Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 1L 60439

ANL-94/23

A Parallel Genetic Algorithm
for the Set Partitioning Problem

by

Dawvid Levine

Mathematics and Computer Science Division

May 1994

This work was supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38. It was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Computer Science in the Graduate School
of the Illinois Institute of Technology, May 1994 (thesis adviser: Dr. Tom Christopher).

i

TABLE OF CONTENTS

Page

LIST OF FIGURES o v

LIST OF TABLES e e vi

LIST OF ABBREVIATIONS oo o o viii

LIST OF SYMBOLS ix

ABSTRACT o xi
CHAPTER

[. INTRODUCTION 1

1.1 The Set Partitioning Problem 1

1.2 Parallel Computers 4

1.3 Genetic Algorithms oo 5

1.4 Thesis Methodology 13

II. SEQUENTIAL GENETIC ALGORITHM 16

2.1 Test Problems 16

2.2 The Genetic Algorithm 18

2.3 Local Search Heuristic 21

2.4 Genetic Algorithm Components 26

2.5 Discussiono 42

II1. PARALLEL GENETIC ALGORITHM 44

3.1 The Island Model Genetic Algorithm 44

3.2 Parameters of the Island Model 45

3.3 Computational Environment 49

i1

3.4 Test Problems 50

3.5 Parallel Experiments 52

3.6 DISCUSSION . . o« oo e e 55

IV. CONCLUSIONS oo, 66

V. FUTURE WORK i, 68
ACKNOWLEDGMENTS 71
REFERENCES 72

v

Figure

1.1.

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

3.1.

LIST OF FIGURES

Page
Simple Genetic Algorithmo 6
Steady-State Genetic Algorithmo 21
ROW Heuristic 23
Structure for Storing Row and Column Information 26
Example A Matrix before Sorting 27
Example A Matrix after Sorting 28
Modified Chavatal Heuristic 33
Gregory’s Heuristic 0oL 34
One-Point Crossover 37
Two-Point Crossover 37
Uniform Crossovero 38
Island Model Genetic Algorithm 47

Table

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

LIST OF TABLES

Sequential Test Problems

Sequential Test Problem Solution Characteristics

Comparison of the Use of Elitism in GRGA

Number of Constraints to Improve in the ROW Heuristic

Choice of Constraint to Improve in the ROW Heuristic . . .

Best Improving vs. First Improving in the ROW Heuristic

Best Improving vs. First Improving in SSGAROW

Comparison of Penalty Terms in SSGA

Comparison of Penalty Terms in SSGAROW

Comparison of Fitness Techniques in SSGAROW

Comparison of Selection Schemes in SSGAROW

Comparison of Initialization Strategies in SSGA

Comparison of Initialization Strategies in SSGAROW

Linear Programming Initialization in SSGAROW

Comparison of Crossover Operators Using SSGAROW . . .

Parameterized Uniform Probability Using SSGAROW

vi

Page
17

17

19

24

25

25

Table

2.17.

2.18.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

Page
Comparison of Crossover Probabilities in SSGAROW 40
Comparison of Algorithms 43
Migrant String Selection Strategies 48
String Deletion Strategieso 49
Comparison of Migration Frequency 49
Parallel Test Problems 53
Solution Characteristics of the Parallel Test Problems 54
Percent from Optimality vs. No. Subpopulations 56
Best Solution Found vs. No. Subpopulations 57
First Feasible Iteration vs. No. Subpopulations 58
First Optimal Iteration vs. No. Subpopulations 59
No. of Infeasible Constraints vs. No. Subpopulations 61
Comparison of Solution Time 63

vii

Abbreviation
CPGA
FPGA
GA
GRGA
IMGA
IP
LP
MIMD
OR
PE
PGA
SCP
SIMD
SISD
SPP
SSGA
SUS

LIST OF ABBREVIATIONS

Term
Coarse-grained parallel genetic algorithm
Fine-grained parallel genetic algorithm
Genetic algorithm
Generational replacement genetic algorithm
Island model genetic algorithm
Integer programming
Linear programming
Multiple-instruction multiple-data
Operations research
Processing element
Parallel genetic algorithm
Set, covering problem
Single-instruction multiple-data
Single-instruction single-data
Set partitioning problem
Steady-state genetic algorithm

Stochastic Universal Selection

viii

LIST OF SYMBOLS

Symbol Meaning
aij A binary coefficient of the set partitioning matrix.
¢; The cost coefficient of column j.
f The genetic algorithm evaluation function.
i A row (constraint) index.
J A column (variable) index.
m The number of rows (constraints) in the problem.
n The number of columns (constraints) in the problem.
Db Probabilistic binary tournament selection parameter.
Pe Crossover probability.
P Mutation probability.
Du Uniform crossover probability parameter.
T The set of columns such that r; € R; and x; = 1.
7] The number of columns in the set r;.
t A time index, usually the generation of the genetic algorithm.
u The genetic algorithm fitness function.
T A binary decision variable.
X A vector of binary decision variables; also used as a bit string.
z The set partitioning objective function.
B; The set of column indices that have their first one in row <.
1 The set of row indices.
J The set of column indices.
N The genetic algorithm population size.
P The set of row indices that have a one in column j.
| P The size of the set P;.
Pivea The average value of the |F;|.

X

Symbol Meaning

Prrax The maximum value of the |F;|.

P(t) The genetic algorithm population at time ¢.

R; The set of column indices that have a one in row z.

| R;| The size of the set R;.

Rave The average value of the |R;|.

A Scalar multiplier of the evaluation function’s penalty term.
A; The change in z when complementing the value of column j.
Ay The change in z when x; is set to one.

ABSTRACT

In this dissertation we report on our efforts to develop a parallel genetic algorithm
and apply it to the solution of the set partitioning problem—a difficult combinatorial
optimization problem used by many airlines as a mathematical model for flight crew
scheduling. We developed a distributed steady-state genetic algorithm in conjunction
with a specialized local search heuristic for solving the set partitioning problem. The
genetic algorithm is based on an island model where multiple independent subpop-
ulations each run a steady-state genetic algorithm on their own subpopulation and
occasionally fit strings migrate between the subpopulations. Tests on forty real-world
set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel
computer. We found that performance, as measured by the quality of the solution
found and the iteration on which it was found, improved as additional subpopula-
tions were added to the computation. With larger numbers of subpopulations the
genetic algorithm was regularly able to find the optimal solution to problems having
up to a few thousand integer variables. In two cases, high-quality integer feasible
solutions were found for problems with 36,699 and 43,749 integer variables, respec-
tively. A notable limitation we found was the difficulty solving problems with many

constraints.

xi

CHAPTER 1
INTRODUCTION

In the past decade a number of new and interesting methods have been proposed
for the solution of combinatorial optimization problems. These methods, such as ge-
netic algorithms, neural networks, simulated annealing, and tabu search are based on
analogies with physical or biological processes. During the same time period parallel
computers have matured to the point where, at the high end, they are challenging the
role of traditional vector supercomputers as the fastest computers in the world. On a
different front, motivated primarily by significant economic considerations, but also
by advances in computing and operations research technology, many major airlines
have been exploring alternative methods for deciding how flight crews (pilots and
flight attendants) should be assigned in order to satisfy flight schedules and minimize
the associated crew costs. Our objective in this dissertation was to develop a paral-
lel genetic algorithm and apply it to the solution of the set partitioning problem—
a difficult combinatorial optimization problem that is used by many airlines as a
mathematical model for assigning flight crews to flights.

This chapter introduces the major components of this work—the set partitioning
problem, parallel computers, and genetic algorithms—and then discusses our goals.
Chapter II describes the sequential genetic algorithm and local search heuristic used
as the basis for the parallel genetic algorithm. Chapter I1I presents the parallel genetic
algorithm and describes the computational experiments we performed. Chapter IV
presents our conclusions. Chapter V suggests areas of further research.

The outline of this chapter is as follows. In the first section we describe the set
partitioning problem. We give a mathematical statement of the problem, discuss
its application to airline crew scheduling, and review previous solution approaches.
The second section briefly discusses parallel computers. The third section describes
genetic algorithms: their application to function optimization, previous approaches
to constrained problems, and different parallel models. The last section discusses the
motivation for pursuing this work and our specific goals.

1.1 The Set Partitioning Problem

1.1.1 Mathematical Statement. The set partitioning problem (SPP) may
be stated mathematically as

Minimize z = 3 _ ¢;; (1.1)
7=1
subject to
dajr; =1 for i=1,....m (1.2)
7=1

z;j=0or1 for y=1,...,n, (1.3)

where a;; 1s binary for all 2 and j, and ¢; > 0. The goal is to determine values for the
binary variables z; that minimize the objective function z.

The following notation is common in the literature [24, 46]" and motivates the
name “set partitioning problem.” Let [= {1,...,m} be a set of row indices, J =
{1,...,n} a set of column indices, and P = {Py,..., P}, where P; = {i € [|a;; =
1}, j € J. P;is the set of row indices that have a one in the jth column. |F;| is the
cardinality of P;. A set J* C J is called a partition if

Jp=1 (1.4)

JEJ™

JokeJj# k= PP =0 (1.5)

Associated with any partition J* is a cost given by 37« ¢;. The objective of the
SPP is to find the partition with minimal cost.

The following additional notation will be used later on. R; = {j € J|a;; = 1} is
the (fixed) set of columns that intersect row ¢. r; = {j € R;|x; = 1} is the (changing)
set of columns that intersect row ¢ included in the current solution. A is the change
in z as a result of setting z; to one. A, is the change in z when complementing
xj. A; and A; measure both the cost coeflicient, ¢;, and the impact on constraint
feasibility (see Section 2.4.3.)

1.1.2 Applications. Many applications of the SPP have been reported in the
literature. A large number of these are scheduling problems where given a discrete,
finite set of solutions, a set of constraints, and a cost function, one seeks the schedule
that satisfies the constraints at minimum cost. A partial list of these applications
includes crew scheduling, tanker routing, switching circuit design, assembly line bal-
ancing, capital equipment decisions, and location of offshore drilling platforms [6].

The best-known application of the SPP is airline crew scheduling. In this for-
mulation each row (2 = 1,...,m) represents a flight leg (a takeoff and landing) that
must be flown. The columns (5 = 1,...,n) represent legal round-trip rotations (pair-
ings) that an airline crew might fly. Associated with each assignment of a crew to a
particular flight leg is a cost, ¢;.

The matrix elements a;; are defined by

1 if flight leg ¢ is on rotation 7
= {0 j (1.6)

0 otherwise.

Numbers in square brackets refer to the numbered entries in the references.

Airline crew scheduling is a very visible and economically significant problem.
The operations research (OR) literature contains numerous references to the airline
crew scheduling problem [2, 3, 4, 7, 25, 36, 46, 47]. Estimates of over a billion dollars
a year for pilot and flight attendant expenses have been reported [1, 7]. Even a small
improvement over existing solutions can have a large economic benefit.

At one time solutions to the SPP were generated manually. However, airline
crew scheduling problems have grown significantly in size and complexity. In 1981
problems with 400 rows and 30,000 columns were described as “very large” [47].
Today, problems with hundreds of thousands of columns are “very large,” and one
benchmark problem has been generated with 837 rows and 12,753,313 columns [9].

1.1.3 Previous Algorithms. Because of the widespread use of the SPP (and
often the difficulty of its solution) a number of algorithms have been developed. These
can be classified into two types: approximate algorithms which try to find “good”
solutions quickly, and exact algorithms which attempt to solve the SPP to optimality.

An important approximate approach (as well as the starting point for most exact
approaches) is to solve the linear programming (LP) relaxation of the SPP. In the LP
relaxation, the integrality restriction on z; is relaxed, but the lower and upper bounds
of zero and one are kept. A number of authors [7, 25, 47] have noted that for “small”
SPP problems the solution to the LP relaxation is either all integer, in which case it
is also the optimal integer solution, or has only a few fractional values that are easily
resolved. However, in recent years it has been noted that as SPP problems grow in
size, fractional solutions occur more frequently, and simply rounding or performing
a “small” branch-and-bound tree search may not be effective [2, 7, 25].

Marsten [46] noted twenty years ago that for most algorithms in use at that
time, solving the linear programming relaxation to the SPP was the computational
bottleneck. This is because the LP relaxation is highly degenerate. The past several
years have seen a number of advances in linear programming algorithms and the
application of that technology to solving the LP relaxation of very large SPP problems
(2, 9].

One of the oldest exact methods is implicit enumeration. In this method partial
solutions are generated by taking the columns one at a time and exploring logical im-
plications of their assignments. Both Garfinkel and Nemhauser [24] and Marsten [46]
developed implicit enumeration algorithms. Another traditional method is the use
of cutting planes (additional constraints) in conjunction with the simplex method.
Balas and Padberg [6] note that cutting plane algorithms were moderately successful
even while using general-purpose cuts and not taking advantage of the shape of the
SPP polytope. A third method is column generation, where a specialized version of
the simplex method produces a sequence of integer solutions that (one hopes) con-
verge to the optimal integer solution. Applying a generic branch-and-bound program
is also possible. Various bounding strategies have been used, including linear pro-
gramming and Lagrangian relaxation. Fischer and Kedia [21] use continuous analogs

of the greedy and 3 — opt methods to provide improved lower bounds. Of recent inter-
est is the work of Eckstein [20], who has developed a general-purpose mixed-integer
programming system for use on the CM-5 parallel computer and applied it to, among
other problems, set partitioning.

At the time of this writing the most successful approach appears to be the work
of Hoffman and Padberg [36]. They present an exact approach based on the use
of branch-and-cut—a branch-and-bound-like scheme where, however, additional pre-
processing and constraint generation take place at each node in the search tree. An
important component of their system is a high-quality linear programming pack-
age for solving the linear programming relaxations and a linear programming—based
heuristic for getting good integer solutions quickly. They report optimal solutions for
a large set of real-world SPP problems.

1.2 Parallel Computers

Traditionally, parallel computers are classified according to Flynn’s taxonomy
[22]. Flynn’s classification distinguishes parallel computers according to the number
of instruction streams and data operands being computed on simultaneously. There
are three main classifications of interest: single-instruction single-data (SISD) com-
puters, single-instruction multiple-data (SIMD) computers, and multiple-instruction
multiple-data (MIMD) computers.

The SISD model is the traditional sequential computer. A single program counter
fetches instructions from memory. The instructions are executed on scalar operands.
There is no parallelism in this model.

In the SIMD model there is again a single program counter fetching instructions
from memory. However, now the operands of the instructions can be one of two
types: either scalar or array. If the instruction calls for execution involving only
scalar operands, it is executed by the control processor (i.e., the central processing
unit fetching instructions from memory). If, on the other hand, the instruction calls
for execution using array operands, it is broadcast to the processing elements.

The processing elements (PEs) are separate computing devices. The PEs do
not have their own program counter. Instead, they rely upon the control processor
to determine the instructions they will execute. Each PE typically has its own,
relatively small, memory in which are stored the unique operands the PE will execute
the instruction broadcast by the control processor on. The parallelism arises from
having multiple PEs (typically 4K-64K in recent commercial machines) executing
the same instruction, but on different operands. This type of parallel execution is
referred to as synchronous since each PE is always executing the same instruction as

other PEs.

In a MIMD computer there exist multiple processors each of which has its own
program counter. Processors execute independently of each other according to what-

ever instruction the program counter points to next. MIMD computers are usually
further subdivided according to whether the processors share memory or each has its
OwWn Mmemory.

In a shared-memory MIMD computer both the program’s instructions and the
part of the program’s data to be shared exist within a single shared memory. Addi-
tionally, some data may be private to a processor and not be globally accessible by
other processors. The processors execute asynchronously of each other. In the most
common programming model, they subdivide a computation that is performed on a
large data structure in shared memory, each processor performing a part of the com-
putation. Communication and synchronization between the processors are handled
by having them each read or write a shared-memory location.

A distributed-memory MIMD computer consists of multiple “nodes.” A node
is essentially just a sequential computer, that is, a processor and its own (local)
memory (and sometimes a local disk also). The processor’s program counter fetches
instructions from the local memory, and the instructions are executed on data that
also resides in local memory. The nodes are connected together via some type of
physical interconnection network that allows them to communicate with each other.
Parallelism is achieved by having each processor compute simultaneously on the data
in its local memory. Communication and synchronization are handled exclusively
through the passing of messages (a destination address and the processor local data
to be sent) over the interconnection network.

Currently, MIMD computers are more common than SIMD computers. Shared-
memory computers are common when only a few processors are being integrated,
such as in a multiprocessor workstation. Distributed-memory computers are more
common when tens or hundreds of processors are being integrated. The tradeoffs in-
volved are the (widely perceived) ease of use of shared-memory programming relative
to distributed-memory programming versus the difficulty of cost-effectively scaling
shared-memory computers to integrate more than a few tens of processors before
memory access bottlenecks arise. It seems likely that in the next several years we
will see the integration of both shared and distributed-memory as “nodes” in a dis-
tributed memory computer become themselves shared-memory multiprocessors.

Our interest in parallel computers is as an implementation vehicle for our al-
gorithm. As we explain later, a parallel genetic algorithm is a model that can be
implemented on both sequential and parallel computers. For the model of a parallel
genetic algorithm we use, a distributed-memory MIMD computer is the most natural
choice for implementation and the one we pursued.

1.3 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms. They were developed by Holland
[37] and are based on an analogy with natural selection and population genetics. One
important use of GAs, and the one we studied, is for finding approximate solutions to

t«—20

initialize P(?)

evaluate P(t)

foreach generation
t—1t+1
select P(t+ 1) from P(t)
recombine P(t + 1)
evaluate P(t 4 1)

endfor

Figure 1.1. Simple Genetic Algorithm

difficult optimization problems. As opposed to other optimization methods, genetic
algorithms work with a population of candidate solutions instead of just a single
solution. In the original GAs of Holland, and the ones we use in this paper, each
solution may be represented as a string of bits', where the interpretation of the
meaning of the string is problem specific.

Genetic algorithms work by assigning a value to each string in the population
according to a problem-specific fitness function. A “survival-of-the fittest” step selects
strings from the old population, according to their fitness. These strings recombine
using operators such as crossover or mutation to produce a new generation of strings
that are (one hopes) more fit than the previous one. A generic genetic algorithm is
shown in Figure 1.1.

Two important but competing themes exist in a GA search: the need for selective
pressure so that the GA is able to focus the search on promising areas of the search
space, and the need for population diversity so that important information (particular
bit values) is not lost. Whitley notes [66]:

Many of the various parameters that are used to “tune” genetic search
are really indirect means of affecting selective pressure and population
diversity. As selective pressure is increased, the search focuses on the top
individuals in the population, but because of this “exploitation” genetic
diversity is lost. Reducing the selective pressure (or using a larger pop-
ulation) increases “exploration” because more genotypes and thus more
schemata are involved in the search.

'In this dissertation we use the terms bit, value, and string instead of the more common
GA terminology gene, allele, and chromosome.

In the context of function optimization, strong selective pressure may quickly focus
the search on the best individuals at the expense of population diversity, and the
lack of diversity can lead the GA to prematurely converge on a suboptimal solution.
Conversely, if the selective pressure is relaxed, a high diversity may be maintained,
but the search may fail to improve values.

Three performance measures for genetic algorithms are in common use: online
performance, offline performance, and best string found. The online performance is
the average of all function evaluations up to and including the current trial. This
measure gauges ongoing performance. The offline performance is the average of the
best strings from each generation. The offline performance is a running average of all
the best performance values to a particular time. The best string found is the value
of the best string found so far in any generation and is the best metric to measure
function optimization ability.

1.3.1 Constrained Problems. One trait common to many combinatorial
problems solved by GAs is that feasible solutions are easy to construct. For some
problems, however—the SPP in particular—generating a feasible solution that satis-
fies the problem constraints is itself a difficult problem. Three approaches to handling
problem constraints have been discussed. In the first, solutions that violate a con-
straint(s) are infeasible and therefore are declared to have no fitness. This approach
is impractical because many problems are tightly constrained and finding a feasible
solution may be almost as difficult as finding the optimal one. Also, infeasible so-
lutions often contain valuable information and should not be discarded outright. In
the second approach, the GA operators are specialized for the problem, so that no
constraints are violated. In the third, a penalty term is incorporated into the fitness
function to penalize strings that violate constraints. The idea is to degrade the fitness
of infeasible strings but not throw away valuable information contained in the cost
term of the fitness function. Below we discuss some examples of the second and third
approaches.

Jog, Suh, and Gucht [39] summarize many of the crossover operators used for
the traveling salesperson problem (TSP). In general, these operators try to include
as much of the parent strings as possible in the offspring, subject to the constraint
that the offspring contain a valid tour. In the TSP, since all cities are connected to
all other cities, it is relatively easy to ‘fix up” an offspring that contains either an
invalid tour or a partial tour, by adding missing cities and removing duplicate cities.

As an example, Muhlenbein [48] uses a specialized crossover operator for the TSP
called the maximal preservative crossover operator (MPX). The idea is to retain
as many valid edges from the parent strings as possible. MPX works by randomly
selecting an arbitrary length string from one of the parents to initialize the offspring.
Edges are then added from either parent to the offspring, starting at the last city
in the offspring, as long as a valid tour is still possible. Otherwise, the next city in
one of the parent strings is added. The aim of MPX is to preserve as much of the
parent’s subtours as possible.

Von Laszewsski and Muhlenbein [65] define a structural crossover operator for
the graph partitioning problem that copies whole partitions from one solution to
another. Since the copy process may violate the “equal size partition” constraint, a
“repairing” operator is applied to “fix things up.” For this problem, mutation may
also create invalid solutions (mutation is defined as the exchange of two numbers in
order to avoid infeasibilities).

Penalty methods allow constraints to be violated. Depending on the magnitude
of the violation, however, a penalty that is proportional to the size of the infeasibility
is incurred that degrades the objective function. If the cost is large enough, highly
infeasible strings will rarely be selected for reproduction, and the GA will concentrate
on feasible or near-feasible solutions. A generic evaluation function is of the form

c(x) + p(x),

where ¢(x) is a cost term (often the objective function of the problem of interest)
and p(x) is a penalty term.

Richardson et al. [55] provide advice and experimental results for constructing
penalty functions. The authors suggest not making the penalty too harsh, since
infeasible solutions contain information that should not be ignored. As an example,
they point out that if one removes a column from the optimal solution to a set covering
problem, an infeasible solution results. This implies that the optimal solution is
separated from infeasible solutions by a Hamming distance of one. Using a similar
argument, they note that a single, one-bit mutation can produce the optimal solution
from an infeasible one. They suggest that the cost of the penalty term reflect the
cost of making an infeasible solution into a feasible one.

Siedlecki and Sklansky [56] use a dynamically calculated penalty coefficient in a
GA applied to a pattern recognition problem. Two interesting properties of their
problem are that (1) the minimum occurs on a boundary point of the feasible region,
and (2) the penalty function is monotonically growing. They report that a variable
penalty coefficient outperforms the fixed coefficient penalty.

Cohoon, Martin, and Richards [13] use a penalty term when solving the K-
partition problem. The penalty is exponentially increasing with the degree of con-
straint violation. They observe that the GA tends to “exploit” the penalty term by
concentrating its search in a particular part of the search space, willingly incurring a
small penalty if the scalar multiplier of the penalty term is not too large.

Smith and Tate [57] suggest a dynamic penalty function for highly constrained
problems. They apply this to the unequal area facility layout problem. The severity
of their penalty varies and depends on the best solution and best feasible solution
found so far. Their intent is to favor solutions that are near feasibility over solutions
that are more fit but less feasible.

In conjunction with rank-based selection, Powell and Skolnick [53] scale the ob-
jective function for their problem so that all the feasible points always have higher
fitness than the infeasible points. This approach avoids difficulties with choosing an
appropriate penalty function, but still allows infeasible solutions into the population.

1.3.2 Parallel Genetic Algorithms. When referring to a parallel genetic
algorithm (PGA) it is important to distinguish between the PGA as a particular
model of a genetic algorithm and a PGA as a means of implementing a (sequential or
parallel model of a) genetic algorithm. In a parallel genetic algorithm model, the full
population exists in a distributed form; either multiple independent subpopulations
exist, or there is one population but each population member interacts only with a
limited set of neighbors.

One advantage of the PGA model is that traditional genetic algorithms tend to
convergence prematurely, an effect that PGAs seem to be able to partially miti-
gate because of their ability to maintain more diverse subpopulations by exchanging
“genetic material” between subpopulations. Also, in a traditional GA the expected
number of offspring of a string depend on the string’s fitness relative to all other
strings in the population. This situation implies a global ranking that is unlike the
way natural selection works.

Many GA researchers believe a PGA is a more realistic model of species in nature
than a single large population; by analogy with natural selection, a population is typ-
ically many independent subpopulations that occasionally interact. Parallel genetic
algorithms also naturally fit the model of the way evolution is viewed as occurring;
a large degree of independence exists in the “global” population.

Parallel computers are an attractive platform for the implementation of a PGA.
The calculations associated with the sequential GA that each subpopulation performs
may be computed in parallel, leading to a significant savings in elapsed time. This
is important since it allows the global population size, and hence the overall number
of reproductive trials, to grow without much increase in elapsed computation time.

A parallel implementation of the traditional sequential genetic algorithm model
is also possible. A simple way to do this is to parallelize the loop that creates the
next generation from the previous one. Most of the steps in this loop (evaluation,
crossover, mutation, and, if used, local search) can be executed in parallel. The se-
lection step, depending on the selection algorithm, may require a global sum that
can be a parallel bottleneck. When such an approach has been taken, it is often on a
distributed-memory computer. However, unless function evaluation (or local search)
is a time-consuming step, the parallel computing overheads associated with distribut-
ing data structures to processors, and synchronizing and collecting the results, can
mitigate any performance improvements due to multiple processors. Instead, this
type of parallel implementation is an obvious candidate for the “loop-level” paral-
lelism common on shared-memory machines. This has important implications for
anticipated future parallel computers. Such machines are expected to have multiple

processors sharing memory on a node, and many such nodes in a distributed-memory
configuration. It will be natural to map a PGA onto the distributed nodes, and speed
the sequential GA at each node by using the multiple processors to parallelize the
generation loop.

Parallel genetic algorithms can be classified according to the granularity of the
distributed population, coarse grained vs. fine grained, and the manner in which the
GA operators are applied [39]. In a coarse-grained PGA the population is divided
into several subpopulations, each of which runs a traditional GA independently and
in parallel on its own subpopulation. Occasionally, fit strings migrate from one
subpopulation to another. In some implementations migrant strings may move only
to geographically nearby subpopulations, rather than to any arbitrary subpopulation.

In a fine-grained PGA a single population is divided so that a single string is
assigned to each processor. Processors select from, crossover with, and replace only
strings in their neighborhood. Since neighborhoods overlap, fit strings will migrate
throughout the population.

1.3.2.1 Coarse-Grained Parallel Genetic Algorithms. In a coarse-
grained parallel genetic algorithm (CPGA), also referred to later as an island model,
multiple processors each run a sequential GA on their own subpopulation. Processors
exchange strings from their subpopulation with other processors. Some important
choices in a CPGA are which other processors a processor exchanges strings with,
how often processors exchange strings, how many strings processors exchange with
each other, and what strategy is used when selecting strings to exchange.

Tanese [62] applied a CPGA to the optimization of Walsh-like functions using
a 64-processor Ncube computer. Periodically, fit strings were selected and sent to
neighboring processors for possible inclusion in their future generations. Fxchanges
took place only among a processor’s neighbors in the hypercube. These exchanges
varied over time, taking place over a different dimension of the hypercube each time.
Tanese found that the CPGA was able to determine the global maximum of the
function about as often as the sequential GA. Tanese reported near-linear speedup
of the CPGA over the traditional GA for runs of 1,000 generations. In most cases
Tanese’s main metric, the average of which generation the global maximum was
found on, preferred eight as the optimal number of subpopulations. Tanese also
experimented with variable mutation and crossover rates among the subpopulations
and found these results at least as good as earlier results.

In [63] Tanese experimented with the partitioned genetic algorithm (a CPGA
with no migration between processors allowed). A total population size of 256 was
partitioned into various power-of-two subpopulation sizes. In all cases the partitioned
GA found a better “best fitness value” than the traditional GA, even with small
subpopulations sizes such as eight or four. The average fitness of the population at
the last generation, however, was consistently worse than that calculated with the
traditional algorithm.

10

Experiments with migration found that a higher average fitness could be obtained
if many migrants were sent infrequently or if only a few migrants were sent more
frequently. Each processor generated extra offspring during a migration generation
and selected migrants uniformly from among the “overfull” population. Often the
partitioned GA found fitter strings than the CPGA with migration. Best results were
achieved with a migration rate such as 20% of each subpopulation migrating every
20 iterations.

In [60] Starkweather, Whitley, and Mathias describe another CPGA. Each pro-
cessor sent copies of its best strings to one of its neighbors, which replaced its worst
string with these. A ring topology was used where, on iteration one, py sends to py,
p1 sends to po, etc., and on iteration two, pg sends to py, p; sends to ps3, etc. All
sends were done in parallel. In their tests the total population size was fixed, and
they experimented with various-sized partitions of the total population among the
processors. When no mutation was used, performance improved for two of the four
problems as the number of subpopulations was increased, but degraded on the other
two. When adaptive mutation was used, with the mutation probability increasing to
some predefined maximum as the similarity of the two parents increased, the runs
were more successful and achieved good results relative to the serial runs. The more
distributed the GA, the more often adaptive mutation was invoked, since smaller sub-
populations converge more rapidly than larger ones. Their experiments also indicate
that migrating strings too often, or not often enough, degrade performance.

Cohoon, Martin, and Richards [13] applied the CPGA to the K-partition problem
using a 16-processor hypercube. FEach processor had its own subpopulation of eighty
strings, and fifty iterations were run between migrations. An interesting feature
of their work was the random choice of scaling coefficient for the penalty term in
their fitness function ¢(x) + Ap(x). The scaling factor A influences how much weight
infeasibilities have in evaluating a string’s fitness. Two experiments were done. One
used A = 1 for each subpopulation. In the other, each processor chose a value for A
uniformly on the interval (0,1). When the metric “best observed fitness” was applied,
the runs with uniformly distributed A were consistently better than those with A fixed
at one in each processor.

Kroger, Schwenderling, and Vornberger [41] used a CPGA on a network of 32
transputers to solve the two-dimensional bin packing problem. At “irregular inter-
vals” a processor received strings from neighboring processors. A “parallel elitist
strategy” was used whereby, whenever a processor improved upon the best string in
its population, it sent a copy of that string to all other processors in its neighbor-
hood. The best results were found with a “medium size” neighborhood and a local
population of ten strings.

Pettey, Leuze, and Grefenstette [51] ran a CPGA on an Intel iPSC hypercube.
Each generation each processor sent its best strings to each neighbor and received its
neighbor’s best strings. These were then inserted into each processor’s subpopulation
by using a replacement scheme. Subpopulation size was fixed at 50 strings; and 1,

11

2,4, 8, and 16 processors were used. They believe their results indicate an increased
likelihood of premature convergence. This work is at an extreme from most CPGAs,
because strings are exchanged every generation and always with the same neighbors.
These conditions explain the apparent increased likelihood of premature convergence.

Gordon and Whitley [28] compare eight different parallel genetic algorithms and a
version of Goldberg’s Simple Genetic Algorithm [26] on several function optimization
test problems. Among their conclusions is that island models (CPGAs) perform well,
particularly on the hardest problems in their test suite.

1.3.2.2 Fine-Grained Parallel Genetic Algorithms. In a fine-grained
parallel genetic algorithm (FPGA) exactly one string is assigned to each processor.
In the FPGA the model is of one population in which the strings have only local
interactions and neighborhoods, as opposed to global ones. Choices in an FPGA
include neighborhood size, processor connection topology, and string replacement
scheme.

Muhlenbein [48] applied an FPGA to the traveling salesperson problem and the
graph partitioning problem. Each string selected a mate from within a small neigh-
borhood of its own processor. Within its neighborhood each processor performed
selection, crossover, and mutation without any central control. In addition, each
string attempted to improve itself by applying a local search heuristic.

Muhlenbein’s objective was to avoid premature convergence by allowing only slow
propagation of highly fit strings across the full population. This is dependent on the
topology of the processor’s neighborhood, which he calls the population structure. By
choosing a population structure that takes a long time to propagate strings through-
out the population, Muhlenbein claimed he avoided premature convergence. The
topology used was a two-dimensional circular ladder with two strings per “step.” A
neighborhood size of eight was used by each string. Some overlap occurred among
neighborhoods, enabling fit strings to propagate through the population.

In [65] an FPGA was applied to the graph partitioning problem. Strings were
mapped to a 64-processor transputer system. Selection was done independently by
each string within a small neighborhood of the two-dimensional population structure.
The parent string was replaced if the offspring was at least as good as the worst
string in the neighborhood. A small neighborhood size in conjunction with a large
population size gave the best results.

In [29] Gorges-Schleuter implemented an FPGA on a 64-processor Parsytec trans-
puter system using a sparse graph as the population topology. An elitist strategy was
used whereby offspring are accepted for the next generation only if they were more
fit than the local parent. A string’s fitness was defined relative to other strings in its
neighborhood, and neighborhoods could overlap. The algorithm was applied to the
TSP problem, using a population size of 64 and a neighborhood size of eight. Results

12

showed that, with a small neighborhood size, communication costs were negligible,
and linear speedup was achieved.

1.3.2.3 Other Parallel Genetic Algorithms. Fogarty and Huang [23]
used a transputer array for the parallel evaluation of a population of 250 strings
applied to a real-time control problem. For this problem, evaluating the fitness of a
member of the population takes a relatively long time. A host processor ran the main
GA program and distributed strings for evaluation to the other transputer processors
for evaluation. Maximum speedups in the range of 25-27 were obtained on 40-72
processors. The incremental improvement in speedup was slightly sublinear up to
about 16-20 processors, but then fell off quickly.

Liepens and Baluja [44] used a parallel GA with a central processor phase. In
parallel, 15 subpopulations of ten strings each run a GA on their own subpopulations.
Next, during the central processor phase, the most fit string from each subpopulation
is gathered along with an additional 15 randomly generated strings. Under the con-
trol of the central processor a recombination phase of these 30 strings occurs. The
best string is then injected into the populations of one-third of the processors. Com-
menting about parallelism, Liepens and Baluja believe that smaller subpopulations
remain more heterogeneous.

1.4 Thesis Methodology

In this section we explain the motivation and objectives of this thesis, and the
performance metrics used.

1.4.1 Motivation. There were a number of motivations for applying (parallel)
genetic algorithms to the set partitioning problem. One was the particularly chal-
lenging nature of the problem. The challenges include the NP-completeness of finding
feasible solutions in the general case, and the enormous size of problems of current
industrial interest. Also, because of its use as a model for crew scheduling by most
major airlines, there is great practical value in developing a successful algorithm.

Genetic algorithms can provide flexibility in handling variations of the model
that may be useful. The evaluation function can be easily modified to handle other
constraints such as cumulative flight time, mandatory rest periods, or limits on the
amount of work allocated to a particular base. More traditional methods may have
trouble accommodating the addition of new constraints as easily. Also, at any it-
eration genetic algorithms contain a population of possible solutions. As noted by
Arabeyre et al. [3],

The knowledge of a family of good solutions is far more important than
obtaining an isolated optimum.

13

This reality has been noted also by many operations research practitioners. Often, for
political or other reasons, it is not possible to implement the best solution, but it may
be desirable to find one with similar behavior. Traditional operations research algo-
rithms do not maintain knowledge of solutions other than the current best, whereas
G As maintain the “knowledge of a family of good solutions” in the population.

Additionally, the problem has attracted the attention of the operations research
community for over twenty-five years, and many real problems exist, so it is possible
to compare genetic algorithms with a number of other algorithmic approaches. One
advantage of a GA approach is that since it works directly with integer solutions
there is no need to solve the LP relaxation.

Finally, as parallel computers move into mainstream computing. the challenge
to researchers in all areas is to develop algorithms that can exploit the potential of
these powerful new machines. The model of genetic algorithm parallelism we pursue
in this dissertation has, we believe, great potential for scaling to take advantage of
larger and larger numbers of processors. Since we believe the algorithm maps well
to parallel computers, it motivates us to see whether this can help us to solve hard
problems of practical interest.

1.4.2 Thesis Objectives. This thesis had several objectives which span the
fields of genetic algorithms, operations research, and parallel computing. The primary
objective was to determine whether a GA can solve real-world SPP problems. Current
real-world SPP problems have been generated of almost arbitrary length. Fven many
smaller problems have posed significant difficulties for traditional methods. Also, in
the general case, just finding a feasible solution to the SPP is NP-complete [49]. We
wished to see how well a GA could perform on such a problem.

We also wished to identify characteristics of SPP problems that were hard for a
genetic algorithm. The SPP is both tightly constrained and, in many cases, very large.
It also has a natural bit string representation and so is an interesting problem on
which to study the effectiveness of GAs. Most applications of GAs have traditionally
been to problems with tens or hundreds of bits. We wished to see whether GAs could
handle larger problems without the “disruption factor” hindering the search ability.
Also, tightly constrained problems have not been the forte of genetic algorithms, and
one of our objectives was to see how accurately this limitation carried over to the

SPP problem.

Finally, we also wished to study aspects of the parallel genetic algorithm model.
We wished to determine the role and influence of parameters such as migration fre-
quency and how strings are selected to migrate or be replaced. We were interested in
the algorithmic behavior with the addition of increasing numbers of subpopulations;
whether there would be an improvement in the quality of the best solution found, or
if it would be found faster, or both.

14

1.4.3 Performance Metrics. The main performance metric we used was the
“quality” of the solution found. This was measured by how close to optimality the
best solution found was. A second metric was the “efficiency” of the parallel genetic
algorithm model we used. As we increased the number of subpopulations (and hence
the total population size) we wished to determine whether the number of GA itera-
tions required to find a solution decreased. The third metric of interest, “robustness”,
was the ability of the algorithm to perform consistently well on a wide range of prob-
lem types. This was studied by choosing a large set of test problems and trying to
characterize on different “problem profiles” how well the GA performed. Finally, we
also compared the parallel GA with traditional operations research methods to see
which were more effective.

15

CHAPTER 1I
SEQUENTIAL GENETIC ALGORITHM

The motivation for the work presented in this chapter was to develop a sequential
genetic algorithm that worked well on the set partitioning problem. This would then
be used as a building block upon which to develop the parallel genetic algorithm.
Although much theoretical work on GAs exists, and much more is currently being
pursued by the GA community, there does not yet exist a complete theory for GAs
that says which GA operators and their parameter values are best. Often when
implementing a GA, practitioners rely upon a large body of empirical research that
exists in the literature. In some cases this work is theoretically guided; in others it
is the result of extensive experiments or specific application case studies. It is in this
context that the work in this chapter was performed.

In Section 2.1 we discuss the test problems we use in this chapter. Section 2.2
discusses the basic genetic algorithm we tested. Section 2.3 discusses the local search
heuristic we developed. Section 2.4 discusses specific components of the genetic
algorithm and provides a complexity analysis. Finally, Section 2.5 summarizes the
results.

2.1 Test Problems

The test problems used in this chapter are given in Table 2.1 where they are
sorted by increasing number of columns. These problems are a subset of those used
by Hoffman and Padberg in [36]. They are “real” set partitioning problems provided
by the airline industry. The columns in this table are the test problem name, the
number of rows and columns' in the problem, the total number of nonzeros in the
A matrix, the objective function value for the linear programming relaxation, and
the objective function value for the optimal integer solution. By the standards of
SPP problems solved by the airline industry today, these problems can be classified
as small (nw41, nw32, nw40, nw08, nw15, nw20), medium (nw33), and large (aa04,
nw18), according to the number of rows and columns in the problem. This particular
subset was selected so that we would have several smaller models and a few larger
ones.

We can characterize how difficult the test problems are in several ways. First,
we can look at the problem parameters, such as the number of rows, columns, and
nonzeros. In general, we assume that the larger and more dense a problem is, the
harder it is to solve. For the GA, this is justified from a complexity standpoint, since
various components of the GA and local search heuristic we use have running time

tIn the rest of this dissertation we use rows and columns interchangeably with constraints
and variables.

16

Table 2.1 Sequential Test Problems

Problem No. No. No. LP IP

Name Rows Cols Nonzeros Optimal Optimal
nwél 17 197 740 10972.5 11307
nw32 19 294 1357 14570.0 14877
nw40 19 404 2069 10658.3 10809
nw08 24 434 2332 35894.0 35894
nwl5 31 467 2830 67743.0 67743
nw20 22 685 3722 16626.0 16812
nw33 23 3068 21704 6484.0 6678
aa04 426 7195 52121 25877.6 26402
nwl8 124 10757 91028 338864.3 340160

Table 2.2 Sequential Test Problem Solution Characteristics

Problem LP LP LP 1P

Name ITters. Nonzeros Ones Nodes
nwdl 174 7 3 9
nw32 174 10 4 9
nw40 279 9 0 7
nw08 31 12 12 1
nwlb 43 7 7 1
nw20 1240 18 0 15
nw33 202 9 1 3
aal4 >T428 234 5 >1
nwl8s >162947 68 27 >62

17

of the order of the number of rows or columns, or the number of nonzeros in a row
or column (see Section 2.4.7).

We can also gain some insight into the difficulty of the test problems by solving
them with a traditional operations research algorithm." The test problems have been
solved using the public-domain 1p_solve program [8]. lp_solve solves linear pro-
gramming problems using the simplex method and solves integer programming (IP)
problems using the branch-and-bound algorithm. The results are given in Table 2.2.
The columns are the test problem name; the number of simplex iterations required
to solve the LP relaxation, plus the additional simplex iterations when solving LP
subproblems in the branch-and-bound tree; the number of variables in the solution
to the LP relaxation that were not zero; the number of the nonzero variables in the
solution to the LP relaxation that were one (i.e., not fractional); and the number of
nodes searched in the branch-and-bound tree before an optimal solution was found.

lp_solve found optimal solutions for problems nw41, nw32, nw40, nw08, nwl5,
nw20, and nw33. 1p_solve found the optimal solution to the LP relaxation for nw18,
but not the optimal integer solution before a CPU time limit was reached. The large
number of simplex iterations and nodes searched for this problem, relative to the
others (except aa04), indicate (at least for lp_solve) it is a hard problem. aa04
was the most difficult—1p_solve was not able to solve the associated LP relaxation
and, in fact, aborted after over 7,000 simplex iterations. aa04 seems to be a difficult
problem for others as well [36]. We conclude that the seven smaller problems are
“relatively easy,” nw18 is more difficult, and aa04 is very difficult.

2.2 The Genetic Algorithm

One way to classify genetic algorithms is by the percentage of the population that
is replaced each generation. Two choices, at extremes from each other, are common
in the literature. The first, the generational replacement genetic algorithm (GRGA),
replaces the entire population each generation and is the traditional genetic algorithm
as defined by Holland [37] and popularized by Goldberg [26]. The second, the steady-
state genetic algorithm (SSGA), replaces only one or two strings each generation and
is a more recent development [61, 66, 69].

In the GRGA the entire population is replaced each generation by their offspring.
The hope is that the offspring of the best strings carry the important “building
blocks” [26] from the best strings forward to the next generation. The basic outline
of the GRGA is given in Figure 1.1. The GRGA allows the possibility that the best
strings in the population do not survive to the next generation. Also, as Davis points
out [15], many of the best strings may not be allocated any reproductive trials. It is
also possible that mutation or crossover destroy or alter important bit values so that
they are not propagated into the next generation by the parent’s offspring. Many

tWe defer discussion of a comparison with Hoffman and Padberg to the next chapter.

18

Table 2.3 Comparison of the Use of Elitism in GRGA

Problem No Elitism Elitism

Name Opt. Feas. Trials Opt. Feas. Trials
nwél 2 559 863 2737 864
nw32 0 412 840 0 562 841
nw40 0 491 864 0 705 864
nw08 2 23 860 0 35 861
nwl5 0 3 856 0 4 862
nw20 0 267 863 0 440 863
nw33 0 3 575 0 22 576
aa04 0 0 859 0 0 858
nwl8 0 0 473 0 0 474

implementations of the GRGA use elitism; if the best string in the old population is
not chosen for inclusion in the new population, it is included in the new population
anyway. The idea is to avoid “accidentally” losing the best string found so far. GA
practice has shown this is usually advantageous.

Table 2.3 compares the use of elitism in the GRGA. The column Problem Name
is the name of the test problem. The subheadings Opt. and Feas. are the number
of optimal and feasible integer solutions found, out of the number of trials given in
the Trials column, respectively. In these experiments we varied several parameters at
once (elitism, selection algorithm, penalty term, fitness function, crossover operator,
crossover probability, and initialization strategy). The population size was fixed at 50
and the mutation rate at 1/n. For each choice of parameter value or operator, we per-
formed one computer “run” for each test problem®. In each run the random number
generator was initialized by using the microsecond portion of the Unix gettimeofday
system call as a seed.

Comparing the results using as the metric the number of feasible solutions found,
we find with a x? test* that elitism is beneficial on five of the problems (nw41, nw32,
nw40, nw20, nw33). However, the most obvious result from Table 2.3 is the lack of
optimal solutions found, even on the smaller problems. The main difficulty was the
population’s premature convergence, so that all the strings in the population were
duplicates and no new search was occurring (see also [43] for more on our earlier
work). It was this that led us to pursue alternative GA approaches, and in the rest
of this dissertation we will report results only for the steady-state genetic algorithm
which we found more successful.

tBecause of resource limits, scheduling conflicts, and system crashes, not all runs com-
pleted for all problems.

TAll y? tests reported in this dissertation use a significance level of 5 percent.

19

The steady-state genetic algorithm is an alternative to the GRGA that replaces
only a few individuals at a time, rather than an entire generation. In practice, the
number of new strings to create each generation is usually one or two. The new
string(s) replace the worst-ranked string(s) in the population. In this way the SSGA
allows both parents and their offspring to coexist in the same population (in fact,
this is the usual case).

The SSGA has a “built-in” elitism since only the lowest-ranked string is deleted;
the best string is automatically kept in the population. Also, the SSGA is immedi-
ately able to take advantage of the “genetic material” in a newly generated string
without having to wait to generate the rest of the population as in a GRGA. A dis-
advantage of the SSGA is that with small populations some bit positions are more
likely to lose their value (i.e., all strings in the population have the same value for
that bit position) than with a GRGA. For this reason, SSGAs are often run with
large population sizes to offset this.

SSGA practitioners advocate discarding a child string if it is a duplicate of a
string currently in the population. By avoiding duplicate strings the population is
able to maintain more diversity. In our implementation we do not discard a duplicate
string, but repeatedly mutate it until it is unique. Not allowing duplicates turned
out to be important. Before implementing a method to avoid duplicate strings, we
found SSGA populations experienced a similar problem with premature convergence
as did the GRGA. Avoiding duplicate strings had a noticeable effect in avoiding or
delaying premature convergence.

Figure 2.1 presents the steady-state genetic algorithm we used. Here, we give
a brief outline. Specific details of the operators follow in the next several sections.
P(t) is the population of strings at generation® ¢. Each generation one new string is
inserted into the population. The first step is to pick a random string, X,,,d40m, and
apply a local search heuristic (Section 2.3) to it. Next, two parent strings, x; and
X3, are selected (Section 2.4.4), and a random number, r € [0, 1], is generated. If r
is less than the crossover probability, p., we create two new offspring via crossover
(Section 2.4.6) and randomly select one of them, X;.,, to insert in the population.
Otherwise, we randomly select one of the two parent strings, make a copy of it, and
apply mutation to flip bits in the copy with probability 1/n. In either case, the new
string is tested to see whether it duplicates a string already in the population. If
it does, it undergoes (possibly additional) mutation until it is unique. The least-fit
string in the population is deleted, x,,.,, is inserted, and the population is reevaluated.
The experiments in this chapter all used a population size of 50.

To implement the genetic algorithm and local search heuristic, we wrote a pro-
gram in ANSI C. It consists of approximately 10,000 lines of source code (including
comments) and is portable and runs on all Unix systems it has been tested on. It

"We use generation and iteration interchangeably.

20

t— 0
initialize P()
evaluate P(t)
foreach generation
local_search (X,qndom € P(1))
select(xy,xz) from P(t)
if(r < p.) then
Xpew = Crossover(xi,Xz)
else
Xpew = MUtate(xy,Xz)
endif
delete (Xyorst € P())
while (x,,., € P(?))
mutate(Xpey)
Pt +1) « P(t)UXpen
evaluate P(t 4 1)
t—1t+1
endfor

Figure 2.1. Steady-State Genetic Algorithm

is capable of running on one or more processors. When run on one processor, it is
functionally equivalent to a sequential program. For the experiments described in
this chapter three different types of computers were used: Sun Sparc 2 workstations,
IBM RS/6000 workstations, and an IBM SP1 parallel computer (for these experi-
ments, the SP1 was used as if it were a collection of independent workstations—we
ran multiple sequential jobs, each using one SP1 node with no interaction between
the jobs). Details of the parallel aspects of the program are given in the next chapter.

2.3 Local Search Heuristic

A local search heuristic’ attempts to improve a solution by moving to a better
neighbor solution. Whenever the neighboring solution is better than the current
solution, it replaces the current solution. When no better neighbor solution can be
found, the search terminates.

Parker and Rardin [50] describe two important neighborhoods. In the k-change
neighborhood, up to k bits are complemented at a time. In the k-interchange neigh-
borhood, up to & bits are changed at a time, but in a complementary manner. Trade-
offs exist between speed and solution quality; searching a large neighborhood will pre-
sumably lead to a better solution than searching a smaller one, but at an increased

'In the GA literature such methods often go by the name hill-climbing.

21

cost in solution time. A related issue is the extent of a given neighborhood that
should be searched. At one extreme, every point in the neighborhood is evaluated
and the one that improves the current solution the most accepted as the move. Al-
ternatively, we can also make the first move found that improves the current solution.
We refer to these two choices as best-improving and first-improving, respectively.

The experimental evidence of many researchers [15, 39, 40, 48] is that hybridizing
a genetic algorithm with a local search heuristic is beneficial. It combines the GAs
ability to widely sample a search space with a local search heuristic’s hill-climbing
ability. There are, however, theoretical objections to the use of a local search heuris-
tic. An important one is that changing the “genetic material” in the population in
a nonevolutionary manner will affect the schema represented in the population and
undermine the GA. Gruau and Whitley [35] comment:

Changing the coding of an offspring’s bit string alters the statistical
information about hyperplane subpartitions that is implicitly contained
in the population. Theoretically, applying local optimization to improve
each offspring undermines the genetic algorithm’s ability to search via
hyperplane sampling. The objection to local optimization is that chang-
ing inherited information in the offspring results in a loss of inherited
schemata, and thus a loss of hyperplane information.

Hybrid algorithms that incorporate local optimizations may result in
greater reliance on hill-climbing and less emphasis on hyperplane sam-
pling. This reliance could result in less global exploration of the search
space because it is hyperplane sampling that is the basis for the claim
that genetic algorithms globally sample a search space.

Our early experience with the GRGA [43], as well as subsequent experience with
the SSGA, was that both methods had trouble finding optimal (sometimes even
feasible) solutions (the SSGA was better than the GRGA, but still not satisfactory).
This led us to develop a local search heuristic to hybridize with the GA to assist in
finding feasible, or near-feasible, strings to apply the GA operators to.

A local search heuristic for the SPP must address the following. First, since the
SPP is tightly constrained, an initial feasible solution may be difficult or impossible
to construct. Second, in considering a k-change or k-interchange move, many of
the possible moves may destroy or degrade the degree of feasibility. An effective
local search heuristic for the SPP will most likely not be uniform in the size of
the neighborhoods it explores, but will vary according to the context of the current
solution. For example, if no column covers a row, the heuristic may pick a single
column to set to one. For a row that is overcovered, however, the heuristic may try
to set to zero all but one of the columns.

We developed a heuristic we call ROW (since it takes a row-oriented view of the
problem). The basic outline is given in Figure 2.2. ROW works as follows. For some

22

foreach niters
i = chose_row(random_or_maz)
improve (i, |r;|, best_or_first)
endfor

Figure 2.2. ROW Heuristic

number of iterations (a parameter of the heuristic), one of the m rows of the problem
is selected (another parameter). For any row there are three possibilities: |r;| = 0,
|ri| = 1, and |r;] > 1. The action of ROW in these cases varies and also varies
according to whether we are using a best-improving or first-improving strategy. In
the case of best-improving we apply one of the following rules.

. |ri] = 0: For each j € R; calculate Aj . Set to one the column that minimizes

Aj .
IL. |rs] = 1: Let k be the unique column in r;. Calculate A’, the change in f when
zp — 0and z; « 1,5 € R;. If AL <0 for at least one j, set x), « 0 and z; « 1,

for A} < A%, V.

HIL |rg] > 1: For each j € r; calculate A, the change in f when x, « 0,Vk €
rik # j. Set xp « 0,Vk € ri, k # j, where AT < AY,VE.

We note that strictly speaking this is not a best-improving heuristic. The reason
is that in cases I and III we can move to neighboring solutions that degrade the
current solution. The reason we allow this is that we know that whenever |r;| = 0 or
|ri| > 1, constraint ¢ is infeasible and we must move from the current solution even if
neighboring solutions are less attractive. The advantage is that the solution “jumps
out” of a locally optimal, but infeasible domain of attraction.

The first-improving version of ROW differs from the best-improving version in
the following ways. If |r;| = 0, we select a random column j from R; and set ; « 1.
If [r;| = 1, we set z « 0 and x; « 1 as soon as we find any A} < 0,5 € R;. Finally,
if |r;] > 1, we randomly select a column k € r;, leave x; = 1, and set all other
;= 0,5 € r;. In the cases where |r;| = 0 and |r;| > 1, since we have no guarantee
we will find a “first-improving” solution, but know that we must leave the current
solution, we make a random move that makes constraint ¢ feasible, without measuring
all the implications (cost component and (in)feasibility of other constraints).

We compared the different options for ROW. The results are given in Tables 2.4—
2.7. In these runs we also varied the initialization scheme and penalty term used.

23

Table 2.4 compares the number of iterations (1, 5, and 20) of ROW that were
applied to try to improve a string. A y? test shows no difference between these on
any of the test problems. The explanation appears to be that ROW gets stuck in a
local optimum and cannot escape within the neighborhood defined by the possible
moves specified earlier.

Table 2.5 compares two methods for choosing the constraint to apply ROW to.
Random means one of the m constraints is selected randomly. MazViolation means
that the constraint with the largest value of | 37_; a;jz; — 1] is selected. The x? test
shows that the results on four problems (nw41, nw32, nw15, nw33) are improved when
the selected constraint is chosen randomly. In fact, the maximum violation strategy
never found an optimal solution. The implication is that the use of randomness plays
an important role in escaping local optima.

Table 2.6 compares the best-improving and first-improving strategies. The x?
test shows that the first-improving strategy is significantly better on problems nw41,
nw40, nwi5, and nw33. It appears that the randomness in two of the steps of the
first-improving strategy helps escape from a locally optimal solution.

Table 2.7 shows the hybrid of the SSGA used in combination with the ROW
heuristic. We refer to this hybrid as SSGAROW. For six problems (nw41, nw32,
nw40, nw08, nwi5, nw33), the first-improving strategy performs significantly better
according to the x? test. This table is interesting because we could argue that we
would expect exactly the opposite result. That is, since the GA itself introduces
randomness into the search we would expect to do better combining the best solution
found by ROW rather than the first or a random one, which are presumably not as
good. A possible explanation is that the GA has prematurely converged and so the
only new search information being introduced is from the ROW heuristic. ROW,
however, in its best-improving mode gets trapped in a local optimum, and so little
additional search occurs.

Table 2.4 Number of Constraints to Improve in the ROW Heuristic

Problem 1 5 20

Name Opt. Trials Opt. Trials Opt. Trials
nwél 12 288 8 288 10 284
nw32 1 288 4 287 2 286
nw08 0 285 0 287 0 282
nwl5 40 142 40 142 36 141
nw20 2 259 0 257 0 258
nw33 1 280 3 277 5 264
aa04 0 225 0 220 0 213
nwl8 0 276 0 277 0 267

24

Table 2.5 Choice of Constraint to Improve in the ROW Heuristic

Problem Random MaxViolation
Name Opt. Trials Opt. Trials

nwii 14 284 0 288
nw32 4 285 0 288
nw40 3 286 0 288
nw08 0 281 0 286
nwib 59 139 0 143
nw20 1 256 0 259
nw33 5 272 0 276
aal4 0 212 0 216
nwi8 0 272 0 278

Table 2.6 Best Improving vs. First Improving in the ROW Heuristic

Problem Best First
Name Opt. Trials Opt. Trials

nwdl 3 432 27 428
nw32 1 432 6 429
nw40 0 431 4 430
nw08 0 427 0 427
nwib 26 210 90 215
nw20 2 387 0 387
nw33 0 409 9 412
aal4 0 304 0 334
nwi8 0 405 0 415

Table 2.7 Best Improving vs. First Improving in SSGAROW

Problem Best First

Name Opt. Trials Opt. Trials
nw4l 21 212 53 213
nw32 8 214 34 211
nw40 3 214 16 213
nw08 4 215 15 212
nwib 21 211 47 210
nw20 2 213 4 213
nw33 0 195 7 189
aa04 0 209 0 209
nwi8 0 152 0 154

25

typedef struct {
int cost;
int ncv;
int *cover;

} AMATRIX;

Figure 2.3. Structure for Storing Row and Column Information

2.4 Genetic Algorithm Components
In this section we discuss some aspects of the genetic algorithm we examined.

2.4.1 Problem Data Structures. For solving the large SPP problems that
arise in the airline industry [7, 9], data structures that are memory efficient and lend
themselves to efficient computation are necessary. In the SPP, both the A matrix
and the solution vector are binary, and it is possible to devise special data structures
that make efficient use of memory.

A solution to the SPP problem is given by specifying values for the binary decision
variables ;. The value of one (zero) indicates that column j isincluded (not included)
in the solution. This solution may be represented by a binary vector x! with the
interpretation that ; = 1(0) if bit j is one (zero) in the binary vector.

Representing a SPP solution in a GA is straightforward and natural. A bit in a
GA string is associated with each column j. The bit is one if column j is included
in the solution, and zero otherwise. To make efficient use of memory, we had each
bit in a computer word represent a column. Because most computers today are
byte addressable, this approach improves storage efficiency by at least a factor of
eight compared with integer or character implementations. It does, however, require
the development of specialized functions to set, unset, and toggle a bit and to test
whether a bit is set.

Since the SPP matrix is typically large and sparse and contains only the values
zero and one, it is necessary only to store the indices of the rows and columns where
a;; = 1. At different points in the algorithm we require a list of the rows intersected
by a particular column (P;) or a list of the columns intersected by a particular row
(R;). We use the data structure shown in Figure 2.3 for both cases. In the column
version, this structure holds ¢; in the cost field, |P;| in the ncv field, and P; in the
cover array. The row version holds A; in the cost field, |R;| in the ncv field, and R;
in the cover array.

"We use x interchangeably as the solution to the SPP problem or as a bitstring in the
GA population, that is, x € P(t).

26

—_
[N}
—_
[N}
ot
-~J
—_
ISy
[N}
ISy
9]
ISy
Ne
[N}
[N}
—_
9]
ISy
—_
[N}
—_
[N}
[N}
ot
ISy
—_
ISy

o 100 0 0010 00 0O 1 0 0 0 0 0 0 0
1 100 0 0100 0O 0O 0O 0 1 1 0 0 0 0 1
o 600 0O 1001 1 0O 1 0 0 0 0 0 1 0 0
o o011 1 000O0 OO 1 O 1 1 0 0 0 0 0
o 600 1 0O00O0OO0OCO0OCO0O O OO 1 O 1 0 0 0
1 o000 o0 1101 0 0 0 0 0 0 1 0 0 0 0
o 600 0O O0OO0OCOO0O O 1 1 O O 0O 0 0 0 1 0
1 o000 o0 1011 0 0 0 0 1 0 0 0 0 0 0
1 234 5 6 789 10 11 12 13 14 15 16 17 18 19 20

Figure 2.4. Example A Matrix before Sorting

2.4.2 Block Column Form. A useful initial step is the ordering of the SPP
matrix into block “staircase” form [52]. Block B; is the set of columns that have their
first one in row 2. B; is defined for all rows but may be empty for some. Within B;
the columns are sorted in order of increasing c;.

Figures 2.4 and 2.5 show an example of an SPP matrix before and after sorting
into block staircase format. The numbers at the top of the matrix are the column
costs, ¢;. The numbers at the bottom of the matrix are the column indices. In this

example, [= {1,...,8} and By = {13,8,2},...,B; = {19,11}, and Bg = 0.

Ordering the matrix in this manner is helpful in determining feasibility. In any
block, at most one x; may be set to one. Our algorithm takes advantage of this
ordering in two ways. First, one initialization scheme (randomly) sets at most one z;
per block to one. Second, the block crossover operator defined in Section 2.4.6 takes
advantage of the block column structure.

2.4.3 Evaluation Function. Three functions are of interest: the SPP ob-
jective function, the evaluation function, and the fitness function. It is the SPP
objective function, z, that we wish to have the GA minimize. However, the difficulty
with using z directly is that it does not take into account whether a string is feasi-
ble. Therefore, we introduce an evaluation function to incorporate a cost term and a
penalty term. Since GAs maximize fitness, however, we still must map the evaluation
function (which is being minimized) to a nonnegavtive fitness value. This is the role
of the fitness function.

The SPP objective function (Equation 1.1) is given by the definition of the prob-
lem. The evaluation function and the fitness function, however, are design choices we
must make. Currently, no definitive theory exists to say which choice is best. For the

27

ISy
ISy
—_
[N}
ISy
9]
—_
[N}
—_
[N}
—_
[N}
[N}
ISy
Ne
—_
9]
[N}
ISy
ot
-~J
—_
ISy
ot
[N}
—_
[N}

[e=RNen Rl en i an B e B an B o N
— O O oo oo
OO OO OO = =
SO oo oo —O
OO, OO OO
—R O oo, O~ O
[N e N e I = i
—_— o OO0 o= O
[en BN e B en B en B e B N e B an
[en BN e B en B en B e B N e B an
—_— o, OO, OO
O LR OO P, OO
—_— o, OO, OO
O oo oo oo
O oo oo oo
OO R R OO oD
o oo~ oo oo
[eo BN en B N e B e B e I e B an
[eniE S en B an B an B e B e B an
[eniE S en B an B an B e B e B an

—
w
9]
[N}
DO
<o

7T 14 15 1 10 18 9 12 6 3 4 5

—_
-
—_
D
—_
Ne
—_
—_

Figure 2.5. Example A Matrix after Sorting

evaluation function we investigated three choices, each reflecting a different penalty
term.

The evaluation function measures “how good” a solution to the SPP problem a
string is. This must take into account not just the cost of the columns included in
the solution (the SPP objective function value), but also the degree of (in)feasibility
of a string. Traditional OR algorithms restrict their search to feasible solutions, and
so no additional term is included in the SPP objective function to penalize constraint
violations. In the GA approach, however, the GA operators often produce infeasible
solutions. In fact, since just finding a feasible solution to the SPP is NP-complete
[49], it may be that many or most strings in the population are infeasible. Therefore,
we need an evaluation function that takes into account the degree of infeasibility of
the string. We used as the generic form of our evaluation function

[=e(x) + p(x), (2.1)

where f is the evaluation function; ¢(x), the cost term, is the SPP objective function;
and p(x) is a penalty term. The choice of penalty term can be significant. If the
penalty term is too harsh, infeasible strings that carry useful information but lie
outside the feasible region will be ignored and their information lost. If the penalty
term is not strong enough, the GA may search only among infeasible strings [55]. We
investigated three penalty terms.

The countinfz penalty term is

=1

where

B;(x) = 1 if constraint ¢ is infeasible,
! "] 0 otherwise.

28

The countinfz penalty term indicates whether a constraint is infeasible, but does not
measure the magnitude of the infeasibility.

In Equation (2.2) (and Equation (2.3) below), A; is a scalar weight that penalizes
the violation of constraint ¢. Choosing a suitable value for \; is a difficult problem.
In [55] Richardson et al. studied the choice of A; for the set covering problem (SCP).
In the SCP, the equality in Equation (1.2) is replaced by a > constraint. The SCP,
however, is not a highly constrained problem; in the SCP constraint ¢ is infeasible
only if |r;] = 0. However, it is easily made feasible by (even randomly) selecting an
zj,7 € R; to set to one. For the |r;| = 0 case, however, such an approach will not
work for the SPP, since any z;,j € R; set to one, while it will satisfy constraint ¢,
may introduce infeasibilities into other currently feasible constraints. Similarly, if we
try to make a constraint with |r;| > 1 feasible by setting all but one of the x;,5 € r;
to zero, we may undercover other currently feasible constraints.

A good choice for \; should reflect not just the “costs” associated with making
constraint ¢ feasible, but also the impact on other constraints (in)feasibility. We know
of no method to calculate an optimal value for A;. Therefore, we made the empirical
choice of \; = m]aX{CjU € R;}. This choice is similar to the “P2” penalty in [55],

where it provided an upper bound on the cost to satisfy the violated constraints of
the SCP. In the case of set partitioning, however, the choice of A; provides no such
bound, and it is possible the GA may find infeasible solutions more attractive than
feasible ones (for several problems discussed in the next chapter this situation did
happen.)

The linear penalty term is

m n

DAY lagje; —1]. (2.3)
=1 7=1

This penalty does measure the magnitude of constraint ¢’s infeasibility.

The ST penalty term ([57]) is

m

D (®4(x)/2) [21eas — Zhest] - (2.4)

=1

Here, z4.,s 1s the best feasible objective function value found so far, and zj. is the
best objective function value (feasible or infeasible) found so far. According to Smith

and Tate [57]

...the explicit goal of our penalty function is to favor solutions
which are near a feasible solution over more highly-fit solutions which are
far from any feasible solution.

29

Following Smith and Tate, we used a distance-from-feasibility metric which was de-
pendent on the number of violated constraints, but not the magnitude of their vio-
lations.

Table 2.8 compares the three penalty terms using SSGA. Only the ST penalty
shows a significant result (problems nw41 and nw08.) One point to note, is the paucity
of optimal solutions found with any of the penalties using SSGA by itself. Table 2.9
contains a similar comparison using SSGAROW. Interestingly, the opposite effect is
observed. Both the countinfz and linear penalty terms perform better than the ST
penalty. Compared with each other, the only difference that showed up with the y?
statistic was on nw15 where the linear penalty term performed better.

Table 2.8 Comparison of Penalty Terms in SSGA

Problem Linear Countinf ST
Name Opt. Trials Opt. Trials Opt. Trials

nwél 3 284 4 284 14 286
nw32 3 286 0 282 0 288
nw40 0 284 0 287 1 288
nw08 0 287 0 288 8 287
nwilb 1 286 0 285 0 286
nw20 0 288 1 287 0 285
nw33 0 288 0 286 0 288
aa04 0 277 0 272 0 275
nwl8 0 276 0 276 0 279

Table 2.9 Comparison of Penalty Terms in SSGAROW

Problem Linear Countinf ST

Name Opt. Trials Opt. Trials Opt. Trials
nwél 35 143 28 141 11 141
nw32 18 142 24 142 0 141
nw40 8 143 9 142 2 142
nw08 6 142 8 143 5 142
nwl5 42 139 24 143 2 139
nw20 4 141 2 142 0 143
nw33 2 128 5 129 0 127
aa04 0 144 0 136 0 138
nwl8 0 103 0 103 0 100

2.4.4 Fitness and Selection. The fitness function is used during the selec-
tion phase to determine the expected number of reproductive trials to allocate to a
string. Genetic algorithms require that the fitness function be nonnegative and that
the more highly fit a string, the larger its fitness function value (although see [42] for

30

a discussion of the use of a nonmonotonic fitness function). For the SPP this requires
a mapping from the evaluation function to the fitness function. As has been pointed
out, however, the evaluation function value itself is not an “exact” measure of fitness
[66]. The mapping from the evaluation function to the fitness function “should be
considered a design parameter of the genetic algorithm, not a feature of the opti-
mization problem” [31]. In general, the fitness function is given by u(x) = ¢g(f(x)).

If selection is done via a binary tournament (see below), any fitness function that
reflects the monotonicity of the evaluation function will suffice. If selection is to be
done by calculating the expected number of reproductive trials and then sampling
those, however, the choice of fitness function can play a significant role. We tested
two choices for the fitness function.

A dynamic linear fitness function [26, 30] is given by
u(x) = af(x)+ b(t).

We used ¢ = —1 and b(¢) = 1.1 - max{f(x)|x € P(t)}. De la Maza and Tidor [16]
point out that the choice of b(t) can significantly affect the selective pressure. Our
choice of b(t) is intended to interfere with the selective pressure as little as possible,
while still converting the minimization of f into the maximization of w.

We also tested a linear rank fitness function [5, 66] given by

rank(x,t) — 1

u(x) = Min + (Max — Min) N1 \

(2.5)

where rank(x,t) is the index of x in a list sorted in order of decreasing evaluation
function value. Ranking requires that 1 < Max < 2, and Min + Mazx = 2. We
used Max = 2. The advantage of ranking over other methods, when selection is pro-
portional to a string’s fitness, is that ranking is less prone to premature convergence
caused by a super-individual.

Tables 2.10 contains the results of experiments we did comparing the dynamic fit-
ness function to ranking using SSGAROW. Sampling was done using both stochastic
universal selection and tournament selection. The y? test shows that neither method
performed significantly better than the other on any of the test problems.

The selection phase allocates reproductive trials to strings on the basis of their
fitness. Depending on the type of GA, strings selected from the old generation are
either included directly in the new generation or become the parents of new strings
created by the GA recombination operators. We compared two choices for the selec-
tion algorithm: stochastic universal selection and tournament selection.

Baker’s stochastic universal selection (SUS) is an optimal sampling algorithm

[5]. SUS may be thought of as constructing a roulette wheel using fitness propor-
tionate selection and then spinning the wheel once, where the number of equally

31

Table 2.10 Comparison of Fitness Techniques in SSGAROW

Problem Cmax Ranking

Name Opt. Trials Opt. Trials
nwél 40 213 34 212
nw32 19 210 23 215
nw40 11 213 8 214
nw08 8 214 11 213
nwlb 30 210 38 211
nw20 5 210 1 216
nw33) 196 2 188
aa04 0 209 0 209
nwl8 0 152 0 154

spaced markers on the wheel is equal to the population size. This method guarantees
that each string is allocated |expectedvalue]| reproductive trials and no more than
[expectedvalue].

In binary tournament selection [26, 27] two strings are chosen randomly from the
population. The more fit string is then allocated a reproductive trial. In order to
produce an offspring, two binary tournaments are held, each of which produces one
parent string. These two parent strings then recombine to produce an offspring. A
variation of binary tournament selection is probabilistic binary tournament selection
where the more fit string is selected with a probability py, .5 < p, < 1. [54] Proba-
bilistic binary tournament selection does allow for the possibility that the best string
in the population may be lost. Its advantage is a reduction in the selective pressure.

Table 2.11 contains the results comparing SUS to tournament selection using the
SSGAROW. The y? test again shows that neither method performs better than the
other on any of the problems tested.

2.4.5 Initialization. We tested a total of six initialization schemes. Two are
random, three are heuristics, and one uses the solution to the LP relaxation. The
two random schemes are applied directly to all strings in the population. For the
nonrandom methods we initialize a single string via the method being used and then
randomly modify it to initialize the rest of the population.

Heuristic initialization violates the “usual” GA strategy of trying to achieve a
highly diverse solution space search by random initialization. For quite a while we had
trouble finding feasible solutions, however. Heuristic initialization was an attempt to
bias the search in a more favorable direction. Below we describe the different methods
we tested.

32

Table 2.11 Comparison of Selection Schemes in SSGAROW

Problem SUS Tournament
Name Opt. Trials Opt. Trials
nw41 39 214 35 211
nw32 21 212 21 213
nw40 8 212 11 215
nw08 6 215 13 212
nwib 29 210 39 211
nw20 4 210 2 216
nw33 1 195 6 189
aa04 0 207 0 211
nwi8 0 165 0 141

JChavatal — @

do until (P; = 0,V))
k= min{Aj, /|Bjllz; = 0}
JChavatal — JChavatal U k
P =P —P,

enddo

Figure 2.6. Modified Chavatal Heuristic

2.4.5.1 Modified Chavatal Heuristic. = This method is a modification
of a heuristic proposed by Chavatal [12] for the set covering problem. For the set
covering problem Chavatal notes:

Intuitively, it seems the desirability of including j in an optimal cover
increases with the ratio | P;|/¢; which counts the number of points covered
by P; per unit cost.

Our modification was to use Aj /|P;| as the quantity to minimize. The algorithm
calculates a set of column indices, Jeongvatal, and is given in Figure 2.6.

2.4.5.2 Greedy Heuristic. The greedy heuristic is similar to the modified

Chavatal heuristic. The difference is that the criterion used to decide which column to

next set to one in Figure 2.6 is to use min{A;, |x; = 0} instead of min{A; /| P;||z; =
J J

0}.

2.4.5.3 Gregory’s Heuristic. Gregory’s heuristic [32] is a generalization
of the Vogel approximation method for generating a starting solution to a Hitchcock

33

while(3¢ s.t. r, =0)
for(i=1,m)
lf(r, = @)
A = min{A;|j € R}

Ah = min{A]& |] € RZ?] 7£ k}
J

di — All — Akl
end if
end for
q = min{d; < d;,Vjs.t.r; =0}
g1

end while

Figure 2.7. Gregory’s Heuristic

transportation model. For each row ¢ with r; = (J, the idea is to find the two columns
that minimize A; , 7 € R;, calculate their difference, and find the minimum difference
over all such rows. The algorithm is given in Figure 2.7.

2.4.5.4 Random Initialization. Random initialization sets x; « 1, for
all columns j, with probability 0.5.

2.4.5.5 Block Random Initialization. Block random initialization, based
on a suggestion of Gregory [32], uses information about the expected structure of an
SPP solution. A solution to the SPP typically contains only a few “ones” and is
mostly zeros. We can use this knowledge by randomly setting to one approximately
the same number of columns estimated to be one in the final solution. If the average
number of nonzeros in a column is Psy g, we expect the number of z; = 1 in the
optimal solution to be approximately m/Pay .

We use the ratio of m/ P4y to the number of nonnull blocks as the “probability”
of whether to set to one some z; in block B;. If we do choose some 7 € B; to set to
one, that column is chosen randomly. If the “probability” is > 1, we set to one one
column in every block.

Table 2.12 contains a comparison of four initialization strategies: the three heuris-
tics (Chavatal, Gregory, and Greedy) and block random initialization using the
SSGA. Since the SSGA algorithm by itself was unable to find many optimal solutions,
it is not possible to make meaningful comparisons. However, the results suggested
that Gregory’s heuristic and block random initialization were the two most promising
approaches. These were further compared using SSGAROW; the results are shown
in Table 2.13. The new results are more meaningful; the y? comparison shows that
block random initialization out performs Gregory’s heuristic on five problems (nw41,
nw40, nw15, nw20, nw33) and is outperformed on one (nw32). We conclude that by

34

giving the GA a wider selection of points in the search space to sample from, it does
a better job than if we try to guide it.

In additional testing of block random initialization versus random initialization,
we observed that with random initialization SSGA by itself faired poorly. This result
is explained as follows. Approximately half the initial string will be one bits; however,
a feasible SPP string has only a few one bits. SSGA alone has only mutation to “zero
out” the one bits or crossover to combine “building blocks” of zero bits, and these
processes are too slow.

When we compared block random initialization versus random initialization using
SSGAROW, the results from the two methods were about the same. In this case
the large neighborhood moves ROW makes when |r;| > 1, which is true for most
constraints initially, quickly zeros out most of the one bits. After a few generations
the number of one bits left in a randomly initialized string quickly approaches the
same number found in a block randomly initialized string.

Table 2.12 Comparison of Initialization Strategies in SSGA

Problem Chavatal Gregory Greedy Brandom
Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials

nwél 1 214 13 214 0 212 7 214
nw32 0 214 2 214 0 214 1 214
nw40 0 215 0 215 0 215 1 214
nw08 0 215 8 215 0 216 0 216
nwilb 0 215 0 214 0 214 1 214
nw20 0 214 0 215 0 215 1 216
nw33 0 216 0 216 0 214 0 216
aa04 0 205 0 208 0 202 0 209
nwl8 0 207 0 208 0 206 0 210

2.4.5.6 Linear Programming Initialization. We also tried initializing
the population using the solution to the LP relaxation of the test problem. The results
in Table 2.14 were all obtained using the solution to the LP relaxation to initialize
the population. This was done in a manner similar to the way the other heuristics
were applied. First, the first string in the population was initialized using the LP
relaxation and then was randomly perturbed to seed the rest of the population. Since
the LP solution can be fractional, we experimented with three ways to “integerize”
it. One was to use the nonzero value of a variable in the LP solution as a probability;
if the value of a random number, 0 < r < 1, was less than the variable’s value, we
set the corresponding bit to one, otherwise to zero. This is column Flip. In the
second case, we set a bit to one if the corresponding value in the solution to the LP
relaxation was > 0.5, otherwise to zero. This is column Round. In the third case, we
set to one any bits whose corresponding variable in the solution to the LP relaxation
was nonzero, otherwise to zero. This is column Cleil.

35

Table 2.13 Comparison of Initialization Strategies in SSGAROW

Problem Gregory Brandom

Name Opt. Trials Opt. Trials
nwél 11 215 63 210
nw32 36 213 6 212
nw40 0 216 19 211
nw08 7 212 12 215
nwl5 24 211 44 210
nw20 0 213 6 213
nw33 0 195 7 189
aal4 0 212 0 206
nwl8 0 155 0 151

Between themselves Ceil outperforms Flip and Round on two problems (nw4l,
nw08) but otherwise none of the other results are significant at the 5 percent level
of the y? test. A direct comparison of the the Ceil results with the block random
results in Table 2.13 is not appropriate since the ten trials in Table 2.14 all used a
particular set of parameters, whereas those in Table 2.13 were varied. However, we
do note that for the smaller problems LP initialization does well, but for the larger
ones (aa04, nw18) it was unable to help SSGAROW find a feasible solution to either.
Since one of our motivations was to see whether we could develop an algorithm for
the SPP that did not need to solve the LP relaxation as a starting point, we did not
pursue LP initialization further.

Table 2.14 Linear Programming Initialization in SSGAROW

Problem Flip Round Ceil

Name Opt. Trials Opt. Trials Opt. Trials
nwél 3 9 3 9 8 10
nw32 4 9 3 9 3 9
nw40 2 9 3 8 2 10
nw08 4 9 6 9 10 10
nwl5 8 9 6 8 10 10
nw20 1 8) 9 2 10
nw33 2 8 6 8 6 10
aa04 0 7 0 8 0 9
nwl8 0 9 0 9 0 9

2.4.6 Crossover. The crossover operator takes bits from each parent string
and combines them to create child strings. The motivating idea is that by creating
new strings from substrings of fit parent strings, new and promising areas of the
search space will be explored. Figure 2.8 illustrates the classical one-point crossover

36

Parent Strings Child Strings
aaaaaaaa aabbbbbhb
bPbbbbbbbbd bbaaaaaa

Figure 2.8. One-Point Crossover

Parent Strings Child Strings
aaaaaaaa aabbbaaa
bbbbbbbbd bbaaabbhb

Figure 2.9. Two-Point Crossover

operator. Starting with two parent strings of length n = 8, a crossover site ¢ = 3 is
chosen at random. Two new strings are then created; one uses bits 1-2 from the first
parent string and bits 3-8 from the second parent string; the other string uses the
complementary bits from the two parent strings.

In the past several years, however, GA researchers have preferred either two-point
or uniform crossover. It is these, along with a specialized two-point “block crossover”
we developed for the SPP problem, that we compared.

2.4.6.1 Two-Point Crossover. Booker [10] cites DeJong [17] who noted
that one-point crossover is really a special form of two-point crossover where the
second “cut” point is always fixed at the zero location. Figure 2.9 illustrates two-
point crossover. Starting with two parent strings of length n = 8, two crossover sites
¢y = 3 and ¢; = 6 are chosen at random. Two new strings are then created; one uses
bits 1-2 and 6-8 from the first parent string and bits 3-5 from the second parent
string; the other string uses the complementary bits from each parent string.

Two-point crossover (and one-point crossover) are special cases of n-point crossover
operators. In the n-point crossover operators, more than one crosspoint is selected,
and several substrings from each parent may be exchanged. Experiments by Booker
[10] showed a significant improvement in off-line performance at the expense of on-
line performance when using two randomly generated crossover points. In the case
of function optimization, off-line performance is the more important measure.

2.4.6.2 Two-Point Block Crossover. We experimented with a modifi-
cation of two-point crossover designed to take advantage of the block staircase form
we sorted the SPP problem into. We define two-point block crossover to be crossover
such that the crossover columns, ¢; and ¢y, ¢; < ¢, are always selected to be the first
columns of two blocks, B;, and B,,.

Block crossover was developed as an attempt to preserve feasibility (or at least
not make a solution more infeasible.) From the definition of block B; we know

37

Parent Strings Child Strings
aaaaaaaa baababba
bbbbbbbbd abbabaab

Figure 2.10. Uniform Crossover

that all columns in B; have their first one in row z. It follows that at most one
column in any block can be set to one in a feasible solution. The intent of two-point
block crossover was to avoid introducing additional infeasibilities in the blocks that
contain the crossover columns, since all columns in that block come from only one
parent. Two-point block crossover can, however, still introduce infeasibilities into

other blocks.

2.4.6.3 Uniform Crossover. One way to think of uniform crossoveris as
randomly generating a bit-mask that indicates from which parent string to take the
next bit when creating the offspring [61]. Figure 2.10 illustrates uniform crossover.
Starting with two parent strings of length n = 8, the bit-mask 01101001 is randomly
generated. This mask is applied to the parent strings such that a “1” bit indicates
that the next bit for the first child string should be taken from the first parent string,
and a “0” bit indicates that the next bit for the first child string should be taken
from the second parent string. The bit-string is then complemented and the process
repeated to create the second child string.

Spears and DelJong [59] and Syswerda [61] give evidence to support the claim
that uniform crossover has a better recombination potential-—the ability to combine
smaller building blocks into larger ones—than do other crossover operators. Testing
by Syswerda showed that uniform crossover performed significantly better than one-
or two-point crossover on most problems. DeJong and Spears [19] present empiri-
cal results on a set of n-peak problems (those with one global optima, but n — 1
local optima) comparing two-point and uniform crossover with varying population
sizes. Their results show that uniform crossover is better than two-point crossover
for smaller values of n and for smaller values of the population size N. In [58],
however, Spears and DeJong note just the opposite effect as both n and N increase:

This suggests a way to understand the role of multi-point crossover. With
smaller populations, more disruptive crossover, such as uniform or n-point
(n > 2) may yield better results because they help overcome the limited
information capacity of smaller populations and the tendency for more
homogeneity. However, with larger populations, less disruptive crossover
operators (two—point) are more likely to work better, as suggested by the
theoretical analysis.

Syswerda [61] notes that uniform crossover replaces the need for the inversion
operator. Inversion moves bits around so that related sets of bits are less likely to

38

be disrupted and more likely to be grouped with similar bit groupings. Because
uniform crossover chooses bits randomly to mask, however, it does not have the
same disrupting effect on long defining length schemata that n-point crossover does,
and so inversion is not necessary. Thus uniform crossover may be advantageous for
SPP problems because the long strings associated with large problems may make the
interruption of long defining length schemata a serious problem.

Table 2.15 contains the results of our tests to compare all three crossover operators

using SSGAROW. The x? test showed no significant difference between any of the
crossover operators on any of the problems.

Table 2.15 Comparison of Crossover Operators Using SSGAROW

Problem Two-Point Uniform Two-Point Block

Name Opt. Trials Opt. Trials Opt. Trials
nw41 24 142 24 141 26 142
nw32 15 139 16 144 11 142
nw40 5 142 8 142 6 143
nw08 8 140 6 143 5 144
nwl5 25 140 22 140 21 141
nw20 1 141 1 141 4 144
nw33 3 141 1 143 3 100
aa04 0 133 0 143 0 142
nwl8 0 143 0 141 0 22

Spears and DeJong [59] suggest parameterizing uniform crossover with a param-
eter p, that is the probability of swapping two parents bit values. Normally in
uniform crossover p, = 0.5, however, Spears and DeJong note that with p, = 0.1,
uniform crossover is less disruptive than two-point crossover with no defining length
bias. They believe this is useful in being able to achieve a proper balance between
exploration and exploitation. Table 2.16 shows the results of experiments we did
to compare three values of p, (0.6, 0.7, and 0.8) with 0.5. The y? test showed no
significant differences among any of the results.

Studies of crossover rate suggest that a high rate, which disrupts many strings
selected for reproduction, is important in a small population. Further studies show a
decreasing crossover rate as the population size increases. Some classical results using
generational replacement GAs have suggested N = 50-100 and p. = 0.6 (DeJong [17]),
and N = 80 and p. = 0.45 (Grefenstette [30]) as good values for offline performance.
More recently, steady-state GAs have become prominent; but no set of parameter
values is yet a default.

To try to determine a good crossover rate, we tested three crossover probabilities,

0.3, 0.6, and 0.9, in conjunction with the three crossover operators described earlier.
The results are shown in Table 2.17. The x? test shows little conclusive evidence; 0.6

39

Table 2.16 Parameterized Uniform Probability Using SSGAROW

Problem py = 0.5 p, = 0.6 py = 0.7 pp = 0.8

Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials
nwél 7 10 7 8 6 10 9 10
nw32 4 10 0 10 3 9 0 7
nw40 5 10 4 10 2 6 2 6
nw08 1 9 2 10 3 8 3 10
nwl5 5 8 8 10 4 9 6 8
nw20 0 8 1 9 1 10 0 10
nw33 1 9 3 9 4 10 3 10
aa04 0 8 0 8 0 6 0 1
nwl8 0 9 0 8 0 8 0 10

superior to 0.9 on two problems (nw41, nw08) and 0.3 superior to 0.6 and 0.9 on one
problem (nw40).

Table 2.17 Comparison of Crossover Probabilities in SSGAROW

Problem 30% 60% 90%

Name Opt. Trials Opt. Trials Opt. Trials
nwél 23 141 33 142 18 142
nw32 13 144 14 139 15 142
nw40 12 144 4 140 3 143
nw08 7 142 10 144 2 141
nwib 24 141 24 141 20 139
nw20 2 140 1 142 3 144
nw33 3 144 1 136 3 104
aa04 0 136 0 141 0 141
nwl8 0 116 0 95 0 95

40

2.4.7 Computational Complexity.

Here we give a complexity analysis for the average cost per iteration for the
algorithm given in Figure 2.1. We note that the analysis is particular to specific
operator choices we made (e.g., uniform crossover vs. two-point crossover) and also
reflects the particular data structures being used. For the test problems used in the
next chapter, N was 100, m varied from 17 to 823 and was typically 20-40, and n
varied from 197 to 43,749 and was typically 600-3000.

The ROW heuristic is applied to one randomly selected string each generation,
and one constraint is randomly selected to try to improve. A first-improving strategy
is used. We define Pyaxy = max{|P;|} < K < m. That is, Pyax is the largest

J

number of nonzeros in a column, and is bounded by a constant K, less than the
number of rows. We will use Pyyax below as an upper bound on |P;|. We define
R v to be the average number of nonzeros in a row. Since the choice of constraint
is equally likely, we use Ry ¢ when determining complexity terms dependent on the
number of nonzeros in a row. For the test problems used in the next chapter, Pyax
was typically 7-17, and R4v¢g was typically 150-200.

If |r;] = 0, a single column is randomly selected in constant time, and an O(Pyax)
step follows to update the count of how many columns cover each row. If |r;| = 1, we
must first determine which column covers this row in time O(Rav¢). Next, we loop
over each 7 € R; (O(Rav¢)) and consider a l-interchange move with the column
currently one. FEach such comparison requires evaluations of the cost to add and
delete the respective columns. Each of these requires a loop over all the rows covered
by that column (O(Papax)) so the total complexity is O(RavaPuax). If [ri] > 1, a
single column is randomly selected in constant time. Next, to determine the set of
columns in |r;| requires a search through R;, at complexity O(Rav¢), to see which
columns can cover this row. These are then set to zero, which takes time O(|r;|). We
conclude that the complexity of ROW is O(Rava Paax)-

Selection was done using a binary tournament. This requires randomly selecting
two parents and may be done in constant time. We chose to use uniform crossover,
which requires a bit mask for every bit position; its complexity is O(n). Mutation
is also O(n), since we call a random number generator for each bit to determine
whether we should flip it. Determining the string to delete required looking through
the whole population, which takes time O(N).

Not allowing duplicate strings requires comparing the new offspring to each string
in the population (O(N)). Each of these comparisons requires comparing each bit
position (O(n)). Therefore, the total complexity of the comparisons is O(nN). If
we do find a duplicate, we go through an unknown number of mutate steps, each of
which takes time (O(n)), until the string is no longer a duplicate.

Function evaluation is done twice each generation, once for the newly created
offspring of the GA, and once for the string that ROW was applied to. Evaluating

41

the function requires determining the cost and penalty terms. Calculating the cost
component is O(n), since we must test each bit to see which ¢; to include in the cost
term. To determine the penalty term, we must first determine |r;| for each ¢ € I. To
do this, we loop over each column j (O(n)) and, if x; = 1, update r; for all ¢ € P;.
So the complexity to calculate the penalty term is O(nPyrax). Using the up-to-date
|ri|’s, we loop over each constraint O(m) to determine the total penalty term. Once
we have the evaluation function values, we calculate the fitnesses by searching through
the population O(N) to find the least fit string and then calculating Equation (2.4.4)
for each string (O(N)).

Collecting the largest terms the cost of an average iteration is

Cave = O(nN) 4+ O(Rava Puax) + O(m).

We make the following empirical observations. First, as described in Section 2.4.1,
our implementation works directly with the bits stored in a computer word. If the
word length is WL, in many cases steps in the algorithm that have complexity O(n)
can be done in time O(n/WL), since we can often test for equality or nonzero bits at
the word level rather than the individual bit level. Since an SPP solution is mostly
zero bits, in practice this will usually be advantageous. Second, we did not keep a
sorted list of evaluation function values. However, this could be used to reduce the
complexity to determine the string to delete and calculate the fitness values. Third,
it is possible to use some hashing of the indices of the one bits in a string to make
testing for duplicates more efficient.

2.5 Discussion

One early conclusion we reached was that the generational replacement GA, even
with elitism, was not very good at finding solutions to SPP problems. In fact, even
finding feasible solutions to relatively small problems proved a difficult challenge. The
primary cause of this was premature convergence. The SSGA proved more successful,
particularly at finding feasible solutions. However, the SSGA still had considerable
difficulty finding optimal solutions. This situation motivated us to develop a local
search heuristic to hybridize with the SSGA.

The ROW heuristic we developed is specialized for the SPP. ROW has three
parameters: how many iterations it is applied, how to select the constraint to apply
it to, and how to select a move to make. In general, the most successful approach
with ROW seems to be to “work quicker, not harder.” We found that applying ROW
to just one constraint, choosing this constraint randomly, and using a first-improving
strategy (which also introduces randomness when a constraint is infeasible) is more
successful than attempts to apply ROW to the most infeasible constraint or find the
best-improving solution.

The advantages of ROW relative to a best-improving 1-opt heuristic we also im-
plemented [43] are its ability to make moves in large neighborhoods such as when

42

|ri| > 1, its willingness to move downhill to escape infeasibilities, and the random-
ness introduced by the first-improving strategy. Even with ROW we detected a
convergence in the population after some period of time. When all constraints are
feasible, ROW no longer introduces any randomness since in the case |r;| = 1 it
is in a “true” first-improving strategy mode. When most constraints are feasible,
the 1 —interchange moves examined degrade the current solution, so ROW remains
trapped in a local optima.

Table 2.18 compares the SSGA, the ROW heuristic, and the SSGAROW hybrid.
SSGA and ROW are not much different. Using the y? test, SSGA outperforms ROW
on problem nw08, and ROW outperforms SSGA on nw15 and nw33. SSGAROW,
however, outperforms both ROW and SSGA on five and seven of the test problems,
respectively. The search heuristic is able to make good local improvements to the
strings, and the GA’s recombination ability allows these local improvements to be
incorporated into other strings and thus have a global effect.

We tested several operator and parameter value choices. In most cases we con-
cluded that the different options we compared all worked about the same. More
specifically, the linear amd countinfz penalty terms performed about the same. There
was no significant difference between either fitness techniques or selection method.
The different crossover operators and crossover probabilities we tested also all be-
haved about the same. An exception was our attempt to initialize the population
using some type of heuristic method. We found the wide sampling of the initial search
space provided by block random initialization was preferred.

Table 2.18 Comparison of Algorithms

Problem SSGA ROW SSGAROW
Name Opt. Trials Opt. Trials Opt. Trials

nwdl 21 354 30 860 T4 425
nw32 3 356 7 361 42 425
nw40 1 359 4 361 19 427
nw08 3 362 0 854 19 427
nwlb 1 857 116 425 68 421
nw20 1 860 2 774 6 426
nw33 0 362 9 821 7 384
aal4 0 824 0 649 0 418
nwl8s 0 831 0 820 0 306

43

CHAPTER 1II
PARALLEL GENETIC ALGORITHM

In this chapter we discuss the parallel genetic algorithm we developed. First,
we give an overview of the island model that is the basis for the parallel genetic
algorithm. Next, we discuss several parameters of the island model and experiments
we carried out to try and determine good ones. Third, we describe the hardware and
software environment in which the experiments were performed. Fourth, we present
the results of our experiments applying the parallel genetic algorithm to a test suite
of set partitioning problems. We conclude with a discussion of our results.

3.1 The Island Model Genetic Algorithm

In population genetics an island model is one where separate and isolated subpop-
ulations evolve independently and in parallel. It is believed that multiple distributed
subpopulations, with local rules and interactions, are a more realistic model of species
in nature than a single large population.

The island model genetic algorithm (IMGA) is analogous to the island model of
population genetics. A GA population is divided into several subpopulations, each
of which is randomly initialized and runs an independent sequential GA on its own
subpopulation. Occasionally, fit strings migrate between subpopulations.

The migration of strings between subpopulations is a key feature of the IMGA.
First, it allows the distribution and sharing of above average schemata via the strings
that migrate. This serves to increase the overall selective pressure since additional
reproductive trials are allocated to those strings that are fit enough to migrate [67].
At the same time, the introduction of migrant strings into the local population helps
to maintain genetic diversity, since the migrant string arrives from a different sub-
population which has evolved independently.

The IMGA may be subject to premature convergence pressure if too many copies
of a fit string migrate too often, and to too many subpopulations. It is possible that
after a certain number of migration steps each subpopulation contains a copy of the
globally fittest individual, and copies of this string (and only this string) migrate
between subpopulations. In fact, this occurred often in our early experiments when
we were not checking to see whether the arriving string was a duplicate of one already
in the subpopulation. The “fix” was to extend the test for duplicate strings (see
Section 2.2) to the arriving string.

The IMGA is itself a logical model. By this we mean that the underlying computer
hardware used for the implementation is not specified, only the high-level model. For
example, an IMGA can be executed on a sequential computer by time-sharing the
processor over the computations associated with each subpopulation’s sequential GA.
However, the most natural computer hardware on which to implement an IMGA is a

44

distributed-memory parallel computer. In this case each island is mapped to a node,
and the processor on that node runs the sequential GA on its subpopulation. Since
the nodes execute in parallel, it is possible to perform more reproductive trials in a
fixed (elapsed) time period as processors are added, assuming the parallel comput-
ing overheads associated with communicating migrating strings do not increase the
computational effort significantly. Because selection and other GA operators are ap-
plied locally, no global synchronization is required. Finally, strings migrate relatively
infrequently, and the amount of data sent is usually small. The result is a very low
(attractive) communication to computation ratio.

A word about terminology. Since we always maintain a one to one mapping of
subpopulations to processors, in the rest of this thesis we will use the words processor,
node, and subpopulation interchangeably. That is, when we say node or processor,
we mean the subpopulation that resides on that node or processor.

The IMGA is programmed using a single-program multiple-data (SPMD) pro-
gramming model; each processor is executing the same program, but on different
data (their respective subpopulations). “Synchronization” occurs between proces-
sors only when strings are exchanged. A generic IMGA is shown in Figure 3.1. The
difference between Figure 3.1 and Figure 2.1 is the addition of a test to see whether
on this iteration a string is to be migrated. If so, the neighboring subpopulation to
migrate the string to is determined, and the string to migrate, X,,igrate, 15 selected
and sent to the neighbor. A migrant string, X,..,, is then received from a neighboring
population, and the string to delete, X ./ 1s determined and replaced by X,cc,.

3.2 Parameters of the Island Model

An IMGA is characterized by several choices: the type of sequential GA to run
on each node, how many strings to migrate and how often to migrate them, how to
choose the string(s) to migrate and the string(s) to replace, the logical topology the
subpopulations are arranged in, and which subpopulations communicate on a migra-
tion step. From our work in the previous chapter, we concluded that a steady-state
genetic algorithm in conjunction with the ROW heuristic was an effective choice for
the sequential GA. For the other choices, however, a number of possibilities existed.

The choice of “communication” parameters in the IMGA echoes the competing
themes of selective pressure and population diversity noted in sequential GAs. Fre-
quently migrating many fit strings and deleting the least fit strings serve to increase
the selective pressure, but decrease the population diversity. The choice of logical
topology and neighbors to communicate with will affect how “fast” fit strings may
migrate among subpopulations.

We chose to fix the number of strings to migrate to one. There were two reasons
for this choice. First, it seemed intuitively appealing in conjunction with a SSGA;
integrating a single arriving migrant string is similar to how the SSGA integrates
its own newly created offspring. The primary differences are that the migrant string

45

arrives from a different subpopulation and is presumably of above-average fitness.
The second reason was simply to cut down on the size of the parameter space being
explored and to focus on choices for the other parameters. For a similar reason to
the latter, we also chose to fix the logical topology of the subpopulations to a two-
dimensional toroidal mesh. Each processor exchanged strings with its four neighbors,
alternating between them each migration generation (i.e., north, east, west, south,
north, ...).

To determine suitable values for the other parameters, we performed a set of
experiments, similar in philosophy to those described in the preceding chapter. Fach
of these experiments was performed using eight processors on the IBM SP1. Fach
processor ran the SSGAROW algorithm on its own subpopulation of size 50. Fach
run was terminated either when an optimal solution was found or when an iteration
limit of 50,000 was reached. Except for the population size and limit on the number
of iterations, all other parameters used in these tests were the same as those used in
the main experiments described in more detail in Section 3.5.

We restricted these experiments to the seven smaller problems used in our se-
quential tests. Our intention was to reduce the computational effort required. For
each of these seven test problems we ran a total of 72 trials. On each trial we varied
one of the parameters: the string to migrate, the string to delete, and the migration
frequency. Each trial was randomly initialized as described in Section 3.3.

3.2.1 String to Migrate. There are two reasons to send a string to another
subpopulation. One is to increase the fitness of the other subpopulation. The other
is to help the other subpopulation maintain diversity. As in the sequential GA,
the competing themes of selective pressure and diversity arise. If a subpopulation
consistently and frequently receives similar, highly fit strings, these strings become
predominant in the population, and the GA will focus its search on them at the
expense of lost diversity. If, on the other hand, random strings are received, diversity
may be maintained, but the subpopulation’s fitness will likely not improve.

We compared two ways to choose the string to migrate. In the first, the fittest
string in a subpopulation was sent to a neighbor. This strategy tends to increase
the selective pressure. In the second case, the string to migrate was selected via a
probabilistic binary tournament with parameter p, = 0.6. The second choice serves
to reduce the selective pressure while still attempting to migrate strings with above-
average fitness.

Table 3.1 compares the two strategies. The results in the Tournament column
used a probabilistic binary tournament to select the string to migrate. The results
in the Best column selected the best string in the subpopulation to migrate. The
column labeled Optlter is an average, over all runs where an optimal solution was
found, of the iteration in which the optimal solution was found. The y? test shows no
significant difference between either strategy using the number of optimal solutions
found as the comparison metric. From the Optlter column we note that the strategy

46

t— 0
initialize P(t)
evaluate P(t)
foreach generation
local_search (X,andom € P(1))
select(xy,xz2) from P(t)
if(r < p.) then
Xpew = Crossover(xi,Xz)
else
Xpew = MUtate(xy,Xz)
endif
delete (Xyorst € P(1))
while (x,., € P(t))
mutate(Xpey)
P(t+1) « P(t)UXpen
if (migration generation) then
to = neighbor(myid, gen)
Xmigrate = String tomigrate(P(t+1))
send_string(fo, Xmigrate)
Xreey = Tecv_string ()
Xdelete = string to_delete(P(t+1))
replace string(Xgeiete, Xrecv, P(t + 1))
endif
evaluate(P;iq)
t—14+1
endfor

Figure 3.1. Island Model Genetic Algorithm

47

Table 3.1 Migrant String Selection Strategies

Problem Tournament Best

Name Opt. Trials Optlter Opt. Trials Optlter
nwél 36 36 601 36 36 586
nw32 24 36 4865 22 36 5172
nw40 29 36 6596 30 36 4147
nw08 34 36 5375 31 36 8135
nwl5 36 36 986 36 36 942
nw20 18 36 10601 18 36 5677
nw33 24 36 6307 31 36 4148

that is the fastest at finding an optimal solution varies by problem, although nw40,
nw20, and nw33 show the tournament strategy is significantly slower, most likely
implying less selective pressure. We conclude that both the tournament and best
strategy are effective and that the choice is not significant as long as above-average
fitness strings are being migrated.

3.2.2 String to Delete. We tested two strategies for determining the string
to delete. The first was to delete the least fit string in the subpopulation. The other
was to hold a probabilistic binary tournament with parameter p, = 0.4 and delete the
“winner.” Deleting the worst-ranked string more aggressively enforces the selective
pressure.

Table 3.2 compares the two strategies. The column labeled Tournament was
defined previously. The column labeled Worst refers to selecting the least fit string
in the subpopulation to be deleted. The y? test shows the tournament strategy
performs significantly better on three problems (nw32, nw40, and nw33). From the
Optlter column we see that the tournament strategy is again significantly slower at
finding the optimal solution. Here, however, the reduction in selective pressure pays
dividends, as this strategy is more successful at finding the optimal solution.

The result on nw20 is interesting. More optimal solutions are found using the
worst strategy, although it is just below the 5 percent significance level of the y? test.
From Table 2.2 we note that of the seven smaller test problems, nw20 is in some ways
the hardest; it had an all fractional solution to the linear programming relaxation and
required the most nodes to be searched in the branch-and-bound tree. It would seem
deleting the worst-ranked subpopulation member more severely enforces selective
pressure than the choice of string to migrate leading to results similar to what has
been observed for sequential GAs; the population converges to a solution faster, but
the solution is not necessarily as good as can be found by moderating some of the
selective pressure. The increased selective pressure may be necessary on more difficult
problems, however.

48

Table 3.2 String Deletion Strategies

Problem Tournament Worst

Name Opt. Trials Optlter Opt. Trials Optlter
nwél 36 36 638 36 36 549
nw32 28 36 5611 18 36 4080
nw40 34 36 5857 25 36 4661
nw08 33 36 7285 32 36 6079
nwl5 36 36 978 36 36 950
nw20 14 36 8926 22 36 7638
nw33 32 36 6202 23 36 4065

Table 3.3 Comparison of Migration Frequency

Problem No Migration 100 1000 5000

Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials
nw41 24 24 24 24 24 24 24 24
nw32 15 24 15 24 17 24 14 24
nw40 22 24 17 24 20 24 22 24
nw08 0 24 21 24 23 24 21 24
nwl5 8 24 24 24 24 24 24 24
nw20 14 24 14 24 11 24 11 24
nw33 15 24 21 24 16 24 18 24

3.2.3 Frequency of Exchange. We tested three string migration frequencies
and no migration. The results, given in Table 3.3, are not conclusive. The only
significant result with the y? test was that all three migration choices performed
better on nw08 and nw15 than no migration. Even without migration, however, the
GA still found a number of optimal solutions.

As an example of an ambiguous result, we note that for nw20, which we earlier
described as possibly the most difficult of the seven test problems, the most optimal
solutions were found both by migrating as frequently as possible and by not migrating
at all.

3.3 Computational Environment

The IBM SP1 parallel computer used to run the multiple independent sequential
trials described in Chapter Il was used in a tightly coupled mode for the parallel
experiments described in this chapter. The IBM SP1 we used had 128 nodes, each
of which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB of
memory, and a 1 GB disk. Each node ran its own copy of the AIX operating system.
The SP1 makes use of a high-performance switch for connecting the nodes.

49

The parallel program was initially developed on Unix workstations making use of
the message passing capabilities of the p4 [11] parallel programming system. For the
parallel experiments on the SP1, the code was ported to the Chameleon [34] message-
passing system. Chameleon is designed to provide a portable, high-performance
message-passing system. Chameleon runs on top of many other message passing
systems, both vendor-specific and third party, allowing widespread portability. In our
case Chameleon’s p4 interface allowed us to continue development on workstations
and, at the same time, begin experiments on the SP1 where we used Chameleon’s
EUIH interface. EUIH is an experimental low-overhead version of IBM’s External
User Interface message passing transport layer. The primary advantage of EUIH is its
efficiency for applications that need high-speed communications. Although we do not
consider the PGA such an application, since small amounts of data are communicated
relatively infrequently, EUIH is the standard transport layer in use on the SP1 system
that we used at Argonne National Laboratory.

The parallel program itself is based on the single-program multiple-data (SPMD)
model in common use today on distributed-memory computers. It uses explicit sends
and receives for communicating strings between processors. Broadcasts from proces-
sor zero to other processors handle various initialization tasks. A number of statistical
calculations, not part of the algorithm but used for periodic report writing, are han-
dled by collective (global) operations.

Random number generation was done using an implementation of the univer-
sal random number generator proposed by Marsaglia, Zaman, and Tseng [45], and
translated to C from James’ version [38]. Each time a parallel run was made, all sub-
populations were randomly seeded. This was done by having processor zero get and
broadcast the microsecond portion of the Unix gettimeofday system call. Each pro-
cessor then added its processor id to the value returned by the Unix gettimeofday
and used this unique value as its random number seed. For the random number
generator in [45] each unique seed gives rise to an independent sequence of random
numbers of size ~ 10?° [38].

3.4 Test Problems

To test the parallel genetic algorithm we selected a subset of forty problems from
the Hoffman and Padberg test set [36]. This included the nine problems used in
Chapter II and thirty-one others. The test problems are given in Table 3.4, where
they have been sorted according to increasing numbers of columns. The columns in
this table are the test problem name, the number of rows and columns in the problem,
the number of nonzeros in the A matrix, the optimal objective function value for the
LP relaxation, and the objective function value of the optimal integer solution.

Table 3.5 gives attributes of the solution to the LP relaxation and results from

30

solving the integer programming problem with the 1p_solve’ program. The columns
in this table are the name of the test problem, the number of simplex iterations
required by 1p_solve to solve the LP relaxation plus the additional simplex itera-
tions required to solve LP subproblems in the branch-and-bound tree, the number
of variables in the solution to the LP relaxation that were not zero, the number of
the nonzero variables in the solution to the LP relaxation that were one (rather than
having a fractional value), and the number of nodes searched by 1lp_solve in its
branch-and-bound tree search before an optimal solution was found.

The optimal integer solution was found by lp_solve for all but the following
problems: aa04, k101, aa05, aa01, nw18, and k102, as indicated in Table 3.5 by the
“>7 sign in front of the number of simplex iterations and number of IP nodes for
these problems. For aa04 and aa01, 1p_solve terminated before finding the solution
to the LP relaxation. For aa05, k101, and k102, 1p_solve found the solution to
the LP relaxation but terminated before finding any integer solution. A nonoptimal
integer solution was found by lp_solve for nw18 before it terminated. Termination
occurred either because the program aborted or because a user-specified resource
limit was reached.

Many of these problems are “long and skinny”, that is, they have few rows rel-
ative to the number of columns (it is common in the airline industry to generate
subproblems of the complete problem that contain only a subset of the flight legs the
airlines are interested in, solve the subproblems, and try to create a solution to the
complete problem by piecing together the subproblems). Of these test problems, all
but two of the first thirty have fewer than 3000 columns (nw33 and nw09 have 3068
and 3103 columns, respectively). The last ten problems are significantly larger, not
just because there are more columns, but also because there are more constraints.

For 1p_solve many of the smaller problems are fairly easy, with the integer opti-
mal solution being found after only a small branch-and-bound tree search. There are,
however, some exceptions where a large tree search is required (nw23, nw28, nw36,
nw29, nw30). These problems loosely correlate with a higher number of fractional
values in the LP relaxation than many of the smaller problems, although this cor-
relation does not always hold true (e.g., nw28 with few fractional values requires a
“large” tree search, while nw33 with “many” fractional values does not). For the
larger problems 1p_solve results are mixed. On the nw problems (nw07, nw06, nwil,
nw18, and nw03) the results are quite good, with integer optimal solutions found for
all but nw18. Again, the size of the branch-and-bound tree searched seems to corre-
late loosely with the degree of fractionality of the solution to the LP relaxation. On

"We note that as a public-domain program 1p_solve should not be used as the standard
by which to judge the effectiveness of linear and integer programming solution methodology.
Our interest here was in being able to characterize the solution difficulty of the test problems
and to make a “ballpark” comparison against traditional operations research methodology.
For this purpose we believe 1p_solve was adequate.

51

the k1 and aa models, 1p_solve has considerably more difficulty and does not find
any integer solutions.

3.5 Parallel Experiments

Our hypothesis was that a parallel genetic algorithm could be developed that
would solve real-world set partitioning problems and, further, that the effectiveness
of the parallel GA would improve as the number of subpopulations increased.

Our work in Chapter II concentrated on finding a sequential GA that worked
well on the SPP. The work in Section 3.2 concentrated on finding a good set of
“communication” parameters to use with the IMGA. While we do not claim to have
found the optimal set of values in either case, we do believe we have made reasonably
good choices.

All the results to be presented were made with the following operators and pa-
rameter settings. The sequential GA used was steady-state, with one new individual
generated each generation. Fitness was calculated using a dynamic linear fitness func-
tion. The penalty term used in the evaluation function was the countinfz penalty term
(Equation (2.2)). In order to generate a new individual, two strings were selected
by holding two binary tournaments. A random number, 0 < r < 1, was generated
to decide whether a string should undergo crossover or mutation. If r < p. = 0.6,
uniform crossover (with p, = 0.7) was performed, and one of the two offspring was
randomly selected to insert into the population. If r > p., one of the two parent
strings was randomly selected, a clone of that parent string was made, and the clone
underwent mutation. The mutation rate was fixed and set to the reciprocal of the
string length. The least fit string in the population was selected to be deleted. Before
inserting a new string into the population, it was first tested to see whether it was
a duplicate of a string already in the population. If so, mutation was applied to the
string until it was no longer a duplicate of any string in the population.

The ROW heuristic was applied to one randomly selected string each generation.
A constraint was randomly selected, and ROW attempted to improve the string
with respect to that constraint. The first-improving strategy was used. A run was
terminated either when the optimal solution was found! or when all subpopulations
had performed 100,000 iterations.

For the communication parameters, the best string in a subpopulation was se-
lected to migrate to a neighboring subpopulation every 1,000 iterations. The string
to delete was selected by holding a probabilistic binary tournament (with p, = 0.4).
Note that the probabilistic deletion strategy allows a chance that the best string

TFor these tests, the value of the (known) optimal solution was stored in the program
which tested the best feasible solution found each iteration against the optimal solution
and stopped if they were the same.

52

Table 3.4 Parallel Test Problems

Problem No. No. No. LP IP

Name Rows Cols Nonzeros Optimal Optimal
nwél 17 197 740 10972.5 11307
nw32 19 294 1357 14570.0 14877
nw40 19 404 2069 10658.3 10809
nw08 24 434 2332 35894.0 35894
nwl5 31 467 2830 67743.0 67743
nw21 25 577 3591 7380.0 7408
nw22 23 619 3399 6942.0 6984
nwl2 27 626 3380 14118.0 14118
nw39 25 677 4494 9868.5 10080
nw20 22 685 3722 16626.0 16812
nw23 19 711 3350 12317.0 12534
nw37 19 770 3778 9961.5 10068
nw26 23 771 4215 6743.0 6796
nwl0 24 853 4336 68271.0 68271
nw34 20 899 5045 10453.5 10488
nw43 18 1072 4859 8897.0 8904
nwé?2 23 1079 6533 7485.0 7656
nw28 18 1210 8553 8169.0 8298
nw25 20 1217 7341 5852.0 5960
nw38 23 1220 9071 5552.0 5558
nw27 22 1355 9395 9877.0 9933
nw24 19 1366 8617 5843.0 6314
nw35 23 1709 10494 7206.0 7216
nw36 20 1783 13160 7260.0 7314
nw29 18 2540 14193 4185.3 4274
nw30 26 2653 20436 3726.8 3942
nw31 26 2662 19977 7980.0 8038
nwl9 40 2879 25193 10898.0 10898
nw33 23 3068 21704 6484.0 6678
nw09 40 3103 20111 67760.0 67760
nw07 36 5172 41187 5476.0 5476
nw06 50 6774 61555 7640.0 7810
aa04 426 7195 52121 25877.6 26402
k101 55 7479 56242 1084.0 1086
aal5 801 8308 65953 53735.9 53839
nwll 39 8820 57250 116254.5 116256
aal1 823 8904 72965 55535.4 56138
nwl8 124 10757 91028 338864.3 340160
k102 71 36699 212536 215.3 219
nw03 59 43749 363939 24447.0 24492

33

Table 3.5 Solution Characteristics of the Parallel Test Problems

Problem LP LP LP 1P

Name Tters Nonzeros Ones Nodes
nwdl 174 7 3 9
nw32 174 10 4 9
nw40 279 9 0 7
nw08 31 12 12 1
nwlb 43 7 7 1
nw21l 109 10 3 3
nw22 65 11 2 3
nwi2 35 15 15 1
nw39 131 6 3 5
nw20 1240 18 0 15
nw23 3050 13 3 57
nw37 132 6 2 3
nw26 341 9 2 11
nwlo0 44 13 13 1
nw34 115 7 2 3
nw43 142 9 2 3
nwé4?2 274 8 1 9
nw28 1008 5 2 39
nw25 237 10 1 5
nw38 277 8 2 7
nw27 118 6 3 3
nw24 302 10 4 9
nw35 102 8 4 3
nw36 74589 7 1 789
nw29 5137 13 0 87
nw30 2036 10 0 45
nw31 573 7 2 7
nwl9 120 7 7 1
nw33 202 9 1 3
nw09 146 16 16 1
nw07 60 6 6 1
nw06 58176 18 2 151
aal4 >T428 234 5 >1
k101 >26104 68 0 >37
aa05b >6330 202 53 >4
nwilil 200 21 17 3
aal1 >23326 321 17 >1
nwl8s >162947 68 27 >62
k102 >188116 9] 1 >3
nw03 4123 17 6 3

o4

in the population is replaced. The logical topology was fixed to a two-dimensional
toroidal mesh as described earlier in Section 3.2.

Each problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations.
Each subpopulation was of size 100. As additional subpopulations were added to
the computation, the total number of strings in the global population increased.
Our assumption was that even though we were doubling the computational effort
required whenever we added subpopulations, by mapping each subpopulation to an
SP1 processor, the total elapsed time would remain relatively constant (except for the
parallel computing overheads associated with string migration, which we felt would
be relatively small).

The results of our experiments are summarized in Tables 3.6-3.9. Table 3.6 shows
the percent from optimality of the best solution found in any of the subpopulations
as a function of the number of subpopulations. An entry of “O” in the table indicates
the optimal solution was found. An entry of “X” in the table means no integer feasible
solution was found by any of the subpopulations. A numerical entry is the percent
from the optimal solution of the best feasible solution found by any subpopulation
after the 100,000 iteration limit was reached. A blank entry means that the test
was not made (usually because of a resource limit or an abort). The solution values
themselves are given in Table 3.7. Table 3.8 contains the first iteration on which
some subpopulation found a feasible solution. Table 3.9 is similar except that it
contains the first iteration on which some subpopulation found an optimal solution.
In Table 3.9 an entry of “F” means a nonoptimal integer feasible solution was found.

Entries in the tables marked with a superscript * did not complete. If an entry is
given, it is from a partially completed run. We give the specific results here. Since
output statistics were reported only every 1,000 iterations, that is the resolution with
which results are reported in Table 3.8. nw10 aborted at 37,000 iterations when
run using 128 subpopulations. nw12 aborted at 11,000 iterations when run using 128
subpopulations. nw09 aborted at 63,000 iterations when run using 64 subpopulations.
k101 aborted at 76,000 iterations when run using 128 subpopulations. k102 aborted
at 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations when
run using 16 subpopulations. nw03 aborted at 24,000 iterations when run using 1
subpopulation, at 50,000 iterations when run using 2 subpopulations, and at 24,000
iterations when run using 4 subpopulations.

3.6 Discussion

One way of looking at Table 3.6 is to consider it as consisting of four parts (recall
that the rows of the table are sorted by increasing numbers of columns in the test
problems). The first two parts are defined by the rows between and including nw41
and nw06 (the first thirty two problems). We can think of dividing this rectangle into
two triangular parts by drawing a diagonal line from the upper left part of the table
(nw41 with one subpopulation) to the bottom right (nw06 with 128 subpopulations).
Most of the results in the “upper triangle” are “0O,” indicating that an optimal

)

Table 3.6 Percent from Optimality vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nwél O O O O O O O O
nw32 0.0006 O 0.0006 O O O O O
nw40 O O 0.0036 O O O O O
nw08 X 0.0219 O O O O O O
nwl5 O O O 0.0001 4.4285 O O O
nw21 0.0037 0.0037 O O O O O O
nw22 0.0735 0.0455 0.0252 O O O O O
nwl2 0.1375 0.0912 0.0332 0.0218 0.0094 O O 0.0246°
nw39 0.0425 O O O O O O O
nw20 0.0091 O O O O O O O
nw23 O O O O 0.0006 O O O
nw37 O 0.0163 O O O O O O
nw26 0.0011 O O O O O O O
nwl0 X X X X X X X X
nw34 0.0203 0.0214 O O O O O O
nw43 0.0831 0.0626 0.0350 O O O O O
nwé?2 0.2727 0.0229 O O O O O O
nw28 0.0469 O O O O O O O
nw25 0.1040 0.1137 O O O O O O
nw38 0.0323 O O O O O O O
nw27 0.0818 0.0567 O 0.0039 O O O O
nw24 0.0826 0.0215 O 0.0015 0.0038 O O O
nw35 0.0770 O 0.0171 O O O O O
nw36 0.0038 0.0010 0.0194 0.0010 0.0019 O O O
nw29 0.0580 O O 0.0116 O O O O
nw30 0.1116 O O O O O O O
nw31 0.0069 0.0069 O O O O O O
nwl9 0.1559 0.1332 0.0715 0.0880 0.0148 O O O
nw33 0.0128 O O O O O O O
nw09 0.0398 X 0.0363 0.0231 0.0155 0.0151 0.154° O
nw07 0.3089 O O O O O O O
nw06 2.0755 0.2532 O 0.1779 0.0448 0.0291 O O
aa04 X X X X X

k101 0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0.0092°
aa05 X X X X

nwll X X X X X X X X
aal1 X X X X X X

nwl8 X X X X X X X X
k102 0.1004* 0.1004 0.0502 0.0593 0.0593¢ 0.0410 0.0045
nw03 0.2732 0.1125* 0.1371° 0.0481

@ See text for discussion.

56

Table 3.7 Best Solution Found vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nwél 11307 11307 11307 11307 11307 11307 11307 11307
nw32 14886 14877 14886 14877 14877 14877 14877 14877
nw40 10809 10809 10848 10809 10809 10809 10809 10809
nw08 X 36682 35894 35894 35894 35894 35894 35894
nwl5 67743 67743 67743 67755 67746 67743 67743 67743
nw21 7436 7436 7408 7408 7408 7408 7408 7408
nw22 7498 7302 7160 6984 6984 6984 6984 6984
nwl2 16060 15406 14588 14426 14252 14118 14118 14466°
nw39 10509 10080 10080 10080 10080 10080 10080 10080
nw20 16965 16812 16812 16812 16812 16812 16812 16812
nw23 12534 12534 12534 12534 12542 12534 12534 12534
nw37 10068 10233 10068 10068 10068 10068 10068 10068
nw26 6304 6796 6796 6796 6796 6796 6796 6796
nwl0 X X X X X X X X
nw34 10701 10713 10488 10488 10488 10488 10488 10488
nw43 9644 9462 9216 8904 8904 8904 8904 8904
nwé?2 9744 7832 7656 7656 7656 7656 7656 7656
nw28 8688 8298 8298 8298 8298 8298 8298 8298
nw25 6580 6638 5960 5960 5960 5960 5960 5960
nw38 5738 5558 5558 5558 BHH8 HHAY 5558 5558
nw27 10746 10497 9933 9972 9933 9933 9933 9933
nw24 6336 6450 6314 6324 6338 6314 6314 6314
nw35 772 7216 7340 7216 7216 7216 7216 7216
nw36 7342 7322 7456 7322 7328 7314 7314 7314
nw29 4522 4274 4274 4324 4274 4274 4274 4274
nw30 4382 3942 3942 3942 3942 3942 3942 3942
nw31 8094 8094 8038 8038 8038 8038 8038 8038
nwl9 12598 12350 11678 11858 11060 10898 10898 10898
nw33 6764 6678 6678 6678 6678 6678 6678 6678
nw09 70462 X 70222 69332 68816 68784 68804° 67760
nw07 7168 5476 5476 5476 5476 5476 5476 5476
nw06 24020 9788 7810 9200 8160 8038 7810 7810
aa04 X X X X X

k101 1143 1125 1126 1119 1112 1106 1095 1096*
aa05 X X X X

nwll X X X X X X X X
aal1 X X X X X X

nwl8 X X X X X X X X
k102 241 241 230 232 232° 228 220
nw03 31185 27249+ 27852° 25671

@ See text for discussion.

57

Table 3.8 First Feasible Iteration vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nwél 676 299 393 353 233 127 310 89
nw32 185 590 520 562 415 373 257 145
nw40 376 710 434 384 204 223 211 275
nw08 X BR93 33876 8067 6669 8393 6167 4819
nwl5 2031 1233 1019 1228 766 767 501 624
nw21 786 813 618 584 654 627 471 392
nw22 860 597 540 504 466 426 143 235
nwl2 3308 2007 2379 2586 1615 1963 1847 2000*
nw39 1017 755 923 516 530 347 447 325
nw20 1128 895 912 893 380 619 316 324
nw23 2291 2089 1686 1498 525 1178 1249 956
nw37 734 384 620 544 196 502 361 165
nw26 1055 978 971 881 760 331 423 474
nwl0 X X X X X X X X
nw34 1336 672 865 505 354 436 462 295
nw43 1036 989 1025 736 636 675 320 437
nwé?2 1178 936 774 540 460 500 323 361
nw28 784 372 494 71 289 199 228 13
nw25 474 731 788 221 328 315 356 369
nw38 875 1040 873 662 693 418 311 398
nw27 874 726 516 658 313 540 437 403
nw24 1020 772 898 763 749 670 456 507
nw35 1505 1263 1084 926 721 893 812 634
nw36 696 625 493 400 390 361 286 104
nw29 1070 604 441 556 424 558 342 294
nw30 500 622 584 649 481 498 377 356
nw31 1447 1118 1029 675 358 369 580 236
nwl9 1656 807 933 1020 857 812 602 616
nw33 986 550 815 645 538 493 296 281
nw09 20787 X 18414 11324 11593 11737 8000 9025
nw07 1132 1278 589 1307 928 T 636 677
nw06 7472 10036 5658 3920 2846 3440 1788 2385
aa04 X X X X X

k101 3095 5146 3641 4836 3324 3299 3573 4000*
aa05 X X X X

nwll X X X X X X X X
aal1 X X X X X X

nwl8 X X X X X X X X
k102 6000 4436 6626 4721 4000° 4840 4521
nw03 10563 9000* 7000* 3944

@ See text for discussion.

38

Table 3.9 First Optimal Iteration vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nwél 3845 1451 551 623 758 402 398 362
nw32 F 1450 F 3910 2740 2697 2054 1006
nw40 540 1597 F 1658 2268 958 979 696
nw08 X F 34564 8955 14760 10676 8992 10631
nwl5 4593 17157 5560 F F 929 692 1321
nw21 F F 7875 3929 4251 1818 1868 2514
nw22 F F F 29230 3370 3037 2229 1820
nwl2 F F F F F 62976 34464 F
nw39 F 2345 3738 1079 1396 900 1232 913
nw20 F 2420 3018 5279 27568 2295 2282 1654
nw23 2591 6566 3437 3452 Fooo1723 2125 1477
nw37 75737 F 1410 1386 1443 1370 835 779
nw26 F 84765 52415 24497 13491 1660 1512 2820
nwl0 X X X X X X X X
nw34 F F 2443 1142 1422 1110 1417 843
nw43 F F F 11004 3237 21069 4696 3296
nwé?2 F F 2702 3348 1070 1223 1187 724
nw28 F 903 1897 1232 776 718 371 191
nw25 F F 2634 70642 4351 5331 1024 1896
nw38 F 68564 27383 1431 1177 1093 603 514
nw27 F F 610 F 2569 1669 3233 2135
nw24 F F 908 F F 11912 2873 4798
nw35 F 3659 F 3182 1876 1224 1158 634
nw36 F F F F F 3367 2739 4200
nw29 F 17212 5085 F 17146 1368 2243 795
nw30 F 3058 1777 1154 1650 846 866 949
nw31 F F 1646 3085 1287 1890 1682 732
nwl9 F F F F F 79125 27882 37768
nw33 F 1670 1659 7946 1994 2210 829 873
nw09 F X F F F F F* 71198
nw07 F 29033 7459 4020 4831 1874 2543 1935
nw06 F F 51502 F F F 48215 19165
aa04 X X X X X

k101 F F F F F F F F
aa05 X X X X

nwll X X X X X X X X
aal1 X X X X X X

nwl8 X X X X X X X X
k102 F F F F F F F
nw03 F F F F

@ See text for discussion.

39

solution was found. For these problems the hybrid SSGAROW algorithm was able
to find the optimal solution to all but one problem. For approximately two thirds of
these problems only four subpopulations were necessary before the optimal solution
was found. For the other one third of the problems, additional subpopulations are
necessary in order to find the optimal solution. For numerical entries in the “lower
triangle,” we observe that in general the best solution found improves as additional
subpopulations participate, even if the optimal solution was not reached. Using 64
subpopulations, the optimal solution was found for 30 of the first 32 test problems.
nw06, with 6,774 columns, was the largest problem for which we found an optimal
solution.

The next two parts of Table 3.6 are defined by rows aa04 to nw18 (k101 is similar
to k102 and nw03 in that increasingly better integer feasible solutions were found as
additional subpopulations were added, and so we “logically” group k101 with k102
and nw03) and by the last two problems k102 and nw03. The first of these, aa04
through nw18, define the group of problems we were not able to solve. For these
problems we were unable to find any integer feasible solutions. One obvious point to
note from Table 3.4 is the large number of constraints in aa01, aa04, aa05, and nw18
(we will return to nw18 in a moment). We note from Table 3.5 that these problems
have relatively high numbers of fractional values in the solution to the LP relaxation
and that they were difficult for 1p_solve also.

For these problems, Table 3.10 summarizes the average number of infeasible con-
straints across all strings in all subpopulations as a function of the number of sub-
populations. One trend is the general decrease in the average number of infeasible
constraints as additional subpopulations are added. For the aa problems the incre-
mental improvement, however, appears to be decreasing.

For nwi1l and nwi8 (and also nw10 for which no feasible solution was found),
the GA was able to find infeasible strings with higher fitness than feasible ones and
had concentrated its search on those strings. For these problems the best (infeasible)
string had an evaluation function value approximately half that of the optimal integer
solution. In this case the GA has little chance of ever finding a feasible solution. This
is, of course, simply the GA exploiting the fact that for these problems the penalty
term used in the evaluation function is not strong enough. For the three aa problems
this is not the case. On average, near the end of a run an (infeasible) solution has an
evaluation function value approximately twice that of the optimal integer solution.

The last two problems, k102 and nw03, have many columns and an increasing
number of constraints. However, the GA was able to find integer feasible solutions
on all runs we tried and a very good one for k102 with 128 subpopulations. The trend
here is similar to all but the infeasible problems. We conjecture that with “enough”
subpopulations the GA would compute optimal solutions to these problems also. We
caution, however, that this is speculation.

60

Table 3.10 No. of Infeasible Constraints vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64
nwil .6 1.7 27 21 21 24 24
nwi8 177 124 145 152 145 14.1 14.2
aal04 26.3 229 255 17.9 16.3

2a05 9501 845 62.2 56.2

aal1 70.1 66.0 75.2 70.0 53.0 54.6

Table 3.8 shows the first iteration when a feasible solution was found by one
of the subpopulations. If we recall that the migration frequency is set to 1,000,
we see that even on one processor, over one fourth of the problems find feasible
solutions before any migration takes place. The number of problems for which this
occurs grows as subpopulations are added. Using 128 subpopulations 27 problems
have feasible solutions before the first migration occurs. The ones that do not are
the problems where the penalty term was not strong enough, no feasible solution
was ever found, or they are the largest problems we tried. The implication is that
the ROW heuristic does a good job of decreasing the infeasibilities; and by simply
running enough copies of a sequential GA, the likelihood of one of them “getting
lucky” increases. The excessive iterations nw08 takes to get feasible is, again, due
to the fact that the penalty term is not strong enough. In this case, however, the
penalty is “almost strong enough”; hence, less fit feasible solutions eventually are
found “in the neighborhood” of the best (infeasible) strings in the population. A
similar problem occurred with nw09.

Table 3.9 is similar to Table 3.8; here it is the iteration when an optimal solution
was found by one of the subpopulations that is shown. Again, we see a general
trend of the first optimal iteration occurring earlier as we increase the number of
subpopulations. With one subpopulation an optimal solution was found for only one
problem (nw40) before migration occurred. With 128 subpopulations the optimal
solution was found for 13 problems before migration occurred. Several problems
show significant decrease in the iteration count as the number of subpopulations
increases. As an example, by the time 128 subpopulations are being used to solve
nw37, nw38, and nw29, which initially take tens of thousands of iterations to find the
optimal solution, the optimal solution has been found before any string migration
has occurred.

Table 3.11 compares the solution value found (the subcolumn Result) and time in
CPU seconds (the subcolumn Sees.) of 1p_solve, the work of Hoffman and Padberg
[36] (the column HP), and our work (the column SSGAROW). The subcolumn Result
contains a “O” if the optimal solution was found, a numerical entry which is the
percentage from optimality of the best suboptimal integer feasible solution found, or
an “X” if no feasible solution was found.

61

The timings for 1p_solve were made on an IBM RS/6000 Model 590 workstation
using the Unix time command which had a resolution of one second. These times
include the time to convert from the standard MPS format used in linear program-
ming to 1p_solve’s input format. The timings for Hoffman and Padberg’s work are
from Tables 3 and 8 in [36]. These runs were made on an IBM RS/6000 Model 550
workstation. The results for SSGAROW are the CPU time charged to processor zero
in a run that used the number of processors given in the Nprocs column. This is
the best solution time achieved where an optimal solution was found. If the entry
is numerical, it is the percentage from optimality of the best solution found and the
number of processors used for that run. If no feasible solution was found, it is the
time and number of processors used. When either 1p_solve or SSGAROW did not
find the optimal solution, the time is prefaced with a >.

We offer the comparative results in Table 3.11 with the following caveats. All the
timings were done using a heavily instrumented, unoptimized version of our program
that performed many global operations to collect statistics for reporting. A number
of possible areas for performance improvement exist. Additionally, as noted above,
the timings in Table 3.11 are all from different model IBM RS/6000 workstation
processors. As such, the reader should adjust them accordingly (depending on the
benchmark used, the Model 590 is between a factor of 1.67 and 5.02 times faster
than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model
550). Nevertheless, we include Table 3.11 in the interest of providing some “ballpark”
timings to complement the algorithmic behavior.

For many of the first thirty-two problems, where all three algorithms found op-
timal solutions for all problems (except SSGAROW on nw10), we observe that the
branch-and-cut solution times are approximately an order of magnitude faster than
the branch-and-bound times, and the branch-and-bound times are themselves an or-
der of magnitude faster than SSGAROW. For problems where the penalty term was
“not strong enough,” but the optimal solution was still found (nw08, nw12, nw09) SS-
GAROW performs poorly. In two other cases (nw19, nw06) the search simply takes
a long time, the problems have larger numbers of columns (2,879 and 6,774, respec-
tively), and the complexity of the steps in the algorithm that involve n become quite
noticeable. There are also some smaller problems for which, if we adjust the times
according to the performance differences due to the hardware, SSGAROW seems
competitive with branch-and-bound as implemented by 1p_solve.

On the larger problems we observe that branch-and-cut solved all problems to
optimality, in most cases quite quickly. Both 1p_solve and SSGAROW had trouble
with the aa problems, neither found a feasible solution to any of the three problems.
For the two k1 problems, SSGAROW was able to find good integer feasible solutions
while 1p_solve did not find any feasible solutions. Although SSGAROW’s k1 com-
putations take much more time than is allotted to 1p_solve, we note from Table 3.8
that is was able to find less good feasible solutions much earlier in its search. For the
larger nw problems, 1p_solve did much better than SSGAROW, proving two optimal
(nwi1l, nw03) and finding a good integer feasible solution to the other. SSGAROW

62

Table 3.11 Comparison of Solution Time

Problem lp_solve HP SSGAROW

Name Result Secs.” Result Secs.” Result Secs.” Nprocs
nwél O 1 O 0.1 O 4 4
nw32 O 2 O 0.2 O 8 2
nw40 O 3 O 0.2 O 1 1
nw08 Q) 2 O 0.1 O 135 8
nwib Q) 3 Q) 0.1 Q) 14 1
nw21 Q) 1 O 0.3 O 43 32
nw22 Q) 1 O 0.3 O 65 64
nwi?2 Q) 1 O 0.1 O 1188 64
nw39 O 1 O 0.2 O 16 8
nw20 O 1 O 0.6 O 17 2
nw23 O 6 O 0.3 O 9 1
nw37 O 1 O 0.2 O 16 4
nw26 O 2 O 0.3 O 41 32
nwi0 O 1 O 0.1 X >431 1
nw34 O 2 O 0.3 O 18 8
nw43 O 2 O 0.4 O 73 16
nw4?2 Q) 3 O 1.0 O 23 16
nw28 O 6 O 0.4 O 8 2
nw25 O 3 O 0.6 O 36 64
nw38 Q) 4 Q) 1.4 Q) 23 128
nw27 O 3 O 0.3 O 7 4
nw24 Q) 4 Q) 0.6 O 12 4
nw35 Q) 4 O 0.5 O 33 128
nw36 O 237 O 3.7 O 128 64
nw29 O 29 O 1.0 O 49 128
nw30 O 20 O 0.8 O 33 8
nw31 Q) 10 Q) 1.4 O 34 4
nwl9 O 9 O 0.5 O 1727 64
nw33 O 26 O 1.5 O 25 2
nw09 O 8 O 0.5 O 5442 128
nw07 Q) 16 O 0.7 O 129 32
nw06 O 589 O 10.4 O 2544 128
aal04 X >3600 O 139337 X >1848 1
k101 X >1000 O 354 .0092 >11532 128
aa05 X >1200 O 2153 X >3014 2
nwil O 27 O 2.1 X >2548 1
aal1 X >600 O 14441 X >2126 1
nwi8 0110 >3600 O 62.5 X >2916 1
k102 X >3600 O 134.4 .0045 >43907 128
nw03 O 375 O 24.0 .0481 >64994 128

b See text for discussion.

63

has “penalty troubles” with two of these and takes a long time on nw03 to compute
an integer feasible, but suboptimal solution.

We stress that the times given in Table 3.11 are not just when the optimal solution
was found using either the branch-and-bound or branch-and-cut algorithms, but when
it was proven to be optimal. In the case of SSGAROW we have “cheated” in the
sense that for the test problems the optimal solution values are known and we took
advantage of that knowledge to specify our stopping criteria. This was advantageous
in two ways. First, we knew when to stop (or when to keep going). Second, we
knew when a solution was optimal, even though SSGAROW inherently provides no
such mathematical tools to determine this. For use in a “production” environment
the optimal solutions are typically not known, and an alternative stopping rule would
need to be implemented. Conversely, however, we believe that if we had implemented
a stopping rule, then in the case of many of the problems we would have given up
the search earlier when it “became clear” that progress was not being made.

From Table 3.11 we note that the branch-and-cut work of Hoffman and Padberg
clearly provides the best results in all cases. Comparing SSGAROW with 1p_solve,
we see that neither can solve the aa problems: 1p_solve does better than SSGAROW
on most (but not all) of the nw problems, and SSGAROW does better than 1p_solve
on the two k1 problems. John Gregory has suggested [33] that the nw models, while
“real world,” are not indicative of the SPP problems most airlines would like to be
able to solve, in that they are relatively easy to solve with little branching and that
more difficult models may be in production use now, being “solved” by heuristics
rather than by exact methods.

In conclusion, it is clear that the branch-and-cut approach of Hoffman and Pad-
berg is superior to both lp_solve and SSGAROW in all cases. With respect to
genetic algorithms this is not surprising; several leading GA researchers have pointed
out that GAs are general-purpose tools that will usually be outperformed when spe-
cialized algorithms for a problem exist [15, 18]. Comparing SSGAROW with the
branch-and-bound approach as implemented by lp_solve, we find that lp_solve
fares better for many but not all of the test problems. However, the expected scal-
ability we believe SSGAROW will exhibit on larger numbers of processors and the
more difficult models that may be in production usage suggest that the parallel ge-
netic algorithm approach may still be worthy of additional research.

In closing this discussion, we offer the following caution about the results we have
presented. FEach result is stochastic; that is, it depends on the particular random
number seed used to initialize the starting populations. Ideally, we would like to be
able to present the results as averages for each entry obtained over a large number of
samples. However, at the time we did this work, computer time on the IBM SP1 was
at a premium, and we were faced with the choice of either running a large number of
repeated trials on a restricted set of test problems (which itself would raise the issue
of which particular test problems to use) or running only a single test at each data

64

point (test problem and number of subpopulations), but sampling over a larger set
of test problems. We believe the latter approach is more useful.

65

CHAPTER IV
CONCLUSIONS

The main conclusions of this thesis are the following.

I1.

I11.

IV.

. The generational replacement genetic algorithm performed poorly on the SPP,

even with elitism. Difficulties were experienced just finding feasible solutions
to SPP problems, let alone optimal ones. The primary cause was premature
convergence. The SSGA proved more successtul, particularly at finding feasible
solutions. However, the SSGA still had considerable difficulties finding optimal
solutions. This situation motivated us to develop a local search heuristic to

hybridize with the SSGA.

The local search heuristic we developed (ROW) is specialized for the SPP. We
found that ROW was about as effective as the SSGA in finding (feasible or
optimal) solutions. We found that in many cases ROW was more effective with
a “work quicker, not harder” approach. We found that applying ROW to just
one constraint, choosing this constraint randomly, and using a first-improving
strategy (which also introduces randomness when a constraint is infeasible) was
more successful than attempts to apply ROW to the most infeasible constraint
or find the best-improving solution. One reason ROW was relatively successful
was its willingness to degrade the current solution in order to satisfy infeasi-
ble constraints. However, when all constraints were feasible, ROW no longer
introduced any randomness and was often trapped in a local optimum.

A hybrid algorithm that combines the SSGA and ROW heuristic was more
effective than either one by itself (a combination we called SSGAROW). The
ROW heuristic is effective at making local improvements, particularly with
respect to infeasibilities, and the SSGA helps to propagate these improvements
to other strings and thus have a global effect.

Performance of the hybrid algorithm was relatively insensitive to a large number
of operator choices and parameter values tested. In most cases performance
remained essentially unaffected. An exception was the attempts to initialize
the population using heuristic methods. We concluded that we were better off
initializing the population randomly and letting SSGAROW take advantage of
the wider distribution of points to sample from and make its own way through
the search space. Also, we found that not allowing duplicate strings in the
population was important in avoiding or delaying premature convergence.

. The island model genetic algorithm has several parameters related to string

migration. On a limited set of tests we found that, overall, migration was
preferable to no migration (although on some problems no migration was just
as effective as migration), but that the migration interval itself made no sig-
nificant difference. To determine the string to migrate (delete), we compared

66

VL

VII.

VIIIL.

the choice of the best- (worst-) ranked string with holding a probabilistic bi-
nary tournament. For the choice of string to migrate, we found both choices
performed about the same. For the choice of string to delete, we found hold-
ing a probabilistic binary tournament worked best. Deleting the worst-ranked
string seemed to significantly increase the selective pressure and sometimes led
to premature convergence.

Running the hybrid SSGAROW algorithm on each subpopulation in an island
model was an effective approach for solving real-world SPP problems of up
to a few thousand integer variables. For all but one of the thirty-two small
and medium-sized test problems the optimal solution was found. For several
larger problems, good integer feasible solutions were found. We found two
limitations, however. First, for several problems the penalty term was not
strong enough. The GA exploited this by concentrating its search on infeasible
strings that had (in some cases significantly) better evaluations than a feasible
string would have had. For these problems, either no feasible solution was ever
found or the number of iterations and additional subpopulations required to
find the optimal solution was much larger than for similar problems for which
the penalty term worked well. A second limitation was the fact that three
problems had many constraints. For these problems, even though the penalty
term seemed adequate, SSGAROW was never able to find a feasible solution.

Adding additional subpopulations (which increase the global population size)
was beneficial. When an optimal solution was found, it was usually found on
an earlier iteration. In cases where the optimal solution was not found, but a
feasible one was (i.e., on the largest test problems), the quality of the feasible
solution improved as additional subpopulations were added to the computation.
Also notable was the fact that, as additional subpopulations were added, the
number of problems for which the optimal solution was found before the first
migration occurred continued to increase.

We compared SSGAROW with implementations of branch-and-cut and branch-
and-bound algorithms, looking at the quality of the solutions found and the
time taken. Branch-and-cut was clearly superior to SSGAROW and branch-
and-bound, finding optimal solutions to all test problems in less time. Both
SSGAROW and branch-and-bound found optimal solutions to the small and
medium-sized test problems. On larger problems the results were mixed, with
both branch-and-bound and SSGAROW doing better than each other on differ-
ent problems. The branch-and-bound results seem to correlate with how close
to integer feasible the solution to the linear programming relaxation was. In
many cases branch-and-bound took less time, but we note that the implemen-
tation of SSGAROW used was heavily instrumented.

In conclusion, as a proof of concept, we have demonstrated that a parallel genetic
algorithm can solve small and medium-sized real-world set partitioning problems.
A number of possible areas for further research exist and are discussed in the next
chapter.

67

CHAPTER V
FUTURE WORK

A number of interesting areas for future research exist. These include algorithmic
enhancements, performance improvements, exploitation of operation research meth-
ods, and planning for the next generation of parallel computers.

L.

I1.

Most of the progress made by SSGAROW occurs early in the search. Profiles of
many runs show that the best solution found rarely changes after about 10,000
iterations. This observation seems to hold true irrespective of the number of
subpopulations. More subpopulations lead to a more effective early search, but
do not help beyond that. We believe that both an adaptive mutation rate and
further work on the ROW heuristic can help.

Currently, the mutation rate is fixed at the reciprocal of the string length, a
well-known choice from the GA literature where it plays the role of restoring lost
bit values, but does not itself act as a search operator. One possibility is to use
an adaptive mutation rate that changes based on the value of some GA statis-
tic such as population diversity or the Hamming distance between two parent
strings [68]. Several researchers [14, 64] make the case for a high mutation rate
when mutation is separated from crossover, as it is in our implementation. A
high mutation rate may also be more successful in an SSGA since, although it
may disrupt important schemata in the offspring, those schemata remain intact
in the parent strings that remain in the population [64].

We found that the random choice of variables to add or delete to the current
string that the ROW heuristic made when constraints were infeasible helped
the GA sample new areas of the search space. However, when all constraints
are feasible, ROW no longer introduces any randomness. This is because when
all constraints are feasible, all of the alternative moves ROW considers degrade
the current solution. Therefore no move is made and ROW remains trapped
in a local optimum. We believe some type of simulated annealing-like move in
this case would help sustain the search.

One limitation of the SSGAROW algorithm was its inability to find feasible so-
lutions for six problems. For three of those, and several others for which optimal
solutions were found but with degraded performance, the penalty function was
not strong enough. A number of possibilities exist for additional research in this
area, including stronger penalty terms (e.g., quadratic), the ranking approach
of Powell and Skolnick [53], and revisiting the ST penalty term for which we
had mixed results. However, for the aa problems, we are less optimistic. Ta-
ble 3.10 appears to indicate diminishing returns with respect to the reduction
in infeasibilities in these problems as additional subpopulations are added to
the computation. Much further work on penalties remains to be done.

63

I11.

IV.

VL

VII.

In order to be of practical value, an effective termination strategy is needed.
Currently, we stop after either a specified number of iterations or, in the cases
of the test set, when we find the known optimal solution; such an approach
is not viable in practice. One approach might be to stop when the evaluation
function value has not changed in a specified number of iterations. A more
GA-like approach might use some measure of population similarity such as the
average Hamming distance as a convergence test.

Additional work in determining good choices for the parameters of the island
model is another area for further research. Selecting the string to migrate or
delete seems closest to what has been studied for sequential genetic algorithms
(see, for example, Goldberg and Deb’s [27] comments about deleting the worst-
ranked string in Genitor, and compare that with our empirical findings in Sec-
tion 3.2.2). However, the appropriate choice of migration interval remains an
open question. In fact, the results in Table 3.9, where increasing numbers of
problems are solved before before any migration occurs as subpopulations are
added, raise the questions of whether migration is necessary or even beneficial.
Finally, although we have not explored it here, the choice of logical topology
for the subpopulations warrants investigation. For example, is it better for a
subpopulation to communicate with many other subpopulations or with the
same one?

. The performance of SSGAROW is not currently optimized. We believe perfor-

mance improvements are available in several areas. For example, implementa-
tion improvements would include incremental updating of certain population
statistics that are currently recomputed in full each generation, hashing to make
the search for duplicates more efficient, or a faster random number generator.
As an example of an algorithmic improvement, uniform crossover requires O(n)
calls to a random number generator to determine the bit mask to apply to
the parent strings, whereas two-point crossover requires only two calls. Also,
in the case where a constraint is feasible, it is computationally desirable to
have ROW make a move in constant time, rather than incurring an expensive
O(RAVGPMAX) cost.

We might also be able to take advantage of operations research work. One
example might be to revisit the use of the solution to the LP relaxation to
initialize (perhaps just some of) the population. Both Fischer and Kedia [21]
and Hoffman and Padberg [36] suggest heuristics for finding integer solutions
to SPP problems that might also be incorporated in the initial population.
A number of methods for preprocessing a set partitioning problem and using
logical reductions to reduce the number of constraints and/or variables have
been suggested. These make the problem smaller and (intuitively we assume)
easier for the GA to solve.

The current implementation of the IMGA is synchronous. By this we mean that
after a string has been migrated from a subpopulation, that subpopulation does
not continue executing the sequential GA until it receives a migrant string from

69

VIIIL.

a different subpopulation. An asynchronous implementation is also possible. In
that case a processor periodically checks its message queue for migrant strings
that have been sent from other subpopulations. If any are found, they can be
integrated into the subpopulation in the usual manner. If the message queue
is empty, the processor continues running the sequential GA on its subpopu-
lation and periodically continues checking its message queue. The advantage
of this approach is that the processor is not idle while waiting to receive new
strings from neighboring processors, but is instead improving the fitness of its
subpopulation.

We believe the next important class of parallel computer will be distributed-
memory MIMD machines, where each node is a shared-memory multiprocessor.
From a GA implementation perspective, this raises the question of how best to
take advantage of such hardware. “Loop-level” parallelism is available in the
generational replacement genetic algorithm when creating generation £+ 1 from
t that can exploit such hardware. For the steady-state genetic algorithm, how-
ever, because only one new string is created each generation, no such “outer”
loop exists. Perhaps in that case, for long enough strings, a fine-grained ap-
proach that exploits parallelism within an individual GA operation (e.g., mu-
tation, function evaluation) would be appropriate.

70

ACKNOWLEDGMENTS

[thank my adviser, Tom Christopher, for allowing me the independence to pursue
this work. I thank the members of my committee, Graham Campbell, Peter Greene,
Rusty Lusk, and Nick Thomopoulos, for their interest. I am grateful to Argonne Na-
tional Laboratory and the Mathematics and Computer Science Division for financial
support, for access to their computing facilities, and for the stimulating environment
they provide their employees.

Although this work is my own, thanks are due to a number of people who helped
me in various ways. Thanks to Greg Astfalk for supplying the airline crew scheduling
problems. Thanks to Bob Bulfin who introduced me to research and academia many
years ago. Thanks to Tom Canfield for statistical advice. Thanks to Remy Evard
for help with C macros. Thanks to John Gregory for solving the test problems
with a branch-and-bound program, suggestions for initialization, numerous helpful
discussions and advice, and a long and valuable friendship. Thanks to Bill Gropp
for IATRX wizardry and for writing wonderfully useful software tools such as the
Chameleon library. Thanks to Karla Hoffman for discussions about her branch-and-
cut work. Thanks to John Loewy for encouragement and statistical advice. Thanks
to Rusty Lusk for many useful suggestions and help with p4. Thanks to Jorge Moré
for discussions about penalty methods in nonlinear optimization. Thanks to Bob
Olson for patient and helpful answers to numerous Perl questions. Thanks to Gail
Pieper for her usual outstanding job of technical editing. Thanks to Paul Plassmann
for advice and numerous one liners. Thanks to Nick Radcliffe for helpful answers to
many genetic algorithms queries. Thanks to the computer support group in the MCS
Division at Argonne, a small, but dedicated group who keep a complex computing
environment working. Thanks to Xiaobai Sun and Stephen Wright for timely help
with child care. Thanks to David Tate for discussing his penalty function with me.

Finally, and most importantly thanks to my parents, Bernard and Sylvia, for
their love, support, and encouragement through the years. I hope I can be as good a
parent to my children as they have been to theirs.

D.L.

71

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent Advances in Crew Pairing
Optimization at American Airlines. INTERFACES, 21:62-74, 1991.

R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing
Optimization. IBM Systems Journal, 31(1):71-78, 1992.

J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline Crew
Scheduling Problem: A Survey. Transportation Science, 3(2):140-163, 1969.

E. Baker and M. Fisher. Computational Results for Very Large Air Crew
Scheduling Problems. OMEGA, 9(6):613-618, 1981.

J. Baker. Reducing bias and inefficiency in the selection algorithm. In
J. Grefenstette, editor, Proceedings of the Second International Conference
on Genetic Algorithms and Their Applications, pages 14-21, Hillsdale, New
Jersey, 1987. Lawrence Erlbaum Associates.

E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):710—
760, 1976.

J. Barutt and T. Hull. Airline Crew Scheduling: Supercomputers and
Algorithms. STAM News, 23(6), 1990.

M. Berkelaar. 1p_solve, 1993. A public domain linear and integer programming
program. Available by anonymous ftp from ftp.es.ele.tue.nl in
directory pub/lp_solve, file 1p_solve.tar.Z.

R. Bixby, J. Gregory, 1. Lustig, R. Marsten, and D. Shanno. Very Large-
Scale Linear Programming: A Case Study in Combining Interior Point and

Sitmplex Methods. Technical Report CRPC, Rice University, 1991.

L. Booker. Improving Search in Genetic Algorithms. In Genetic Algorithms and
Stmulated Annealing, pages 61-73. Pitman Publishing, London, 1987.

R. Butler and E. Lusk. Monitors, Messages, and Clusters: The p4 Parallel
Programming System. Parallel Computing, 20, 1994.

V. Chavatal. A Greedy Heuristic for the Set Covering Problem. Mathematics of
Operations Research, 4(3):233-235, 1979.

J. Cohoon, W. Martin, and D. Richards. Genetic algorithms and punctuated
equilibria in VLSI. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature, pages 134-144, Berlin, 1991. Springer-Verlag.

L. Davis. Adapting operator probabilities in genetic algorithms. In J. Schaffer,
editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 61-69, San Mateo, 1989. Morgan Kaufmann.

72

[15] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

[16] M. de la Maza and B. Tidor. An analysis of procedures with particular
attention paid to proportional and Boltzmann selection. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 124-131, San Mateo, 1993. Morgan Kautmann.

[17] K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, 1975. Department of
Computer and Communication Sciences.

[18] K. DeJong. Genetic algorithms are NOT function optimizers. In D. Whitley,
editor, Foundations of Genetic Algorithms -2-, pages 5-17. Morgan
Kaufmann, San Mateo, 1993.

[19] K. DeJong and W. Spears. An analysis of the interacting roles of population
size and crossover in genetic algorithms. In H. Schwefel and R. Manner,

editors, Parallel Problem Solving from Nature, pages 38-47, New York, 1991.
Springer-Verlag.

[20] J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mized Integer
Programming on the CM-5. Technical Report TMC-257, Thinking Machines
Corp., 1993.

. Fischer an . Kedia. ptimal Solution ol Het Coverin artitionin
21] M. Fisch d P. Kedi Optimal Soluti f Set C ing/Partitioning
Problems Using Dual Heuristics. Management Science, 36(6):674-688, 1990.

[22] M. Flynn. Some Computer Organizations and Their Effectiveness. [FEFE
Transactions on Computers, 21:948-960, 1972.

[23] T. Fogarty and R. Huang. Implementing the genetic algorithm on transputer
based parallel processing systems. In H. Schwefel and R. Manner, editors,
Parallel Problem Solving from Nature, pages 145-149, Berlin, 1991. Springer-
Verlag.

[24] R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley & Sons Inc.,
New York, 1972.

[25] 1. Gershkoff. Optimizing Flight Crew Schedules. INTERFACES, 19:29-43, 1989.

[26] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Inc., New York, 1989.

[27] D. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic
Algorithms, pages 69-93. Morgan Kautmann, San Mateo, 1991.

73

[28] S. Gordon and D. Whitley. Serial and parallel genetic algorithms as function
optimizers. In S. Forrest, editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 177-183, San Mateo, 1993. Morgan
Kaufmann.

[29] M. Gorges-Schleuter. Explicit parallelism of genetic algorithms through
population structures. In H. Schwefel and R. Manner, editors, Parallel
Problem Solving from Nature, pages 150-159, New York, 1991. Springer-
Verlag.

[30] J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122-128, 1986.

[31] J. Grefenstette and J. Baker. How genetic algorithms work: A critical look
at implicit parallelism. In J. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 20-27, San Mateo,
1989. Morgan Kaufmann.

[32] J. Gregory. Private communication, 1991.
[33] J. Gregory. Private communication, 1994.

[34] W. Gropp and B. Smith. Chameleon Parallel Programming Tools Users Manual.
Technical Report ANL-93/23, Argonne National Laboratory, 1993.

[35] F. Gruau and D. Whitley. Adding Learning to the Cellular Development
of Neural Networks: Evolution and the Baldwin Effect. FEwvolutionary
Computation, 1(3):213-233, 1993.

[36] K. Hoffman and M. Padberg. Solving Airline Crew-Scheduling Problems by
Branch-and-Cut. Management Science, 39(6):657-682, 1993.

[37] J. Holland. Adaption in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

[38] F. James. A Review of Pseudorandom Number Generators. Computer Physics

Communication, 60:329-344, 1990.

[39] P. Jog, J. Suh, and D. Gucht. Parallel Genetic Algorithms Applied to the
Traveling Salesman Problem. Technical Report No. 314, Indiana University,
1990.

[40] T. Kido, H. Kitano, and M. Nakanishi. A hybrid search for genetic algorithms:
Combining genetic algorithms, tabu search, and simulated annealing. In
S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, page 614, San Mateo, 1993. Morgan Kautmann.

[41] B. Kroger, P. Schwenderling, and O. Vornberger. Parallel genetic packing of
rectangles. In H. Schwefel and R. Manner, editors, Parallel Problem Solving
from Nature, pages 160-164, Berlin, 1991. Springer-Verlag.

74

[44] G.

[47] R.

[49] G.

50] R.

51] C.

. Kuo and S. Hwang. A genetic algorithm with disruptive selection. In

S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 65-69, San Mateo, 1993. Morgan Kautmann.

. Levine. A genetic algorithm for the set partitioning problem. In

S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 481-487, San Mateo, 1993. Morgan Kautmann.

Liepins and S. Baluja. apGA: An Adaptive Parallel Genetic Algorithm.
Technical report, Oak Ridge National Laboratory, 1991.

. Marsaglia, A. Zaman, and W. Tseng. Stat. Prob. Letter, 9(35), 1990.

. Marsten. An Algorithm for Large Set Partitioning Problems. Management

Science, 20:774-787, 1974.

Marsten and F. Shepardson. Exact Solution of Crew Scheduling Problems
Using the Set Partitioning Model: Recent Successful Applications. Networks,
11:165-177, 1981.

. Muhlenbein. Parallel Genetic Algorithms and Combinatorial Optimization.

In O. Balei, R. Sharda, and S. Zenios, editors, Computer Science and
Operations Research, pages 441-456. Pergamon Press, 1992.

Nemhauser and L. Wolsey. [Integer and Combinatorial Optimization. John
Wiley & Sons, New York, 1988.

Parker and R. Rardin. Discrete Optimization. Academic Press, San Diego,

1988.

Pettey, M. Leuze, and J. Grefenstette. A parallel genetic algorithm. In
J. Grefenstette, editor, Proceedings of the Second International Conference
on Genetic Algorithms and Their Applications, pages 155-161, Hillsdale,
New Jersey, 1987. Lawrence Erlbaum Associates.

[52] J. Pierce. Application of Combinatorial Programming to a Class of All-Zero-One

53] D.

Integer Programming Problems. Management Science, 15:191-209, 1968.

Powell and M. Skolnick. Using genetic algorithms in engineering design
optimization with non-linear constraints. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 424-431,
San Mateo, 1993. Morgan Kaufmann.

[54] N. Radcliffe. Private communication, 1993.

[55] J. Richardson, M. Palmer, G. Liepins, and M. Hilliard. Some Guidelines

for Genetic Algorithms with Penalty Functions. 1In J. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms,
pages 191-197, San Mateo, 1989. Morgan Kautfmann.

75

[56] W.

[57] A.

58] W.

59] W.

[60] T.

61] G.
[62] R.
63] R.

[64] D.

Siedlecki and J. Sklansky. Constrained genetic optimization via dynamic
reward-penalty balancing and its use in pattern recognition. In J. Schaffer,
editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 141-150, San Mateo, 1989. Morgan Kaufmann.

Smith and D. Tate. Genetic optimization using a penalty function. In
S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 499-505, San Mateo, 1993. Morgan Kautmann.

Spears and K. DeJong. An Analysis of Multi-Point Crossover. In
G. Rawlins, editor, Foundations of Genetic Algorithms, pages 301-315.
Morgan Kaufmann, San Mateo, 1991.

Spears and K. DeJong. On the virtues of parameterized uniform crossover.
In R. Belew and L. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 230-236. Morgan Kaufmann, 1991.

Starkweather, D. Whitley, and K. Mathias. Optimization Using Distributed
Genetic Algorithms. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature, pages 176185, New York, 1991. Springer-Verlag.

Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms,
pages 2-9, San Mateo, 1989. Morgan Kaufmann.

Tanese. Parallel genetic algorithms for a hypercube. In J. Grefenstette,
editor, Proceedings of the Second International Conference on Genetic
Algorithms and Their Applications, pages 177-183, Hillsdale, New Jersey,
1987. Lawrence Erlbaum Associates.

Tanese. Distributed genetic algorithms. In J. Schaffer, editor, Proceedings of
the Third International Conference on Genetic Algorithms, pages 434-440,
San Mateo, 1989. Morgan Kaufmann.

Tate and A. Smith. Expected allele coverage and the role of mutation
in genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 31-37, San Mateo,
1993. Morgan Kaufmann.

. von Laszewsski and H. Muhlenbein. Partitioning a graph with a parallel

genetic algorithm. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature, pages 165-169, Berlin, 1991. Springer-Verlag.

. Whitley. The GENITOR algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best. In J. Schaffer, editor, Proceedings of
the Third International Conference on Genetic Algorithms, pages 116-121,
San Mateo, 1989. Morgan Kaufmann.

76

67] D. Whitley. An executable model of a simple genetic algorithm. In
g g
D. Whitley, editor, Foundations of Genetic Algorithms -2-, pages 45-62.
Morgan Kaufmann, San Mateo, 1993.

[68] D. Whitley and T. Hanson. Optimizing neural networks using faster, more
accurate genetic search. In J. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 391-396, San Mateo,
1989. Morgan Kaufmann.

[69] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Rocky
Mountain Conference on Artificial Intelligence, pages 118-130, Denver, 1988.

77

