Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439-4801

ANL-92/17

User’s Guide to the p4 Parallel Programming System
by

Ralph Butler* and Ewing Lusk

Mathematics and Computer Science Division

October 1992
(Revised, April 1994)

This work was supported in part by the Applied Mathematical Sciences subprogram of
the Office of Energy Research under Contract W-31-109-Eng-38.

*Also of The University of North Florida, Department of Computer Science,
Jacksonville, Florida

CONTENTS

Contents

Abstract

1 Introduction

2 Structure of the Distribution Directory

3 Installing p4
3.1 [Installing the p4 System o
3.2 Imstalling the Documentation

3.3 Examples included with the Distribution

4 Getting Started
4.1 A Message-Passing Exampleo Lo
4.2 Program Description Lo o

4.3 Analysis of the Program o L.

5 Specifying Processes in the Procgroup File

S ot W W

[B e I & N =)

Developing a Simple p4 Program

6.1 A Minimal Example 0oL,
6.2 A Minimal Example in Fortran
6.3 A More Complicated Example

Command-Line Arguments

The p4 Function Library

8.1 Ovwerview of the Library

8.2 Return Codes from p4 Functions

p4 Functions for Managing Processes and Clusters
9.1 Functions for Process Management

9.2 Functions for Cluster Management

10 Functions for Message Passing

10
10
11
11

14

14
14
15

15
15
17

18

CONTENTS

10.1 Explicit Sending and Receiving of Messages
10.2 Global Operations

11 Functions for Shared Memory

11.1 Managing Shared and Local Memory
11.2 Shared Memory Data Types
11.3 Monitor-Building Primitives
11.4 Some Useful Monitors

12 Functions for Timing p4 Programs

13 Functions for Debugging p4 Programs

14 Miscellaneous Functions

15 Fortran Interface

16 Faster Startup with the Secure Server

17 Utilities for Managing a p4 Session

18 Creating Logfiles for Upshot

18.1 User-Specified Events,
18.2 Creating Log Files in Fortran
18.3 Examining Log Files with Upshot

18.4 Automatic Logging of p4 Events

19 Running p4 on Specific Machines

19.1 Invoking a p4 Program
19.2 Machine-Specific Notes

20 Some Common Problems and their Solutions

21 Concept Index

22 Function Index

ii

18
19

21
22
23
23
24

26

26

29

29

33

34

35
35
37
38
39

39
39
41

43

46

46

CONTENTS

References

iii

47

Abstract

This is both the reference manual and the User’s Guide for the p4 parallel programming
system. It contains definitions of all functions for both C and Fortran, examples, a brief
tutorial, and discussions of related systems.

1 INTRODUCTION 1

1 Introduction

P4 is a library of macros and subroutines developed at Argonne National Laboratory for
programming a variety of parallel machines. A paper describing its functions and use
is [2]. Its predecessor was the m4-based “Argonne macros” system described in the Holt,
Rinehart, and Winston book Portable Programs for Parallel Processors, by Lusk, Overbeek,
et al., from which p4 takes its name[l]. The current p4 system maintains the same basic
computational models described there (monitors for the shared-memory model, message-
passing for the distributed-memory model, and support for combining the two models)
while significantly increasing ease and flexibility of use. See 4 [Getting Started], page 6 for
a simple example.

P4 is intended to be portable, simple to install and use, and efficient. It can be used to
program networks of workstations, advanced parallel supercomputers like the Intel Touch-
stone Delta and the Alliant Campus HiPPI-based system, and single shared-memory multi-
processors. It has currently been installed on the following list of machines: Sequent Sym-
metry (Dynix and PTX), Convex, Encore Multimax, Alliant FX/8, F'X/800, and I'X/2800,
Cray X/MP, Sun (SunOS and Solaris), NeXT, DEC, Silicon Graphics, HP, and IBM RS6000
workstations, Stardent Titan, BBN GP-1000 and TC-2000, Kendall Square, nCube, Intel
IPSC/860, Intel Touchstone Delta, Intel Paragon, Alliant Campus, Thinking Machines’
CM-5, and the IBM SP-1 (TCP/Ethernet, TCP /switch, EUI, and EUI-H). It is not diffi-
cult to port to new systems. Although p4 tries to be completely portable, there are a small
number of specific exceptions (See 19.2 [Machine-Specific Notes|, page 41) that may need
to be taken into account on a given machine.

You can obtain the complete distribution of p4 by anonymous ftp from info.mcs.anl.gov
in the directory ‘pub/p4’. See the README file there for recent news on what is available.
Take the file ‘p4-1.4.tar.Z’. The distribution contains all source code, installation in-
structions, this reference manual, and a collection of examples in both C and Fortran. Alog
is included in the distribution with p4. The file ‘upshot.tar.Z’ contains display facilities
that can be used with p4 and other systems.

To ask questions about p4, report bugs, contribute examples, etc., you can send mail to
p4@mcs.anl.gov.

The current release is version 1.4. You can check which version of the source code
you have by looking at the file ‘1ib/p4_patchlevel.h’in the distribution. You can check
which version of the object code you have linked to by running any p4 program with the
command-line option -p4version (See 7 [Command-Line Arguments], page 14).

Salient features of p4 include:

e support for both message-passing and explicit shared memory operations
e xdr support for heterogeneous networks
o World Wide Web version of the manual for on-line help

e SYSV IPC support for shared-memory multiprocessing on workstations that support
multiple processors, and simulating it on uniprocessors

e instrumentation for automatic logging /tracing

2 STRUCTURE OF THE DISTRIBUTION DIRECTORY 2

e automatic or user control of message-passing/buffer-management
e error/interrupt handling

e an optional p4 server for quick startup on remote machines

A useful companion system is the alog/upshot logging and X-based trace examination
facility. (See 18 [Creating Logfiles for Upshot], page 35.)

2 Structure of the Distribution Directory
The p4 source code distribution contains the following files and subdirectories:

CHANGES Changes new to this release of p4.

Makefile The makefile for making the p4 system, doing the installation, and making make-
files for user applications.

OPTIONS A file controlling various compile-time options, such as whether System V
shared-memory operations are to be enabled, whether system debug message printing
is to be enabled, and whether automatic instrumentation of internal p4 operations
for the upshot logging and tracing program is to be done. It also contains the full
pathname of the listener to be used.

README General instructions, including how to build and install pr.
alog Source code for the ALOG tracing package.

bin Scripts for starting and killing servers, killing runaway p4 processes, merging upshot
logfiles, and other useful utilities.

contrib Examples contributed by p4 users.
contrib_f Fortran examples contributed by users.

doc The man page, together with this manual and supporting files, including a reference
card for p4 routines.

include The include directory for making p4 applications. Most of these are (hard) links
into the 1ib directory.

lib The source code for the p4 system.

lib_f The Fortran interface for p4.

messages A basic set of message-passing examples in C.
messages_T A basic set of message-passing examples in Fortran.

misc A few odds and ends of programs that fit no special category. Some of these have
been found useful during debugging.

3 INSTALLING P4 3

monitors A basic set of shared-memory examples in C.
servers The secure and insecure servers.
usc The portable microsecond clock routines.

util Assorted supporting files, particularly for making the p4 distribution.

3 Installing p4

In this section we describe how to install the p4 library, either for your own personal use
or for the use of everyone at your site. In the first case you do not need any super-user
privileges. In the second case, you may or may not, depending on how things are configured
at your site. We also describe how to install and run the examples that come with p4,
the online help system (this manual as a World Wide Web document) and how to build
a working directory for your own programs yet share the installed copy of p4 with other
users.

3.1 Installing the p4 System

To build p4, position yourself in the top-level p4 directory (Here we refer to this directory
as p4, but you may have it as p4-1.4 or something similar) and type:

make all P4ARCH=<machine>

where <machine> is one of the machine names listed in ‘p4/util/machines’, currently:

3 INSTALLING P4

SUN Sun-3, Sun386i, Sparc-1, Sparc-2, or Sparc-10 workstations
SUN_SOLARIS Sun workstations running Solaris

HP HP workstations

DEC5000 DEC 5000 workstations

ALPHA DEC Alpha workstations

NEXT 68030- or 68040-based NeXT workstations

RS6000 IBM RS 6000 series workstations

LINUX IBM-compatible PC’s running the LINUX operating system
IBM3090 IBM 3090 running IBM’s version of UNIX, AIX

BALANCE Sequent Symmetry shared-memory multiprocessor
SYMMETRY Sequent Symmetry shared-memory multiprocessor
SYMMETRY PTX Sequent Symmetry shared-memory multiprocessor PTX OS
MULTIMAX Encore Multimax shared-memory multiprocessor

GP_1000 BBN GP-1000

TC_2000 BBN TC-2000

TC_2000_TCMP BBN TC-2000 with the TCMP message-passing library
IPSC860 Intel IPSC/860 (nodes only)

DELTA Intel DELTA

PARAGON Intel Paragon

TITAN Stardent Titan

SGI Silicon Graphics workstations

CRAY Cray X/MP or C-90

FX8 Alliant FX/8

FX2800 Alliant FX /2800 or FX/800

FX2800_SWITCH Alliant FX/2800 or }'X /800, with CAMPUS HiPPI switch
KSR Kendall Square KSR-1

CM5 Thinking Machines” CM-5

SP1 IBM SP-1 with TCP interface to either Ethernet or switch
SP1_EUI IBM SP-1 with IBM’s EUI interface to the switch
SP1_EUIH IBM SP-1 with IBM’s experimental EUIL-H switch interface
NCUBE Ncube

MEIKO0_CS2 Meiko Computing Surface

For example:
make all P4ARCH=SYMMETRY
The all is optional, for example
make P4ARCH=SYMMETRY

This will create a machine-dependent ‘Makefile’in each subdirectory, make the p4 library,
and compile and link a subset of the examples.

To add a new machine type, or to change the characteristic parameters associated with
an existing one, you can edit the file ‘p4/util/defs.all’.

To save disk space, various intermediate object files can be removed with

make clean

3 INSTALLING P4 5

The system can be restored to its original, machine-independent state with
make realclean

Note that this removes the machine-dependent Makefiles in each directory, so the operation
is not idempotent.

It is also possible to install (or clean) only some of the directories:

make all P4ARCH=SUN DIRS=messages
make clean DIRS=’monitors messages’

To install only the Makefiles in all subdirectories, use:
make makefiles P4ARCH=<machine>

To install the necessary library and include files in a directory everything that is needed to
compile and link p4 programs, do:

make install INSTALLDIR=<dir>

This will create a p4 directory in <dir>, build a minimal set of directories, copy the relevant
‘.a’ and ‘.h’ files into it, and test the installation by mking a small set of examples.

See 4 [Getting Started], page 6 for instructions on how to run some example programs
after you have installed p4.

3.2 Installing the Documentation

The directory ‘p4/doc’ contains this manual as well as files that require installation. This
manual was prepared with the latexinfo package from GNU emacs. The files in ‘p4/doc’
are:

p4.tex the latex source for this manual, which uses the latexinfo style

latexinfo.sty, titlepage.sty the style files needed to latex this manual

p4.html an html version of this manual, suitable for being installed in your World Wide
Web pages.

p4.txt plain ascii text of the manual, in case nothing else works.
p4refcard.ps postscript version of a reference card
p4.1 unix man page for the p4 library
p4f.1 unix man page for the Fortran interface to p4
fiber status of the work on direct fiber channel
The Postscript version of this manual is available by anonymous ftp from info.mcs.anl.gov,
in the directory ‘pub/p4’. The file to get (in binary mode) is ‘p4-manual.ps.Z’. Thereis also

a paper there giving an overview of p4, in ‘p4-paper.ps.Z’. This manual is also available
through the World Wide Web at http://www.mcs.anl.gov/home/lusk/p4/p4-manual/p4.html.

4 GETTING STARTED 6

3.3 Examples included with the Distribution

A good way to see how various p4 functions are used is to look at the example programs
included in the distribution. The ‘p4/monitors’ directory contains shared-memory ex-
amples written in C that use monitors, including one instrumented with ALOG. The
‘p4/messages’ subdirectory contains message-passing examples written in C. The pro-
grams in ‘p4/messages_f’ are Fortran message-passing examples, and the ‘p4/contrib’
and ‘p4/contrib_£’ directories contain a number of miscellaneous examples contributed by
users. In each directory there is a ‘README’ that describes the individual examples.

4 Getting Started

The easiest way to get started with p4 is to play with some of the sample programs provided
with the system.

4.1 A Message-Passing Example

We will begin with a message-passing example in the sub-directory named ‘p4/messages’.
The code for the program is in the files ‘sr_test.c’ and ‘sr_user.h’.

4.2 Program Description

As the name implies, this program is an example of p4’s send /receive functionality. Briefly,
it is a simple program that runs a master process and some slave processes. The master and
the set of slaves form a ring of processes in which the master reads a message from stdin
and sends a copy of the message to the first slave, which passes it on; the last slave passes
the message back to the master. If the master receives an undamaged copy of the message,
it assumes that all went well, and reads another message. Note that the ring of processes
is a logical structure in which each process assumes that its predecessor in the ring is the
process with the next lower id, and its successor is the process with the next higher id. The
master has id 0 (zero) and has the process with the largest id as its predecessor.

4.3 Analysis of the Program

The first executable p4 statement in a program should be:
p4_initenv(&argc,argv) ;

This initializes the p4 system and allows p4 to extract any command line arguments passed
to it, e.g. debugging parameters.

Similarly, the last executable p4 statement in a program should be:
p4_wait_for_end();

This waits for termination of p4 processes and performs some cleanup operations.

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 7

The procedure p4_get_my_id returns the unique integer id assigned to the calling pro-
cess by p4.

The statement:
p4_create_procgroup();

reads a procgroup file that the user builds and creates the set of slaves described in that
file. Obviously this statement must be executed before any slaves can be assumed to exist.
This procedure is the method you must use to create processes that do message-passing.

The procedure p4_clock returns an integer that represents wall-clock time in millisec-
onds. It is typically used to retrieve the time before and after some work, the difference
representing the time to do that work. Note that there is also a p4_ustimer that is useful
on those machines that support a microsecond timer.

The procedures p4_send and p4_sendr are two of several p4 procedures that are avail-
able for sending messages to other processes. They take as arguments the message type,
the id of the "to" process, the address of the message, and the message length.

The procedure p4_recv receives a message from another process and sets the values
of all four parameters. P4_recv will automatically retrieve a buffer in which to place a
received message, thus p4_msg_free may be called to free that buffer when it is no longer
needed.

The procedure p4_num_total_slaves is one of several procedures that the user can
invoke to determine information about the current execution.

To run this program, you need to create a procgroup file that describes where all slave
processes are to be executed (See 5 [Specifying Processes in the Procgroup File], page 7).
We will assume that you have an example procgroup file (named ‘sr_test.pg’) in the
‘p4/messages’ directory, and can run sr_test by merely typing:

sr_test
If the procgroup file is elsewhere, then you must type:
sr_test -pg pathname_of_procgroup_file

Another example that is made by default is the program systest. It tests a number of the
message-passing features of p4.

5 Specifying Processes in the Procgroup File

The procgroup file is the only portion of the interface that is very likely to change through
multiple versions of p4. As new architectures are supported, it is hoped that we can merely
alter the procgroup file format to reflect any new features. (Of course new procedure calls
may also be required, but existing procedure calls will remain unchanged when possible). See
See 19 [Running p4 on Specific Machines], page 39 for a discussion of machine dependencies
in starting p4 programs.

The current format of a procgroup file is as follows:

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 8

local_machine n [full_path_name] [loginname]
remote_machine n full_path_name [loginname]

In some situations, the program is started via some special command executed from
the host machine. In such cases, the procgroup file name can be specified to the special
command line along with the program name (see for example the runcube and rundelta
shell scripts in the ‘p4/messages’ subdirectory). In those cases where no special command
is required, no special handling is required for the procgroup filename.

The first line of a procgroup file may be “local n” where n is the number of slave processes
that share memory with the master. The full path name on the “local” line is ignored on
machines other than cube and mesh machines, and the IBM SP-1. The word “local” may
be replaced by an alias for the local machine if needed, to specify an alternative transport
layer. The subsequent lines contain either three or four fields:

1. the name of a remote machine on which slave processes are to be created.

2. the number of slaves that are to be created on that machine, i.e. be in the same
cluster (note that on machines that support it, the processes in a cluster will share
memory)

3. the full path name of the executable slave program

4. optionally, the user login name on the remote machine, if different from that on the
host machine.

As an example, let’s assume that you have a network of three Sun workstations named
sunl, sun2, and sun3. We will also assume that you are working on sunl and plan to run a
master process there. If you would like to run one process on each of the other Suns, then
you might code a procgroup file that looks like:

start one slave on each of sun2 and sun3
local O

sun2 1 /home/mylogin/p4pgms/sr_test

sun3 1 /home/mylogin/p4pgms/sr_test

Lines beginning with # are comments.

It is also possible to have different executables on different machines. This is required,
of course, when the machines don’t share files or are of different architectures. An example
of such a procgroup file would be:

local

sun3 /home/user/p4pgms/sun/prog?2

0]
sun?2 1 /home/user/p4pgms/sun/progl
1
rs6000 1 /home/user/p4pgms/rs6000/progl

On a shared memory machine such as a KSR, in which you want all the processes to

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 9

communicate through shared memory using monitors, the procgroup file can be as simple
as:

local 50
On the CM-5, your procgroup file would look like:
local 32 /home/joe/p4progs/cm5/multiply

Next, let’s assume that you have a Sequent Symmetry (named symm) and an Encore
Multimax (named mmax). We will also assume that you are working on symm, and plan to
run the master there. If you would like to run two processes on symm (in addition to the
master) and two on mmax, then you might code a procgroup file that looks like:

local 2
mmax 2 /mmaxfs/mylogin/p4pgms/sr_test

P4 also permits you to treat the symmetry as a remote machine even when you are
running the master there. Thus, you might code a procgroup file as follows:

local 2
symm 2 /symmfs/mylogin/p4pgms/sr_test
mmax 2 /mmaxfs/mylogin/p4pgms/sr_test

In this example, there are seven processes running. Five of the processes are on symm,
including the master. Two of the processes on symm are in the master’s procgroup and two
are running in a separate procgroup as if they were on a separate machine. Of course, the
last two are running on mmax.

Finally, suppose that you have a fiber-channel network that parallels your Ethernet,
connecting the same machines, and that connections fro running TCP /IP over the fiber-
channel network are obtained by connecting to suni-fc, sun2-fc, etc. Then even if sunl
is the local machine that you are logged into, you will want your procgroup file to look like:

sunl-fc 0
sun2-fc 1 /home/user/p4pgms/sun/progl
sun3-fc 1 /home/user/p4pgms/sun/prog?2

Some notes about the contents of the procgroup file should be made at this point. First,
the value of n on the local line can be zero, i.e. the master may have no local slaves.
Second, the local machine may be treated as if it is a remote machine by merely entering
it in some line as a remote machine. Third, a single machine may be treated as multiple
remote machines by having the same remote machine name entered on multiple lines in the
procgroup file. Fourth, if a single machine is listed multiple times, those processes specified
on each line form a single cluster (share memory). Fifth, the cluster size specified for a
uniprocessor should be 1, because all slaves in a cluster are assumed to run in parallel and
to share memory.

We refer to the original (master) process as the “big master”. The first process created in
each cluster is the “remote master” or the “cluster master” for that cluster. All p4-managed
processes (see the procedure p4_create_procgroup) have unique integer id’s beginning with
0. The processes within a cluster are numbered consecutively.

6 DEVELOPING A SIMPLE P4 PROGRAM 10

6 Developing a Simple p4 Program

The real fun associated with any computing environment arrives when you actually type in
a program and run it yourself. We will assume that you have successfully installed p4 on
your own system and are ready to write a small program, compile it, and run it.

6.1 A Minimal Example

We will start with a tiny program in which the worker processes do no work, and then
expand its capabilities. Edit a file called ‘p4simple.c’ and type:

#include "p4.h"

main(argc,argv)

int argc;
char **argv;

p4_initenv(&argc,argv) ;
p4_create_procgroup();
worker () ;
p4_wait_for_end();

}
worker ()
{
printf("Hello from %d \n",p4_get_my_id());
}

This is one of the simplest p4 programs that you can write. Let’s examine it. The
#include '"p4.h" statement must appear in all programs that use any p4 features. The pro-
cedure p4_initenv must be invoked before any other p4 procedures, and p4_wait_for_end
must be invoked after all p4 processing is completed. The p4_get_my_id returns a unique
integer id for each process, beginning with 0. The procedure p4_create_procgroup is re-
sponsible for creating all processes other than 0. It has no effect if called by any other
processes than process 0. The way in which p4_create_procgroup determines how many
other processes there should be, and where they should run, will be discussed shortly.

All processes that this program executes invoke the worker procedure, including process
0. Thus, in this program, the master process acts just like all other processes once it gets
the environment established.

To understand how things get started, let’s consider two separate situations. In the first
situation, all processes are running on a single machine. Then, when process 0 starts, it
executes the p4_create_procgroup procedure to start all other slaves. The other slaves
are started on the same machine by means of a UNIX fork.

In the second situation, there may be slaves running both on the same machine as

6 DEVELOPING A SIMPLE P4 PROGRAM 11

process 0, and slaves running on other machines as well. In this situation, the first slave
running on a remote machine will need to execute the main procedure. It will discover that
it is not process 0. However, as part of initialization, process 0 will direct it to fork any
additional slaves required on the same machine.

In some ways, the above example can be used as a prototype for all p4 programs, just
by varying the content of the worker routine.

6.2 A Minimal Example in Fortran

Here is a Fortrran version of the program we just discussed.

program p4simple
include ’p4f.h’

call p4init()
call p4crpg()
call fworker()
call p4cleanup()
stop

end

subroutine fworker ()
include ’p4f.h’
integer*4 procid

procid = pé4myid()
print *,’Hello from ’,procid

end

6.3 A More Complicated Example

Now, let’s make the worker process a little bit more interesting. Let’s assume that we have
nprocs slaves with ids 0, 1, 2, ... nprocs -1. And, we want to write a program in which
every process sends a single message to every other slave, and then receives a message from
every other slave. We might alter the code for the worker procedure to be the following:

worker ()
{
char *incoming, *msg = "hello'";
int myid, size, nprocs, from, i, type;

myid = p4_get_my_id();
nprocs = p4_num_total_ids();
for (i=0; i < nprocs; i++)
{

if (4 '= myid)

6 DEVELOPING A SIMPLE P4 PROGRAM 12

p4_send (100, i, msg, strlen(msg)+1);

}
for (i=0; i < nprocs - 1; i++)
{
type = -1;
from = -1;
incoming = NULL;
p4_recv(&type,&from,&incoming,&size) ;
printf("}d received msg=:Ys: from }d",myid,incoming,from);
p4_msg_free(incoming) ;
}

¥

This program demonstrates several features of p4’s support for message-passing. Before
we get into the specifics however, let’s examine the overall logic of the program. Each process
determines its own id and the total number of processes executing in this run (including
process 0). Then, in the first for-loop, each process sends a single message to each of the
other processes. Finally, in the second for-loop, each process receives a message from each
of the other processes.

The p4_send call requires 4 arguments:

e a message type (arbitrarily chosen to be 100 here)
o the id of the process to receive the message
o the message itself

o the size of the message

The use of p4_recv is slightly more complicated. First, we assign -1 to each of the
parameters type and from. This is done because -1 represents a wildcard value indicating
we are willing to receive a message of any type from any process. Here, we could have
coded type to be 100, and specified from equal to the value of i each time through the loop
(skipping our own id). By setting incoming to NULL, we have also indicated to p4_recv
that we do not have a buffer in which to place the received message, so p4_recv should
obtain a buffer for us and place the message in that buffer. p4_recv treats these three
parameters as both input and output values. Thus, it alters the value of each such that
type and from indicate the type of message received and the id of the process that sent
it. The value of incoming is altered to point to the buffer where the message was placed.
The size parameter is strictly an output parameter and indicates the size of the received
message. It is possible for the user to provide his own buffer; this will be demonstrated
later.

Finally, note that p4_msg_free frees the message buffer obtained by p4_recv. The
procedure p4_msg_free should be called only after the contents of the message are no
longer needed. P4_msg_free should be used to free these buffers because, although a user
only sees the data portion of a message, p4 internally represents a message as a structured
data item.

6 DEVELOPING A SIMPLE P4 PROGRAM 13

To compile and link this program for execution, you need to create a makefile. We will
assume that you have installed p4 in ‘/usr/local/p4’ and that you have typed the program
above into a file name ‘p4simple.c’ in the directory ‘/home/mylogin/p4pgms’.

To build your makefile, copy the file
/usr/local/p4/messages/makefile.proto

into your working directory. This is a prototype makefile that contains machine-independent
information, and which p4 can use to build a machine-specific makefile for your program.
This prototype makefile contains information about several sample programs that demon-
strate message-passing in p4. If you edit this file, you will see information for making a
program named sr_test. Do a global change of sr_test to p4simple. You should also
change the value of P4_HOME_DIR. It should contain the full pathname of the p4 system,
e.g. ‘/fusr/local/p4’. Now change directories to ‘/usr/local/p4’ and type:

make makefiles P4ARCH=<machine_type> DIRS=/home/mylogin/p4pgms

where <machine_type> is the machine type that you specified when you installed p4 on
your machine. Now, you should be able to change back to your directory and see a file
named ‘Makefile’ there. You should then be able to type:

make p4simple

There is one last piece missing before you can execute your program. Recall that
p4_create_procgroup needs to know how many processes to start and where to start
them; it reads a file (called a procgroup file) to gather this information. P4 always as-
sumes that you have a master process, and that you describe the slave processes (process
groups) in the procgroup file. You can name a procgroup file any name you choose, but
<progname>.pg is the default name. For example, in this case your procgroup file should be
named ‘p4simple.pg’. The information contained in procgroup files can get fairly involved,
but if you have a computer that supports shared memory among processes, then you can
code a very simple example at first.

Let us suppose first that you want to run your program on a network of workstations.
Then your procgroup should look something like:

local O
some.network.machine 1 /home/me/p4progs/p4simple

This file indicates that you wish to run only the master on the local machine (the
one you are logged into when you execute the program) and one slave on the machine
some.network.machine.

Now, all you have to do to run your program is type:
p4simple

You should see a line printed each time a process receives a message from another process
(on some machines, there may be a restriction that only one process can do I/O, however
such restrictions are not common). Experiment by changing the number of slaves indicated
in the procgroup file.

You may notice that even a small pd program becomes large when linked with the

7 COMMAND-LINE ARGUMENTS

14

p4 library. You might consider using strip to reduce the size or removing -g from the

CFLAGS in the makefile.

7 Command-Line Arguments

The command-line arguments to a p4 program are all optional.

-p4help get this information, then exit

-p4pg <file> set procgroup file

-p4dbg <level> set debug level

-p4rdbg <level> set remote debug level

-pdgm <size> set global memory size

-p4dmn <domain> provide local domain name

-p4out <file> set output file for master

-p4rout <file> set output file prefix for remote masters
-p4ssport <port#> set private port number for secure server
-p4norem don’t start remote processes

-pdlog enable internal p4 logging by alog
-p4version print current p4 version number

In version 1.4, these flag names are valid without their p4 prefix, for backward compat-
ibility.

If one specifies -p4norem on the command line, p4 will not actually start the processes.

The master process prints a message suggesting how the user can do it. The point of this
option is to enable the user to start the remote processes under his favorite debugger, for
instance. The option only makes sense when processes are being started remotely, such as
on a workstation network.

8 The p4 Function Library

8.1 Overview of the Library

In the following sections, we provide details for each p4 function in the library. The proce-
dures are gathered into the following groups:

¢ Functions for managing processes and clusters

¢ Functions for message passing

Functions for shared memory

Functions for timing p4 programs
¢ Functions for debugging p4 programs
¢ Miscellaneous functions

e Fortran interface functions

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 15

8.2 Return Codes from p4 Functions

Most p4 functions return -1 if an error occurs. Some, however, call the function p4_error
when severe errors occur. This function prints a message and then attempts to terminate
all of the user’s processes See 13 [Functions for Debugging p4 Programs], page 26.

9 p4 Functions for Managing Processes and Clusters

In some situations a p4 procedure will give an error message and then exit. This is typically
done as a result of a failed system call and handled by calling the p4 procedure named
p4_error that examines the return values from socket procedures, etc. Most of the time
however, the procedures simply return a value. Some of the procedures return no value
and thus are declared to return VOID. Some of the procedures return either a pointer to
a character string or NULL; NULL indicates an error. The remaining procedures return an
integer value; (-1) indicates an error.

9.1 Functions for Process Management

In this section we describe the p4 functions needed for basic creation and termination of
processes.

int p4_initenv(argc,argv)
int *argc;
char **argv;

should be called by your program before an attempt is made to use any p4 procedures or data
areas. We suggest making it the first executable statement in your program. p4_initenv
parses the command line arguments and extracts the ones intended for p4 ignoring all others
(see the discussion of command line arguments). Note that you pass the address of argc to
p4_initenv so that it can actually remove its own arguments before your program looks
at them.

int p4_create(fxn)
int (xfxn)();

int p4_create_procgroup()

There are two procedures that you can use to create processes in p4, p4_create_procgroup
and p4_create. Processes created via p4_create are said to be “user-managed” whereas
those created by p4_create_procgroup are “p4-managed”. The p4-managed processes are
automatically assigned unique id’s (beginning with 0 for the big master), they have mes-
sage queues allocated for them so that they can do message-passing, and they are able
to run either on a shared-memory multiprocessor with the creating process or they can
run on a separate machine. Processes created via p4_create do not have any of these
advantages. They must develop their own id’s, they cannot do message-passing, and they
can only run on a shared-memory multiprocessor with the creating process. The only

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 16

disadvantage of p4_create_procgroup is that you must build a ‘procgroup’ file describ-
ing the set of required slave processes before the master program begins execution. This
eliminates the possibility of determining late in the execution exactly how many processes
you want to use to solve a problem. Generally, this is not a problem, especially since
we can combine p4_create_procgroup and p4_create in the following way: You can use
p4_create_procgroup to develop a network of processes that talk to each other via mes-
sages. Fach of those processes can create further processes to help it out as necessary. The
original set of processes communicate with their local slaves through shared data areas and
with each other via message-passing.

p4_create receives one argument that is a pointer to a function. It creates a single new
process that executes the indicated function. The new process may share data areas (in
shared memory) with the parent process. However, the new process is not managed by the
p4 system in the sense that it is not assigned an id, it cannot pass messages, etc. The only
p4 procedure that deals with user-managed slaves is p4_create. No other procedures are
even aware of their existence.

p4_create_procgroup reads your procgroup file to determine the number of slave pro-
cesses to create and where they are to be placed. It looks first for the file specified on the
command line following the -p4pg argument if there is one. If there is no such argument,
it looks for a file with the same name as the executable (master) file, with the ‘.pg’ suffix.
If it does not find one, it looks for a file named ‘procgroup’. It builds a procgroup table
that describes all created processes and gives a copy of the table to each process. The
processes then use the table to discover how to communicate with each other (processes in
a cluster can send messages directly through shared memory or some other vendor-specific
mechanism), others communicate via sockets). An alternative method is to build the table
in memory yourself and use p4_startup.

The effect of p4_create_procgroup can be obtained in another way if a system would
prefer to use its own way of specifying the locations of processes. A user may allocate the
procgroup data structure and then fill it in “by hand” rather than by reading a file in p4
procgroup format. The following procedures support this method of starting processes.

struct p4_procgroup *p4_alloc_procgroup()

allocates a procgroup data structure of the form described in p4.h. The formats of individ-
ual entries (p4_procgroup_entry) are given there as well.

int p4_startup(pg)
struct p4_procgroup *pg;

starts processes as specified by an an already-created procgroup data structure allocated by
p4_alloc_procgroup and filled in by the user using the structures p4_procgroup_entry
and p4_procgroup.

VOID p4_wait_for_end()

is the p4 termination/cleanup procedure that you should invoke at the end of every execution
of a program that uses p4. For the master process, it does some termination processing and
then waits for slave processes to end. It should be called by all processes.

int p4_get_my_id()

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 17

returns an integer value representing the id of the process assigned by the p4 system. If the
process is not a p4-managed process, the value (-1) is returned.

int p4_num_total_ids()

returns an integer value indicating the total number of ids started by p4 in all clusters,
including the big master and all remote masters.

int p4_num_total_slaves()

returns an integer value indicating the total number of processes started by p4 in all clusters,
including all remote masters but not the big master.

9.2 Functions for Cluster Management

The p4 system supports the cluster model of parallel computation, in which subsets of
processes share memory with one another, with the clusters communicating via messages.
A procgroup file for a program written for the cluster model might look like this:

local 4
alliantl.abc.edu 5 /home/me/myprog
alliant2.abc.edu 5 /home/me/myprog

encore.somewhere.edu 5 /usrs/me/myprog

This would specify a total of 20 processes, 5 (including the master) running on the
local machine (here assumed to be capable of supporting five processes that share memory)
together with 5 slaves each on three other shared-memory machines. One process out of
each set of remote slaves will be the “remote master” for that cluster..

VOID p4_get_cluster_ids(start,end)
int *start;
int *end;

receives pointers to two integers. It places the p4-assigned id’s of the first and last id’s
within the current cluster into the two arguments (including the remote master).

int p4_get_my_cluster_id()

returns a unique id (relative to 0) within a cluster of p4-managed processes. Thus, a cluster
master will always have a cluster id of 0. It is not clear that a separate cluster id is really
useful, but the functionality is provided just in case.

BOOL p4_am_i_cluster_master()

returns a BOOL value indicating whether the invoking process is the “cluster master”
process within its cluster.

int p4_num_cluster_ids()

returns an integer value indicating the number of ids in the current cluster as started by
p4_create_procgroup.

VOID p4_cluster_shmem_sync(cluster_shmem)
VOID **xcluster_shmem;

10 FUNCTIONS FOR MESSAGE PASSING 18

This routine is used to synchronize the processes in a cluster before they begin to use shared
memory.

VOID p4_get_cluster_masters(numids, ids)
int *numids, ids[];

This procedure fills in the values of numids and ids. It obtains the p4-id’s of all “cluster
masters” for the program, placing them in the ids array and placing the number of id’s in
numids.

10 Functions for Message Passing

P4 supports a set of send/receive procedures. These procedures are “generic” in the sense
that they do not know whether a message must travel across a network or through shared
memory, or via some other mechanism. They depend on a lower-level set of procedures that
handle local or network (remote) communications. By default, the messages are assumed
to be typed. If the user wishes to use untyped messages, he can hide the typing by coding
some very simple C macros that always use a single message type.

10.1 Explicit Sending and Receiving of Messages

p4_send(type,to,msg,len)
p4_sendr(type,to,msg,len)
p4_sendx(type,to,msg,len,datatype)
p4_sendrx(type,to,msg,len,datatype)
p4_sendb(type,to,msg,len)
p4_sendbr(type,to,msg,len)
p4_sendbx(type,to,msg,len,datatype)
p4_sendbrx(type,to,msg,len,datatype)

int type, to, len, datatype;
char *msg;

Each of these procedures sends a message. The type argument is an integer value chosen
by the user to represent a message type. The to argument is an integer value that specifies
the p4-id of the process that should receive the message. The len argument contains the
length in bytes of the message to be passed. Note that some of the procedures have a “b”
in their name, e.g. p4_sendb. These procedures assume that the msg is in a buffer that
the user obtained earlier via a p4_msg_alloc; otherwise, the buffer is assumed to be in the
user’s local space, and may cause the message to be copied internally. The procedures with

an “r” in the name do not return until an acknowledgement is received from the to process

(the “r” stands for rendezvous). Those procedures with an “x” in the name take an extra
argument (datatype) that specifies the type of data in the message; these procedures will
use that information to call XDR for data conversion if the message is being passed to a
machine of a different architecture, i.e. where the internal representation may be different.

The valid values for the datatype parameter are PAINT, P4DBL, PA4FLT, PALNG, and P4NOX.

10 FUNCTIONS FOR MESSAGE PASSING 19

The last of these means “no translation”.

BOOL p4_messages_available(req_type,req_from)
int *req_type,*req_from;

returns a BOOL value indicating whether the process has any messages available or not.
The parameters req_type and req_from are both pointers to integers; they are used as both
input and output arguments. On input, req_type has a value that indicates the type of
message that the user wishes to check for availability (-1 indicates any type). The variable
req_from is used similarly to indicate who a message is desired from.

int p4_recv(req_type,req_from,msg,len_rcvd)
int *req_type,*req_from,*len_rcvd;
char **msg;

takes four arguments. The msg argument is a pointer to a pointer to a char. If this value
is NULL, then p4 will allocate the buffer for the message according to its length. That is,
one need not know ahead of time the length of a message being received. If this value is not
NULL, then it points to a p4 message buffer that the user has obtained via p4_msg_alloc.
The len_rcvd argument is a pointer to an integer that is assigned the length of the received
message. Req_type and req_from are both pointers to integers; they are used as both input
and arguments. On input, req_type has a value that indicates the type of message that
the user wishes to receive (-1 indicates any type). It will block until a message of that type
is available. Req_from is used similarly to indicate who a message is desired from. One
important note about this procedure is that it obtains the area in which to place a message,
and the user must explicitly free that area when finished with it (see p4_msg_free). There
is an option available with p4_recv in which the user can provide his own buffer rather
than having p4 allocate it. To do this, the user points msg to a buffer that he must obtain
via a call to p4_msg_alloc (see below). No p4_msg_free should be performed if the same
buffer is going to be re-used multiple times.

char *p4_msg_alloc(len)
int len;

VOID p4_msg_free(m)

char *m;

obtain and free a buffer area that can be used to receive a message. This procedure
should be used for this task because a message has hidden information which the user is
unaware of and therefore should not use malloc to obtain the area.

10.2 Global Operations

P4 supports a number of operations for dealing with all processes at once.

p4_broadcast(type, data, data_len)
int type;

char *data;

int data_len;

p4_broadcastx(type, data, data_len, data_type)

10 FUNCTIONS FOR MESSAGE PASSING 20

int type;
char *data;
int data_len, data_type;

provide the ability to broadcast messages like p4_send and p4_sendx. These are semanti-
cally equivalent to a loop which uses p4_send or p4_sendx to individually send a message
to each other process (the sender is not included.) Messages sent by one of these broadcasts
are received by normal p4_recv’s. The implementation of p4_broadcast is more efficient
than such a loop, since it uses a “broadcast tree”. One situation to look out for is a normal
p4_broadcast followed by a p4_send. It is possible for the first message to arrive at its
destination after the second one. The order of messages in this situation can be enforced
with the use of the type argument.

p4_global_op(type,x,nelem,size,op,data_type)
int type;

char *x;

int size, nelem;

int (*op) O);

int data_type;

where op is one of:

p4_int_absmax_op()
p4_int_absmin_op()
p4_int_max_op()
p4_int_min_op()
p4_int_mult_op()
p4_int_sum_op()
p4_dbl_absmax_op()
p4_dbl_absmin_op()
p4_dbl_max_op()
p4_dbl_min_op()
p4_dbl_mult_op()
p4_dbl_sum_op()
p4_flt_absmax_op()
p4_flt_absmin_op()
p4_flt_max_op()
p4_flt_min_op()
p4_flt_mult_op()
p4_flt_sum_op()

and data_type is one of PAINT, PALNG, P4FLT, or P4DBL.

This collection of routines provide the ability to do a variety of global operations. See the
example program ‘p4/messages/systest.c’. They apply the commutative and associative
operation op globally to x on an element-by-element basis and broadcast the result to all
nodes. That is, each process ends up with

for (i=0; i<n; i++)
x[i] = x[node 0][i] op x[node 1][i] op x[node 2][i] op ...

11 FUNCTIONS FOR SHARED MEMORY 21

op should be of the form

VOID op(char *x, char *y, int nelem)

{
data_type *a = (data_type *) x;
data_type *b = (data_type *) y;
while (nelem--)
*a++ operation= *b++;
+

where data_type and operation are chosen appropriately.

The order in which nodes apply the operation is undefined (hence op must be commu-
tative and associative). The communication may be internally sub-blocked so the function
op should not be hardwired to specific vector lengths.

This is still a relatively primitive version, which gathers the necessary data up a balanced
binary tree and then uses p4_broadcast to send the results back. The type argument
specifies the message type to be used in the communication associated with this global
operation.

Strictly speaking, the size parameter, which is size in bytes of one element, is unnec-
essary. It is retained for backward compatibility.

VOID p4_global_barrier(type)
int type;

This procedure takes one argument which is the message type to be used for internal
message-passing. It causes the invoking process to hang until all processes specified in
the procgroup file have invoked the procedure.

11 Functions for Shared Memory

Here is a simple example of a shared-memory program using monitors. In this program,
each process retrieves values from a shared loop index. A monitor is used to ensure that all
values are retrieved exactly once.

#include "p4.h"
struct globmem {
pé4_getsub_monitor_t getsub;

} *glob;

main(argc,argv)

int argc;
char **argv;

p4_initenv(&argc,argv) ;

11 FUNCTIONS FOR SHARED MEMORY 22

glob = (struct globmem *) p4_shmalloc(sizeof (struct globmem)) ;
p4_getsub_init(&(glob->getsub));

p4_create_procgroup();
worker () ;
p4_wait_for_end();

}
worker ()
{
int i, nprocs;
nprocs = p4_num_total_ids();
i=0;
while (i >= 0)
{
p4_getsub(&(glob->getsub) ,&i,10,nprocs);
p4_dprintf ("I got %d \n",i);
}
}

11.1 Managing Shared and Local Memory

The following functions are just basic memory management routines.

char *p4_malloc(n)
int n;

typically acts like the standard malloc, but may be rewritten for user systems that require
different operation.

VOID p4_free(p)
char *p;

typically acts like the standard free, but may be rewritten for user systems that require
different operation.

char *p4_shmalloc(n)
int n;

acts like the standard malloc except will obtain shared memory on machines that support
sharing memory among processes. Compare with p4_malloc.

VOID p4_shfree(p)
char *p;

frees memory obtained with p4_shmalloc. Compare with p4_free.

11 FUNCTIONS FOR SHARED MEMORY 23

11.2 Shared Memory Data Types

The abstraction provided by p4 for managing data in shared memory is monitors. Good
places to learn about the monitor concept in general are [3] and [5]. The specific ap-
proach taken by p4 is described in [1]. P4 provides several useful monitors (p4_barrier_t,
p4_getsub_monitor_t, p4_askfor_monitor_t) as well as a general monitor type to help
the user in constructing his own monitors (p4_monitor_t).

11.3 Monitor-Building Primitives

The following functions can be used to construct monitors. A monitor so constructed has
the type p4_monitor_t.

int p4_moninit(m,i)
p4_monitor_t *m;
int i;
initializes the monitor pointed to by m and gives it 1 queues for processes to wait on while

they are blocked (see p4_mdelay). One queue is sufficient for most purposes. The queues
are numbered beginning with 0.

VOID p4_menter(m)
p4_monitor_t *m;

enter the monitor pointed to by m. By the definition of a monitor, access is restricted to a
single process in the monitor at a time (if everybody plays by the rules).

VOID p4_mexit(m)
p4_monitor_t *m;

exits the monitor pointed to by m. You are of course assumed to have previously entered
that monitor.

VOID p4_mcontinue(m,i)

p4_monitor_t *m;

int i;
checks to see if there are any processes blocked on the i-th queue of the monitor m and causes
one of them to be released for entry to the monitor if so. If there are no such processes, the

invoking process simply exits. Note that a process could have been blocked previously by
invoking the procedure p4_mdelay. The queues are numbered beginning with 0.

VOID p4_mdelay(m,i)
p4_monitor_t *m;
int i;
permits a process to delay itself on the i-th queue of monitor m if the process wishes to

release the monitor, but wants to be waked up by another process later (via the procedure
p4_mcontinue). The queues are numbered beginning with 0.

11 FUNCTIONS FOR SHARED MEMORY 24

11.4 Some Useful Monitors

In this section we describe some of the specific monitors that are built into the p4 library.
Each of them has its own pre-defined type, which can be used to allocate storage for them,
which should be in shared memory. See the ‘p4/monitors’ directory for examples. A lock
is itself a monitor, with no extra delay queues.

VOID p4_lock_init(1)
p4_lock_t *1;

initializes the lock 1. Must be used prior to any attempts to lock or unlock 1.

VOID p4_lock(l)
p4_lock_t *1;

blocks if the lock 1 is already locked, otherwise locks 1 and proceeds.

VOID p4_unlock(1)
p4_lock_t *1;

unlocks the lock 1.

VOID p4_getsub(gs,s,max,nprocs)
pé4_getsub_monitor_t *gs;
int *s,max,nprocs;

is a procedure used to obtain the next value of a shared counter (subscript). It takes as its
first argument, a pointer to a getsub monitor that protects the shared counter. It assigns
the current value of the counter to the integer that s points to, and then increments the
counter by 1. p4_getsub_init initially sets the counter to 0. When the counter passes the
value max, all nprocs processes are returned the value (-1) once, then the counter is reset
to 0 for further use.

VOID p4_getsubs(gs,s,max,nprocs,stride)
pé4_getsub_monitor_t *gs;
int *s,max,nprocs,stride;

is like p4_getsub except that the counter is increased on each call by stride instead of 1.

int p4_getsub_init(gs)
pé4_getsub_monitor_t *gs;

initializes the getsub monitor pointed to by gs; this initialization includes assigning a value
of 0 to the counter that the monitor protects.

The standard barrier synchronization pattern is expressed as a monitor. There can be
multiple barrier monitors, and one can wait for only some of the processes at the barrier if
this is desired.

VOID p4_barrier(b,nprocs)
p4_barrier_monitor_t *b;
int nprocs;

causes the executing process to hang until nprocs processes execute a barrier instruction
with a pointer to the same barrier monitor b as an argument.

11 FUNCTIONS FOR SHARED MEMORY 25

int p4_barrier_init(b)
p4_barrier_monitor_t *b;

initializes the barrier monitor b; this procedure should be invoked before you attempt to
use the monitor in any operations.

Finally, the askfor monitor functions like a general dispatcher of work.

int p4_askfor(af,nprocs,getprob_fxn,problem,reset_fxn)
p4_askfor_monitor_t *af;

int nprocs;

int (*getprob_fxn) ();

VOID *problem;

int (*reset_fxn)();

requests a new “problem” to work on from the problem pool. The arguments are (1) a
pointer to the askfor monitor that protects the problem pool, (2) the number of processes
that call this procedure (with af) looking for work, (3) a pointer to the user-written proce-
dure that obtains a problem from the pool, (4) a pointer that is filled in with the address of
a user-defined representation of a problem to be solved, and (5) a pointer to a user-written
procedure to reset when all problems in the pool are solved, in case the same monitor is
re-used for another set of problems later. p4_askfor returns an integer indicating whether
a problem was successfully obtained or not:

-1 ! program is terminating (some process called p4_progend)
: a problem was obtained and ‘‘problem’’ points to it
1 : problem solved by exhaustion, i.e. no more problems to get

n > 1 : a process found a solution and called p4_probend with code n
For a detailed discussion of the “askfor” monitor, see [1].

int p4_update(af,putprob_fxn,problem)
p4_askfor_monitor_t *af;

int (*putprob_fxn) ();

VOID *problem;

updates the problem pool being managed by the askfor monitor. The arguments are (1)
a pointer to the askfor monitor that protects the problem pool, (2) a pointer to the user-
written procedure that puts problems into the pool, and (3) a pointer to a user-defined
representation of a problem to be put in the pool. Putprob_fxn should return 1 if it did
indeed put a new problem into the pool, so that any delayed processes should wake up and
re-examine the pool (this logic is handled by the p4_askfor) and 0 if upon entering the
monitor and examining its potential problem together with the data there it decided not
to add a new problem to the pool. It can be assumed that the “putprob” logic (defined by
putprob_fxn) is executed inside the monitor.

int p4_askfor_init(af)
p4_askfor_monitor_t *af;

initializes the askfor monitor af; this procedure should be invoked before you attempt to
use the monitor in any operations.

VOID p4_probend(af,code)

12 FUNCTIONS FOR TIMING P4 PROGRAMS 26

p4_askfor_monitor_t *af;
int code;

allows the user process to mark a problem as solved early when several processes are co-
ordinating their activities via an askfor monitor. The code is an integer value that will be
returned to all processes when they “askfor” a new sub-problem to work on.

VOID p4_progend(af)
p4_askfor_monitor_t *af;

allows a process to cause a return code of (-1) to be returned to all processes using an
askfor monitor. This would typically be called by a master process to indicate that no more
problems are to be solved and that all slave processes should terminate.

12 Functions for Timing p4 Programs

A small number of simple functions are available for accessing various clocks and timers.
int p4_clock()

returns a value in milliseconds. This is a wall-clock value, usually obtained from the system
via gettimeofday. Also see p4_ustimer below.

p4_usc_time_t p4_ustimer()

returns a wall-clock time value in microseconds. The precision of this number depends on
the timer installed on the individual machine. In some cases the resolution may be no greater
than that of p4_clock(). For arithmetic and printing purposes, the type p4_usc_time_t
is an unsigned long integer.

p4_usc_time_t p4_usrollover()

returns the timer value at which a microsecond timer “rolls over”. Since p4_usc_time_t
is a long integer’s worth of microseconds, it is likely that the timer will roll over (become
zero) during even medium-length runs (about 72 minutes on most machines).

13 Functions for Debugging p4 Programs

P4 has a set of routines to aid in producing a printed trace of events, both user-defined and
pre-defined in the p4 system.

VOID p4_dprintf(fmt, va_alist)
char *fmt;
va_dcl

acts just like the standard printf except that the print line is preceded by a value that
identifies the process. This value is typically the string pn_u where n represents the p4-
assigned id and u represents the unix-id of the process on its host. However, there are other
forms of this value. For example, the big master is represented as bm_u. Also, if a process
prints before it has a p4-assigned id, then its value will be something like bm_slave_n_u

13 FUNCTIONS FOR DEBUGGING P4 PROGRAMS 27

or rm_slave_n_u. Typically, it is not possible for a user program to print anything before
being assigned an id by p4, but the p4 system itself may use this procedure to print messages
from a particular process if it encounters problems getting the process initialized.

VOID p4_dprintfl(level, fmt, va_alist)
int level;

char *fmt;

va_dcl

is like p4_dprintf except that the first argument is an integer indicating the debugging level
that must be in effect before this message will print. A level of 0 will cause the message
to always print. If you run a program with the debug level set to 5 (via command-line
arguments), then all dprintfl’s with level less than or equal to that debug level will print.
See 7 [Command-Line Arguments], page 14 for how to set the debug level at run time.

The debug level can be examined and changed by the user during execution:
int p4_get_dbg_level()
returns the current debug level for this process and its cluster.

VOID p4_set_dbg_level(level)
int level;

sets the current debug level for this process and its cluster. P4 itself is liberally instrumented
with p4_dprintfl’s of level 10 and above, leaving levels 0-9 for the user. The greater the
debug level of the built-in messages, the greater understanding of p4 needed by the user to
make sense of them. However, levels as high as 30 may well be useful to the user trying to
debug a p4 program. Roughly speaking, the following debug levels produce messages about
the indicated events.

level 10: created process
sent message
received message

level 20: creating process
sending message
receiving message
process starting
process exiting

level 30: waiting for ack
sending ack
sent ack
received ack
queueing message for later receipt
queued message for later receipt

level 40: memory management
buffer management

13 FUNCTIONS FOR DEBUGGING P4 PROGRAMS 28

level 50: reading procgroup
other initialization message exchange

level 60: send-receive details, especially machine-specific traces

level 70: 1listener interactions:
creating listener
created listener
messages from inside listener

level 80: detailed data structures after initialization

level 90: detailed tracing of flow thru procedures

For optimum performance, the test of the debug level required by these messages can
be removed at compile time by not commenting out the #define P4_DPRINTFL line in the
‘OPTIONS’ file (See 1 [Introduction], page 1).

The following function is provided to deal with abnormal termination. It can be called
by any process.

VOID p4_error(string, value)
char *string;
int value;

prints string as an error message and then forcefully terminates all co-operating processes
and cleans up all shared resources.

VOID p4_soft_errors(onoff)
int onoff;

enables/disables soft errors, returning the previous setting. The default is “disabled”, which
means that certain p4 functions will call p4_error instead of returning -1.

p4_error gets control on certain kinds of interrupts. It is automatically called for
SIGSEGV, SIGBUS, and SIGFPE interrupts, to catch user programming errors and clean up,
after which it returns interrupt handling to default mode and returns, so that the user may
obtain a dump. It also handles SIGINT interrupts, in which case it cleans up and exits.
Finally, it may be called directly by the user, in which case it cleans up (other p4 processes
and IPC’s) and exits.

Although p4_error is supposed to get rid of all running p4 processes, it can happen that
an error is bad enough that p4 processes are left running. A primitive aid in finding and
killing these processes is the shell script kj, which takes a string as an argument and then
kills processes containing that string as part of their program names. Currently it only kills
processes on the machine where it is run, but it can be run via rsh on remote machines.
There are other useful scripts (e.g. killipc and killp4) in the ‘p4/bin’ directory to do
such things as clean up SYSV IPC items that may be left when a program abnormally
terminates. P4 will generally cleanup these items if the abnormal termination is a type that
p4 traps, otherwise the user must do the cleanup. This is an unfortunate side-effect of the
way that SYSV handles things, it really should be the OS’s function to take care of this.

14 MISCELLANEOUS FUNCTIONS 29

On many machines it is possible to attach a debugger like dbx to a running process.
This is one way to find out where a hanging process is stuck.

14 Miscellaneous Functions

In this section are found functions that do seem to fit neatly into any of the other sections.
char *p4_version()

returns a string containing the version number of p4 being run.
VOID p4_print_avail_buffs()

P4 maintains an array of buffer lists of various sizes, so that it can very rapidly allocate
and deallocate buffers. You can see the contents of the buffer pools at any time by calling
this procedure.

VOID p4_set_avail_buff(bufidx,size)
int bufidx;
int size;

This procedure is used to set the size of buffers in p4’s buffer pools. The parameter bufidx
specifies a particular buffer list, and should be a number from 0 to 7. The size parameter
specifies that buffers up to that size will be managed by p4 in a particular list. It is
important to maintain the buffer sizes in increasing order. The default list of buffer sizes is
64, 256, 1024, 4096, 16384, 65536, 262144, 1048576. This causes wasted space if you send
only one large message, causing the allocation of a large buffer which is not reused. Savings
in space can be achieved by adjusting these numbers to correspond with the message sizes
of your application. If no large messages are sent at all, however, no space is wasted since
the large buffers will never be allocated. If you send a message larger that the largest size
in this array, p4 will allocate the buffer, and then free it back to the system as soon as it
can.

15 Fortran Interface

In this section we describe the p4 Fortran library. All Fortran programs must include the
file ‘p4f.n’ from the directory ‘1ib_f’. The Fortran calls to p4 procedures are analogous
to their C counterparts, but have Fortran-like names. You might find the documentation
for the corresponding C routine, in one of the sections above, helpful.

p4init ()

should be called by your program before an attempt is made to use any p4 procedures or
data areas. We suggest making it the first executable statement in your program.

p4crpg)

This routine should be called by the master process (the one started directly by you) to
read the procgroup file and start the processes specified there. It can be called by other
process, but has no effect in that case.

15 FORTRAN INTERFACE 30

integer p4myid()
returns an integer value representing the id of the process assigned by the p4 system.
p4cleanup ()

should be called by the master process to wait for the termination of the processes created
by p4crpg.

p4send(type,dest,msg,len,rc)
integer type, dest, len, rc
real msg

p4sendx(type,dest,msg,len,data_type,rc)
integer type, dest, len, data_type, rc
real msg

p4sendr(type,dest,msg,len,rc)
integer type, dest, len, rc
real msg

p4sendrx(type,dest,msg,len,data_type,rc)
integer type, dest, len, data_type, rc
real msg

Each of these procedures sends a message. The type argument is an integer value chosen
by the user to represent a message type. The dest argument is an integer value that
specifies the p4-id of the process that should receive the message. The len argument
contains the length in bytes of the message to be sent. The procedures with an “r” in
the name do not return until an acknowledgement is received from the to process (the “r”
stands for rendezvous). Those procedures with an “x” in the name take an extra argument
(datatype) that specifies the type of data in the message; these procedures will use that
information to call XDR for data conversion if the message is being passed to a machine of a
different architecture, i.e. where the internal representation may be different. p4 maintains
an internal table of which pairs of machine types require conversion, so it only does the
conversion when it is necessary. The valid values for the data_type parameter are P4INT,

P4DBL, P4FLT, P4LNG, and P4NOX. The last of these means “no translation”.

p4recv(type,from,buf ,buflen,msglen,rc)
integer type, from, buflen, msglen, rc
real buf

The buf parameter is the buffer into which the message is to be received. It can be of any
Fortran type. The buflen parameter specifies its length, so that p4 can check for overruns.
The number of bytes actually received is given by msglen. The type and from parameters
specify the message type and the source of the message. If either of these is set to -1, then
screening is not applied, and the parameter is set to indicate the type and/or source of the
message actually received. rc is the return code from the call.

p4probe(type,from,rc)

sets rc to 1 or 0 depending on whether the process has any messages available or not. The

15 FORTRAN INTERFACE 31

parameters type and from are used as both input and arguments. On input, type has a
value that indicates the type of message that the user wishes to check for availability (-1
indicates any type). The variable from is used similarly to indicate who a message is desired
from.

p4brdcst(type,data,len,rc)
integer type, len, rc
real data

p4brdcstx(type,data,len,data_type,rc)
integer type, len, data_type, rc
real data

provide the ability to broadcast messages like p4send and p4sendx. These are semantically
equivalent to a loop which uses p4send or p4sendx to individually send a message to each
other process (the sender is not included.) Messages sent by one of these broadcasts are
received by normal p4recv’s. The implementation of p4brdcst is more efflicient than such
a loop, since it uses a “broadcast tree”.

integer p4ntotids()

returns an integer value indicating the total number of processes started by the p4 master
process and all remote processes. It includes the master process itself.

integer p4nslaves()

returns an integer value indicating the total number of processes started by p4, not including
the original master process.

integer p4nclids()

returns an integer value indicating the number of ids in the current cluster as started by
p4crpg.

integer p4myclid()

returns a unique id (relative to 0) within a cluster of p4-managed processes. Thus, a cluster
master will always have a cluster id of 0.

p4globarr(type)
integer type

takes one argument which is the message type to be used for internal message-passing. It
causes the invoking process to wait until all processes specified in the procgroup file have
invoked the procedure.

p4getclmasts (numids,ids)
integer numids, ids(*)

This procedure fills in the values of numids and ids. It obtains the p4-ids of all “cluster
masters” for the program, placing them in the ids array and placing the number of ids in
numids.

pdgetclids(start,end)
integer start, end

15 FORTRAN INTERFACE 32

receives two integers. It places the p4-assigned id’s of the first and last ids within the current
cluster into the two arguments (including the remote master).

integer p4clock()

returns a value in milliseconds. This is a wall-clock value, usually obtained from the system
via gettimeofday. Also see p4ustimer below.

integer p4ustimer()

returns a wall-clock time value in microseconds. The precision of this number depends on
the timer installed on the individual machine. In some cases the resolution may be no
greater than that of p4clock().

p4flush()

flushes standard out. On some systems this needs to be done explicitly for prompts. This
is just a convenience routine that has nothing to do with p4.

p4error(str,val)
character*n str
integer val

prints string as an error message and then forcefully terminates all p4 processes.

p4softerrs(new,o0ld)
integer new, old

enables/disables soft errors, returning the previous setting in o1ld. The default is “disabled”,
which means that certain p4 functions will call p4_error instead of returning -1.

integer p4version()
returns a string containing the version number of p4 being run.
p4avlbufs ()

P4 maintains an array of buffer lists of various sizes, so that it can very rapidly allocate
and deallocate buffers. You can see the contents of the buffer pools at any time by calling
this procedure.

p4setavlbuf (idx,size)
integer idx, size

This procedure is used to set the size of buffers in p4’s buffer pools. The parameter bufidx
specifies a particular buffer list, and should be a number from 0 to 7. The size parameter
specifies that buffers up to that size will be managed by p4 in a particular list. It is
important to maintain the buffer sizes in increasing order. The default list of buffer sizes is
64, 256, 1024, 4096, 16384, 65536, 262144, 1048576. This causes wasted space if you send
only one large message, causing the allocation of a large buffer which is not reused. Savings
in space can be achieved by adjusting these numbers to correspond with the message sizes
of your application. If no large messages are sent at all, however, no space is wasted since
the large buffers will never be allocated. If you send a message larger that the largest size
in this array, p4 will allocate the buffer, and then free it back to the system as soon as it
can.

16 FASTER STARTUP WITH THE SECURE SERVER 33

p4globop(type,x,nelem,size,op,data_type,rc)
where op is one of:

p4intsumop
p4intabsmaxop
p4intabsminop
p4intmaxop
p4intminop
p4intmultop
p4dblsumop
p4dblabsmaxop
p4dblabsminop
p4dblmaxop
p4dblminop
p4dblmultop
p4fltsumop
p4fltabsmaxop
p4fltabsminop
p4fltmaxop
p4fltminop
p4fltmultop

The data_type parameter in the above operations should be one of

P4INT
P4ALNG
PAFLT
P4DBL

These symbolic constants are defined in the include file ‘p4f .h’. The size argument is the
size in bytes of one element, and the type argument is the message type used in the global
operation.

There are also Fortran routines for creating logfiles See 18.2 [Creating Log Files in
Fortran], page 37.

16 Faster Startup with the Secure Server

P4 processes on remote machines are ordinarily created by rsh. For this to work, the user
must have permission to create processes on that machine. This permission is normally
granted either globally by the system administrator, or locally by the use of ‘.rhosts’ files.
(See the normal unix man pages under rhosts).

Since rsh is relatively slow, p4 provides a way to get things started faster. This is
accomplished by running the program serv_p4 in the background on the remote machine.
When p4 is creating processes, it will automatically check for the existence of this server
and use it if it is running. Remote processes typically start much faster when the server
is running. When p4 uses rsh, the remote process’s stdout is sent back to the stdout
of the parent (the p4 master process). We have not yet tested this server on all of the

17 UTILITIES FOR MANAGING A P4 SESSION 34

machines that we support. Thus far, we have tested it somewhat on the SYMMETRY,
SUN, DEC5000, and SGI. We believe that it will work on many other machines, but have
not yet verified it on all machines.

An invocation of a set of servers is (currently) associated with a specific port number.
This way multiple users can each be running multiple server networks without mutual
interference, provided each network of servers is started with a different port number.

To start the secure server on a machine one can do
serv_p4 -d -p <num>

where <num> is a port number to be associated with a network of servers. If the -p option
is omitted, the server will pick an unused port number and report

Listening on <num>.
Then p4 programs to use this network should be started with
-p4ssport <num>

The p4 application must also be listed in the user’s ‘. p4apps’ file in his home directory.
This file should be readable only by the user, and should contain the full path names of
programs that the user wishes to be startable by the p4 server.

When a p4 master process tries to start a slave process on a remote machine, it will first
attempt to do it via the server. If it cannot do so for any reason (no server running, port
number mismatch, or program not found in ‘.p4apps’ file), then it tries to do so with the
remote shell command.

Note that the server is used only to start processes; it plays no role in a p4 computa-
tion once the slave processes have been initiated. Rather, a temporary process, called the
listener, is spawned to manage connection requests that occur during the execution of a p4
program. Neither the server nor the listener consumes any significant amount of CPU time.

There is further discussion of installation options for the servers in the ‘README’ file in
the ‘p4/servers’ subdirectory.

17 Utilities for Managing a p4 Session

A number of useful utilities can be found in the ‘bin’ subdirectory. These can be used to
start and stop server processes based on the contents of a file of machines one regularly
uses, to kill runaway p4 processes in the unlikely case that they cannot or do not terminate
automatically when one processes ends abnormally or is interrupted from the keyboard,
and to merge logfiles created for the use of upshot (See 18 [Creating Logfiles for Upshot],
page 35). Some of these scripts may have to be edited to reflect the installation directory
of p4.

start_servers Use a port number from the command line and afile of machine—program
pairs to start a set of secure servers.

kill_servers Use the same file to kill a set of secure servers.

18 CREATING LOGFILES FOR UPSHOT 35

killp4 Kills p4 processes, given a procgroup file and a program name on the local machine.

mergelogs A C program to merge logfiles. Its source code is in the alog directory, but
the makefile deposits the executable here.

listener_p4 The code for the standalone listener.

adjlogs A C program toline up the timestamps when logs are taken from different machines
on a network. The source is in the alog directory, but the executable goes here. It
cannot be made on all machines, because it uses an extended-precision math library.
It works on Suns.

18 Creating Logfiles for Upshot

P4 is distributed with a set of routines for creating logfiles (see ‘README’ in the ‘p4/alog’
directory. The resulting logfiles can be examined by upshot, distributed separately. For
details about upshot, see [4].

The ‘p4/alog’ directory contains a package (ALOG) for creating logs of time-stamped
events, that is of general utility, outside of p4. The timestamps are obtained from various
microsecond-level resolution timers on various machines. The portable microsecond timing
package is contained in the ‘usc’ subdirectory. It is used by the ALOG package as well as
by the p4_ustimer function in p4. Similarly, the ALOG package can be used independently
of p4 and upshot. Its logfiles were designed to be read and displayed by upshot, but other
display packages can be used as well.

18.1 User-Specified Events

The ALOG package consists of a set of macros that can be used to instrument a C program
and a set of functions that can be used to instrument a Fortran program. We will focus
here primarily on the use of the C interface, which contains more functionality.

The macros that can be used to instrument a program are as follows (from the file
‘README_ALOG’ in the ‘alog’ directory):

ALOG_SETUP(pid,flag) :
pid - (integer) process id of callee
flag - (integer) either ALOG_WRAP or ALOG_TRUNCATE

This macro initializes the tracing area for a slave process and must be called once before
any event is logged. If the value of flag is set to ALOG_WRAP, then in the event of no more
space for logging events the system will only report the latest n events. If flag is set to
ALOG_TRUNCATE the system will stop logging events as soon as there is no more memory for
the events to be logged.

ALOG_MASTER (pid,flag):
pid - (integer) process id of the callee
flag - (integer) either ALOG_WRAP or ALOG_TRUNCATE

18 CREATING LOGFILES FOR UPSHOT 36

This macro has the same effect over its parameters as ALOG_SETUP with the difference that
this macro should be referenced by the master process only.

ALOG_DEFINE(event,strdef,format):
event - (integer) id of event being defined
strdef - (string) description of ’event’
format - (string) control string in "printf" format

This macro puts an event definition code into the logfile.

ALOG_LOG(pid,event,intdata,strdata):
pid - (integer) process id of callee
event - (integer) event id to be logged
intdata - (integer) any integer data for this event
strdata - (string) any string data (can be the null string)

This macro provides the event logging service.

ALOG_OUTPUT
no parameters

This macro dumps the events logged into a log file with the name ‘alogfile.pxx’ where xx
is the logical PID of the callee process. The log file is created in the current directory unless
specified otherwise through the macro ALOG_SETDIR. All processes should execute this.

ALOG_SETDIR(dir)
dir - (string) directory where log file is created

This macro sets the output directory for the log file. The default directory for the creation
of the log file is the current directory of the process. If used, then this macro MUST be
invoked before ALOG_MASTER/ALOG_SETUP.

ALOG_STATUS(status):
status - (integer) either ALOG_ON or ALOG_OFF

This macro controls the logging status of ALOG as follows. Setting status to ALOG_ON
enables logging until it is turned off. Setting status to ALOG_OFF disables logging until it
is turned on again. Logging is enabled at the outset by default.

ALOG_ENABLE
no parameters

This macro enables event logging; same as calling ALOG_STATUS (ALOG_ON).

ALOG_DISABLE
no parameters

This macro disables event logging; same as calling ALOG_STATUS (ALOG_OFF).

The sample program ‘gridlog.shmem.c’in the ‘monitors’ subdirectory contains an ex-
ample of a program instrumented with ALOG statements. The macro definitions for ALOG
are included when you include #include "p4.h" in your program. If the line #define
ALOG_TRACE is not included before the #include "p4.h", these macros will generate no
code. Thus it is easy to effectively de-instrument the code by recompiling, and there is no

18 CREATING LOGFILES FOR UPSHOT 37

need to protect each ALOG statement with an #ifdef.

When an ALOG-instrumented program is run, it will produce one logfile for each process.
The files will be named ‘alogfile.p0’, ‘alogfile.pl’, These files need to be merged
into a single file with the events sored by timestamp. This is accomplished with the program
‘mergelogs’, found in the ‘bin’ subdirectory. To merge the logfiles, do

mergelogs alogfile.p* > myprog.log
rm alogfile.p*

The resulting logfile can be examined by upshot or some other logfile examination facil-
ity. See [4] for details of the logfile format.

On networks of workstations and some distributed memory machisnes, the microsecond
timers on the various processors are synchronized. To produce a usable merged logfile, the
‘adjlogs’ program, also found in the ‘bin’ directory, can be used to adjust the timestamps
for offset and drift before they are merged. For this to work, synchronization events must be
placed in the logfiles by an ALOG_LOG statement. The event type is then passed to adjlogs,
which aligns the timestamps, based on the timestamps of the synchonization events. The
call to adjlogs looks like this, where <n> is the type of the synchronization event. This
program makes us of high-precision numeric libraries, and has been tested only on Sun’s.

adjlogs -e <n>

Both mergelogs and adjlogs are less portable than the other p4 code; you might want
to run them on a workstation such as a Sun.

18.2 Creating Log Files in Fortran

Log files can also be created by Fortran programs. The routines to do so are:

alogfsetup(pid,flag):
pid - (integer) process id of callee
flag - (integer) either ALOG_WRAP or ALOG_TRUNCATE

This function initializes the tracing area for a slave process and must be called once before
any event is logged. If the value of flag is set to ALOG_WRAP, then in the event of no more
space for logging events the system will only report the latest n events. If flag is set to
ALOG_TRUNCATE the system will stop logging events as soon as there is no more memory for
the events to be logged.

alogfmaster(pid,flag):
pid - (integer) process id of the callee
flag - (integer) either O or 1 (see above)

This function has the same effect over its parameters as alogfsetup with the difference
that this function should be referenced by the master process only.

alogfdefine(event,strdef,format) :
event - (integer) id of event being defined
strdef - (string) description of ’event’
format - (string) control string in "printf" format

18 CREATING LOGFILES FOR UPSHOT 38

This function puts an event definition code into the logfile.

alogflog(pid,event,intdata,strdata):
pid - (integer) process id of callee
event - (integer) event id to be logged
intdata - (integer) any integer data for this event
strdata - (string) any string data (can be the null string)

This function provides the event logging service.
alogfoutput ()

This function dumps the events logged into a log file with the name ‘alogfile.pxx’ where
xx is the logical PID of the callee process. The log file is created in the current directory
unless specified otherwise through the function alogfsetdir.

alogfsetdir(dir)
dir - (string) directory where log file is created

This function sets the output directory for the log file. The default directory for the creation
of the log file is the current directory of the process. If used, then this function MUST be
invoked before alogfmaster/alogfsetup.

alogfstatus(status):
status - (integer) either ALOG_ON or ALOG_OFF

This function controls the logging status of ALOG as follows. Setting status to ALOG_ON
enables logging until it is turned off. Setting status to ALOG_OFF disables logging until it
is turned on again. Logging is enabled at the outset by default.

alogfenable()

This function enables event logging; same as calling alogfstatus (ALOG_ON). It must
be called first, even before alogfmaster or alogfsetup.

alogfdisable()
This function disables event logging; same as calling alogfstatus (ALOG_OFF).

The sample program ‘sr_log.f’in the ‘messages_f’ subdirectory contains an example
of a Fortran program instrumented with logging statements

18.3 Examining Log Files with Upshot

Upshot is not part of the p4 distribution, but can be obtained from the same anony-
mous ftp location as p4. Take the file ‘upshot.tar.Z’ from the directory ‘pub/p4’ on
info.mcs.anl.gov. The distribution contains all necessary documentation on how to in-
stall and run upshot. It is an X-window program that runs on most workstations. There
is no need for a parallel macchine to be involved, once the log files have been obtained.

Upshot produces the most interesting displays when certain events (not necessarily all)
are defined to be the entry and exit events for certain states and then colors are associated

19 RUNNING P4 ON SPECIFIC MACHINES 39

with the states. This association is reflected in a statefile with a format like the following:

11 2 red asking
2 3 4 blue working
3 5 6 green updating

This statefile describes three states. State 1 is defined to be between events 1 and 2.
Upshot will color it red and label it “asking”.

18.4 Automatic Logging of p4 Events

We have found that the most useful events to log and study are those identified by the user
and specified in his program. That way he can control the number of events to be logged
and the grain size of the states that are represented.

In some cases, however, one wants to study the details of the internal operation of a
p4 application, or get some idea of the behavior on one’s program without going to the
trouble of instrumenting it himself. To this end, p4 itself is instrumented with ALOG
statements, although by default they are inactive. To get automatic logging of p4 events
(including sending and receiving of each message) one needs first to link to a version of the
p4 library that has been compiled with the line #define ALOG_TRACE uncommented out in
the ‘OPTIONS’ file, and secondly, to run with -p4log on the command line.

Some important things to know about using the internal logging features of p4 are:

1. By default, logging is turned off at compile time in the OPTIONS file.

2. If you link to a version of p4 that was compiled with logging turned on in the OP-
TIONS file, then if you either use the -pdlog option or do ALOG_ENABLE in the
program, you will get p4 internal log stuff. Of course, if you use ALOG_ENABLE and
do some of your own logging, then it will be mixed up with p4’s. The assumption is
that you would probably only link to a version of p4 that had internal logging turned
on if you wanted to debug p4 internals.

3. If you link to a version of p4 that was compiled with logging turned off in the OP-
TIONS file, then using the -p4log option will have no effect; also, using ALOG_ENABLE
will not cause p4 internals to log anything. BUT, you can do a "#define ALOG_TRACE"
at the top of your program and do ALOG_ENABLE, ALOG_LOGs, etc. and all of
your own stuff will be logged. NOTE that you must do the #define above your
#include "p4.h" because p4.h includes the alog.h header file for you.

4. It is suggested that at least in the case of internal logging, processes should be created
using p4_create_procgroup rather than p4_create.

19 Running p4 on Specific Machines

19.1 Invoking a p4 Program

Workstation Networks On networks of uniprocessors consisting of Suns, HP machines,

19 RUNNING P4 ON SPECIFIC MACHINES 40

RS/6000’s, CRAY’s, SGIs, etc., just set up the appropriate procgroup file and execute
the master process. Fxecution of the p4_create_procgroup will start up the other
processes, either via remote shell or the server.

Shared-memory multiprocessors On machines such as the Sequent Symmetry, Encore,
KSR, IBM 3090, or Alliant, just execute the master program.

BBN Butterfly On the Butterfly TC-2000, one should invoke a program with the “clus-
ter” command: cluster 10 systest -pg myprocgroup, where ‘myprocgroup’ de-

scribes 9 slave processes, or else the main program will p4_create 9 processes.
IPSC860 See the script ‘runipsc’ in the ‘messages’ directory.
DELTA See the script ‘rundelta’ in the ‘messages’ directory.

Paragon To run on the Paragon at Caltech, execute the program with command-line
arguments as follows:

<progname> -pn .compute -sz <nprocs>

where nprocs is the total number of processes. On some Paragons, one must first cre-
ate a partition with the mkpart command (mkpart -sz <size> <partname>), spec-
ifying the size and name of the partition. At some installations, these partitions are
specicified ahead of time. (The lspart command says which partitions currently ex-
ist, and the rmpart command is used to remove a user-allocated partition. Once you
have a partition, start your program with:

myprog -pn <partition name>
The procgroup file should contain one line:

<machinename> <nprocs-1> <pathname>

CM-5 You are logged in to a particular front-end, which determines how many nodes you
have available. Just run the program. The procgroup file should specify (as local)
some number of slaves less than the number of nodes available. Also include the
program pathname on the local line in the procgroup file. You don’t have to use all
the nodes.

nCube Say xnc -dN progname where N is the dimension of the subcube to be allocated
(i.e., the number of nodes allocated will be 2 to the power N). The procgroup file
should look like the one for the CM-5. Try nman to access the man pages.

SP-1 The IBM SP-1 has several modes. To run (at least on the Argonne system) with the
Socket interface to the Ethernet, use spnodes in the procgroup file, including a
spnodel 0 <file>
for the master. To use the socket interface to the switch on the SP-1, use swnodes for

the nodes, including swnodel for the master.

SP1_EUI To use the IBM EUI interface to the switch (P4ARCH=SP1_EUI), log into a node
where EUI is running and do:

19 RUNNING P4 ON SPECIFIC MACHINES 41

setenv MP_PROCS N (where N is the number of processes you want)

myprog

or
myprog -procs N

The procgroup file should look like
local 15 <progname>

to run with 16 processes (15 slaves). The program name in the procgroup file should
be the full path name of the executable file. Such a program may be be interactive,
but there currently are problems flushing lines to the terminal that do not end in a
newline character (typically, interactive prompts).

SP1_EUIH To use the experimental high-speed interface, log into a node where EUIH is
running and do:

/usr/lpp/euih/eui/cotb0 -b <progname> <numprocs> <user args>

The procgroup file should look like
local 15 <progname>
to run with 16 processes (15 slaves). The program name in the procgroup file should
be the full path name of the executable file. Such a program should not be interactive.
MEIKO_CS1 Find an appropriately sized partition using
rinfo -a
and then start the job with
prun -n <nprocs> -lsv [-p <partition name>] <progname>

The -1sv option causes stdout to be routed to files.

19.2 Machine-Specific Notes

SUN
(1) P4 can be installed on this machine with or without SYSV IPC.

SUN_SOLARIS
(1) P4 is made with shared memory by default, and instead of SysV
shared
memory, uses the more efficient mmap.

HP
(1) P4 can be installed on this machine with or without SYSV IPC.
(2) TFortran not tested (not avail on our test machine).

DEC5000
(1) P4 can be installed on this machine with or without SYSV IPC.

19 RUNNING P4 ON SPECIFIC MACHINES 42

ALPHA
€]

RS6000
€]
(2)

IBM3090
€]
(2)
(3)

TITAN
€]
(2)

SGI
€]

NEXT
€]

P4 can be installed on this machine with or without SYSV IPC.

P4 can be installed on this machine with or without SYSV IPC.
It is important to use the option -lbsd on the link step to
get sockets to support the NONBLOCKING option.

P4 can be installed on this machine with or without SYSV IPC.
Fortran not supported due to absence of iargc/getarg.

There are multiply defined macros in include/rpc/rpc.h. IBM
is fixing this in a later 0S release. Meanwhile make your own
copy and the fix the problem yourself.

P4 can be installed on this machine with or without SYSV IPC.
Fortran not supported due to problems with getting args.

P4 can be installed on this machine with or without SYSV IPC.

Fortran not supported due to absence of iargc/getarg.

FX2800/FX2800_SWITCH

€]

FX8
€]

KSR
€]

(2)
IPSC860

€]

DELTA
€]

Alliant’s switch code not yet ensuring messages

remain ordered. p4 currently discovers the switch port for
the machine it is running on by invoking the internal
procedure getswport. This procedure must be customized to
the installation. Alliant’s switch is currently unsupported.

You might need to add MFLAGS = -i to the Makefile

The latest version of the 0S5 produces a link-time error for
Fortran programs.
Use of sockets fails because of a bug in socketpair.

the script ‘‘runcube’’ (in the messages directory) may
be useful

the script ‘‘rundelta’’ (in the messages directory) may
be useful

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 43

BALANCE
(1) Fortran not supported.

SYMMETRY/SYMMETRY_PTX
(1) -Z compiler option may be changed to control the
shmalloc/malloc split. This is often needed when
creating logfiles on a symmetry.
(2) shared memory message passing not supported in Fortran

TC_2000/TC_2000_TCMP
(1) TCMP port not yet complete.
(2) For shared-memory execution, one must use cluster ... to
obtain a private cluster for execution
NCUBE
(1) Messages are limited to 32K in length.

CM5
(1) Logfiles are not supported.

SP1

(1) Using ‘‘spnoden’’ for node names causes p4 to use the TCP
interface to the Ethernet.

(2) Using ‘‘swnoden’’ for node names causes p4 to use the TCP
interface to the switch. 1In this case, replace the line
‘‘local 0’’ with ‘‘swnodel 0’’ in the procgroup file.

(3) It is important to use the option -1lbsd on the link step to
get sockets to support the NONBLOCKING option when using the
TCP interface to either the switch or the Ethermnet.

(4) EUIH programs may not be able to read from the keyboard.

20 Some Common Problems and their Solutions

Our attempt with this manual has been to prevent you from having difficulties. Experience
shows that certain common problems recur, however. In this section we hope to address
some of these problems.

“Permission Denied.” p4 slave processes are started by forks (for slaves in the same
shared-memory cluster), by the server, or by the remote shell command. If the server is
running on the target machine then that must be configured to allow remote processes
to be started. To test whether this is your problem, try

rsh target.machine date

If you still get the “Permission denied.” message, then the problem has nothing to do
with p4. See hosts.equiv or .rhosts in the system man pages.

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 44

“More processes than message queues” Under the default configuration of p4, unipro-
cessors, such as most workstations, cannot have multiple processes sharing memory.
Thus your procgroup file for a workstation network should always look like:

local O
machinel 1 pathname
machine2 1 pathname
machine3 1 pathname

The “local” means “only the master on the startup machine; no local slaves sharing
memory”.

It is possible, at some cost in message-passing efficiency, to have a cluster of processes
sharing memory on a workstation, but in this case p4 must have been installed with
the SYSV_IPC option set in the ‘0PTIONS’ file. The cost is that a process waiting for a
message must spin between checking for a message arriving on a socket and a message
arriving through shared memory.

“cannot find procgroup file” On the SP-1, Fortran EUIH programs that have been
linked with the -e main option cannot find their command-line arguments, which are
needed whether the procgroup file is named implicitly or explicitly. The solution is
to remove -e main from the link line in the makefile.

“gethostbyname failed 100 times” Check for an invalid machine name in the proc-
group file. If all machine names being used are correct, p4dmn command-line option
might be helpful. For example, if you are running the master program on a machine
named “donner”, then it will broadcast that name to other processes, but they may
only be able to look “donner” up in a file that refers to it as “donner.mcs.anl.gov”,
so the -p4dmn option is used to supply the “mcs.anl.gov” part.

“pgm_path_name: Command not found” P4 tried to start the program with the given
name on a remote machine and the program did not exist. Verify the full path name
of the program.

program hangs You may have failed to initialize the type and from fields before a
p4_recv. You might have used p4_sendr between two processes at the same time,
which will deadlock if you think about it, or even if you don’t. Use p4_send instead.

program hangs or has bad data in received message You might have failed to set
the pointer to the incoming buffer to NULL, or to have specifically allocated a buffer
with p4_msg_alloc, before a p4_recv.

program fails to terminate Some Sequents and Suns have been found to be running an
old version of rsh, which leaves rsh processes around, causing the master process
not to terminate. Be sure that you have applied patch 100468-03 to your rsh, which
should make it 7374 bytes long.

program ignores command-line arguments You might have passed argc instead of
&argc to p4_initenv.

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 45

program runs out of memory You may need to call p4_msg_free after each p4_recv,
or reuse buffers by pre-allocating them.

22 FUNCTION INDEX

21 Concept Index
A

adjusting timestamps in log files
allocating buffers

askfor monitor

automatic logging .

B

barrier . Coe e
buffer pool management .

C

clocks .
cluster management .
command-line arguments .

D

data types for monitors
deallocating buffers
debugging

directory structure
documentation

E

examples .

F

faster startup .
Fortran interface

G

getting started
global operations

1

installation .
interrupts

IPC .

L
lock .

logfiles in Fortran .
logging

M

machines .

man pages

merging log files
message-passing functions
monitor data types
monitor primitives
monitors .

.37
.19
.25
.39

21

24

. 29

. 26
17
.14

. 23

12

19

. 26

.33
.29

. 28
.44

. 24
.37
. 35

.37
. 18
. 23
. 23
. 24

@)

online help .

OPTIONS

P

permission denied .
permissions
problems . .
process management
procgroup files

R

recelving messages
return codes

rhosts -
runaway processes .

S

sending messages

servers . e
shared memory data types
shared memory example .
shared memory functions
starting processes by hand
statefile

T

testing .
timestamps
timing .
tracefiles .

U

unlock .
upshot .
user events .
utilities

22 Function Index

A

adjlogs
ALOG_DEFINE .
ALOG_DISABLE .
ALOG_ENABLE .
ALOG_LOG . . .
ALOG_MASTER .
ALOG_OUTPUT .
ALOG_SETDIR
ALOG_SETUP .
ALOG_STATUS
alogfdefine .

46

.43
.33
.43
.15

19
.15
.33
. 28

. 18

33,

34

. 23
.21
.21
.14
. 38

. 35
. 26
. 35

35, 37,

24
38

. 35
.34

.37
. 36
. 36
. 36
. 36
. 35
. 36
. 36
. 35
. 36
.37

22 FUNCTION INDEX

alogfdisable
alogfenable .
alogflog
alogfmaster
alogfoutput
alogfsetdir
alogfsetup
alogfstatus .

M

mergelogs

P

p4_alloc_procgroup
p4_am_i_cluster_master .
p4_askfor
p4_askfor_init
p4_barrier
p4_barrier_init
p4_broadcast .
p4_broadcastx
pd_clock . -
p4_cluster_shmem_sync
p4_create
p4_create_procgroup
p4_dprintf .
p4_dprintfl .

p4_error . .
pd_free
p4_get_cluster_id
p4_get_cluster_masters
p4_get_dbg_level
p4_get_my_cluster_id
p4_get_my_id
p4_getsub
p4_getsub_init
p4_getsubs . .
p4_global_barrier .
p4_global _op .
p4_initenv

p4_lock

p4_lock_init
p4_malloc
p4_mcontinue
p4_mdelay .
p4_menter
p4_messages_available .
p4_mexit

p4_moninit .
p4_msg_alloc .
p4_msg_free
p4_num_cluster_ids .
p4_num_total_ids .
p4_num_total_slaves

. 38
. 38
. 38
.37
. 38
. 38
.37
. 38

.37

. 16
17
. 25
. 25
.24
.24
.19
.19
. 26
17
. 15
. 15
. 26
.27
. 28
. 22
17
. 18
.27
17
. 16
.24
.24
.24
.21
. 20
. 15
.24
.24
. 22
. 23
. 23
. 23
.19
. 23
. 23
.19
.19
17
17
17

p4_print_avail _buffs .

p4_probend
p4_progend
p4_recv
p4_send
p4_sendb
p4_sendbr
p4_sendbrx
p4_sendbx
p4_sendr .
p4_sendrx
p4_sendx

pd_set_avail_buff .

p4_set_dbg_level
p4_shfree
p4_shmalloc
p4_soft_errors
p4_startup .
p4_unlock
p4_update
p4_usrollover .
p4_ustimer .
p4_version .
p4_wait_for_end
pdavlbufs
pdbrdest .
pdbrdestx
p4cleanup
p4clock
pderpg .
pderror
paflush
pdgetclids
pdgetclmasts .
p4dglobarr
pdglobop .
p4init
pdmyclid .
pdmyid
pdnclids
p4nslaves
pdntotids
pdprobe
pdrecv .
pdsend
p4dsendr
pdsendrx .
pdsendx
pdsetavlbuf .
p4softerrs
pdustimer
p4version

47

. 29
. 25
. 26
.19
. 18
. 18
. 18
. 18
. 18
. 18
. 18
. 18
. 29
.27
. 22
. 22
. 28
. 16
.24
. 25
. 26
. 26
. 29
. 16
.32
.31
.31
.30
.32
. 29
.32
.32
.31
.31
.31
.32
. 29
.31
. 29
.31
.31
.31
.30
.30
.30
.30
.30
.30
.32
.32
.32
.32

REFERENCES 48

References

[1] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and
R. Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and Winston,
1987.

[2] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: the p4 parallel pro-
gramming system. Parallel Computing, 20, April 1994. See also Argonne National
Laboratory preprint MCS-P362-0493.

[3] Per Brinch Hansen. The Architecture of Concurrent Programs. Prentice-Hall, Inc., 1977.

[4] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.
Technical Report ANL-91/15, Argonne National Laboratory, Argonne, I1. 60439, 1991.

[5] C. A. R. Hoare. Monitors: an operating system structuring concept. Comunications of
the ACM, pages 549-557, October 1974.

This copy was produced on May 16, 1994.

