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[1]. Introduction.

Wavelets are finding a well-deserved niche in such areas of applied mathematics and
engineering as approximation theory, signal analysis, and projection techniques for the
solution of differential equations. While the concept of wavelets is not conceptually new
[1] [2] [3], the past fifteen years have produced much of the theoretical underpinnings for
the concept, as well as the generation of new wavelet families and the exploration of their
potential in various areas of applied science [1] [2] [3] [4] [5].

Wavelets have several advantages: (1) they have compact support or exponentially
decaying support; (2) their continuity properties may easily be increased, albeit at the
expense of a larger domain of support; (3) for a given spline order, a complete basis
may easily be generated by simple recurrence relations; (4) in the context of projection
techniques, their convergence properties are as good as or better than Fourier methods,
and they permit the analysis of extremely local functional behavior without the need for
windowing and with little or no bias from global behavior; and (5) the manner in which
the space is broken down into a family of multiply-enclosed subspaces enables spatial or
temporal function multiresolution analysis.

To date, research has focused on compactly supported wavelets [2]; basic wavelets [3];
and smooth, exponentially decaying wavelets [6]. All of these wavelet families form a basis
for L?*(R). Work is currently under way on the generation of wavelets that are capable
of spanning other classes of function space and/or domain. For example, Meyer [3] has
shown how compactly supported wavelets can be made to form a basis for L*([0,1]). He
generates the periodized family by wrapping the L?(R) basis on a torus.

This report shows in detail how such a wrapping procedure is accomplished using
Daubechies wavelets. The properties of the resulting wavelets on L*([0,1]) are then con-
trasted with more standard Daubechies wavelets, which are now extremely popular in the
signal processing community. This study also compares the convergence characteristics of
periodized wavelet interpolation of functions with the characteristics of the Fourier spectral
method.

The final section of this report is devoted to a derivation and numerical calculation of
connection coefficients involving periodized Daubechies wavelets. Connection coefficients
are matrix structures that result from the evaluation of inner products of the form

(do) (d1)  (dn)
/¢]’k0¢]’k1¢]’kndx7

where d; is the number of differentiation with respect to = of the scaling function ¢ =
@(x). Inner products arise naturally in the context of the Galerkin solution of differential
equations. The name for these inner products was coined by Latto et al. [7], who developed
a computational method that avoids the pitfalls of quadrature techniques. We use the
technique of Latto et al. to calculate connection coefficients for the periodized Daubechies
wavelets. A sample table of these coefficients appears in the appendix. Also included in the
appendix is information on how to obtain these and other tabulated values of connection
coefficients from the Mathematics and Computer Science Division at Argonne National
Laboratory.

1.1 Wavelets and Multiresolution Analysis.



TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS 3

The value of wavelets hinges on their ability to perform multiresolution analysis. A
multiresolution analysis is a nested sequence

Vo C Vi C...C L*(R)

satisfying the following properties:

(1) m]‘eZ Vi=0.

(2) closrz(U;ez Vi) = LA(R).

(3) f() €V, & f(20) € Vip.

(4) There is a function ¢ € Vj such that{po r(z) = ¢(x — k)}rez forms a Riesz basis
for V4.

The term ¢ is called the mother scaling function since, from (3), there exists {hy} € I*

such that
o(0) =V S hapl22 — ).
keZ

This relation, called the scaling relation, will also hold for ¢(2x) and, by induction, for
©(272). In accordance with the notation in (4), we denote the translates and dilations of

p by o
win(x) =22p(2c — k).

The set {¢; k}rez forms a Riesz basis for V;. We define W; to be the orthogonal comple-
ment of V; with respect to Vj4;. Just as Vj is spanned by dilations and translations of
the mother scaling function, so are the W;’s spanned by translations and dilations of the
mother wavelet . The mother wavelet is defined by

() =2 Z(—l)k_lh—k+1+2M991,k($)7

with M a particular integer. Daubechies [2] constructed compactly supported wavelets and
scaling functions using a finite set of nonzero {hk}kN:_Ol scaling parameters with N = 2M

and Efc\f:_ol hi =+v/2. With these scaling parameters, the recursion formulas generate the
desired orthogonal wavelets and scaling functions with supp(yp) = [0, N — 1]. Henceforth,
these will be the wavelets we shall use, which we refer to as Dy or Daubechies wavelets
of order N. Values for ¢ are calculated using the scaling relation as indicated in the
following procedure. First, the values it takes are determined at integer points. Then
at the dyadic rationals at level 1 (the dyadic rationals at level j are D; = {2—"}};662).
Using that information, we calculate the values at Dy and so on, until ¢ is defined at
the dyadic rationals at all levels. Since the dyadics are dense in the reals, we simply
extend ¢ continuously to R. This procedure creates a function that is continuous but not
differentiable for N = 4, differentiable but not twice differentiable for N = 6, and with
increasing regularity for increasing N [2]. The nature of the scaling relation guarantees
that ¢ will be discontinuous in some derivative [8]. This procedure is easily accomplished
computationally.

Another pleasing feature of these wavelets is their compact support. Whereas Fourier
methods return global results, with compactly supported wavelets one can easily analyze
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short-lived events or pulses. Wavelet projection methods avoid distortion that might result
from a local analysis with a windowed Fourier transform. As we shall see in the next section,
compact support also makes the periodization of these wavelets an elegant process.

1.2 Other Properties of Wavelets.

In addition to items (1)-(4) mentioned above, wavelets have a number of other interesting
properties. These will be given without proof. For further details, see Daubechies [2] or

Chui [1].

(5) {©j.x}j>0,kez is an orthonormal basis for L*(R).
(6) Vit =V, W, .
7 LZ(R) = CZOSL2(V0 @j:o W])

Item (6) is really the heart of multiresolution analysis and provides wavelet-based analysis
with a distinctly different resolving quality in contrast to spectral methods: to go to a
higher resolution of spatial scale, one simply adds on the next wavelet level (the next
W;) as implied by item (6). At some given level (say, with a representation in V;), the
multiresolution property guarantees all spatial scale information at all coarser levels. In
contrast, with Fourier methods, information about one frequency gives no information
about other frequencies.
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[2]. Periodized Wavelets.

The wavelets developed above are defined on R. For many applications, however,
wavelets defined on a periodic domain are needed. Interestingly, the wavelets defined
above can be periodized with a Poisson summation technique to give periodic wavelets [2]
that possess many of the same properties of their nonperiodic kin. Moreover, for large
enough j, the periodization of ¢;; and v;; is identical to their nonperiodic forms ex-
cept for wrapping around the edges of the domain; and for large enough j, this too can
be reduced to the nonperiodic case for most calculations. As would be expected, many
of the above-mentioned properties are preserved in the periodic case as a result of the
construction by the “scaling” property of the nonperiodic functions and their compact
support.

The wavelets are periodized as follows:

Gin(z) =) ejnle = and dip(e) = Y gjnla —1).
leZ ez
By construction ¢ and ;/A) are periodic and are well defined on [0, 1] since ¢ and 1 have
compact support. Note that ¢, = @ if & = k'mod(2’). Thus we shall restrict our
attention to 0 < k < 2/. The same holds for the ¢’s. In what follows, the properties of
the periodic wavelets will be investigated in detail.

Periodized wavelet bases are not generated in quite the same way as the nonperiodic
versions. In the nonperiodic case, bases are generated by repeated translation and dilation
of the mother functions; but this approach is not possible in the periodic case, since
periodization does not commute with dilation. Therefore, the wavelet must be first dilated,
then periodized. Although proof can be shown for the general case, we shall instead show
that the elements in V; for 5 < 0 are all constant functions. If dilation commuted with
periodization, this would not be true.

Proposition. For j <0, ¢, = 2%
Proof. Since

ik =25p(2 e — k),
then

0

The most important property to be carried over to the periodized case is, of course,
that the new functions form an orthonormal basis for L?[0, 1].
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Proposition. {c,oj k1 >0,0<k<2/} forms an orthonormal basis for L*[0,1].
Definition:. (f,g) = | f(z)g(x)dz, the standard L? inner product.
Proof. We begm by showmg that (4;r, @7, k") = 0:

(Bihr i’ k) (2 (2 — 1) = k)p(27 (2 = 1) — k') da.

0 ll’EZ

Let y = x — I', so that

(P, pd" k) (2 (x — 1) — k)p(27 (2 — I') — k' )d
0 ll’EZ
e(2y +29(1=1') — k)p(2) y — k')dx
U ez
= ©(2y + 27 — k)c,o(Zj/y — k"dx
re’
= Z (©jkt2ir @i k) = 01 Ok,

reZ

with [ — 1" = r. Thus $;; and ¢ s are orthonormal. Next we show that they form a
basis for L?[0,1].
Choose an arbitrary f € L?[0,1]. Now consider

Fw) = flo)e € [0.1] = 0 ¢ [0,1].

fe L*(R) and {p;;} form an orthonormal basis for L?(R), so we have f= 20§j<f, ©jik)
kEZ

which, when periodized, becomes

=S Fe-0=3"S{Fein) =D (F. i)

= 1€7 0<j 0<j
kEZ kEZ

This final result is actually a finite sum since, for k¥ > 2/ and k¥ < 1 — N, supp(¢;x) N

supp(f) = (). Thus f has a representation in the periodized wavelets.
0

The proof that {cﬁj,k,;/;j/,k :j'>37>0,0 <k < 2} also form an orthonormal basis is

nearly identical. Since ¢(x) = kN:_Ol hre(2x — k), we can periodize both sides to get
= ple-1)= ZZhW 2w —1)—k) ZZhW 2w —1) — k)
€z

= Z hip k()
%
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Thus we have an orthonormal basis that still has a scaling relation. This means that in
comparison with the nonperiodic case, we have a chain of spaces Vy C V; C ... C L?[0,1]
with the following properties:

(13) U]>0 V = L?[0,1] with V; = span{$;, k}k

(14) Njez V; = {constant functions}.

(15) f(z) € Vj & f(22) € Vit

(16) By deﬁnlng W = span{;/)] k}k 0 we see that W is the orthogonal complement of
Vi in Vii1. So then clos(Vy @ W;) = L*0,1]

Clearly there are some differences between the properties of the periodic case and the
nonperiodic case. While they are both multiresolution spaces, the basis functions in the
nonperiodic case are all formed by translations and dilations of the mother scaling function
@, while in the periodic case it is often impossible to derive ¢, from ¢; (for example,
consider @1 and pg, the latter is a constant function and thus unable to represent the
former). It turns out, however, that there is no relation between ¢;1; and ¢; only for
very small j. For j suitably large, the periodic case actually looks exactly the same as the
nonperiodic case. This result is formalized as follows.

Proposition. For j > log:(N —1), ¢j 0 = ;0. where ¢ is extended to R by setting it to
0 away from the unit interval.

Proof. supp(¢jo) = [0,277(N —1)], so for j > log2(N — 1), supp(pjo) = [0,8],3 < 1.
Thus ¢j0(x) = > cpwjole —1) = @j0.
0

Thus, for large enough j, the periodization will affect the functions only by “wrapping
them around” the edges of the domain. This is also a strong argument for using the scaling
functions as trial-and-test functions when using periodized wavelets. By choosing j well,
calculations can be performed as in the nonperiodic case; if desired, a multiresolution can
then be performed easily. Calculations will not be so simple if Vo @k 1 Wi is used as a

test space, since for low &k the basis for Wi is not equivalent to the basis for W.

[3]. Approximation Results and Methods.

A function f € L?[0,1] may be projected into the wavelet basis and expressed as f =
>k Ok; Pj .k, Where ap; = (f, @ x). Since the calculation of a;, is usually hard to evaluate
analytically, numerical methods must be employed. In [9], a method was developed by
using Taylor series expansions to approximate f. The method requires use of the moment
equations to make O(h™) approximations for f € C™. Unfortunately, in applications such
as signal processing or any area where only a finite number of samples of f are provided,
this method fails or requires interpolation. As an alternative, a function f given as samples
on D; N[0, 1] may be approximated by a function fe V

Define the samples of f as f € R, with the k-th component of f = f( ) Construct

.k from ;1 as shown prev1ous1y. This yields, for j > log2(N — 2), a linearly independent
—

spanning set for R? Further, since supp($;,0) = [0,277(N—1), $; x takes only N —2 values
—



8 GEORGE SCHLOSSNAGLE

on D; and ¢ is just the k-th forward cyclic permutation of the elements of ¢;,. The

— —
problem is thus reduced to finding the unique representation of f in terms of {¢; s }o<r<2i,
— - -

which is simply the solution of

=/,
H
where A is the very sparse transformation matrix from the standard basis to the ¢ basis.

RN
Define f( )=D>. v ( )¢;.k(x). By construction, JE|JID4 = f.

In summary, thls method involves solving the inverse problem with a sparse matrix, and
results in a function f with f|@ = f. In essence, f will be equal to f at all the sampled
values.

We next show the manner in which the periodized wavelets may be used in the context
of functional approximation. Since the wavelets form an orthonormal basis, the orthogonal
projection operators onto V; and W; are defined respectively as

2/ 1 2/ 1
Pi(f) =Y (fin). Qi(F) =Y (f i)
k=0 k=0

As we have already seen, periodized wavelets provide a basis for L%[0,1] so we have || f —
P;flla — 0, as j — oo. This is a property of any orthonormal basis of L?, but this
particular periodized basis has some additional properties.

Theorem. If f is a continuous function on the torus, then ||f — Pjf|| — 0 as j — oo.

Proof. We begin the proof by showing that our projection operator is bounded. P; is an

integral operator of the form P; f(x fo Ek o 95], (y)¢;.k(x)f(y)dy. Thus,
1 291
Il < supacoy | 132 2ra(0)psntall

2/ —1 ‘

< suppepoayl Y Gin(@l@nllec27 (N = 1)
k=0
S 2i 4 ‘

Ssupxem??lz (270 — B)[25 ||| o2* [27(N — 1))
2/ —1

< supeefo]| Z P22 = B)[|p)l oo (N —1).

Now, |Ei]:_01 G272 — k)| < (N — 1)||¢|loo since for j > log,(N — 1) there are at most
(N —1) k’s such that for a given z, {2} N supp($; i) # 0. Hence, we have

1Pillce < IGII5(N = 1)7.
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If we take f € Ujeijv then 3J such that Vy > J,Q;f = 0. Thus, P;f = f for y > J.
U en Vj is dense in L?[0,1] which is dense in C'(T), continuous functions of period 1 on
the unit interval, Finally, by the boundedness of P;, the theorem follows.

0
Theorem. (Daubechies) If f € L'[0,1], then ||f — P;f|l1 — 0 as j — oo [2].
Proof. Since L'[0,1] C (C[0,1])*, we have

| P; flli = sup{|{(P;f,q)|; g continuous,||g|lec < 1}
= sup{|(f, Pjg)|; g continuous, ||¢|loc < 1}
<Al Pigll co-

|| Pj]|oc is bounded by the previous theorem. Since UjeN V; is dense in L?[0,1], which is

also dense in L'[0,1], the uniform bound on P; is sufficient to prove our result.
0

These two results are strong, in contrast to the convergence properties of Fourier func-
tional approximations. In fact it has been shown that the continuous functions whose
Fourier series do not uniformly converge are dense in C(T) [10]. In this sense, wavelets
provide a much more general basis than Fourier bases and hence have potentially broader
applications.

These results suggest that wavelets should do a better job at pointwise approximation,
especially for continuous functions. In Figures 1-4, we illustrate how wavelet and Fourier
functional approximations compare with each other. The figures are graphs of the pulse

function P(x) = e~ 1750(e—3

) and the step function S(z) = Zlo,1] against a 16-term (V)
Dg discrete wavelet approximation and against a 16-term discrete Fourier interpolation.
These figures clearly show that for the C'*® pulse function, the wavelets provide a much
closer pointwise approximation. In fact, the only significant overshoot by the wavelets is at
the base of the pulse. In contrast, the Fourier approximation shows a considerable amount
of aliasing spread over the entire domain. Overshoot on the step function is confined to a
neighborhood of the discontinuity. It is possible to resolve this inaccuracy with the wavelet
techniques while maintaining a low number of approximating terms by continuing to take
coarse approximations away from the discontinuity and projecting onto a finer scale in a
neighborhood of the discontinuity. From these graphs we conclude that the finite-term
wavelet functional interpolation is superior to its Fourier counterpart in approximating
functions that contain a great deal of local information; moreover, it is better able to
capture function discontinuities.
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To measure the error to which a truncated projection will approximate a desired func-
tion, we shall estimate its convergence. A natural choice of norms with which to measure
convergence 1s the Sobolev norms. The sth Sobolev norm of a function f is defined as

Wl = / (14 22)* P(a)da) b,

where H® consists of those functions whose sth Sobolev norm exists and is finite. In [2]
Daubechies states that the norm for H® is equivalent to

1A ooy = € Y (L422°)(f,451)%)2.
§>0
0<k<2’

Using this result, we easily find a bound for ||f — P, f||2 . For f € H?[0,1],

If =Ppfla= 11 > (fdiele

j>p0<k<2’
h 211 22j8 h 211
=D (£ =0 22?<f7¢j,k> E
Jk Jk
22js . )
<[ 255 W Y k)*]2
7,k
=27 Y 22 (F,1h0)°]7 <270 Fll e po.ny.
7,k

The same technique may be used to find error bounds in the H! norm for [ < p:

1f = Pofllarony = ( > (1422 (f, ;4077

izp
0<k<2!

. 1 22j(s—l) .
— (2};(1 + 2%0%“7 b x)?)
Js

<(1+ 2219(3—1))—%(2(1 + 223j<f, @/A)j,k>2)%

7,k
< 27D Fll arepo -

NI

These bounds are similar to those on Fourier series [11]. As illustrated in Figures 5 through
8, numerical results confirm the similarity of convergence rates for wavelets and Fourier
methods. In these figures the dashed curve represents the wavelet case. Figures 5 and 6
show the L? difference of P(x) and S(z) at dyadic points with their wavelet and Fourier
approximations, as a function of the number of interpolants. The curves show that the
convergence rates are of the same order. Figure 5 also shows that for a lesser number of
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terms the two methods are comparable in capturing the features of a smooth pulse in the
L,, but as the number of terms is increased the Fourier method supercedes the wavelet
method. Figure 6 shows that the Fourier method is marginally better than the wavelet
method for the step function. The change in the slope of Figure 5 is due to the spectral
shape of P(x): it is exponentially decaying while the step function has a spectrum that
decays monotonically. 00 ‘ ‘ ‘ ‘

or (Log scale)

L2 Err

2.0 3.0 4.0 5.0 6.0 7.0
Number of Interpolants (Log scale)

Figure 5. L? approximation error for P(z). The dashed curve corresponds to the wavelet case.
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Figure 6. L? approximation error for S(z). Dashed curve is the wavelet case.

Figures 7 and 8 show the L; approximation error. Figure 7 compares the error for the
smooth pulse function P(x) which shows marginally better characteristics for the wavelet
case for a small number of interpolants, but for a larger number of modes, the Fourier
method is clearly superior. As could have been expected, for the less smooth step function
S(x) the situation is the reverse. For a larger number of wavelet interpolants the Ly error
is smaller than the Fourier counterpart, as is evident in Figure 8. The results of this
illustration squares well with the theoretical estimates provided elsewhere in this study.
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Figure 7. L' approximation error for P(z). Dashed curve corresponds to the wavelet case.
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Figure 8. L' approximation error for S(z). Dashed curve corresponds to the wavelet case.

[4]. Methods for Computing Connection Coefficients.

In wavelet applications, one often must represent operators in terms of wavelets [12].
An example of such an application is the Galerkin solution of differential equations. The
formulation of solutions will require integrations of the form

(do), (d1)  (dn)
/Sojalgog‘ojalsl"'@jakn’

d
where ¢(®) = ZTf. This expression is an n-term connection coefficient and is denoted by

k1,k2,:::’,ZZ' Since ¢ cannot be represented in close form for N > 2 and, by construction,
has limited regularity, analytic calculation of the integral is impossible, and numerical
quadrature is often inaccurate. An alternative approach developed by Latto, Resnikoftf,
and Tenenbaum [7] circumvents some of the difficulty by exploiting the scaling relation
and the moment condition to reduce the calculation to an eigenvector problem. Their
method is designed for nonperiodic compactly supported wavelets. However, by invoking
an extension of the earlier result regarding the equivalence of periodized and nonperiodized

wavelets, one may infer that for j > log2((N — 1)n), the periodized case yields the same
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result as the nonperiodized case. Here we follow the procedure outlined in [7]. The 2-tuple
case will be shown in detail; it is a simple exercise to extend the method to the n-tuple
situation. Several tabulated connection coefficients are included in the appendix.
First, integration by parts is performed repeatedly on the above integral to obtain
di,ds dy A 0,d2td
A = (CDTALTRD™,

where the compact support of the wavelets has been invoked. By changing variables, we
further reduce the equations to

0,d 0,d d B
Akl,k2Ao fey—ky = Ay, g, where d = dy + ds,

From these relations it is clear that any 2-tuple can be represented by a A¢.

To construct the eigenvector problem, fix d, then solve for {A{}j<,yi by creating a
system of 2/ homogeneous relations in A¢ and enough inhomogeneous_equations to reduce
the dimension of the associated eigenspace to 1. Although we are using the connection-
coefficient method for the nonperiodized case, we are computing them for the periodic case
(by equivalence), which is where the bounds on k& come into play.

4.1 Formation of Homogeneous Relations.
Fix d, j € N, such that c,ogd) is well defined. To simplify notation, denote c,ogji,g =®¢. In
[7] it is suggested, without proof, that this method also holds for the first d for which ®¢

is discontinuous. For low-order differential equations, however, D¢ or Dg wavelets should
provide sufficient regularity. Since for every 0 < k < 27,

N—-1

A :/cpo(x)q)g / Z B ®n(22) Z Bl (20))2%d(22)
= QdZZh hl/ (22)®f, 5, (22)d(22)
ZdZZh hl/ )(I)I—I—Zk m(C)dC;

N—-1N-1
thus, Af =293 "> " b iy oy,

m=0 [=0

In the above discussion, the integration is over the real line and has been omitted to
simplify notation.
This linear homogeneous system can be represented as

AN =274\,
— —

where y} = {Az}0§k<2j. It is worth noting here that if one needs to compute an n-tuple

connection coefficient for j < log2((N —1)n), then the periodic scaling relation can be used
to resolve each ¢; ; into the sum of ¢} ;’s with j' > log2((N — 1)n). Thus, the reduction
to the nonperiodic case is a universally applicable method.
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4.2 Generating Inhomogeneous Relations.
To generate the inhomogeneous equations, we must first assume d < M — 1. The
moment condition then guarantees that

vt = Y I

leZ

where Mld = (2% 00 ). Setting x = 2/( and defining M = (z¢, ®;), we have

M= 2935 (¢4 @) = 2935 M}

This gives the relation

¢t =) M{®(Q)

€z
which, when differentiated d times, yields
=S o)

leZ

Multiplying by ®9 and integrating, we obtain

S [ aheioric =t [ esalcrdc = a2

leZ

Thus Y, M{AY = 4127 . The sum over [ is actually over |l| < N — 2 since the ¢’s are
compactly supported. Thus, by changing the indices of summation by m =+ 1+ (N —2),
the inhomogeneous equations are

2N -3

Z AZzMgz—l—(N—z)v
m=1
Wlth Mld = 2_j 22d+1 Mld

The linear system formed by the 27 homogeneous equations and the above inhomogeneous
equations has eigenspace dimension equal to 1. Thus, all that remains to specify the system
is to calculate M
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Since M? = 1is a previously stated property of the @, the above relation is used to evaluate
recursively M & for all [.

The linear system is now explicitly stated and guarantees exact values of A¢. Note
that while the scaling relation, which is used to generate the homogeneous relations, exists
for periodized wavelets, currently nothing is analogous to the moment condition which
may be used to generate the necessary inhomogeneous equations. One possible approach
i1s to use the scaling equation linked with the fact that V] = {constant functions} for
J < 0 to find additional inhomogeneous relations. However, problems arise with relating
[ @it1,0dx to [¢jode, since dilation does not commute with periodization. While this
method could probably be worked out, the periodic case can always be reduced to an
equivalent nonperiodic case for which the method is already well defined. Thus, to compute
an n-term connection coefficient for periodized wavelets, one need only resolve the terms
into Vj, for some j > loga(N — 1)n and apply the above method. This approach takes full
advantage of the equivalence of periodic and nonperiodic scaling functions and circumvents
the need for a connection coefficient method particular to periodized wavelets.
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APPENDIX A

Tables of Connection Coeflicients.

Connection coefficients: 2-tuples for p=0, N=6.

AP = — 3.4246575342471D — 04
APt = — 1.4611872146119D — 02
AYY =+ 0.14520547945205
APt = — 0.74520547945205
AP = —3.2049276679778D — 15
AP = +0.74520547945206
AP = —0.14520547945205
Ap' =+ 1.4611872146119D — 02
A" = 4 3.4246575342476 D — 04

residual = 1.9680979936043D-16

for the least-squares solution of the overdetermined system.

APt =4+ 5.3571428571412D — 03
AVt =+ 0.11428571428572

Ayt = —0.87619047619048

A} =+ 3.3904761904762

Ayt = — 5.2678571428572

Ay =+ 3.3904761904762

APt = —0.87619047619048

Ayt =+ 0.11428571428571

Ayt =+ 5.3571428571430D — 03

residual = 1.1362438767648D-16
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A?? = 4 5.3571428571412D — 03
A2 = 4+ 0.11428571428572

AyY = — 0.87619047619048

A2 = 4+ 3.3904761904762

AP? = — 5.2678571428572

A2 =+ 3.3904761904762

APY = — 0.87619047619048

A2 = +0.11428571428571

A2 = 4+ 5.3571428571430D — 03

residual = 1.1362438767648D-16

Tables of two-tuples and three-tuples shall be available as ascii files. Requests for connec-
tion coefficients tables should be made after August 1994. Send mail to wavelets@Qmes.anl.govl}
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