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2 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.[1]. Introduction.Wavelets are �nding a well-deserved niche in such areas of applied mathematics andengineering as approximation theory, signal analysis, and projection techniques for thesolution of di�erential equations. While the concept of wavelets is not conceptually new[1] [2] [3], the past �fteen years have produced much of the theoretical underpinnings forthe concept, as well as the generation of new wavelet families and the exploration of theirpotential in various areas of applied science [1] [2] [3] [4] [5].Wavelets have several advantages: (1) they have compact support or exponentiallydecaying support; (2) their continuity properties may easily be increased, albeit at theexpense of a larger domain of support; (3) for a given spline order, a complete basismay easily be generated by simple recurrence relations; (4) in the context of projectiontechniques, their convergence properties are as good as or better than Fourier methods,and they permit the analysis of extremely local functional behavior without the need forwindowing and with little or no bias from global behavior; and (5) the manner in whichthe space is broken down into a family of multiply-enclosed subspaces enables spatial ortemporal function multiresolution analysis.To date, research has focused on compactly supported wavelets [2]; basic wavelets [3];and smooth, exponentially decaying wavelets [6]. All of these wavelet families form a basisfor L2(R). Work is currently under way on the generation of wavelets that are capableof spanning other classes of function space and/or domain. For example, Meyer [3] hasshown how compactly supported wavelets can be made to form a basis for L2([0; 1]). Hegenerates the periodized family by wrapping the L2(R) basis on a torus.This report shows in detail how such a wrapping procedure is accomplished usingDaubechies wavelets. The properties of the resulting wavelets on L2([0; 1]) are then con-trasted with more standard Daubechies wavelets, which are now extremely popular in thesignal processing community. This study also compares the convergence characteristics ofperiodized wavelet interpolation of functions with the characteristics of the Fourier spectralmethod.The �nal section of this report is devoted to a derivation and numerical calculation ofconnection coe�cients involving periodized Daubechies wavelets. Connection coe�cientsare matrix structures that result from the evaluation of inner products of the formZ '(d0)j;k0'(d1)j;k1 :::'(dn)j;kndx;where di is the number of di�erentiation with respect to x of the scaling function ' ='(x). Inner products arise naturally in the context of the Galerkin solution of di�erentialequations. The name for these inner products was coined by Latto et al. [7], who developeda computational method that avoids the pitfalls of quadrature techniques. We use thetechnique of Latto et al. to calculate connection coe�cients for the periodized Daubechieswavelets. A sample table of these coe�cients appears in the appendix. Also included in theappendix is information on how to obtain these and other tabulated values of connectioncoe�cients from the Mathematics and Computer Science Division at Argonne NationalLaboratory.1.1 Wavelets and Multiresolution Analysis.



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 3The value of wavelets hinges on their ability to perform multiresolution analysis. Amultiresolution analysis is a nested sequenceV0 � V1 � ::: � L2(R)satisfying the following properties:(1) Tj2Z Vj = 0.(2) closL2 (Sj2Z Vj) = L2(R).(3) f(x) 2 Vj , f(2x) 2 Vj+1.(4) There is a function ' 2 V0 such thatf'0;k(x) = '(x � k)gk2Z forms a Riesz basisfor V0:The term ' is called the mother scaling function since, from (3), there exists fhkg 2 l2such that '(x) =p2Xk2Z hk'(2x� k):This relation, called the scaling relation, will also hold for '(2x) and, by induction, for'(2jx). In accordance with the notation in (4), we denote the translates and dilations of' by 'j;k(x) = 2 j2'(2jx� k):The set f'j;kgk2Z forms a Riesz basis for Vj . We de�ne Wj to be the orthogonal comple-ment of Vj with respect to Vj+1. Just as Vj is spanned by dilations and translations ofthe mother scaling function, so are the Wj 's spanned by translations and dilations of themother wavelet . The mother wavelet is de�ned by (x) =p2Xk (�1)k�1h�k+1+2M'1;k(x);withM a particular integer. Daubechies [2] constructed compactly supported wavelets andscaling functions using a �nite set of nonzero fhkgN�1k=0 scaling parameters with N = 2Mand PN�1k=0 hk =p2. With these scaling parameters, the recursion formulas generate thedesired orthogonal wavelets and scaling functions with supp(') = [0;N � 1]. Henceforth,these will be the wavelets we shall use, which we refer to as DN or Daubechies waveletsof order N . Values for ' are calculated using the scaling relation as indicated in thefollowing procedure. First, the values it takes are determined at integer points. Thenat the dyadic rationals at level 1 (the dyadic rationals at level j are D j = f k2j gk2Z ).Using that information, we calculate the values at D 2 and so on, until ' is de�ned atthe dyadic rationals at all levels. Since the dyadics are dense in the reals, we simplyextend ' continuously to R. This procedure creates a function that is continuous but notdi�erentiable for N = 4, di�erentiable but not twice di�erentiable for N = 6, and withincreasing regularity for increasing N [2]. The nature of the scaling relation guaranteesthat ' will be discontinuous in some derivative [8]. This procedure is easily accomplishedcomputationally.Another pleasing feature of these wavelets is their compact support. Whereas Fouriermethods return global results, with compactly supported wavelets one can easily analyze



4 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.short-lived events or pulses. Wavelet projection methods avoid distortion that might resultfrom a local analysis with a windowedFourier transform. As we shall see in the next section,compact support also makes the periodization of these wavelets an elegant process.1.2 Other Properties of Wavelets.In addition to items (1)-(4) mentioned above, wavelets have a number of other interestingproperties. These will be given without proof. For further details, see Daubechies [2] orChui [1].(5) f'j;kgj�0;k2Z is an orthonormal basis for L2(R).(6) Vj+1 = VjLWj(7) L2(R) = closL2(V0L1j=0Wj):(8) f'0;k;  j;kgj�0;k2Z is an orthonormal basis for L2(R).(9) f'j;k;  l;k; 0 � j � J � l; k 2Zg is an orthonormal basis for L2(R).(10) R1�1 '(x)dx = 1.(11) Pk2Z '0;K = 1.(12) R1�1  (x)xkdx = 0 : k = 0; :::;M � 1.(13) fxkgN�1k=0 2 V0.Item (6) is really the heart of multiresolution analysis and provides wavelet-based analysiswith a distinctly di�erent resolving quality in contrast to spectral methods: to go to ahigher resolution of spatial scale, one simply adds on the next wavelet level (the nextWj) as implied by item (6). At some given level (say, with a representation in Vj), themultiresolution property guarantees all spatial scale information at all coarser levels. Incontrast, with Fourier methods, information about one frequency gives no informationabout other frequencies.



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 5[2]. Periodized Wavelets.The wavelets developed above are de�ned on R. For many applications, however,wavelets de�ned on a periodic domain are needed. Interestingly, the wavelets de�nedabove can be periodized with a Poisson summation technique to give periodic wavelets [2]that possess many of the same properties of their nonperiodic kin. Moreover, for largeenough j, the periodization of 'j;k and  j;k is identical to their nonperiodic forms ex-cept for wrapping around the edges of the domain; and for large enough j, this too canbe reduced to the nonperiodic case for most calculations. As would be expected, manyof the above-mentioned properties are preserved in the periodic case as a result of theconstruction by the \scaling" property of the nonperiodic functions and their compactsupport.The wavelets are periodized as follows:'̂j;k(x) �Xl2Z 'j;k(x � l) and  ̂j;k(x) =Xl2Z 'j;k(x � l):By construction '̂ and  ̂ are periodic and are well de�ned on [0; 1] since ' and  havecompact support. Note that 'j;k = 'j;k0 if k � k0mod(2j). Thus we shall restrict ourattention to 0 � k < 2j . The same holds for the  's. In what follows, the properties ofthe periodic wavelets will be investigated in detail.Periodized wavelet bases are not generated in quite the same way as the nonperiodicversions. In the nonperiodic case, bases are generated by repeated translation and dilationof the mother functions; but this approach is not possible in the periodic case, sinceperiodization does not commute with dilation. Therefore, the wavelet must be �rst dilated,then periodized. Although proof can be shown for the general case, we shall instead showthat the elements in Vj for j � 0 are all constant functions. If dilation commuted withperiodization, this would not be true.Proposition. For j � 0, 'j;k = 2�j2 :Proof. Since 'j;k = 2 j2'(2jx� k);then '̂j;k =Xl2Z 2 j2'(2j(x � l)� k)= 2 j2 2�j�1Xb=0 Xl2Z '(2jx� (l + b2�j ) � k):Letting y = 2jx and summing over l, we obtain'̂j;k = 2 j2 2�j�1Xb=0 1 = 2�j2 :� The most important property to be carried over to the periodized case is, of course,that the new functions form an orthonormal basis for L2[0; 1].



6 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.Proposition. f'j;k : j � 0; 0 � k < 2jg forms an orthonormal basis for L2[0; 1].De�nition:. hf; gi = R f(x)g(x)dx, the standard L2 inner product.Proof. We begin by showing that h'̂j;k; '̂j0; k0i = 0:h'̂j;k; '̂j0; k0i = 2 j+j02 Z 10 Xl;l02Z '(2j(x � l)� k)'(2j0(x � l0) � k0)dx:Let y = x� l0, so thath'̂j;k; '̂j0; k0i = 2 j+j02 Z 10 Xl;l02Z '(2j(x � l)� k)'(2j0(x � l0) � k0)dx= 2 j+j02 Z 1�l0�l0 Xl;l02Z '(2jy + 2j(l � l0) � k)'(2j0y � k0)dx= 2 j+j02 Xr2Z Z 1�1 '(2jy + 2jr � k)'(2j0y � k0)dx=Xr2Z h'j;k+2jr; 'j0;k0i = �jj0�kk0 ;with l � l0 = r. Thus '̂j;k and '̂j0;k0 are orthonormal. Next we show that they form abasis for L2[0; 1].Choose an arbitraryf 2 L2[0; 1]. Now consider~f (x) = f(x)x 2 [0; 1] = 0x =2 [0; 1]:~f 2 L2(R) and f'j;kg form an orthonormal basis for L2(R); so we have ~f =P0�jk2Z h ~f ; 'j;kiwhich, when periodized, becomesf(x) =Xl2Z ~f (x � l) =Xl2Z X0�jk2Zh ~f ; 'j;ki =X0�jk2Zh ~f ; '̂j;ki:This �nal result is actually a �nite sum since, for k � 2j and k � 1 � N , supp('j;k) \supp( ~f ) = ;. Thus f has a representation in the periodized wavelets.� The proof that f'̂j;k;  ̂j0 ;k : j0 � j � 0; 0 � k < 2jg also form an orthonormal basis isnearly identical. Since '(x) =PN�1k=0 hk'(2x � k), we can periodize both sides to get'̂(x) =Xl2Z '(x � l) =Xl Xk hk'(2(x � l)� k) =Xk Xl hk'(2(x� l) � k)=Xk hk'̂1;k(x):



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 7Thus we have an orthonormal basis that still has a scaling relation. This means that incomparison with the nonperiodic case, we have a chain of spaces V̂0 � V̂1 � ::: � L2[0; 1]with the following properties:(13) Sj�0 V̂j = L2[0; 1] with Vj = spanf'̂j;kg2j�1k=0 .(14) Tj2Z V̂j = fconstant functionsg:(15) f(x) 2 Vj , f(2x) 2 Vj+1:(16) By de�ning Ŵj = spanf ̂j;kg2j�1k=0 we see that Ŵj is the orthogonal complement ofV̂j in V̂j+1. So then clos(V0L1j=0Wj) = L2[0; 1]Clearly there are some di�erences between the properties of the periodic case and thenonperiodic case. While they are both multiresolution spaces, the basis functions in thenonperiodic case are all formed by translations and dilations of the mother scaling function', while in the periodic case it is often impossible to derive '̂j+1 from '̂j (for example,consider '̂1 and '̂0, the latter is a constant function and thus unable to represent theformer). It turns out, however, that there is no relation between '̂j+1 and '̂j only forvery small j. For j suitably large, the periodic case actually looks exactly the same as thenonperiodic case. This result is formalized as follows.Proposition. For j � log2(N � 1), '̂j;0 = 'j;0, where '̂ is extended to R by setting it to0 away from the unit interval.Proof. supp('j;0) = [0; 2�j(N � 1)], so for j � log2(N � 1); supp('j;0) = [0; �]; � � 1.Thus '̂j;0(x) =Pl2Z 'j;0(x � l) = 'j;0:� Thus, for large enough j, the periodization will a�ect the functions only by \wrappingthem around" the edges of the domain. This is also a strong argument for using the scalingfunctions as trial-and-test functions when using periodized wavelets. By choosing j well,calculations can be performed as in the nonperiodic case; if desired, a multiresolution canthen be performed easily. Calculations will not be so simple if V̂0Ljk=1 Ŵk is used as atest space, since for low k the basis for Ŵk is not equivalent to the basis for Wk.[3]. Approximation Results and Methods.A function f 2 L2[0; 1] may be projected into the wavelet basis and expressed as f =Pk akj '̂j;k, where akj = hf; '̂j;ki: Since the calculation of ajk is usually hard to evaluateanalytically, numerical methods must be employed. In [9], a method was developed byusing Taylor series expansions to approximate f . The method requires use of the momentequations to make O(hn) approximations for f 2 Cn: Unfortunately, in applications suchas signal processing or any area where only a �nite number of samples of f are provided,this method fails or requires interpolation. As an alternative, a function f given as sampleson D j \ [0; 1] may be approximated by a function ~f 2 V̂j .De�ne the samples of f as f�! 2 R, with the k-th component of f�! = f(k�12j ): Construct'̂j;k��! from '̂j;k as shown previously. This yields, for j > log2(N�2), a linearly independentspanning set forR2j. Further, since supp('̂j;0) = [0; 2�j(N�1), '̂j;k��! takes onlyN�2 values



8 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.on D j and '̂j;k��! is just the k-th forward cyclic permutation of the elements of '̂j;0��!. Theproblem is thus reduced to �nding the unique representation of f�! in terms of f'̂j;k��!g0�k<2j ,which is simply the solution of A v�! = f�!;where A is the very sparse transformation matrix from the standard basis to the '̂�! basis.De�ne ~f (x) =Pk v�!(k)'̂j;k(x): By construction, ~f jDj = f .In summary, this method involves solving the inverse problem with a sparse matrix, andresults in a function ~f with ~f jDj = f: In essence, ~f will be equal to f at all the sampledvalues.We next show the manner in which the periodized wavelets may be used in the contextof functional approximation. Since the wavelets form an orthonormal basis, the orthogonalprojection operators onto Vj and Wj are de�ned respectively asPj(f) = 2j�1Xk=0 hf; '̂j;ki ; Qj (f) = 2j�1Xk=0 hf;  ̂j;ki:As we have already seen, periodized wavelets provide a basis for L2[0; 1] so we have kf �Pjfk2 ! 0, as j ! 1. This is a property of any orthonormal basis of L2, but thisparticular periodized basis has some additional properties.Theorem. If f is a continuous function on the torus, then kf � Pjfk1 ! 0 as j !1.Proof. We begin the proof by showing that our projection operator is bounded. Pj is anintegral operator of the form Pjf(x) = R 10 P2j�1k=0 '̂j;k(y)'̂j;k(x)f(y)dy. Thus,kPjk1 � supx2[0;1] Z 10 j 2j�1Xk=0 '̂j;k(y)'̂j;k(x)jdy� supx2[0;1]j 2j�1Xk=0 '̂j;k(x)jk'̂j;kk1[2�j(N � 1)]� supx2[0;1]2 j2 j 2j�1Xk=0 '̂(2jx � k)j2 j2 k'̂k12 j2 [2�j(N � 1)]� supx2[0;1]j 2j�1Xk=0 '̂(2jx� k)jk'̂k1(N � 1):Now, jP2j�1k=0 '̂(2jx � k)j < (N � 1)k'̂k1 since for j � log2(N � 1) there are at most(N � 1) k's such that for a given x, fxg \ supp('̂j;k) 6= ;. Hence, we havekPjk1 � k'̂k21(N � 1)2:



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 9If we take f 2 Sj2N Vj , then 9J such that 8j � J;Qjf = 0. Thus, Pjf = f for j � J .Sj2N Vj is dense in L2[0; 1] which is dense in C(T), continuous functions of period 1 onthe unit interval, Finally, by the boundedness of Pj , the theorem follows.�Theorem. (Daubechies) If f 2 L1[0; 1], then kf � Pjfk1 ! 0 as j !1 [2].Proof. Since L1[0; 1] � (C[0; 1])?, we havekPjfk1 = supfjhPjf; gij; g continuous; kgk1 � 1g= supfjhf; Pjgij; g continuous; kgk1 � 1g� kfk1kPjgk1:kPjk1 is bounded by the previous theorem. Since Sj2N Vj is dense in L2[0; 1], which isalso dense in L1[0; 1], the uniform bound on Pj is su�cient to prove our result.� These two results are strong, in contrast to the convergence properties of Fourier func-tional approximations. In fact it has been shown that the continuous functions whoseFourier series do not uniformly converge are dense in C(T) [10]. In this sense, waveletsprovide a much more general basis than Fourier bases and hence have potentially broaderapplications.These results suggest that wavelets should do a better job at pointwise approximation,especially for continuous functions. In Figures 1{4, we illustrate how wavelet and Fourierfunctional approximations compare with each other. The �gures are graphs of the pulsefunction P (x) = e�1750(x�12 ) and the step function S(x) = �[0; 12 ] against a 16-term (V4)D6 discrete wavelet approximation and against a 16-term discrete Fourier interpolation.These �gures clearly show that for the C1 pulse function, the wavelets provide a muchcloser pointwise approximation. In fact, the only signi�cant overshoot by the wavelets is atthe base of the pulse. In contrast, the Fourier approximation shows a considerable amountof aliasing spread over the entire domain. Overshoot on the step function is con�ned to aneighborhood of the discontinuity. It is possible to resolve this inaccuracy with the wavelettechniques while maintaining a low number of approximating terms by continuing to takecoarse approximations away from the discontinuity and projecting onto a �ner scale in aneighborhood of the discontinuity. From these graphs we conclude that the �nite-termwavelet functional interpolation is superior to its Fourier counterpart in approximatingfunctions that contain a great deal of local information; moreover, it is better able tocapture function discontinuities.
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Figure 1. 16-term Fourier approximation to P (x)
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Figure 2. V4 wavelet approximation to P (x)
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Figure 3. 16-term Fourier approximation to S(x)
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Figure 4. V4 wavelet approximation to S(x)



12 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.To measure the error to which a truncated projection will approximate a desired func-tion, we shall estimate its convergence. A natural choice of norms with which to measureconvergence is the Sobolev norms. The sth Sobolev norm of a function f is de�ned askfkHs = (Z (1 + x2)sf̂2(x)dx) 12 ;where Hs consists of those functions whose sth Sobolev norm exists and is �nite. In [2]Daubechies states that the norm for Hs is equivalent tokfkHs[0;1] = ( Xj�00�k<2j(1 + 22js)hf;  ̂j;ki2) 12 :Using this result, we easily �nd a bound for kf � Ppfk2 . For f 2 Hs[0; 1],kf � Ppfk2 = k Xj�p0�k<2jhf;  ̂j;kik2= [Xj;k hf;  ̂j;ki2] 12 = [Xj;k 22js22js hf;  ̂j;ki2] 12� [Xj;k 22js22ps hf;  ̂j;ki2] 12= 2�ps[Xj;k 22jshf;  ̂j;ki2] 12 � 2�pskfkHs[0;1]:The same technique may be used to �nd error bounds in the H l norm for l � p:kf � PpfkHl[0;1] = ( Xj�p0�k<2j(1 + 22jl)hf;  ̂j;ki2) 12= (Xj;k (1 + 22jl) (1 + 22j(s�l))(1 + 22j(s�l)) hf;  ̂j;ki2) 12� (1 + 22p(s�l))� 12 (Xj;k (1 + 22sjhf;  ̂j;ki2) 12� 2�p(s�l)kfkHs[0;1]:These bounds are similar to those on Fourier series [11]. As illustrated in Figures 5 through8, numerical results con�rm the similarity of convergence rates for wavelets and Fouriermethods. In these �gures the dashed curve represents the wavelet case. Figures 5 and 6show the L2 di�erence of P (x) and S(x) at dyadic points with their wavelet and Fourierapproximations, as a function of the number of interpolants. The curves show that theconvergence rates are of the same order. Figure 5 also shows that for a lesser number of



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 13terms the two methods are comparable in capturing the features of a smooth pulse in theL2, but as the number of terms is increased the Fourier method supercedes the waveletmethod. Figure 6 shows that the Fourier method is marginally better than the waveletmethod for the step function. The change in the slope of Figure 5 is due to the spectralshape of P (x): it is exponentially decaying while the step function has a spectrum thatdecays monotonically.
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Figure 5. L2 approximation error for P (x). The dashed curve corresponds to the wavelet case.
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Figure 6. L2 approximation error for S(x). Dashed curve is the wavelet case.Figures 7 and 8 show the L1 approximation error. Figure 7 compares the error for thesmooth pulse function P (x) which shows marginally better characteristics for the waveletcase for a small number of interpolants, but for a larger number of modes, the Fouriermethod is clearly superior. As could have been expected, for the less smooth step functionS(x) the situation is the reverse. For a larger number of wavelet interpolants the L1 erroris smaller than the Fourier counterpart, as is evident in Figure 8. The results of thisillustration squares well with the theoretical estimates provided elsewhere in this study.
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Figure 7. L1 approximation error for P (x). Dashed curve corresponds to the wavelet case.
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Figure 8. L1 approximation error for S(x). Dashed curve corresponds to the wavelet case.[4]. Methods for Computing Connection Coe�cients.In wavelet applications, one often must represent operators in terms of wavelets [12].An example of such an application is the Galerkin solution of di�erential equations. Theformulation of solutions will require integrations of the formZ '(d0)j;k0'(d1)j;k1 :::'(dn)j;kn ;where '(d) = dd'dxd . This expression is an n-term connection coe�cient and is denoted by�d1;d2;:::;dnk1;k2;:::;kn: Since ' cannot be represented in close form for N > 2 and, by construction,has limited regularity, analytic calculation of the integral is impossible, and numericalquadrature is often inaccurate. An alternative approach developed by Latto, Resniko�,and Tenenbaum [7] circumvents some of the di�culty by exploiting the scaling relationand the moment condition to reduce the calculation to an eigenvector problem. Theirmethod is designed for nonperiodic compactly supported wavelets. However, by invokingan extension of the earlier result regarding the equivalence of periodized and nonperiodizedwavelets, one may infer that for j � log2((N � 1)n), the periodized case yields the same



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 15result as the nonperiodized case. Here we follow the procedure outlined in [7]. The 2-tuplecase will be shown in detail; it is a simple exercise to extend the method to the n-tuplesituation. Several tabulated connection coe�cients are included in the appendix.First, integration by parts is performed repeatedly on the above integral to obtain�d1;d2k1;k2 = (�1)d1�0;d2+d1k1;k2 ;where the compact support of the wavelets has been invoked. By changing variables, wefurther reduce the equations to�0;dk1;k2�0;d0;k2�k1 � �dk2�k1 ;where d = d1 + d2;From these relations it is clear that any 2-tuple can be represented by a �dk.To construct the eigenvector problem, �x d, then solve for f�dkg0�k<2j by creating asystem of 2j homogeneous relations in �dk and enough inhomogeneous equations to reducethe dimension of the associated eigenspace to 1. Although we are using the connection-coe�cient method for the nonperiodized case, we are computing them for the periodic case(by equivalence), which is where the bounds on k come into play.4.1 Formation of Homogeneous Relations.Fix d; j 2 N, such that '(d)j is well de�ned. To simplify notation, denote '(d)j;k � �dk. In[7] it is suggested, without proof, that this method also holds for the �rst d for which �dis discontinuous. For low-order di�erential equations, however, D6 or D8 wavelets shouldprovide su�cient regularity. Since for every 0 � k < 2j ,�dk = Z �0(x)�dk(x)dx = Z (N�1Xm=0 hm�m(2x))(N�1Xl=0 hl�dl+2k(2x))2dd(2x)= 2dXm Xl hmhl Z �m(2x)�dl+2k(2x)d(2x)= 2dXm Xl hmhl Z �0(�)�dl+2k�m(�)d�;thus, �dk = 2d N�1Xm=0N�1Xl=0 hmhl�dl+2k�mIn the above discussion, the integration is over the real line and has been omitted tosimplify notation.This linear homogeneous system can be represented asA�d�! = 2�d�d�!;where �d�! = f�dkg0�k<2j : It is worth noting here that if one needs to compute an n-tupleconnection coe�cient for j < log2((N�1)n), then the periodic scaling relation can be usedto resolve each 'j;k into the sum of 'j0;k's with j0 � log2((N � 1)n): Thus, the reductionto the nonperiodic case is a universally applicable method.



16 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.4.2 Generating Inhomogeneous Relations.To generate the inhomogeneous equations, we must �rst assume d � M � 1. Themoment condition then guarantees thatxd =Xl2Z ~Mdl ;where ~Mdl = hxd; '0;li: Setting x = 2j� and de�ning Mdl = hxd;�li, we have~Mdl = 2dj _2 j2 h�d;�li = 2dj _2 j2Mkl :This gives the relation �d =Xl2Z Mdl �l(�)which, when di�erentiated d times, yieldsd! =Xl2Z Mdl �dl (�):Multiplying by �00 and integrating, we obtainXl2Z Mdl Z �00(�)�dl (�)d� = d!Z 'j;0(�)d� = d!2�j2 :Thus PlMdl �dl = d!2�j2 : The sum over l is actually over jlj � N � 2 since the ''s arecompactly supported. Thus, by changing the indices of summation by m = l+1+(N �2),the inhomogeneous equations are 2N�3Xm=1 �dmMdm�1�(N�2);withMdl = 2�j(2d+1)2 ~Mdl :The linear system formed by the 2j homogeneous equations and the above inhomogeneousequations has eigenspace dimension equal to 1. Thus, all that remains to specify the systemis to calculate ~Mdl : ~Mkl = Z xd'(x� l)dx = Z (y + n)k'(y)dy= Z kXj=0�kj�yjnk�j'(y)dy= kXj=0�kj�nk�j ~M j0 :



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 17Since ~M0l = 1 is a previously stated property of the ', the above relation is used to evaluaterecursively ~Mdl for all l.The linear system is now explicitly stated and guarantees exact values of �dk. Notethat while the scaling relation, which is used to generate the homogeneous relations, existsfor periodized wavelets, currently nothing is analogous to the moment condition whichmay be used to generate the necessary inhomogeneous equations. One possible approachis to use the scaling equation linked with the fact that V̂j = fconstant functionsg forj � 0 to �nd additional inhomogeneous relations. However, problems arise with relatingR '̂j+1;0dx to R '̂j;0dx; since dilation does not commute with periodization. While thismethod could probably be worked out, the periodic case can always be reduced to anequivalent nonperiodic case for which the method is already well de�ned. Thus, to computean n-term connection coe�cient for periodized wavelets, one need only resolve the termsinto V̂j , for some j � log2(N � 1)n and apply the above method. This approach takes fulladvantage of the equivalence of periodic and nonperiodic scaling functions and circumventsthe need for a connection coe�cient method particular to periodized wavelets.



18 GEORGE SCHLOSSNAGLE DEPARTMENT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY BALTIMORE MD 21218 U.S.A. JUAN MARIO RESTREPO MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A. GARY K. LEAF MCS DIVISION ARGONNE NATIONAL LABORATORY ARGONNE IL 60439 U.S.A.Appendix ATables of Connection Coe�cients.Connection coe�cients: 2-tuples for p=0, N=6.�0;11 =� 3:4246575342471D� 04�0;12 =� 1:4611872146119D� 02�0;13 =+ 0:14520547945205�0;14 =� 0:74520547945205�0;15 =� 3:2049276679778D� 15�0;16 =+ 0:74520547945206�0;17 =� 0:14520547945205�0;18 =+ 1:4611872146119D� 02�0;19 =+ 3:4246575342476D� 04residual = 1.9680979936043D-16for the least-squares solution of the overdetermined system.�1;11 =+ 5:3571428571412D� 03�1;12 =+ 0:11428571428572�1;13 =� 0:87619047619048�1;14 =+ 3:3904761904762�1;15 =� 5:2678571428572�1;16 =+ 3:3904761904762�1;17 =� 0:87619047619048�1;18 =+ 0:11428571428571�1;19 =+ 5:3571428571430D� 03residual = 1.1362438767648D-16



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 19�2;01 =+ 5:3571428571412D� 03�2;02 =+ 0:11428571428572�2;03 =� 0:87619047619048�2;04 =+ 3:3904761904762�2;05 =� 5:2678571428572�2;06 =+ 3:3904761904762�2;07 =� 0:87619047619048�2;08 =+ 0:11428571428571�2;09 =+ 5:3571428571430D� 03residual = 1.1362438767648D-16Tables of two-tuples and three-tuples shall be available as ascii �les. Requests for connec-tion coe�cients tables should be made after August 1994. Sendmail to wavelets@mcs:anl:gov
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