Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL-93/26

Programming in Fortran M
by

lan Foster, Robert Olson, and Steven Tuecke

Mathematics and Computer Science Division

August 1993
(revised 10/93)

This research was supported by the Office of Scientific Computing, U.S. Department of
Energy under Contract W-31-109-Eng-38, and by the National Science Foundation’s Center
for Research in Parallel Computation under Contract CCR-8809615.

Preface

Fortran M is a joint development of Argonne National Laboratory and the Cal-
ifornia Institute of Technology (Caltech). Mani Chandy and his colleagues at Caltech
have contributed in numerous ways. We are grateful to the many Fortran M users
who have provided valuable feedback on earlier versions of this software, notably
Donald Dabdub, Rajit Manohar, Berna Massingill, Sharif Rahman, John Thayer,

and Ming Xu, and to Andrew Lavery for his contributions to the development of
the Fortran M compiler.

ii

Contents

Abstract 1
I Tutorial 2
1 Introduction 2
1.1 About Fortran M L Lo 2
1.2 About the Fortran M Compiler 2
1.3 About the Fortran M Project 3
1.4 Caveat oL 3

2 A First Example 3
2.1 A Simple Program o oo 4
2.2 Compiling and Linking a Program 5
2.3 Running a Program L o oo 5

3 The Fortran M Language 6
3.1 Processes and Ports Lo Lo 6
3.2 Creating Channels and Processes 8
3.2.1 The CHANNEL Statement 8

3.2.2 The Process Block 0. 8

3.2.3 The Process Do-Loop 9

3.3 Determinism 10
3.4 Communication Lo e 10
3.4.1 SEND and ENDCHANNEL 10

3.4.2 RECEIVE o i it i i s e 11

3.5 Variable-Sized Messages Lo o 12
3.6 Communication Examples 0oL 12
3.7 Dynamic Channel Structures 13
3.8 Argument Passing oL 16
3.9 Nondeterministic Computations 17
3.9.1 The MERGER Statement, 17

3.9.2 The PROBE Statement 18

3.10 Mapping . .« v v v v e e e e e e e e 21
3.10.1 Virtual Computers Lo 21

3.10.2 Process Placement 22

3.10.3 Submachines o L oo 23

4 Compiling, Running, and Debugging 24
4.1 Compiling and Linking Programs 24
4.1.1 C Preprocessor v v v i i e 25

4.1.2 Fortran M Compiler and Linker 26

4.1.3 Syntax Errors L oo 27

4.2 Running Programs 27

iii

4.3 Debugging Programs o oo 28

4.3.1 Attaching a Debugger L. 28

4.3.2 Fatal Errorso L 28

433 PausePoints Lo 29

5 Further Reading 29
II Advanced Topics 31
6 Makefile 31
7 Tuning Fortran M Programs 32
8 Network Specifics 32
8.1 Usingrsh e 33
8.2 Specifying Nodes on the Command Line 33
8.3 Usinga Startup File o oo o 34
8.4 FEnding a Computation L 35
8.5 Arguments to Network Version 35
8.6 Limitations of Network Version 35
IIT Appendices 37
A TOSTAT values 37
B Obtaining the Fortran M Compiler 38
C Supported Machines 39
D Reserved Words 40
E Deficiencies 411
F Futures Plans 43
G Fortran M Language Definition 44
G.1 Syntax L e e 44
G.1.1 Process, Process Block, Process Do-loop 44

G.1.2 New Declarations 0. 44

G.1.3 New Executable Statements 45

G.1.4 Mapping o 47

G.1.5 Restrictions oL 47

G.2 COoncurrencyo v vttt e e e e e 47
G.3 Channels 47
G.4 Nondeterminism L e 48

v

G.5 Mapping

Index

Programming in Fortran M

lan Foster, Robert Olson, and Steven Tuecke

Abstract

Fortran M is a small set of extensions to Fortran that supports a modular approach
to the construction of sequential and parallel programs. Fortran M programs use
channels to plug together processes which may be written in Fortran M or Fortran 77.
Processes communicate by sending and receiving messages on channels. Channels
and processes can be created dynamically, but programs remain deterministic unless
specialized nondeterministic constructs are used. Fortran M programs can execute
on a range of sequential, parallel, and networked computers. This report incorpo-
rates both a tutorial introduction to Fortran M and a users guide for the Fortran M
compiler developed at Argonne National Laboratory.

The Fortran M compiler, supporting software, and documentation are made
available free of charge by Argonne National Laboratory, but are protected by a
copyright which places certain restrictions on how they may be redistributed. See
the software for details. The latest version of both the compiler and this manual can
be obtained by anonymous ftp from Argonne National Laboratory in the directory
pub/fortran-m at info.mcs.anl.gov (cf. Appendix B).

Part 1
Tutorial

1 Introduction

This report provides a tutorial introduction to Fortran M and describes how to
compile and run programs using Version 1.0 of the Fortran M compiler. We assume
familiarity with Fortran 77.

The report is divided into three parts. The first comprises § 1-5, and provides
a tutorial introduction to both the language and compiler. The second comprises
§ 6-8 and provides reference material on such topics as building makefiles, tuning
programs, and running programs on networks. Finally, the Appendices provide a
language definition and list keywords, supported machines, known deficiencies, and
future plans.

1.1 About Fortran M

Fortran M is a small set of extensions to Fortran that supports a modular approach
to parallel programming, permits the writing of provably deterministic parallel pro-
grams, allows the specification of dynamic process and communication structures,
provides for the integration of task and data parallelism, and enables compiler op-
timizations aimed at communication as well as computation. Fortran M provides
constructs for creating tasks and channels, for sending messages on channels, for
mapping tasks and data to processors, and so on.

Because Fortran M extends Fortran 77, any valid Fortran program is also a
valid Fortran M program. (There is one exception to this rule: the keyword COMMON
must be renamed to PROCESS COMMON. However, this requirement can be overridden
by a compiler argument; see §4.1.) The extensions themselves have a Fortran “look
and feel” and are intended to be easy to use: they can be mastered in a few hours.

The basic paradigm underlying Fortran M is task-parallelism: the parallel
execution of (possibly dissimilar) tasks. Hence, Fortran M complements data-parallel
languages such as Fortran D and High Performance Fortran (HPF'). In particular,
Fortran M can be used to coordinate multiple data-parallel computations. Our goal
is to integrate HPF with Fortran M, thus combining the data-parallel and task-
parallel programming paradigms in a single system.

Current application efforts include coupled climate models, multidisciplinary
design, air quality modeling, particle-in-cell codes, and computational biology.

1.2 About the Fortran M Compiler

This report describes Version 1.0 of the Fortran M compiler. This is a preprocessor
that translates Fortran M programs into Fortran 77 plus calls to a run-time commu-
nication and process management library. The Fortran 77 generated by the prepro-
cessor is compiled with a conventional Fortran 77 compiler. Version 1.01is a complete

implementation of Fortran M, except where noted otherwise in Appendix E. See
Appendix C for information on supported machines.

The communication code generated by the Fortran M compiler has yet to be
optimized. However, performance studies show that it already compares favorably
with p4 and PVM, two popular message-passing libraries. A deficiency of Version 1.0
is that process creation and process switching are both relatively expensive oper-
ations. This has an impact on the classes of algorithms that can be implemented
efficiently in Fortran M. We expect both communication and process management
performance to improve significantly in subsequent releases.

1.3 About the Fortran M Project

The Fortran M project is a joint activity of Argonne National Laboratory and the
California Institute of Technology; the Fortran M compiler was developed at Ar-
gonne National Laboratory. We are continuing to develop and refine the Fortran M
language and compiler. We outline some of our plans in Appendix F. We welcome
comments on both the current software and development priorities.

The Fortran M mailing list is used to announce new compiler releases. Send
electronic mail to fortran-m@mcs.anl.gov if you wish to be added to this list.
Please send inquiries, comments, and bug reports to the same address.

1.4 Caveat

The Fortran M compiler should be considered unsupported research software. (We
provide support on a best-efforts basis but make no guarantees.) The prospective
user is urged to study the list of deficiencies provided in Appendix E of this manual
before writing programs.

2 A First Example

We use a simple example to introduce both Fortran M and the Fortran M compiler.
We assume that Fortran M is already installed on your computer. (If it is not, read
the documentation provided with the Fortran M software release.)

Before you can use Fortran M, you must tell your environment where to find
the compiler. (Normally, this will be /usr/local/fortran-m, but some systems
may place the compiler in a different location.) If you are using the standard Unix
C-shell (csh), you add one line to the end of the file .cshrc in your home directory.
If the compiler has been installed in /usr/local/fortran-m, this line is

set path = ($path /usr/local/fortran-m/bin)

The environment variable path tells the Unix shell where to find various programs
such as the Fortran M compiler. This shell command adds the directory containing
the compiler to your shell’s search path. You may have to log out and log in again
for this to take effect.

2.1 A Simple Program

The examplel.fm program creates two tasks, producer and consumer, and connects
them with a channel. The channel is used to communicate a stream of integer values
1,...,5 from producer to consumer.

examplel.fm

program examplel
inport (integer) pi
outport (integer) po
channel (in=pi, out=po)

processes
processcall producer(5, po)
processcall consumer(pi)

endprocesses

end

process producer(nummsgs, po)
intent (in) nummsgs, po
outport (integer) po
integer nummsgs, 1
do i = 1, nummsgs
send(po) i
enddo
endchannel (po)
end

process consumer(pi)
intent (in) pi
inport (integer) pi
integer message, ioval
receive(port=pi, iostat=ioval) message
do while(ioval .eq. 0)
print *, ’consumer received ’, message
receive(port=pi, iostat=ioval) message
enddo
end

The program comprises a main program and two process definitions. The main
program declares two port variables pi and po. These can be used to receive (INPORT)
and send (OUTPORT) integer messages, respectively. The CHANNEL statement creates
a communication channel and initializes pi and po to be references to this channel.
The process block (PROCESSES/ENDPROCESSES) creates two concurrent processes,
passing the port variables as arguments.

The process definitions are distinguished by the PROCESS keyword. The producer
process uses the SEND statement to add a sequence of messages to the message queue
associated with the channel referenced by po. The ENDCHANNEL statement terminates
this sequence. The consumer process uses the RECEIVE statement to remove mes-
sages from this message queue until termination is detected.

2.2 Compiling and Linking a Program

The Fortran M compiler, fm, is used to compile a Fortran M source file. The For-
tran M compiler is used in a similar manner to other Unix-based Fortran compilers.
Because our program is contained in a file examplel.fm, we type

fm -c examplel.fm

This produces examplel.o, which contains the object code for this Fortran M source
file.

Next we must link the examplel.o object file with the Fortran M run-time
system and the system libraries. This is accomplished by running

fm -o examplel examplel.o

As with most Fortran compilers, the -o flag specifies that the name of the executable
produced by the linker is to be named examplel.
For more information on compiling and linking Fortran M programs, see §4.1.

2.3 Running a Program

A Fortran M program is executed in the same way as other programs. For example,
to run examplel, you would type the following, where ¥ is the Unix shell prompt:

h examplel

consumer received 1
consumer received 2
consumer received 3
consumer received 4
consumer received 5

b

In this and subsequent examples of running programs, text typed by the user
is written in italic, program output in roman, and the shell prompt is .

The Fortran M run-time system has a number of run-time configurable pa-
rameters that can be controlled by command line arguments. In order to keep these
run-time system arguments from interfering with the program’s arguments, all argu-
ments up to but not including the first -fm argument are passed to the program. All
arguments after the -fm argument are passed to the run-time system. For example,
suppose you run a Fortran M program as follows:

my_program my_argl my_arg2 -fm -nodes dalek

This causes my_argl and my_arg2 to be passed to the Fortran M program, and
-nodes and dalek to the run-time system.

Run-time system parameters are discussed in more detail in §4.2. In addition,
a complete list of these run-time system parameters, and a brief description of their
meaning, can be obtained by using the -h argument, for example:

my_program -fm -h

3 The Fortran M Language

We now proceed to a more complete description of the Fortran M extensions to
Fortran 77, summarized in Figure 1.

3.1 Processes and Ports

As illustrated in the program examplel.fm (§2), a task is implemented in Fortran M
as a process. A process, like a Fortran program, can define common data (labeled
PROCESS COMMON to emphasize that it is local to the process) and subroutines that
operate on that data. It also defines the interface by which it communicates with
its environment. A process has the same syntax as a subroutine, except that the
keyword PROCESS is used in place of SUBROUTINE.

A process’s dummy arguments (formal parameters) are a set of typed port
variables. These define the process’s interface to its environment. (For convenience,
conventional argument passing is also permitted between a process and its parent.
This feature is discussed in Section 3.8.) A port variable declaration has the general
form

port_type (data_type_list) name_list

The port_type is OUTPORT or INPORT and specifies whether the port is to be used
to send or receive data, respectively. The data_type_list is a comma-separated list of
type declarations and specifies the format of the messages that will be sent on the
port, much as a subroutine’s dummy argument declarations defines the arguments
that will be passed to the subroutine.

In the program examplel.fm (§2), both pi and po are to be used to commu-
nicate messages comprising single integers. More complex message formats can be
defined. For example, the following declarations define inports able to (1) receive
messages comprising single integers, (2) arrays of msgsize reals (p2), and (3) a single
integer and a real array with size specified by the integer, respectively. In the second
and third declaration, the names m and x have scope local to the port declaration.

inport (integer) pl
inport (real x(msgsize)) p2
inport (integer m, real x(m)) p3

Process:

Interface:

Control:

Communication:

Argument Copying:

Virtual Computer:

Process Placement:

PROCESS
PROCESS COMMON
PROCESSCALL

INPORT
OUTPORT

PROCESSES/ENDPROCESSES
PROCESSDO/ENDPROCESSDO

CHANNEL
MERGER
SEND
RECEIVE
ENDCHANNEL
MOVEPORT
PROBE

INTENT

PROCESSORS
SUBMACHINE

LOCATION

Figure 1: Fortran M Extensions

The value of a port variable is initially a distinguished value NULL. It can be
defined to be a reference to a channel by means of the CHANNEL, MERGER, MOVEPORT,
or RECEIVE statements, to be defined below.

A port cannot appear in an assignment statement. The MOVEPORT statement
is used to assign the value of one port to another. For example:

inport (integer) pl, p2
moveport (from=pl, to=p2)

This moves the port reference from p1l to p2, and then invalidates the FROM=
port (p1) by setting it to NULL so that it can no longer be used by SEND, RECEIVE,
etc.

3.2 Creating Channels and Processes

A Fortran M program is constructed by using process blocks and process do-loops to
create concurrently executing processes, which are then plugged together by using
channels to connect inport/outport pairs. A channel is a first-in/first-out message
queue with a single sender and a single receiver. In this way, processes with more
complex behaviors are defined. These can themselves be composed with other pro-
cesses, in a hierarchical fashion.

3.2.1 The CHANNEL Statement

A program creates a channel by executing the CHANNEL statement. This has the
following general form.

channel (in=inport, out=outport)

This both creates a new channel and defines inport and outport to be refer-
ences to this channel, with inport able to receive messages and outport able to send
messages. The two ports must be of the same type. Optional I0STAT= and ERR=
specifiers can be used as in Fortran file input/output statements to detect error
conditions. See Appendix A for a list of valid TOSTAT values.

3.2.2 The Process Block

A process call has the same form as a subroutine call, except that the special syntax
PROCESSCALL is used in place of CALL. Process calls are placed in process blocks
and process do-loops (defined below) to create concurrently executing processes. A
process block has the general form

processes
statement_1

statement_n
endprocesses

where n > 0, and the statements are process calls, process do-loops, and/or at most
one subroutine call. Statements in a process block execute concurrently. A process
block terminates, allowing execution to proceed to the next executable statement,
when all of its constituent statements terminate.

One of the statements in a process block may be a subroutine call. This is
denoted by the use of CALL instead of PROCESSCALL in the process block. The call is
executed concurrently with the other processes in the block, but is executed in the
current process.

If a process block includes only a single process call, then the PROCESSES and
ENDPROCESSES statements can be omitted. Note, however, that since the parent pro-
cess suspends until the new process completes execution, no additional concurrency
is introduced.

3.2.3 The Process Do-Loop

A process do-loop creates multiple instances of the same process. It is identical
in form to the do-loop, except that the keyword PROCESSDO is used in place of DO
the body can include only a process do-loop or a process call, and the keyword
ENDPROCESSDO is used in place of ENDDO. For example:

processdo i = 1, n
processcall myprocess
endprocessdo

Process do-loops can be nested inside both process do-loops and process blocks.
However, process blocks cannot be nested inside process do-loops.

We illustrate the use of the process do-loop in the ringl.fm program below.
A total of nodes channels and processes are created, with the channels connecting
the processes in a unidirectional ring.

ringl.fm

program ringil
parameter (nodes=4)
inport (integer) pi(nodes)
outport (integer) po(nodes)
do i = 1, nodes
channel (in=pi(i), out=po(mod(i,nodes)+1))
enddo
processdo i = 1, nodes
processcall ringnode(i, pi(i), po(i))
endprocessdo
end

3.3 Determinism

Process calls in a process block or process do-loop can be passed both ports and
ordinary variables as arguments. It is illegal to pass the same port to two or more
processes, as this would compromise determinism by allowing multiple processes to
send or receive on the same channel.

Variables named as process arguments in a process block or do-loop are passed
by value: that is, they are copied. In the case of arrays, the number of values copied
is determined by the declaration in the called process. Values are also copied back
upon termination of the process block or do-loop, in textual order. These copy
operations ensure deterministic execution, even when concurrent processes update
overlapping sections of arrays. Intent declarations (described in Section 3.8) can be
used to prevent some of these copy operations from occurring.

The MOVEPORT statement invalidates (i.e., sets to NULL) the FROM= port when
copying it to the TO= port. This prevents multiple ports from send or receiving on
the same channel, again preserving determinism.

3.4 Communication

Each Fortran M process has its own address space. The only mechanism by which
it can interact with its environment is via the ports passed to it as arguments. A
process uses the SEND, ENDCHANNEL, and RECEIVE statements to send and receive
messages on these ports. These statements are similar in syntax and semantics to
Fortran’s WRITE, ENDFILE, and READ statements, respectively, and can include END=,
ERR=, and IOSTAT= specifiers to indicate how to recover from various exceptional
conditions.

3.4.1 SEND and ENDCHANNEL

A process sends a message by applying the SEND statement to an outport; the out-
port declaration specifies the message format. A process can also call ENDCHANNEL
to send an end-of-channel (EOC) message. ENDCHANNEL also sets the value of the
port variable to NULL, preventing further messages from being sent on that port.
The SEND and ENDCHANNEL statements are nonblocking (asynchronous): they com-
plete immediately. When a SEND statement completes, you are guaranteed that the
variables that were sent are no longer needed by the send, so they may be modified.

For example, in the program examplel.fm (§2), the outport po is defined to
allow the communication of single integers. The producer process makes repeated
calls to SEND statement to send a sequence of integer messages, and then signals
end-of-channel by a call to ENDCHANNEL.

Channels can also be used to communicate more complex messages. For ex-
ample, in the following code fragment the SEND statement sends a message consisting
of the integer i followed by the first 10 elements of the real array a.

outport (integer, real x(10)) po
integer i

10

integer a(10)
send(po) i, a

An array element name can be given as an argument to a SEND statement.
If the corresponding message component is an array, then this is interpreted as a
starting address, from which the required number of elements, as specified in the
outport declaration, are taken in array element order. Hence, the following statement
sends the ith row of the array b.

outport (integer, real x(10)) po
integer i
integer b(10,10)

send(po) i, b(1,i)

As in Fortran I/O statements, ERR= and I0STAT= specifiers can be included to
indicate how to recover from exceptional conditions. These have the same meaning as
the equivalent Fortran I/O specifiers, with end-of-channel treated as end-of-file, and
an operation on an undefined port treated as erroneous. Hence, an ERR=labelspecifier
in a SEND or ENDCHANNEL statement causes execution to continue at the statement
with the specified label if the statement is an undefined port. An I0STAT=intval
specifier causes the integer variable intval to be set to 0 upon successful execution
and to an error value otherwise. See Appendix A for a complete list of valid TOSTAT
values.

3.4.2 RECEIVE

A process receives a value by applying the RECEIVE statement to an inport. For
example, the consumer process in examplel.fm (§2) makes repeated calls to the
RECEIVE statement so as to receive a sequence of integer messages, detecting end-of-
channel by using the IOSTAT specifier, described in the preceding section. A RECEIVE
statement is blocking (synchronous): it does not complete until data is available.
Hence, the consumer process cannot “run ahead” of the producer.

Receive statements for more complex channel types must specify one variable
for each value listed in the channel type. For example, the following is a receive
statement corresponding to the send statement given as an example in the preceding
section.

inport (integer, real x(10)) pi

integer i
real a(10)

receive(pi) i, a

An array element name can be given as an argument to a RECEIVE statement.
If the corresponding message component is an array, then this is interpreted as

11

a starting address and the required number of elements are stored in contiguous
elements in array element order. Hence the following statement receives the ith row
of the array b.

inport (integer, real x(10)) pi
integer i, j
real b(10,10)

receive(pi) j, b(1,i)

As in Fortran I/O statements, END=, ERR=, and IOSTAT= specifiers can be
included to indicate how to recover from erroneous conditions. These have the same
meaning as the equivalent Fortran I/O specifiers, with end-of-channel treated as
end-of-file and an operation on an undefined port treated as erroneous. Hence, an
END=label specifier causes execution to continue at the statement with the specified
label upon receipt of a EOC message. See Appendix A for a list of the valid IOSTAT
values.

3.5 Variable-Sized Messages

Array dimensions in a port declaration can include variables declared in the port
declaration (as long as they appear to the left of the array declaration), parameters,
and arguments to the process or subroutine in which the declaration occurs. (How-
ever, the symbol “*¥” cannot be used to specify an assumed size.) Variables declared
within a port declaration have scope local to that declaration.

If an array dimension in a port declaration includes variables declared in the
port declaration, then that port can be used to communicate arrays of different sizes.
For example, the following code fragment sends a message comprising the integer
num followed by num real values.

outport (integer n, real x(n)) po
integer num
real a(maxsize)

send(po) num, a
The following code fragment receives both the value num and num real values.

inport (integer n, real x(n)) pi
integer num
real b(maxsize)

receive(pi) num, b

3.6 Communication Examples

We further illustrate the use of Fortran M communication statements with the pro-
gram ring2.fm. This program implements a “ring pipeline”, in which NP processes

12

are connected via a unidirectional ring. After NP-1 send-receive-compute cycles,

each process has accumulated the value X in the variable sum.

ring2.fm

program ring?2
parameter (np=4)
inport (integer) ins(np)
outport (integer) outs(np)
doi=1, np
channel (in=ins (i), out=outs(mod(i,np)+1))
enddo

processdo i = 1, np

processcall ringnode(i, np, ins(i), outs(i))
endprocessdo
end

process ringnode(me, np, in, out)
intent (in) me, np, in, out
integer me, np
inport (integer) in
outport (integer) out
buff = me
sum = buff
doi=1, np-1
send(out) buff
receive(in) buff
sum = sum + buff
enddo
endchannel (out)
receive(in) buff
print *, ’node ’, me, ’ has sum = ’, sum
end

3.7 Dynamic Channel Structures

The values of ports can be incorporated in messages, hence transferring the ability
to send or receive on a channel from one process to another. A port that is to be
used to communicate port values must have an appropriate type. For example, the
following declaration specifies that inport pi will be used to receive integer outports.

inport (outport (integer)) pi

A receive statement applied to this port must take an integer outport as an
argument. For example:

13

inport (outport (integer)) pi
outport (integer) to

receive(pi) to

We illustrate this language feature by sketching an implementation of worker
and manager processes. (The techniques used to connect the manager and multiple
workers used in this example are described in §3.9.1.) The worker process takes
two outports as arguments. It uses the first to request tasks from a manager and
the second to report the best result. When requesting a task from the manager, it
creates a new channel, sends the outport, and waits for the new task to arrive on
the inport. It closes the channel to the manager and terminates upon receipt of the
task descriptor 0. The manager process is assumed to be responsible for handing
out numtasks integer task descriptors. It repeatedly receives an outport from a
worker and uses this to send a task descriptor. Once numtasks descriptors have
been handed out, it responds to subsequent requests by sending “0”. It terminates
when the requests channel is closed, indicating that all workers have terminated.

14

work_man.fm

process worker(tasks, score)

outport (outport (integer)) tasks

outport (real) score

inport (integer) ti

outport (integer) to

real val, best

integer task

best = 0.0

channel(in=ti, out=to)

send(tasks) to

receive(ti) task

do while (task .gt. 0)
val = compute(task)
if(val .gt. best) best = val
channel(in=ti, out=to)
send(tasks) to
receive(ti) task

enddo

endchannel (tasks)

send(score) best

endchannel (score)

end

process manager(pi)
integer numtasks
parameter (numtasks = 5)
inport (outport (integer)) pi
outport (integer) request
do i = 1, numtasks
receive(pi) request
send(request) i
endchannel (request)
enddo
end

A SEND operation that communicates the value of a port variable also in-
validates that port by setting that variable to NULL. This action is necessary for
determinism: it ensures that the ability to send or receive on the associated channel
is transferred from one process to another, rather than replicated. Hence, in the fol-
lowing code fragment the second send statement is erroneous and would be flagged

as such either at compile time or run time.

outport (outport (integer)) po

15

outport (integer) to

send(po) to
send(to) msg

3.8 Argument Passing

As noted in §3.3, variables passed as arguments in a process block or do-loop are,
by default, copied when the process is called and again upon process termination.
Copy operations can be avoided by declaring process arguments INTENT(IN) (copy
in at call, but do not copy out) or INTENT(OUT) (copy out at termination, but do
not copy in). The default behavior can be specified explicitly as INTENT (INOUT).

(See §E for the INTENT behavior of ports in this release.)
The program intentl.fm below demonstrates the use of INTENT.

intentl.fm

program intentl
integer n

n = 10

print *, ’main before: n = ’, n
processcall p(n)

print *, ’main after: n=’, n
end

process p(n)
integer n

print *, ’p before: n="’, n
n = 20

print *, ’p after: n ="', n
end

Running this program will yield:

% intentl

main before: n = 10
p before: n = 10

p after: n = 20
main after: n = 20

b

Adding the statement intent (in) n to process p gives:

16

% intentl

main before: n = 10
p before: n = 10

p after: n = 20
main after: n = 10

b

Changing this statement to intent (out) n yields:

% intentl

main before: n = 10
p before: n =20

p after: n = 20
main after: n = 20

b

3.9 Nondeterministic Computations

Fortran M provides two statements that can be used to implement nondeterministic
computations: MERGER and PROBE. A program that does not use these statements is
guaranteed to be deterministic.

3.9.1 The MERGER Statement

A MERGER statement defines a first-in/first-out message queue, just like CHANNEL.
However, it allows multiple outports to reference this queue and hence defines a
many-to-one communication structure. Messages sent on any outport are appended
to the queue, with the order of messages sent on each outport being preserved and
any message sent on an outport eventually appearing in the queue.

The MERGER statement has the following general form.

merger (in=inport, out=outport_specifier)

This creates a new merger, defines inport to be able to receive messages from
this merger, and defines the outports specified by the outport_specifier to be able to
send messages on this merger. An outport_specifier can be a single outport, a comma-
separated list of outports, or an implied do-loop. The inport and the outports in the
outport_specifier must be of the same type. Optional I0STAT= and ERR= specifiers
can be used as in Fortran file input/output statements to detect error conditions.
See Appendix A for a list of valid IOSTAT values.

The following merger1.fm example uses MERGER to create a manager/worker
structure with a single manager and multiple workers. The manager and worker

17

components have been previously defined in the work man.fm program in §3.7. In
this example, two mergers are used: one to connect numwork workers with the man-
ager, and one to connect the workers with an outmonitor process.

mergerl.fm

program mergerl

integer numwork, 1

parameter (numwork = 10)

inport (real) scores_in

outport (real) scores_out(numwork)

inport (outport (integer)) regs_in

outport (outport (integer)) reqs_out(numwork)

merger(in=reqs_in, out=(reqs_out(i),i=1,numwork))
merger(in=scores_in, out=(scores_out(i),i=1,numwork))

processes
processcall manager(reqs_in)
processdo i = 1, numwork
processcall worker(reqs_out(i), scores_out(i))
endprocessdo
processcall outmonitor(scores_in)
endprocesses
end

3.9.2 The PROBE Statement

A process can apply the PROBE statement to an inport to determine whether messages
are pending on the associated channel. A PROBE statement has the general form

probe (inport, empty=logical)

A logical variable specified in the EMPTY=variable specifier is set to false if there
is a message ready for receipt on the channel or if the channel has been closed (i.e.,
reached end-of-channel), and to true otherwise. In other words, the EMPTY=variable
specifier is set to true if a RECEIVE on this inport would block, and to false if it would
not.

In addition, I0OSTAT= and ERR= specifiers can be included in its control list;
these are as in the Fortran INQUIRE statement. Hence, applying a PROBE statement
to an undefined port causes an integer value specified in an I0STAT specifier to be
set to a nonzero value and causes the execution to branch to a label provided in an
ERR= specifier. See Appendix A for a list of valid I0OSTAT values.

Knowledge about sends is presumed to take a nonzero but finite time to be-
come known to a process probing an inport. Hence, a probe of an inport that

18

references a nonempty channel may signal true if the channel values were only re-
cently communicated. However, if applied repeatedly without intervening receives,
PROBE will eventually signal false, and will then continue to do so until values are
received.

The PROBE statement is useful when a process wishes to interrupt local com-
putation to handle communications that arrive at some unpredictable rate. The
process alternates between performing computation and probing for pending mes-
sages, and switchs to handling messages when PROBE returns false. For example,
this is the behavior that is required when implementing a one-process-per-processor
version of a branch-and-bound search algorithm. Fach process alternates between
advancing the local search and responding to requests for work from other processes:

do while (.true.)
call advance_local_search
probe(requests,EMPTY=empty)
if(.not. empty) call hand_out_work
enddo

The PROBE statement can also be used to receive data that arrives in a nonde-
terministic fashion from several sources. For example, the following program handles
messages of types T'l and T2, received on two ports, pl and p2, respectively.

process handle_msgs(pl,p2)
inport (T1) p1l
inport (T2) p2

do while(.true.)
probe(pl,EMPTY=el)
if(.not. el) then
receive(pl) vall
call handle_msgi(vall)
endif
probe(p2,EMPTY=e2)
if(.not. e2) then
receive(p2) val2
call handle_msg2(val2)
endif
enddo

A disadvantage of this program is that if no messages are pending, it consumes
resources by repeatedly probing the two channels. This “busy waiting” strategy is
acceptable if no other computation can be performed on the processor on which this

19

process is executing. In general, however, it is preferable to use a non-busy-waiting
technique. If T'1 = T2, we can introduce a merger to combine the two message
streams. The handle msgs2 process then performs receive operations on its single
inport, blocking until data is available.

merger(in=pi, (out=po(i),i=1,2))
processes
processcall sourcel(po(1))
processcall source2(po(2))
processcall handle_msgs2(pi)
endprocesses

If T1 # T2, we can use the following technique. FEach source process is
augmented with an additional outport of type integer, on which it sends a distinctive
message each time it sends a message. The integer outports are connected by a
merger with an inport which is passed to the handle msgs process. This process
performs receive operations on the inport to determine which source process has
pending messages.

merger(in=ni, (out=no(i),i=1,2))
channel (in=pli,out=plo)
channel (in=p2i,out=p20)
processes
processcall sourcel(l,plo,no(1))
processcall source2(2,p2o0,n0(2))
processcall handle_msgs(pli,p2i,ni)
endprocesses

process handle_msgs(pl,p2,pp)
inport (T1) p1l

inport (T2) p2

inport (integer) pp

do while(.true.)
receive(pp) id
if(id .eq. 1) then
receive(pl) val
else
receive(p2) val
endif
call handle_mesg(val)
enddo

20

3.10 Mapping

Process blocks and process do-loops define concurrent processes; channels and merg-
ers define how these processes communicate and synchronize. A parallel program
defined in terms of these constructs can be executed on both uniprocessor and mul-
tiprocessor computers. In the latter case, a complete program must also specify how
processes are mapped to processors.

Fortran M incorporates specialized constructs designed specifically to support
mapping. The PROCESSORS declaration specifies the shape and dimension of a virtual
processor array in which a program is assumed to execute, the LOCATION annotation
maps processes to specified elements of this array, and the SUBMACHINE annotation
specifies that a process should execute in a subset of the array. An important aspect
of these constructs is that they influence performance but not correctness. Hence, we
can develop a program on a uniprocessor and then tune performance on a parallel
computer by changing mapping constructs.

3.10.1 Virtual Computers

Fortran M’s process placement constructs are based on the concept of a wvirtual
computer: a collection of virtual processors, which may or may not have the same
topology as the physical computer on which a program executes. For consistency
with Fortran concepts, a Fortran M virtual computer is an N-dimensional array, and
the constructs that control the placement of processes within this array are modeled
on Fortran’s array manipulation constructs.

The PROCESSORS declaration is used to specify the shape and size of the (im-
plicit) processor array on which a process executes. This is similar in form and func-
tion to the array DIMENSION statement. It has the general form PROCESSORS (Iy,...,I,)
where n > 1 and the I; have the same form as the arguments to a DIMENSION state-
ment. For example, the following declarations all describe a virtual computer with
256 processors.

processors (256)
processors(16,16)
processors(16,4,4)

The PROCESSORS declaration in the main program specifies the shape and size
of the virtual processor array on which that program is to execute. The mapping
of these virtual processors is specified at load time. This mapping may be achieved
in different ways on different computers. Usually, there is a one-to-one mapping of
virtual processors to physical processors. Sometimes, however, it can be useful to
have more virtual processors than physical processors, for example, if developing a
multicomputer program on one processor.

A PROCESSORS declaration in a process specifies the shape and size of the
virtual processor array on which that particular process is to execute. As with a
regular array passed as an argument, this processor array cannot be larger than that
declared in its parent, but can be smaller or of a different shape.

21

3.10.2 Process Placement

The LOCATION annotation specifies the processor on which the annotated process
is to execute. It is similar in form and function to an array reference. It has the
general form LOCATION(Iy, ...,I,), where n > 1 and the I; have the same form
as the indices in an array reference. The indices must not reference a processor
array element that is outside the bounds specified by the PROCESSORS declaration
provided in the process or subroutine in which the annotation occurs.

The following code fragment shows how the program ringl.fm (§3.2.3) might
be extended to specify process placement. The PROCESSORS declaration indicates
that this program is to execute in a virtual computer with 4 processors, while the
LOCATION annotation placed on the process call specifies that each ringnode process
is to execute on a separate virtual processor.

program ringl_with_mapping
parameter (nodes=4)
processors(nodes)

processdo i = 1, nodes

processcall ringnode(i, pi(i), po(i)) location(i)
endprocessdo
end

The program tree.fm shows the a more complex use of mapping constructs.
The process tree creates a set of 2n — 1 (n a power of 2) processes connected in a
binary tree. The mapping construct ensures that processes at the same depth in the
tree execute on different processors, if n < P, where P is the number of processors.

22

tree.fm

process tree(locn, n, toparent)
intent (in) locn, n, toparent
inport (integer) 1i, ri
outport (integer) lo, ro, toparent
processors(16)
if(n .gt. 1) then
channel(in=1i, out=lo)
channel(in=ri, out=ro)
processes
processcall tree(locn,n/2,l0)
processcall tree(locn+n/2,n/2,ro) location(locn+n/2)
processcall reduce(li,ri,toparent)
endprocesses
else
call leaf(toparent)
endif
end

3.10.3 Submachines

A SUBMACHINE annotation is similar in form and function to an array reference passed
as an argument to a subroutine. It has the general form SUBMACHINE(I,...,I,),
where n > 0 and the I; have the same form as the indices in an array reference. It
specifies that the annotated process is to execute in a virtual computer comprising
the processors taken from the current virtual computer, starting with the speci-
fied processor and proceeding in array element order. The size and shape of the
new virtual computer are as specified by the PROCESSORS declaration in the process
definition.

The SUBMACHINE annotation can be used to create several disjoint virtual
computers, each comprising a subset of available processors. For example, in a
coupled system comprising an ocean model and an atmosphere model, it may be
desirable to execute the two models in parallel, on different parts of the same com-
puter. This organization is illustrated in Figure 2(A) and can be specified as follows.
We assume that the ocean and atmosphere models both incorporate a declaration
PROCESSORS (np,np); hence, the atmosphere model is executed in one half of a vir-
tual computer of size np X 2 X np, and the ocean model in the other half.

23

sCere e
“e-0-0-0
oo 00

-0-0-0-@
(A (B)

Figure 2: Alternative Mapping Strategies

OO0|0
OO0|0
OO0|0
OO0|0
T 90060

parameter (np=4)
processors (np,2*np)

processes
processcall atmosphere(sst_in, uv_out) submachine(1,1)
processcall ocean(sst_out, uv_in) submachine(l,np+1)
endprocesses

Alternatively, it may be more efficient to map both models to the same set
of processors, as illustrated in Figure 2(B). This can be achieved by changing the
PROCESSORS declaration to PROCESSORS (np,np) and omitting the SUBMACHINE an-
notations. No change to the component programs is required.

4 Compiling, Running, and Debugging

The following sections provide a detailed description of the Fortran M compiler and
how to use it when writing and debugging Fortran M programs.

4.1 Compiling and Linking Programs

The Fortran M compiler, fm, is a preprocessor rather than a true compiler. However,
it is capable of compiling and linking Fortran M files (.fm suffix), Fortran M files
with C preprocessor (CPP) directives (.FM suffix), Fortran files (.£ suffix), Fortran
files with CPP directives (.F suffix), and C files (.c suffix).

Every effort was made to make the Fortran M compiler conform to conven-
tions used by most other compilers. Exceptions and additions are described in the
following sections.

24

4.1.1 C Preprocessor

The C preprocessor (CPP) is applied to files with .FM and .F suffixes as the first
stage of compilation. (For a detailed description of CPP, see any good C pro-
gramming manual.) These files can contain CPP directives that specify conditional
compilation, macro expansion, and constants. The following program, cpp_ex.FM,
uses CPP directives for all of these purposes.

cpp-ex.FM

#ifndef N_NODES

#define N_NODES 1

#endif

#ifndef PRODUCER_OFFSET

#define PRODUCER_OFFSET O

#endif

#define N_PRODUCERS (N_NODES - PRODUCER_OFFSET)

program cpp_ex
processors (N_NODES)
integer n_producers
parameter (n_producers = N_PRODUCERS)
inport (integer, integer) pi
outport (integer, integer) po(n_producers)
merger(in=pi, out=(po(i),i=1,n_producers))
processes
#ifdef USE_CONSUMER1
processcall consumerl(pi) location(1)
#else
processcall consumer2(pi) location(1)
#endif
processdo i = 1, n_producers
processcall producer(i, po(i))
X location(i+PRODUCER_OFFSET)
endprocessdo
endprocesses
end

This program creates a single consumer process and one or more producer
processes and connects the producers to the consumer by a merger. By default, all
processes run on a single processor, and consumer?2 is used as the consumer process.
Various aspects of this behavior can be modified at compile time through the use of
-D compiler arguments. For example:

¢ Adding -DUSE_CONSUMER1 causes consumerl to be used in place of consumer?2.
This sort of conditional compilation is useful when you wish to supply different

25

versions of part of a program that will be used in different situations, such as
for different machines.

¢ Adding -DN_NODES=5 causes the program to create 5 producer processes and
to distribute these over 5 processors, 1-5. The single consumer process runs
on processor 1.

¢ Adding -DN_NODES=5 and -DPRODUCER _OFFSET=1 causes the program to create
4 producer processes and to distribute these over processors 2—4, so that the
consumer process runs on a separate processor.

The result of running CPP on a .FM or .F file is a .fm or .f file, respectively,
which will be passed onto the following compiler stages.

To ensure consistency across different machines, the Fortran M compiler in-
cludes its own version of CPP which it applies to files with .FM and .F suffixes. This
CPP is used even if a target computer has its own CPP or if its Fortran compiler
supports CPP directives. It has been our experience that different versions of CPP
can differ in subtle ways, particularly when applied to Fortran programs. Please see
Appendix E for information on deficiencies of the included CPP.

The behavior of CPP can be modified with the following compiler arguments:

e -Ipath: Add path to the list of paths that will be searched by CPP for files
that are included through the use of #include.

o -Ddef: Add def as a definition during CPP.
o -Udef: Remove def as a definition during CPP.

4.1.2 Fortran M Compiler and Linker

The Fortran M preprocessor converts a Fortran M file (.£fm) into Fortran 77 (.f)
and C (_.c) files. Fortran M statements are replaced by calls to the Fortran M
libraries or to C procedures generated by the Fortran M preprocessor and located
in the __.c file. You should need to refer to these generated .f and __.c files only
when debugging, as described in §4.1.3 and §4.3.

The .f and __.c files are compiled and combined into a single object (.0), file.

Object files produced by the Fortran M compiler can be linked with other
object files, with the Fortran M libraries, and with system libraries to produce an
executable program that can be run as described in §4.2.

In addition to normal compiler arguments such as -c, -o, -1, and -L which
behave as in most other compilers, and the CPP arguments described previously
(8§4.1.1), the behavior of the Fortran M compiler and linker can be modified with
the following arguments:

e -allow_common: Treat each COMMON as if it were a PROCESS COMMON. (By de-
fault, Fortran M programs do not allow COMMON data, but instead require the
use of PROCESS COMMON data.)

26

e -rangecheck: Compile the .f file with range checking turned on (if the target
computer’s Fortran 77 compiler supports range checking).

o -g: Compile and link the source files with debugging and consistency checks

enabled.
e -safe: Compile and link the source files with consistency checks enabled.
o -pg: Compile and link the source files with profiling enabled.
o -f_flag flag: Pass flag to the Fortran compiler when compiling .f files.
o -c_flag flag: Pass flug to the C compiler when compiling .c files.
e -C: Stop after compiling the .fm file to a .f and a __.c file.

e -static: Link the executable using statically linked rather than dynamically
linked libraries.

A complete list of Fortran M compiler arguments, and a brief description of
their meaning, can be obtained by running fm -h.

4.1.3 Syntax Errors

Because the Fortran M compiler uses the C preprocessor and is itself a preprocessor,
syntax errors can be detected at three stages in the compilation process:

1. The C preprocessor may detect errors in CPP directives in .FM or .F files.
Line numbers in these error messages refer to the CPP (.FM or ") file.

2. The Fortran M preprocessor may detect errors in the Fortran M code. Line
numbers in these error messages refer to the Fortran M (.fm) file.

3. The Fortran compiler may detect errors in the .f file generated by the For-
tran M preprocessor. Line numbers in these error messages refer to the Fortran
(.f) file. The mapping from .f file errors to .fm or .FM file errors is generally
fairly obvious from looking at the .f file.

4.2 Running Programs

The basics of running Fortran M programs are explained in §2.3. Fortran M pro-
grams are run like other programs, except that all arguments following the initial
-fm are passed to the run-time system instead of to the user program.

Various arguments control aspects of the run-time system. Those arguments
that relate to the network version of Fortran M are described in §8.5. Those that
relate to debugging are described in §4.3. Another argument to the run-time system
is the following:

27

e -maptype type: A PROCESSORS statement may declare more virtual processors
than there are physical processors. The type specifies how the virtual pro-
cessors are mapped to physical processors. If type is cyclic (the default),
then virtual processors are mapped cyclically to physical processors. If type is
block, then virtual processors are mapped blockwise to physical processors.

A complete list of the run-time system arguments, and a brief description of
their meaning, can be obtained by using the -h argument, for example:

my_program -fm -h

4.3 Debugging Programs

Each Fortran M process is a separate Unix process, so Unix debuggers such as dbx
and gdb (GNU debugger) can be used to debug Fortran M processes. Various tech-
niques have been implemented in the Fortran M run-time system to allow debuggers
to be attached to Fortran M processes in a reasonable manner.

4.3.1 Attaching a Debugger

In order to debug a Fortran M program using a debugger, that debugger must
support the ability to attach to a running processes, given the process id of that
process. We describe how to determine process ids below.

One such debugger is the gdb (GNU debugger). The attach command is used
to attach gdb to a process. For example, if you wish to attach to process 4242, which
is an instance of the examplel program, you would run:

% gdb examplel
(gdb) attach 4242

Some versions of dbx also support the ability to attach to a running process.
For example, the SunOS 4.1.3 version of dbx can be attached to examplel, process
4242 with the command:

dbx examplel 4242

Consult the documentation for your debugger for more information on attach-
ing it to a process.

4.3.2 Fatal Errors

A fatal error in a Fortran M program can be caused by an unexpected signal or a
failed assertion (consistency check) in the run-time system. Normally, a fatal error
will cause a message to be printed and then cause the program to be terminated.
However, the -pause_on_fatal run-time system flag allows you to attach to a
program at the point of a fatal error. When this flag is added as a run-time system

28

argument (after the -fm argument), a fatal error causes the printing of a message
containing the process id of the process that has encountered the fatal error. The
process then pauses instead of terminating. At this point a debugger can be attached
to the process so that a postmortum analysis of the process can be conducted.

4.3.3 Pause Points

It is often useful to attach a debugger to a Fortran M process before a fatal error
occurs. This can be accomplished through the use of pause points. A pause point
is a location in a Fortran M program where a process can be paused, so that a
debugger can be attached to that process.

A pause point can be added to a Fortran M program by adding the call

call fm pause(id, message)

where id is an integer that identifies this pause point, and message is a string that
will be printed at the pause point.

By default, fm_pause does nothing. However, adding a -show_pausepoints
run-time system flag will cause each fm_pause to print a message such as

jayson:6036: Pausepoint 1: the message

This message says that the program has reached a pause point with an id of
1, on the machine named jayson, in the process with process id 6036.

The -pause run-time system flag will cause a process to pause at a particular
pause point. For example, running

my_program -fm -pause 1

will cause a process to pause at any fm_pause call with an id of 1. When such a
pause point is encountered, the process will print a message such as

jayson:6283: Pausing at pausepoint 1: the message

and will then pause. At this point a debugger can be attached to the process, using
process id 6283 in this case, and debugging can commence. The debugger can be
used to examine process variables, etc., and also to continue execution of the paused
process.

5 Further Reading

1. I. Foster and K. M. Chandy, Fortran M: A language for mod-
ular parallel programming, Preprint MCS-P237-0992, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Ill.,
1992. This report provides the original description of the Fortran M lan-

guage.

29

2. K. M. Chandy and I. Foster, A deterministic notation for cooper-
ating processes, Preprint MCS-P346-0193, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Ill., 1993. This
paper provides a more theoretical treatment of the Fortran M extensions

to Fortran.

3. K. M. Chandy, I. Foster, C. Koelbel, K. Kennedy, and C.-W.
Tseng, Integrated support for task and data parallelism, Intl. J. Super-
computer Applications (to appear).

30

Part 11
Advanced Topics

6 Makefile

This section provides an example makefile for use with Fortran M programs.

makefile

FM = fm
FMFLAGS = -g
DEFS =

PROGS = examplel cpp_ex ring2 intentl
OTHER_0BJS = mergerl.o ringl.o tree.o work_man.o

all: $ (PROGS)
other_objs: $ (OTHER_OBJS)
examplel: examplel.o

$(FM) $(FMFLAGS) $(DEFS) -o examplel examplel.o

cpp_ex: Cpp_ex.o
$(FM) $(FMFLAGS) $(DEFS) -o cpp_ex cpp_ex.o

cpp-ex.o: cpp-ex.FM
$(FM) $(FMFLAGS) $(DEFS) -c cpp_ex.FM

ring2: ring2.o
$(FM) $(FMFLAGS) $(DEFS) -o ring2 ring2.o

intenti: intentl.o
$(FM) $(FMFLAGS) $(DEFS) -o intentil intentl.o

clean:
rm -f *” x.0 *.f *__.c cpp_ex.fm *_link.c $(PROGS)

.SUFFIXES:
.SUFFIXES: .fm .o

.fm.o:
$(FM) $(FMFLAGS) $(DEFS) -c $*.fm

31

7 Tuning Fortran M Programs

When writing Fortran M programs, you should be aware that Version 1.0 of the
compiler implements the following language features efficiently:

o Computation: Sequential code is not modified by the Fortran M preprocessor
and is compiled with conventional Fortran compilers.

o Communication: Preliminary experiments show that interprocessor communi-
cation rates are competitive with those achieved by message-passing libraries
such as P4 and PVM.

In contrast, the following features are not implemented efficiently in Version 1.0 (but
will be in future releases):

o Process Creation: The cost of creating a new Fortran M process is relatively
high: over 100 msec on a Sun Sparcstation.

o Port Migration: The cost of sending a port from one process to another is
relatively high: over 100 msec on Sun Sparcstation.

o Intraprocessor Communication: Intraprocessor (two processes on the same pro-
cessor) communication performance is comparable to interprocessor commu-
nication performance on most machines. (On the SparcStation, it appears to
be much less efficient for messages over 4k bytes.)

8 Network Specifics

The network version of Fortran M uses Berkeley stream interprocess communication
(TCP sockets) to communicate between nodes. A node can run on any machine
that supports TCP. Hence, a single Fortran M computation can run on several
workstations of a particular type, several workstations of differing types, several
processors of a multiprocessor, or a mix of workstations and multiprocessor nodes.
Current restrictions are listed in §8.6.

Using network Fortran M is the same as using Fortran M on other platforms
except that the user must specify on which machines Fortran M nodes are to run and
may also be required to specify where on those machines the Fortran M program is
to be found and the commands necessary for running Fortran M nodes on the given
machines.

There are several different ways of starting network Fortran M, each appropri-
ate for different types of network. We shall consider each of these in turn, starting
with the easiest. First, we provide some background information on the Unix remote
shell command rsh, which is used to start network Fortran M nodes.

32

8.1 Using rsh

The Unix remote shell command rsh is a mechanism by which a process on one
machine (e.g., hostl) can start a process on another machine (e.g., host2). A
remote shell command can proceed only if host1 has been given permission to start
processes on host2. There are two ways in which this permission can be granted.

e The file /etc/hosts.equiv exists on host2 and contains an entry for host1.
This file must be created by the system administrator.

e The file .rhosts exists in the home directory of the user running the remote
shell on host2 and contains a line of the form

hostl username

where username is the name of the user login on host1. This file is created
by the user.

Some sites disallow the use of .rhosts files for security reasons. If .rhosts
usage is disallowed and the host machine is not in /etc/hosts.equiv, remote shells
cannot be used to create remote processes.

The full syntax of the rsh command is as follows:

rsh hostname -1 username command arguments

The username here is the login to be used on the remote machine. If username is not
specified, it defaults to the login name of the user on the local machine. Furthermore,
if the login name used on the local machine is different from the login name on the
remote machine, the .rhosts file for the account on the remote machine must have
an entry allowing access for that account on the host machine.

8.2 Specifying Nodes on the Command Line

The simplest way to start Fortran M on a network of machines is to use the
-nodes <nodelist> command line argument, where nodelist is a colon-separated
list of machine names on which Fortran M nodes are to run. For example,

myprogram -fm -nodes pelican:raven:plover

will run myprogram on four nodes, with one node on the machine from which this
command is run and one node on each of the machines named in the nodelist:
pelican, raven, and plover.

This startup method works only if

1. rsh (§8.1) works from the host to each machine in nodelist, and

2. each of the nodes shares a common filesystem with the host. The reason for
this is that the initial node runs each additional node in the directory in which
myprogram is invoked. If the initial node and an additional node have different
filesystems, the rsh used to start up that additional node is likely to fail.

If any of these conditions does not hold, then network Fortran M must be started
by using one of the alternative methods described below.

33

8.3 Using a Startup File

The second network Fortran M startup method that we consider can be used if nodes
do not share a common file system. However, it still requires that rsh work from
the initial node to the additional nodes.

This method uses a startup file to define the locations of remote Fortran M
node processes. Lines in this file identify the machines on which nodes are to be
started.

Startup File Syntax. A line of the form
command -fm $ARGSS

causes command to be executed. command is the command that invokes Fortran M
on the appropriate machine. The initial process replaces $ARGSS$ at run time with
the necessary arguments to Fortran M to cause it to start the node process.

Blank lines in startup files and lines starting with whitespace, ¥, or # are
ignored.

Examples of Startup Files. A startup file containing the lines

rsh fulmar myprogram -fm $ARGS$
rsh plover myprogram -fm $ARGS$

starts one node on the machine named fulmar, and one node on the machine named
plover, using the Fortran M executable called myprogram, resulting in a Fortran M
program running on three machines.

A startup file containing the line
rsh fulmar -1 bob myprogram -fm $ARGS$

starts one node using the program called myprogram on host fulmar using the For-
tran M executable myprogram and the account for username bob. If we assume the
initial node is being run by user olson on host host-machine, then the .rhosts
file in the home directory of user bob on fulmar must contain the entry

host-machine olson

A startup file containing the line
rsh fulmar "cd /home/olson/fm; ./myprogram -fm $ARGSS$"

runs one node on fulmar of the Fortran M executable myprogram after changing to
the directory /home/olson/fm.

A startup file containing the line

34

sh -¢ ’echo ‘‘cd /home/olson/fm; ./myprogram -fm $ARGS$
< /dev/null > node.out 2>&1 &’°
| rsh fulmar /bin/sh’

is a more complex example that starts up one node on fulmar. This example has the
desirable side effect that the rsh process exits after starting the Fortran M node,
whereas in the other examples the rsh will not complete until the node process
completes. Also, stdout and stderr from that node will go into the node.out file.

Using a Startup File. We execute network Fortran M with a startup file fm-startup
by using the -s run-time system command line argument:

myprogram -fm -s fm-startup

8.4 Ending a Computation

Normally all nodes of a network Fortran M computation will exit upon completion
of the computation or upon abnormal termination of any of the Fortran M processes.
If for some reason this is not the case, you must log on to each machine that was
executing a network Fortran M node and manually kill the Fortran M process.

8.5 Arguments to Network Version

The network version of Fortran M supports several run-time arguments to control
its behavior:

e -nodes nodel:node2:...: Start Fortran M nodes on nodel, node2, etc.

o -s startup-file: Use the commands in the startup-file to start the Fortran M
nodes.

e -nostart: When used in conjunction with -nodes or -s, node startup com-
mands will be printed instead of executed. This allows nodes to be started by
hand in order to, for example, be run under the control of a debugger.

e -save fds n: Reserve n file descriptors for use by the user program. By
default, 10 file descriptors are saved.

e -lazy recv: By default, the network run-time system will receive as much data
from network buffers as possible whenever a SEND or RECEIVE is done. This
flag causes it to be less eager about receiving, only doing it when absolutely
necessary.

8.6 Limitations of Network Version

Limits on Number of Processes. Fortran M processes are implemented as Unix
processes. Hence, Unix system limits on the number of processes apply. Typically,
this is in the 10-100 range per processor. However, you will likely not wish to have

35

more than a few simultaneously active Fortran M processes on a single processor,
or you (and other users on the same computer) may experience adverse effects on
performance due to context switching, paging, etc.

Limits on Process Connectivity. Unix sockets are used to implement inter-
process communication, with a separate socket used for each pair of processes that
must communicate. Hence, Unix system limits on the number of sockets and file
descriptors apply. This limit may be anywhere in the range of 50-5000 connections
per process, depending on your specific version and configuration of Unix. This
network version supports file descriptor caching, so the system file descriptor limit
should not be a hard limit on the number of Fortran M processes. However, you
might experience adverse performance effects if there are significantly more actively
communicating processes than there are file descriptors. Also, the -save fds run-
time system argument (§8.5) can be used to reserve file descriptors for user program
use.

Heterogeneous Networks. Currently, no support exists for executing Fortran M
between machines with different byte orders and/or different floating-point repre-
sentations. Fortran M does execute correctly between different machines if they use
the same byte-ordering and floating point representation (we have run Fortran M
successfully between Sun 4 and NeXT computers).

36

Part III
Appendices

A TOSTAT values

Many of the Fortran M calls allow the use of IOSTAT in order to detect error condi-
tions. The following table lists all of the TOSTAT values that could be returned. Not
all values apply to all Fortran M calls.

IOSTAT | Description

-1 End-of-file (EOF)

0 Success
Error
Inport unconnected
Outport unconnected
Inport already connected
Outport already connected
Channel already closed

O T W N

37

B Obtaining the Fortran M Compiler

The Fortran M software is available by anonymous ftp from Argonne National Labo-
ratory, in the pub/fortran-m directory on info.mcs.anl.gov. The latest version of
this document is also available at the same location. The following session illustrates
how to obtain the software in this way.

% ftp info.mes.anl.gov

Connected to anagram.mcs.anl.gov.

220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.
Name (info.mcs.anl.gov:XXX): anonymous

331 Guest login ok, send your e-mail address as password.
Password: /* Type your e-mail address here */

230- Guest login ok, access restrictions apply.

Argonne National Laboratory Mathematics & Computer Science Division
All transactions with this server, info.mcs.anl.gov, are logged.
230 Local time is Fri Aug 6 12:59:56 1993

ftp> «d pub/fortran-m

250 CWD command successful.

ftp> Is

200 PORT command successful.

150 Opening ASCII mode data connection for file list.
fmvl.0.tar.Z

README

fm_prog v1.0.ps.Z

fm_prog vi.0.tar.Z

226 Transfer complete.

78 bytes received in 1.3e-05 seconds (5.9e+03 Kbytes/s)
ftp> binary

200 Type set to I.

ftp> get fm_vl.0.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for fmvi.O.tar.Z (XXX bytes).
226 Transfer complete.

local: fm.vl.0.tar.Z remote: fmvl.0.tar.Z

XXX bytes received in YY seconds (ZZ Kbytes/s)

ftp> quit

221 Goodbye.

38

C Supported Machines

Fortran M is currently available on the following computers:
o Networks of Sun SPARCstations running SunOS version 4.1.x
e Networks of IBM RS/6000 workstations running AIX version 3.2
e Networks of SGI workstations running IRIX 4.0.5F

o Networks of NeXT workstations running NEXTSTEP 3.x

IBM 9076 Scalable POWERparallel 1 (SP-1)

The compiler comprises a portable preprocessor and a run-time library imple-
mented using standard Unix facilities. Hence, it should not prove difficult to port it
to other computers that support TCP /IP networking.

See §B for instructions on obtaining Fortran M.

39

D Reserved Words

The following words may not be used as variable names or procedure names in

Fortran M programs.

conn_t
fm_*
fmu_*
u*

yoke_*
y.*

40

E Deficiencies

We are aware of the following deficiencies in Version 1.0 of the Argonne Fortran M
compiler. We expect these to be remedied in subsequent releases.
In addition, see §8.6 regarding limitations in the network version of Fortran M.

1. Fortran Syntaz. The following legal Fortran 77 statements are not processed
correctly by the Fortran M compiler:

(a) Variable declarations cannot contain expressions. (But parameters can).

(b) The last significant (i.e. non-blank or comment) line of an INCLUDE file
is dropped.

(c¢) Inline comments (using !) are not supported.
(d) Continuation lines must have a space in column 7.

(e) A continuation line following a comment is considered part of the com-
ment, not as part of the line before the comment.

(f) BLOCK DATA subprograms are not handled by the FM compiler. Any
required BLOCK DATA subprograms can be placed in a .f file of their own
and compiled with the FM compiler.

2. Error Messages. The Fortran M compiler does not always generate meaningful
error messages when applied to erroneous programs. If you encounter such a
message, please e-mail a short example of the code that caused this error
message and the message itself to “fortran-m@mes.anl.gov”.

3. Fortran M executable statements (SEND, RECEIVE, ENDCHANNEL, CHANNEL, MERGER,
MOVEPORT, PROBE) cannot have line numbers.

4. Fortran M statements cannot be included in a logical IF statement.

5. In this version of Fortran M ports can only be INTENT(IN), and are such by
default. Ports cannot be declared INTENT (OUT) or INTENT (INOUT).

6. Process dummy arguments that are specified as INTENT(0OUT) should be ini-
tialized to 0. In the current implementation they are not.

7. Complex numbers cannot be sent over ports, or be passed to processes as
arguments.

8. The use of a label in a PROCESSDO is not supported.
9. PROCESSORS declarations cannot contain expressions.
10. Port variables cannot be dimensioned using 0:n syntax.

11. Dummy array arguments to processes must be dimensioned using either con-
stants or parameters. The dimensions cannot be other dummy arguments.

41

12.

13.

14.

15.

16.

17.

18.

19.

Long file and process names can lead to truncation of Fortran M generated
procedure names. In general, you should be safe if you limit process names
and file base names (no path and no suffix) to less than 25 characters.

Procedure names cannot be passed over ports or in process calls.

Port variables cannot be declared to contain types with length specifiers (e.g.

REAL*S).

TARGC() and GETARG() will return the -fm and following arguments as well as
the user-supplied arguments.

Closing channels. You should close all outports and receive on all inports until
you reach end-of-channel. Failing to do so could cause spurious error messages.
For example, if a process fails to close an outport before terminating, some
operations on the associated inport may cause run-time errors to be signaled.

PROCESS COMMON definitions. You must include any common blocks that in-
clude port variables in the process definition. (It is not sufficient to include
them only in the routines that use them.) This is because the compiler uses
the common block port definition to generate code to initialize any port vari-
ables in the common block. Hence, common block port definitions that are
not defined in the PROCESS definition will not be properly initialized.

C preprocessor. The C preprocessor (CPP) can get confused in Fortran com-
ments, because it does not recognize them as comments. For example, if the
Fortran comment contains an unmatched single quote (i.e., the comment con-
tains the word “it’s”), CPP will take this single quote to be the beginning
of a constant and proceed to take everything literally until the next single
quote that it finds. All text in between those single quotes will not have CPP
directive applied to them.

Receiving variable length messages. RECEIVE is intended to support the ability
to receive messages into the middle of an array, where the specific location in
which to receive is part of the message. For example, the following statement
should receive 10 real values into the ith row of the array b, where 1 is defined
upon receipt of the message.

inport (integer, real x(10)) pi
integer i
real a(10,10)
receive(pi) i, a(1,i)
This does not currently work. The value of i that will be used in the a(1,1)

is that value of i immediately before the RECEIVE, not the value of i received
in the message.

42

F

Futures Plans

This section lists new features that we expect to incorporate in future releases of
the Fortran M compiler. We welcome feedback from users regarding priorities.

1.

2.

More Robust Parser. A more robust parser will provide full Fortran 77 support.

Optimized Compiler. An improved compiler will both remove current limita-
tions on the number of processes and channels and improve performance. Qur
goal is to provide performance superior to what can be achieved conveniently
using conventional message-passing libraries.

. Ports. The compiler will be ported to additional parallel and distributed com-

puter systems. Current priorities are the Intel Paragon, Thinking Machines
CM-5, HP and DEC workstations, heterogeneous networks, and PCs running
Windows NT.

. Support Tools. We expect these to include support for replay of nondetermin-

istic computations and a parallel profiler.

. Heterogeneous Applications. An improved linker will permit different processes

to execute different executables. This avoids the need to generate a single
executable containing all code that may be executed by a program.

. Fortran 90 Features. Fortran 90 features such as array sections will be intro-

duced in an incremental fashion.

. Data Distribution Statements. Data distribution statements similar to those

defined in High Performance Fortran will be supported, allowing Fortran M
programs to both define and access distributed data structures.

. Interfaces to Other Systems. Interfaces will be defined to allow Fortran M

programs to compose modules implemented using message-passing libraries
(e.g., the MPI message passing interface standard) and data-parallel languages
(e.g., High Performance Fortran).

Template Libraries. Libraries providing implementations of commonly used
parallel program structures will be developed and distributed with the com-
piler.

43

G Fortran M Language Definition

This appendix is also available as Argonne technical report ANL-93/28, “Fortran M
Language Definition,” by lan Foster and Mani Chandy.

G.1 Syntax

Backus-Naur form (BNF') is used to present new syntax, with nonterminal symbols
in slanted font, terminal symbols in TYPEWRITER font, and symbols defined in Ap-
pendix F of the Fortran 77 standard ! underlined. The syntax [symbol] is used to
represent zero or more comma-separated occurrences of symbol; [symbol]() repre-
sents one or more occurrences.

G.1.1 Process, Process Block, Process Do-loop

A process has the same syntax as a subroutine, except that the keyword PROCESS
is substituted for SUBROUTINE, INTENT declarations can be provided for dummy
arguments, and a process cannot take an assumed size array as a dummy argument.

A process call can occur anywhere that a subroutine call can occur. It has the
same syntax as a subroutine call, except that the keyword PROCESSCALL is substi-
tuted for CALL. In addition, process calls can occur in process blocks and process
do-loops, and recursive process calls are permitted. A process block is a set of
statements preceded by a PROCESSES statement and followed by a ENDPROCESSES
statement. A block includes zero or one subroutine calls, zero or more process calls,
and zero or more process do-loops. A process do-loop has the same syntax as a
do-loop, except that the PROCESSDO keyword is used in place of DO, the body of the
do-loop can contain only a process do-loop or a process call, and the ENDPROCESSDO
keyword is used in place of ENDDO.

A port variable or port array element can be passed as an argument to only a
single process in a process block or process do-loop, and then cannot be accessed in
a subroutine called in that block.

G.1.2 New Declarations

Five new declaration statements are defined: INPORT, OUTPORT, INTENT, PROCESSORS,
and PROCESS COMMON.

inport_declaration :: INPORT ([data_type]) [namel®
outport_declaration :: OUTPORT ([data_type]) [name]®
intent_declaration :: INTENT(IN) [namel® |

INTENT(OUT) [namel) |
INTENT(INOUT) [name]™)
processors_declaration:: PROCESSORS(bounds)
name :: variable name | array name | array declarator

! Programming Language Fortran, American National Standard X3.9-1978, American National
Standards Institute, 1978.

44

data_type o fortran_data_type |
fortran_data_type name |
INPORT ([data_typel) |
OUTPORT ([data_typel)

In the PROCESSORS statement, bounds has the same syntax as the arguments
to an array_declarator. The product of the dimensions must be nonzero. Any
program, process, subroutine, or function including a LOCATION or SUBMACHINE an-
notation must include a PROCESSORS declaration.

The symbol fortran_data_type denotes the six standard Fortran data types.

The dimensions in an array_declarator in a port declaration can include variable

declared in the port declaration, parameters, and arguments to the process or sub-
routine in which the declaration occurs. The symbol “*” cannot be used to specify
an assumed size. Variables declared within a port declaration have scope local to
that declaration.

A PROCESS COMMON statement has the same syntax as a COMMON statement.

G.1.3 New Executable Statements

There are seven new executable statements: CHANNEL, MERGER, MOVEPORT, SEND,
RECEIVE, ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control
specifiers, termed a control information list. The SEND and RECEIVE statements also
take other arguments. A control information list can include at most one of each
specifier, except those that name ports. The number of allowable port specifiers
varies from one statement to another. The first three of these statements are as

follows.
channel_statement :: CHANNEL ([channel_control](1))
merge_statement :: MERGER([merge_control](1))

moveport_statement :: MOVEPORT ([moveport_control](1))

channel_control . outport_name | 0UT=outport_name |
inport_name | IN=inport_name |
I0STAT=storage_location | ERR=1label

merge_control it outport_specifier | QUT=outport_specifier |
inport_name | IN=inport_name |
I0STAT=storage_location | ERR=1label

moveport_control . port_name | FROM=port_name |
port_name | TO=port_name |
I0STAT=storage_location | ERR=1label

outport_specifier : outport_name | data_implied do_list
outport_name it port_name
inport_name it port_name
port_name :: variable name | array_element name

45

A CHANNEL statement must include two port specifiers, and these must name
an outport and an inport of the same type. If the strings 0UT= and IN= are omitted,
these specifiers must occur as the first and second arguments, respectively.

A MERGER statement must include at least two port specifiers, and these must
name an inport and one or more unique outports, all of the same type. If the strings
0UT= and IN= are omitted, the outport specifiers must precede the inport specifier,
which must precede any other specifiers,

In a MOVEPORT statement, the port specifiers must name two inports or two
outports, both of the same type. If the strings FROM= and TO= are omitted, these
specifiers must occur as the first and second arguments, respectively. The first then
specifies the “from” port and the second the “to” port.

The other four statements are as follows.

send_statement :: SEND([send_control]M) [argument]
receive_statement :: RECEIVE([receive_control]1M)) [variable]
endchannel_statement:: ENDCHANNEL ([send_control]())
probe_statement :: PROBE([probe_control]™M)
send_control i outport_name | PORT=outport_name |
I0STAT=storage_location | ERR=1label
receive_control it inport_name | PORT=inport_name |
I0STAT=storage_location | ERR=1label | END=label
probe_control it inport_name | PORT=inport_name |
ERR=label | I0STAT=storage_location | EMPTY=storage_location
storage_location :: variable name | array_element name
argument i expression |
variable :: variable name | array_element name | array name

If a port specifier does not include the optional characters PORT=, it must
be the first item in the control information list. A storage_location specified in an
T0STAT= or EMPTY= specifier must have integer and logical type, respectively.

46

G.1.4 Mapping

The mapping annotations LOCATION and SUBMACHINE are appended to process calls:

process_call LOCATION (indices)
process_call SUBMACHINE (indices)

where indices has the same syntax as the arguments to an array_element name.

G.1.5 Restrictions

Port variables cannot be named in EQUIVALENCE statements. Programs cannot in-
clude COMMON data; PROCESS COMMON must be used instead.

G.2 Concurrency

With two exceptions, a process executes sequentially, in the same manner as a
Fortran program. That is, each statement terminates execution before the next is
executed. The two exceptions are the process block and the process do-loop, in which
statements execute concurrently. That is, the processes created to execute these
statements may execute in any order or in parallel, subject to the constraint that
any process that is not blocked (because of a RECEIVE applied to an empty channel)
must eventually execute. A process block or process do-loop terminates, allowing
execution to proceed to the next statement, when all its process and subroutine calls
terminate.

A process can access its own process common data but not that of other
processes. By default, process arguments are passed by value and copied back to
the parent process, in textual and do-loop iteration order, upon termination of the
process block or process do-loop in which the process is called, or upon termination
of the process, if the process does not occur in a process block or do-loop. A
dummy argument declared INTENT (INOUT) is treated in the same way. If a dummy
argument is declared INTENT(IN), then the corresponding parent argument is not
updated upon termination. If a dummy argument is declared INTENT(OUT), the
value of the variable is defined to a default value upon entry to the process.

(.3 Channels

Processes communicate and synchronize by sending and receiving values on typed
communication streams called channels. A channel is created by a CHANNEL state-
ment, which also defines the supplied inport and outport to be references to the
new channel. A channel is a first-in/first-out message queue. An element is ap-
pended to this queue by applying the SEND statement to the outport that references
the channel. This statement is asynchronous: it returns immediately. An element
is removed from the queue by applying the RECEIVE statement to the inport that
references the channel. This statement is synchronous: it blocks until a value is
available. The ENDCHANNEL statement appends an end-of-channel (EOC) message

47

to the queue. The MOVEPORT statement copies a channel reference from one port
variable to another.

These statements all take as arguments a control information list (cilist). The
optional IOSTAT=, END=, and ERR= specifiers have the same meaning as the equivalent
Fortran 1/O specifiers, with end-of-channel treated as end-of-file, and an operation
on an undefined port treated as erroneous. An implementation should also provide,
as a debugging aid, the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE
statement is applied to a port that is the only reference to a channel.

SEND (cilist) Eqi,...,E, Add the values Eq, ..., E, (the sources) to the channel ref-
erenced by the outport named in cilist (the target). The source values must
match the data types specified in the port declaration, in number and type.

RECEIVE(cilist) Vq,...,V, Block until the channel referenced by the inport named
in cilist (the target) is nonempty. If the next value in the channel is not EOC,
move values from the channel into the variables Vy, ..., V,, (the destinations).
The destination variables must match the data types specified in the port
declaration, in number and type.

ENDCHANNEL (cilist) Append an EOC message to the channel referenced by the out-
port named in cilist.

MOVEPORT (cilist) Copy the value of the port specified “from” in cilist (the source)
to the port specified “to” (the target), and set the source port to undefined.

A port is initially undefined. An undefined port becomes defined if it is in-
cluded in a CHANNEL (or MERGER: see below) statement, if it occurs as a destination
in a RECEIVE, or if it is named as the target of a MOVEPORT statement whose source
is a defined port. Any other statement involving an undefined port is erroneous.

Application of the ENDCHANNEL statement to an outport causes that port to
become undefined. The corresponding inport remains defined until the EOC message
is received by a RECEIVE statement, and then becomes undefined. Both inports and
outports become undefined if they are named as the source of a SEND or MOVEPORT
operation.

Storage allocated for a channel is reclaimed when both (a) either the outport
has been closed, or the outport goes out of scope or is redefined, and (b) either EOC
is received on the inport, or the inport goes out of scope or is redefined.

G.4 Nondeterminism

The MERGER and PROBE statements are used to specify nondeterministic computa-
tions. MERGER is identical to CHANNEL, except that it can define multiple outports to
be references to its message queue. Messages are added to the queue as they are sent
on outports, with the order of messages from each outport being preserved and all
messages eventually appearing in the queue. An EOC value is added to the queue
only after it has been sent on all outports.

48

The PROBE statement statement is used to obtain status information for a
channel. It can be applied only to an inport. The I0OSTAT= and ERR= specifiers in its
control list are as in the Fortran INQUIRE statement. A logical variable named in an
EMPTY= specifier is assigned the value true if the channel is known to be empty, and
false otherwise. Knowledge about sends is presumed to take a non-zero but finite
time to become known to a process probing an inport. Hence, a PROBE of an inport
that references a nonempty channel may signal true if the channel values were only
recently communicated. However, if applied repeatedly without intervening receives,
PROBE will eventually signal false, and will then continue to do so.

G.5 Mapping

The PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have
no semantic content, but determine performance by specifying how processes are to
be mapped within an N-dimensional array of processors (N > 1).

The PROCESSORS declaration is analogous to a DIMENSION statement: it de-
clares the shape and dimensions of the processor array that is to apply in the pro-
gram, process, or subroutine in which it appears. As we descend a call tree, the
shape of this array can change, but its size can only become smaller, not larger.

A LOCATION annotation is analogous to an array reference. It specifies the
virtual processor on which the annotated process is to execute. The specified location
cannot be outside the bounds of the processor array specified by the PROCESSORS
declaration.

The SUBMACHINE annotation is analogous to an array reference in a subroutine
call. It specifies that the annotated process is to execute in a virtual computer
with its first processor specified by the annotation, and with additional processors
selected in array element order. These processors cannot be outside the bounds of
the processor array specified by the PROCESSORS declaration.

49

Index

-C, 27

-D, 25, 26

-1, 26

-L, 26

-U, 26
-allow_common, 26
-¢, 26

-cAflag, 27

-fflag, 27

-fm, 5, 27

-g, 27

-h, 27, 28

-1, 26

-lazy recv, 35
-maptype, 28
-nodes, 6, 33, 35
-nostart, 35

-0, 26

-pause_on fatal, 28
-Pg; 27
-rangecheck, 27

-s, see startup file, 35
-safe, 27

-save fds, 35
-static, 27

F, 24

FM, 24

.c, 24

£, 24, 26

Am, 24

.0, 26

#include, 26

——.C, 26

Fortran M preprocessor, 26, 27

access to Fortran M software, 38
applications of Fortran M, 2
Argonne National Laboratory, 3
arguments

to compiler, 26-27

to CPP, 25, 26

to process, see dummy arguments

50

to run-time system, 27
assertion, 28
assumed size array, 44
attaching to a process, 28

BLOCK DATA, 41
blockwise mapping, 28
bugs

where to report them, 3

C preprocessor, 24-27
deficiencies, 42
California Institute of Technology, 3

CALL, 8,9, 44
CHANNEL, 4, 7-8, 17, 41, 45-48
channel, 8, 10

determinism, 10

reclamation of storage, 48
channels, 47-48
command line arguments, 5

COMMON, 2, 26, 45, 47, see -allow_common

COMmMon, see process common
communication, 6, 10
many-to-one, 17
compiler, 5, 24, 26-27
compiler errors, 27
complex numbers
deficiencies, 41
concurrency, 47
conditional compilation, 25
consistency check, 28
constants using CPP, 25
continuation lines
deficiences, 41
CPP, see C preprocessor
cpp-ex.FM, 25
cyclic mapping, 28

data-parallel, 2

dbx, 28

debugging, 28-29, see -g
deficiencies, see limitations

determinism, 2, 10, 15, 17, 19, 48-49

DIMENSION, 21

DO, 9, 44

dummy arguments, 6, 44
deficiencies, 41
to processes, 16

EMPTY, 18, 46, 49
END, 10, 12, 48
end-of-channel, 10-12, 42, 48
with PROBE, 18
ENDCHANNEL, 5, 7, 10-11, 41, 45—
48
ENDDO, 9, 44
ENDFILE, 10
ENDPROCESSDO, 7,9, 44, see PRO-
CESSDO
ENDPROCESSES, 4,7, 9, 44, see PRO-
CESSES
endprocesses, see process block
EOC, see end-of-channel
EQUIVALENCE, 47
ERR, 8, 10-12, 17, 18, 48, 49
examplel.fm, 4
examples
communication, 12
cpp-ex.FM, 25
examplel.fm, 4
intent1.fm, 16
makefile, 31
mergerl.fm, 18
producer-consumer, 4
ringl.fm, 9
ring2.fm, 13
tree.fm, 23
work_man.fm, 15
expressions
deficiencies, 41

fatal error, 28

file descriptors, 35

fm, see compiler

fm _pause, 29

formal parameters, see dummy argu-
ments

Fortran 77, 2, 6, 26, 27, 41, 43, 44

51

ANSI standard, 44
Fortran D, 2
ftp, 38
functions

reserved names, 40
further reading, 29

gdb, 28
GETARG, 42

High Performance Fortran, see HPF
HPF, 2

TARGC, 42
implied do-loop, 17
INCLUDE

deficiencies, 41
inline comments

deficiences, 41
INPORT, 4, 6, 7, 11, 44, 45

with RECEIVE, 11-12
INQUIRE, 18, 49
installation of Fortran M, 3
INTENT, 7, 10, 16, 44
INTENT(IN), 16, 41, 44, 47
INTENT(INOUT), 16, 41, 44, 47
INTENT(OUT), 16, 41, 44, 47
intent1.fm, 16
IOSTAT, 8, 10-12, 17, 18, 37, 46, 48—

49

limitations
deficiencies, 41-42
heterogeneous networks, 36
in network version, 35
on number of processes, 35
on process connectivity, 36
linker, 5, 26-27
LOCATION, 7, 21-23, 45, 47, 49
logical 1F, 41

macro expansion, 25
makefile example, 31
many-to-one communication, 17
mapping, 21, 47, 49

-maptype, 28

blockwise, 28
cyclic, 28
MERGER, 7-8, 17-18, 41, 45, 46, 48
determinism, 48
mergerl.fm, 18
message format, 6
message queue, b, 8, see channel
modular programming, 2
MOVEPORT, 7, 8, 10, 41, 45, 46, 48

determinism, 10

network
-nodes, 33
heterogeneous, 36
limitations, 35, 36
limits on number of processes, 35
limits on process connectivity, 36
startup file example, 34
startup file method, 34
network specifics, 32-36
nondeterminism, see determinism
nondeterminismistic computations, 17

object files, 26
obtaining Fortran M software, 38
OUTPORT, 4, 6, 7, 44, 45

with SEND, 10-11

parallelism, see concurrency
pause points, 29
performance, 32
PORT=, 46
ports, 4, 68
deficiences, 42
deficiencies, 41
determinism, 10
in CHANNEL statement, 8
in MERGER statement, 17
inport, see inport
INTENT(INOUT) deficiences, 41
INTENT(OUT) deficiences, 41
outport, see outport
transferring ports, 13
preprocessor, see C preprocessor
PROBE, 7, 17-20, 41, 45, 46, 48, 49
determinism, 48

52

PROCESS, 5-7, 44
process, 68
process arguments, 47
process block, 4, 8-9, 44, see PRO-
CESSES
determinism, 10
process call, 44
PROCESS COMMON, 2, 6, 7, 26, 42,
44, 45, 47
deficiencies, 42
process common, 47
process definition, 4, 5, 44

process do-loop, 8-9, 44, see PROCESSDO

determinism, 10
in a process block, 9
PROCESSCALL, 79, 44
PROCESSDO, 7,9, 41, 44, see process
do-loop, see ENDPROCESSDO
deficiencies, 41
PROCESSES, 4, 7-9, 44, see process
block, see ENDPROCESSES
processes, see process block
PROCESSORS, 7, 21-24, 28, 41, 44,
45,49
deficiencies, 41
producer-consumer example, 4
profiling, see -pg

queue, see channel

range checking, 27, see -rangecheck
READ, 10
RECEIVE, 5, 7, 8, 10-12, 18, 35, 41,
42, 45-48
complex messages, 11
deficiencies, 42
ports over ports, 13
variable-sized messages, 11, 12
receive
determinism, 10
references, 29
reserved words, 40
ringl.fm, 9
ring2.fm, 13
rsh, 33

run-time system

debugging version, see -g

safe version, see -safe
run-time system arguments, 5, 27
running a program, 5, 27

scope
in port declarations, 6
SEND, 5, 7,8, 10-11, 15, 35, 41, 45-48
complex messages, 10
determinism, 15
ports over ports, 13
variable-sized messages, 11, 12
send
determinism, 10
startup file, see -s, 35
SUBMACHINE, 7, 21, 23-24, 45, 47,
49
SUBROUTINE, 6, 44
subroutine call, 44
in a process block, 9
subroutines
reserved names, 40
syntax errors, 27

task, see process
task-parallel, 2
tree.fm, 23
tuning, 32

variable-sized messages, 12
variables
reserved words, 40
virtual computers, 21
virtual processor, 21
-maptype, 28

work_man.fm, 15

WRITE, 10

53

