
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439|||||{ANL-93/26|||||{Programming in Fortran MbyIan Foster, Robert Olson, and Steven TueckeMathematics and Computer Science Division
August 1993(revised 10/93)This research was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy under Contract W-31-109-Eng-38, and by the National Science Foundation's Centerfor Research in Parallel Computation under Contract CCR-8809615.

PrefaceFortran M is a joint development of Argonne National Laboratory and the Cal-ifornia Institute of Technology (Caltech). Mani Chandy and his colleagues at Caltechhave contributed in numerous ways. We are grateful to the many Fortran M userswho have provided valuable feedback on earlier versions of this software, notablyDonald Dabdub, Rajit Manohar, Berna Massingill, Sharif Rahman, John Thayer,and Ming Xu, and to Andrew Lavery for his contributions to the development ofthe Fortran M compiler.

ii

ContentsAbstract 1I Tutorial 21 Introduction 21.1 About Fortran M : 21.2 About the Fortran M Compiler : 21.3 About the Fortran M Project : 31.4 Caveat : 32 A First Example 32.1 A Simple Program : 42.2 Compiling and Linking a Program : : : : : : : : : : : : : : : : : : : 52.3 Running a Program : 53 The Fortran M Language 63.1 Processes and Ports : 63.2 Creating Channels and Processes : 83.2.1 The CHANNEL Statement : 83.2.2 The Process Block : 83.2.3 The Process Do-Loop : 93.3 Determinism : 103.4 Communication : 103.4.1 SEND and ENDCHANNEL : 103.4.2 RECEIVE : 113.5 Variable-Sized Messages : 123.6 Communication Examples : 123.7 Dynamic Channel Structures : 133.8 Argument Passing : 163.9 Nondeterministic Computations : 173.9.1 The MERGER Statement : 173.9.2 The PROBE Statement : 183.10 Mapping : 213.10.1 Virtual Computers : 213.10.2 Process Placement : 223.10.3 Submachines : 234 Compiling, Running, and Debugging 244.1 Compiling and Linking Programs : 244.1.1 C Preprocessor : 254.1.2 Fortran M Compiler and Linker : : : : : : : : : : : : : : : : : 264.1.3 Syntax Errors : 274.2 Running Programs : 27iii

4.3 Debugging Programs : 284.3.1 Attaching a Debugger : 284.3.2 Fatal Errors : 284.3.3 Pause Points : 295 Further Reading 29II Advanced Topics 316 Make�le 317 Tuning Fortran M Programs 328 Network Speci�cs 328.1 Using rsh : 338.2 Specifying Nodes on the Command Line : : : : : : : : : : : : : : : : 338.3 Using a Startup File : 348.4 Ending a Computation : 358.5 Arguments to Network Version : 358.6 Limitations of Network Version : 35III Appendices 37A IOSTAT values 37B Obtaining the Fortran M Compiler 38C Supported Machines 39D Reserved Words 40E De�ciencies 41F Futures Plans 43G Fortran M Language De�nition 44G.1 Syntax : 44G.1.1 Process, Process Block, Process Do-loop : : : : : : : : : : : : 44G.1.2 New Declarations : 44G.1.3 New Executable Statements : : : : : : : : : : : : : : : : : : : 45G.1.4 Mapping : 47G.1.5 Restrictions : 47G.2 Concurrency : 47G.3 Channels : 47G.4 Nondeterminism : 48iv

G.5 Mapping : 49Index 50

v

Programming in Fortran MIan Foster, Robert Olson, and Steven TueckeAbstractFortran M is a small set of extensions to Fortran that supports a modular approachto the construction of sequential and parallel programs. Fortran M programs usechannels to plug together processeswhich may be written in Fortran M or Fortran 77.Processes communicate by sending and receiving messages on channels. Channelsand processes can be created dynamically, but programs remain deterministic unlessspecialized nondeterministic constructs are used. Fortran M programs can executeon a range of sequential, parallel, and networked computers. This report incorpo-rates both a tutorial introduction to Fortran M and a users guide for the Fortran Mcompiler developed at Argonne National Laboratory.The Fortran M compiler, supporting software, and documentation are madeavailable free of charge by Argonne National Laboratory, but are protected by acopyright which places certain restrictions on how they may be redistributed. Seethe software for details. The latest version of both the compiler and this manual canbe obtained by anonymous ftp from Argonne National Laboratory in the directorypub/fortran-m at info.mcs.anl.gov (cf. Appendix B).
1

Part ITutorial1 IntroductionThis report provides a tutorial introduction to Fortran M and describes how tocompile and run programs using Version 1.0 of the Fortran M compiler. We assumefamiliarity with Fortran 77.The report is divided into three parts. The �rst comprises x 1{5, and providesa tutorial introduction to both the language and compiler. The second comprisesx 6{8 and provides reference material on such topics as building make�les, tuningprograms, and running programs on networks. Finally, the Appendices provide alanguage de�nition and list keywords, supported machines, known de�ciencies, andfuture plans.1.1 About Fortran MFortran M is a small set of extensions to Fortran that supports a modular approachto parallel programming, permits the writing of provably deterministic parallel pro-grams, allows the speci�cation of dynamic process and communication structures,provides for the integration of task and data parallelism, and enables compiler op-timizations aimed at communication as well as computation. Fortran M providesconstructs for creating tasks and channels, for sending messages on channels, formapping tasks and data to processors, and so on.Because Fortran M extends Fortran 77, any valid Fortran program is also avalid Fortran M program. (There is one exception to this rule: the keyword COMMONmust be renamed to PROCESS COMMON. However, this requirement can be overriddenby a compiler argument; see x4.1.) The extensions themselves have a Fortran \lookand feel" and are intended to be easy to use: they can be mastered in a few hours.The basic paradigm underlying Fortran M is task-parallelism: the parallelexecution of (possibly dissimilar) tasks. Hence, FortranM complements data-parallellanguages such as Fortran D and High Performance Fortran (HPF). In particular,Fortran M can be used to coordinate multiple data-parallel computations. Our goalis to integrate HPF with Fortran M, thus combining the data-parallel and task-parallel programming paradigms in a single system.Current application e�orts include coupled climate models, multidisciplinarydesign, air quality modeling, particle-in-cell codes, and computational biology.1.2 About the Fortran M CompilerThis report describes Version 1.0 of the Fortran M compiler. This is a preprocessorthat translates Fortran M programs into Fortran 77 plus calls to a run-time commu-nication and process management library. The Fortran 77 generated by the prepro-cessor is compiled with a conventional Fortran 77 compiler. Version 1.0 is a complete2

implementation of Fortran M, except where noted otherwise in Appendix E. SeeAppendix C for information on supported machines.The communication code generated by the Fortran M compiler has yet to beoptimized. However, performance studies show that it already compares favorablywith p4 and PVM, two popular message-passing libraries. A de�ciency of Version 1.0is that process creation and process switching are both relatively expensive oper-ations. This has an impact on the classes of algorithms that can be implementede�ciently in Fortran M. We expect both communication and process managementperformance to improve signi�cantly in subsequent releases.1.3 About the Fortran M ProjectThe Fortran M project is a joint activity of Argonne National Laboratory and theCalifornia Institute of Technology; the Fortran M compiler was developed at Ar-gonne National Laboratory. We are continuing to develop and re�ne the Fortran Mlanguage and compiler. We outline some of our plans in Appendix F. We welcomecomments on both the current software and development priorities.The Fortran M mailing list is used to announce new compiler releases. Sendelectronic mail to fortran-m@mcs.anl.gov if you wish to be added to this list.Please send inquiries, comments, and bug reports to the same address.1.4 CaveatThe Fortran M compiler should be considered unsupported research software. (Weprovide support on a best-e�orts basis but make no guarantees.) The prospectiveuser is urged to study the list of de�ciencies provided in Appendix E of this manualbefore writing programs.2 A First ExampleWe use a simple example to introduce both Fortran M and the Fortran M compiler.We assume that Fortran M is already installed on your computer. (If it is not, readthe documentation provided with the Fortran M software release.)Before you can use Fortran M, you must tell your environment where to �ndthe compiler. (Normally, this will be /usr/local/fortran-m, but some systemsmay place the compiler in a di�erent location.) If you are using the standard UnixC-shell (csh), you add one line to the end of the �le .cshrc in your home directory.If the compiler has been installed in /usr/local/fortran-m, this line isset path = ($path /usr/local/fortran-m/bin)The environment variable path tells the Unix shell where to �nd various programssuch as the Fortran M compiler. This shell command adds the directory containingthe compiler to your shell's search path. You may have to log out and log in againfor this to take e�ect. 3

2.1 A Simple ProgramThe example1.fm program creates two tasks, producer and consumer, and connectsthem with a channel. The channel is used to communicate a stream of integer values1,...,5 from producer to consumer.example1.fmprogram example1inport (integer) pioutport (integer) pochannel(in=pi, out=po)processesprocesscall producer(5, po)processcall consumer(pi)endprocessesendprocess producer(nummsgs, po)intent (in) nummsgs, pooutport (integer) pointeger nummsgs, ido i = 1, nummsgssend(po) ienddoendchannel(po)endprocess consumer(pi)intent (in) piinport (integer) piinteger message, iovalreceive(port=pi, iostat=ioval) messagedo while(ioval .eq. 0)print *, 'consumer received ', messagereceive(port=pi, iostat=ioval) messageenddoendThe program comprises a main program and two process de�nitions. The mainprogram declares two port variables pi and po. These can be used to receive (INPORT)and send (OUTPORT) integer messages, respectively. The CHANNEL statement createsa communication channel and initializes pi and po to be references to this channel.The process block (PROCESSES/ENDPROCESSES) creates two concurrent processes,passing the port variables as arguments. 4

The process de�nitions are distinguished by the PROCESS keyword. The producerprocess uses the SEND statement to add a sequence of messages to the message queueassociated with the channel referenced by po. The ENDCHANNEL statement terminatesthis sequence. The consumer process uses the RECEIVE statement to remove mes-sages from this message queue until termination is detected.2.2 Compiling and Linking a ProgramThe Fortran M compiler, fm, is used to compile a Fortran M source �le. The For-tran M compiler is used in a similar manner to other Unix-based Fortran compilers.Because our program is contained in a �le example1.fm, we typefm -c example1.fmThis produces example1.o, which contains the object code for this Fortran M source�le. Next we must link the example1.o object �le with the Fortran M run-timesystem and the system libraries. This is accomplished by runningfm -o example1 example1.oAs with most Fortran compilers, the -o
ag speci�es that the name of the executableproduced by the linker is to be named example1.For more information on compiling and linking Fortran M programs, see x4.1.2.3 Running a ProgramA Fortran M program is executed in the same way as other programs. For example,to run example1, you would type the following, where % is the Unix shell prompt:% example1consumer received 1consumer received 2consumer received 3consumer received 4consumer received 5%In this and subsequent examples of running programs, text typed by the useris written in italic, program output in roman, and the shell prompt is %.The Fortran M run-time system has a number of run-time con�gurable pa-rameters that can be controlled by command line arguments. In order to keep theserun-time system arguments from interfering with the program's arguments, all argu-ments up to but not including the �rst -fm argument are passed to the program. Allarguments after the -fm argument are passed to the run-time system. For example,suppose you run a Fortran M program as follows:5

my program my arg1 my arg2 -fm -nodes dalekThis causes my arg1 and my arg2 to be passed to the Fortran M program, and-nodes and dalek to the run-time system.Run-time system parameters are discussed in more detail in x4.2. In addition,a complete list of these run-time system parameters, and a brief description of theirmeaning, can be obtained by using the -h argument, for example:my program -fm -h3 The Fortran M LanguageWe now proceed to a more complete description of the Fortran M extensions toFortran 77, summarized in Figure 1.3.1 Processes and PortsAs illustrated in the program example1.fm (x2), a task is implemented in Fortran Mas a process. A process, like a Fortran program, can de�ne common data (labeledPROCESS COMMON to emphasize that it is local to the process) and subroutines thatoperate on that data. It also de�nes the interface by which it communicates withits environment. A process has the same syntax as a subroutine, except that thekeyword PROCESS is used in place of SUBROUTINE.A process's dummy arguments (formal parameters) are a set of typed portvariables. These de�ne the process's interface to its environment. (For convenience,conventional argument passing is also permitted between a process and its parent.This feature is discussed in Section 3.8.) A port variable declaration has the generalform port type (data type list) name listThe port type is OUTPORT or INPORT and speci�es whether the port is to be usedto send or receive data, respectively. The data type list is a comma-separated list oftype declarations and speci�es the format of the messages that will be sent on theport, much as a subroutine's dummy argument declarations de�nes the argumentsthat will be passed to the subroutine.In the program example1.fm (x2), both pi and po are to be used to commu-nicate messages comprising single integers. More complex message formats can bede�ned. For example, the following declarations de�ne inports able to (1) receivemessages comprising single integers, (2) arrays of msgsize reals (p2), and (3) a singleinteger and a real array with size speci�ed by the integer, respectively. In the secondand third declaration, the names m and x have scope local to the port declaration.inport (integer) p1inport (real x(msgsize)) p2inport (integer m, real x(m)) p36

Process: PROCESSPROCESS COMMONPROCESSCALLInterface: INPORTOUTPORTControl: PROCESSES/ENDPROCESSESPROCESSDO/ENDPROCESSDOCommunication: CHANNELMERGERSENDRECEIVEENDCHANNELMOVEPORTPROBEArgument Copying: INTENTVirtual Computer: PROCESSORSSUBMACHINEProcess Placement: LOCATIONFigure 1: Fortran M Extensions
7

The value of a port variable is initially a distinguished value NULL. It can bede�ned to be a reference to a channel by means of the CHANNEL, MERGER, MOVEPORT,or RECEIVE statements, to be de�ned below.A port cannot appear in an assignment statement. The MOVEPORT statementis used to assign the value of one port to another. For example:inport (integer) p1, p2moveport(from=p1, to=p2)This moves the port reference from p1 to p2, and then invalidates the FROM=port (p1) by setting it to NULL so that it can no longer be used by SEND, RECEIVE,etc.3.2 Creating Channels and ProcessesA Fortran M program is constructed by using process blocks and process do-loops tocreate concurrently executing processes, which are then plugged together by usingchannels to connect inport/outport pairs. A channel is a �rst-in/�rst-out messagequeue with a single sender and a single receiver. In this way, processes with morecomplex behaviors are de�ned. These can themselves be composed with other pro-cesses, in a hierarchical fashion.3.2.1 The CHANNEL StatementA program creates a channel by executing the CHANNEL statement. This has thefollowing general form. channel(in=inport, out=outport)This both creates a new channel and de�nes inport and outport to be refer-ences to this channel, with inport able to receive messages and outport able to sendmessages. The two ports must be of the same type. Optional IOSTAT= and ERR=speci�ers can be used as in Fortran �le input/output statements to detect errorconditions. See Appendix A for a list of valid IOSTAT values.3.2.2 The Process BlockA process call has the same form as a subroutine call, except that the special syntaxPROCESSCALL is used in place of CALL. Process calls are placed in process blocksand process do-loops (de�ned below) to create concurrently executing processes. Aprocess block has the general formprocessesstatement_1...statement_nendprocesses 8

where n � 0, and the statements are process calls, process do-loops, and/or at mostone subroutine call. Statements in a process block execute concurrently. A processblock terminates, allowing execution to proceed to the next executable statement,when all of its constituent statements terminate.One of the statements in a process block may be a subroutine call. This isdenoted by the use of CALL instead of PROCESSCALL in the process block. The call isexecuted concurrently with the other processes in the block, but is executed in thecurrent process.If a process block includes only a single process call, then the PROCESSES andENDPROCESSES statements can be omitted. Note, however, that since the parent pro-cess suspends until the new process completes execution, no additional concurrencyis introduced.3.2.3 The Process Do-LoopA process do-loop creates multiple instances of the same process. It is identicalin form to the do-loop, except that the keyword PROCESSDO is used in place of DOthe body can include only a process do-loop or a process call, and the keywordENDPROCESSDO is used in place of ENDDO. For example:processdo i = 1, nprocesscall myprocessendprocessdoProcess do-loops can be nested inside both process do-loops and process blocks.However, process blocks cannot be nested inside process do-loops.We illustrate the use of the process do-loop in the ring1.fm program below.A total of nodes channels and processes are created, with the channels connectingthe processes in a unidirectional ring.ring1.fmprogram ring1parameter (nodes=4)inport (integer) pi(nodes)outport (integer) po(nodes)do i = 1, nodeschannel(in=pi(i), out=po(mod(i,nodes)+1))enddoprocessdo i = 1, nodesprocesscall ringnode(i, pi(i), po(i))endprocessdoend 9

3.3 DeterminismProcess calls in a process block or process do-loop can be passed both ports andordinary variables as arguments. It is illegal to pass the same port to two or moreprocesses, as this would compromise determinism by allowing multiple processes tosend or receive on the same channel.Variables named as process arguments in a process block or do-loop are passedby value: that is, they are copied. In the case of arrays, the number of values copiedis determined by the declaration in the called process. Values are also copied backupon termination of the process block or do-loop, in textual order. These copyoperations ensure deterministic execution, even when concurrent processes updateoverlapping sections of arrays. Intent declarations (described in Section 3.8) can beused to prevent some of these copy operations from occurring.The MOVEPORT statement invalidates (i.e., sets to NULL) the FROM= port whencopying it to the TO= port. This prevents multiple ports from send or receiving onthe same channel, again preserving determinism.3.4 CommunicationEach Fortran M process has its own address space. The only mechanism by whichit can interact with its environment is via the ports passed to it as arguments. Aprocess uses the SEND, ENDCHANNEL, and RECEIVE statements to send and receivemessages on these ports. These statements are similar in syntax and semantics toFortran's WRITE, ENDFILE, and READ statements, respectively, and can include END=,ERR=, and IOSTAT= speci�ers to indicate how to recover from various exceptionalconditions.3.4.1 SEND and ENDCHANNELA process sends a message by applying the SEND statement to an outport; the out-port declaration speci�es the message format. A process can also call ENDCHANNELto send an end-of-channel (EOC) message. ENDCHANNEL also sets the value of theport variable to NULL, preventing further messages from being sent on that port.The SEND and ENDCHANNEL statements are nonblocking (asynchronous): they com-plete immediately. When a SEND statement completes, you are guaranteed that thevariables that were sent are no longer needed by the send, so they may be modi�ed.For example, in the program example1.fm (x2), the outport po is de�ned toallow the communication of single integers. The producer process makes repeatedcalls to SEND statement to send a sequence of integer messages, and then signalsend-of-channel by a call to ENDCHANNEL.Channels can also be used to communicate more complex messages. For ex-ample, in the following code fragment the SEND statement sends a message consistingof the integer i followed by the �rst 10 elements of the real array a.outport (integer, real x(10)) pointeger i 10

integer a(10)...send(po) i, aAn array element name can be given as an argument to a SEND statement.If the corresponding message component is an array, then this is interpreted as astarting address, from which the required number of elements, as speci�ed in theoutport declaration, are taken in array element order. Hence, the following statementsends the ith row of the array b.outport (integer, real x(10)) pointeger iinteger b(10,10)...send(po) i, b(1,i)As in Fortran I/O statements, ERR= and IOSTAT= speci�ers can be included toindicate how to recover from exceptional conditions. These have the same meaning asthe equivalent Fortran I/O speci�ers, with end-of-channel treated as end-of-�le, andan operation on an unde�ned port treated as erroneous. Hence, an ERR=label speci�erin a SEND or ENDCHANNEL statement causes execution to continue at the statementwith the speci�ed label if the statement is an unde�ned port. An IOSTAT=intvalspeci�er causes the integer variable intval to be set to 0 upon successful executionand to an error value otherwise. See Appendix A for a complete list of valid IOSTATvalues.3.4.2 RECEIVEA process receives a value by applying the RECEIVE statement to an inport. Forexample, the consumer process in example1.fm (x2) makes repeated calls to theRECEIVE statement so as to receive a sequence of integer messages, detecting end-of-channel by using the IOSTAT speci�er, described in the preceding section. A RECEIVEstatement is blocking (synchronous): it does not complete until data is available.Hence, the consumer process cannot \run ahead" of the producer.Receive statements for more complex channel types must specify one variablefor each value listed in the channel type. For example, the following is a receivestatement corresponding to the send statement given as an example in the precedingsection.inport (integer, real x(10)) piinteger ireal a(10)...receive(pi) i, aAn array element name can be given as an argument to a RECEIVE statement.If the corresponding message component is an array, then this is interpreted as11

a starting address and the required number of elements are stored in contiguouselements in array element order. Hence the following statement receives the ith rowof the array b.inport (integer, real x(10)) piinteger i, jreal b(10,10)...receive(pi) j, b(1,i)As in Fortran I/O statements, END=, ERR=, and IOSTAT= speci�ers can beincluded to indicate how to recover from erroneous conditions. These have the samemeaning as the equivalent Fortran I/O speci�ers, with end-of-channel treated asend-of-�le and an operation on an unde�ned port treated as erroneous. Hence, anEND=label speci�er causes execution to continue at the statement with the speci�edlabel upon receipt of a EOC message. See Appendix A for a list of the valid IOSTATvalues.3.5 Variable-Sized MessagesArray dimensions in a port declaration can include variables declared in the portdeclaration (as long as they appear to the left of the array declaration), parameters,and arguments to the process or subroutine in which the declaration occurs. (How-ever, the symbol *" cannot be used to specify an assumed size.) Variables declaredwithin a port declaration have scope local to that declaration.If an array dimension in a port declaration includes variables declared in theport declaration, then that port can be used to communicate arrays of di�erent sizes.For example, the following code fragment sends a message comprising the integernum followed by num real values.outport (integer n, real x(n)) pointeger numreal a(maxsize)...send(po) num, aThe following code fragment receives both the value num and num real values.inport (integer n, real x(n)) piinteger numreal b(maxsize)...receive(pi) num, b3.6 Communication ExamplesWe further illustrate the use of Fortran M communication statements with the pro-gram ring2.fm. This program implements a \ring pipeline", in which NP processes12

are connected via a unidirectional ring. After NP-1 send-receive-compute cycles,each process has accumulated the value PNPi=1 in the variable sum.ring2.fmprogram ring2parameter (np=4)inport (integer) ins(np)outport (integer) outs(np)do i = 1, npchannel(in=ins(i), out=outs(mod(i,np)+1))enddoprocessdo i = 1, npprocesscall ringnode(i, np, ins(i), outs(i))endprocessdoendprocess ringnode(me, np, in, out)intent (in) me, np, in, outinteger me, npinport (integer) inoutport (integer) outbuff = mesum = buffdo i = 1, np-1send(out) buffreceive(in) buffsum = sum + buffenddoendchannel(out)receive(in) buffprint *, 'node ', me, ' has sum = ', sumend3.7 Dynamic Channel StructuresThe values of ports can be incorporated in messages, hence transferring the abilityto send or receive on a channel from one process to another. A port that is to beused to communicate port values must have an appropriate type. For example, thefollowing declaration speci�es that inport pi will be used to receive integer outports.inport (outport (integer)) piA receive statement applied to this port must take an integer outport as anargument. For example: 13

inport (outport (integer)) pioutport (integer) to...receive(pi) toWe illustrate this language feature by sketching an implementation of workerand manager processes. (The techniques used to connect the manager and multipleworkers used in this example are described in x3.9.1.) The worker process takestwo outports as arguments. It uses the �rst to request tasks from a manager andthe second to report the best result. When requesting a task from the manager, itcreates a new channel, sends the outport, and waits for the new task to arrive onthe inport. It closes the channel to the manager and terminates upon receipt of thetask descriptor 0. The manager process is assumed to be responsible for handingout numtasks integer task descriptors. It repeatedly receives an outport from aworker and uses this to send a task descriptor. Once numtasks descriptors havebeen handed out, it responds to subsequent requests by sending \0". It terminateswhen the requests channel is closed, indicating that all workers have terminated.

14

work man.fmprocess worker(tasks, score)outport (outport (integer)) tasksoutport (real) scoreinport (integer) tioutport (integer) toreal val, bestinteger taskbest = 0.0channel(in=ti, out=to)send(tasks) toreceive(ti) taskdo while (task .gt. 0)val = compute(task)if(val .gt. best) best = valchannel(in=ti, out=to)send(tasks) toreceive(ti) taskenddoendchannel(tasks)send(score) bestendchannel(score)endprocess manager(pi)integer numtasksparameter (numtasks = 5)inport (outport (integer)) pioutport (integer) requestdo i = 1, numtasksreceive(pi) requestsend(request) iendchannel(request)enddoendA SEND operation that communicates the value of a port variable also in-validates that port by setting that variable to NULL. This action is necessary fordeterminism: it ensures that the ability to send or receive on the associated channelis transferred from one process to another, rather than replicated. Hence, in the fol-lowing code fragment the second send statement is erroneous and would be
aggedas such either at compile time or run time.outport (outport (integer)) po15

outport (integer) to...send(po) tosend(to) msg3.8 Argument PassingAs noted in x3.3, variables passed as arguments in a process block or do-loop are,by default, copied when the process is called and again upon process termination.Copy operations can be avoided by declaring process arguments INTENT(IN) (copyin at call, but do not copy out) or INTENT(OUT) (copy out at termination, but donot copy in). The default behavior can be speci�ed explicitly as INTENT(INOUT).(See xE for the INTENT behavior of ports in this release.)The program intent1.fm below demonstrates the use of INTENT.intent1.fmprogram intent1integer nn = 10print *, 'main before: n = ', nprocesscall p(n)print *, 'main after: n = ', nendprocess p(n)integer nprint *, 'p before: n = ', nn = 20print *, 'p after: n = ', nendRunning this program will yield:% intent1main before: n = 10p before: n = 10p after: n = 20main after: n = 20%Adding the statement intent (in) n to process p gives:16

% intent1main before: n = 10p before: n = 10p after: n = 20main after: n = 10%Changing this statement to intent (out) n yields:% intent1main before: n = 10p before: n = 0p after: n = 20main after: n = 20%3.9 Nondeterministic ComputationsFortran M provides two statements that can be used to implement nondeterministiccomputations: MERGER and PROBE. A program that does not use these statements isguaranteed to be deterministic.3.9.1 The MERGER StatementA MERGER statement de�nes a �rst-in/�rst-out message queue, just like CHANNEL.However, it allows multiple outports to reference this queue and hence de�nes amany-to-one communication structure. Messages sent on any outport are appendedto the queue, with the order of messages sent on each outport being preserved andany message sent on an outport eventually appearing in the queue.The MERGER statement has the following general form.merger(in=inport, out=outport speci�er)This creates a new merger, de�nes inport to be able to receive messages fromthis merger, and de�nes the outports speci�ed by the outport speci�er to be able tosend messages on this merger. An outport speci�er can be a single outport, a comma-separated list of outports, or an implied do-loop. The inport and the outports in theoutport speci�er must be of the same type. Optional IOSTAT= and ERR= speci�erscan be used as in Fortran �le input/output statements to detect error conditions.See Appendix A for a list of valid IOSTAT values.The following merger1.fm example uses MERGER to create a manager/workerstructure with a single manager and multiple workers. The manager and worker17

components have been previously de�ned in the work man.fm program in x3.7. Inthis example, two mergers are used: one to connect numwork workers with the man-ager, and one to connect the workers with an outmonitor process.merger1.fmprogram merger1integer numwork, iparameter (numwork = 10)inport (real) scores_inoutport (real) scores_out(numwork)inport (outport (integer)) reqs_inoutport (outport (integer)) reqs_out(numwork)merger(in=reqs_in, out=(reqs_out(i),i=1,numwork))merger(in=scores_in, out=(scores_out(i),i=1,numwork))processesprocesscall manager(reqs_in)processdo i = 1, numworkprocesscall worker(reqs_out(i), scores_out(i))endprocessdoprocesscall outmonitor(scores_in)endprocessesend3.9.2 The PROBE StatementA process can apply the PROBE statement to an inport to determine whether messagesare pending on the associated channel. A PROBE statement has the general formprobe(inport,empty=logical)A logical variable speci�ed in the EMPTY=variable speci�er is set to false if thereis a message ready for receipt on the channel or if the channel has been closed (i.e.,reached end-of-channel), and to true otherwise. In other words, the EMPTY=variablespeci�er is set to true if a RECEIVE on this inport would block, and to false if it wouldnot. In addition, IOSTAT= and ERR= speci�ers can be included in its control list;these are as in the Fortran INQUIRE statement. Hence, applying a PROBE statementto an unde�ned port causes an integer value speci�ed in an IOSTAT speci�er to beset to a nonzero value and causes the execution to branch to a label provided in anERR= speci�er. See Appendix A for a list of valid IOSTAT values.Knowledge about sends is presumed to take a nonzero but �nite time to be-come known to a process probing an inport. Hence, a probe of an inport that18

references a nonempty channel may signal true if the channel values were only re-cently communicated. However, if applied repeatedly without intervening receives,PROBE will eventually signal false, and will then continue to do so until values arereceived.The PROBE statement is useful when a process wishes to interrupt local com-putation to handle communications that arrive at some unpredictable rate. Theprocess alternates between performing computation and probing for pending mes-sages, and switchs to handling messages when PROBE returns false. For example,this is the behavior that is required when implementing a one-process-per-processorversion of a branch-and-bound search algorithm. Each process alternates betweenadvancing the local search and responding to requests for work from other processes:do while (.true.)call advance_local_searchprobe(requests,EMPTY=empty)if(.not. empty) call hand_out_workenddoThe PROBE statement can also be used to receive data that arrives in a nonde-terministic fashion from several sources. For example, the following program handlesmessages of types T1 and T2, received on two ports, p1 and p2, respectively.process handle_msgs(p1,p2)inport (T1) p1inport (T2) p2...do while(.true.)probe(p1,EMPTY=e1)if(.not. e1) thenreceive(p1) val1call handle_msg1(val1)endifprobe(p2,EMPTY=e2)if(.not. e2) thenreceive(p2) val2call handle_msg2(val2)endifenddoA disadvantage of this program is that if no messages are pending, it consumesresources by repeatedly probing the two channels. This \busy waiting" strategy isacceptable if no other computation can be performed on the processor on which this19

process is executing. In general, however, it is preferable to use a non-busy-waitingtechnique. If T1 = T2, we can introduce a merger to combine the two messagestreams. The handle msgs2 process then performs receive operations on its singleinport, blocking until data is available.merger(in=pi,(out=po(i),i=1,2))processesprocesscall source1(po(1))processcall source2(po(2))processcall handle_msgs2(pi)endprocessesIf T1 6= T2, we can use the following technique. Each source process isaugmented with an additional outport of type integer, on which it sends a distinctivemessage each time it sends a message. The integer outports are connected by amerger with an inport which is passed to the handle msgs process. This processperforms receive operations on the inport to determine which source process haspending messages.merger(in=ni,(out=no(i),i=1,2))channel(in=p1i,out=p1o)channel(in=p2i,out=p2o)processesprocesscall source1(1,p1o,no(1))processcall source2(2,p2o,no(2))processcall handle_msgs(p1i,p2i,ni)endprocessesprocess handle_msgs(p1,p2,pp)inport (T1) p1inport (T2) p2inport (integer) pp...do while(.true.)receive(pp) idif(id .eq. 1) thenreceive(p1) valelsereceive(p2) valendifcall handle_mesg(val)enddo 20

3.10 MappingProcess blocks and process do-loops de�ne concurrent processes; channels and merg-ers de�ne how these processes communicate and synchronize. A parallel programde�ned in terms of these constructs can be executed on both uniprocessor and mul-tiprocessor computers. In the latter case, a complete program must also specify howprocesses are mapped to processors.Fortran M incorporates specialized constructs designed speci�cally to supportmapping. The PROCESSORS declaration speci�es the shape and dimension of a virtualprocessor array in which a program is assumed to execute, the LOCATION annotationmaps processes to speci�ed elements of this array, and the SUBMACHINE annotationspeci�es that a process should execute in a subset of the array. An important aspectof these constructs is that they in
uence performance but not correctness. Hence, wecan develop a program on a uniprocessor and then tune performance on a parallelcomputer by changing mapping constructs.3.10.1 Virtual ComputersFortran M's process placement constructs are based on the concept of a virtualcomputer: a collection of virtual processors, which may or may not have the sametopology as the physical computer on which a program executes. For consistencywith Fortran concepts, a Fortran M virtual computer is an N -dimensional array, andthe constructs that control the placement of processes within this array are modeledon Fortran's array manipulation constructs.The PROCESSORS declaration is used to specify the shape and size of the (im-plicit) processor array on which a process executes. This is similar in form and func-tion to the array DIMENSION statement. It has the general form PROCESSORS(I1,...,In)where n � 1 and the Ij have the same form as the arguments to a DIMENSION state-ment. For example, the following declarations all describe a virtual computer with256 processors.processors(256)processors(16,16)processors(16,4,4)The PROCESSORS declaration in the main program speci�es the shape and sizeof the virtual processor array on which that program is to execute. The mappingof these virtual processors is speci�ed at load time. This mapping may be achievedin di�erent ways on di�erent computers. Usually, there is a one-to-one mapping ofvirtual processors to physical processors. Sometimes, however, it can be useful tohave more virtual processors than physical processors, for example, if developing amulticomputer program on one processor.A PROCESSORS declaration in a process speci�es the shape and size of thevirtual processor array on which that particular process is to execute. As with aregular array passed as an argument, this processor array cannot be larger than thatdeclared in its parent, but can be smaller or of a di�erent shape.21

3.10.2 Process PlacementThe LOCATION annotation speci�es the processor on which the annotated processis to execute. It is similar in form and function to an array reference. It has thegeneral form LOCATION(I1, ...,In), where n � 1 and the Ij have the same formas the indices in an array reference. The indices must not reference a processorarray element that is outside the bounds speci�ed by the PROCESSORS declarationprovided in the process or subroutine in which the annotation occurs.The following code fragment shows how the program ring1.fm (x3.2.3) mightbe extended to specify process placement. The PROCESSORS declaration indicatesthat this program is to execute in a virtual computer with 4 processors, while theLOCATION annotation placed on the process call speci�es that each ringnode processis to execute on a separate virtual processor.program ring1_with_mappingparameter (nodes=4)processors(nodes)...processdo i = 1, nodesprocesscall ringnode(i, pi(i), po(i)) location(i)endprocessdoendThe program tree.fm shows the a more complex use of mapping constructs.The process tree creates a set of 2n � 1 (n a power of 2) processes connected in abinary tree. The mapping construct ensures that processes at the same depth in thetree execute on di�erent processors, if n � P , where P is the number of processors.
22

tree.fmprocess tree(locn, n, toparent)intent (in) locn, n, toparentinport (integer) li, rioutport (integer) lo, ro, toparentprocessors(16)if(n .gt. 1) thenchannel(in=li, out=lo)channel(in=ri, out=ro)processesprocesscall tree(locn,n/2,lo)processcall tree(locn+n/2,n/2,ro) location(locn+n/2)processcall reduce(li,ri,toparent)endprocesseselsecall leaf(toparent)endifend3.10.3 SubmachinesA SUBMACHINE annotation is similar in form and function to an array reference passedas an argument to a subroutine. It has the general form SUBMACHINE(I1,...,In),where n � 0 and the Ij have the same form as the indices in an array reference. Itspeci�es that the annotated process is to execute in a virtual computer comprisingthe processors taken from the current virtual computer, starting with the speci-�ed processor and proceeding in array element order. The size and shape of thenew virtual computer are as speci�ed by the PROCESSORS declaration in the processde�nition.The SUBMACHINE annotation can be used to create several disjoint virtualcomputers, each comprising a subset of available processors. For example, in acoupled system comprising an ocean model and an atmosphere model, it may bedesirable to execute the two models in parallel, on di�erent parts of the same com-puter. This organization is illustrated in Figure 2(A) and can be speci�ed as follows.We assume that the ocean and atmosphere models both incorporate a declarationPROCESSORS(np,np); hence, the atmosphere model is executed in one half of a vir-tual computer of size np� 2� np, and the ocean model in the other half.23

(A) (B)Figure 2: Alternative Mapping Strategiesparameter(np=4)processors(np,2*np)...processesprocesscall atmosphere(sst_in, uv_out) submachine(1,1)processcall ocean(sst_out, uv_in) submachine(1,np+1)endprocessesAlternatively, it may be more e�cient to map both models to the same setof processors, as illustrated in Figure 2(B). This can be achieved by changing thePROCESSORS declaration to PROCESSORS(np,np) and omitting the SUBMACHINE an-notations. No change to the component programs is required.4 Compiling, Running, and DebuggingThe following sections provide a detailed description of the Fortran M compiler andhow to use it when writing and debugging Fortran M programs.4.1 Compiling and Linking ProgramsThe Fortran M compiler, fm, is a preprocessor rather than a true compiler. However,it is capable of compiling and linking Fortran M �les (.fm su�x), Fortran M �leswith C preprocessor (CPP) directives (.FM su�x), Fortran �les (.f su�x), Fortran�les with CPP directives (.F su�x), and C �les (.c su�x).Every e�ort was made to make the Fortran M compiler conform to conven-tions used by most other compilers. Exceptions and additions are described in thefollowing sections. 24

4.1.1 C PreprocessorThe C preprocessor (CPP) is applied to �les with .FM and .F su�xes as the �rststage of compilation. (For a detailed description of CPP, see any good C pro-gramming manual.) These �les can contain CPP directives that specify conditionalcompilation, macro expansion, and constants. The following program, cpp ex.FM,uses CPP directives for all of these purposes.cpp ex.FM#ifndef N_NODES#define N_NODES 1#endif#ifndef PRODUCER_OFFSET#define PRODUCER_OFFSET 0#endif#define N_PRODUCERS (N_NODES - PRODUCER_OFFSET)program cpp_exprocessors(N_NODES)integer n_producersparameter (n_producers = N_PRODUCERS)inport (integer, integer) pioutport (integer, integer) po(n_producers)merger(in=pi, out=(po(i),i=1,n_producers))processes#ifdef USE_CONSUMER1processcall consumer1(pi) location(1)#else processcall consumer2(pi) location(1)#endif processdo i = 1, n_producersprocesscall producer(i, po(i))x location(i+PRODUCER_OFFSET)endprocessdoendprocessesendThis program creates a single consumer process and one or more producerprocesses and connects the producers to the consumer by a merger. By default, allprocesses run on a single processor, and consumer2 is used as the consumer process.Various aspects of this behavior can be modi�ed at compile time through the use of-D compiler arguments. For example:� Adding -DUSE CONSUMER1 causes consumer1 to be used in place of consumer2.This sort of conditional compilation is useful when you wish to supply di�erent25

versions of part of a program that will be used in di�erent situations, such asfor di�erent machines.� Adding -DN NODES=5 causes the program to create 5 producer processes andto distribute these over 5 processors, 1{5. The single consumer process runson processor 1.� Adding -DN NODES=5 and -DPRODUCER OFFSET=1 causes the program to create4 producer processes and to distribute these over processors 2{4, so that theconsumer process runs on a separate processor.The result of running CPP on a .FM or .F �le is a .fm or .f �le, respectively,which will be passed onto the following compiler stages.To ensure consistency across di�erent machines, the Fortran M compiler in-cludes its own version of CPP which it applies to �les with .FM and .F su�xes. ThisCPP is used even if a target computer has its own CPP or if its Fortran compilersupports CPP directives. It has been our experience that di�erent versions of CPPcan di�er in subtle ways, particularly when applied to Fortran programs. Please seeAppendix E for information on de�ciencies of the included CPP.The behavior of CPP can be modi�ed with the following compiler arguments:� -Ipath: Add path to the list of paths that will be searched by CPP for �lesthat are included through the use of #include.� -Ddef: Add def as a de�nition during CPP.� -Udef: Remove def as a de�nition during CPP.4.1.2 Fortran M Compiler and LinkerThe Fortran M preprocessor converts a Fortran M �le (.fm) into Fortran 77 (.f)and C (.c) �les. Fortran M statements are replaced by calls to the Fortran Mlibraries or to C procedures generated by the Fortran M preprocessor and locatedin the .c �le. You should need to refer to these generated .f and .c �les onlywhen debugging, as described in x4.1.3 and x4.3.The .f and .c �les are compiled and combined into a single object (.o), �le.Object �les produced by the Fortran M compiler can be linked with otherobject �les, with the Fortran M libraries, and with system libraries to produce anexecutable program that can be run as described in x4.2.In addition to normal compiler arguments such as -c, -o, -l, and -L whichbehave as in most other compilers, and the CPP arguments described previously(x4.1.1), the behavior of the Fortran M compiler and linker can be modi�ed withthe following arguments:� -allow common: Treat each COMMON as if it were a PROCESS COMMON. (By de-fault, Fortran M programs do not allow COMMON data, but instead require theuse of PROCESS COMMON data.) 26

� -rangecheck: Compile the .f �le with range checking turned on (if the targetcomputer's Fortran 77 compiler supports range checking).� -g: Compile and link the source �les with debugging and consistency checksenabled.� -safe: Compile and link the source �les with consistency checks enabled.� -pg: Compile and link the source �les with pro�ling enabled.� -f flag
ag: Pass
ag to the Fortran compiler when compiling .f �les.� -c flag
ag: Pass
ag to the C compiler when compiling .c �les.� -C: Stop after compiling the .fm �le to a .f and a .c �le.� -static: Link the executable using statically linked rather than dynamicallylinked libraries.A complete list of Fortran M compiler arguments, and a brief description oftheir meaning, can be obtained by running fm -h.4.1.3 Syntax ErrorsBecause the Fortran M compiler uses the C preprocessor and is itself a preprocessor,syntax errors can be detected at three stages in the compilation process:1. The C preprocessor may detect errors in CPP directives in .FM or .F �les.Line numbers in these error messages refer to the CPP (.FM or �.F) �le.2. The Fortran M preprocessor may detect errors in the Fortran M code. Linenumbers in these error messages refer to the Fortran M (.fm) �le.3. The Fortran compiler may detect errors in the .f �le generated by the For-tran M preprocessor. Line numbers in these error messages refer to the Fortran(.f) �le. The mapping from .f �le errors to .fm or .FM �le errors is generallyfairly obvious from looking at the .f �le.4.2 Running ProgramsThe basics of running Fortran M programs are explained in x2.3. Fortran M pro-grams are run like other programs, except that all arguments following the initial-fm are passed to the run-time system instead of to the user program.Various arguments control aspects of the run-time system. Those argumentsthat relate to the network version of Fortran M are described in x8.5. Those thatrelate to debugging are described in x4.3. Another argument to the run-time systemis the following: 27

� -maptype type: A PROCESSORS statement may declare more virtual processorsthan there are physical processors. The type speci�es how the virtual pro-cessors are mapped to physical processors. If type is cyclic (the default),then virtual processors are mapped cyclically to physical processors. If type isblock, then virtual processors are mapped blockwise to physical processors.A complete list of the run-time system arguments, and a brief description oftheir meaning, can be obtained by using the -h argument, for example:my program -fm -h4.3 Debugging ProgramsEach Fortran M process is a separate Unix process, so Unix debuggers such as dbxand gdb (GNU debugger) can be used to debug Fortran M processes. Various tech-niques have been implemented in the Fortran M run-time system to allow debuggersto be attached to Fortran M processes in a reasonable manner.4.3.1 Attaching a DebuggerIn order to debug a Fortran M program using a debugger, that debugger mustsupport the ability to attach to a running processes, given the process id of thatprocess. We describe how to determine process ids below.One such debugger is the gdb (GNU debugger). The attach command is usedto attach gdb to a process. For example, if you wish to attach to process 4242, whichis an instance of the example1 program, you would run:% gdb example1...(gdb) attach 4242Some versions of dbx also support the ability to attach to a running process.For example, the SunOS 4.1.3 version of dbx can be attached to example1, process4242 with the command: dbx example1 4242Consult the documentation for your debugger for more information on attach-ing it to a process.4.3.2 Fatal ErrorsA fatal error in a Fortran M program can be caused by an unexpected signal or afailed assertion (consistency check) in the run-time system. Normally, a fatal errorwill cause a message to be printed and then cause the program to be terminated.However, the -pause on fatal run-time system
ag allows you to attach to aprogram at the point of a fatal error. When this
ag is added as a run-time system28

argument (after the -fm argument), a fatal error causes the printing of a messagecontaining the process id of the process that has encountered the fatal error. Theprocess then pauses instead of terminating. At this point a debugger can be attachedto the process so that a postmortum analysis of the process can be conducted.4.3.3 Pause PointsIt is often useful to attach a debugger to a Fortran M process before a fatal erroroccurs. This can be accomplished through the use of pause points. A pause pointis a location in a Fortran M program where a process can be paused, so that adebugger can be attached to that process.A pause point can be added to a Fortran M program by adding the callcall fm pause(id, message)where id is an integer that identi�es this pause point, and message is a string thatwill be printed at the pause point.By default, fm pause does nothing. However, adding a -show pausepointsrun-time system
ag will cause each fm pause to print a message such asjayson:6036: Pausepoint 1: the messageThis message says that the program has reached a pause point with an id of1, on the machine named jayson, in the process with process id 6036.The -pause run-time system
ag will cause a process to pause at a particularpause point. For example, runningmy program -fm -pause 1will cause a process to pause at any fm pause call with an id of 1. When such apause point is encountered, the process will print a message such asjayson:6283: Pausing at pausepoint 1: the messageand will then pause. At this point a debugger can be attached to the process, usingprocess id 6283 in this case, and debugging can commence. The debugger can beused to examine process variables, etc., and also to continue execution of the pausedprocess.5 Further Reading1. I. Foster and K. M. Chandy, Fortran M: A language for mod-ular parallel programming, Preprint MCS-P237-0992, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Ill.,1992. This report provides the original description of the Fortran M lan-guage. 29

2. K. M. Chandy and I. Foster, A deterministic notation for cooper-ating processes, Preprint MCS-P346-0193, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Ill., 1993. Thispaper provides a more theoretical treatment of the Fortran M extensionsto Fortran.3. K. M. Chandy, I. Foster, C. Koelbel, K. Kennedy, and C.-W.Tseng, Integrated support for task and data parallelism, Intl. J. Super-computer Applications (to appear).

30

Part IIAdvanced Topics6 Make�leThis section provides an example make�le for use with Fortran M programs.make�leFM = fmFMFLAGS = -gDEFS =PROGS = example1 cpp_ex ring2 intent1OTHER_OBJS = merger1.o ring1.o tree.o work_man.oall: $(PROGS)other_objs: $(OTHER_OBJS)example1: example1.o$(FM) $(FMFLAGS) $(DEFS) -o example1 example1.ocpp_ex: cpp_ex.o$(FM) $(FMFLAGS) $(DEFS) -o cpp_ex cpp_ex.ocpp_ex.o: cpp_ex.FM$(FM) $(FMFLAGS) $(DEFS) -c cpp_ex.FMring2: ring2.o$(FM) $(FMFLAGS) $(DEFS) -o ring2 ring2.ointent1: intent1.o$(FM) $(FMFLAGS) $(DEFS) -o intent1 intent1.oclean: rm -f *~ *.o *.f *__.c cpp_ex.fm *_link.c $(PROGS).SUFFIXES:.SUFFIXES: .fm .o.fm.o: $(FM) $(FMFLAGS) $(DEFS) -c $*.fm31

7 Tuning Fortran M ProgramsWhen writing Fortran M programs, you should be aware that Version 1.0 of thecompiler implements the following language features e�ciently:� Computation: Sequential code is not modi�ed by the Fortran M preprocessorand is compiled with conventional Fortran compilers.� Communication: Preliminary experiments show that interprocessor communi-cation rates are competitive with those achieved by message-passing librariessuch as P4 and PVM.In contrast, the following features are not implemented e�ciently in Version 1.0 (butwill be in future releases):� Process Creation: The cost of creating a new Fortran M process is relativelyhigh: over 100 msec on a Sun Sparcstation.� Port Migration: The cost of sending a port from one process to another isrelatively high: over 100 msec on Sun Sparcstation.� Intraprocessor Communication: Intraprocessor (two processes on the same pro-cessor) communication performance is comparable to interprocessor commu-nication performance on most machines. (On the SparcStation, it appears tobe much less e�cient for messages over 4k bytes.)8 Network Speci�csThe network version of Fortran M uses Berkeley stream interprocess communication(TCP sockets) to communicate between nodes. A node can run on any machinethat supports TCP. Hence, a single Fortran M computation can run on severalworkstations of a particular type, several workstations of di�ering types, severalprocessors of a multiprocessor, or a mix of workstations and multiprocessor nodes.Current restrictions are listed in x8.6.Using network Fortran M is the same as using Fortran M on other platformsexcept that the user must specify on which machines Fortran M nodes are to run andmay also be required to specify where on those machines the Fortran M program isto be found and the commands necessary for running Fortran M nodes on the givenmachines.There are several di�erent ways of starting network Fortran M, each appropri-ate for di�erent types of network. We shall consider each of these in turn, startingwith the easiest. First, we provide some background information on the Unix remoteshell command rsh, which is used to start network Fortran M nodes.32

8.1 Using rshThe Unix remote shell command rsh is a mechanism by which a process on onemachine (e.g., host1) can start a process on another machine (e.g., host2). Aremote shell command can proceed only if host1 has been given permission to startprocesses on host2. There are two ways in which this permission can be granted.� The �le /etc/hosts.equiv exists on host2 and contains an entry for host1.This �le must be created by the system administrator.� The �le .rhosts exists in the home directory of the user running the remoteshell on host2 and contains a line of the formhost1 usernamewhere username is the name of the user login on host1. This �le is createdby the user.Some sites disallow the use of .rhosts �les for security reasons. If .rhostsusage is disallowed and the host machine is not in /etc/hosts.equiv, remote shellscannot be used to create remote processes.The full syntax of the rsh command is as follows:rsh hostname -l username command argumentsThe username here is the login to be used on the remote machine. If username is notspeci�ed, it defaults to the login name of the user on the local machine. Furthermore,if the login name used on the local machine is di�erent from the login name on theremote machine, the .rhosts �le for the account on the remote machine must havean entry allowing access for that account on the host machine.8.2 Specifying Nodes on the Command LineThe simplest way to start Fortran M on a network of machines is to use the-nodes <nodelist> command line argument, where nodelist is a colon-separatedlist of machine names on which Fortran M nodes are to run. For example,myprogram -fm -nodes pelican:raven:ploverwill run myprogram on four nodes, with one node on the machine from which thiscommand is run and one node on each of the machines named in the nodelist:pelican, raven, and plover.This startup method works only if1. rsh (x8.1) works from the host to each machine in nodelist, and2. each of the nodes shares a common �lesystem with the host. The reason forthis is that the initial node runs each additional node in the directory in whichmyprogram is invoked. If the initial node and an additional node have di�erent�lesystems, the rsh used to start up that additional node is likely to fail.If any of these conditions does not hold, then network Fortran M must be startedby using one of the alternative methods described below.33

8.3 Using a Startup FileThe second network Fortran M startup method that we consider can be used if nodesdo not share a common �le system. However, it still requires that rsh work fromthe initial node to the additional nodes.This method uses a startup �le to de�ne the locations of remote Fortran Mnode processes. Lines in this �le identify the machines on which nodes are to bestarted.Startup File Syntax. A line of the formcommand -fm $ARGS$causes command to be executed. command is the command that invokes Fortran Mon the appropriate machine. The initial process replaces $ARGS$ at run time withthe necessary arguments to Fortran M to cause it to start the node process.Blank lines in startup �les and lines starting with whitespace, %, or # areignored.Examples of Startup Files. A startup �le containing the linesrsh fulmar myprogram -fm $ARGS$rsh plover myprogram -fm $ARGS$starts one node on the machine named fulmar, and one node on the machine namedplover, using the Fortran M executable called myprogram, resulting in a Fortran Mprogram running on three machines.A startup �le containing the linersh fulmar -l bob myprogram -fm $ARGS$starts one node using the program called myprogram on host fulmar using the For-tran M executable myprogram and the account for username bob. If we assume theinitial node is being run by user olson on host host-machine, then the .rhosts�le in the home directory of user bob on fulmar must contain the entryhost-machine olsonA startup �le containing the linersh fulmar "cd /home/olson/fm; ./myprogram -fm $ARGS$"runs one node on fulmar of the Fortran M executable myprogram after changing tothe directory /home/olson/fm.A startup �le containing the line 34

sh -c 'echo ``cd /home/olson/fm; ./myprogram -fm $ARGS$< /dev/null > node.out 2>&1 &''| rsh fulmar /bin/sh'is a more complex example that starts up one node on fulmar. This example has thedesirable side e�ect that the rsh process exits after starting the Fortran M node,whereas in the other examples the rsh will not complete until the node processcompletes. Also, stdout and stderr from that node will go into the node.out �le.Using a Startup File. We execute network FortranMwith a startup �le fm-startupby using the -s run-time system command line argument:myprogram -fm -s fm-startup8.4 Ending a ComputationNormally all nodes of a network Fortran M computation will exit upon completionof the computation or upon abnormal termination of any of the Fortran M processes.If for some reason this is not the case, you must log on to each machine that wasexecuting a network Fortran M node and manually kill the Fortran M process.8.5 Arguments to Network VersionThe network version of Fortran M supports several run-time arguments to controlits behavior:� -nodes node1:node2:...: Start Fortran M nodes on node1, node2, etc.� -s startup-�le: Use the commands in the startup-�le to start the Fortran Mnodes.� -nostart: When used in conjunction with -nodes or -s, node startup com-mands will be printed instead of executed. This allows nodes to be started byhand in order to, for example, be run under the control of a debugger.� -save fds n: Reserve n �le descriptors for use by the user program. Bydefault, 10 �le descriptors are saved.� -lazy recv: By default, the network run-time system will receive as much datafrom network bu�ers as possible whenever a SEND or RECEIVE is done. This
ag causes it to be less eager about receiving, only doing it when absolutelynecessary.8.6 Limitations of Network VersionLimits on Number of Processes. Fortran M processes are implemented as Unixprocesses. Hence, Unix system limits on the number of processes apply. Typically,this is in the 10{100 range per processor. However, you will likely not wish to have35

more than a few simultaneously active Fortran M processes on a single processor,or you (and other users on the same computer) may experience adverse e�ects onperformance due to context switching, paging, etc.Limits on Process Connectivity. Unix sockets are used to implement inter-process communication, with a separate socket used for each pair of processes thatmust communicate. Hence, Unix system limits on the number of sockets and �ledescriptors apply. This limit may be anywhere in the range of 50{5000 connectionsper process, depending on your speci�c version and con�guration of Unix. Thisnetwork version supports �le descriptor caching, so the system �le descriptor limitshould not be a hard limit on the number of Fortran M processes. However, youmight experience adverse performance e�ects if there are signi�cantly more activelycommunicating processes than there are �le descriptors. Also, the -save fds run-time system argument (x8.5) can be used to reserve �le descriptors for user programuse.Heterogeneous Networks. Currently, no support exists for executing Fortran Mbetween machines with di�erent byte orders and/or di�erent
oating-point repre-sentations. Fortran M does execute correctly between di�erent machines if they usethe same byte-ordering and
oating point representation (we have run Fortran Msuccessfully between Sun 4 and NeXT computers).

36

Part IIIAppendicesA IOSTAT valuesMany of the Fortran M calls allow the use of IOSTAT in order to detect error condi-tions. The following table lists all of the IOSTAT values that could be returned. Notall values apply to all Fortran M calls.IOSTAT Description-1 End-of-�le (EOF)0 Success1 Error2 Inport unconnected3 Outport unconnected4 Inport already connected5 Outport already connected6 Channel already closed

37

B Obtaining the Fortran M CompilerThe Fortran M software is available by anonymous ftp from Argonne National Labo-ratory, in the pub/fortran-m directory on info.mcs.anl.gov. The latest version ofthis document is also available at the same location. The following session illustrateshow to obtain the software in this way.% ftp info.mcs.anl.govConnected to anagram.mcs.anl.gov.220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.Name (info.mcs.anl.gov:XXX): anonymous331 Guest login ok, send your e-mail address as password.Password: /* Type your e-mail address here */230- Guest login ok, access restrictions apply.Argonne National Laboratory Mathematics & Computer Science DivisionAll transactions with this server, info.mcs.anl.gov, are logged.230 Local time is Fri Aug 6 12:59:56 1993ftp> cd pub/fortran-m250 CWD command successful.ftp> ls200 PORT command successful.150 Opening ASCII mode data connection for file list.fm v1.0.tar.ZREADMEfm prog v1.0.ps.Zfm prog v1.0.tar.Z226 Transfer complete.78 bytes received in 1.3e-05 seconds (5.9e+03 Kbytes/s)ftp> binary200 Type set to I.ftp> get fm v1.0.tar.Z200 PORT command successful.150 Opening BINARY mode data connection for fm v1.0.tar.Z (XXX bytes).226 Transfer complete.local: fm v1.0.tar.Z remote: fm v1.0.tar.ZXXX bytes received in YY seconds (ZZ Kbytes/s)ftp> quit221 Goodbye.
38

C Supported MachinesFortran M is currently available on the following computers:� Networks of Sun SPARCstations running SunOS version 4.1.x� Networks of IBM RS/6000 workstations running AIX version 3.2� Networks of SGI workstations running IRIX 4.0.5F� Networks of NeXT workstations running NEXTSTEP 3.x� IBM 9076 Scalable POWERparallel 1 (SP-1)The compiler comprises a portable preprocessor and a run-time library imple-mented using standard Unix facilities. Hence, it should not prove di�cult to port itto other computers that support TCP/IP networking.See xB for instructions on obtaining Fortran M.

39

D Reserved WordsThe following words may not be used as variable names or procedure names inFortran M programs.conn tfm *fmu *u *yoke *y *

40

E De�cienciesWe are aware of the following de�ciencies in Version 1.0 of the Argonne Fortran Mcompiler. We expect these to be remedied in subsequent releases.In addition, see x8.6 regarding limitations in the network version of Fortran M.1. Fortran Syntax. The following legal Fortran 77 statements are not processedcorrectly by the Fortran M compiler:(a) Variable declarations cannot contain expressions. (But parameters can).(b) The last signi�cant (i.e. non-blank or comment) line of an INCLUDE �leis dropped.(c) Inline comments (using !) are not supported.(d) Continuation lines must have a space in column 7.(e) A continuation line following a comment is considered part of the com-ment, not as part of the line before the comment.(f) BLOCK DATA subprograms are not handled by the FM compiler. Anyrequired BLOCK DATA subprograms can be placed in a .f �le of their ownand compiled with the FM compiler.2. Error Messages. The Fortran M compiler does not always generate meaningfulerror messages when applied to erroneous programs. If you encounter such amessage, please e-mail a short example of the code that caused this errormessage and the message itself to \fortran-m@mcs.anl.gov".3. FortranM executable statements (SEND, RECEIVE, ENDCHANNEL, CHANNEL, MERGER,MOVEPORT, PROBE) cannot have line numbers.4. Fortran M statements cannot be included in a logical IF statement.5. In this version of Fortran M ports can only be INTENT(IN), and are such bydefault. Ports cannot be declared INTENT(OUT) or INTENT(INOUT).6. Process dummy arguments that are speci�ed as INTENT(OUT) should be ini-tialized to 0. In the current implementation they are not.7. Complex numbers cannot be sent over ports, or be passed to processes asarguments.8. The use of a label in a PROCESSDO is not supported.9. PROCESSORS declarations cannot contain expressions.10. Port variables cannot be dimensioned using 0:n syntax.11. Dummy array arguments to processes must be dimensioned using either con-stants or parameters. The dimensions cannot be other dummy arguments.41

12. Long �le and process names can lead to truncation of Fortran M generatedprocedure names. In general, you should be safe if you limit process namesand �le base names (no path and no su�x) to less than 25 characters.13. Procedure names cannot be passed over ports or in process calls.14. Port variables cannot be declared to contain types with length speci�ers (e.g.REAL*8).15. IARGC() and GETARG() will return the -fm and following arguments as well asthe user-supplied arguments.16. Closing channels. You should close all outports and receive on all inports untilyou reach end-of-channel. Failing to do so could cause spurious error messages.For example, if a process fails to close an outport before terminating, someoperations on the associated inport may cause run-time errors to be signaled.17. PROCESS COMMON de�nitions. You must include any common blocks that in-clude port variables in the process de�nition. (It is not su�cient to includethem only in the routines that use them.) This is because the compiler usesthe common block port de�nition to generate code to initialize any port vari-ables in the common block. Hence, common block port de�nitions that arenot de�ned in the PROCESS de�nition will not be properly initialized.18. C preprocessor. The C preprocessor (CPP) can get confused in Fortran com-ments, because it does not recognize them as comments. For example, if theFortran comment contains an unmatched single quote (i.e., the comment con-tains the word \it's"), CPP will take this single quote to be the beginningof a constant and proceed to take everything literally until the next singlequote that it �nds. All text in between those single quotes will not have CPPdirective applied to them.19. Receiving variable length messages. RECEIVE is intended to support the abilityto receive messages into the middle of an array, where the speci�c location inwhich to receive is part of the message. For example, the following statementshould receive 10 real values into the ith row of the array b, where i is de�nedupon receipt of the message.inport (integer, real x(10)) piinteger ireal a(10,10)...receive(pi) i, a(1,i)This does not currently work. The value of i that will be used in the a(1,i)is that value of i immediately before the RECEIVE, not the value of i receivedin the message. 42

F Futures PlansThis section lists new features that we expect to incorporate in future releases ofthe Fortran M compiler. We welcome feedback from users regarding priorities.1. More Robust Parser. Amore robust parser will provide full Fortran 77 support.2. Optimized Compiler. An improved compiler will both remove current limita-tions on the number of processes and channels and improve performance. Ourgoal is to provide performance superior to what can be achieved convenientlyusing conventional message-passing libraries.3. Ports. The compiler will be ported to additional parallel and distributed com-puter systems. Current priorities are the Intel Paragon, Thinking MachinesCM-5, HP and DEC workstations, heterogeneous networks, and PCs runningWindows NT.4. Support Tools. We expect these to include support for replay of nondetermin-istic computations and a parallel pro�ler.5. Heterogeneous Applications. An improved linker will permit di�erent processesto execute di�erent executables. This avoids the need to generate a singleexecutable containing all code that may be executed by a program.6. Fortran 90 Features. Fortran 90 features such as array sections will be intro-duced in an incremental fashion.7. Data Distribution Statements. Data distribution statements similar to thosede�ned in High Performance Fortran will be supported, allowing Fortran Mprograms to both de�ne and access distributed data structures.8. Interfaces to Other Systems. Interfaces will be de�ned to allow Fortran Mprograms to compose modules implemented using message-passing libraries(e.g., the MPI message passing interface standard) and data-parallel languages(e.g., High Performance Fortran).9. Template Libraries. Libraries providing implementations of commonly usedparallel program structures will be developed and distributed with the com-piler.
43

G Fortran M Language De�nitionThis appendix is also available as Argonne technical report ANL-93/28, \Fortran MLanguage De�nition," by Ian Foster and Mani Chandy.G.1 SyntaxBackus-Naur form (BNF) is used to present new syntax, with nonterminal symbolsin slanted font, terminal symbols in TYPEWRITER font, and symbols de�ned in Ap-pendix F of the Fortran 77 standard 1 underlined. The syntax [symbol] is used torepresent zero or more comma-separated occurrences of symbol ; [symbol](1) repre-sents one or more occurrences.G.1.1 Process, Process Block, Process Do-loopA process has the same syntax as a subroutine, except that the keyword PROCESSis substituted for SUBROUTINE, INTENT declarations can be provided for dummyarguments, and a process cannot take an assumed size array as a dummy argument.A process call can occur anywhere that a subroutine call can occur. It has thesame syntax as a subroutine call, except that the keyword PROCESSCALL is substi-tuted for CALL. In addition, process calls can occur in process blocks and processdo-loops, and recursive process calls are permitted. A process block is a set ofstatements preceded by a PROCESSES statement and followed by a ENDPROCESSESstatement. A block includes zero or one subroutine calls, zero or more process calls,and zero or more process do-loops. A process do-loop has the same syntax as ado-loop, except that the PROCESSDO keyword is used in place of DO, the body of thedo-loop can contain only a process do-loop or a process call, and the ENDPROCESSDOkeyword is used in place of ENDDO.A port variable or port array element can be passed as an argument to only asingle process in a process block or process do-loop, and then cannot be accessed ina subroutine called in that block.G.1.2 New DeclarationsFive new declaration statements are de�ned: INPORT, OUTPORT, INTENT, PROCESSORS,and PROCESS COMMON.inport declaration :: INPORT ([data type]) [name](1)outport declaration :: OUTPORT ([data type]) [name](1)intent declaration :: INTENT(IN) [name](1) jINTENT(OUT) [name](1) jINTENT(INOUT) [name](1)processors declaration:: PROCESSORS(bounds)name :: variable name j array name j array declarator1Programming Language Fortran, American National Standard X3.9-1978, American NationalStandards Institute, 1978. 44

data type :: fortran data type jfortran data type name jINPORT ([data type]) jOUTPORT ([data type])In the PROCESSORS statement, bounds has the same syntax as the argumentsto an array declarator. The product of the dimensions must be nonzero. Anyprogram, process, subroutine, or function including a LOCATION or SUBMACHINE an-notation must include a PROCESSORS declaration.The symbol fortran data type denotes the six standard Fortran data types.The dimensions in an array declarator in a port declaration can include variabledeclared in the port declaration, parameters, and arguments to the process or sub-routine in which the declaration occurs. The symbol *" cannot be used to specifyan assumed size. Variables declared within a port declaration have scope local tothat declaration.A PROCESS COMMON statement has the same syntax as a COMMON statement.G.1.3 New Executable StatementsThere are seven new executable statements: CHANNEL, MERGER, MOVEPORT, SEND,RECEIVE, ENDCHANNEL, and PROBE. Each of these takes as arguments a list of controlspeci�ers, termed a control information list. The SEND and RECEIVE statements alsotake other arguments. A control information list can include at most one of eachspeci�er, except those that name ports. The number of allowable port speci�ersvaries from one statement to another. The �rst three of these statements are asfollows.channel statement :: CHANNEL([channel control](1))merge statement :: MERGER([merge control](1))moveport statement :: MOVEPORT([moveport control](1))channel control :: outport name j OUT=outport name jinport name j IN=inport name jIOSTAT=storage location j ERR=labelmerge control :: outport speci�er j OUT=outport speci�er jinport name j IN=inport name jIOSTAT=storage location j ERR=labelmoveport control :: port name j FROM=port name jport name j TO=port name jIOSTAT=storage location j ERR=labeloutport speci�er :: outport name j data implied do listoutport name :: port nameinport name :: port nameport name :: variable name j array element name45

A CHANNEL statement must include two port speci�ers, and these must namean outport and an inport of the same type. If the strings OUT= and IN= are omitted,these speci�ers must occur as the �rst and second arguments, respectively.A MERGER statement must include at least two port speci�ers, and these mustname an inport and one or more unique outports, all of the same type. If the stringsOUT= and IN= are omitted, the outport speci�ers must precede the inport speci�er,which must precede any other speci�ers,In a MOVEPORT statement, the port speci�ers must name two inports or twooutports, both of the same type. If the strings FROM= and TO= are omitted, thesespeci�ers must occur as the �rst and second arguments, respectively. The �rst thenspeci�es the \from" port and the second the \to" port.The other four statements are as follows.send statement :: SEND([send control](1)) [argument]receive statement :: RECEIVE([receive control](1)) [variable]endchannel statement:: ENDCHANNEL([send control](1))probe statement :: PROBE([probe control](1))send control :: outport name j PORT=outport name jIOSTAT=storage location j ERR=labelreceive control :: inport name j PORT=inport name jIOSTAT=storage location j ERR=label j END=labelprobe control :: inport name j PORT=inport name jERR=label j IOSTAT=storage location j EMPTY=storage locationstorage location :: variable name j array element nameargument :: expression jvariable :: variable name j array element name j array nameIf a port speci�er does not include the optional characters PORT=, it mustbe the �rst item in the control information list. A storage location speci�ed in anIOSTAT= or EMPTY= speci�er must have integer and logical type, respectively.
46

G.1.4 MappingThe mapping annotations LOCATION and SUBMACHINE are appended to process calls:process call LOCATION(indices)process call SUBMACHINE(indices)where indices has the same syntax as the arguments to an array element name.G.1.5 RestrictionsPort variables cannot be named in EQUIVALENCE statements. Programs cannot in-clude COMMON data; PROCESS COMMON must be used instead.G.2 ConcurrencyWith two exceptions, a process executes sequentially, in the same manner as aFortran program. That is, each statement terminates execution before the next isexecuted. The two exceptions are the process block and the process do-loop, in whichstatements execute concurrently. That is, the processes created to execute thesestatements may execute in any order or in parallel, subject to the constraint thatany process that is not blocked (because of a RECEIVE applied to an empty channel)must eventually execute. A process block or process do-loop terminates, allowingexecution to proceed to the next statement, when all its process and subroutine callsterminate.A process can access its own process common data but not that of otherprocesses. By default, process arguments are passed by value and copied back tothe parent process, in textual and do-loop iteration order, upon termination of theprocess block or process do-loop in which the process is called, or upon terminationof the process, if the process does not occur in a process block or do-loop. Adummy argument declared INTENT(INOUT) is treated in the same way. If a dummyargument is declared INTENT(IN), then the corresponding parent argument is notupdated upon termination. If a dummy argument is declared INTENT(OUT), thevalue of the variable is de�ned to a default value upon entry to the process.G.3 ChannelsProcesses communicate and synchronize by sending and receiving values on typedcommunication streams called channels. A channel is created by a CHANNEL state-ment, which also de�nes the supplied inport and outport to be references to thenew channel. A channel is a �rst-in/�rst-out message queue. An element is ap-pended to this queue by applying the SEND statement to the outport that referencesthe channel. This statement is asynchronous: it returns immediately. An elementis removed from the queue by applying the RECEIVE statement to the inport thatreferences the channel. This statement is synchronous: it blocks until a value isavailable. The ENDCHANNEL statement appends an end-of-channel (EOC) message47

to the queue. The MOVEPORT statement copies a channel reference from one portvariable to another.These statements all take as arguments a control information list (cilist). Theoptional IOSTAT=, END=, and ERR= speci�ers have the same meaning as the equivalentFortran I/O speci�ers, with end-of-channel treated as end-of-�le, and an operationon an unde�ned port treated as erroneous. An implementation should also provide,as a debugging aid, the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVEstatement is applied to a port that is the only reference to a channel.SEND(cilist) E1,...,En Add the values E1, ..., En (the sources) to the channel ref-erenced by the outport named in cilist (the target). The source values mustmatch the data types speci�ed in the port declaration, in number and type.RECEIVE(cilist) V1,...,Vn Block until the channel referenced by the inport namedin cilist (the target) is nonempty. If the next value in the channel is not EOC,move values from the channel into the variables V1, ..., Vn (the destinations).The destination variables must match the data types speci�ed in the portdeclaration, in number and type.ENDCHANNEL(cilist) Append an EOC message to the channel referenced by the out-port named in cilist.MOVEPORT(cilist) Copy the value of the port speci�ed \from" in cilist (the source)to the port speci�ed \to" (the target), and set the source port to unde�ned.A port is initially unde�ned. An unde�ned port becomes de�ned if it is in-cluded in a CHANNEL (or MERGER: see below) statement, if it occurs as a destinationin a RECEIVE, or if it is named as the target of a MOVEPORT statement whose sourceis a de�ned port. Any other statement involving an unde�ned port is erroneous.Application of the ENDCHANNEL statement to an outport causes that port tobecome unde�ned. The corresponding inport remains de�ned until the EOC messageis received by a RECEIVE statement, and then becomes unde�ned. Both inports andoutports become unde�ned if they are named as the source of a SEND or MOVEPORToperation.Storage allocated for a channel is reclaimed when both (a) either the outporthas been closed, or the outport goes out of scope or is rede�ned, and (b) either EOCis received on the inport, or the inport goes out of scope or is rede�ned.G.4 NondeterminismThe MERGER and PROBE statements are used to specify nondeterministic computa-tions. MERGER is identical to CHANNEL, except that it can de�ne multiple outports tobe references to its message queue. Messages are added to the queue as they are senton outports, with the order of messages from each outport being preserved and allmessages eventually appearing in the queue. An EOC value is added to the queueonly after it has been sent on all outports.48

The PROBE statement statement is used to obtain status information for achannel. It can be applied only to an inport. The IOSTAT= and ERR= speci�ers in itscontrol list are as in the Fortran INQUIRE statement. A logical variable named in anEMPTY= speci�er is assigned the value true if the channel is known to be empty, andfalse otherwise. Knowledge about sends is presumed to take a non-zero but �nitetime to become known to a process probing an inport. Hence, a PROBE of an inportthat references a nonempty channel may signal true if the channel values were onlyrecently communicated. However, if applied repeatedly without intervening receives,PROBE will eventually signal false, and will then continue to do so.G.5 MappingThe PROCESSORS declaration and the LOCATION and SUBMACHINE annotations haveno semantic content, but determine performance by specifying how processes are tobe mapped within an N -dimensional array of processors (N � 1).The PROCESSORS declaration is analogous to a DIMENSION statement: it de-clares the shape and dimensions of the processor array that is to apply in the pro-gram, process, or subroutine in which it appears. As we descend a call tree, theshape of this array can change, but its size can only become smaller, not larger.A LOCATION annotation is analogous to an array reference. It speci�es thevirtual processor on which the annotated process is to execute. The speci�ed locationcannot be outside the bounds of the processor array speci�ed by the PROCESSORSdeclaration.The SUBMACHINE annotation is analogous to an array reference in a subroutinecall. It speci�es that the annotated process is to execute in a virtual computerwith its �rst processor speci�ed by the annotation, and with additional processorsselected in array element order. These processors cannot be outside the bounds ofthe processor array speci�ed by the PROCESSORS declaration.
49

Index-C, 27-D, 25, 26-I, 26-L, 26-U, 26-allow common, 26-c, 26-c
ag, 27-f
ag, 27-fm, 5, 27-g, 27-h, 27, 28-l, 26-lazy recv, 35-maptype, 28-nodes, 6, 33, 35-nostart, 35-o, 26-pause on fatal, 28-pg, 27-rangecheck, 27-s, see startup �le, 35-safe, 27-save fds, 35-static, 27.F, 24.FM, 24.c, 24.f, 24, 26.fm, 24.o, 26#include, 26.c, 26Fortran M preprocessor, 26, 27access to Fortran M software, 38applications of Fortran M, 2Argonne National Laboratory, 3argumentsto compiler, 26{27to CPP, 25, 26to process, see dummy arguments

to run-time system, 27assertion, 28assumed size array, 44attaching to a process, 28BLOCK DATA, 41blockwise mapping, 28bugswhere to report them, 3C preprocessor, 24{27de�ciencies, 42California Institute of Technology, 3CALL, 8, 9, 44CHANNEL, 4, 7{8, 17, 41, 45{48channel, 8, 10determinism, 10reclamation of storage, 48channels, 47{48command line arguments, 5COMMON, 2, 26, 45, 47, see -allow commoncommon, see process commoncommunication, 6, 10many-to-one, 17compiler, 5, 24, 26{27compiler errors, 27complex numbersde�ciencies, 41concurrency, 47conditional compilation, 25consistency check, 28constants using CPP, 25continuation linesde�ciences, 41CPP, see C preprocessorcpp ex.FM, 25cyclic mapping, 28data-parallel, 2dbx, 28debugging, 28{29, see -gde�ciencies, see limitationsdeterminism, 2, 10, 15, 17, 19, 48{4950

DIMENSION, 21DO, 9, 44dummy arguments, 6, 44de�ciencies, 41to processes, 16EMPTY, 18, 46, 49END, 10, 12, 48end-of-channel, 10{12, 42, 48with PROBE, 18ENDCHANNEL, 5, 7, 10{11, 41, 45{48ENDDO, 9, 44ENDFILE, 10ENDPROCESSDO, 7, 9, 44, see PRO-CESSDOENDPROCESSES, 4, 7, 9, 44, see PRO-CESSESendprocesses, see process blockEOC, see end-of-channelEQUIVALENCE, 47ERR, 8, 10{12, 17, 18, 48, 49example1.fm, 4examplescommunication, 12cpp ex.FM, 25example1.fm, 4intent1.fm, 16make�le, 31merger1.fm, 18producer-consumer, 4ring1.fm, 9ring2.fm, 13tree.fm, 23work man.fm, 15expressionsde�ciencies, 41fatal error, 28�le descriptors, 35fm, see compilerfm pause, 29formal parameters, see dummy argu-mentsFortran 77, 2, 6, 26, 27, 41, 43, 44

ANSI standard, 44Fortran D, 2ftp, 38functionsreserved names, 40further reading, 29gdb, 28GETARG, 42High Performance Fortran, see HPFHPF, 2IARGC, 42implied do-loop, 17INCLUDEde�ciencies, 41inline commentsde�ciences, 41INPORT, 4, 6, 7, 11, 44, 45with RECEIVE, 11{12INQUIRE, 18, 49installation of Fortran M, 3INTENT, 7, 10, 16, 44INTENT(IN), 16, 41, 44, 47INTENT(INOUT), 16, 41, 44, 47INTENT(OUT), 16, 41, 44, 47intent1.fm, 16IOSTAT, 8, 10{12, 17, 18, 37, 46, 48{49limitationsde�ciencies, 41{42heterogeneous networks, 36in network version, 35on number of processes, 35on process connectivity, 36linker, 5, 26{27LOCATION, 7, 21{23, 45, 47, 49logical IF, 41macro expansion, 25make�le example, 31many-to-one communication, 17mapping, 21, 47, 49-maptype, 2851

blockwise, 28cyclic, 28MERGER, 7{8, 17{18, 41, 45, 46, 48determinism, 48merger1.fm, 18message format, 6message queue, 5, 8, see channelmodular programming, 2MOVEPORT, 7, 8, 10, 41, 45, 46, 48determinism, 10network-nodes, 33heterogeneous, 36limitations, 35, 36limits on number of processes, 35limits on process connectivity, 36startup �le example, 34startup �le method, 34network speci�cs, 32{36nondeterminism, see determinismnondeterminismistic computations, 17object �les, 26obtaining Fortran M software, 38OUTPORT, 4, 6, 7, 44, 45with SEND, 10{11parallelism, see concurrencypause points, 29performance, 32PORT=, 46ports, 4, 6{8de�ciences, 42de�ciencies, 41determinism, 10in CHANNEL statement, 8in MERGER statement, 17inport, see inportINTENT(INOUT) de�ciences, 41INTENT(OUT) de�ciences, 41outport, see outporttransferring ports, 13preprocessor, see C preprocessorPROBE, 7, 17{20, 41, 45, 46, 48, 49determinism, 48

PROCESS, 5{7, 44process, 6{8process arguments, 47process block, 4, 8{9, 44, see PRO-CESSESdeterminism, 10process call, 44PROCESS COMMON, 2, 6, 7, 26, 42,44, 45, 47de�ciencies, 42process common, 47process de�nition, 4, 5, 44process do-loop, 8{9, 44, see PROCESSDOdeterminism, 10in a process block, 9PROCESSCALL, 7{9, 44PROCESSDO, 7, 9, 41, 44, see processdo-loop, see ENDPROCESSDOde�ciencies, 41PROCESSES, 4, 7{9, 44, see processblock, see ENDPROCESSESprocesses, see process blockPROCESSORS, 7, 21{24, 28, 41, 44,45, 49de�ciencies, 41producer-consumer example, 4pro�ling, see -pgqueue, see channelrange checking, 27, see -rangecheckREAD, 10RECEIVE, 5, 7, 8, 10{12, 18, 35, 41,42, 45{48complex messages, 11de�ciencies, 42ports over ports, 13variable-sized messages, 11, 12receivedeterminism, 10references, 29reserved words, 40ring1.fm, 9ring2.fm, 13rsh, 33run-time system52

debugging version, see -gsafe version, see -saferun-time system arguments, 5, 27running a program, 5, 27scopein port declarations, 6SEND, 5, 7, 8, 10{11, 15, 35, 41, 45{48complex messages, 10determinism, 15ports over ports, 13variable-sized messages, 11, 12senddeterminism, 10startup �le, see -s, 35SUBMACHINE, 7, 21, 23{24, 45, 47,49SUBROUTINE, 6, 44subroutine call, 44in a process block, 9subroutinesreserved names, 40syntax errors, 27task, see processtask-parallel, 2tree.fm, 23tuning, 32variable-sized messages, 12variablesreserved words, 40virtual computers, 21virtual processor, 21-maptype, 28work man.fm, 15WRITE, 10
53

