ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

BlockSolve v1.1:
Scalable Library Software for the
Parallel Solution of Sparse Linear Systems

MARK T. JONES AND PAUL E. PLASSMANN

Mathematics and Computer Science Division
Report ANL-92/46
December 1992

ABSTRACT

BlockSolve is a software library for solving large, sparse systems of linear equations
on massively parallel computers. The matrices must be symmetric, but may have an
arbitrary sparsity structure. BlockSolve is a portable package that is compatible with
several different message-passing pardigms. This report gives detailed instructions on
the use of BlockSolve in applications programs.

*This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

Contents
1 Introduction

2 Algorithm Descriptions

3 Using BlockSolve

3.1 The Context
3.2 The User Matrix Data Structure.
3.3 Manipulating and Solving Matrices

3.3.1 Manipulation and Setup oL

3.3.2 Solving the Linear System
3.4 Error Checking within BlockSolve
3.5 Message Number Conflicts

4 Installation and Testing
4.1 Other Libraries
4.2 Availability of BlockSolve Lo

5 Limitations and Future Plans
Acknowledgment

References

11
12
12

13

13

13

1 Introduction

BlockSolve is a scalable parallel software library for the solution of large sparse, sym-
metric systems of linear equations. It runs on a variety of parallel architectures
and can easily be ported to others. BlockSolve utilizes the Chameleon package [3]
to achieve portability across architectures and compatibility with message-passing
paradigms such as p4 [1] and PVM [8], as well as the message-passing primitives
available on architectures such as the Intel iPSC/860. A user does not need to use
the Chameleon package to use BlockSolve; all that is required is that BlockSolve be
compiled with the correct options to make it compatible with the message-passing
paradigm and architecture that it will be used on.

BlockSolve is primarily intended for the solution of sparse linear systems that arise
from physical problems having multiple degrees of freedom at each node. For example,
when the finite element method is used to solve practical problems in structural
engineering, each node will typically have anywhere from 3-6 degrees of freedom
associated with it. BlockSolve is written to take advantage of problems of this nature;
however, it can be reasonably efficient for problems that have only one degree of
freedom associated with each node, such as the three-dimensional Poisson problem.
We do not require that the matrices have any particular structure other than being
sparse and symmetric.

BlockSolve is intended to be used within real application codes. It has been our
experience that most application codes need to solve the same linear systems with
several different right-hand sides and/or solve linear systems with the same structure,
but different matrix values, multiple times. We have therefore designed BlockSolve
to work best within this context.

In the next section we will give a brief description of the algorithms in BlockSolve,
as well as references to more information. In §3 we describe how to use BlockSolve
and give descriptions of the necessary data structures. Information relevant to the in-
stallation and testing of BlockSolve is given in §4. In §5 we list some of the limitations
of BlockSolve and detail our future plans.

2 Algorithm Descriptions

BlockSolve utilizes the preconditioned conjugate gradient algorithm for symmetric
positive definite matrices and the preconditioned SYMMLQ algorithm for symmetric
indefinite matrices. For basic information on these algorithms, we refer the reader to
[2]. One important note is that the SYMMLQ algorithm requires a positive definite
preconditioner, and this requirement can be a serious limitation if the matrix being
solved is very indefinite.!

The user has the option of selecting a combination of four preconditioners. The

!By “very indefinite,” we mean that the matrix has many negative and many positive eigenvalues.

first option is a simple diagonal scaling of the matrix. We advocate always diagonally
scaling the matrix, whether or not one of the others preconditioners is selected. The
other preconditioning options are incomplete Cholesky factorization, SSOR (w = 1),
and block Jacobi (where the blocks are the cliques of the graph associated with
the sparse matrix). We recommend that the user select the incomplete Cholesky
factorization with diagonal scaling for symmetric positive definite matrices.? This is
the algorithm that BlockSolve was designed for, and it has proven useful for a variety
of practical problems.

BlockSolve does not partition the matrices across the processors for the user.
BlockSolve simply accepts an already partitioned matrix with the assumption that the
partitioning is a good one; its performance is limited by the quality of the partition.
We believe that this is a reasonable approach for the linear system solver because
the user must also have a good partition for the other aspects of an application
to perform well. Therefore, we view the partitioning problem as a separate, but
important problem. We assume that the right-hand side and the solution vector are
partitioned in the same manner as the rows of the sparse matrix.

We achieve parallelism in the conjugate gradient (SYMMLQ) portion of the code
by partitioning the vectors used in the algorithms in the same manner that the rows
of the matrix are partitioned across the processors. Then it is a simple matter of
executing inner products and daxpy’s in parallel.

To achieve scalable parallel performance in the incomplete Cholesky and SSOR
preconditioners, we color the graph of the sparse matrix using a parallel coloring
algorithm [7]. The combination of coloring a general symmetric sparse matrix and the
incomplete Cholesky algorithm has proven very successful for solving large problems
on scalable parallel architectures [4], [6]. We have addressed the issue of convergence
of this combination of algorithms in [5].

To achieve good performance on each node, we reorder the matrix to allow the use
of the higher-level dense BLLAS. This is particularly important on machines that use
high-performance RISC chips on which good performance can be achieved only by
using such operations. The reordering of the matrices is based on the identification of
identical nodes and cliques in the graph associated with the matrix. Identical nodes
typically exist when multiple degrees of freedom are associated with each node in the
graph. Cliques are found in many graphs associated with sparse matrices, but larger
ones are typically found in graphs where multiple degrees of freedom are associated
with each node and the local connectivity of the graph is large. For example, if one
uses a second-order, three-dimensional finite element in a typical structural engineer-
ing problem, clique sizes of up to 81 can be found. In general, the larger the cliques
or identical nodes, the better the performance. This technique has been used with
great success in direct matrix factorization methods.

2Two possible exceptions to this recommendation are (1) if the matrix has no or very small cliques
and identical nodes (in which case the factorization may be very slow) and (2) if the space for the
incomplete factorization is not available.

3 Using BlockSolve

We will first discuss the context data structure that must be created prior to any calls
to a BlockSolve routine. We will then describe the data structures that contain the
user’s sparse matrix. These data structures must exist on every process that will be
calling BlockSolve. Finally, we will discuss the various BlockSolve subroutines that
can be called to manipulate and solve sparse linear systems. All subroutine and data
structure names in BlockSolve are prefixed by either “BS” or “BM.” Included with
the BlockSolve software are examples that demonstrate the use of BlockSolve.

3.1 The Context

The context structure is used to convey information about the parallel environment
as well as option settings for BlockSolve. Before calling any BlockSolve routines, the
user must first allocate a context (a structure called BSprocinfo) for BlockSolve using
the routine BScreate_ctx(); it takes no arguments. When the last BlockSolve routine
is called, the context can be freed by calling BSfree_ctz() with the context as the only
argument. After calling BScreate_ctz(), the user can then call one of several routines
to modify the context. We provide default settings for the context that we think will,
in general, provide the best performance, but the user may benefit from changing
some of the settings. The settings and routines for changing them are as follows:

o Processor id: The id number of this processor. The default setting is given by
the routine MYPROCID from the Chameleon package. To reset the value, call
the routine BSctr_set_id().

o Number of processors: The number of processors that are calling BlockSolve
with a portion of the matrix. The default setting is given by the routine
NUMNODES from the Chameleon package. To reset the value, call the routine
BSctz_set_np().

o Processor Set: Definition of the processors that are participating in this call to
BlockSolve. If the number of processors participating is equal to the number of
processors that are allocated to the user (this is the usual case), then this value
should be set to NULL. If, for example, the user wishes to work on different
matrices on different sets of processors at the same time and perhaps later
combine the answers, then the procset parameter must be set accordingly. For
more information on procset and its uses, see the Chameleon manual. The
default setting for this parameter is NULL. To reset the value, call the routine
BSctr_set_ps().

e Maximum clique size: The maximum number of rows in a single clique. The
user may wish to limit this value if the cliques become too large and performance
is impaired (an unlikely case in most applications and something that requires

understanding the algorithms in BlockSolve). The default setting is INT_MAX.
To change this value, call the routine BSctz_set_cs().

o Maximum identical node size: The maximum number of rows combined into an
identical node. The user may wish to limit this value if the i-nodes become too
large and performance is impaired (an unlikely case in most applications and
something that requires understanding the algorithms in BlockSolve). The de-
fault setting is INT_MAX. To change this value, call the routine BSctr_set_is().

e Type of local coloring: In the coloring algorithm, there are two phases: a global
phase in which the Jones/Plassmann algorithm is used and a local phase where
either an incident degree ordering (IDO) coloring or a saturated degree ordering
(SDO) coloring is used. In general the SDO colorings are slightly better but
take more time to find. The default setting is IDO. To change this value, call
the routine BSctx_set_ct().

o Error checking: If this flag is true, then some simple error checking on the
user’s matrix structure and some intermediate data structures is done. The
error checking is not very time consuming and is probably a good idea to use
for the first few runs. The default setting is false. To change this value, call the
routine BSctr_set_err().

e Retain data structures: If this flag is true, then information is saved during the
reordering process to allow a fast reordering if a matrix with the same structure
is to be reordered later. The default setting is false. To change this value, call
the routine BSctz_set_rt().

e Print information: If this flag is true, then information about the coloring and
reordering is printed during execution. The default setting is false. To change
this value, call the routine BSctz_set_pr().

e No clique/inode reordering: If this flag is true, then no attempt is made to find
cliques or i-nodes. This flag should be set to true when the user knows that
the i-node or cliques sizes will be 1 or very close to 1 (the user may wish to
experiment with this). The default setting is false. To change this value, call
the routine BSctr_set_si().

3.2 The User Matrix Data Structure

The user’s matrix is passed to BlockSolve in the following format. The matrix data
structure is represented in the structure BSspmat and each row of the matrix is
represented by the structure BSsprow. We believe that this format is flexible enough
to be used in a variety of contexts. We had no difficulty in writing a C interface
routine to take a matrix written in a standard sequential format by a Fortran code

and put this structure around it without duplicating the data in the Fortran sparse
matrix.

typedef struct __BSsprow {
int diag_ind; /* index of diagonal in row */
int length; /* num. of nz in row */
int *col; /* col numbers */
double *nz; /* nz values */
} BSsprow;
typedef struct __BSspmat {

int num_rows; /* number of local rows */
int global_num_rows;/* number of global rows */
BSmapping *map; /* mapping from local to global, etc */
BSsprow **rows; /* the sparse rows */
} BSspmat;

First, we address the structure BSspmat. The field num_rows contains the number
of rows local to the processor. The field global_num_rows contains the total number
of rows in the linear system. The field map contains mapping information that will
be discussed later. The field rows is an array of pointers to local rows of the sparse
matrix.

In the structure BSsprow, the field diag_ind is the index of the diagonal in this
row. We require that every row have a diagonal element (the value of this element
could be zero). The field length contains the number of nonzero values in this row.
The field col is a pointer to an array of integer values that represent the column
number of each nonzero value in the row. These column numbers must be sorted in
ascending order. The field nz is a pointer to an array of double-precision values that
are the nonzero values in the row.

The mapping structure serves three purposes: (1) the mapping of local row number
to global row numbers, (2) the mapping of global row numbers to local row numbers,
and (3) the mapping of global row number to processor number. We provide routines
for the user to set up and perform this mapping (details on these routines are given
in the “man” pages). The user is free, however, to setup his own mapping and use his
own routines through this data structure. The local row numbers on every processor
run from 0 to num_rows-1; the global row numbers run from 0 to global_num_rows-1.
Each local row has a corresponding global row number.

typedef struct __BSmapping {
void *vlocal2global; /* data for mapping local to global */
void (*flocal2global)(); /* a function for mapping local to global */
void (*free_12g)(); /#* a function for free’ing the 12g data */
void *vglobal2local; /* data for mapping global to local */
void (*fglobal2local)(); /* a function mapping global to local */

void (*free_g21)(); /#* a function for free’ing the g2l data */

void *vglobal2proc; /* data for mapping global to proc */

void (*fglobal2proc)(); /* a function mapping global to proc */

void (*free_g2p)(); /* a function for free’ing the g2p data */
} BSmapping;

The field vlocal2global is a pointer to data that is passed into the local to global
mapping function (if the user is doing the mapping, he is free to make this point to
whatever he wishes). The field flocal2global is a pointer to a function for performing
the local to global mapping. The field free_[2¢g is a pointer to a function for freeing
the data in the field vlocal2¢global. The function for performing the local to global
mapping takes 5 arguments:

int length; /* the number of row numbers to translate */

int *req_array; /* the array of local row numbers to translate */
int *ans_array; /* the array of corresponding global row numbers */
BSprocinfo *procinfo; /* the processor information context */

BSmapping *map; /* the mapping data structure */

The next three fields (vglobal2local, fglobal2local, and free_g2l) are exactly the
same except the mapping is from global to local row number. The mapping is per-
formed only for rows that are local to the processor; if the mapping is attempted
for a nonlocal global row number, then a value of -1 is placed in the ans_array. The
arguments to the mapping function are

int length; /* the number of row numbers to translate */

int *req_array; /* the array of global row numbers to translate */
int *ans_array; /* the array of corresponding local row numbers */
BSprocinfo *procinfo; /* the processor information context */

BSmapping *map; /* the mapping data structure */

The last three fields (vglobal2proc, fglobal2proc, and free_g2p) are exactly the
same except the mapping is from global row number to processor number.? The
arguments to the mapping function are:

int length; /* the number of row numbers to translate */

int *req_array; /* the array of global row numbers to translate */
int *ans_array; /* the array of corresponding processor numbers */
BSprocinfo *procinfo; /* the processor information context */

BSmapping *map; /* the mapping data structure */

31t is important to note that this routine will be called by a processor for only those global row
numbers that are local to that processor or for those global row numbers that are connected in the
sparse matrix to rows that are local to that processor.

3.3 Manipulating and Solving Matrices

This subsection is divided into two parts. First, we describe how to set up the matrix
and preconditioner for parallel solution. Second, we describe how to solve the linear
systems after the setup has taken place.

3.3.1 Manipulation and Setup

The first routine that should be called is BSmain_perm(), which takes the context
and the user’s sparse matrix as arguments. This routine colors and permutes the
sparse matrix to create a new version of the sparse matrix appropriate for parallel
computation. The user’s sparse matrix is not permanently changed during this rou-
tine, but may be manipulated and restored during execution. If BSmain_perm() has
already been called with the “retain” parameter set to true, then the user can call
BSmain_reperm() to permute a matrix with the same structure as was permuted in
the original call to BSmain_perm().

After calling BSmain_perm(), the matrix can then be diagonally scaled by calling
BSscale_diag().

Prior to either factoring or solving the matrix, the communication patterns used
by BlockSolve must be created. For factorization this can be done by calling BS-
setup_factor(). For matrix solution, this is done by calling BSsetup_forward(). Both
routines return the communication pattern. The communication patterns may be
freed by calling BSfree_comm/().

If an incomplete factor is to be created, then a copy of the matrix must be made.
In addition, if the factorization fails as a result of a zero or negative diagonal being
encountered during the factorization, the matrix must be recopied and the factoriza-
tion retried. The following loop accomplishes this task. It is important to note that
the copy of the sparse matrix shares the clique storage space with the matrix that it
is copied from (for more information see the “man” page on BScopy_par-mat()). The
routine BSset_diag() is used to change the entire diagonal to alpha; in other words,
we are shifting the diagonal of the matrix by 0.1 every time the factorization fails.
Other strategies are certainly possible and could easily be implemented by the user.

alpha = 1.0;
/* get a copy of the sparse matrix */
f_pA = BScopy_par_mat(pi);

/* factor the matrix until successful */
while (BSfactor(f_pA,f_comm,procinfo) '= 0) {
/* recopy just the nonzero values */

BScopy_nz(ph,f_ph);

/* increment the diagonal shift */
alpha += 0.1;
BSset_diag(f_pA,alpha,procinfo);

To free the parallel matrix created by BSmain_perm(), call the routine BSfree_par_mat().

To free a copy of a parallel matrix created by BScopy_par_mat(), call the routine BS-
free_copy_par-mat().

3.3.2 Solving the Linear System

Once the parallel matrix and the communication structures have been created, it is
possible to solve the sparse linear system. One of two routines can be called to do this:
(1) BSpar_solve() for symmetric positive definite matrices, and (2) BSpar_isolve() for

symmetric indefinite matrices.

BSpar_solve() can be used repeatedly to solve systems of linear equations with

one or with multiple right-hand sides. Details on the arguments used can be found

in the “man” page.

BSpar_isolve() is actually set up to solve the system (A — oB)x = b, where A

and B are symmetric matrices, o is a real constant, = is the solution value, and
b is the right-hand side. BlockSolve is setup to take advantage of B being NULL
or o being zero. BSpar_isolve() uses the SYMMLQ algorithm which requires that
the preconditioner, if any, be positive definite. Symmetric diagonal scaling is not
possible for an indefinite matrix, so one of the other preconditioners must be used.
The restriction that the preconditioner be positive definite is too restrictive for many
problems, but we know of no general-purpose alternative to SYMML(Q that takes

advantage of symmetry while allowing an indefinite preconditioner.

If the user wishes to solve with more than one right-hand side simultaneously, then

the routine BSsetup_block() must be called to modify the communication structure to
accommodate the multiple right-hand sides.

3.4 Error Checking within BlockSolve

BlockSolve uses the error-checking system defined in the Chameleon package. It Block-
Solve is compiled with the flag DEBUG_ALL defined, then if an internal error occurs
(such as a failed malloc() call), BlockSolve returns to the user and the error code

can be checked with the macros available in Chameleon (see the Chameleon man-
ual for more information on the error checking system). If BlockSolve is compiled
with DEBUG_TRACEBACK in addition to DEBUG_ALL, then error messages are
printed by the routines that encounter the errors, along with routine names and line
numbers where the error occurs. This information can be useful if the user suspects
an error in BlockSolve. We highly recommend the use of DEBUG_ALL and DE-
BUG_TRACEBACK until one is extremely sure of one’s the code, and even then it
is inexpensive to use DEBUG_ALL with BlockSolve.

3.5 Message Number Conflicts

BlockSolve uses message numbers beginning at 10,000. It uses a significant but vari-

10

able number of messages after that. Currently the number of messages used is
20+(10000*number_of_processors). The number of messages needed by BlockSolve
depends on the problem being solved, but if the number of messages allocated to it is
too small, then it will detect an error and return accordingly (if DEBUG_ALL is on).
The current setting of 10,000 is very generous. The message numbers as well as the
number of messages can be changed by altering BSprivate.h. This modification is a
very simple task that any user can do. We hope to make the assignment of message
numbers and avoidance of conflicts in the use of message numbers automatic as soon
as this facility is provided by the Chameleon package.

4 Installation and Testing

Underneath the main block_solve directory are three other directories: (1) sre, which
contains the source code and makefiles for BlockSolve, (2) doe, which contains the
documentation for BlockSolve, and (3) examples, which contains example programs
that demonstrate the use of BlockSolve.

To make the BlockSolve library, one should examine the files make™ and Makefile
in the sre directory. These Makefiles are well documented. It is likely that the user
will have to modify them as directed in the Makefiles themselves. It is necessary to
have the Chameleon package installed before trying to make BlockSolve.

Several compiler options have an effect on BlockSolve. The DEBUG flags were
described in §3. The flags MLOG, MCOUNT, and MAINLOG are associated with
the logging facilities within BlockSolve, and more information can be found on them
in the file BSlog.h. There are many compiler flags defined by the Chameleon package
that have an effect on BlockSolve; for information on these flags see the Chameleon
documentation. A preprocessor variable called DOUBLE is defined in BSsparse.h. If
DOUBLE is defined, then BlockSolve will compile a double precision version; oth-
erwise, a single-precision version is compiled. Unfortunately, the routine names for
both versions are the same.

All the routines in the Chameleon package have been tested extensively with
thousands of runs within a few applications at Argonne as well as inside the example
programs. We believe that the code is error-free at this point, but it is still possible
that when BlockSolve is used in new applications, previously undiscovered errors may
be found. At the time of this writing, we have run the code on the Intel DELTA, the
Intel iPSC/860, and a network of Sun Sparcstations. In the case of the Intel machines
we instructed the Chameleon package to use the Intel message-passing primitives di-
rectly wherever possible. On the Sparcstations we instructed the Chameleon package
to use the p4 message-passing system to handle the communication. In the near fu-
ture we would like to test the code on the CM-5 as well as on Sparcstations using the
PVM message-passing system.

11

4.1 Other Libraries

To run BlockSolve, one needs the well-known LAPACK and BLAS 1, 2, and 3 libraries
as well as the Chameleon package written by William Gropp (gropp@mcs.anl.gov).
The Chameleon package is available via anonymous ftp from info.mcs.anl.gov in the
directory pub/mpi.

4.2 Availability of BlockSolve

The BlockSolve package can obtained from the ftp server info.mcs.anl.gov using an
anonymous login. The package is in the directory pub/BlockSolve. The current
version number and last date of modification is in the file BSsparse.h. Please send
any questions via e-mail to mjones@mecs.anl.gov. Please include your name, affiliation,
U.S.-mail address, and e-mail address along with a description of what (if anything)
you might be interested in doing with BlockSolve.

12

5 Limitations and Future Plans

The user should be aware of a few limitations in BlockSolve:

e Each row of the matrix must have a diagonal entry. That entry may be zero,
but it must be explicitly represented in the matrix structure.

o If the matrix is indefinite, one cannot solve for a block of vectors simultaneously
in the current code.

o BlockSolve does not check for or catch exceptions associated with floating-point
errors.

Another limitation involves coloring options. It is possible with the current version
that if the portion of the matrix structure contained on some processors is very
different from the structure contained on other processors, then the number of colors
on each of these processors can be quite different. Such a situation could arise if
different-order finite elements are used on different processors (but would not arise
just by applying boundary conditions to some processors, but not to others). This
imbalance in the number of processors could degrade performance. We are currently
working on a new coloring algorithm that will address this situation.

We will also be further integrating BlockSolve into the Chameleon package. This
integration should be largely transparent to the user, but will result in less code in
the BlockSolve package.

A long-term plan is the extension of BlockSolve to nonsymmetric systems.

Acknowledgment

We thank William Gropp for his help in using the Chameleon package.

References

[1] R. BUTLER AND E. LUSK. Private communication, 1991.

2] G. H. GorLuB AND C. F. V. LoaN, Matriz Computations, The Johns Hopkins
University Press, Baltimore, MD, 1983.

[3] W. GROPP. Private communication, 1992.

[4] M. T. JoNES AND P. E. PLASSMANN, Scalable iterative solution of sparse linear
systems, Preprint MCS-P277-1191, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., 1991.

13

[5] ——, The effect of many-color orderings on the convergence of iterative methods,
in Proceedings of the Copper Mountain Conference on Iterative Methods, Copper

Mountain, Colorado, April 9-14 1992.

[6] ——, Solution of large, sparse systems of linear equations in massively parallel
applications, Preprint MCS-P313-0692, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne, Ill., 1992.

[7] ——, A parallel graph coloring heuristic, SIAM Journal on Scientific and Statis-
tical Computing, 14 (1993).

[8] V. S. SUNDERAM, PVM: A framework for parallel distributed computing, Con-
currency: Practice and Experience, 2 (1990), pp. 315-339.

14

