
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439-4801ANL-93/41Early Experiences with the IBM SP1 and theHigh-Performance SwitchEdited byWilliam Gropp
November 1993This work was supported in part by the O�ce of Scienti�c Comput-ing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 21.1 Comments on Timings : 62 Programming Packages and Tools 62.1 Graphical Display of System Use : 62.2 Parallel Unix Tools : 72.3 BlockSolve : 82.4 Fortran M : 82.5 Chameleon : 92.6 Parallel Research on Invariant Subspace Methods : : : : : : : : : : : : : : : 102.7 MPI : 122.8 PCN : 122.9 Portable, Extensible Tools for Scienti�c Computing (PETSc) : : : : : : : : 132.10 p4 : 133 Applications 143.1 Computational Electromagnetics : 143.2 Massively Parallel Mesoscale Model : 153.3 Monte Carlo Calculations of Nuclear Ground States : : : : : : : : : : : : : 163.4 Parallel Community Climate Model : 173.5 Phylogenetic Trees : 183.6 Superconductivity|Elastic String Model : 213.7 Vortex Dynamics in High-Temperature Superconductors : : : : : : : : : : : 213.8 Superconductivity|Vortex Structures : 243.9 Parallel Theorem Prover : 254 Summary 26References 26
iii

Early Experiences with the IBM SP1 and the High-Performance SwitchEdited byWilliam GroppAbstractThe IBM SP1 is IBM's newest parallel distributed-memory computer. As part of ajoint project with IBM, Argonne took delivery of an early system in order to evaluate thesoftware environment and to begin porting programming packages and applications tothis machine. This report discusses the results of those e�orts once the high-performanceswitch was installed. An earlier report (ANL/MCS-TM-177) emphasized software us-ability and the initial ports to the SP1. This report contains performance results anddiscusses some applications and tools not covered in TM 177.PictureThe picture on the title page shows the early time dynamics of vortex trapping by twinboundary defects in a high-temperature, Type-II superconductor. See Section 3.7 for moreinformation. Thanks to David Levine for this picture.ContributorsChristian Bischof Kimmo ForsmanLori Freitag William GroppLauri Kettunen Gary LeafDavid Levine Ewing LuskWilliam McCune John MichalakesRoss Overbeek Mario PalumboSteven Pieper Paul PlassmannXiaobai Sun Steven TueckeRobert Wiringa 1

1 IntroductionThe IBM SP1 is a new parallel computer designed to make the best use of IBM's powerfulRISC technology combined with a high-speed switch.Special features of this machine are (numbers are for the ANL machine)� large memory per node (128 MBytes),� local disks on each node (1 GByte),� full Unix on each node (IBM AIX 3.2.4),� high-performance nodes,� high-performance switch,� high I/O bandwidth o� nodes, and� relatively mature software environment.This report describes the applications and programming packages that researchers atArgonne National Laboratory ported to the SP1 after the high-performance switch wasdelivered. A previous report [8] discussed the SP1 without the high-performance switch.This report discusses early experiences with the SP1; most of the tools and applicationsdiscussed in this paper have not yet been tuned for the SP1. Performance results areincluded for some of the applications; these should not be considered indicative of anythingother than what can be accomplished with an initial port. See Section 1.1 below for morediscussion on the benchmarks.The software packages and tools are shown in Table 1. The applications (all parallel)are shown in Table 2Three \transport layers" are available for use with the high-performance switch (hence-forth just \switch"). The �rst of these is IP, providing enhanced performance to codewritten using Unix sockets for interprocessor communication. The second is EUI, IBM'smessage-passing system. IP and EUI applications may share the switch; multiple IP appli-cations may share both nodes and the switch. IP and EUI run under the \Parallel OperatingEnvironment," or POE. POE includes a number of tools, such as a parallel debugger andParaGraph-like [12] visualization tool (vt). These two transport layers share a commoninterface to the switch known as lightspeed.Figure 1 shows a display from xpdbx, the parallel debugger for the IBM SP1. A valuablefeature of this debugger is that it displays the location in the code of each of the processors.In the example shown here, four processors are executing a program, with \hands" pointing2

Table 1: Parallel tools described in this paperBlockSolve Parallel sparse, symmetric linear systemsChameleon Lightweight and portable message-passingsystemFortran M Parallel extensions to FortranGraphical display of system Show usage of EUIH message-passing systemMPI Message-passing interface draft standardParallel UNIX tools Parallel versions of cp, kill, etc.PCN Program Composition Notation (a coordina-tion language)PETSc Portable, extensible tools for scienti�ccomputingPRISM Parallel Linear AlgebraP4 Portable message-passing and shared-memorylibraryTable 2: Applications described in this paperComputational Electromagnetics Model 3-d, arbitrary geometry magnetsMesoscale weather model Continent-sized weather modelNuclear Structure Monte Carlo computationParallel Community climate model Global climate modelPhylogenetic tree Program to construct phylogenetic trees fromsequence dataSuperconductivity Modeling of ux vortices in high-temperaturesuperconductors (three applications)Theorem prover Distributed associative-commutative theoremprover3

Figure 1: Display from xpdbx on the IBM SP14

Figure 2: Display from vtat the three locations in the code where each processor has stepped to. The hands in the\raised" box at the bottom indicate that several processors are at the same line.Figure 2 shows a display from vt, the performance visualization tool for the IBM SP1.Note the control box that allows the user to move the display back and forth and to zoomin or out.The third transport layer is a an experimental low-overhead version of EUI, called EUIH;it is not available as a product. This layer does not support any of the POE tools and isincompatible with IP and EUI executables. However, EUIH does o�er some performanceadvantages for applications that need high-speed communications (see Section 2.5). Weemphasize that this is a research tool and was made available to Argonne under a specialjoint-research arrangement.Each of these subsections was contributed by the author named in the section; minorediting has been done, and any errors are the responsibility of the editor.5

1.1 Comments on TimingsAll timings and performance results in this document are preliminary. Because the IBM SP1is running a full Unix on each node, it is more di�cult than on MPPs that run a single-useroperating system to insure that no processes other than the program being benchmarkedare using resources. The performance �gures given here were done without running on astand-alone system.Many of the results presented here are on relatively small numbers of processors; again,this is primarily because little time has been made available for single-user benchmarks.2 Programming Packages and ToolsThis section describes the programming packages that support the applications that havebeen ported to the SP1. The packages include several numerical libraries (BlockSolve,PETSc, and PRISM) and three programming packages (Chameleon, PCN, and p4). Inaddition, a port of part of the draft message-passing standard (MPI) has been made to theSP1.2.1 Graphical Display of System UseContributed by William Gropp and Ewing LuskWe have written a tool, xsp1info, that displays the usage of the SP1 when using theEUIH message-passing system. This tool, written using tcl and tk, displays� the partitions in use. Each partition is displayed in a di�erent color.� a list of partitions, containing the username, size, and amount of time the partitionhas been in use.An example display is shown in Figure 3.In addition, each node is represented by a button. Pushing this button with the mousecan bring up an xterm on that node or show the load average (depending on which mousebutton is used). The display also shows the number of the node the mouse is pointing toand the time when the display was last updated.Using xsp1info, users can see how much of the machine is in use with EUIH jobs andsee where their EUIH jobs are running. It also provides a convenient way to open xtermson the SP1. 6

Figure 3: A typical display of the EUIH usage of the SP12.2 Parallel Unix ToolsContributed by William Gropp and Ewing Lusk Because each node of the SP1 isrunning a separate copy of AIX and contains a private disk (/tmp in our system), the userquickly discovers the need to (a) run various Unix tools (such as ps, ls, and cp) on a set ofnodes and (b) to �lter the output to show just the needed data. For example, a typical queryis \is a �le present?" On a uniprocessor, this is usually answered by using ls filename.On 128 processors, however, running ls generates so much output that it is di�cult tobe sure that the �le was present on all processors (piping into wc is too severe; if the �leis missing somewhere, the user wants to know where). We have provided programs thatcan help answer such questions in a scalable way, by providing both an easy way to makea speci�c inquiry across the parallel machine (e.g., ppred) and a graphical display of theoutput of these parallel commands (pdisp). We have produced prototype implementationsof some parallel versions of popular Unix commands (see Table 3).These routines (actually shell scripts) use recursive subdivision to execute the Unixcommands in parallel. They are particularly important in distributing executable andshared input data to the local disks on the nodes. In the POE environment, these scriptscan use the high-performance switch. 7

Table 3: Parallel unix commandsUnix Parallelcp pcpps ppsls plsfind pfindif (`test`) action ppredkill pkilla.out prun ... a.out2.3 BlockSolveContributed by Paul Plassmann and Lori FreitagBlockSolve [13] is a software library for solving large, sparse systems of linear equationson massively parallel computers. The matrices must be symmetric but may have an arbi-trary sparsity structure. BlockSolve is a portable package that is compatible with severaldi�erent message-passing paradigms including EUIH but not EUI.2.4 Fortran MContributed by Steven TueckeFortran M [6] is a small set of extensions to Fortran that supports a modular approachto the construction of sequential and parallel programs. Fortran M programs use channelsto plug together processes that may be written in Fortran M or Fortran 77. Processescommunicate by sending and receiving messages on channels. Channels and processes can becreated dynamically, but programs remain deterministic unless specialized nondeterministicconstructs are used.Fortran M has been ported to the SP1, with runtime support added to allow commu-nication via TCP/IP over either the switch or the ethernet. Currently we are limited torunning on 64 nodes, since IP over the switch supports only up to 64 nodes.Since Fortran M is a preprocessor that produces Fortran 77 code, it is heavily dependentupon the target machine's Fortran 77 compiler. On the SP1 we had few di�culties beyondthe normal small di�erences in Fortran compilers.Several Fortran M applications have been run on the SP1, including a parallel chro-matography simulation and a parallel smog model.8

2.5 ChameleonContributed by William Gropp Message passing is a common method for writing pro-grams for distributed-memory parallel computers. Unfortunately, the lack of a standardfor message passing has hampered the construction of portable and e�cient parallel pro-grams. In an attempt to remedy this problem, a number of groups have developed theirown message-passing systems, each with its own strengths and weaknesses. Chameleon [10]is a second-generation system of this type. Rather than replacing these existing systems,Chameleon is meant to supplement them by providing a uniform way to access many of thesesystems. Chameleon's goals are to (a) be very lightweight (low overhead), (b) be highlyportable, and (c) help standardize program startup and the use of emerging message-passingoperations such as collective operations on subsets of processors. Chameleon also providesa way to port programs written using PICL or Intel NX message passing to other systems,including collections of workstations. This feature was used by the global climate model(see Section 3.4) to port to the SP1.Chameleon ported to the SP1 with no problems other than the need to statically linkFortran programs. Both an EUI and EUIH port have been provided, as well as an IP port(using p4 for the IP transport). The EUIH port provides a simpli�ed startup mechanismthat eliminates the need for having the user invoke the program with the shell script cotb0.Chameleon includes a set of programs that test the communications performance of thesystem. The twin program (written by Scott Berryman and William Gropp) tests commu-nication between pairs of processors, using a number of techniques to remove \occasionale�ects" such as timer interrupts and the e�ect of network activity from the timings. Themessage sizes tested are also chosen adaptively to capture discontinuities in the behaviorof the message-passing system. One such discontinuity is shown in the EUI results at 128bytes; EUI switches to a di�erent protocol for longer messages that signi�cantly adds tothe latency of longer messages. This e�ect is shown in Figure 4. The DELTA resultsalso show a discontinuity (at 480 bytes); this reects the message packet size (minus theheader) used on the DELTA. The performance for long messages for a variety of machinesis shown in Figure 5. These results show that we can expect good performance compared toother MPPs for communication-intensive programs that use EUIH. The EUI data is froma preproduction version of EUI.Additional programs test collective operations (gop), compute the relative speed ofcommunication links (tcomm), test all of the links for correct operation (stress), and com-pute the bisection bandwidth (bisect). An option allows the programs to display in anX-window the amount of communication activity on a per-processor basis.9

Figure 4: Communication performance for small messages for a variety of machines. AllSP1 results use the switch.2.6 Parallel Research on Invariant Subspace MethodsContributed by Christian Bischof and Xiaobai SunSuccessive Band Reduction (SBR) is an approach for the orthogonally reduction ofmatrices to condensed form allowing for the use of matrix-matrix (BLAS-3) kernels. Specialinstances of SBR are the tridiagonal and Hessenberg reductions used in various eigensolvers.In addition, SBR supports general bandreduction, which is needed for banded eigenvaluescenarios. A modi�ed SBR approach is also used in the PRISM (Parallel Research onInvariant Subspace Methods) project for the development of a scalable parallel eigenvaluesolver.The SBR code is intended for distributed-memory MIMD parallel machines. It uses theChameleon programming system, and its support for parallel operations on disjoint nodessubsets is critical in exploiting the multiple levels of parallelism in the algorithm. The SBRcode had initially been implemented on the DELTA.10

Figure 5: Communication performance for long messages for a variety of machines. All SP1results use the switch. Data for the CM-5 is unavailable for messages of this length.Table 4 shows some early performance results of the SBR code when applied to theHessenberg reduction of a full matrix. \N" is the matrix size, \nb" is the block size used inthe reduction of the matrix to \b" subdiagonal bands, \time" is the elapsed time in seconds,and \Gops" is the sustained double-precision performance in Gops/sec on the 16-nodeIBM SP1 system. These runs used the EUIH transport layer and the vendor-supplied`blas.a' library.Note that codes exploiting matrix-matrix kernels (nb > 1) perform much better thancodes based on matrix-vector kernels (nb = 1). In particular, using a blocked algorithm,we can reduce a 3000� 3000 matrix to a bandwidth of 15 roughly in the same time thatwe can tridiagonalize a 2000� 2000 matrix, even though the former operation takes threetimes as many oating-point operations. 11

Table 4: Results for SBR code applied to a full matrixN nb b Time Gops1000 1 20 19.9 0.2331020 15 15 11.5 0.4122000 1 20 164.1 0.2272000 10 10 63.1 0.5823000 1 10 512.5 0.2463000 15 15 165.4 0.7984000 20 20 346.0 0.8492.7 MPIContributed by William Gropp and Ewing Lusk MPI (Message-Passing Interface) isan intended message-passing standard that is currently being developed by a broad groupof massively parallel processor (MPP) vendors and users. A partial implementation of thestandard as it stood in May 1993 was implemented and run on the SP1. In August wemet with IBM researchers in Yorktown to propose a new implementation design [9]. Thenew design speci�es a low-level device interface on which the MPI can be implementedportably. We have begun doing this, and at this stage (early September 1993) have im-plemented the basic point-to-point message-passing functionality of MPI. Meanwhile, IBM-Yorktown is proceeding with a high-performance implmentation of the device interface onthe SP1 switch. This collaborative project is intended to provide (by November 1993) ahigh-performance implementation of major parts of the MPI speci�cation on the SP1. Toprovide wide availability of MPI, we have also implemented the device interface portably,using our Chameleon and p4 tools. These provides portability of parallel applications writ-ten with MPI from a variety of machines to the SP1, and in particular between the SP1and workstation networks.2.8 PCNContributed by Steven TueckePCN [5, 7] is a system for developing and executing parallel programs. It comprises ahigh-level programming language, tools for developing and debugging programs in this lan-guage, and interfaces to Fortran and C that allow the reuse of existing code in multilingualparallel programs.The network version of PCN (net-PCN) has been ported to the SP1. Runtime supporthas been added to PCN to allow communication to use TCP/IP over either the switch or12

the ethernet. Currently we are limited to running on 64 nodes over the switch, since IPover the switch only supports up to 64 nodes.Several PCN applications have been run on the SP1, including the Massively ParallelMesoscale Model (MPMM).2.9 Portable, Extensible Tools for Scienti�c Computing (PETSc)Contributed by William GroppPETSc is a package of routines aimed primarily at the solution of partial di�erentialequations. PETSc is designed to match advanced algorithms to new and existing applica-tions by taking an object-oriented approach to the design of the routines. For example, theiterative accelerators that are part of PETSc [11] have been designed to allow the user tospecify all of the vector operations as well as matrix-vector product and preconditioning.Thus, these iterative methods can be used with nontraditional vectors, such as oct-trees orvectors distributed across a distributed-memory parallel computer. PETSc also includes anumber of packages that aid in writing parallel programs. One of these is BlockComm, apackage for communicating blocks of data between processors. Another is a parallel general(nonsymmetric) linear system solver using iterative methods [11]. Currently, parallel ver-sions of conjugate gradient, conjugate gradient squared, BiCG-Stab, Freund's transpose-freeQMR, generalized minimum residual (GMRES), Chan's transpose-free QMR, Chebychev,and Richardson are supported, along with a variety of preconditioners. A parallel nonlinearsystem solver is also available.All of the parallel communication in PETSc is done with Chameleon. Porting PETSc,with the exception of the Fortran library problem, required no special e�ort. A version ofPETSc that can take advantage of IBM's ESSL (when available) has been developed; theobject-oriented nature of PETSc means that users can take advantage of these changes byrelinking rather than rewriting their code.2.10 p4Contributed by Ewing LuskThe p4 parallel programming system [1, 2, 3] currently runs on nearly all existing parallelcomputers and workstations. It has been used routinely on networks of RS/6000's. It washoped that the RS/6000 version of p4 could be built unchanged on the SP1. At the moment,two di�erent installations of p4 are maintained, one for the RS/6000's and one for the SP1.The C part of p4 compiled and linked the �rst time on the SP1, using all parametersfrom the RS/6000 version. C programs compiled and linked for the RS/6000 network haverun unchanged on the SP1. The phylogenetic tree application (see Section 3.5) is in thiscategory. 13

After the switch and related software were installed, existing p4 programs could im-mediately use the switch via the IP interface, even without EUI. This approach works inmost situations, but some programs fail because of a bug in the IP/switch interface. Thisproblem is currently being worked on by IBM.When EUI arrived, p4 was quickly ported to EUI, and then was ported easily to EUIH.The only changes necessary to move from the EUI version involved switching to Fortrancalling sequences.3 ApplicationsSuccessful port of a programming package to a parallel machine was once considered asu�cient test of the machine. However, as parallel machines are increasingly being acquiredfor production computing, it is more important to test them with ports of actual (as opposedto model) applications. Using our carefully developed portablilty tools, we were able toquickly port and run a wide variety of applications.3.1 Computational ElectromagneticsContributed by Kimmo Forsman, William Gropp, Lauri Kettunen, and DavidLevineWe have developed a parallel code to solve computational electromagnetic problems.Computational electromagnetics is widely used in industrial, research, and defense applica-tions. However, many important problems are intractable with conventional techniques andvector supercomputers. For practical applications, the problem size must be dramaticallyincreased, turnaround time must be reduced, and solution accuracy must be improved. Apromising approach for overcoming these limitations is the use of integral equation methods(IEMs) implemented on massively parallel computers.Integral methods o�er several advantages over traditional �nite-element techniques. In-tegral methods require no discretization of the nonactive regions, thus saving considerabletime. Integral methods also take into account far-�eld boundary conditions automatically.In addition, integral methods remove the need for keeping track of which elements aremoving or stationary.However, integral equation methods give rise to dense matrices for which the solutiontime with direct methods scales as O(n3) and the memory requirements scale as O(n2),where n is the number of degrees of freedom in the integral equation formulation. In ad-dition, IEMs have a matrix de�nition time that scales as O(n2) and can be signi�cant.Historically, this has meant that in practice IEMs have either taken too much computa-tion time compared with �nite-element programs to achieve the same level of accuracy, orhave not used enough elements to obtain accurate solutions. It is our feeling, however,14

Table 5: Solution time for four problemsNo. Proc. 579 972 1629 22781 952 3127 | |2 507 1245 | |4 279 767 2571 |6 236 | | |8 | 454 1637 3416that the advent of parallel processing computers will lead to renewed interest in IEMs forcomputational electromagnetic problems.CORAL is a program that has been used to solve nonlinear three-dimensional magneto-statics problems using integral equation methods. The sequential version of CORAL usesLU decomposition (Crout's algorithm) with back substitution to solve the linear systemsthat arise each nonlinear iteration.We have developed a parallel version of CORAL. The two key steps that we have par-allelized are the matrix generation and the linear equation solver. We use the Chameleonmessage-passing system, developed at Argonne, for the message-passing parts of the pro-gram. The systems of linear equations are solved using the parallel iterative methods in theParallel Simpli�ed Linear Equation Solvers package (PSLES), which provides easy access tostate-of-art methods for solving systems of linear equations (see Section 2.9). All of theresults reported here were calculated using the Generalized Minimal Residual method withblock diagonal preconditioning.Preliminary timings on the IBM SP1 are shown in Table 5. This table shows solutiontime in seconds as a function of the number of processors for four di�erent problems. The�rst column is the number of processors used. The other columns report total solution time(seconds) as a function of the number of processors used for solving four di�erent nonlinearproblems with matrices of order 579, 972, 1629, and 2278, respectively. These runs weremade using an unoptimized version of the program and running the EUIH message-passingsoftware with the high-performance switch.3.2 Massively Parallel Mesoscale ModelContributed by John MichalakesMPMM is a �ne-grained dynamic decomposition of the Penn State/NCAR MesoscaleModel version 5. Each set of four horizontal grid points is represented as a parallel processrunning under PCN (see Section 2.8), providing a transparent mechanism for redistributingload between physical processors. The work is being done in collaboration with the devel-opers of the original Cray model (who are at NCAR). This program is used for real-time15

forecasting and climate prediction. Work on this code is continuing; the SP1 provides abetter development environment than other parallel systems, in part because each nodeprovides a full Unix environment.3.3 Monte Carlo Calculations of Nuclear Ground StatesContributed by Steven Pieper and Robert WiringaWith V. R. Pandharipande of the University of Illinois, Urbana, we are computing theproperties of light (up to 40 neutrons and protons) nuclei using realistic two- and three-nucleon interactions. This involves developing many-body methods for reliably computingthe properties of a nucleus for complicated forces that are strongly dependent on the spinsand charge states of the nucleons. Unlike the Coulomb force used in atomic or condensed-matter calculations, there is no useful fundamental theory that tells us what this force is.We can partially constrain the two-body force by �tting nucleon-nucleon scattering data,but many-body calculations are required to test other properties of this force as well as thethree-body interaction. Thus we are at the same time re�ning our knowledge of the forcesand using it to make predictions about nuclei.We make variational calculations, in which one assumes a form for the quantum-mechanicalwave function describing a nucleus and then computes the energy of the nucleus for a givenforce model. This work involves computing multidimensional (12 to 120 dimensions) inte-grals using Monte Carlo methods. The integrand is expressed in terms of large complexvectors describing the spin and charge states of the nucleons. These calculations must berepeated many times to �nd the best set of parameters for the assumed form of the wavefunction. The longer a given calculation is allowed to proceed, the smaller the statisticalerror from the Monte Carlo integration, and hence the more re�ned the determination ofthe best parameters.While the energy calculation is our main test of both the quality of the wave functionand of the correctness of the force, we can also calculate various other properties, includinglow-lying excited states and a variety of low-energy reactions. Many of these are relevantto experiments that will be carried out at CEBAF, while others are predictions of astro-physically interesting cross sections that cannot be measured in the laboratory.The �rst calculations being done on the SP1 are using a new nuclear interaction and areobtaining much better (when compared to experiment) results for the binding energy anddensity pro�le of oxygen than we had previously obtained. The better density results arespeci�cally attributable to the detailed variational searches made possible by the SP1. Thespeed of the SP1 is, for the �rst time, making possible calculations of calcium (40 nucleons);work on this is in progress.The SP1 is the �rst parallel processor that we have been able to use for our calculations.Previously we used single processors of the most powerful Cray computers available. Earlier16

parallel computers could not be used because of their small memories; our calculationsrequire up to 65 megabytes of memory. The RS/6000 compiler provides good speeds oneach node, allowing us to reach speeds of 48 Mops on a single processor.The Argonne package p4 is used to implement the message-passing part of the program.The calculations proceed by having the master node do a random walk and send positionsto the slaves. The calculation of the integrand at one position is very lengthy (up to 4minutes) so it is easy for one master to keep all the slaves busy. The communication load isvery low. Runs on 128 nodes achieve speedups of 123, or computational rates of 5.9 Gops.A run using 160 nodes achieved 6.5 Gops, but there were also other users on some of thenodes.3.4 Parallel Community Climate ModelContributed by John MichalakesPCCM2 is a message-passing implementation of the NCAR Community Climate Model2 (CCM2). In September 1993, PCCM was o�cially validated with respect to the sequentialversion of CCM. The SP1 was used extensively in the validation work because its nodes areidentical to workstation platforms running the previously validated sequential version. The�rst validated version of PCCM ran on the SP1.The model is patch decomposed in two horizontal dimensions. Spectral transport ofall prognostic variables except moisture is accomplished by parallel FFTs in the zonaldimension and Gaussian quadrature in the meridional dimension, approximating Legendretransforms. The spectral transport mechanism of CCM2 is communication intensive becauseinterchange of data is not con�ned to nearest neighbor. A semi-Lagrangian transport schemeis used for transport of moisture. Modules that compute atmospheric processes such asconvection, radiative transfer, and precipitation are collectively known within the modelas physics. Physics is perfectly parallel in PCCM because there are no horizontal datadependencies; however, physics does present the largest source of ine�ciency from loadimbalance.PCCM2 is implemented using Chameleon through a compatibility library to PICL, themessage-passing package under which the code was originally developed. Before being runon the IBM SP1, PCCM2 was run on the Intel Touchstone DELTA and Paragon computers.PCCM currently runs at approximately 650 Mops on the full SP1 (128 processors)communicating over the EUIH switch interface. Figure 6 shows the distribution of run timeover the three main components of the code: spectral transport, semi-Lagrangian transport,and physics. Interprocessor communication accounts for most of the time spent in theforward and inverse FFTs, the parallel vector-sum (part of the Legendre approximation),and initialization for the semi-Lagrangian transport (SLTINI). The largest computationalpart of the code is physics, and the e�ect of load imbalance can be seen as well. Nearly a17

quarter of the elapsed time, however, is not at present accounted for. Work to identify thesource of this problem, to tune computational performance, and to improve interprocesscommunication is continuing.The work is being performed under the directed portion of the Department of EnergyCHAMMP initiative and is the collaborative e�ort of Argonne, Oak Ridge National Labo-ratory, and NCAR. The model is used for climate prediction.3.5 Phylogenetic TreesContributed by Ross OverbeekGary Olsen, along with a group at ANL and Hideo Matsuda of Kobe University, de-cided to create a fast implementation of a maximum likelihood algorithm for constructingphylogenetic trees from an alignment of sequence data. This program, called fastDNAml,now runs on a wide class of uniprocessors, on networks of workstations, and on several ofthe massively parallel systems (most notably, the DELTA).The algorithm used in this application uses automatic load balancing and very large-grain parallelism, so that the e�ciency of the message-passing system in not signi�cant. Itcurrently does not use any of the switch-based transport mechanisms. This application hasconsumed by far the largest number of hours on the SP1 since its installation.The Ribosomal Database Project at the University of Illinois at Urbana-Champaign[15] distributes alignments of small subunit ribosomal RNA (rRNA) sequences from bothprokaryotic microorganisms and eukaryotes. In order to better understand the organismsthemselves and the evolution and function of the ribosome, we wished to infer a consistent,high-quality phylogenetic tree relating all of these sequences. Such a phylogenetic tree playsa fundamental role in supporting interpretation of molecular sequence data.Phylogenetic tree inference based on maximum likelihood is appealing from both bio-logical and statistical perspectives. Felsenstein [4] has written a computer program thatimplements such a method. However, maximum likelihood is computationally demanding,so the program had been used only for inferring relationships among small numbers of se-quences (up to about 20). Analyses indicated that execution time (for small trees) rises asthe third power of the number of sequences.Gary Olsen and Carl Woese of the Ribosomal Database Project at the University ofIllinois at Urbana have been creating an alignment of the rRNA from the small subunit ofthe ribosome. This alignment has become one of the fundamental tools for phylogeneticresearch.Working closely with Olsen and with Carl Woese (co-leader of the Ribosomal DatabaseProject), we are trying to construct a phylogentic tree for all of the organisms includedin the current alignments. Currently, this number is approaching 2000. Our research isfocusing on developing on a number of critical issues:18

Spectral (21%)

SLT (27%)

Physics (28%)

Forward FFT (3.5%)
Inverse FFT (3.8%)
Vector Sum (4.5%)

SLTINI (14%)

3.5% SLT Core Compute Time

6.5% SLT Core Idle Time

10% Physics idle (load imbalance)

18% Phyics Compute time

Unaccounted for (24%)

PCCM2 Performance on 128 Node SP1 using EUI−H

0.952 seconds / time step (648 Mflops)

Figure 6: Distribution of work in a PCCM2 run19

1. Phylogenetic computations are sensitive to the rate of change in speci�c columns.Gary Olsen has developed a set of tools to reect varying rates of change. We need to�rst verify that this tool does, in fact, improve the sensitivity of a standard maximumlikelihood computation. The task of gathering data to evaluate this question has justbeen completed on the SPI at Argonne. The computation required execution of over450 runs, each of which consumed between 12 and 36 hours on single nodes. We arenow evaluating this data and plan to write up the results as soon as possible. Ourintent is to establish the basic utility of the approach that Olsen has implemented inhis fastDNAml tools.2. We are also establishing a basic algorithm for creating relatively huge trees. It isnot practical to simply make one huge run and produce a reliable tree. Rather, thetree must be computed in steps. First, we have created an initial tree composed of473 organisms. We then developed a tool for sequentially inserting new sequencesinto the tree. This produces an \initial tree" that must then be \optimized" byperforming thousands of local maximum likelihood computations (which can producelocal rearrangements within the tree).3. Finally, the tree produced by maximum likelihood is subjected to critical analysisby other experts in the �eld, speci�c questionable areas are isolated, and a detailedanalysis is done of these locations. This analysis is done using a variety of techniquesand can be used to establish the limitations and advantages of the maximum likelihoodtool that is in development.We have developed both sequential and parallel versions of the fastDNAml package; thesequential version is now being distributed through the RDP server, and we have helped alimited set of institutions instal the parallel version (which is based on the p4 package ofroutines for writing portable parallel programs [1]).The phylogenetic tree that we are developing is of major scienti�c interest. It is theculmination of decades of work to develop the technology, gather the rRNA sequences, andcareful align them for analysis. If it can be established that the maximum likelihood ap-proach is actually more accurate, then bringing the required computational resources willproduce a clear instance in which massive computational resources do advance a fundamen-tal area of science.3.6 Superconductivity|Elastic String ModelContributed by David Levine and Gary LeafWe have developed a code for the numerical simulation of the planar motion of a one-dimensional elastic �lament (single vortex) under tension, to investigate the properties of20

the vortex-glass state in high-temperature, Type-II superconductors. The computationalproblem requires the time integration of a stochastic evolution equation; ensemble averagesare obtained by considering the long-time behavior of the solution for a large number of re-alizations. The objective of the numerical simulations is to measure the resulting \average"velocity of the �lament as a function of the applied force.In the study of the elastic �lament model, we observed avalanche-type behavior whenthe applied forces are in the neighborhood of a critical transition value. Such behavioris characteristic of self-organized criticality phenomena. We have developed other elastic�lament models to explore this phenomenon. These studies also require the accumulationof statistics from a large number of events. Each event involves the solution of a stochasticdi�erential equation subject to a random initial perturbation. In the appropriate parametricstate space, the system will enter a steady state for a su�ciently large number of events.The calculations are characterized by a large number of independent calculations that canoccur simultaneously, a situation ideally suited for coarse-grained parallelism.The most di�cult calculations for the elastic �lament model occurred for very smallapplied forces when the system is in a \glassy" or \creep" state characterized by veryslow dynamics which require extremely large amounts of computer time to establish theasymptotic behavior. To further study this, we developed an alternative model based ona static tilted potential, characteristic of creep motion. The calculation is characterizedby large numbers of ensembles (� 12,000) each corresponding to a random realization of apotential tilted by an applied force. For small forces, a very large number of spatial points(� 75,000) are needed to resolve the potentials.In all three of these cases, the parallel approach used is coarse grained. Since eachrealization is both time consuming and independent of the other realizations, we have beenable to run a large number of these jobs in parallel. This work was initially started using aBBN TC2000 and a Sun SPARC workstation network. We have since ported the programsto the SP1 system, where we have found a signi�cant improvement in execution time andthe number of processors available. For some of the most di�cult calculations, with verysmall applied forces, we have reduced solution time from approximately �ve days on SunSPARC workstations to approximately 17 hours on the SP1 system.3.7 Vortex Dynamics in High-Temperature SuperconductorsContributed by Gary Leaf and David LevineWe are using the time-dependent Ginzburg-Landau (TDGL) equation for the numericalsimulation of vortex dynamics and phase transitions in high-temperature, Type-II super-conductors. E�ects of external currents, material defects, and thermal uctuations areincorporated into our model. We are interested in the formation and subsequent evolutionof magnetic ux vortices and the inuence of random impurities on vortex pinning.21

Figure 7: Solution at 5000 stepsWe have developed a program to solve the three-dimensional TDGL equations for asuperconducting cube in a �xed external magnetic �eld on bounded domains. The codesolves numerically for the complex-valued order parameter as well as the magnetic �eldwithin a bulk superconducting material.The three-dimensional domain is subdivided into an array of cells. We identify the orderparameter with the vertices of each cell and the gauge �eld with the edges (links) of eachcell. The resulting equations of motion are solved by using a single time step, forward Eulerprocedure. The primary data structures used are four complex, three-dimensional arrayswhose values are updated each time step according to the equations of motion.Figure 7 and Figure 8 show the early time dynamics of vortex trapping by twin bound-ary defects in a high-temperature, Type-II superconductor. The dynamics were initiatedfrom a doped state in the presence of an external magnetic �eld whose strength was ad-justed so that the material is in the mixed state. The material was modeled with a pair ofplanar defects (twin boundaries) running diagonally through the sample. Inhomogenetiesin the twin boundaries were modeled with random point defects imbedded in the twinboundaries. The phenomenological model used was a three-dimensional, time-dependentGinzburg-Landau system.The �gures show the early time evolution of the vortices from an initial seed. We seethe twin boundaries pinning the vortices and the consequent alignment of vortices trapped22

Figure 8: Solution at 10000 stepsbetween the twin boundaries.To parallelize the program, we partition the array of cells (grid) among the processors.Each processor is responsible for updating all the cells in the subgrid contained in itsmemory. The update step for each cell requires values from neighboring cells. Because ofthe array decomposition, neighbors of some of the cells that a processor has require valuesfrom cells stored in other processor's memories. To communicate these values betweenprocessors, we use the BlockComm package developed by William Gropp (see Section 2.9).With BlockComm, the programmer speci�es, via function calls, the decomposition that willbe used. BlockComm produces an internal description of this decomposition. Wheneverdata from other processors is needed, the programmer calls the BlockComm routine BCexec;this manages all of the communication needed to provide the data.Preliminary timings on the IBM SP1 are shown in Table 6. The �rst column is thenumber of processors used. The other columns report time per iteration (seconds) as afunction of the number of processors for grid sizes of 130�130�10, 258�258�10, and 514�514� 10, respectively. EUIH in a column indicates IBM's EUIH message-passing softwarewas used in conjunction with the high-performance switch. For comparative purposes, thesmallest problem was also run using a version of the p4 message-passing software that usedUnix sockets to communicate over an external Ethernet network that also connects theprocessors. 23

Table 6: Solution times (sec/iter) for three problemsNo. 1302 � 10 2582 � 10 5142 � 10Procs EUIH Sockets EUIH EUIH1 7.67 15.3 | |2 4.00 8.19 | |4 2.16 4.88 8.36 |8 1.22 3.89 4.66 18.6716 .60 3.69 2.19 8.2732 .34 4.11 1.18 4.4364 .20 4.36 .65 2.2396 .17 | .48 1.57Table 7: Comparison of the CPU and elapsed times for three di�erent cases: (1) the IntelTouchstone DELTA, (2) the IBM SP1 running EUIH, and (3) the IBM SP1 running p4.All cases are for 100 BFGS iterations with a constant global domain size of 32� 32� 32.Number of Intel DELTA IBM SP1 (EUIH) IBM SP1 (p4)Processors CPU Elapsed CPU Elapsed CPU Elapsed1 { { 203.89 205.46 203.90 205.292 307.67 308.00 86.09 86.75 81.26 118.444 160.26 160.00 37.54 37.61 33.29 112.468 79.33 80.00 21.33 21.50 17.94 196.0916 43.13 43.00 12.75 12.97 { {3.8 Superconductivity|Vortex StructuresContributed by Mario Palumbo and Paul PlassmannWe have developed a parallel code that uses the limited-memory BFGS algorithm [14]to �nd optimal vortex solutions within the three-dimensional anisotropic Ginzburg-Landaumodel. Our implementation is capable of considering arbitrary �eld orientation as wellas various types of random and correlated disorder. This code is currently being used tostudy various properties of uniaxial superconductors such as the lower critical �eld and theanomalous \vortex-chain" state.The parallelization was achieved through a simple three-dimensional domain decom-position scheme in which the global domain is partitioned across an arbitrary number ofprocessors. The communication between processors is carried out using the Chameleon par-24

Table 8: Comparison of the CPU and elapsed time for the cases: (1) the Intel TouchstoneDELTA, (2) the IBM SP1 running EUIH, and all cases are for 100 BFGS iterations with aconstant local domain size of 16� 16� 16.Number of Intel DELTA IBM SP1 (euih)Processors CPU Elapsed CPU Elapsed1 73.71 74.00 15.91 16.012 76.27 76.00 17.71 17.904 77.85 78.00 19.33 19.498 79.33 80.00 21.46 21.5716 80.57 81.00 22.75 22.98allel software package (see Section 2.5). The portability of the Chameleon primitives hasallowed us to run the code on a variety of parallel platforms, using several di�erent parallelcommunication paradigms, without any coding changes. Performance comparisons for aselection of these cases are provided in Tables 7 and 8. Note the superlinear speedup in theSP1 results in Table 7; this is most likely caused by cache e�ects. Also note the CPU timecolumn from the SP1 (p4) results. These show very good performance in a time-sharedenvironment, even though the elapsed time performance is relatively poor.Table 8 shows the performance as the local domain size is held �xed and the number ofunknowns grows proportionally with the number of processors. These suggest that 16�16�16 (only 4096 mesh points) local domain is too small for the SP1. This result is consistentwith the faster speed of the processors with respect to the communication than for the IntelDELTA, and emphasizes why the large per-node memory is an important feature of theSP1.3.9 Parallel Theorem ProverContributed by William McCune and Ewing Lusk We were able to port our paral-lel distributed-memory theorem prover dac (distributed associative-commutative theoremprover) to the SP1 with no problems. We initially developed dac on the Symmetry and aSun network using p4. Single-node performance was excellent, despite the lack of oating-point operations in dac. 25

4 SummaryHaving a full, running Unix OS on each node allows for easy ports. We have also takenadvantage of the ability to reboot individual nodes without disturbing the others. Fur-thermore, the use of portability layers (Chameleon, PCN, and p4) let us port applicationsquickly and allowed us to become familar with the programming environment on the SP1in the context of signi�cant applications.We have been able to get a wide variety of applications running with some impressiveperformance and with relatively little additional work, demonstrating that it is possible towrite portable, e�cient parallel programs.References[1] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Over-beek, James Patterson, and Rick Stevens. Portable Programs for Parallel Processors.Holt, Rinehart, and Winston, 1987.[2] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel pro-gramming system. Journal of Parallel Computing. To appear (Also Argonne NationalLaboratory Mathematics and Computer Science Division preprint P362-0493).[3] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system.Technical Report ANL-92/17, Argonne National Laboratory, October 1992.[4] J. Felsenstein. Phylip manual version 3.3. Technical report, University of California,Berkeley, Calif., 1990.[5] Ian Foster, Robert Olson, and Steven Tuecke. Productive parallel programming: ThePCN approach. Scienti�c Programming, 1(1):51{66, Fall 1992.[6] Ian Foster, Robert Olson, and Steven Tuecke. Programming in Fortran M. TechnicalReport ANL-93/26, Revision 1, Argonne National Laboratory, 1993.[7] Ian Foster and Steven Tuecke. Parallel programming with PCN. Technical ReportANL-91/32, Rev. 2, Argonne National Laboratory, 1991.[8] William Gropp. Early experiences with the IBM SP-1. Technical Report ANL/MCS-TM-177, Argonne National Laboratory, 1993.[9] William Gropp and Ewing Lusk. An abstract device de�nition to support the imple-mentation of a high-level message-passing interface. Technical Report MCS-P342-1193,Argonne National Laboratory, 1993. 26

[10] William D. Gropp and Barry Smith. Chameleon parallel programming tools usersmanual. Technical Report ANL-93/23, Argonne National Laboratory, March 1993.[11] William D. Gropp and Barry Smith. Users manual for KSP: Data-structure-neutralcodes implementing Krylov space methods. Technical Report ANL-93/30, ArgonneNational Laboratory, August 1993.[12] Michael T. Heath and Jennifer Etheridge Finger. Visualizing performance of parallelprograms. IEEE Software, 8(5):29{39, September 1991.[13] Mark T. Jones and Paul E. Plassmann. An e�cient parallel iterative solver for largesparse linear systems. In Proceedings of the IMA Workshop on Sparse Matrix Computa-tions: Graph Theory Issues & Algorithms, Minneapolis, 1991. University of Minnesota.[14] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large-scaleoptimization. Math. Prog., 45:503{528, 1989.[15] G. J. Olsen, R. Overbeek, N. Larsen, and C. R. Woese. The ribosomal database project:Updated description. Nucleic Acids Res., 19:4817{4817, 1991.

27

