 [531B]3C5 (Kohara clone)% 4240030/4240715 686 [530B]6G9 (Kohara clone)% 4240715/4243455 2741 [629B]18C4 (Kohara clone)%query16(SequencedClones) :-all_dna_fragments(Frags),set_of_all(Clone,Id^Frag^(kohara_clone(Id,Clone),member(Frag,Frags),contains(Frag,Clone)),SequencedClones).We can also construct queries to assess progress in sequencing any chromosome region or clone.Query 17: List all clones that are greater than 90% sequenced.% | ?- query17(90,L),member(Clone-PerCent,L),% format('~n~3f% sequenced:~n',PerCent),display_object(Clone),fail.%% 100.000% sequenced:% 96594/105700 9107 [110]6F3 (Kohara clone)%% 90.136% sequenced:% 760100/775499 15400 [176]7E10 (Kohara clone)33

%% 100.000% sequenced:% 4240030/4240714 685 [530B]6G9 (Kohara clone)%% 100.000% sequenced:% 4233865/4240714 6850 [531B]3C5 (Kohara clone)%% 93.674% sequenced:% 4188805/4206684 17880 [534]E11C11 (Kohara clone)%% 100.000% sequenced:% 3936168/3952262 16095 [560]2A1 (Kohara clone)%% 93.768% sequenced:% 3611044/3627299 16256 [613]1B6 (Kohara clone)%% 98.882% sequenced:% 3606153/3617239 11087 [614]5B10 (Kohara clone)%% 100.000% sequenced:% 4240715/4243454 2740 [629B]18C4 (Kohara clone)%% 100.000% sequenced:% 3444102/3447539 3438 [630A]5F12 (Kohara clone)%% noquery17(X,ClonesAndPerCent) :-set_of_all(Clone-PerCent,Id^A^C^G^T^Ln^(kohara_clone(Id,Clone),kmer_usage([Clone],1,[A,C,G,T]),length_obj(Clone,Ln),PerCent is ((A+C+G+T) / Ln) * 100,PerCent >= X),ClonesAndPerCent).To keep track of unsequenced regions, we need to identify gaps between known sequence frag-ments.Query 18: Compute the gaps between sequence fragments.%% | ?- query18(Gaps),display_objects(Gaps).%% 5933/12279 6347 (gap)% 34340/49698 15359 (gap)34

% 54148/62852 8705 (gap)% 71729/83533 11805 (gap)% .% .% .query18(Gaps) :-all_dna_fragments(Frags),gaps(Frags,Gaps).Knowing the unsequenced regions in the chromosome, we can now identify the Kohara clonesthat should be used to complete the sequencing.Query 19: For any unsequenced region, give the Kohara clones that overlapthe region.% | ?- query18(Gaps), member(Gap,Gaps),% query19(Gap,Clones), display_object(Gap),display_objects(Clones).%% 5933/12279 6347 (gap)%% 383/17253 16871 [101]9E4 (Kohara clone)% 9400/24157 14758 [102]6H3 (Kohara clone)%% .% .% .query19(Region,Clones) :-set_of_all(Clone,Id^(kohara_clone(Id,Clone),overlaps(Region,Clone)),Clones).One might wish to locate the blocks of unknown sequence that could be removed with relativelysmall e�ort.Query 20: Find all gaps between sequenced fragments that are less than 700 bplong.% | ?- query20(L), member(X,L),display_objects(X),nl,fail.% 35

% 779858/783702 3845 ECOCYD (DNA fragment)% 783703/783891 189 (gap)% 783892/788928 5037 tolQecoM (DNA fragment)%%% 408099/410813 2715 ECOPHOAA (DNA fragment)% 410814/411367 554 (gap)% 411368/412335 968 ECOPROC (DNA fragment)% .% .% .% noquery20(ClonesAndGaps) :-all_dna_fragments(L),domain(ecoli_genome,Beg,End),set_of_all([X,Y,Gap],Ln^(adjacent(X,Y,L),contains(region(Beg,End),X),contains(region(Beg,End),Y),gap(X,Y,Gap),length_obj(Gap,Ln),Ln < 700),ClonesAndGaps).Given a region bounded by known sequence, one can use \primers" (strings that occur only oncein a speci�ed clone) to start the sequencing reaction. The following query identi�es the primers that,used in a DNA sequencing reaction, will supply the sequence to \�ll in" the gaps identi�ed above.Query 21: Given the output of the last query, find the sequencing primers onthe counterclockwise and clockwise strands that can be used tocomplete the sequence.% | ?- query21(L),member(X,L),display_closure(X),fail.% CCW sequencing primer AACACCAGACCCGCGACAAA(410783)% 408099/410813 2715 ECOPHOAA (DNA fragment)%% CW sequencing primer GTAACCGCACCGAAGTGGCG(411398)% 411368/412335 968 ECOPROC (DNA fragment)%% will close the following gap:% 410814/411367 554 (gap)%% The following clones contain the above gap and primers:%% 399200/415299 16100 [142]1A10 (Kohara clone)36

% 409727/425480 15754 [143]6A12 (Kohara clone)% --------------------% CCW sequencing primer CAACACGGCCACCGGTAGCA(4155544)% 4151732/4155574 3843 cytRecoM (DNA fragment)%% CW sequencing primer CCTACAAGTTCGTGCAAATT(4156143)% 4156113/4164654 8542 metJecoM (DNA fragment)%% will close the following gap:% 4155575/4156112 538 (gap)%% The following clones contain the above gap and primers:%% 4146365/4163864 17500 [538]12E3 (Kohara clone)% --------------------% CCW sequencing primer CCCTTCGGAGTTTTAGTCAC(3493602)% 3490087/3493632 3546 tufAecoM (DNA fragment)%% CW sequencing primer TAATGCCCCCATTAAGGTCT(3494112)% 3494082/3495097 1016 ECOSTR1 (DNA fragment)%% will close the following gap:% 3493633/3494081 449 (gap)%% The following clones contain the above gap and primers:%% 3487500/3502699 15200 [626]3F8 (Kohara clone)% --------------------% noquery21(GapClosure) :-query20(FragsAndGaps),set_of_all([Seq1,Pos1,Seq2,Pos2,Frag1,Frag2,Gap,Clones],Id^Clone^MustBeBefore^MustBeAfter^(member([Frag1,Frag2,Gap],FragsAndGaps),kohara_clone(Id,Clone), contains(Clone,Gap),once ccw_primer(Frag1,Clone,Seq1,Pos1),once cw_primer(Frag2,Clone,Seq2,Pos2),MustBeBefore is Pos1-20, MustBeAfter is Pos2+20,clones_that_contain(region(MustBeBefore,MustBeAfter),Clones)),GapClosure).ccw_primer(Object,Clone,Seq,CCWpos) :-sequence_of(Clone,CloneSeq), 37

location(Object,Beg,End),Start is End-30,pick(CCWpos,Start,Beg),subseq_backwards(CCWpos,20,Seq,CloneSeq),\+ (subseq_both(Pos,20,Seq,CloneSeq,_), Pos =\= CCWpos).cw_primer(Object,Clone,Seq,CWpos) :-sequence_of(Clone,CloneSeq),location(Object,Beg,End),Start is Beg+30,pick(CWpos,Start,End),subseq(CWpos,20,Seq,CloneSeq),\+ (subseq_both(Pos,20,Seq,CloneSeq,_), Pos =\= CWpos).clones_that_contain(Obj,Clones) :-set_of_all(Clone,Id^(kohara_clone(Id,Clone),contains(Clone,Obj)),Clones).display_closure([Seq1,Pos1,Seq2,Pos2,Frag1,Frag2,Gap,Clones]) :-format('CCW sequencing primer ~s(~d)~n',[Seq1,Pos1]),display_object(Frag1),nl,format('CW sequencing primer ~s(~d)~n',[Seq2,Pos2]),display_object(Frag2),nl,format('will close the following gap:~n',[]),display_object(Gap),nl,format('The following clones contain the above gap and primers:~n',[]),display_objects(Clones),format('--------------------~n',[]).This set of example queries has been included only as an illustration of what can be done witha database of the sort we have constructed. In fact, many more queries are routinely made bypracticing biologists. We believe that the set we have chosen does accurately reect the level ofe�ort required to extract a broad range of information.4 SummaryAlthough enormous resources are going into the e�ort of accumulating raw sequence data, no e�ectivemeans yet exists for allowing a biologist to query the data without employing a computing technician.As the volume of available sequence data increases, and as complete genomes begin to be assembled,the need for exible access to the data is becoming increasingly acute.A variety of database technologies can be used to achieve exible access. We have selected logicprogramming, and we have implemented a prototype system for answering queries about the E. coligenome. This system provides numerous capabilities that are not available under any other system.It allows biologically relevant queries to be answered in small fractions of the time that would berequired using more conventional tools.This system was developed as the initial step towards an environment to support comparative38

analysis of chromosomes. It will be extended to provide the database services to support queriesrelating to several chromosomes. Then, we will create user interfaces that make access to the datapossible with no special-purpose programming. At this point, we have developed one such interface,based on a restricted use of natural language, and we anticipate that other groups will wish toexperiment with other such interfaces.We believe that an approach based on an extension of the work presented in this document o�ersthe most cost-e�ective strategy for making the bene�ts of database technology accessible to thepracticing biologist. Logic programming, by integrating database queries with ease of computation,creates an appropriate foundation for building user interfaces that will enable biologists to directlyanswer the questions required to interpret genetic data.References[1] Ajioka, J. W., Smoller, D. A., Jones, R. W., Carulli, J. P., Vellek, A. E. C., Garza, D., Linnk,A. J., Duncan, I. W., and Hartl, D. L., Drosophilia Genome project: One-hit coverage in yeastarti�cial chromosomes, Chromosoma 100: 495{509 (1990)[2] Adams, M.. D., Kelley, J. M., Gocayne, J. D., Dubnick, M, Polymeropoulos, M. H., Xiao, H.,Merril, C. R., Wu, A., Olde, B., Moreno, R. F., Kerlavage, A. R., McCombie, W. R., Venter,J. C., Complementary DNA sequencing: expressed sequence tags and human genome project,Science 252: 1651{6 (1991)[3] Bachmann, B. J., Linkage map of Escherichia coli K-12, edition 8, Microbiol. Rev. 54: 130{97(1990)[4] Birkenbihl, R. P., Vielmetter, W., Cosmid-derived map of E. coli strain BHB2600 in comparisonto the map of strain W3110, Nucleic Acids Res. 17: 5057{69 (1989)[5] Billings, P. R., Smith, C. L., and Cantor, C. R., New techniques for physical mapping of thehuman genome, FASEB J. 5: 28{34 (1991)[6] Brewer, B. J., When polymerases collide: replication and the transcriptional organization of theE. coli chromosome, Cell 53: 679{86 (1988)[7] Branscomb, E., Slezak, T., Pae, R., Galas, D., Carrano, A. V., and Waterman, M., Optimizingrestriction fragment �ngerprinting methods for ordering large genomic libraries, Genomics 8:351{66 (1990)[8] Cantor, C. R., Orchestrating the Human Genome Project, Science 248: 49{51 (1990)[9] Carrano, A. V., Establishing the order of human chromosome-speci�c DNA fragments, BasicLife Sci. 46: 37{49 (1988)[10] Carrano, A. V., Lamerdin, J., Ashworth, L. K., Watkins, B., Branscomb, E., Slezak, T., Ra�,M., de Jong, P. J., Keith, D., McBride, L., et al., A high-resolution, uorescence-based, semiau-tomated method for DNA �ngerprinting, Genomics 4: 129{36 (1989)[11] Carrano, A. V., de Jong, P. J., Branscomb, E., Slezak, T., and Watkins, B. W., Constructingchromosome- and region-speci�c cosmid maps of the human genome, Genome 31: 1059{65 (1989)39

[12] Garza, D., Ajioka, J. W., Burke, D. T., and Hartl, D. L., Mapping the Drosophila genome withyeast arti�cial chromosomes Science 246: 641{6 (1989)[13] Huang, X. Q., Hardison, R. C., and Miller, W., A space-e�cient algorithm for local similarities,CABIOS 6: 373{81 (1990)[14] Jaworski, M., and Edwards, E., Integrated genetic databases in the study of neuropsychiatricdiseases: inborn errors of cerebral metabolic pathways?, Prog Neuropsychopharmacol Biol Psy-chiatry 15: 171{81 (1991)[15] Kazic, T., Michaels, G. S., Overbeek, R., Zawada, D., Dunham, D., and Rudd, K. E., Anintegrated database of E. coli chromosomal information to support querie s and rapid prototyping,AAAI Workshop on Approaches to Classi�cation and Pattern Recognition in Molecular Biology,Anaheim, Calif., July 12th, 1991.[16] Kohara, Y., Akiyama, K., and Isono, K., The physical map of the whole E. coli chromosome:Application of a new strategy for rapid analysis and sorting of a large genomic library, Cell50:495{508 (1987)[17] Klose, J., Systematic analysis of the total proteins of a mammalian organism: principles, prob-lems and implications for sequencing the human genome Electrophoresis 10: 140{52 (1989)[18] Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., Genomic organization and physical map-ping of the transfer RNA genes in Escherichia coli K12, J. Mol. Biol. 212: 579{98 (1990)[19] Love, J. M., Knight, A. M., McAleer, M. A., and Todd, J. A., Towards construction of a highresolution map of the mouse genome using PCR-analysed microsatellites, Nucleic Acids Res. 18:4123{30 (1990)[20] Link, A. J., and Olson, M. V., Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution, Genetics 127: 681{98 (1991)[21] Medigue, C., Henaut, A., and Danchin, A., Escherichia coli molecular genetic map (1000 kbp):update I, Mol. Microbiol. 4: 1443{54 (1990)[22] Michaels, G., Kazic, T., Overbeek, R., Zawada, D., Dunham, G., Rudd, K., and Smith, C.L., Logic programming-based system for querying E.coli Chromosomal Information, Cold SpringHarbor Genomic Mapping and Sequencing meeting, May 8{12, 1991[23] McKusick, V. A., Current trends in mapping human genes FASEB J. 5: 12{20 (1991)[24] Neidhardt, F. C., Appleby, D. B., Sankar, P., Hutton, M. E., and Phillips, T. A., Genomicallylinked cellular protein databases derived from two-dimensional polyacrylamide gel electrophoresisElectrophoresis 10: 116{22 (1989)[25] Noda, A., Courtright, J. B., Denor, P. F., Webb, G., Kohara, Y., and Ishihama, A., Rapididenti�cation of speci�c genes in E. coli by hybridization to membranes containing the orderedset of phage clones, Biotechniques 10: 474, 476{7 (1991)[26] Olson, M. V., Dutchik, J. E., Graham, M. Y., Brodeur, G. M., Helms, C., Frank, M ., MacCollin,M., Scheinman, R., and Frank, T., Random-clone strategy for genomic restriction mapping inyeast, Proc. Natl. Acad. Sci. U.S.A. 83: 7826{30 (1986)40

[27] Rudd, K. E., Miller, W., Ostell, J., and Benson, D. A., Alignment of Escherichia coli K12 DNAsequences to a genomic restriction map, Nucleic Acids Res. 18: 313{21 (1990)[28] Pearson, W., Rapid and sensitive sequence comparison with FASTP and FASTA, Methods inEnzymology 183: 63{98 (1990)[29] Stephens, J. C., Cavanaugh, M. L., Gradie, M. I., Mador, M. L., and Kidd, K. K., Mapping thehuman genome: current status, Science 250: 237{44 (1990)[30] Sulston, J., Mallett, F., Staden, R., Durbin, R., Horsnell, T., and Coulson, A., Software forgenome mapping by �ngerprinting techniques, Comput. Appl. Biosci. 4: 125{32 (1988)

41

AppendixSupported Predicates for Querying the E. coli Databaseadjacent(-Object1,-Object2,+ListOfObjects)Object1 and Object2 are adjacent in ListOfObjects (and the last elementin the list is considered to be adjacent to the first)align_2_seqs(+String1,+String2,-Corr,-Score)Align the two lists of ascii DNA characters using a Smith-Watermanalgorithm. Corr is set to a list of terms of the form P1-P2 whereP1 and P2 are displacements (integers from 0) into Seq1 and Seq2.align_two_objects(+Obj1,+Obj2)aligns the sequence of Obj1 with that of Obj2 and prints the resultaligned_sequences(+String1,+String2,-Score,-Aligned1,-Aligned2)This is used to produce aligned versions of Seq1 and Seq2 (i.e.,the aligned sequences that are returned are lists of characters that haveindels inserted at the appropriate locations).alignment_parameters(-U,-V)returns current Smith-Waterman deletion cost parameters (mismatch isalways -18, and a match is always +18)all_dna_frag_rsites(-AllDna_FragRsites)gets a list of all restriction sites in sequenced fragments of DNAall_dna_fragments(-AllFragments)gets a list of all sequenced fragments of DNAall_genes(-AllGenes)gets a list of all the genesall_known_genes(-AllKnownGenes)gets a list of all structural genes and mapped genesall_kohara_clones(-AllClones)gets a list of all of the Kohara clonesall_kohara_rsites(-AllKoharaRsites)gets a list of all of the Kohara restriction sitesall_mapped_genes(-MappedGenes)gets a list of unsequenced, but mapped genes42

all_translated_genes(-TranslatedGenes)gets a list of translated genesamino_acid(?OneCharCode,?ThreeCharCode,?AminoAcid)table of codes used to represent amino acidsbetween(+Point1,+Point2,+Point3)succeeds if Point2 is between Point1 and Point3. This will be the caseiff the shortest path on the circular chromosome from Point1 to Point3goes through Point2quick_sim(+Seq,+PrintFlag,+MaxMatches,-Matches)Seq represent a sequence fragment to be quick_simed against the ecolidatabase. PrintFlag should be 0 or 1 (print). Matches comes back asa list of terms of the formregion(FragId,QueryBeg,QueryEnd,FragBeg,FragEnd,Score)bp_to_min(?BasePairs,?Minutes)converts (using just a simple formula) between BasePair coordinates andMinutes on the genetic mapchar_stats(+Object,+Size,-CharStats) For a given object (that may or may nothave been sequenced), this goes through the sequence cutting it intopieces of length Size. Then it accumulates counts of each of the types ofcharacters (A,C,G,T, and Other) for each interval. The list of CharStatsis actually a "list of objects", which means that each interval has alocation and can be displayed using display_object/1. Thus, you can getcharacter count statistics and then just display them usingdisplay_objects/1. However, the more common use is to feed them intoeither gc_histogram/1 or gc_histogram_averaged_window/1.clean_pins(+Pins,-CleanedPins)Pins must be a list of pairs of the form P1-P2. CleanedPins is set to alist in which "pins" do not cross. Thus, [3-22,4-23,5-17,7-25] wouldproduce [3-22,4-23,7-25] as the "cleaned" pins.codon(?Char1,?Char2,?Char3,?ThreeCharCode,?OneCharCode)Table of the genetic code, where Char1-3 are ascii numeric values.codon_usage(+Objects,-Counts)Objects is a list of objects. Counts is set to a list of 65 integers.The first is a count of the number of "invalid" codons (i.e., those thatcontain ambiguous or unsequenced characters). The remaining 64 correspondto the counts of AAA, AAC, AAG, AAT, ACA,...TTT.common_seq_at_least_k_long(+Objects,+Min,-Seqs)43

Locates a sequence that is at least Min long in all Objects and thenfinds all occurrences in the objects and sets Seqs to the set ofoccurrences.common_seq_at_least_k_long_both_strands(+Objects,+Min,-Seqs)Locates a sequence that is at least Min long in all Objects and thenfinds all occurrences in the objects and sets Seqs to the set ofoccurrences (looking at both strands)common_seqs_at_least_k_long(+Objects,+Min,-SubSeqs)Computes the set of values reurned by common_seq_at_least_k_long/3.common_seqs_at_least_k_long_both_strands(+Objects,+Min,-SubSeqs)Computes the set of values reurned bycommon_seq_at_least_k_long_both_strands/3.common_sub_sequence(+SequenceObjects,+Length,-Common,-Positions)SequenceObjects must be a list of sequence objects (produced bysequence_at/3 or sequence_of/2). Suppose this list has length N.Then Positions will be set to a list of N positions of occurrencesof a Common string of the given Length.common_sub_sequence_both_strands(+SequenceObjects,+Length,-Common,-Positions)SequenceObjects must be a list of sequence objects (produced bysequence_at/3 or sequence_of/2). Suppose this list has length N.Then Positions will be set to a list of N positions of occurrencesof a Common string of the given Length. The search proceeds bypicking a sequence in the "forwards" strand of the first object, andthen by taking strings from either strand of the following objects.The positions are either integers (same strand) or i` (for reversestrand).compL(+String,?Complement)produces the Watson-Crick complement of a string. Thus,compL("AACG",X) binds X to "TTGC"complement(+String,-ReversedComplement)produces the reversed complement of String. Thus, complement("AACG",X)binds X to "CGTT"computed_dna_frag_rsite(+LB,+UB,?Beg,?End,-Cuts,+Enzyme)LB and UB must be the bounds of a sequenced section of DNA. Beg and Endare then the beginning and end of a restriction site for the designatedenzyme.computed_restriction_fragment(-Beg,-End,+Enzymes,-UsedEnzymes,+LB,+UB)Given bounds LB and UB and a list of restriction Enzymes, find Beg and44

End that delimit a restriction fragment, and bind UsedEnzymes to a listcontaining just the two cutting enzymes.computed_restriction_sites_in_object(+Obj,+Enzymes,-Sites)returns a list of computed restriction sites fromthe given set of Enzymes that occur in Obj.cont_gc_histogram(+Object,+SizeOfWindow)Given a sequenced Object and a size of a window, produce a histogramwith one entry for each position in the object which can be the centerof a window. The histogram gives the average GC content of the window.contains(+ContainingObject,+ContainedObject)succeeds if the first object contains the secondconvergent_genes(-Gene1,-Gene2)binds Gene1 and Gene2 to convergent genes (which are objects, not IDs)direction(+Gene,?Direction)Gene must be a gene, and direction gets bound to clockwise orcounterclockwise.disp_seqs(+Ids,+Strings)This is used to display a set of sequences that might be over 50characters long. Thus,disp_seqs([seq1,seq2],[S1,S2])would interleave 50 characters of each sequence in a visual display.disp_seqs(+Ids,+Strings,+StartingLocations)like disp_seqs/2, except that the positions of sequences can be specified.display_object(+Object)displays an arbitrary object (gene, dna_fragment, sequence object, etc.)display_objects(+ListOfObjects)displays a list of objectsdist(+Point1,+Point2,-Distance)gets the Distance from Point1 to Point2 on the circular chromosomedivergent_genes(-Gene1,-Gene2)gets two divergent genes (Gene1 and Gene2 are adjacent; Gene1 is expressedccw and Gene2 cw)dna_frag_rsite(?Beg,?End,?Enzyme) 45

Beg and End delimit a site that is matched by the cutting pattern forthe designated Enzyme in a sequenced section of the genomedna_frag_rsite(?Object)Object is bound to an object representing a DNA fragment restriction site.dna_fragment(?Id,?Beg,?End)Id is the ID of a sequenced fragment of the genome beginning at Beg andending at Enddna_fragment(?Id,?Object)Id is the ID of a sequenced fragment represented by the object Object.end_of(+Object,-EndLocation)Equivalent to location(Object,_,EndLocation) for noncomposite objects. Forcomposite objects, it gives the location of the last piece.find_pp_match(+Pat,+Gene,-PolyPepTide)Pat must be an encoding of a pattern to scan for in the translation ofGene. PolyPepTide is bound to a section of the translation thatmatches. Pat is a list of pattern units. Each unit is one of thefollowing:1. a string of 1-character amino acid codes, with ? to representan arbitrary amino acid (e.g., "CP???H"),2. the alternative of two patterns P1 and P2, which is represented asP1;P2To illustrate,| ?- gene(thrA,Gene), find_pp_match(["RE?E",("H";"L")],Gene,Match),display_object(Match).2280/2294 15 thrA (expressed) clockwiseRELE Lfirst_n(+List,+N,-ListOfFirstN,-AllButFirstN)ListOfFirstN is set to be a list of the first N elements of List, andAllButFirstN is bound to a list of the remaining elements in List.gap(+Object1,+Object2,-Gap)Gap is bound to an object representing the gap between Object1 andObject2. 46

gaps(+Objects,-Gaps)Gaps is bound to a list of any gaps that occur between the objects in thelist Objects.gc_histogram(+CharStats)writes a histogram of the GC contents of the intervals described inCharStats (produced by char_stats/3).gc_histogram_averaged_window(+CharStats)gc_histogram/1 just produces a bar for the GC percentage for eachinterval, with the bar corresponding to the midpoint of the interval.This looks at adjacent intervals, setting the bar to represent theGC percentage for two adjacent intervals. Thus, there is an overlappingeffect.gene(?Id,?Beg,?End,?Direction)Beg and End delimit a transcribed section of the genome, where Directionis either counterclockwise or clockwise, giving the direction oftranscription.gene(?Id,?Object)Object is an object representing the gene with ID Id.This predicate is identical to structural_gene/2. To get only genes thatare translated, use translated_gene/2.genetic_code(?DNA,?AminoAcids)DNA is a list of Ascii characters representing DNA, and AminoAcids isset to a list of 1-char-codes of the corresponding amino acids producedby translation of the codegroup(+ListOfKeyValuePairs,-Groups)This routine takes a list of sorted key-value pairs and groups them.For example group([3-a,3-b,4-c,5-a,5-c],X)would bind X to [3-[a,b],4-[c],5-[a,c]]helix(+StartLoop,+LoopMin,+LoopMax,-Ln,-SizeLoop)StartLoop specifies a point in the genome. This routine considers allpossible helices that could be formed with perfect pairing and loopscontaining LoopMin to LoopMax characters. Ln is set to the maximum lengthof the stem of a helix, and SizeLoop gets the size of the loop thatproduced the maximal stem length.histogram(+ListOfPairs)ListOfPairs must be a list of X-Y pairs. A histogram is printed on theterminal to represent the data (one line of asterisks for each pair).47

initan initialization routine that must be run before access to sequence dataare made. The routine loads sequences from the file "sequences" into mainmemory, where C routines access the data.is_left(+Point1,+Point2)succeeds if the shortest path from Point2 to Point1 is counterclockwise("Point1 is to the left of Point2")is_right(+Point1,+Point2)succeeds if the shortest path from Point2 to Point1 is clockwise("Point1 is to the right of Point2")kmer-usage(+Objects,+K,-Counts)Accumulates a list of K-mer counts. For example,| ?- gene(thrA,G), kmer_usage([G],1,L).G = gene(thrA,207,2669,clockwise),L = [0,553,614,692,604]Here, there were0 - invalid 1-mers (ambiguous or unsequenced)553 - As614 - Cs692 - Gs604 - Tsknown_gene(?Id,?Gene)either a structural gene or a mapped genekohara_clone(?Id,?Object)Object is an object representing the Kohara clone with ID Id.kohara_clone(?Id,?Beg,?End)The Kohara clone with ID Id begins at Beg and ends at End.kohara_enzymes(?Enzymes)the enzymes that Kohara used to construct his mapkohara_restriction_fragment(-Beg,-End,+Enzymes,-UsedEnzymes)There is a Kohara restriction fragment from Beg to End boundedby cutting sites for the two enzymes in UsedEnzymes, which areboth elements of Enzymes. 48

kohara_rsite(?Beg,?End,?Enzyme)Beg and End bound a cutting site for Enzyme in the Kohara map.kohara_rsite(?Object)Object represents a Kohara restriction site.kohara_rsites_in_object(+Object,-Rsites)binds Rsites to the list of Kohara restriction sites that occur in Objectlength_obj(+Object,-Ln)Ln is the length of Object.length_objects(+Objects,-Ln)binds Ln to the sum of the lengths of the objects in the list Objectslocation(+Object,?Beg,?End)Object has a piece that begins at Beg and ends at End. Normally, objectsare not composite, so this succeeds just once. However, for compositeobjects, it will succeed multiple times.longest_common_subseq(+Seqs,-Common,-Positions)Seqs must be a list of sequence objects (produced by sequence_at/3 andsequence_of/2). Suppose that the length of this list is N. Then, Commonstring and Positions are bound to a set of N unique positions (eachfrom the corresponding sequence object). Thus,longest_common_subseq([Prefix,Gene,Gene],Common,[P1,P2,P3])would find the longest sequence that occurred in Prefix and twice in Gene.P1 would get the occurrence in Prefix. This call is determinate.map_restriction_fragments(+Object,+Enzymes,-Map)produces a list of restriction fragments (which are objects) which wouldbe formed by Enzymes cutting Object. One can display the map usingdisplay_objects/1. Object must be sequenced.mapped_gene(?Id,-Gene)used to access genes that have been mapped, but not sequencedmapped_gene(?Id,?Mapper,?Dir,?MapLoc,?BasePair)Mapper is the name of the person who did the map (e.g., 'Bach.' forBarbara Bachmann); Dir is 'clockwise', 'counterclockwise', or 'unknown';MapLoc is the location on the map, using whatever units the Mapper gave;BasePair is the location on the chromosome that we computed by convertingthe MapLoc.match(+Pattern,+String) 49

If Pattern is a string that may contain ambiguous characters (Ns, Rs, Ys,etc.) and String is a string of DNA, then this succeeds if each characterin the mattern matches the corresponding character in the string. Anambiguous character in the pattern matches the appropriate values in thestring. On the other hand, an ambiguous character in the string willmatch only that exact character in the pattern (preventing a string of Nsin the string from matching every restriction enzyme).maxL(+List,-Maximum)Maximum is the maximum element in List.max_match(+Pattern,+String,-Matched)Matched is set to the maximum number of characters that the patternmatches the string.minL(+List,-Minimum)Minimum is the minimum value in List.minutes_to_bp(+Min,-Bp)converts a coordinate given in minutes on the Bachmann genetic map to abase pair location (by interpolation between points that occur on both thegenetiuc and physical maps).on_circular_chromosome(+X,-XonChrom)XonChrom is X modulo the length of the chromosome.once(+Goal)allows a single solution of Goaloverlaps(+Object1,+Object2)succeeds iff Object1 overlaps Object2overlaps(+Object1,+Object2,-OvBeg,-OvEnd)like overlaps/2, except that the region of overlap is returnedpick(-X,+StartOfRange,+EndOfRange)This clause allows you to pick a value of X in the range StartOfRange toEndOfRange. The values may be ascending or descending.polypeptide(?Id,?PolyPepTide)used to access translations of structural genes that code for proteinspolypeptide(?Id,?Beg,?End,?Dir,?AAs)For the translated gene given by translated_gene(Id,Beg,End,Dir), AAs isa list of "chunks of the polypeptide", where each chunk is a list of the1-character amino acid codes. This predicate always returns AAs as a listof one element, which is the translation of the region Beg/End. Other50

routines occasionally return the translation broken into sublists; theseare separated by a space when the string is displayed.print_codon_usage(+Counts)displays the meaning of the 65 integers in the list Counts. For example,| ?- gene(thrA,G),codon_usage([G],L),print_codon_usage(L).number valid codons = 821number invalid codons = 0alanine: 92 11.21%GCA: 15 1.83%GCC: 36 4.38%GCG: 27 3.29%GCT: 14 1.71%arginine: 47 5.72%AGA: 0 0.00%AGG: 2 0.24%CGA: 3 0.37%CGC: 19 2.31%CGG: 5 0.61%CGT: 18 2.19%asparagine: 40 4.87%AAC: 18 2.19%AAT: 22 2.68%...print_gc_content(+Counts)displays GC content represented by Counts returned by kmer_usage/2.For example,| ?- gene(thrA,G), kmer_usage([G],1,L), print_gc_content(L).invalid bases: 0Gs, Cs: 1306 53.02%As, Ts: 1157 46.98%G = gene(thrA,207,2669,clockwise),L = [0,553,614,692,604]print_kmer_usage(+Counts,+K)displays the Counts returned by kmer_usage/2. For example,51

| ?- gene(thrA,G), kmer_usage([G],1,L), print_kmer_usage(L,1).invalid 1mers: 0A: 553 22.45%C: 614 24.93%G: 692 28.10%T: 604 24.52%G = gene(thrA,207,2669,clockwise),L = [0,553,614,692,604]restriction_site(+Enzyme,-Pattern,-DisplacementToCut)returns the pattern and position of the cut for a specified restrictionenzymerestriction_sites_in_object(+Obj,+Enzymes,-Sites)returns a list of restriction sites (both computed and Kohara sites) fromthe given set of Enzymes that occur in Obj. To get just the computedrestriction sites, use computed_restriction_sites_in_object/3.scan_mem_for_pat(+Pattern,+Beg,+End,-Matches)To scan a section of the chromosome for the occurrence of apattern, one uses the routine scan_mem_for_pattern_occurrence/4:| ?- gene(aceE,Gene),start_of(Gene,Beg),end_of(Gene,End),scan_mem_for_pattern_occurrence(Beg,End,[pvar(p1,dna("RYRYRY")),elipses(0,400),repeat(p1,1,1,0)],Occ),display_object(Occ).123436/123464: sequence123436 GCGTGC TCAGTATCTGATCGACCA ACTGCGene = gene(aceE,123344,126004,clockwise),Beg = 123344,End = 126004,Occ = seq(123436,123464,spaces([123442,123460]))sequence_at(+Beg,+End,-SequenceObject)produces a sequence object representing the section of the genome from Begto End.sequence_of(+Object,-SequenceObject)produces a sequence object representing the sequence of a given object.52

sequenced(+Object)succeeds if Object has been entirely sequencedset_sw_parameters(+U,+V)set insertion costs for the Smith-Waterman alignment algorithm.Mismatches cost -18; matches have a similarity of +18. Insertion of nindels costs -(U + nV).set_sw_parameters(U,V)sets the costs of insertions for the Smith-Watermanalgorithm. "Identical matches" are worth 18 points of similarity forDNA/RNA. The cost of a k-indel insertion is U+kV. Default settings forthe DNA/RNA alphabet (which is the default alphabet) are U=0, V=18.similarity_search(+String1,+Id1,+String2,+Id2,+MS,+Q,+R,+K,+Print,-Sim)This predicate invokes the similarity search generously contributed byXiaoqiu Huang and Webb Miller. Seq1 and Seq2 are lists of asciicharacters. Id1 and Id2 are atoms. MS, Q, R, and K are as describedabove. Print_flag == yes -> write out the report of similarities;anything else will suppress printing. Similarities are bound to a list inwhich each element is of the formsimilarity(Score,NumCharMatched,LengthOfAlignmentWithIndels,NumberMisMatches,Start1,End1,Start2,End2)Here is a little example::- similarity_search("aaaaaaaaacccccccccggggggggg",seq1,"ccccaacccccaaaaacccc",seq2,-1.0,2.2,0.2,2,yes,Similarities).produces the following output:==================================Match Mismatch Gap-Open Penalty Gap-Extension Penalty1.0 -1.0 2.1 0.1Upper Sequence : seq1Length : 27Lower Sequence : seq2Length : 20***Number 1 Local AlignmentSimilarity Score : 9Match Percentage : 100%Number of Matches : 9 53

Number of Mismatches : 0Total Length of Gaps : 0Begins at (5, 12) and Ends at (13, 20)0 .5 aaaaacccc|||||||||12 aaaaacccc***Number 2 Local AlignmentSimilarity Score : 8.4Match Percentage : 68%Number of Matches : 11Number of Mismatches : 0Total Length of Gaps : 5Begins at (8, 5) and Ends at (18, 20)0 . : .8 aaccccc cccc|||||||-----||||5 aacccccaaaaaccccX = [similarity(90,9,9,0,5,13,12,20),similarity(84,11,16,0,8,18,5,20)]similarity_search(+String1,+String2)runs the local similarity search and displays the best 5 alignmentssites_in_object(+Object,-Sites)Sites is set to a list of objects representing "interesting sites" thatoccur in Object. You can use display_objects/1 to display the objects.sites_in_object_both(+Object,-Sites)Sites is set to a list of objects representing "interesting sites" thatoccur in Object, looking at both strands.start_of(+Object,-StartingLocation)equivalent to location(Object,StartingLocation,_) for noncompositeobjects. For composite objects, it gives the location of the first piece.sub_list(+Pattern,+String,-LocOfMatch)finds a location in String (location values start from 1) for whichPattern matches.sub_seq(+Position,+Ln,?String)a predicate that takes some of the pain out of invoking subseq/4.Position is an expression that gets evaluated. Then, String is set to the54

Ln characters that occur at that position (on the clockwise strand) atthat location.subseq(?Position,?Length,?String,+SequenceObject)as described in the tutorialsubseq_backwards(?Position,?Length,?String,+SequenceObject)as described in the tutorialsubseq_both(?Position,?Length,?String,+SequenceObject,-Direction)as described in the tutorialsubseqs_in_obj(+Object,+String,-Positions)binds Positions to a list of all occurrences of String in the Object (whichdoes not have to be a sequence object). This predicate fails if thereare no occurrences.sum_gaps(+ListOfGaps,-Sum)ListOfGaps must be a list of gap objects. Sum is bound to the sum of thelengths of the gaps.trans_to_polypeptide(+Beg,+End,+Dir,-AAs)translates the DNA string in the region Beg/End in the direction given byDir, setting AAs to the list of 1-character amino acid codestranslated_gene(?Id,?Object)Object is an object representing the gene with ID Id. Furthermore,the gene has a length that is a multiple of 3, and it begins withATG or GTG and terminates with either TGA, TAA or TAG.unique(+Beg,+End)succeeds if the region Beg/End has been sequenced, and if the value occursjust once.write_list(+List)displays the list of Prolog terms
55

