
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439-4801|||||{ANL-92/17|||||{User's Guide to the p4 Parallel Programming SystembyRalph Butler* and Ewing LuskMathematics and Computer Science Division
October 1992(Revised, April 1994)This work was supported in part by the Applied Mathematical Sciences subprogram ofthe O�ce of Energy Research under Contract W-31-109-Eng-38.*Also of The University of North Florida, Department of Computer Science,Jacksonville, Florida

CONTENTS iContentsAbstract1 Introduction 12 Structure of the Distribution Directory 23 Installing p4 33.1 Installing the p4 System : 33.2 Installing the Documentation : 53.3 Examples included with the Distribution : 64 Getting Started 64.1 A Message-Passing Example : 64.2 Program Description : 64.3 Analysis of the Program : 65 Specifying Processes in the Procgroup File 76 Developing a Simple p4 Program 106.1 A Minimal Example : 106.2 A Minimal Example in Fortran : 116.3 A More Complicated Example : 117 Command-Line Arguments 148 The p4 Function Library 148.1 Overview of the Library : 148.2 Return Codes from p4 Functions : 159 p4 Functions for Managing Processes and Clusters 159.1 Functions for Process Management : 159.2 Functions for Cluster Management : 1710 Functions for Message Passing 18

CONTENTS ii10.1 Explicit Sending and Receiving of Messages : : : : : : : : : : : : : : : : : : 1810.2 Global Operations : 1911 Functions for Shared Memory 2111.1 Managing Shared and Local Memory : 2211.2 Shared Memory Data Types : 2311.3 Monitor-Building Primitives : 2311.4 Some Useful Monitors : 2412 Functions for Timing p4 Programs 2613 Functions for Debugging p4 Programs 2614 Miscellaneous Functions 2915 Fortran Interface 2916 Faster Startup with the Secure Server 3317 Utilities for Managing a p4 Session 3418 Creating Log�les for Upshot 3518.1 User-Speci�ed Events : 3518.2 Creating Log Files in Fortran : 3718.3 Examining Log Files with Upshot : 3818.4 Automatic Logging of p4 Events : 3919 Running p4 on Speci�c Machines 3919.1 Invoking a p4 Program : 3919.2 Machine-Speci�c Notes : 4120 Some Common Problems and their Solutions 4321 Concept Index 4622 Function Index 46

CONTENTS iiiReferences 47

AbstractThis is both the reference manual and the User's Guide for the p4 parallel programmingsystem. It contains de�nitions of all functions for both C and Fortran, examples, a brieftutorial, and discussions of related systems.

1 INTRODUCTION 11 IntroductionP4 is a library of macros and subroutines developed at Argonne National Laboratory forprogramming a variety of parallel machines. A paper describing its functions and useis [2]. Its predecessor was the m4-based \Argonne macros" system described in the Holt,Rinehart, and Winston book Portable Programs for Parallel Processors, by Lusk, Overbeek,et al., from which p4 takes its name[1]. The current p4 system maintains the same basiccomputational models described there (monitors for the shared-memory model, message-passing for the distributed-memory model, and support for combining the two models)while signi�cantly increasing ease and
exibility of use. See 4 [Getting Started], page 6 fora simple example.P4 is intended to be portable, simple to install and use, and e�cient. It can be used toprogram networks of workstations, advanced parallel supercomputers like the Intel Touch-stone Delta and the Alliant Campus HiPPI-based system, and single shared-memory multi-processors. It has currently been installed on the following list of machines: Sequent Sym-metry (Dynix and PTX), Convex, Encore Multimax, Alliant FX/8, FX/800, and FX/2800,Cray X/MP, Sun (SunOS and Solaris), NeXT, DEC, Silicon Graphics, HP, and IBM RS6000workstations, Stardent Titan, BBN GP-1000 and TC-2000, Kendall Square, nCube, IntelIPSC/860, Intel Touchstone Delta, Intel Paragon, Alliant Campus, Thinking Machines'CM-5, and the IBM SP-1 (TCP/Ethernet, TCP/switch, EUI, and EUI-H). It is not di�-cult to port to new systems. Although p4 tries to be completely portable, there are a smallnumber of speci�c exceptions (See 19.2 [Machine-Speci�c Notes], page 41) that may needto be taken into account on a given machine.You can obtain the complete distribution of p4 by anonymous ftp from info.mcs.anl.govin the directory `pub/p4'. See the README �le there for recent news on what is available.Take the �le `p4-1.4.tar.Z'. The distribution contains all source code, installation in-structions, this reference manual, and a collection of examples in both C and Fortran. Alogis included in the distribution with p4. The �le `upshot.tar.Z' contains display facilitiesthat can be used with p4 and other systems.To ask questions about p4, report bugs, contribute examples, etc., you can send mail top4@mcs.anl.gov.The current release is version 1.4. You can check which version of the source codeyou have by looking at the �le `lib/p4_patchlevel.h' in the distribution. You can checkwhich version of the object code you have linked to by running any p4 program with thecommand-line option -p4version (See 7 [Command-Line Arguments], page 14).Salient features of p4 include:� support for both message-passing and explicit shared memory operations� xdr support for heterogeneous networks� World Wide Web version of the manual for on-line help� SYSV IPC support for shared-memory multiprocessing on workstations that supportmultiple processors, and simulating it on uniprocessors� instrumentation for automatic logging/tracing

2 STRUCTURE OF THE DISTRIBUTION DIRECTORY 2� automatic or user control of message-passing/bu�er-management� error/interrupt handling� an optional p4 server for quick startup on remote machinesA useful companion system is the alog/upshot logging and X-based trace examinationfacility. (See 18 [Creating Log�les for Upshot], page 35.)2 Structure of the Distribution DirectoryThe p4 source code distribution contains the following �les and subdirectories:CHANGES Changes new to this release of p4.Make�le The make�le for making the p4 system, doing the installation, and making make-�les for user applications.OPTIONS A �le controlling various compile-time options, such as whether System Vshared-memory operations are to be enabled, whether system debug message printingis to be enabled, and whether automatic instrumentation of internal p4 operationsfor the upshot logging and tracing program is to be done. It also contains the fullpathname of the listener to be used.README General instructions, including how to build and install pr.alog Source code for the ALOG tracing package.bin Scripts for starting and killing servers, killing runaway p4 processes, merging upshotlog�les, and other useful utilities.contrib Examples contributed by p4 users.contrib_f Fortran examples contributed by users.doc The man page, together with this manual and supporting �les, including a referencecard for p4 routines.include The include directory for making p4 applications. Most of these are (hard) linksinto the lib directory.lib The source code for the p4 system.lib_f The Fortran interface for p4.messages A basic set of message-passing examples in C.messages_f A basic set of message-passing examples in Fortran.misc A few odds and ends of programs that �t no special category. Some of these havebeen found useful during debugging.

3 INSTALLING P4 3monitors A basic set of shared-memory examples in C.servers The secure and insecure servers.usc The portable microsecond clock routines.util Assorted supporting �les, particularly for making the p4 distribution.3 Installing p4In this section we describe how to install the p4 library, either for your own personal useor for the use of everyone at your site. In the �rst case you do not need any super-userprivileges. In the second case, you may or may not, depending on how things are con�guredat your site. We also describe how to install and run the examples that come with p4,the online help system (this manual as a World Wide Web document) and how to builda working directory for your own programs yet share the installed copy of p4 with otherusers.3.1 Installing the p4 SystemTo build p4, position yourself in the top-level p4 directory (Here we refer to this directoryas p4, but you may have it as p4-1.4 or something similar) and type:make all P4ARCH=<machine>where <machine> is one of the machine names listed in `p4/util/machines', currently:

3 INSTALLING P4 4SUN Sun-3, Sun386i, Sparc-1, Sparc-2, or Sparc-10 workstationsSUN SOLARIS Sun workstations running SolarisHP HP workstationsDEC5000 DEC 5000 workstationsALPHA DEC Alpha workstationsNEXT 68030- or 68040-based NeXT workstationsRS6000 IBM RS 6000 series workstationsLINUX IBM-compatible PC's running the LINUX operating systemIBM3090 IBM 3090 running IBM's version of UNIX, AIXBALANCE Sequent Symmetry shared-memory multiprocessorSYMMETRY Sequent Symmetry shared-memory multiprocessorSYMMETRY PTX Sequent Symmetry shared-memory multiprocessor PTX OSMULTIMAX Encore Multimax shared-memory multiprocessorGP 1000 BBN GP-1000TC 2000 BBN TC-2000TC 2000 TCMP BBN TC-2000 with the TCMP message-passing libraryIPSC860 Intel IPSC/860 (nodes only)DELTA Intel DELTAPARAGON Intel ParagonTITAN Stardent TitanSGI Silicon Graphics workstationsCRAY Cray X/MP or C-90FX8 Alliant FX/8FX2800 Alliant FX/2800 or FX/800FX2800 SWITCH Alliant FX/2800 or FX/800, with CAMPUS HiPPI switchKSR Kendall Square KSR-1CM5 Thinking Machines' CM-5SP1 IBM SP-1 with TCP interface to either Ethernet or switchSP1 EUI IBM SP-1 with IBM's EUI interface to the switchSP1 EUIH IBM SP-1 with IBM's experimental EUI-H switch interfaceNCUBE NcubeMEIKO CS2 Meiko Computing SurfaceFor example:make all P4ARCH=SYMMETRYThe all is optional, for examplemake P4ARCH=SYMMETRYThis will create a machine-dependent `Makefile' in each subdirectory, make the p4 library,and compile and link a subset of the examples.To add a new machine type, or to change the characteristic parameters associated withan existing one, you can edit the �le `p4/util/defs.all'.To save disk space, various intermediate object �les can be removed withmake clean

3 INSTALLING P4 5The system can be restored to its original, machine-independent state withmake realcleanNote that this removes the machine-dependent Make�les in each directory, so the operationis not idempotent.It is also possible to install (or clean) only some of the directories:make all P4ARCH=SUN DIRS=messagesmake clean DIRS='monitors messages'To install only the Make�les in all subdirectories, use:make makefiles P4ARCH=<machine>To install the necessary library and include �les in a directory everything that is needed tocompile and link p4 programs, do:make install INSTALLDIR=<dir>This will create a p4 directory in <dir>, build a minimal set of directories, copy the relevant`.a' and `.h' �les into it, and test the installation by mking a small set of examples.See 4 [Getting Started], page 6 for instructions on how to run some example programsafter you have installed p4.3.2 Installing the DocumentationThe directory `p4/doc' contains this manual as well as �les that require installation. Thismanual was prepared with the latexinfo package from GNU emacs. The �les in `p4/doc'are:p4.tex the latex source for this manual, which uses the latexinfo stylelatexinfo.sty, titlepage.sty the style �les needed to latex this manualp4.html an html version of this manual, suitable for being installed in your World WideWeb pages.p4.txt plain ascii text of the manual, in case nothing else works.p4refcard.ps postscript version of a reference cardp4.1 unix man page for the p4 libraryp4f.1 unix man page for the Fortran interface to p4�ber status of the work on direct �ber channelThe Postscript version of this manual is available by anonymous ftp from info.mcs.anl.gov,in the directory `pub/p4'. The �le to get (in binary mode) is `p4-manual.ps.Z'. There is alsoa paper there giving an overview of p4, in `p4-paper.ps.Z'. This manual is also availablethrough theWorld Wide Web at http://www.mcs.anl.gov/home/lusk/p4/p4-manual/p4.html.

4 GETTING STARTED 63.3 Examples included with the DistributionA good way to see how various p4 functions are used is to look at the example programsincluded in the distribution. The `p4/monitors' directory contains shared-memory ex-amples written in C that use monitors, including one instrumented with ALOG. The`p4/messages' subdirectory contains message-passing examples written in C. The pro-grams in `p4/messages_f' are Fortran message-passing examples, and the `p4/contrib'and `p4/contrib_f' directories contain a number of miscellaneous examples contributed byusers. In each directory there is a `README' that describes the individual examples.4 Getting StartedThe easiest way to get started with p4 is to play with some of the sample programs providedwith the system.4.1 A Message-Passing ExampleWe will begin with a message-passing example in the sub-directory named `p4/messages'.The code for the program is in the �les `sr_test.c' and `sr_user.h'.4.2 Program DescriptionAs the name implies, this program is an example of p4's send/receive functionality. Brie
y,it is a simple program that runs a master process and some slave processes. The master andthe set of slaves form a ring of processes in which the master reads a message from stdinand sends a copy of the message to the �rst slave, which passes it on; the last slave passesthe message back to the master. If the master receives an undamaged copy of the message,it assumes that all went well, and reads another message. Note that the ring of processesis a logical structure in which each process assumes that its predecessor in the ring is theprocess with the next lower id, and its successor is the process with the next higher id. Themaster has id 0 (zero) and has the process with the largest id as its predecessor.4.3 Analysis of the ProgramThe �rst executable p4 statement in a program should be:p4_initenv(&argc,argv);This initializes the p4 system and allows p4 to extract any command line arguments passedto it, e.g. debugging parameters.Similarly, the last executable p4 statement in a program should be:p4_wait_for_end();This waits for termination of p4 processes and performs some cleanup operations.

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 7The procedure p4_get_my_id returns the unique integer id assigned to the calling pro-cess by p4.The statement:p4_create_procgroup();reads a procgroup �le that the user builds and creates the set of slaves described in that�le. Obviously this statement must be executed before any slaves can be assumed to exist.This procedure is the method you must use to create processes that do message-passing.The procedure p4_clock returns an integer that represents wall-clock time in millisec-onds. It is typically used to retrieve the time before and after some work, the di�erencerepresenting the time to do that work. Note that there is also a p4_ustimer that is usefulon those machines that support a microsecond timer.The procedures p4_send and p4_sendr are two of several p4 procedures that are avail-able for sending messages to other processes. They take as arguments the message type,the id of the "to" process, the address of the message, and the message length.The procedure p4_recv receives a message from another process and sets the valuesof all four parameters. P4_recv will automatically retrieve a bu�er in which to place areceived message, thus p4_msg_free may be called to free that bu�er when it is no longerneeded.The procedure p4_num_total_slaves is one of several procedures that the user caninvoke to determine information about the current execution.To run this program, you need to create a procgroup �le that describes where all slaveprocesses are to be executed (See 5 [Specifying Processes in the Procgroup File], page 7).We will assume that you have an example procgroup �le (named `sr_test.pg') in the`p4/messages' directory, and can run sr_test by merely typing:sr_testIf the procgroup �le is elsewhere, then you must type:sr_test -pg pathname_of_procgroup_�leAnother example that is made by default is the program systest. It tests a number of themessage-passing features of p4.5 Specifying Processes in the Procgroup FileThe procgroup �le is the only portion of the interface that is very likely to change throughmultiple versions of p4. As new architectures are supported, it is hoped that we can merelyalter the procgroup �le format to re
ect any new features. (Of course new procedure callsmay also be required, but existing procedure calls will remain unchanged when possible). SeeSee 19 [Running p4 on Speci�c Machines], page 39 for a discussion of machine dependenciesin starting p4 programs.The current format of a procgroup �le is as follows:

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 8local_machine n [full_path_name] [loginname]remote_machine n full_path_name [loginname]...In some situations, the program is started via some special command executed fromthe host machine. In such cases, the procgroup �le name can be speci�ed to the specialcommand line along with the program name (see for example the runcube and rundeltashell scripts in the `p4/messages' subdirectory). In those cases where no special commandis required, no special handling is required for the procgroup �lename.The �rst line of a procgroup �le may be \local n" where n is the number of slave processesthat share memory with the master. The full path name on the \local" line is ignored onmachines other than cube and mesh machines, and the IBM SP-1. The word \local" maybe replaced by an alias for the local machine if needed, to specify an alternative transportlayer. The subsequent lines contain either three or four �elds:1. the name of a remote machine on which slave processes are to be created.2. the number of slaves that are to be created on that machine, i.e. be in the samecluster (note that on machines that support it, the processes in a cluster will sharememory)3. the full path name of the executable slave program4. optionally, the user login name on the remote machine, if di�erent from that on thehost machine.As an example, let's assume that you have a network of three Sun workstations namedsun1, sun2, and sun3. We will also assume that you are working on sun1 and plan to run amaster process there. If you would like to run one process on each of the other Suns, thenyou might code a procgroup �le that looks like:# start one slave on each of sun2 and sun3local 0sun2 1 /home/mylogin/p4pgms/sr_testsun3 1 /home/mylogin/p4pgms/sr_testLines beginning with # are comments.It is also possible to have di�erent executables on di�erent machines. This is required,of course, when the machines don't share �les or are of di�erent architectures. An exampleof such a procgroup �le would be:local 0sun2 1 /home/user/p4pgms/sun/prog1sun3 1 /home/user/p4pgms/sun/prog2rs6000 1 /home/user/p4pgms/rs6000/prog1On a shared memory machine such as a KSR, in which you want all the processes to

5 SPECIFYING PROCESSES IN THE PROCGROUP FILE 9communicate through shared memory using monitors, the procgroup �le can be as simpleas: local 50On the CM-5, your procgroup �le would look like:local 32 /home/joe/p4progs/cm5/multiplyNext, let's assume that you have a Sequent Symmetry (named symm) and an EncoreMultimax (named mmax). We will also assume that you are working on symm, and plan torun the master there. If you would like to run two processes on symm (in addition to themaster) and two on mmax, then you might code a procgroup �le that looks like:local 2mmax 2 /mmaxfs/mylogin/p4pgms/sr_testP4 also permits you to treat the symmetry as a remote machine even when you arerunning the master there. Thus, you might code a procgroup �le as follows:local 2symm 2 /symmfs/mylogin/p4pgms/sr_testmmax 2 /mmaxfs/mylogin/p4pgms/sr_testIn this example, there are seven processes running. Five of the processes are on symm,including the master. Two of the processes on symm are in the master's procgroup and twoare running in a separate procgroup as if they were on a separate machine. Of course, thelast two are running on mmax.Finally, suppose that you have a �ber-channel network that parallels your Ethernet,connecting the same machines, and that connections fro running TCP/IP over the �ber-channel network are obtained by connecting to sun1-fc, sun2-fc, etc. Then even if sun1is the local machine that you are logged into, you will want your procgroup �le to look like:sun1-fc 0sun2-fc 1 /home/user/p4pgms/sun/prog1sun3-fc 1 /home/user/p4pgms/sun/prog2Some notes about the contents of the procgroup �le should be made at this point. First,the value of n on the local line can be zero, i.e. the master may have no local slaves.Second, the local machine may be treated as if it is a remote machine by merely enteringit in some line as a remote machine. Third, a single machine may be treated as multipleremote machines by having the same remote machine name entered on multiple lines in theprocgroup �le. Fourth, if a single machine is listed multiple times, those processes speci�edon each line form a single cluster (share memory). Fifth, the cluster size speci�ed for auniprocessor should be 1, because all slaves in a cluster are assumed to run in parallel andto share memory.We refer to the original (master) process as the \big master". The �rst process created ineach cluster is the \remote master" or the \cluster master" for that cluster. All p4-managedprocesses (see the procedure p4_create_procgroup) have unique integer id's beginning with0. The processes within a cluster are numbered consecutively.

6 DEVELOPING A SIMPLE P4 PROGRAM 106 Developing a Simple p4 ProgramThe real fun associated with any computing environment arrives when you actually type ina program and run it yourself. We will assume that you have successfully installed p4 onyour own system and are ready to write a small program, compile it, and run it.6.1 A Minimal ExampleWe will start with a tiny program in which the worker processes do no work, and thenexpand its capabilities. Edit a �le called `p4simple.c' and type:#include "p4.h"main(argc,argv)int argc;char **argv;{ p4_initenv(&argc,argv);p4_create_procgroup();worker();p4_wait_for_end();}worker(){ printf("Hello from %d \n",p4_get_my_id());}This is one of the simplest p4 programs that you can write. Let's examine it. The#include "p4.h" statement must appear in all programs that use any p4 features. The pro-cedure p4_initenvmust be invoked before any other p4 procedures, and p4_wait_for_endmust be invoked after all p4 processing is completed. The p4_get_my_id returns a uniqueinteger id for each process, beginning with 0. The procedure p4_create_procgroup is re-sponsible for creating all processes other than 0. It has no e�ect if called by any otherprocesses than process 0. The way in which p4_create_procgroup determines how manyother processes there should be, and where they should run, will be discussed shortly.All processes that this program executes invoke the worker procedure, including process0. Thus, in this program, the master process acts just like all other processes once it getsthe environment established.To understand how things get started, let's consider two separate situations. In the �rstsituation, all processes are running on a single machine. Then, when process 0 starts, itexecutes the p4_create_procgroup procedure to start all other slaves. The other slavesare started on the same machine by means of a UNIX fork.In the second situation, there may be slaves running both on the same machine as

6 DEVELOPING A SIMPLE P4 PROGRAM 11process 0, and slaves running on other machines as well. In this situation, the �rst slaverunning on a remote machine will need to execute the main procedure. It will discover thatit is not process 0. However, as part of initialization, process 0 will direct it to fork anyadditional slaves required on the same machine.In some ways, the above example can be used as a prototype for all p4 programs, justby varying the content of the worker routine.6.2 A Minimal Example in FortranHere is a Fortrran version of the program we just discussed.program p4simpleinclude 'p4f.h'call p4init()call p4crpg()call fworker()call p4cleanup()stopendsubroutine fworker()include 'p4f.h'integer*4 procidprocid = p4myid()print *,'Hello from ',procidend6.3 A More Complicated ExampleNow, let's make the worker process a little bit more interesting. Let's assume that we havenprocs slaves with ids 0, 1, 2, ... nprocs -1. And, we want to write a program in whichevery process sends a single message to every other slave, and then receives a message fromevery other slave. We might alter the code for the worker procedure to be the following:worker(){ char *incoming, *msg = "hello";int myid, size, nprocs, from, i, type;myid = p4_get_my_id();nprocs = p4_num_total_ids();for (i=0; i < nprocs; i++){ if (i != myid)

6 DEVELOPING A SIMPLE P4 PROGRAM 12p4_send(100, i, msg, strlen(msg)+1);}for (i=0; i < nprocs - 1; i++){ type = -1;from = -1;incoming = NULL;p4_recv(&type,&from,&incoming,&size);printf("%d received msg=:%s: from %d",myid,incoming,from);p4_msg_free(incoming);}}This program demonstrates several features of p4's support for message-passing. Beforewe get into the speci�cs however, let's examine the overall logic of the program. Each processdetermines its own id and the total number of processes executing in this run (includingprocess 0). Then, in the �rst for-loop, each process sends a single message to each of theother processes. Finally, in the second for-loop, each process receives a message from eachof the other processes.The p4_send call requires 4 arguments:� a message type (arbitrarily chosen to be 100 here)� the id of the process to receive the message� the message itself� the size of the messageThe use of p4_recv is slightly more complicated. First, we assign -1 to each of theparameters type and from. This is done because -1 represents a wildcard value indicatingwe are willing to receive a message of any type from any process. Here, we could havecoded type to be 100, and speci�ed from equal to the value of i each time through the loop(skipping our own id). By setting incoming to NULL, we have also indicated to p4_recvthat we do not have a bu�er in which to place the received message, so p4_recv shouldobtain a bu�er for us and place the message in that bu�er. p4_recv treats these threeparameters as both input and output values. Thus, it alters the value of each such thattype and from indicate the type of message received and the id of the process that sentit. The value of incoming is altered to point to the bu�er where the message was placed.The size parameter is strictly an output parameter and indicates the size of the receivedmessage. It is possible for the user to provide his own bu�er; this will be demonstratedlater.Finally, note that p4_msg_free frees the message bu�er obtained by p4_recv. Theprocedure p4_msg_free should be called only after the contents of the message are nolonger needed. P4_msg_free should be used to free these bu�ers because, although a useronly sees the data portion of a message, p4 internally represents a message as a structureddata item.

6 DEVELOPING A SIMPLE P4 PROGRAM 13To compile and link this program for execution, you need to create a make�le. We willassume that you have installed p4 in `/usr/local/p4' and that you have typed the programabove into a �le name `p4simple.c' in the directory `/home/mylogin/p4pgms'.To build your make�le, copy the �le/usr/local/p4/messages/makefile.protointo your working directory. This is a prototype make�le that contains machine-independentinformation, and which p4 can use to build a machine-speci�c make�le for your program.This prototype make�le contains information about several sample programs that demon-strate message-passing in p4. If you edit this �le, you will see information for making aprogram named sr_test. Do a global change of sr_test to p4simple. You should alsochange the value of P4_HOME_DIR. It should contain the full pathname of the p4 system,e.g. `/usr/local/p4'. Now change directories to `/usr/local/p4' and type:make makefiles P4ARCH=<machine_type> DIRS=/home/mylogin/p4pgmswhere <machine_type> is the machine type that you speci�ed when you installed p4 onyour machine. Now, you should be able to change back to your directory and see a �lenamed `Makefile' there. You should then be able to type:make p4simpleThere is one last piece missing before you can execute your program. Recall thatp4_create_procgroup needs to know how many processes to start and where to startthem; it reads a �le (called a procgroup �le) to gather this information. P4 always as-sumes that you have a master process, and that you describe the slave processes (processgroups) in the procgroup �le. You can name a procgroup �le any name you choose, but<progname>.pg is the default name. For example, in this case your procgroup �le should benamed `p4simple.pg'. The information contained in procgroup �les can get fairly involved,but if you have a computer that supports shared memory among processes, then you cancode a very simple example at �rst.Let us suppose �rst that you want to run your program on a network of workstations.Then your procgroup should look something like:local Osome.network.machine 1 /home/me/p4progs/p4simpleThis �le indicates that you wish to run only the master on the local machine (theone you are logged into when you execute the program) and one slave on the machinesome.network.machine.Now, all you have to do to run your program is type:p4simpleYou should see a line printed each time a process receives a message from another process(on some machines, there may be a restriction that only one process can do I/O, howeversuch restrictions are not common). Experiment by changing the number of slaves indicatedin the procgroup �le.You may notice that even a small p4 program becomes large when linked with the

7 COMMAND-LINE ARGUMENTS 14p4 library. You might consider using strip to reduce the size or removing -g from theCFLAGS in the make�le.7 Command-Line ArgumentsThe command-line arguments to a p4 program are all optional.-p4help get this information, then exit-p4pg <file> set procgroup file-p4dbg <level> set debug level-p4rdbg <level> set remote debug level-p4gm <size> set global memory size-p4dmn <domain> provide local domain name-p4out <file> set output file for master-p4rout <file> set output file prefix for remote masters-p4ssport <port#> set private port number for secure server-p4norem don't start remote processes-p4log enable internal p4 logging by alog-p4version print current p4 version numberIn version 1.4, these
ag names are valid without their p4 pre�x, for backward compat-ibility.If one speci�es -p4norem on the command line, p4 will not actually start the processes.The master process prints a message suggesting how the user can do it. The point of thisoption is to enable the user to start the remote processes under his favorite debugger, forinstance. The option only makes sense when processes are being started remotely, such ason a workstation network.8 The p4 Function Library8.1 Overview of the LibraryIn the following sections, we provide details for each p4 function in the library. The proce-dures are gathered into the following groups:� Functions for managing processes and clusters� Functions for message passing� Functions for shared memory� Functions for timing p4 programs� Functions for debugging p4 programs� Miscellaneous functions� Fortran interface functions

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 158.2 Return Codes from p4 FunctionsMost p4 functions return -1 if an error occurs. Some, however, call the function p4_errorwhen severe errors occur. This function prints a message and then attempts to terminateall of the user's processes See 13 [Functions for Debugging p4 Programs], page 26.9 p4 Functions for Managing Processes and ClustersIn some situations a p4 procedure will give an error message and then exit. This is typicallydone as a result of a failed system call and handled by calling the p4 procedure namedp4_error that examines the return values from socket procedures, etc. Most of the timehowever, the procedures simply return a value. Some of the procedures return no valueand thus are declared to return VOID. Some of the procedures return either a pointer toa character string or NULL; NULL indicates an error. The remaining procedures return aninteger value; (-1) indicates an error.9.1 Functions for Process ManagementIn this section we describe the p4 functions needed for basic creation and termination ofprocesses.int p4_initenv(argc,argv)int *argc;char **argv;should be called by your program before an attempt is made to use any p4 procedures or dataareas. We suggest making it the �rst executable statement in your program. p4_initenvparses the command line arguments and extracts the ones intended for p4 ignoring all others(see the discussion of command line arguments). Note that you pass the address of argc top4_initenv so that it can actually remove its own arguments before your program looksat them.int p4_create(fxn)int (*fxn)();int p4_create_procgroup()There are two procedures that you can use to create processes in p4, p4_create_procgroupand p4_create. Processes created via p4_create are said to be \user-managed" whereasthose created by p4_create_procgroup are \p4-managed". The p4-managed processes areautomatically assigned unique id's (beginning with 0 for the big master), they have mes-sage queues allocated for them so that they can do message-passing, and they are ableto run either on a shared-memory multiprocessor with the creating process or they canrun on a separate machine. Processes created via p4_create do not have any of theseadvantages. They must develop their own id's, they cannot do message-passing, and theycan only run on a shared-memory multiprocessor with the creating process. The only

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 16disadvantage of p4_create_procgroup is that you must build a `procgroup' �le describ-ing the set of required slave processes before the master program begins execution. Thiseliminates the possibility of determining late in the execution exactly how many processesyou want to use to solve a problem. Generally, this is not a problem, especially sincewe can combine p4_create_procgroup and p4_create in the following way: You can usep4_create_procgroup to develop a network of processes that talk to each other via mes-sages. Each of those processes can create further processes to help it out as necessary. Theoriginal set of processes communicate with their local slaves through shared data areas andwith each other via message-passing.p4_create receives one argument that is a pointer to a function. It creates a single newprocess that executes the indicated function. The new process may share data areas (inshared memory) with the parent process. However, the new process is not managed by thep4 system in the sense that it is not assigned an id, it cannot pass messages, etc. The onlyp4 procedure that deals with user-managed slaves is p4_create. No other procedures areeven aware of their existence.p4_create_procgroup reads your procgroup �le to determine the number of slave pro-cesses to create and where they are to be placed. It looks �rst for the �le speci�ed on thecommand line following the -p4pg argument if there is one. If there is no such argument,it looks for a �le with the same name as the executable (master) �le, with the `.pg' su�x.If it does not �nd one, it looks for a �le named `procgroup'. It builds a procgroup tablethat describes all created processes and gives a copy of the table to each process. Theprocesses then use the table to discover how to communicate with each other (processes ina cluster can send messages directly through shared memory or some other vendor-speci�cmechanism), others communicate via sockets). An alternative method is to build the tablein memory yourself and use p4_startup.The e�ect of p4_create_procgroup can be obtained in another way if a system wouldprefer to use its own way of specifying the locations of processes. A user may allocate theprocgroup data structure and then �ll it in \by hand" rather than by reading a �le in p4procgroup format. The following procedures support this method of starting processes.struct p4_procgroup *p4_alloc_procgroup()allocates a procgroup data structure of the form described in p4.h. The formats of individ-ual entries (p4_procgroup_entry) are given there as well.int p4_startup(pg)struct p4_procgroup *pg;starts processes as speci�ed by an an already-created procgroup data structure allocated byp4_alloc_procgroup and �lled in by the user using the structures p4_procgroup_entryand p4_procgroup.VOID p4_wait_for_end()is the p4 termination/cleanup procedure that you should invoke at the end of every executionof a program that uses p4. For the master process, it does some termination processing andthen waits for slave processes to end. It should be called by all processes.int p4_get_my_id()

9 P4 FUNCTIONS FOR MANAGING PROCESSES AND CLUSTERS 17returns an integer value representing the id of the process assigned by the p4 system. If theprocess is not a p4-managed process, the value (-1) is returned.int p4_num_total_ids()returns an integer value indicating the total number of ids started by p4 in all clusters,including the big master and all remote masters.int p4_num_total_slaves()returns an integer value indicating the total number of processes started by p4 in all clusters,including all remote masters but not the big master.9.2 Functions for Cluster ManagementThe p4 system supports the cluster model of parallel computation, in which subsets ofprocesses share memory with one another, with the clusters communicating via messages.A procgroup �le for a program written for the cluster model might look like this:local 4alliant1.abc.edu 5 /home/me/myprogalliant2.abc.edu 5 /home/me/myprogencore.somewhere.edu 5 /usrs/me/myprogThis would specify a total of 20 processes, 5 (including the master) running on thelocal machine (here assumed to be capable of supporting �ve processes that share memory)together with 5 slaves each on three other shared-memory machines. One process out ofeach set of remote slaves will be the \remote master" for that cluster..VOID p4_get_cluster_ids(start,end)int *start;int *end;receives pointers to two integers. It places the p4-assigned id's of the �rst and last id'swithin the current cluster into the two arguments (including the remote master).int p4_get_my_cluster_id()returns a unique id (relative to 0) within a cluster of p4-managed processes. Thus, a clustermaster will always have a cluster id of 0. It is not clear that a separate cluster id is reallyuseful, but the functionality is provided just in case.BOOL p4_am_i_cluster_master()returns a BOOL value indicating whether the invoking process is the \cluster master"process within its cluster.int p4_num_cluster_ids()returns an integer value indicating the number of ids in the current cluster as started byp4_create_procgroup.VOID p4_cluster_shmem_sync(cluster_shmem)VOID **cluster_shmem;

10 FUNCTIONS FOR MESSAGE PASSING 18This routine is used to synchronize the processes in a cluster before they begin to use sharedmemory.VOID p4_get_cluster_masters(numids, ids)int *numids, ids[];This procedure �lls in the values of numids and ids. It obtains the p4-id's of all \clustermasters" for the program, placing them in the ids array and placing the number of id's innumids.10 Functions for Message PassingP4 supports a set of send/receive procedures. These procedures are \generic" in the sensethat they do not know whether a message must travel across a network or through sharedmemory, or via some other mechanism. They depend on a lower-level set of procedures thathandle local or network (remote) communications. By default, the messages are assumedto be typed. If the user wishes to use untyped messages, he can hide the typing by codingsome very simple C macros that always use a single message type.10.1 Explicit Sending and Receiving of Messagesp4_send(type,to,msg,len)p4_sendr(type,to,msg,len)p4_sendx(type,to,msg,len,datatype)p4_sendrx(type,to,msg,len,datatype)p4_sendb(type,to,msg,len)p4_sendbr(type,to,msg,len)p4_sendbx(type,to,msg,len,datatype)p4_sendbrx(type,to,msg,len,datatype)int type, to, len, datatype;char *msg;Each of these procedures sends a message. The type argument is an integer value chosenby the user to represent a message type. The to argument is an integer value that speci�esthe p4-id of the process that should receive the message. The len argument contains thelength in bytes of the message to be passed. Note that some of the procedures have a \b"in their name, e.g. p4_sendb. These procedures assume that the msg is in a bu�er thatthe user obtained earlier via a p4_msg_alloc; otherwise, the bu�er is assumed to be in theuser's local space, and may cause the message to be copied internally. The procedures withan \r" in the name do not return until an acknowledgement is received from the to process(the \r" stands for rendezvous). Those procedures with an \x" in the name take an extraargument (datatype) that speci�es the type of data in the message; these procedures willuse that information to call XDR for data conversion if the message is being passed to amachine of a di�erent architecture, i.e. where the internal representation may be di�erent.The valid values for the datatype parameter are P4INT, P4DBL, P4FLT, P4LNG, and P4NOX.

10 FUNCTIONS FOR MESSAGE PASSING 19The last of these means \no translation".BOOL p4_messages_available(req_type,req_from)int *req_type,*req_from;returns a BOOL value indicating whether the process has any messages available or not.The parameters req_type and req_from are both pointers to integers; they are used as bothinput and output arguments. On input, req_type has a value that indicates the type ofmessage that the user wishes to check for availability (-1 indicates any type). The variablereq_from is used similarly to indicate who a message is desired from.int p4_recv(req_type,req_from,msg,len_rcvd)int *req_type,*req_from,*len_rcvd;char **msg;takes four arguments. The msg argument is a pointer to a pointer to a char. If this valueis NULL, then p4 will allocate the bu�er for the message according to its length. That is,one need not know ahead of time the length of a message being received. If this value is notNULL, then it points to a p4 message bu�er that the user has obtained via p4_msg_alloc.The len_rcvd argument is a pointer to an integer that is assigned the length of the receivedmessage. Req_type and req_from are both pointers to integers; they are used as both inputand arguments. On input, req_type has a value that indicates the type of message thatthe user wishes to receive (-1 indicates any type). It will block until a message of that typeis available. Req_from is used similarly to indicate who a message is desired from. Oneimportant note about this procedure is that it obtains the area in which to place a message,and the user must explicitly free that area when �nished with it (see p4_msg_free). Thereis an option available with p4_recv in which the user can provide his own bu�er ratherthan having p4 allocate it. To do this, the user points msg to a bu�er that he must obtainvia a call to p4_msg_alloc (see below). No p4_msg_free should be performed if the samebu�er is going to be re-used multiple times.char *p4_msg_alloc(len)int len;VOID p4_msg_free(m)char *m;obtain and free a bu�er area that can be used to receive a message. This procedureshould be used for this task because a message has hidden information which the user isunaware of and therefore should not use malloc to obtain the area.10.2 Global OperationsP4 supports a number of operations for dealing with all processes at once.p4_broadcast(type, data, data_len)int type;char *data;int data_len;p4_broadcastx(type, data, data_len, data_type)

10 FUNCTIONS FOR MESSAGE PASSING 20int type;char *data;int data_len, data_type;provide the ability to broadcast messages like p4_send and p4_sendx. These are semanti-cally equivalent to a loop which uses p4_send or p4_sendx to individually send a messageto each other process (the sender is not included.) Messages sent by one of these broadcastsare received by normal p4_recv's. The implementation of p4_broadcast is more e�cientthan such a loop, since it uses a \broadcast tree". One situation to look out for is a normalp4_broadcast followed by a p4_send. It is possible for the �rst message to arrive at itsdestination after the second one. The order of messages in this situation can be enforcedwith the use of the type argument.p4_global_op(type,x,nelem,size,op,data_type)int type;char *x;int size, nelem;int (*op)();int data_type;where op is one of:p4_int_absmax_op()p4_int_absmin_op()p4_int_max_op()p4_int_min_op()p4_int_mult_op()p4_int_sum_op()p4_dbl_absmax_op()p4_dbl_absmin_op()p4_dbl_max_op()p4_dbl_min_op()p4_dbl_mult_op()p4_dbl_sum_op()p4_flt_absmax_op()p4_flt_absmin_op()p4_flt_max_op()p4_flt_min_op()p4_flt_mult_op()p4_flt_sum_op()and data_type is one of P4INT, P4LNG, P4FLT, or P4DBL.This collection of routines provide the ability to do a variety of global operations. See theexample program `p4/messages/systest.c'. They apply the commutative and associativeoperation op globally to x on an element-by-element basis and broadcast the result to allnodes. That is, each process ends up withfor (i=0; i<n; i++)x[i] = x[node 0][i] op x[node 1][i] op x[node 2][i] op ...

11 FUNCTIONS FOR SHARED MEMORY 21op should be of the formVOID op(char *x, char *y, int nelem){ data_type *a = (data_type *) x;data_type *b = (data_type *) y;while (nelem--)*a++ operation= *b++;}where data_type and operation are chosen appropriately.The order in which nodes apply the operation is unde�ned (hence op must be commu-tative and associative). The communication may be internally sub-blocked so the functionop should not be hardwired to speci�c vector lengths.This is still a relatively primitive version, which gathers the necessary data up a balancedbinary tree and then uses p4_broadcast to send the results back. The type argumentspeci�es the message type to be used in the communication associated with this globaloperation.Strictly speaking, the size parameter, which is size in bytes of one element, is unnec-essary. It is retained for backward compatibility.VOID p4_global_barrier(type)int type;This procedure takes one argument which is the message type to be used for internalmessage-passing. It causes the invoking process to hang until all processes speci�ed inthe procgroup �le have invoked the procedure.11 Functions for Shared MemoryHere is a simple example of a shared-memory program using monitors. In this program,each process retrieves values from a shared loop index. A monitor is used to ensure that allvalues are retrieved exactly once.#include "p4.h"struct globmem {p4_getsub_monitor_t getsub;} *glob;main(argc,argv)int argc;char **argv;{ p4_initenv(&argc,argv);

11 FUNCTIONS FOR SHARED MEMORY 22glob = (struct globmem *) p4_shmalloc(sizeof(struct globmem));p4_getsub_init(&(glob->getsub));p4_create_procgroup();worker();p4_wait_for_end();}worker(){ int i, nprocs;nprocs = p4_num_total_ids();i = 0;while (i >= 0){ p4_getsub(&(glob->getsub),&i,10,nprocs);p4_dprintf("I got %d \n",i);}}11.1 Managing Shared and Local MemoryThe following functions are just basic memory management routines.char *p4_malloc(n)int n;typically acts like the standard malloc, but may be rewritten for user systems that requiredi�erent operation.VOID p4_free(p)char *p;typically acts like the standard free, but may be rewritten for user systems that requiredi�erent operation.char *p4_shmalloc(n)int n;acts like the standard malloc except will obtain shared memory on machines that supportsharing memory among processes. Compare with p4_malloc.VOID p4_shfree(p)char *p;frees memory obtained with p4_shmalloc. Compare with p4_free.

11 FUNCTIONS FOR SHARED MEMORY 2311.2 Shared Memory Data TypesThe abstraction provided by p4 for managing data in shared memory is monitors. Goodplaces to learn about the monitor concept in general are [3] and [5]. The speci�c ap-proach taken by p4 is described in [1]. P4 provides several useful monitors (p4_barrier_t,p4_getsub_monitor_t, p4_askfor_monitor_t) as well as a general monitor type to helpthe user in constructing his own monitors (p4_monitor_t).11.3 Monitor-Building PrimitivesThe following functions can be used to construct monitors. A monitor so constructed hasthe type p4_monitor_t.int p4_moninit(m,i)p4_monitor_t *m;int i;initializes the monitor pointed to by m and gives it i queues for processes to wait on whilethey are blocked (see p4_mdelay). One queue is su�cient for most purposes. The queuesare numbered beginning with 0.VOID p4_menter(m)p4_monitor_t *m;enter the monitor pointed to by m. By the de�nition of a monitor, access is restricted to asingle process in the monitor at a time (if everybody plays by the rules).VOID p4_mexit(m)p4_monitor_t *m;exits the monitor pointed to by m. You are of course assumed to have previously enteredthat monitor.VOID p4_mcontinue(m,i)p4_monitor_t *m;int i;checks to see if there are any processes blocked on the i-th queue of the monitor m and causesone of them to be released for entry to the monitor if so. If there are no such processes, theinvoking process simply exits. Note that a process could have been blocked previously byinvoking the procedure p4_mdelay. The queues are numbered beginning with 0.VOID p4_mdelay(m,i)p4_monitor_t *m;int i;permits a process to delay itself on the i-th queue of monitor m if the process wishes torelease the monitor, but wants to be waked up by another process later (via the procedurep4_mcontinue). The queues are numbered beginning with 0.

11 FUNCTIONS FOR SHARED MEMORY 2411.4 Some Useful MonitorsIn this section we describe some of the speci�c monitors that are built into the p4 library.Each of them has its own pre-de�ned type, which can be used to allocate storage for them,which should be in shared memory. See the `p4/monitors' directory for examples. A lockis itself a monitor, with no extra delay queues.VOID p4_lock_init(l)p4_lock_t *l;initializes the lock l. Must be used prior to any attempts to lock or unlock l.VOID p4_lock(l)p4_lock_t *l;blocks if the lock l is already locked, otherwise locks l and proceeds.VOID p4_unlock(l)p4_lock_t *l;unlocks the lock l.VOID p4_getsub(gs,s,max,nprocs)p4_getsub_monitor_t *gs;int *s,max,nprocs;is a procedure used to obtain the next value of a shared counter (subscript). It takes as its�rst argument, a pointer to a getsub monitor that protects the shared counter. It assignsthe current value of the counter to the integer that s points to, and then increments thecounter by 1. p4_getsub_init initially sets the counter to 0. When the counter passes thevalue max, all nprocs processes are returned the value (-1) once, then the counter is resetto 0 for further use.VOID p4_getsubs(gs,s,max,nprocs,stride)p4_getsub_monitor_t *gs;int *s,max,nprocs,stride;is like p4_getsub except that the counter is increased on each call by stride instead of 1.int p4_getsub_init(gs)p4_getsub_monitor_t *gs;initializes the getsub monitor pointed to by gs; this initialization includes assigning a valueof 0 to the counter that the monitor protects.The standard barrier synchronization pattern is expressed as a monitor. There can bemultiple barrier monitors, and one can wait for only some of the processes at the barrier ifthis is desired.VOID p4_barrier(b,nprocs)p4_barrier_monitor_t *b;int nprocs;causes the executing process to hang until nprocs processes execute a barrier instructionwith a pointer to the same barrier monitor b as an argument.

11 FUNCTIONS FOR SHARED MEMORY 25int p4_barrier_init(b)p4_barrier_monitor_t *b;initializes the barrier monitor b; this procedure should be invoked before you attempt touse the monitor in any operations.Finally, the askfor monitor functions like a general dispatcher of work.int p4_askfor(af,nprocs,getprob_fxn,problem,reset_fxn)p4_askfor_monitor_t *af;int nprocs;int (*getprob_fxn)();VOID *problem;int (*reset_fxn)();requests a new \problem" to work on from the problem pool. The arguments are (1) apointer to the askfor monitor that protects the problem pool, (2) the number of processesthat call this procedure (with af) looking for work, (3) a pointer to the user-written proce-dure that obtains a problem from the pool, (4) a pointer that is �lled in with the address ofa user-de�ned representation of a problem to be solved, and (5) a pointer to a user-writtenprocedure to reset when all problems in the pool are solved, in case the same monitor isre-used for another set of problems later. p4_askfor returns an integer indicating whethera problem was successfully obtained or not:-1 : program is terminating (some process called p4_progend)0 : a problem was obtained and ``problem'' points to it1 : problem solved by exhaustion, i.e. no more problems to getn > 1 : a process found a solution and called p4_probend with code nFor a detailed discussion of the \askfor" monitor, see [1].int p4_update(af,putprob_fxn,problem)p4_askfor_monitor_t *af;int (*putprob_fxn)();VOID *problem;updates the problem pool being managed by the askfor monitor. The arguments are (1)a pointer to the askfor monitor that protects the problem pool, (2) a pointer to the user-written procedure that puts problems into the pool, and (3) a pointer to a user-de�nedrepresentation of a problem to be put in the pool. Putprob_fxn should return 1 if it didindeed put a new problem into the pool, so that any delayed processes should wake up andre-examine the pool (this logic is handled by the p4_askfor) and 0 if upon entering themonitor and examining its potential problem together with the data there it decided notto add a new problem to the pool. It can be assumed that the \putprob" logic (de�ned byputprob_fxn) is executed inside the monitor.int p4_askfor_init(af)p4_askfor_monitor_t *af;initializes the askfor monitor af; this procedure should be invoked before you attempt touse the monitor in any operations.VOID p4_probend(af,code)

12 FUNCTIONS FOR TIMING P4 PROGRAMS 26p4_askfor_monitor_t *af;int code;allows the user process to mark a problem as solved early when several processes are co-ordinating their activities via an askfor monitor. The code is an integer value that will bereturned to all processes when they \askfor" a new sub-problem to work on.VOID p4_progend(af)p4_askfor_monitor_t *af;allows a process to cause a return code of (-1) to be returned to all processes using anaskfor monitor. This would typically be called by a master process to indicate that no moreproblems are to be solved and that all slave processes should terminate.12 Functions for Timing p4 ProgramsA small number of simple functions are available for accessing various clocks and timers.int p4_clock()returns a value in milliseconds. This is a wall-clock value, usually obtained from the systemvia gettimeofday. Also see p4_ustimer below.p4_usc_time_t p4_ustimer()returns a wall-clock time value in microseconds. The precision of this number depends onthe timer installed on the individual machine. In some cases the resolution may be no greaterthan that of p4_clock(). For arithmetic and printing purposes, the type p4_usc_time_tis an unsigned long integer.p4_usc_time_t p4_usrollover()returns the timer value at which a microsecond timer \rolls over". Since p4_usc_time_tis a long integer's worth of microseconds, it is likely that the timer will roll over (becomezero) during even medium-length runs (about 72 minutes on most machines).13 Functions for Debugging p4 ProgramsP4 has a set of routines to aid in producing a printed trace of events, both user-de�ned andpre-de�ned in the p4 system.VOID p4_dprintf(fmt, va_alist)char *fmt;va_dclacts just like the standard printf except that the print line is preceded by a value thatidenti�es the process. This value is typically the string pn_u where n represents the p4-assigned id and u represents the unix-id of the process on its host. However, there are otherforms of this value. For example, the big master is represented as bm_u. Also, if a processprints before it has a p4-assigned id, then its value will be something like bm_slave_n_u

13 FUNCTIONS FOR DEBUGGING P4 PROGRAMS 27or rm_slave_n_u. Typically, it is not possible for a user program to print anything beforebeing assigned an id by p4, but the p4 system itself may use this procedure to print messagesfrom a particular process if it encounters problems getting the process initialized.VOID p4_dprintfl(level, fmt, va_alist)int level;char *fmt;va_dclis like p4_dprintf except that the �rst argument is an integer indicating the debugging levelthat must be in e�ect before this message will print. A level of 0 will cause the messageto always print. If you run a program with the debug level set to 5 (via command-linearguments), then all dprintfl's with level less than or equal to that debug level will print.See 7 [Command-Line Arguments], page 14 for how to set the debug level at run time.The debug level can be examined and changed by the user during execution:int p4_get_dbg_level()returns the current debug level for this process and its cluster.VOID p4_set_dbg_level(level)int level;sets the current debug level for this process and its cluster. P4 itself is liberally instrumentedwith p4_dprintfl's of level 10 and above, leaving levels 0-9 for the user. The greater thedebug level of the built-in messages, the greater understanding of p4 needed by the user tomake sense of them. However, levels as high as 30 may well be useful to the user trying todebug a p4 program. Roughly speaking, the following debug levels produce messages aboutthe indicated events.level 10: created processsent messagereceived messagelevel 20: creating processsending messagereceiving messageprocess startingprocess exitinglevel 30: waiting for acksending acksent ackreceived ackqueueing message for later receiptqueued message for later receiptlevel 40: memory managementbuffer management

13 FUNCTIONS FOR DEBUGGING P4 PROGRAMS 28level 50: reading procgroupother initialization message exchangelevel 60: send-receive details, especially machine-specific traceslevel 70: listener interactions:creating listenercreated listenermessages from inside listenerlevel 80: detailed data structures after initializationlevel 90: detailed tracing of flow thru proceduresFor optimum performance, the test of the debug level required by these messages canbe removed at compile time by not commenting out the #define P4_DPRINTFL line in the`OPTIONS' �le (See 1 [Introduction], page 1).The following function is provided to deal with abnormal termination. It can be calledby any process.VOID p4_error(string, value)char *string;int value;prints string as an error message and then forcefully terminates all co-operating processesand cleans up all shared resources.VOID p4_soft_errors(onoff)int onoff;enables/disables soft errors, returning the previous setting. The default is \disabled", whichmeans that certain p4 functions will call p4_error instead of returning -1.p4_error gets control on certain kinds of interrupts. It is automatically called forSIGSEGV, SIGBUS, and SIGFPE interrupts, to catch user programming errors and clean up,after which it returns interrupt handling to default mode and returns, so that the user mayobtain a dump. It also handles SIGINT interrupts, in which case it cleans up and exits.Finally, it may be called directly by the user, in which case it cleans up (other p4 processesand IPC's) and exits.Although p4_error is supposed to get rid of all running p4 processes, it can happen thatan error is bad enough that p4 processes are left running. A primitive aid in �nding andkilling these processes is the shell script kj, which takes a string as an argument and thenkills processes containing that string as part of their program names. Currently it only killsprocesses on the machine where it is run, but it can be run via rsh on remote machines.There are other useful scripts (e.g. killipc and killp4) in the `p4/bin' directory to dosuch things as clean up SYSV IPC items that may be left when a program abnormallyterminates. P4 will generally cleanup these items if the abnormal termination is a type thatp4 traps, otherwise the user must do the cleanup. This is an unfortunate side-e�ect of theway that SYSV handles things, it really should be the OS's function to take care of this.

14 MISCELLANEOUS FUNCTIONS 29On many machines it is possible to attach a debugger like dbx to a running process.This is one way to �nd out where a hanging process is stuck.14 Miscellaneous FunctionsIn this section are found functions that do seem to �t neatly into any of the other sections.char *p4_version()returns a string containing the version number of p4 being run.VOID p4_print_avail_buffs()P4 maintains an array of bu�er lists of various sizes, so that it can very rapidly allocateand deallocate bu�ers. You can see the contents of the bu�er pools at any time by callingthis procedure.VOID p4_set_avail_buff(bufidx,size)int bufidx;int size;This procedure is used to set the size of bu�ers in p4's bu�er pools. The parameter bufidxspeci�es a particular bu�er list, and should be a number from 0 to 7. The size parameterspeci�es that bu�ers up to that size will be managed by p4 in a particular list. It isimportant to maintain the bu�er sizes in increasing order. The default list of bu�er sizes is64, 256, 1024, 4096, 16384, 65536, 262144, 1048576. This causes wasted space if you sendonly one large message, causing the allocation of a large bu�er which is not reused. Savingsin space can be achieved by adjusting these numbers to correspond with the message sizesof your application. If no large messages are sent at all, however, no space is wasted sincethe large bu�ers will never be allocated. If you send a message larger that the largest sizein this array, p4 will allocate the bu�er, and then free it back to the system as soon as itcan.15 Fortran InterfaceIn this section we describe the p4 Fortran library. All Fortran programs must include the�le `p4f.h' from the directory `lib_f'. The Fortran calls to p4 procedures are analogousto their C counterparts, but have Fortran-like names. You might �nd the documentationfor the corresponding C routine, in one of the sections above, helpful.p4init()should be called by your program before an attempt is made to use any p4 procedures ordata areas. We suggest making it the �rst executable statement in your program.p4crpg()This routine should be called by the master process (the one started directly by you) toread the procgroup �le and start the processes speci�ed there. It can be called by otherprocess, but has no e�ect in that case.

15 FORTRAN INTERFACE 30integer p4myid()returns an integer value representing the id of the process assigned by the p4 system.p4cleanup()should be called by the master process to wait for the termination of the processes createdby p4crpg.p4send(type,dest,msg,len,rc)integer type, dest, len, rcreal msgp4sendx(type,dest,msg,len,data_type,rc)integer type, dest, len, data_type, rcreal msgp4sendr(type,dest,msg,len,rc)integer type, dest, len, rcreal msgp4sendrx(type,dest,msg,len,data_type,rc)integer type, dest, len, data_type, rcreal msgEach of these procedures sends a message. The type argument is an integer value chosenby the user to represent a message type. The dest argument is an integer value thatspeci�es the p4-id of the process that should receive the message. The len argumentcontains the length in bytes of the message to be sent. The procedures with an \r" inthe name do not return until an acknowledgement is received from the to process (the \r"stands for rendezvous). Those procedures with an \x" in the name take an extra argument(datatype) that speci�es the type of data in the message; these procedures will use thatinformation to call XDR for data conversion if the message is being passed to a machine of adi�erent architecture, i.e. where the internal representation may be di�erent. p4 maintainsan internal table of which pairs of machine types require conversion, so it only does theconversion when it is necessary. The valid values for the data_type parameter are P4INT,P4DBL, P4FLT, P4LNG, and P4NOX. The last of these means \no translation".p4recv(type,from,buf,buflen,msglen,rc)integer type, from, buflen, msglen, rcreal bufThe buf parameter is the bu�er into which the message is to be received. It can be of anyFortran type. The buflen parameter speci�es its length, so that p4 can check for overruns.The number of bytes actually received is given by msglen. The type and from parametersspecify the message type and the source of the message. If either of these is set to -1, thenscreening is not applied, and the parameter is set to indicate the type and/or source of themessage actually received. rc is the return code from the call.p4probe(type,from,rc)sets rc to 1 or 0 depending on whether the process has any messages available or not. The

15 FORTRAN INTERFACE 31parameters type and from are used as both input and arguments. On input, type has avalue that indicates the type of message that the user wishes to check for availability (-1indicates any type). The variable from is used similarly to indicate who a message is desiredfrom.p4brdcst(type,data,len,rc)integer type, len, rcreal datap4brdcstx(type,data,len,data_type,rc)integer type, len, data_type, rcreal dataprovide the ability to broadcast messages like p4send and p4sendx. These are semanticallyequivalent to a loop which uses p4send or p4sendx to individually send a message to eachother process (the sender is not included.) Messages sent by one of these broadcasts arereceived by normal p4recv's. The implementation of p4brdcst is more e�cient than sucha loop, since it uses a \broadcast tree".integer p4ntotids()returns an integer value indicating the total number of processes started by the p4 masterprocess and all remote processes. It includes the master process itself.integer p4nslaves()returns an integer value indicating the total number of processes started by p4, not includingthe original master process.integer p4nclids()returns an integer value indicating the number of ids in the current cluster as started byp4crpg.integer p4myclid()returns a unique id (relative to 0) within a cluster of p4-managed processes. Thus, a clustermaster will always have a cluster id of 0.p4globarr(type)integer typetakes one argument which is the message type to be used for internal message-passing. Itcauses the invoking process to wait until all processes speci�ed in the procgroup �le haveinvoked the procedure.p4getclmasts(numids,ids)integer numids, ids(*)This procedure �lls in the values of numids and ids. It obtains the p4-ids of all \clustermasters" for the program, placing them in the ids array and placing the number of ids innumids.p4getclids(start,end)integer start, end

15 FORTRAN INTERFACE 32receives two integers. It places the p4-assigned id's of the �rst and last ids within the currentcluster into the two arguments (including the remote master).integer p4clock()returns a value in milliseconds. This is a wall-clock value, usually obtained from the systemvia gettimeofday. Also see p4ustimer below.integer p4ustimer()returns a wall-clock time value in microseconds. The precision of this number depends onthe timer installed on the individual machine. In some cases the resolution may be nogreater than that of p4clock().p4flush()
ushes standard out. On some systems this needs to be done explicitly for prompts. Thisis just a convenience routine that has nothing to do with p4.p4error(str,val)character*n strinteger valprints string as an error message and then forcefully terminates all p4 processes.p4softerrs(new,old)integer new, oldenables/disables soft errors, returning the previous setting in old. The default is \disabled",which means that certain p4 functions will call p4_error instead of returning -1.integer p4version()returns a string containing the version number of p4 being run.p4avlbufs()P4 maintains an array of bu�er lists of various sizes, so that it can very rapidly allocateand deallocate bu�ers. You can see the contents of the bu�er pools at any time by callingthis procedure.p4setavlbuf(idx,size)integer idx, sizeThis procedure is used to set the size of bu�ers in p4's bu�er pools. The parameter bufidxspeci�es a particular bu�er list, and should be a number from 0 to 7. The size parameterspeci�es that bu�ers up to that size will be managed by p4 in a particular list. It isimportant to maintain the bu�er sizes in increasing order. The default list of bu�er sizes is64, 256, 1024, 4096, 16384, 65536, 262144, 1048576. This causes wasted space if you sendonly one large message, causing the allocation of a large bu�er which is not reused. Savingsin space can be achieved by adjusting these numbers to correspond with the message sizesof your application. If no large messages are sent at all, however, no space is wasted sincethe large bu�ers will never be allocated. If you send a message larger that the largest sizein this array, p4 will allocate the bu�er, and then free it back to the system as soon as itcan.

16 FASTER STARTUP WITH THE SECURE SERVER 33p4globop(type,x,nelem,size,op,data_type,rc)where op is one of:p4intsumopp4intabsmaxopp4intabsminopp4intmaxopp4intminopp4intmultopp4dblsumopp4dblabsmaxopp4dblabsminopp4dblmaxopp4dblminopp4dblmultopp4fltsumopp4fltabsmaxopp4fltabsminopp4fltmaxopp4fltminopp4fltmultopThe data_type parameter in the above operations should be one ofP4INTP4LNGP4FLTP4DBLThese symbolic constants are de�ned in the include �le `p4f.h'. The size argument is thesize in bytes of one element, and the type argument is the message type used in the globaloperation.There are also Fortran routines for creating log�les See 18.2 [Creating Log Files inFortran], page 37.16 Faster Startup with the Secure ServerP4 processes on remote machines are ordinarily created by rsh. For this to work, the usermust have permission to create processes on that machine. This permission is normallygranted either globally by the system administrator, or locally by the use of `.rhosts' �les.(See the normal unix man pages under rhosts).Since rsh is relatively slow, p4 provides a way to get things started faster. This isaccomplished by running the program serv_p4 in the background on the remote machine.When p4 is creating processes, it will automatically check for the existence of this serverand use it if it is running. Remote processes typically start much faster when the serveris running. When p4 uses rsh, the remote process's stdout is sent back to the stdoutof the parent (the p4 master process). We have not yet tested this server on all of the

17 UTILITIES FOR MANAGING A P4 SESSION 34machines that we support. Thus far, we have tested it somewhat on the SYMMETRY,SUN, DEC5000, and SGI. We believe that it will work on many other machines, but havenot yet veri�ed it on all machines.An invocation of a set of servers is (currently) associated with a speci�c port number.This way multiple users can each be running multiple server networks without mutualinterference, provided each network of servers is started with a di�erent port number.To start the secure server on a machine one can doserv_p4 -d -p <num>where <num> is a port number to be associated with a network of servers. If the -p optionis omitted, the server will pick an unused port number and reportListening on <num>.Then p4 programs to use this network should be started with-p4ssport <num>The p4 application must also be listed in the user's `.p4apps' �le in his home directory.This �le should be readable only by the user, and should contain the full path names ofprograms that the user wishes to be startable by the p4 server.When a p4 master process tries to start a slave process on a remote machine, it will �rstattempt to do it via the server. If it cannot do so for any reason (no server running, portnumber mismatch, or program not found in `.p4apps' �le), then it tries to do so with theremote shell command.Note that the server is used only to start processes; it plays no role in a p4 computa-tion once the slave processes have been initiated. Rather, a temporary process, called thelistener, is spawned to manage connection requests that occur during the execution of a p4program. Neither the server nor the listener consumes any signi�cant amount of CPU time.There is further discussion of installation options for the servers in the `README' �le inthe `p4/servers' subdirectory.17 Utilities for Managing a p4 SessionA number of useful utilities can be found in the `bin' subdirectory. These can be used tostart and stop server processes based on the contents of a �le of machines one regularlyuses, to kill runaway p4 processes in the unlikely case that they cannot or do not terminateautomatically when one processes ends abnormally or is interrupted from the keyboard,and to merge log�les created for the use of upshot (See 18 [Creating Log�les for Upshot],page 35). Some of these scripts may have to be edited to re
ect the installation directoryof p4.start_servers Use a port number from the command line and a�le of machine{programpairs to start a set of secure servers.kill_servers Use the same �le to kill a set of secure servers.

18 CREATING LOGFILES FOR UPSHOT 35killp4 Kills p4 processes, given a procgroup �le and a program name on the local machine.mergelogs A C program to merge log�les. Its source code is in the alog directory, butthe make�le deposits the executable here.listener_p4 The code for the standalone listener.adjlogs AC program to line up the timestamps when logs are taken from di�erent machineson a network. The source is in the alog directory, but the executable goes here. Itcannot be made on all machines, because it uses an extended-precision math library.It works on Suns.18 Creating Log�les for UpshotP4 is distributed with a set of routines for creating log�les (see `README' in the `p4/alog'directory. The resulting log�les can be examined by upshot, distributed separately. Fordetails about upshot, see [4].The `p4/alog' directory contains a package (ALOG) for creating logs of time-stampedevents, that is of general utility, outside of p4. The timestamps are obtained from variousmicrosecond-level resolution timers on various machines. The portable microsecond timingpackage is contained in the `usc' subdirectory. It is used by the ALOG package as well asby the p4_ustimer function in p4. Similarly, the ALOG package can be used independentlyof p4 and upshot. Its log�les were designed to be read and displayed by upshot, but otherdisplay packages can be used as well.18.1 User-Speci�ed EventsThe ALOG package consists of a set of macros that can be used to instrument a C programand a set of functions that can be used to instrument a Fortran program. We will focushere primarily on the use of the C interface, which contains more functionality.The macros that can be used to instrument a program are as follows (from the �le`README_ALOG' in the `alog' directory):ALOG_SETUP(pid,flag):pid - (integer) process id of calleeflag - (integer) either ALOG_WRAP or ALOG_TRUNCATEThis macro initializes the tracing area for a slave process and must be called once beforeany event is logged. If the value of flag is set to ALOG_WRAP, then in the event of no morespace for logging events the system will only report the latest n events. If flag is set toALOG_TRUNCATE the system will stop logging events as soon as there is no more memory forthe events to be logged.ALOG_MASTER(pid,flag):pid - (integer) process id of the calleeflag - (integer) either ALOG_WRAP or ALOG_TRUNCATE

18 CREATING LOGFILES FOR UPSHOT 36This macro has the same e�ect over its parameters as ALOG_SETUP with the di�erence thatthis macro should be referenced by the master process only.ALOG_DEFINE(event,strdef,format):event - (integer) id of event being definedstrdef - (string) description of 'event'format - (string) control string in "printf" formatThis macro puts an event de�nition code into the log�le.ALOG_LOG(pid,event,intdata,strdata):pid - (integer) process id of calleeevent - (integer) event id to be loggedintdata - (integer) any integer data for this eventstrdata - (string) any string data (can be the null string)This macro provides the event logging service.ALOG_OUTPUTno parametersThis macro dumps the events logged into a log �le with the name `alogfile.pxx' where xxis the logical PID of the callee process. The log �le is created in the current directory unlessspeci�ed otherwise through the macro ALOG_SETDIR. All processes should execute this.ALOG_SETDIR(dir)dir - (string) directory where log file is createdThis macro sets the output directory for the log �le. The default directory for the creationof the log �le is the current directory of the process. If used, then this macro MUST beinvoked before ALOG_MASTER/ALOG_SETUP.ALOG_STATUS(status):status - (integer) either ALOG_ON or ALOG_OFFThis macro controls the logging status of ALOG as follows. Setting status to ALOG_ONenables logging until it is turned o�. Setting status to ALOG_OFF disables logging until itis turned on again. Logging is enabled at the outset by default.ALOG_ENABLEno parametersThis macro enables event logging; same as calling ALOG_STATUS(ALOG_ON).ALOG_DISABLEno parametersThis macro disables event logging; same as calling ALOG_STATUS(ALOG_OFF).The sample program `gridlog.shmem.c' in the `monitors' subdirectory contains an ex-ample of a program instrumented with ALOG statements. The macro de�nitions for ALOGare included when you include #include "p4.h" in your program. If the line #defineALOG_TRACE is not included before the #include "p4.h", these macros will generate nocode. Thus it is easy to e�ectively de-instrument the code by recompiling, and there is no

18 CREATING LOGFILES FOR UPSHOT 37need to protect each ALOG statement with an #ifdef.When an ALOG-instrumented program is run, it will produce one log�le for each process.The �les will be named `alogfile.p0', `alogfile.p1', : : : . These �les need to be mergedinto a single �le with the events sored by timestamp. This is accomplished with the program`mergelogs', found in the `bin' subdirectory. To merge the log�les, domergelogs alogfile.p* > myprog.logrm alogfile.p*The resulting log�le can be examined by upshot or some other log�le examination facil-ity. See [4] for details of the log�le format.On networks of workstations and some distributed memory machisnes, the microsecondtimers on the various processors are synchronized. To produce a usable merged log�le, the`adjlogs' program, also found in the `bin' directory, can be used to adjust the timestampsfor o�set and drift before they are merged. For this to work, synchronization events must beplaced in the log�les by an ALOG_LOG statement. The event type is then passed to adjlogs,which aligns the timestamps, based on the timestamps of the synchonization events. Thecall to adjlogs looks like this, where <n> is the type of the synchronization event. Thisprogram makes us of high-precision numeric libraries, and has been tested only on Sun's.adjlogs -e <n>Both mergelogs and adjlogs are less portable than the other p4 code; you might wantto run them on a workstation such as a Sun.18.2 Creating Log Files in FortranLog �les can also be created by Fortran programs. The routines to do so are:alogfsetup(pid,flag):pid - (integer) process id of calleeflag - (integer) either ALOG_WRAP or ALOG_TRUNCATEThis function initializes the tracing area for a slave process and must be called once beforeany event is logged. If the value of flag is set to ALOG_WRAP, then in the event of no morespace for logging events the system will only report the latest n events. If flag is set toALOG_TRUNCATE the system will stop logging events as soon as there is no more memory forthe events to be logged.alogfmaster(pid,flag):pid - (integer) process id of the calleeflag - (integer) either 0 or 1 (see above)This function has the same e�ect over its parameters as alogfsetup with the di�erencethat this function should be referenced by the master process only.alogfdefine(event,strdef,format):event - (integer) id of event being definedstrdef - (string) description of 'event'format - (string) control string in "printf" format

18 CREATING LOGFILES FOR UPSHOT 38This function puts an event de�nition code into the log�le.alogflog(pid,event,intdata,strdata):pid - (integer) process id of calleeevent - (integer) event id to be loggedintdata - (integer) any integer data for this eventstrdata - (string) any string data (can be the null string)This function provides the event logging service.alogfoutput()This function dumps the events logged into a log �le with the name `alogfile.pxx' wherexx is the logical PID of the callee process. The log �le is created in the current directoryunless speci�ed otherwise through the function alogfsetdir.alogfsetdir(dir)dir - (string) directory where log file is createdThis function sets the output directory for the log �le. The default directory for the creationof the log �le is the current directory of the process. If used, then this function MUST beinvoked before alogfmaster/alogfsetup.alogfstatus(status):status - (integer) either ALOG_ON or ALOG_OFFThis function controls the logging status of ALOG as follows. Setting status to ALOG_ONenables logging until it is turned o�. Setting status to ALOG_OFF disables logging until itis turned on again. Logging is enabled at the outset by default.alogfenable()This function enables event logging; same as calling alogfstatus(ALOG_ON). It mustbe called �rst, even before alogfmaster or alogfsetup.alogfdisable()This function disables event logging; same as calling alogfstatus(ALOG_OFF).The sample program `sr_log.f' in the `messages_f' subdirectory contains an exampleof a Fortran program instrumented with logging statements.18.3 Examining Log Files with UpshotUpshot is not part of the p4 distribution, but can be obtained from the same anony-mous ftp location as p4. Take the �le `upshot.tar.Z' from the directory `pub/p4' oninfo.mcs.anl.gov. The distribution contains all necessary documentation on how to in-stall and run upshot. It is an X-window program that runs on most workstations. Thereis no need for a parallel macchine to be involved, once the log �les have been obtained.Upshot produces the most interesting displays when certain events (not necessarily all)are de�ned to be the entry and exit events for certain states and then colors are associated

19 RUNNING P4 ON SPECIFIC MACHINES 39with the states. This association is re
ected in a state�le with a format like the following:1 1 2 red asking2 3 4 blue working3 5 6 green updatingThis state�le describes three states. State 1 is de�ned to be between events 1 and 2.Upshot will color it red and label it \asking".18.4 Automatic Logging of p4 EventsWe have found that the most useful events to log and study are those identi�ed by the userand speci�ed in his program. That way he can control the number of events to be loggedand the grain size of the states that are represented.In some cases, however, one wants to study the details of the internal operation of ap4 application, or get some idea of the behavior on one's program without going to thetrouble of instrumenting it himself. To this end, p4 itself is instrumented with ALOGstatements, although by default they are inactive. To get automatic logging of p4 events(including sending and receiving of each message) one needs �rst to link to a version of thep4 library that has been compiled with the line #define ALOG_TRACE uncommented out inthe `OPTIONS' �le, and secondly, to run with -p4log on the command line.Some important things to know about using the internal logging features of p4 are:1. By default, logging is turned o� at compile time in the OPTIONS �le.2. If you link to a version of p4 that was compiled with logging turned on in the OP-TIONS �le, then if you either use the -p4log option or do ALOG_ENABLE in theprogram, you will get p4 internal log stu�. Of course, if you use ALOG_ENABLE anddo some of your own logging, then it will be mixed up with p4's. The assumption isthat you would probably only link to a version of p4 that had internal logging turnedon if you wanted to debug p4 internals.3. If you link to a version of p4 that was compiled with logging turned o� in the OP-TIONS �le, then using the -p4log option will have no e�ect; also, using ALOG_ENABLEwill not cause p4 internals to log anything. BUT, you can do a "#de�ne ALOG_TRACE"at the top of your program and do ALOG_ENABLE, ALOG_LOGs, etc. and all ofyour own stu� will be logged. NOTE that you must do the #de�ne above your#include "p4.h" because p4.h includes the alog.h header �le for you.4. It is suggested that at least in the case of internal logging, processes should be createdusing p4_create_procgroup rather than p4_create.19 Running p4 on Speci�c Machines19.1 Invoking a p4 ProgramWorkstation Networks On networks of uniprocessors consisting of Suns, HP machines,

19 RUNNING P4 ON SPECIFIC MACHINES 40RS/6000's, CRAY's, SGI's, etc., just set up the appropriate procgroup �le and executethe master process. Execution of the p4_create_procgroup will start up the otherprocesses, either via remote shell or the server.Shared-memory multiprocessors On machines such as the Sequent Symmetry, Encore,KSR, IBM 3090, or Alliant, just execute the master program.BBN Butter
y On the Butter
y TC-2000, one should invoke a program with the \clus-ter" command: cluster 10 systest -pg myprocgroup, where `myprocgroup' de-scribes 9 slave processes, or else the main program will p4_create 9 processes.IPSC860 See the script `runipsc' in the `messages' directory.DELTA See the script `rundelta' in the `messages' directory.Paragon To run on the Paragon at Caltech, execute the program with command-linearguments as follows:<progname> -pn .compute -sz <nprocs>where nprocs is the total number of processes. On some Paragons, one must �rst cre-ate a partition with the mkpart command (mkpart -sz <size> <partname>), spec-ifying the size and name of the partition. At some installations, these partitions arespecici�ed ahead of time. (The lspart command says which partitions currently ex-ist, and the rmpart command is used to remove a user-allocated partition. Once youhave a partition, start your program with:myprog -pn <partition name>The procgroup �le should contain one line:<machinename> <nprocs-1> <pathname>CM-5 You are logged in to a particular front-end, which determines how many nodes youhave available. Just run the program. The procgroup �le should specify (as local)some number of slaves less than the number of nodes available. Also include theprogram pathname on the local line in the procgroup �le. You don't have to use allthe nodes.nCube Say xnc -dN progname where N is the dimension of the subcube to be allocated(i.e., the number of nodes allocated will be 2 to the power N). The procgroup �leshould look like the one for the CM-5. Try nman to access the man pages.SP-1 The IBM SP-1 has several modes. To run (at least on the Argonne system) with theSocket interface to the Ethernet, use spnodes in the procgroup �le, including aspnode1 0 <file>for the master. To use the socket interface to the switch on the SP-1, use swnodes forthe nodes, including swnode1 for the master.SP1_EUI To use the IBM EUI interface to the switch (P4ARCH=SP1_EUI), log into a nodewhere EUI is running and do:

19 RUNNING P4 ON SPECIFIC MACHINES 41setenv MP_PROCS N (where N is the number of processes you want)myprogor myprog -procs NThe procgroup �le should look likelocal 15 <progname>to run with 16 processes (15 slaves). The program name in the procgroup �le shouldbe the full path name of the executable �le. Such a program may be be interactive,but there currently are problems
ushing lines to the terminal that do not end in anewline character (typically, interactive prompts).SP1_EUIH To use the experimental high-speed interface, log into a node where EUIH isrunning and do:/usr/lpp/euih/eui/cotb0 -b <progname> <numprocs> <user args>The procgroup �le should look likelocal 15 <progname>to run with 16 processes (15 slaves). The program name in the procgroup �le shouldbe the full path name of the executable �le. Such a program should not be interactive.MEIKO_CS1 Find an appropriately sized partition usingrinfo -aand then start the job withprun -n <nprocs> -lsv [-p <partition name>] <progname>The -lsv option causes stdout to be routed to �les.19.2 Machine-Speci�c NotesSUN (1) P4 can be installed on this machine with or without SYSV IPC.SUN_SOLARIS(1) P4 is made with shared memory by default, and instead of SysVshared memory, uses the more efficient mmap.HP (1) P4 can be installed on this machine with or without SYSV IPC.(2) Fortran not tested (not avail on our test machine).DEC5000(1) P4 can be installed on this machine with or without SYSV IPC.

19 RUNNING P4 ON SPECIFIC MACHINES 42ALPHA(1) P4 can be installed on this machine with or without SYSV IPC.RS6000(1) P4 can be installed on this machine with or without SYSV IPC.(2) It is important to use the option -lbsd on the link step toget sockets to support the NONBLOCKING option.IBM3090(1) P4 can be installed on this machine with or without SYSV IPC.(2) Fortran not supported due to absence of iargc/getarg.(3) There are multiply defined macros in include/rpc/rpc.h. IBMis fixing this in a later OS release. Meanwhile make your owncopy and the fix the problem yourself.TITAN(1) P4 can be installed on this machine with or without SYSV IPC.(2) Fortran not supported due to problems with getting args.SGI (1) P4 can be installed on this machine with or without SYSV IPC.NEXT(1) Fortran not supported due to absence of iargc/getarg.FX2800/FX2800_SWITCH(1) Alliant's switch code not yet ensuring messagesremain ordered. p4 currently discovers the switch port forthe machine it is running on by invoking the internalprocedure getswport. This procedure must be customized tothe installation. Alliant's switch is currently unsupported.FX8 (1) You might need to add MFLAGS = -i to the MakefileKSR (1) The latest version of the OS produces a link-time error forFortran programs.(2) Use of sockets fails because of a bug in socketpair.IPSC860(1) the script ``runcube'' (in the messages directory) maybe usefulDELTA(1) the script ``rundelta'' (in the messages directory) maybe useful

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 43BALANCE(1) Fortran not supported.SYMMETRY/SYMMETRY_PTX(1) -Z compiler option may be changed to control theshmalloc/malloc split. This is often needed whencreating logfiles on a symmetry.(2) shared memory message passing not supported in FortranTC_2000/TC_2000_TCMP(1) TCMP port not yet complete.(2) For shared-memory execution, one must use cluster ... toobtain a private cluster for executionNCUBE(1) Messages are limited to 32K in length.CM5 (1) Logfiles are not supported.SP1 (1) Using ``spnoden'' for node names causes p4 to use the TCPinterface to the Ethernet.(2) Using ``swnoden'' for node names causes p4 to use the TCPinterface to the switch. In this case, replace the line``local 0'' with ``swnode1 0'' in the procgroup file.(3) It is important to use the option -lbsd on the link step toget sockets to support the NONBLOCKING option when using theTCP interface to either the switch or the Ethernet.(4) EUIH programs may not be able to read from the keyboard.20 Some Common Problems and their SolutionsOur attempt with this manual has been to prevent you from having di�culties. Experienceshows that certain common problems recur, however. In this section we hope to addresssome of these problems.\Permission Denied." p4 slave processes are started by forks (for slaves in the sameshared-memory cluster), by the server, or by the remote shell command. If the server isrunning on the target machine then that must be con�gured to allow remote processesto be started. To test whether this is your problem, tryrsh target.machine dateIf you still get the \Permission denied." message, then the problem has nothing to dowith p4. See hosts.equiv or .rhosts in the system man pages.

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 44\More processes than message queues" Under the default con�guration of p4, unipro-cessors, such as most workstations, cannot have multiple processes sharing memory.Thus your procgroup �le for a workstation network should always look like:local 0machine1 1 pathnamemachine2 1 pathnamemachine3 1 pathname..The \local" means \only the master on the startup machine; no local slaves sharingmemory".It is possible, at some cost in message-passing e�ciency, to have a cluster of processessharing memory on a workstation, but in this case p4 must have been installed withthe SYSV_IPC option set in the `OPTIONS' �le. The cost is that a process waiting for amessage must spin between checking for a message arriving on a socket and a messagearriving through shared memory.\cannot �nd procgroup �le" On the SP-1, Fortran EUIH programs that have beenlinked with the -e main option cannot �nd their command-line arguments, which areneeded whether the procgroup �le is named implicitly or explicitly. The solution isto remove -e main from the link line in the make�le.\gethostbyname failed 100 times" Check for an invalid machine name in the proc-group �le. If all machine names being used are correct, p4dmn command-line optionmight be helpful. For example, if you are running the master program on a machinenamed \donner", then it will broadcast that name to other processes, but they mayonly be able to look \donner" up in a �le that refers to it as \donner.mcs.anl.gov",so the -p4dmn option is used to supply the \mcs.anl.gov" part.\pgm path name: Command not found" P4 tried to start the program with the givenname on a remote machine and the program did not exist. Verify the full path nameof the program.program hangs You may have failed to initialize the type and from �elds before ap4_recv. You might have used p4_sendr between two processes at the same time,which will deadlock if you think about it, or even if you don't. Use p4_send instead.program hangs or has bad data in received message You might have failed to setthe pointer to the incoming bu�er to NULL, or to have speci�cally allocated a bu�erwith p4_msg_alloc, before a p4_recv.program fails to terminate Some Sequents and Suns have been found to be running anold version of rsh, which leaves rsh processes around, causing the master processnot to terminate. Be sure that you have applied patch 100468-03 to your rsh, whichshould make it 7374 bytes long.program ignores command-line arguments You might have passed argc instead of&argc to p4_initenv.

20 SOME COMMON PROBLEMS AND THEIR SOLUTIONS 45program runs out of memory You may need to call p4_msg_free after each p4_recv,or reuse bu�ers by pre-allocating them.

22 FUNCTION INDEX 4621 Concept IndexAadjusting timestamps in log �les 37allocating bu�ers 19askfor monitor 25automatic logging 39Bbarrier 21, 24bu�er pool management 29Cclocks 26cluster management 17command-line arguments 14Ddata types for monitors 23deallocating bu�ers 12, 19debugging 26directory structure 2documentation 5Eexamples 6Ffaster startup 33Fortran interface 29Ggetting started 6global operations 19Iinstallation 3interrupts 28IPC 44Llock 24log�les in Fortran 37logging 35Mmachines 3man pages 5merging log �les 37message-passing functions 18monitor data types 23monitor primitives 23monitors 24

Oonline help 5OPTIONS 2Ppermission denied 43permissions 33problems 43process management 15procgroup �les 7Rreceiving messages 19return codes 15rhosts 33runaway processes 28Ssending messages 18servers 33, 34shared memory data types 23shared memory example 21shared memory functions 21starting processes by hand 14state�le 38Ttesting 5timestamps 35timing 26trace�les 35Uunlock 24upshot 35, 37, 38user events 35utilities 3422 Function IndexAadjlogs 37ALOG_DEFINE 36ALOG_DISABLE 36ALOG_ENABLE 36ALOG_LOG 36ALOG_MASTER 35ALOG_OUTPUT 36ALOG_SETDIR 36ALOG_SETUP 35ALOG_STATUS 36alogfde�ne 37

22 FUNCTION INDEX 47alogfdisable 38alogfenable 38alog
og 38alogfmaster 37alogfoutput 38alogfsetdir 38alogfsetup 37alogfstatus 38Mmergelogs 37Pp4_alloc_procgroup 16p4_am_i_cluster_master 17p4_askfor 25p4_askfor_init 25p4_barrier 24p4_barrier_init 24p4_broadcast 19p4_broadcastx 19p4_clock 26p4_cluster_shmem_sync 17p4_create 15p4_create_procgroup 15p4_dprintf 26p4_dprint
 27p4_error 28p4_free 22p4_get_cluster_ids 17p4_get_cluster_masters 18p4_get_dbg_level 27p4_get_my_cluster_id 17p4_get_my_id 16p4_getsub 24p4_getsub_init 24p4_getsubs 24p4_global_barrier 21p4_global_op 20p4_initenv 15p4_lock 24p4_lock_init 24p4_malloc 22p4_mcontinue 23p4_mdelay 23p4_menter 23p4_messages_available 19p4_mexit 23p4_moninit 23p4_msg_alloc 19p4_msg_free 19p4_num_cluster_ids 17p4_num_total_ids 17p4_num_total_slaves 17

p4_print_avail_bu�s 29p4_probend 25p4_progend 26p4_recv 19p4_send 18p4_sendb 18p4_sendbr 18p4_sendbrx 18p4_sendbx 18p4_sendr 18p4_sendrx 18p4_sendx 18p4_set_avail_bu� 29p4_set_dbg_level 27p4_shfree 22p4_shmalloc 22p4_soft_errors 28p4_startup 16p4_unlock 24p4_update 25p4_usrollover 26p4_ustimer 26p4_version 29p4_wait_for_end 16p4avlbufs 32p4brdcst 31p4brdcstx 31p4cleanup 30p4clock 32p4crpg 29p4error 32p4
ush 32p4getclids 31p4getclmasts 31p4globarr 31p4globop 32p4init 29p4myclid 31p4myid 29p4nclids 31p4nslaves 31p4ntotids 31p4probe 30p4recv 30p4send 30p4sendr 30p4sendrx 30p4sendx 30p4setavlbuf 32p4softerrs 32p4ustimer 32p4version 32

REFERENCES 48References[1] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, andR. Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and Winston,1987.[2] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: the p4 parallel pro-gramming system. Parallel Computing, 20, April 1994. See also Argonne NationalLaboratory preprint MCS-P362-0493.[3] Per Brinch Hansen. The Architecture of Concurrent Programs. Prentice-Hall, Inc., 1977.[4] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.Technical Report ANL{91/15, Argonne National Laboratory, Argonne, IL 60439, 1991.[5] C. A. R. Hoare. Monitors: an operating system structuring concept. Comunications ofthe ACM, pages 549{557, October 1974.This copy was produced on May 16, 1994.

