
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439BlockSolve v1.1:Scalable Library Software for theParallel Solution of Sparse Linear SystemsMark T. Jones and Paul E. PlassmannMathematics and Computer Science DivisionReport ANL-92/46December 1992ABSTRACTBlockSolve is a software library for solving large, sparse systems of linear equationson massively parallel computers. The matrices must be symmetric, but may have anarbitrary sparsity structure. BlockSolve is a portable package that is compatible withseveral di�erent message-passing pardigms. This report gives detailed instructions onthe use of BlockSolve in applications programs.
�This work was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.1

Contents1 Introduction 32 Algorithm Descriptions 33 Using BlockSolve 53.1 The Context : 53.2 The User Matrix Data Structure : 63.3 Manipulating and Solving Matrices : : : : : : : : : : : : : : : : : : : 93.3.1 Manipulation and Setup : 93.3.2 Solving the Linear System : 103.4 Error Checking within BlockSolve : 103.5 Message Number Conicts : 104 Installation and Testing 114.1 Other Libraries : 124.2 Availability of BlockSolve : 125 Limitations and Future Plans 13Acknowledgment 13References 13

2

1 IntroductionBlockSolve is a scalable parallel software library for the solution of large sparse, sym-metric systems of linear equations. It runs on a variety of parallel architecturesand can easily be ported to others. BlockSolve utilizes the Chameleon package [3]to achieve portability across architectures and compatibility with message-passingparadigms such as p4 [1] and PVM [8], as well as the message-passing primitivesavailable on architectures such as the Intel iPSC/860. A user does not need to usethe Chameleon package to use BlockSolve; all that is required is that BlockSolve becompiled with the correct options to make it compatible with the message-passingparadigm and architecture that it will be used on.BlockSolve is primarily intended for the solution of sparse linear systems that arisefrom physical problems having multiple degrees of freedom at each node. For example,when the �nite element method is used to solve practical problems in structuralengineering, each node will typically have anywhere from 3-6 degrees of freedomassociated with it. BlockSolve is written to take advantage of problems of this nature;however, it can be reasonably e�cient for problems that have only one degree offreedom associated with each node, such as the three-dimensional Poisson problem.We do not require that the matrices have any particular structure other than beingsparse and symmetric.BlockSolve is intended to be used within real application codes. It has been ourexperience that most application codes need to solve the same linear systems withseveral di�erent right-hand sides and/or solve linear systems with the same structure,but di�erent matrix values, multiple times. We have therefore designed BlockSolveto work best within this context.In the next section we will give a brief description of the algorithms in BlockSolve,as well as references to more information. In x3 we describe how to use BlockSolveand give descriptions of the necessary data structures. Information relevant to the in-stallation and testing of BlockSolve is given in x4. In x5 we list some of the limitationsof BlockSolve and detail our future plans.2 Algorithm DescriptionsBlockSolve utilizes the preconditioned conjugate gradient algorithm for symmetricpositive de�nite matrices and the preconditioned SYMMLQ algorithm for symmetricinde�nite matrices. For basic information on these algorithms, we refer the reader to[2]. One important note is that the SYMMLQ algorithm requires a positive de�nitepreconditioner, and this requirement can be a serious limitation if the matrix beingsolved is very inde�nite.1The user has the option of selecting a combination of four preconditioners. The1By \very inde�nite," we mean that the matrix has many negative and many positive eigenvalues.3

�rst option is a simple diagonal scaling of the matrix. We advocate always diagonallyscaling the matrix, whether or not one of the others preconditioners is selected. Theother preconditioning options are incomplete Cholesky factorization, SSOR (! = 1),and block Jacobi (where the blocks are the cliques of the graph associated withthe sparse matrix). We recommend that the user select the incomplete Choleskyfactorization with diagonal scaling for symmetric positive de�nite matrices.2 This isthe algorithm that BlockSolve was designed for, and it has proven useful for a varietyof practical problems.BlockSolve does not partition the matrices across the processors for the user.BlockSolve simply accepts an already partitioned matrix with the assumption that thepartitioning is a good one; its performance is limited by the quality of the partition.We believe that this is a reasonable approach for the linear system solver becausethe user must also have a good partition for the other aspects of an applicationto perform well. Therefore, we view the partitioning problem as a separate, butimportant problem. We assume that the right-hand side and the solution vector arepartitioned in the same manner as the rows of the sparse matrix.We achieve parallelism in the conjugate gradient (SYMMLQ) portion of the codeby partitioning the vectors used in the algorithms in the same manner that the rowsof the matrix are partitioned across the processors. Then it is a simple matter ofexecuting inner products and daxpy's in parallel.To achieve scalable parallel performance in the incomplete Cholesky and SSORpreconditioners, we color the graph of the sparse matrix using a parallel coloringalgorithm [7]. The combination of coloring a general symmetric sparse matrix and theincomplete Cholesky algorithm has proven very successful for solving large problemson scalable parallel architectures [4], [6]. We have addressed the issue of convergenceof this combination of algorithms in [5].To achieve good performance on each node, we reorder the matrix to allow the useof the higher-level dense BLAS. This is particularly important on machines that usehigh-performance RISC chips on which good performance can be achieved only byusing such operations. The reordering of the matrices is based on the identi�cation ofidentical nodes and cliques in the graph associated with the matrix. Identical nodestypically exist when multiple degrees of freedom are associated with each node in thegraph. Cliques are found in many graphs associated with sparse matrices, but largerones are typically found in graphs where multiple degrees of freedom are associatedwith each node and the local connectivity of the graph is large. For example, if oneuses a second-order, three-dimensional �nite element in a typical structural engineer-ing problem, clique sizes of up to 81 can be found. In general, the larger the cliquesor identical nodes, the better the performance. This technique has been used withgreat success in direct matrix factorization methods.2Two possible exceptions to this recommendation are (1) if the matrix has no or very small cliquesand identical nodes (in which case the factorization may be very slow) and (2) if the space for theincomplete factorization is not available. 4

3 Using BlockSolveWe will �rst discuss the context data structure that must be created prior to any callsto a BlockSolve routine. We will then describe the data structures that contain theuser's sparse matrix. These data structures must exist on every process that will becalling BlockSolve. Finally, we will discuss the various BlockSolve subroutines thatcan be called to manipulate and solve sparse linear systems. All subroutine and datastructure names in BlockSolve are pre�xed by either \BS" or \BM." Included withthe BlockSolve software are examples that demonstrate the use of BlockSolve.3.1 The ContextThe context structure is used to convey information about the parallel environmentas well as option settings for BlockSolve. Before calling any BlockSolve routines, theuser must �rst allocate a context (a structure called BSprocinfo) for BlockSolve usingthe routine BScreate ctx(); it takes no arguments. When the last BlockSolve routineis called, the context can be freed by calling BSfree ctx() with the context as the onlyargument. After calling BScreate ctx(), the user can then call one of several routinesto modify the context. We provide default settings for the context that we think will,in general, provide the best performance, but the user may bene�t from changingsome of the settings. The settings and routines for changing them are as follows:� Processor id: The id number of this processor. The default setting is given bythe routine MYPROCID from the Chameleon package. To reset the value, callthe routine BSctx set id().� Number of processors: The number of processors that are calling BlockSolvewith a portion of the matrix. The default setting is given by the routineNUMNODES from the Chameleon package. To reset the value, call the routineBSctx set np().� Processor Set: De�nition of the processors that are participating in this call toBlockSolve. If the number of processors participating is equal to the number ofprocessors that are allocated to the user (this is the usual case), then this valueshould be set to NULL. If, for example, the user wishes to work on di�erentmatrices on di�erent sets of processors at the same time and perhaps latercombine the answers, then the procset parameter must be set accordingly. Formore information on procset and its uses, see the Chameleon manual. Thedefault setting for this parameter is NULL. To reset the value, call the routineBSctx set ps().� Maximum clique size: The maximum number of rows in a single clique. Theuser may wish to limit this value if the cliques become too large and performanceis impaired (an unlikely case in most applications and something that requires5

understanding the algorithms in BlockSolve). The default setting is INT MAX.To change this value, call the routine BSctx set cs().� Maximum identical node size: The maximum number of rows combined into anidentical node. The user may wish to limit this value if the i-nodes become toolarge and performance is impaired (an unlikely case in most applications andsomething that requires understanding the algorithms in BlockSolve). The de-fault setting is INT MAX. To change this value, call the routine BSctx set is().� Type of local coloring: In the coloring algorithm, there are two phases: a globalphase in which the Jones/Plassmann algorithm is used and a local phase whereeither an incident degree ordering (IDO) coloring or a saturated degree ordering(SDO) coloring is used. In general the SDO colorings are slightly better buttake more time to �nd. The default setting is IDO. To change this value, callthe routine BSctx set ct().� Error checking: If this ag is true, then some simple error checking on theuser's matrix structure and some intermediate data structures is done. Theerror checking is not very time consuming and is probably a good idea to usefor the �rst few runs. The default setting is false. To change this value, call theroutine BSctx set err().� Retain data structures: If this ag is true, then information is saved during thereordering process to allow a fast reordering if a matrix with the same structureis to be reordered later. The default setting is false. To change this value, callthe routine BSctx set rt().� Print information: If this ag is true, then information about the coloring andreordering is printed during execution. The default setting is false. To changethis value, call the routine BSctx set pr().� No clique/inode reordering: If this ag is true, then no attempt is made to �ndcliques or i-nodes. This ag should be set to true when the user knows thatthe i-node or cliques sizes will be 1 or very close to 1 (the user may wish toexperiment with this). The default setting is false. To change this value, callthe routine BSctx set si().3.2 The User Matrix Data StructureThe user's matrix is passed to BlockSolve in the following format. The matrix datastructure is represented in the structure BSspmat and each row of the matrix isrepresented by the structure BSsprow. We believe that this format is exible enoughto be used in a variety of contexts. We had no di�culty in writing a C interfaceroutine to take a matrix written in a standard sequential format by a Fortran code6

and put this structure around it without duplicating the data in the Fortran sparsematrix.typedef struct __BSsprow {int diag_ind; /* index of diagonal in row */int length; /* num. of nz in row */int *col; /* col numbers */double *nz; /* nz values */} BSsprow;typedef struct __BSspmat {int num_rows; /* number of local rows */int global_num_rows;/* number of global rows */BSmapping *map; /* mapping from local to global, etc */BSsprow **rows; /* the sparse rows */} BSspmat;First, we address the structure BSspmat. The �eld num rows contains the numberof rows local to the processor. The �eld global num rows contains the total numberof rows in the linear system. The �eld map contains mapping information that willbe discussed later. The �eld rows is an array of pointers to local rows of the sparsematrix.In the structure BSsprow, the �eld diag ind is the index of the diagonal in thisrow. We require that every row have a diagonal element (the value of this elementcould be zero). The �eld length contains the number of nonzero values in this row.The �eld col is a pointer to an array of integer values that represent the columnnumber of each nonzero value in the row. These column numbers must be sorted inascending order. The �eld nz is a pointer to an array of double-precision values thatare the nonzero values in the row.The mapping structure serves three purposes: (1) the mapping of local row numberto global row numbers, (2) the mapping of global row numbers to local row numbers,and (3) the mapping of global row number to processor number. We provide routinesfor the user to set up and perform this mapping (details on these routines are givenin the \man" pages). The user is free, however, to setup his own mapping and use hisown routines through this data structure. The local row numbers on every processorrun from 0 to num rows-1; the global row numbers run from 0 to global num rows-1.Each local row has a corresponding global row number.typedef struct __BSmapping {void *vlocal2global; /* data for mapping local to global */void (*flocal2global)(); /* a function for mapping local to global */void (*free_l2g)(); /* a function for free'ing the l2g data */void *vglobal2local; /* data for mapping global to local */void (*fglobal2local)(); /* a function mapping global to local */7

void (*free_g2l)(); /* a function for free'ing the g2l data */void *vglobal2proc; /* data for mapping global to proc */void (*fglobal2proc)(); /* a function mapping global to proc */void (*free_g2p)(); /* a function for free'ing the g2p data */} BSmapping;The �eld vlocal2global is a pointer to data that is passed into the local to globalmapping function (if the user is doing the mapping, he is free to make this point towhatever he wishes). The �eld ocal2global is a pointer to a function for performingthe local to global mapping. The �eld free l2g is a pointer to a function for freeingthe data in the �eld vlocal2global. The function for performing the local to globalmapping takes 5 arguments:int length; /* the number of row numbers to translate */int *req_array; /* the array of local row numbers to translate */int *ans_array; /* the array of corresponding global row numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */The next three �elds (vglobal2local, fglobal2local, and free g2l) are exactly thesame except the mapping is from global to local row number. The mapping is per-formed only for rows that are local to the processor; if the mapping is attemptedfor a nonlocal global row number, then a value of -1 is placed in the ans array. Thearguments to the mapping function areint length; /* the number of row numbers to translate */int *req_array; /* the array of global row numbers to translate */int *ans_array; /* the array of corresponding local row numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */The last three �elds (vglobal2proc, fglobal2proc, and free g2p) are exactly thesame except the mapping is from global row number to processor number.3 Thearguments to the mapping function are:int length; /* the number of row numbers to translate */int *req_array; /* the array of global row numbers to translate */int *ans_array; /* the array of corresponding processor numbers */BSprocinfo *procinfo; /* the processor information context */BSmapping *map; /* the mapping data structure */3It is important to note that this routine will be called by a processor for only those global rownumbers that are local to that processor or for those global row numbers that are connected in thesparse matrix to rows that are local to that processor.8

3.3 Manipulating and Solving MatricesThis subsection is divided into two parts. First, we describe how to set up the matrixand preconditioner for parallel solution. Second, we describe how to solve the linearsystems after the setup has taken place.3.3.1 Manipulation and SetupThe �rst routine that should be called is BSmain perm(), which takes the contextand the user's sparse matrix as arguments. This routine colors and permutes thesparse matrix to create a new version of the sparse matrix appropriate for parallelcomputation. The user's sparse matrix is not permanently changed during this rou-tine, but may be manipulated and restored during execution. If BSmain perm() hasalready been called with the \retain" parameter set to true, then the user can callBSmain reperm() to permute a matrix with the same structure as was permuted inthe original call to BSmain perm().After calling BSmain perm(), the matrix can then be diagonally scaled by callingBSscale diag().Prior to either factoring or solving the matrix, the communication patterns usedby BlockSolve must be created. For factorization this can be done by calling BS-setup factor(). For matrix solution, this is done by calling BSsetup forward(). Bothroutines return the communication pattern. The communication patterns may befreed by calling BSfree comm().If an incomplete factor is to be created, then a copy of the matrix must be made.In addition, if the factorization fails as a result of a zero or negative diagonal beingencountered during the factorization, the matrix must be recopied and the factoriza-tion retried. The following loop accomplishes this task. It is important to note thatthe copy of the sparse matrix shares the clique storage space with the matrix that itis copied from (for more information see the \man" page on BScopy par mat()). Theroutine BSset diag() is used to change the entire diagonal to alpha; in other words,we are shifting the diagonal of the matrix by 0.1 every time the factorization fails.Other strategies are certainly possible and could easily be implemented by the user.alpha = 1.0;/* get a copy of the sparse matrix */f_pA = BScopy_par_mat(pA);/* factor the matrix until successful */while (BSfactor(f_pA,f_comm,procinfo) != 0) {/* recopy just the nonzero values */BScopy_nz(pA,f_pA);/* increment the diagonal shift */alpha += 0.1;BSset_diag(f_pA,alpha,procinfo);} 9

To free the parallel matrix created byBSmain perm(), call the routineBSfree par mat().To free a copy of a parallel matrix created by BScopy par mat(), call the routine BS-free copy par mat().3.3.2 Solving the Linear SystemOnce the parallel matrix and the communication structures have been created, it ispossible to solve the sparse linear system. One of two routines can be called to do this:(1) BSpar solve() for symmetric positive de�nite matrices, and (2) BSpar isolve() forsymmetric inde�nite matrices.BSpar solve() can be used repeatedly to solve systems of linear equations withone or with multiple right-hand sides. Details on the arguments used can be foundin the \man" page.BSpar isolve() is actually set up to solve the system (A � �B)x = b, where Aand B are symmetric matrices, � is a real constant, x is the solution value, andb is the right-hand side. BlockSolve is setup to take advantage of B being NULLor � being zero. BSpar isolve() uses the SYMMLQ algorithm which requires thatthe preconditioner, if any, be positive de�nite. Symmetric diagonal scaling is notpossible for an inde�nite matrix, so one of the other preconditioners must be used.The restriction that the preconditioner be positive de�nite is too restrictive for manyproblems, but we know of no general-purpose alternative to SYMMLQ that takesadvantage of symmetry while allowing an inde�nite preconditioner.If the user wishes to solve with more than one right-hand side simultaneously, thenthe routine BSsetup block() must be called to modify the communication structure toaccommodate the multiple right-hand sides.3.4 Error Checking within BlockSolveBlockSolve uses the error-checking system de�ned in the Chameleon package. If Block-Solve is compiled with the ag DEBUG ALL de�ned, then if an internal error occurs(such as a failed malloc() call), BlockSolve returns to the user and the error codecan be checked with the macros available in Chameleon (see the Chameleon man-ual for more information on the error checking system). If BlockSolve is compiledwith DEBUG TRACEBACK in addition to DEBUG ALL, then error messages areprinted by the routines that encounter the errors, along with routine names and linenumbers where the error occurs. This information can be useful if the user suspectsan error in BlockSolve. We highly recommend the use of DEBUG ALL and DE-BUG TRACEBACK until one is extremely sure of one's the code, and even then itis inexpensive to use DEBUG ALL with BlockSolve.3.5 Message Number ConictsBlockSolve uses message numbers beginning at 10,000. It uses a signi�cant but vari-10

able number of messages after that. Currently the number of messages used is20+(10000*number of processors). The number of messages needed by BlockSolvedepends on the problem being solved, but if the number of messages allocated to it istoo small, then it will detect an error and return accordingly (if DEBUG ALL is on).The current setting of 10,000 is very generous. The message numbers as well as thenumber of messages can be changed by altering BSprivate.h. This modi�cation is avery simple task that any user can do. We hope to make the assignment of messagenumbers and avoidance of conicts in the use of message numbers automatic as soonas this facility is provided by the Chameleon package.4 Installation and TestingUnderneath the main block solve directory are three other directories: (1) src, whichcontains the source code and make�les for BlockSolve, (2) doc, which contains thedocumentation for BlockSolve, and (3) examples, which contains example programsthat demonstrate the use of BlockSolve.To make the BlockSolve library, one should examine the �les make* and Make�lein the src directory. These Make�les are well documented. It is likely that the userwill have to modify them as directed in the Make�les themselves. It is necessary tohave the Chameleon package installed before trying to make BlockSolve.Several compiler options have an e�ect on BlockSolve. The DEBUG ags weredescribed in x3. The ags MLOG, MCOUNT, and MAINLOG are associated withthe logging facilities within BlockSolve, and more information can be found on themin the �le BSlog.h. There are many compiler ags de�ned by the Chameleon packagethat have an e�ect on BlockSolve; for information on these ags see the Chameleondocumentation. A preprocessor variable called DOUBLE is de�ned in BSsparse.h. IfDOUBLE is de�ned, then BlockSolve will compile a double precision version; oth-erwise, a single-precision version is compiled. Unfortunately, the routine names forboth versions are the same.All the routines in the Chameleon package have been tested extensively withthousands of runs within a few applications at Argonne as well as inside the exampleprograms. We believe that the code is error-free at this point, but it is still possiblethat when BlockSolve is used in new applications, previously undiscovered errors maybe found. At the time of this writing, we have run the code on the Intel DELTA, theIntel iPSC/860, and a network of Sun Sparcstations. In the case of the Intel machineswe instructed the Chameleon package to use the Intel message-passing primitives di-rectly wherever possible. On the Sparcstations we instructed the Chameleon packageto use the p4 message-passing system to handle the communication. In the near fu-ture we would like to test the code on the CM-5 as well as on Sparcstations using thePVM message-passing system. 11

4.1 Other LibrariesTo run BlockSolve, one needs the well-known LAPACK and BLAS 1, 2, and 3 librariesas well as the Chameleon package written by William Gropp (gropp@mcs.anl.gov).The Chameleon package is available via anonymous ftp from info.mcs.anl.gov in thedirectory pub/mpi.4.2 Availability of BlockSolveThe BlockSolve package can obtained from the ftp server info.mcs.anl.gov using ananonymous login. The package is in the directory pub/BlockSolve. The currentversion number and last date of modi�cation is in the �le BSsparse.h. Please sendany questions via e-mail to mjones@mcs.anl.gov. Please include your name, a�liation,U.S.-mail address, and e-mail address along with a description of what (if anything)you might be interested in doing with BlockSolve.

12

5 Limitations and Future PlansThe user should be aware of a few limitations in BlockSolve:� Each row of the matrix must have a diagonal entry. That entry may be zero,but it must be explicitly represented in the matrix structure.� If the matrix is inde�nite, one cannot solve for a block of vectors simultaneouslyin the current code.� BlockSolve does not check for or catch exceptions associated with oating-pointerrors.Another limitation involves coloring options. It is possible with the current versionthat if the portion of the matrix structure contained on some processors is verydi�erent from the structure contained on other processors, then the number of colorson each of these processors can be quite di�erent. Such a situation could arise ifdi�erent-order �nite elements are used on di�erent processors (but would not arisejust by applying boundary conditions to some processors, but not to others). Thisimbalance in the number of processors could degrade performance. We are currentlyworking on a new coloring algorithm that will address this situation.We will also be further integrating BlockSolve into the Chameleon package. Thisintegration should be largely transparent to the user, but will result in less code inthe BlockSolve package.A long-term plan is the extension of BlockSolve to nonsymmetric systems.AcknowledgmentWe thank William Gropp for his help in using the Chameleon package.References[1] R. Butler and E. Lusk. Private communication, 1991.[2] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns HopkinsUniversity Press, Baltimore, MD, 1983.[3] W. Gropp. Private communication, 1992.[4] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linearsystems, Preprint MCS-P277-1191, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Ill., 1991.13

[5] , The e�ect of many-color orderings on the convergence of iterative methods,in Proceedings of the Copper Mountain Conference on Iterative Methods, CopperMountain, Colorado, April 9{14 1992.[6] , Solution of large, sparse systems of linear equations in massively parallelapplications, Preprint MCS-P313-0692, Mathematics and Computer Science Di-vision, Argonne National Laboratory, Argonne, Ill., 1992.[7] , A parallel graph coloring heuristic, SIAM Journal on Scienti�c and Statis-tical Computing, 14 (1993).[8] V. S. Sunderam, PVM: A framework for parallel distributed computing, Con-currency: Practice and Experience, 2 (1990), pp. 315{339.

14

