Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 1L 60439

ANL-94/23

A Parallel Genetic Algorithm
for the Set Partitioning Problem

by

Dawvid Levine

Mathematics and Computer Science Division

May 1994

This work was supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38. It was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Computer Science in the Graduate School
of the Illinois Institute of Technology, May 1994 (thesis adviser: Dr. Tom Christopher).

i

TABLE OF CONTENTS

Page

LIST OF FIGURES o v

LIST OF TABLES e e vi

LIST OF ABBREVIATIONS oo o o viii

LIST OF SYMBOLS ix

ABSTRACT o xi
CHAPTER

[. INTRODUCTION 1

1.1 The Set Partitioning Problem 1

1.2 Parallel Computers 4

1.3 Genetic Algorithms oo 5

1.4 Thesis Methodology 13

II. SEQUENTIAL GENETIC ALGORITHM 16

2.1 Test Problems 16

2.2 The Genetic Algorithm 18

2.3 Local Search Heuristic 21

2.4 Genetic Algorithm Components 26

2.5 Discussiono 42

II1. PARALLEL GENETIC ALGORITHM 44

3.1 The Island Model Genetic Algorithm 44

3.2 Parameters of the Island Model 45

3.3 Computational Environment 49

i1

3.4 Test Problems 50

3.5 Parallel Experiments 52

3.6 DISCUSSION . . o« oo e e 55

IV. CONCLUSIONS oo, 66

V. FUTURE WORK i, 68
ACKNOWLEDGMENTS 71
REFERENCES 72

v

Figure

1.1.

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

3.1.

LIST OF FIGURES

Page
Simple Genetic Algorithmo 6
Steady-State Genetic Algorithmo 21
ROW Heuristic 23
Structure for Storing Row and Column Information 26
Example A Matrix before Sorting 27
Example A Matrix after Sorting 28
Modified Chavatal Heuristic 33
Gregory’s Heuristic 0oL 34
One-Point Crossover 37
Two-Point Crossover 37
Uniform Crossovero 38
Island Model Genetic Algorithm 47

Table

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

LIST OF TABLES

Sequential Test Problems

Sequential Test Problem Solution Characteristics

Comparison of the Use of Elitism in GRGA

Number of Constraints to Improve in the ROW Heuristic

Choice of Constraint to Improve in the ROW Heuristic . . .

Best Improving vs. First Improving in the ROW Heuristic

Best Improving vs. First Improving in SSGAROW

Comparison of Penalty Terms in SSGA

Comparison of Penalty Terms in SSGAROW

Comparison of Fitness Techniques in SSGAROW

Comparison of Selection Schemes in SSGAROW

Comparison of Initialization Strategies in SSGA

Comparison of Initialization Strategies in SSGAROW

Linear Programming Initialization in SSGAROW

Comparison of Crossover Operators Using SSGAROW . . .

Parameterized Uniform Probability Using SSGAROW

vi

Page
17

17

19

24

25

25

Table

2.17.

2.18.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

Page
Comparison of Crossover Probabilities in SSGAROW 40
Comparison of Algorithms 43
Migrant String Selection Strategies 48
String Deletion Strategieso 49
Comparison of Migration Frequency 49
Parallel Test Problems 53
Solution Characteristics of the Parallel Test Problems 54
Percent from Optimality vs. No. Subpopulations 56
Best Solution Found vs. No. Subpopulations 57
First Feasible Iteration vs. No. Subpopulations 58
First Optimal Iteration vs. No. Subpopulations 59
No. of Infeasible Constraints vs. No. Subpopulations 61
Comparison of Solution Time 63

vii

Abbreviation
CPGA
FPGA
GA
GRGA
IMGA
IP
LP
MIMD
OR
PE
PGA
SCP
SIMD
SISD
SPP
SSGA
SUS

LIST OF ABBREVIATIONS

Term
Coarse-grained parallel genetic algorithm
Fine-grained parallel genetic algorithm
Genetic algorithm
Generational replacement genetic algorithm
Island model genetic algorithm
Integer programming
Linear programming
Multiple-instruction multiple-data
Operations research
Processing element
Parallel genetic algorithm
Set, covering problem
Single-instruction multiple-data
Single-instruction single-data
Set partitioning problem
Steady-state genetic algorithm

Stochastic Universal Selection

viii

LIST OF SYMBOLS

Symbol Meaning
aij A binary coefficient of the set partitioning matrix.
¢; The cost coefficient of column j.
f The genetic algorithm evaluation function.
i A row (constraint) index.
J A column (variable) index.
m The number of rows (constraints) in the problem.
n The number of columns (constraints) in the problem.
Db Probabilistic binary tournament selection parameter.
Pe Crossover probability.
P Mutation probability.
Du Uniform crossover probability parameter.
T The set of columns such that r; € R; and x; = 1.
7] The number of columns in the set r;.
t A time index, usually the generation of the genetic algorithm.
u The genetic algorithm fitness function.
T A binary decision variable.
X A vector of binary decision variables; also used as a bit string.
z The set partitioning objective function.
B; The set of column indices that have their first one in row <.
1 The set of row indices.
J The set of column indices.
N The genetic algorithm population size.
P The set of row indices that have a one in column j.
| P The size of the set P;.
Pivea The average value of the |F;|.

X

Symbol Meaning

Prrax The maximum value of the |F;|.

P(t) The genetic algorithm population at time ¢.

R; The set of column indices that have a one in row z.

| R;| The size of the set R;.

Rave The average value of the |R;|.

A Scalar multiplier of the evaluation function’s penalty term.
A; The change in z when complementing the value of column j.
Ay The change in z when x; is set to one.

ABSTRACT

In this dissertation we report on our efforts to develop a parallel genetic algorithm
and apply it to the solution of the set partitioning problem—a difficult combinatorial
optimization problem used by many airlines as a mathematical model for flight crew
scheduling. We developed a distributed steady-state genetic algorithm in conjunction
with a specialized local search heuristic for solving the set partitioning problem. The
genetic algorithm is based on an island model where multiple independent subpop-
ulations each run a steady-state genetic algorithm on their own subpopulation and
occasionally fit strings migrate between the subpopulations. Tests on forty real-world
set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel
computer. We found that performance, as measured by the quality of the solution
found and the iteration on which it was found, improved as additional subpopula-
tions were added to the computation. With larger numbers of subpopulations the
genetic algorithm was regularly able to find the optimal solution to problems having
up to a few thousand integer variables. In two cases, high-quality integer feasible
solutions were found for problems with 36,699 and 43,749 integer variables, respec-
tively. A notable limitation we found was the difficulty solving problems with many

constraints.

xi

CHAPTER 1
INTRODUCTION

In the past decade a number of new and interesting methods have been proposed
for the solution of combinatorial optimization problems. These methods, such as ge-
netic algorithms, neural networks, simulated annealing, and tabu search are based on
analogies with physical or biological processes. During the same time period parallel
computers have matured to the point where, at the high end, they are challenging the
role of traditional vector supercomputers as the fastest computers in the world. On a
different front, motivated primarily by significant economic considerations, but also
by advances in computing and operations research technology, many major airlines
have been exploring alternative methods for deciding how flight crews (pilots and
flight attendants) should be assigned in order to satisfy flight schedules and minimize
the associated crew costs. Our objective in this dissertation was to develop a paral-
lel genetic algorithm and apply it to the solution of the set partitioning problem—
a difficult combinatorial optimization problem that is used by many airlines as a
mathematical model for assigning flight crews to flights.

This chapter introduces the major components of this work—the set partitioning
problem, parallel computers, and genetic algorithms—and then discusses our goals.
Chapter II describes the sequential genetic algorithm and local search heuristic used
as the basis for the parallel genetic algorithm. Chapter I1I presents the parallel genetic
algorithm and describes the computational experiments we performed. Chapter IV
presents our conclusions. Chapter V suggests areas of further research.

The outline of this chapter is as follows. In the first section we describe the set
partitioning problem. We give a mathematical statement of the problem, discuss
its application to airline crew scheduling, and review previous solution approaches.
The second section briefly discusses parallel computers. The third section describes
genetic algorithms: their application to function optimization, previous approaches
to constrained problems, and different parallel models. The last section discusses the
motivation for pursuing this work and our specific goals.

1.1 The Set Partitioning Problem

1.1.1 Mathematical Statement. The set partitioning problem (SPP) may
be stated mathematically as

Minimize z = 3 _ ¢;; (1.1)
7=1
subject to
dajr; =1 for i=1,....m (1.2)
7=1

z;j=0or1 for y=1,...,n, (1.3)

where a;; 1s binary for all 2 and j, and ¢; > 0. The goal is to determine values for the
binary variables z; that minimize the objective function z.

The following notation is common in the literature [24, 46]" and motivates the
name “set partitioning problem.” Let [= {1,...,m} be a set of row indices, J =
{1,...,n} a set of column indices, and P = {Py,..., P}, where P; = {i € [|a;; =
1}, j € J. P;is the set of row indices that have a one in the jth column. |F;| is the
cardinality of P;. A set J* C J is called a partition if

Jp=1 (1.4)

JEJ™

JokeJj# k= PP =0 (1.5)

Associated with any partition J* is a cost given by 37« ¢;. The objective of the
SPP is to find the partition with minimal cost.

The following additional notation will be used later on. R; = {j € J|a;; = 1} is
the (fixed) set of columns that intersect row ¢. r; = {j € R;|x; = 1} is the (changing)
set of columns that intersect row ¢ included in the current solution. A is the change
in z as a result of setting z; to one. A, is the change in z when complementing
xj. A; and A; measure both the cost coeflicient, ¢;, and the impact on constraint
feasibility (see Section 2.4.3.)

1.1.2 Applications. Many applications of the SPP have been reported in the
literature. A large number of these are scheduling problems where given a discrete,
finite set of solutions, a set of constraints, and a cost function, one seeks the schedule
that satisfies the constraints at minimum cost. A partial list of these applications
includes crew scheduling, tanker routing, switching circuit design, assembly line bal-
ancing, capital equipment decisions, and location of offshore drilling platforms [6].

The best-known application of the SPP is airline crew scheduling. In this for-
mulation each row (2 = 1,...,m) represents a flight leg (a takeoff and landing) that
must be flown. The columns (5 = 1,...,n) represent legal round-trip rotations (pair-
ings) that an airline crew might fly. Associated with each assignment of a crew to a
particular flight leg is a cost, ¢;.

The matrix elements a;; are defined by

1 if flight leg ¢ is on rotation 7
= {0 j (1.6)

0 otherwise.

Numbers in square brackets refer to the numbered entries in the references.

Airline crew scheduling is a very visible and economically significant problem.
The operations research (OR) literature contains numerous references to the airline
crew scheduling problem [2, 3, 4, 7, 25, 36, 46, 47]. Estimates of over a billion dollars
a year for pilot and flight attendant expenses have been reported [1, 7]. Even a small
improvement over existing solutions can have a large economic benefit.

At one time solutions to the SPP were generated manually. However, airline
crew scheduling problems have grown significantly in size and complexity. In 1981
problems with 400 rows and 30,000 columns were described as “very large” [47].
Today, problems with hundreds of thousands of columns are “very large,” and one
benchmark problem has been generated with 837 rows and 12,753,313 columns [9].

1.1.3 Previous Algorithms. Because of the widespread use of the SPP (and
often the difficulty of its solution) a number of algorithms have been developed. These
can be classified into two types: approximate algorithms which try to find “good”
solutions quickly, and exact algorithms which attempt to solve the SPP to optimality.

An important approximate approach (as well as the starting point for most exact
approaches) is to solve the linear programming (LP) relaxation of the SPP. In the LP
relaxation, the integrality restriction on z; is relaxed, but the lower and upper bounds
of zero and one are kept. A number of authors [7, 25, 47] have noted that for “small”
SPP problems the solution to the LP relaxation is either all integer, in which case it
is also the optimal integer solution, or has only a few fractional values that are easily
resolved. However, in recent years it has been noted that as SPP problems grow in
size, fractional solutions occur more frequently, and simply rounding or performing
a “small” branch-and-bound tree search may not be effective [2, 7, 25].

Marsten [46] noted twenty years ago that for most algorithms in use at that
time, solving the linear programming relaxation to the SPP was the computational
bottleneck. This is because the LP relaxation is highly degenerate. The past several
years have seen a number of advances in linear programming algorithms and the
application of that technology to solving the LP relaxation of very large SPP problems
(2, 9].

One of the oldest exact methods is implicit enumeration. In this method partial
solutions are generated by taking the columns one at a time and exploring logical im-
plications of their assignments. Both Garfinkel and Nemhauser [24] and Marsten [46]
developed implicit enumeration algorithms. Another traditional method is the use
of cutting planes (additional constraints) in conjunction with the simplex method.
Balas and Padberg [6] note that cutting plane algorithms were moderately successful
even while using general-purpose cuts and not taking advantage of the shape of the
SPP polytope. A third method is column generation, where a specialized version of
the simplex method produces a sequence of integer solutions that (one hopes) con-
verge to the optimal integer solution. Applying a generic branch-and-bound program
is also possible. Various bounding strategies have been used, including linear pro-
gramming and Lagrangian relaxation. Fischer and Kedia [21] use continuous analogs

of the greedy and 3 — opt methods to provide improved lower bounds. Of recent inter-
est is the work of Eckstein [20], who has developed a general-purpose mixed-integer
programming system for use on the CM-5 parallel computer and applied it to, among
other problems, set partitioning.

At the time of this writing the most successful approach appears to be the work
of Hoffman and Padberg [36]. They present an exact approach based on the use
of branch-and-cut—a branch-and-bound-like scheme where, however, additional pre-
processing and constraint generation take place at each node in the search tree. An
important component of their system is a high-quality linear programming pack-
age for solving the linear programming relaxations and a linear programming—based
heuristic for getting good integer solutions quickly. They report optimal solutions for
a large set of real-world SPP problems.

1.2 Parallel Computers

Traditionally, parallel computers are classified according to Flynn’s taxonomy
[22]. Flynn’s classification distinguishes parallel computers according to the number
of instruction streams and data operands being computed on simultaneously. There
are three main classifications of interest: single-instruction single-data (SISD) com-
puters, single-instruction multiple-data (SIMD) computers, and multiple-instruction
multiple-data (MIMD) computers.

The SISD model is the traditional sequential computer. A single program counter
fetches instructions from memory. The instructions are executed on scalar operands.
There is no parallelism in this model.

In the SIMD model there is again a single program counter fetching instructions
from memory. However, now the operands of the instructions can be one of two
types: either scalar or array. If the instruction calls for execution involving only
scalar operands, it is executed by the control processor (i.e., the central processing
unit fetching instructions from memory). If, on the other hand, the instruction calls
for execution using array operands, it is broadcast to the processing elements.

The processing elements (PEs) are separate computing devices. The PEs do
not have their own program counter. Instead, they rely upon the control processor
to determine the instructions they will execute. Each PE typically has its own,
relatively small, memory in which are stored the unique operands the PE will execute
the instruction broadcast by the control processor on. The parallelism arises from
having multiple PEs (typically 4K-64K in recent commercial machines) executing
the same instruction, but on different operands. This type of parallel execution is
referred to as synchronous since each PE is always executing the same instruction as

other PEs.

In a MIMD computer there exist multiple processors each of which has its own
program counter. Processors execute independently of each other according to what-

ever instruction the program counter points to next. MIMD computers are usually
further subdivided according to whether the processors share memory or each has its
OwWn Mmemory.

In a shared-memory MIMD computer both the program’s instructions and the
part of the program’s data to be shared exist within a single shared memory. Addi-
tionally, some data may be private to a processor and not be globally accessible by
other processors. The processors execute asynchronously of each other. In the most
common programming model, they subdivide a computation that is performed on a
large data structure in shared memory, each processor performing a part of the com-
putation. Communication and synchronization between the processors are handled
by having them each read or write a shared-memory location.

A distributed-memory MIMD computer consists of multiple “nodes.” A node
is essentially just a sequential computer, that is, a processor and its own (local)
memory (and sometimes a local disk also). The processor’s program counter fetches
instructions from the local memory, and the instructions are executed on data that
also resides in local memory. The nodes are connected together via some type of
physical interconnection network that allows them to communicate with each other.
Parallelism is achieved by having each processor compute simultaneously on the data
in its local memory. Communication and synchronization are handled exclusively
through the passing of messages (a destination address and the processor local data
to be sent) over the interconnection network.

Currently, MIMD computers are more common than SIMD computers. Shared-
memory computers are common when only a few processors are being integrated,
such as in a multiprocessor workstation. Distributed-memory computers are more
common when tens or hundreds of processors are being integrated. The tradeoffs in-
volved are the (widely perceived) ease of use of shared-memory programming relative
to distributed-memory programming versus the difficulty of cost-effectively scaling
shared-memory computers to integrate more than a few tens of processors before
memory access bottlenecks arise. It seems likely that in the next several years we
will see the integration of both shared and distributed-memory as “nodes” in a dis-
tributed memory computer become themselves shared-memory multiprocessors.

Our interest in parallel computers is as an implementation vehicle for our al-
gorithm. As we explain later, a parallel genetic algorithm is a model that can be
implemented on both sequential and parallel computers. For the model of a parallel
genetic algorithm we use, a distributed-memory MIMD computer is the most natural
choice for implementation and the one we pursued.

1.3 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms. They were developed by Holland
[37] and are based on an analogy with natural selection and population genetics. One
important use of GAs, and the one we studied, is for finding approximate solutions to

t«—20

initialize P(?)

evaluate P(t)

foreach generation
t—1t+1
select P(t+ 1) from P(t)
recombine P(t + 1)
evaluate P(t 4 1)

endfor

Figure 1.1. Simple Genetic Algorithm

difficult optimization problems. As opposed to other optimization methods, genetic
algorithms work with a population of candidate solutions instead of just a single
solution. In the original GAs of Holland, and the ones we use in this paper, each
solution may be represented as a string of bits', where the interpretation of the
meaning of the string is problem specific.

Genetic algorithms work by assigning a value to each string in the population
according to a problem-specific fitness function. A “survival-of-the fittest” step selects
strings from the old population, according to their fitness. These strings recombine
using operators such as crossover or mutation to produce a new generation of strings
that are (one hopes) more fit than the previous one. A generic genetic algorithm is
shown in Figure 1.1.

Two important but competing themes exist in a GA search: the need for selective
pressure so that the GA is able to focus the search on promising areas of the search
space, and the need for population diversity so that important information (particular
bit values) is not lost. Whitley notes [66]:

Many of the various parameters that are used to “tune” genetic search
are really indirect means of affecting selective pressure and population
diversity. As selective pressure is increased, the search focuses on the top
individuals in the population, but because of this “exploitation” genetic
diversity is lost. Reducing the selective pressure (or using a larger pop-
ulation) increases “exploration” because more genotypes and thus more
schemata are involved in the search.

'In this dissertation we use the terms bit, value, and string instead of the more common
GA terminology gene, allele, and chromosome.

In the context of function optimization, strong selective pressure may quickly focus
the search on the best individuals at the expense of population diversity, and the
lack of diversity can lead the GA to prematurely converge on a suboptimal solution.
Conversely, if the selective pressure is relaxed, a high diversity may be maintained,
but the search may fail to improve values.

Three performance measures for genetic algorithms are in common use: online
performance, offline performance, and best string found. The online performance is
the average of all function evaluations up to and including the current trial. This
measure gauges ongoing performance. The offline performance is the average of the
best strings from each generation. The offline performance is a running average of all
the best performance values to a particular time. The best string found is the value
of the best string found so far in any generation and is the best metric to measure
function optimization ability.

1.3.1 Constrained Problems. One trait common to many combinatorial
problems solved by GAs is that feasible solutions are easy to construct. For some
problems, however—the SPP in particular—generating a feasible solution that satis-
fies the problem constraints is itself a difficult problem. Three approaches to handling
problem constraints have been discussed. In the first, solutions that violate a con-
straint(s) are infeasible and therefore are declared to have no fitness. This approach
is impractical because many problems are tightly constrained and finding a feasible
solution may be almost as difficult as finding the optimal one. Also, infeasible so-
lutions often contain valuable information and should not be discarded outright. In
the second approach, the GA operators are specialized for the problem, so that no
constraints are violated. In the third, a penalty term is incorporated into the fitness
function to penalize strings that violate constraints. The idea is to degrade the fitness
of infeasible strings but not throw away valuable information contained in the cost
term of the fitness function. Below we discuss some examples of the second and third
approaches.

Jog, Suh, and Gucht [39] summarize many of the crossover operators used for
the traveling salesperson problem (TSP). In general, these operators try to include
as much of the parent strings as possible in the offspring, subject to the constraint
that the offspring contain a valid tour. In the TSP, since all cities are connected to
all other cities, it is relatively easy to ‘fix up” an offspring that contains either an
invalid tour or a partial tour, by adding missing cities and removing duplicate cities.

As an example, Muhlenbein [48] uses a specialized crossover operator for the TSP
called the maximal preservative crossover operator (MPX). The idea is to retain
as many valid edges from the parent strings as possible. MPX works by randomly
selecting an arbitrary length string from one of the parents to initialize the offspring.
Edges are then added from either parent to the offspring, starting at the last city
in the offspring, as long as a valid tour is still possible. Otherwise, the next city in
one of the parent strings is added. The aim of MPX is to preserve as much of the
parent’s subtours as possible.

Von Laszewsski and Muhlenbein [65] define a structural crossover operator for
the graph partitioning problem that copies whole partitions from one solution to
another. Since the copy process may violate the “equal size partition” constraint, a
“repairing” operator is applied to “fix things up.” For this problem, mutation may
also create invalid solutions (mutation is defined as the exchange of two numbers in
order to avoid infeasibilities).

Penalty methods allow constraints to be violated. Depending on the magnitude
of the violation, however, a penalty that is proportional to the size of the infeasibility
is incurred that degrades the objective function. If the cost is large enough, highly
infeasible strings will rarely be selected for reproduction, and the GA will concentrate
on feasible or near-feasible solutions. A generic evaluation function is of the form

c(x) + p(x),

where ¢(x) is a cost term (often the objective function of the problem of interest)
and p(x) is a penalty term.

Richardson et al. [55] provide advice and experimental results for constructing
penalty functions. The authors suggest not making the penalty too harsh, since
infeasible solutions contain information that should not be ignored. As an example,
they point out that if one removes a column from the optimal solution to a set covering
problem, an infeasible solution results. This implies that the optimal solution is
separated from infeasible solutions by a Hamming distance of one. Using a similar
argument, they note that a single, one-bit mutation can produce the optimal solution
from an infeasible one. They suggest that the cost of the penalty term reflect the
cost of making an infeasible solution into a feasible one.

Siedlecki and Sklansky [56] use a dynamically calculated penalty coefficient in a
GA applied to a pattern recognition problem. Two interesting properties of their
problem are that (1) the minimum occurs on a boundary point of the feasible region,
and (2) the penalty function is monotonically growing. They report that a variable
penalty coefficient outperforms the fixed coefficient penalty.

Cohoon, Martin, and Richards [13] use a penalty term when solving the K-
partition problem. The penalty is exponentially increasing with the degree of con-
straint violation. They observe that the GA tends to “exploit” the penalty term by
concentrating its search in a particular part of the search space, willingly incurring a
small penalty if the scalar multiplier of the penalty term is not too large.

Smith and Tate [57] suggest a dynamic penalty function for highly constrained
problems. They apply this to the unequal area facility layout problem. The severity
of their penalty varies and depends on the best solution and best feasible solution
found so far. Their intent is to favor solutions that are near feasibility over solutions
that are more fit but less feasible.

In conjunction with rank-based selection, Powell and Skolnick [53] scale the ob-
jective function for their problem so that all the feasible points always have higher
fitness than the infeasible points. This approach avoids difficulties with choosing an
appropriate penalty function, but still allows infeasible solutions into the population.

1.3.2 Parallel Genetic Algorithms. When referring to a parallel genetic
algorithm (PGA) it is important to distinguish between the PGA as a particular
model of a genetic algorithm and a PGA as a means of implementing a (sequential or
parallel model of a) genetic algorithm. In a parallel genetic algorithm model, the full
population exists in a distributed form; either multiple independent subpopulations
exist, or there is one population but each population member interacts only with a
limited set of neighbors.

One advantage of the PGA model is that traditional genetic algorithms tend to
convergence prematurely, an effect that PGAs seem to be able to partially miti-
gate because of their ability to maintain more diverse subpopulations by exchanging
“genetic material” between subpopulations. Also, in a traditional GA the expected
number of offspring of a string depend on the string’s fitness relative to all other
strings in the population. This situation implies a global ranking that is unlike the
way natural selection works.

Many GA researchers believe a PGA is a more realistic model of species in nature
than a single large population; by analogy with natural selection, a population is typ-
ically many independent subpopulations that occasionally interact. Parallel genetic
algorithms also naturally fit the model of the way evolution is viewed as occurring;
a large degree of independence exists in the “global” population.

Parallel computers are an attractive platform for the implementation of a PGA.
The calculations associated with the sequential GA that each subpopulation performs
may be computed in parallel, leading to a significant savings in elapsed time. This
is important since it allows the global population size, and hence the overall number
of reproductive trials, to grow without much increase in elapsed computation time.

A parallel implementation of the traditional sequential genetic algorithm model
is also possible. A simple way to do this is to parallelize the loop that creates the
next generation from the previous one. Most of the steps in this loop (evaluation,
crossover, mutation, and, if used, local search) can be executed in parallel. The se-
lection step, depending on the selection algorithm, may require a global sum that
can be a parallel bottleneck. When such an approach has been taken, it is often on a
distributed-memory computer. However, unless function evaluation (or local search)
is a time-consuming step, the parallel computing overheads associated with distribut-
ing data structures to processors, and synchronizing and collecting the results, can
mitigate any performance improvements due to multiple processors. Instead, this
type of parallel implementation is an obvious candidate for the “loop-level” paral-
lelism common on shared-memory machines. This has important implications for
anticipated future parallel computers. Such machines are expected to have multiple

processors sharing memory on a node, and many such nodes in a distributed-memory
configuration. It will be natural to map a PGA onto the distributed nodes, and speed
the sequential GA at each node by using the multiple processors to parallelize the
generation loop.

Parallel genetic algorithms can be classified according to the granularity of the
distributed population, coarse grained vs. fine grained, and the manner in which the
GA operators are applied [39]. In a coarse-grained PGA the population is divided
into several subpopulations, each of which runs a traditional GA independently and
in parallel on its own subpopulation. Occasionally, fit strings migrate from one
subpopulation to another. In some implementations migrant strings may move only
to geographically nearby subpopulations, rather than to any arbitrary subpopulation.

In a fine-grained PGA a single population is divided so that a single string is
assigned to each processor. Processors select from, crossover with, and replace only
strings in their neighborhood. Since neighborhoods overlap, fit strings will migrate
throughout the population.

1.3.2.1 Coarse-Grained Parallel Genetic Algorithms. In a coarse-
grained parallel genetic algorithm (CPGA), also referred to later as an island model,
multiple processors each run a sequential GA on their own subpopulation. Processors
exchange strings from their subpopulation with other processors. Some important
choices in a CPGA are which other processors a processor exchanges strings with,
how often processors exchange strings, how many strings processors exchange with
each other, and what strategy is used when selecting strings to exchange.

Tanese [62] applied a CPGA to the optimization of Walsh-like functions using
a 64-processor Ncube computer. Periodically, fit strings were selected and sent to
neighboring processors for possible inclusion in their future generations. Fxchanges
took place only among a processor’s neighbors in the hypercube. These exchanges
varied over time, taking place over a different dimension of the hypercube each time.
Tanese found that the CPGA was able to determine the global maximum of the
function about as often as the sequential GA. Tanese reported near-linear speedup
of the CPGA over the traditional GA for runs of 1,000 generations. In most cases
Tanese’s main metric, the average of which generation the global maximum was
found on, preferred eight as the optimal number of subpopulations. Tanese also
experimented with variable mutation and crossover rates among the subpopulations
and found these results at least as good as earlier results.

In [63] Tanese experimented with the partitioned genetic algorithm (a CPGA
with no migration between processors allowed). A total population size of 256 was
partitioned into various power-of-two subpopulation sizes. In all cases the partitioned
GA found a better “best fitness value” than the traditional GA, even with small
subpopulations sizes such as eight or four. The average fitness of the population at
the last generation, however, was consistently worse than that calculated with the
traditional algorithm.

10

Experiments with migration found that a higher average fitness could be obtained
if many migrants were sent infrequently or if only a few migrants were sent more
frequently. Each processor generated extra offspring during a migration generation
and selected migrants uniformly from among the “overfull” population. Often the
partitioned GA found fitter strings than the CPGA with migration. Best results were
achieved with a migration rate such as 20% of each subpopulation migrating every
20 iterations.

In [60] Starkweather, Whitley, and Mathias describe another CPGA. Each pro-
cessor sent copies of its best strings to one of its neighbors, which replaced its worst
string with these. A ring topology was used where, on iteration one, py sends to py,
p1 sends to po, etc., and on iteration two, pg sends to py, p; sends to ps3, etc. All
sends were done in parallel. In their tests the total population size was fixed, and
they experimented with various-sized partitions of the total population among the
processors. When no mutation was used, performance improved for two of the four
problems as the number of subpopulations was increased, but degraded on the other
two. When adaptive mutation was used, with the mutation probability increasing to
some predefined maximum as the similarity of the two parents increased, the runs
were more successful and achieved good results relative to the serial runs. The more
distributed the GA, the more often adaptive mutation was invoked, since smaller sub-
populations converge more rapidly than larger ones. Their experiments also indicate
that migrating strings too often, or not often enough, degrade performance.

Cohoon, Martin, and Richards [13] applied the CPGA to the K-partition problem
using a 16-processor hypercube. FEach processor had its own subpopulation of eighty
strings, and fifty iterations were run between migrations. An interesting feature
of their work was the random choice of scaling coefficient for the penalty term in
their fitness function ¢(x) + Ap(x). The scaling factor A influences how much weight
infeasibilities have in evaluating a string’s fitness. Two experiments were done. One
used A = 1 for each subpopulation. In the other, each processor chose a value for A
uniformly on the interval (0,1). When the metric “best observed fitness” was applied,
the runs with uniformly distributed A were consistently better than those with A fixed
at one in each processor.

Kroger, Schwenderling, and Vornberger [41] used a CPGA on a network of 32
transputers to solve the two-dimensional bin packing problem. At “irregular inter-
vals” a processor received strings from neighboring processors. A “parallel elitist
strategy” was used whereby, whenever a processor improved upon the best string in
its population, it sent a copy of that string to all other processors in its neighbor-
hood. The best results were found with a “medium size” neighborhood and a local
population of ten strings.

Pettey, Leuze, and Grefenstette [51] ran a CPGA on an Intel iPSC hypercube.
Each generation each processor sent its best strings to each neighbor and received its
neighbor’s best strings. These were then inserted into each processor’s subpopulation
by using a replacement scheme. Subpopulation size was fixed at 50 strings; and 1,

11

2,4, 8, and 16 processors were used. They believe their results indicate an increased
likelihood of premature convergence. This work is at an extreme from most CPGAs,
because strings are exchanged every generation and always with the same neighbors.
These conditions explain the apparent increased likelihood of premature convergence.

Gordon and Whitley [28] compare eight different parallel genetic algorithms and a
version of Goldberg’s Simple Genetic Algorithm [26] on several function optimization
test problems. Among their conclusions is that island models (CPGAs) perform well,
particularly on the hardest problems in their test suite.

1.3.2.2 Fine-Grained Parallel Genetic Algorithms. In a fine-grained
parallel genetic algorithm (FPGA) exactly one string is assigned to each processor.
In the FPGA the model is of one population in which the strings have only local
interactions and neighborhoods, as opposed to global ones. Choices in an FPGA
include neighborhood size, processor connection topology, and string replacement
scheme.

Muhlenbein [48] applied an FPGA to the traveling salesperson problem and the
graph partitioning problem. Each string selected a mate from within a small neigh-
borhood of its own processor. Within its neighborhood each processor performed
selection, crossover, and mutation without any central control. In addition, each
string attempted to improve itself by applying a local search heuristic.

Muhlenbein’s objective was to avoid premature convergence by allowing only slow
propagation of highly fit strings across the full population. This is dependent on the
topology of the processor’s neighborhood, which he calls the population structure. By
choosing a population structure that takes a long time to propagate strings through-
out the population, Muhlenbein claimed he avoided premature convergence. The
topology used was a two-dimensional circular ladder with two strings per “step.” A
neighborhood size of eight was used by each string. Some overlap occurred among
neighborhoods, enabling fit strings to propagate through the population.

In [65] an FPGA was applied to the graph partitioning problem. Strings were
mapped to a 64-processor transputer system. Selection was done independently by
each string within a small neighborhood of the two-dimensional population structure.
The parent string was replaced if the offspring was at least as good as the worst
string in the neighborhood. A small neighborhood size in conjunction with a large
population size gave the best results.

In [29] Gorges-Schleuter implemented an FPGA on a 64-processor Parsytec trans-
puter system using a sparse graph as the population topology. An elitist strategy was
used whereby offspring are accepted for the next generation only if they were more
fit than the local parent. A string’s fitness was defined relative to other strings in its
neighborhood, and neighborhoods could overlap. The algorithm was applied to the
TSP problem, using a population size of 64 and a neighborhood size of eight. Results

12

showed that, with a small neighborhood size, communication costs were negligible,
and linear speedup was achieved.

1.3.2.3 Other Parallel Genetic Algorithms. Fogarty and Huang [23]
used a transputer array for the parallel evaluation of a population of 250 strings
applied to a real-time control problem. For this problem, evaluating the fitness of a
member of the population takes a relatively long time. A host processor ran the main
GA program and distributed strings for evaluation to the other transputer processors
for evaluation. Maximum speedups in the range of 25-27 were obtained on 40-72
processors. The incremental improvement in speedup was slightly sublinear up to
about 16-20 processors, but then fell off quickly.

Liepens and Baluja [44] used a parallel GA with a central processor phase. In
parallel, 15 subpopulations of ten strings each run a GA on their own subpopulations.
Next, during the central processor phase, the most fit string from each subpopulation
is gathered along with an additional 15 randomly generated strings. Under the con-
trol of the central processor a recombination phase of these 30 strings occurs. The
best string is then injected into the populations of one-third of the processors. Com-
menting about parallelism, Liepens and Baluja believe that smaller subpopulations
remain more heterogeneous.

1.4 Thesis Methodology

In this section we explain the motivation and objectives of this thesis, and the
performance metrics used.

1.4.1 Motivation. There were a number of motivations for applying (parallel)
genetic algorithms to the set partitioning problem. One was the particularly chal-
lenging nature of the problem. The challenges include the NP-completeness of finding
feasible solutions in the general case, and the enormous size of problems of current
industrial interest. Also, because of its use as a model for crew scheduling by most
major airlines, there is great practical value in developing a successful algorithm.

Genetic algorithms can provide flexibility in handling variations of the model
that may be useful. The evaluation function can be easily modified to handle other
constraints such as cumulative flight time, mandatory rest periods, or limits on the
amount of work allocated to a particular base. More traditional methods may have
trouble accommodating the addition of new constraints as easily. Also, at any it-
eration genetic algorithms contain a population of possible solutions. As noted by
Arabeyre et al. [3],

The knowledge of a family of good solutions is far more important than
obtaining an isolated optimum.

13

This reality has been noted also by many operations research practitioners. Often, for
political or other reasons, it is not possible to implement the best solution, but it may
be desirable to find one with similar behavior. Traditional operations research algo-
rithms do not maintain knowledge of solutions other than the current best, whereas
G As maintain the “knowledge of a family of good solutions” in the population.

Additionally, the problem has attracted the attention of the operations research
community for over twenty-five years, and many real problems exist, so it is possible
to compare genetic algorithms with a number of other algorithmic approaches. One
advantage of a GA approach is that since it works directly with integer solutions
there is no need to solve the LP relaxation.

Finally, as parallel computers move into mainstream computing. the challenge
to researchers in all areas is to develop algorithms that can exploit the potential of
these powerful new machines. The model of genetic algorithm parallelism we pursue
in this dissertation has, we believe, great potential for scaling to take advantage of
larger and larger numbers of processors. Since we believe the algorithm maps well
to parallel computers, it motivates us to see whether this can help us to solve hard
problems of practical interest.

1.4.2 Thesis Objectives. This thesis had several objectives which span the
fields of genetic algorithms, operations research, and parallel computing. The primary
objective was to determine whether a GA can solve real-world SPP problems. Current
real-world SPP problems have been generated of almost arbitrary length. Fven many
smaller problems have posed significant difficulties for traditional methods. Also, in
the general case, just finding a feasible solution to the SPP is NP-complete [49]. We
wished to see how well a GA could perform on such a problem.

We also wished to identify characteristics of SPP problems that were hard for a
genetic algorithm. The SPP is both tightly constrained and, in many cases, very large.
It also has a natural bit string representation and so is an interesting problem on
which to study the effectiveness of GAs. Most applications of GAs have traditionally
been to problems with tens or hundreds of bits. We wished to see whether GAs could
handle larger problems without the “disruption factor” hindering the search ability.
Also, tightly constrained problems have not been the forte of genetic algorithms, and
one of our objectives was to see how accurately this limitation carried over to the

SPP problem.

Finally, we also wished to study aspects of the parallel genetic algorithm model.
We wished to determine the role and influence of parameters such as migration fre-
quency and how strings are selected to migrate or be replaced. We were interested in
the algorithmic behavior with the addition of increasing numbers of subpopulations;
whether there would be an improvement in the quality of the best solution found, or
if it would be found faster, or both.

14

1.4.3 Performance Metrics. The main performance metric we used was the
“quality” of the solution found. This was measured by how close to optimality the
best solution found was. A second metric was the “efficiency” of the parallel genetic
algorithm model we used. As we increased the number of subpopulations (and hence
the total population size) we wished to determine whether the number of GA itera-
tions required to find a solution decreased. The third metric of interest, “robustness”,
was the ability of the algorithm to perform consistently well on a wide range of prob-
lem types. This was studied by choosing a large set of test problems and trying to
characterize on different “problem profiles” how well the GA performed. Finally, we
also compared the parallel GA with traditional operations research methods to see
which were more effective.

15

CHAPTER 1I
SEQUENTIAL GENETIC ALGORITHM

The motivation for the work presented in this chapter was to develop a sequential
genetic algorithm that worked well on the set partitioning problem. This would then
be used as a building block upon which to develop the parallel genetic algorithm.
Although much theoretical work on GAs exists, and much more is currently being
pursued by the GA community, there does not yet exist a complete theory for GAs
that says which GA operators and their parameter values are best. Often when
implementing a GA, practitioners rely upon a large body of empirical research that
exists in the literature. In some cases this work is theoretically guided; in others it
is the result of extensive experiments or specific application case studies. It is in this
context that the work in this chapter was performed.

In Section 2.1 we discuss the test problems we use in this chapter. Section 2.2
discusses the basic genetic algorithm we tested. Section 2.3 discusses the local search
heuristic we developed. Section 2.4 discusses specific components of the genetic
algorithm and provides a complexity analysis. Finally, Section 2.5 summarizes the
results.

2.1 Test Problems

The test problems used in this chapter are given in Table 2.1 where they are
sorted by increasing number of columns. These problems are a subset of those used
by Hoffman and Padberg in [36]. They are “real” set partitioning problems provided
by the airline industry. The columns in this table are the test problem name, the
number of rows and columns' in the problem, the total number of nonzeros in the
A matrix, the objective function value for the linear programming relaxation, and
the objective function value for the optimal integer solution. By the standards of
SPP problems solved by the airline industry today, these problems can be classified
as small (nw41, nw32, nw40, nw08, nw15, nw20), medium (nw33), and large (aa04,
nw18), according to the number of rows and columns in the problem. This particular
subset was selected so that we would have several smaller models and a few larger
ones.

We can characterize how difficult the test problems are in several ways. First,
we can look at the problem parameters, such as the number of rows, columns, and
nonzeros. In general, we assume that the larger and more dense a problem is, the
harder it is to solve. For the GA, this is justified from a complexity standpoint, since
various components of the GA and local search heuristic we use have running time

tIn the rest of this dissertation we use rows and columns interchangeably with constraints
and variables.

16

Table 2.1 Sequential Test Problems

Problem No. No. No. LP IP

Name Rows Cols Nonzeros Optimal Optimal
nwél 17 197 740 10972.5 11307
nw32 19 294 1357 14570.0 14877
nw40 19 404 2069 10658.3 10809
nw08 24 434 2332 35894.0 35894
nwl5 31 467 2830 67743.0 67743
nw20 22 685 3722 16626.0 16812
nw33 23 3068 21704 6484.0 6678
aa04 426 7195 52121 25877.6 26402
nwl8 124 10757 91028 338864.3 340160

Table 2.2 Sequential Test Problem Solution Characteristics

Problem LP LP LP 1P

Name ITters. Nonzeros Ones Nodes
nwdl 174 7 3 9
nw32 174 10 4 9
nw40 279 9 0 7
nw08 31 12 12 1
nwlb 43 7 7 1
nw20 1240 18 0 15
nw33 202 9 1 3
aal4 >T428 234 5 >1
nwl8s >162947 68 27 >62

17

of the order of the number of rows or columns, or the number of nonzeros in a row
or column (see Section 2.4.7).

We can also gain some insight into the difficulty of the test problems by solving
them with a traditional operations research algorithm." The test problems have been
solved using the public-domain 1p_solve program [8]. lp_solve solves linear pro-
gramming problems using the simplex method and solves integer programming (IP)
problems using the branch-and-bound algorithm. The results are given in Table 2.2.
The columns are the test problem name; the number of simplex iterations required
to solve the LP relaxation, plus the additional simplex iterations when solving LP
subproblems in the branch-and-bound tree; the number of variables in the solution
to the LP relaxation that were not zero; the number of the nonzero variables in the
solution to the LP relaxation that were one (i.e., not fractional); and the number of
nodes searched in the branch-and-bound tree before an optimal solution was found.

lp_solve found optimal solutions for problems nw41, nw32, nw40, nw08, nwl5,
nw20, and nw33. 1p_solve found the optimal solution to the LP relaxation for nw18,
but not the optimal integer solution before a CPU time limit was reached. The large
number of simplex iterations and nodes searched for this problem, relative to the
others (except aa04), indicate (at least for lp_solve) it is a hard problem. aa04
was the most difficult—1p_solve was not able to solve the associated LP relaxation
and, in fact, aborted after over 7,000 simplex iterations. aa04 seems to be a difficult
problem for others as well [36]. We conclude that the seven smaller problems are
“relatively easy,” nw18 is more difficult, and aa04 is very difficult.

2.2 The Genetic Algorithm

One way to classify genetic algorithms is by the percentage of the population that
is replaced each generation. Two choices, at extremes from each other, are common
in the literature. The first, the generational replacement genetic algorithm (GRGA),
replaces the entire population each generation and is the traditional genetic algorithm
as defined by Holland [37] and popularized by Goldberg [26]. The second, the steady-
state genetic algorithm (SSGA), replaces only one or two strings each generation and
is a more recent development [61, 66, 69].

In the GRGA the entire population is replaced each generation by their offspring.
The hope is that the offspring of the best strings carry the important “building
blocks” [26] from the best strings forward to the next generation. The basic outline
of the GRGA is given in Figure 1.1. The GRGA allows the possibility that the best
strings in the population do not survive to the next generation. Also, as Davis points
out [15], many of the best strings may not be allocated any reproductive trials. It is
also possible that mutation or crossover destroy or alter important bit values so that
they are not propagated into the next generation by the parent’s offspring. Many

tWe defer discussion of a comparison with Hoffman and Padberg to the next chapter.

18

Table 2.3 Comparison of the Use of Elitism in GRGA

Problem No Elitism Elitism

Name Opt. Feas. Trials Opt. Feas. Trials
nwél 2 559 863 2737 864
nw32 0 412 840 0 562 841
nw40 0 491 864 0 705 864
nw08 2 23 860 0 35 861
nwl5 0 3 856 0 4 862
nw20 0 267 863 0 440 863
nw33 0 3 575 0 22 576
aa04 0 0 859 0 0 858
nwl8 0 0 473 0 0 474

implementations of the GRGA use elitism; if the best string in the old population is
not chosen for inclusion in the new population, it is included in the new population
anyway. The idea is to avoid “accidentally” losing the best string found so far. GA
practice has shown this is usually advantageous.

Table 2.3 compares the use of elitism in the GRGA. The column Problem Name
is the name of the test problem. The subheadings Opt. and Feas. are the number
of optimal and feasible integer solutions found, out of the number of trials given in
the Trials column, respectively. In these experiments we varied several parameters at
once (elitism, selection algorithm, penalty term, fitness function, crossover operator,
crossover probability, and initialization strategy). The population size was fixed at 50
and the mutation rate at 1/n. For each choice of parameter value or operator, we per-
formed one computer “run” for each test problem®. In each run the random number
generator was initialized by using the microsecond portion of the Unix gettimeofday
system call as a seed.

Comparing the results using as the metric the number of feasible solutions found,
we find with a x? test* that elitism is beneficial on five of the problems (nw41, nw32,
nw40, nw20, nw33). However, the most obvious result from Table 2.3 is the lack of
optimal solutions found, even on the smaller problems. The main difficulty was the
population’s premature convergence, so that all the strings in the population were
duplicates and no new search was occurring (see also [43] for more on our earlier
work). It was this that led us to pursue alternative GA approaches, and in the rest
of this dissertation we will report results only for the steady-state genetic algorithm
which we found more successful.

tBecause of resource limits, scheduling conflicts, and system crashes, not all runs com-
pleted for all problems.

TAll y? tests reported in this dissertation use a significance level of 5 percent.

19

The steady-state genetic algorithm is an alternative to the GRGA that replaces
only a few individuals at a time, rather than an entire generation. In practice, the
number of new strings to create each generation is usually one or two. The new
string(s) replace the worst-ranked string(s) in the population. In this way the SSGA
allows both parents and their offspring to coexist in the same population (in fact,
this is the usual case).

The SSGA has a “built-in” elitism since only the lowest-ranked string is deleted;
the best string is automatically kept in the population. Also, the SSGA is immedi-
ately able to take advantage of the “genetic material” in a newly generated string
without having to wait to generate the rest of the population as in a GRGA. A dis-
advantage of the SSGA is that with small populations some bit positions are more
likely to lose their value (i.e., all strings in the population have the same value for
that bit position) than with a GRGA. For this reason, SSGAs are often run with
large population sizes to offset this.

SSGA practitioners advocate discarding a child string if it is a duplicate of a
string currently in the population. By avoiding duplicate strings the population is
able to maintain more diversity. In our implementation we do not discard a duplicate
string, but repeatedly mutate it until it is unique. Not allowing duplicates turned
out to be important. Before implementing a method to avoid duplicate strings, we
found SSGA populations experienced a similar problem with premature convergence
as did the GRGA. Avoiding duplicate strings had a noticeable effect in avoiding or
delaying premature convergence.

Figure 2.1 presents the steady-state genetic algorithm we used. Here, we give
a brief outline. Specific details of the operators follow in the next several sections.
P(t) is the population of strings at generation® ¢. Each generation one new string is
inserted into the population. The first step is to pick a random string, X,,,d40m, and
apply a local search heuristic (Section 2.3) to it. Next, two parent strings, x; and
X3, are selected (Section 2.4.4), and a random number, r € [0, 1], is generated. If r
is less than the crossover probability, p., we create two new offspring via crossover
(Section 2.4.6) and randomly select one of them, X;.,, to insert in the population.
Otherwise, we randomly select one of the two parent strings, make a copy of it, and
apply mutation to flip bits in the copy with probability 1/n. In either case, the new
string is tested to see whether it duplicates a string already in the population. If
it does, it undergoes (possibly additional) mutation until it is unique. The least-fit
string in the population is deleted, x,,.,, is inserted, and the population is reevaluated.
The experiments in this chapter all used a population size of 50.

To implement the genetic algorithm and local search heuristic, we wrote a pro-
gram in ANSI C. It consists of approximately 10,000 lines of source code (including
comments) and is portable and runs on all Unix systems it has been tested on. It

"We use generation and iteration interchangeably.

20

t— 0
initialize P()
evaluate P(t)
foreach generation
local_search (X,qndom € P(1))
select(xy,xz) from P(t)
if(r < p.) then
Xpew = Crossover(xi,Xz)
else
Xpew = MUtate(xy,Xz)
endif
delete (Xyorst € P())
while (x,,., € P(?))
mutate(Xpey)
Pt +1) « P(t)UXpen
evaluate P(t 4 1)
t—1t+1
endfor

Figure 2.1. Steady-State Genetic Algorithm

is capable of running on one or more processors. When run on one processor, it is
functionally equivalent to a sequential program. For the experiments described in
this chapter three different types of computers were used: Sun Sparc 2 workstations,
IBM RS/6000 workstations, and an IBM SP1 parallel computer (for these experi-
ments, the SP1 was used as if it were a collection of independent workstations—we
ran multiple sequential jobs, each using one SP1 node with no interaction between
the jobs). Details of the parallel aspects of the program are given in the next chapter.

2.3 Local Search Heuristic

A local search heuristic’ attempts to improve a solution by moving to a better
neighbor solution. Whenever the neighboring solution is better than the current
solution, it replaces the current solution. When no better neighbor solution can be
found, the search terminates.

Parker and Rardin [50] describe two important neighborhoods. In the k-change
neighborhood, up to k bits are complemented at a time. In the k-interchange neigh-
borhood, up to & bits are changed at a time, but in a complementary manner. Trade-
offs exist between speed and solution quality; searching a large neighborhood will pre-
sumably lead to a better solution than searching a smaller one, but at an increased

'In the GA literature such methods often go by the name hill-climbing.

21

cost in solution time. A related issue is the extent of a given neighborhood that
should be searched. At one extreme, every point in the neighborhood is evaluated
and the one that improves the current solution the most accepted as the move. Al-
ternatively, we can also make the first move found that improves the current solution.
We refer to these two choices as best-improving and first-improving, respectively.

The experimental evidence of many researchers [15, 39, 40, 48] is that hybridizing
a genetic algorithm with a local search heuristic is beneficial. It combines the GAs
ability to widely sample a search space with a local search heuristic’s hill-climbing
ability. There are, however, theoretical objections to the use of a local search heuris-
tic. An important one is that changing the “genetic material” in the population in
a nonevolutionary manner will affect the schema represented in the population and
undermine the GA. Gruau and Whitley [35] comment:

Changing the coding of an offspring’s bit string alters the statistical
information about hyperplane subpartitions that is implicitly contained
in the population. Theoretically, applying local optimization to improve
each offspring undermines the genetic algorithm’s ability to search via
hyperplane sampling. The objection to local optimization is that chang-
ing inherited information in the offspring results in a loss of inherited
schemata, and thus a loss of hyperplane information.

Hybrid algorithms that incorporate local optimizations may result in
greater reliance on hill-climbing and less emphasis on hyperplane sam-
pling. This reliance could result in less global exploration of the search
space because it is hyperplane sampling that is the basis for the claim
that genetic algorithms globally sample a search space.

Our early experience with the GRGA [43], as well as subsequent experience with
the SSGA, was that both methods had trouble finding optimal (sometimes even
feasible) solutions (the SSGA was better than the GRGA, but still not satisfactory).
This led us to develop a local search heuristic to hybridize with the GA to assist in
finding feasible, or near-feasible, strings to apply the GA operators to.

A local search heuristic for the SPP must address the following. First, since the
SPP is tightly constrained, an initial feasible solution may be difficult or impossible
to construct. Second, in considering a k-change or k-interchange move, many of
the possible moves may destroy or degrade the degree of feasibility. An effective
local search heuristic for the SPP will most likely not be uniform in the size of
the neighborhoods it explores, but will vary according to the context of the current
solution. For example, if no column covers a row, the heuristic may pick a single
column to set to one. For a row that is overcovered, however, the heuristic may try
to set to zero all but one of the columns.

We developed a heuristic we call ROW (since it takes a row-oriented view of the
problem). The basic outline is given in Figure 2.2. ROW works as follows. For some

22

foreach niters
i = chose_row(random_or_maz)
improve (i, |r;|, best_or_first)
endfor

Figure 2.2. ROW Heuristic

number of iterations (a parameter of the heuristic), one of the m rows of the problem
is selected (another parameter). For any row there are three possibilities: |r;| = 0,
|ri| = 1, and |r;] > 1. The action of ROW in these cases varies and also varies
according to whether we are using a best-improving or first-improving strategy. In
the case of best-improving we apply one of the following rules.

. |ri] = 0: For each j € R; calculate Aj . Set to one the column that minimizes

Aj .
IL. |rs] = 1: Let k be the unique column in r;. Calculate A’, the change in f when
zp — 0and z; « 1,5 € R;. If AL <0 for at least one j, set x), « 0 and z; « 1,

for A} < A%, V.

HIL |rg] > 1: For each j € r; calculate A, the change in f when x, « 0,Vk €
rik # j. Set xp « 0,Vk € ri, k # j, where AT < AY,VE.

We note that strictly speaking this is not a best-improving heuristic. The reason
is that in cases I and III we can move to neighboring solutions that degrade the
current solution. The reason we allow this is that we know that whenever |r;| = 0 or
|ri| > 1, constraint ¢ is infeasible and we must move from the current solution even if
neighboring solutions are less attractive. The advantage is that the solution “jumps
out” of a locally optimal, but infeasible domain of attraction.

The first-improving version of ROW differs from the best-improving version in
the following ways. If |r;| = 0, we select a random column j from R; and set ; « 1.
If [r;| = 1, we set z « 0 and x; « 1 as soon as we find any A} < 0,5 € R;. Finally,
if |r;] > 1, we randomly select a column k € r;, leave x; = 1, and set all other
;= 0,5 € r;. In the cases where |r;| = 0 and |r;| > 1, since we have no guarantee
we will find a “first-improving” solution, but know that we must leave the current
solution, we make a random move that makes constraint ¢ feasible, without measuring
all the implications (cost component and (in)feasibility of other constraints).

We compared the different options for ROW. The results are given in Tables 2.4—
2.7. In these runs we also varied the initialization scheme and penalty term used.

23

Table 2.4 compares the number of iterations (1, 5, and 20) of ROW that were
applied to try to improve a string. A y? test shows no difference between these on
any of the test problems. The explanation appears to be that ROW gets stuck in a
local optimum and cannot escape within the neighborhood defined by the possible
moves specified earlier.

Table 2.5 compares two methods for choosing the constraint to apply ROW to.
Random means one of the m constraints is selected randomly. MazViolation means
that the constraint with the largest value of | 37_; a;jz; — 1] is selected. The x? test
shows that the results on four problems (nw41, nw32, nw15, nw33) are improved when
the selected constraint is chosen randomly. In fact, the maximum violation strategy
never found an optimal solution. The implication is that the use of randomness plays
an important role in escaping local optima.

Table 2.6 compares the best-improving and first-improving strategies. The x?
test shows that the first-improving strategy is significantly better on problems nw41,
nw40, nwi5, and nw33. It appears that the randomness in two of the steps of the
first-improving strategy helps escape from a locally optimal solution.

Table 2.7 shows the hybrid of the SSGA used in combination with the ROW
heuristic. We refer to this hybrid as SSGAROW. For six problems (nw41, nw32,
nw40, nw08, nwi5, nw33), the first-improving strategy performs significantly better
according to the x? test. This table is interesting because we could argue that we
would expect exactly the opposite result. That is, since the GA itself introduces
randomness into the search we would expect to do better combining the best solution
found by ROW rather than the first or a random one, which are presumably not as
good. A possible explanation is that the GA has prematurely converged and so the
only new search information being introduced is from the ROW heuristic. ROW,
however, in its best-improving mode gets trapped in a local optimum, and so little
additional search occurs.

Table 2.4 Number of Constraints to Improve in the ROW Heuristic

Problem 1 5 20

Name Opt. Trials Opt. Trials Opt. Trials
nwél 12 288 8 288 10 284
nw32 1 288 4 287 2 286
nw08 0 285 0 287 0 282
nwl5 40 142 40 142 36 141
nw20 2 259 0 257 0 258
nw33 1 280 3 277 5 264
aa04 0 225 0 220 0 213
nwl8 0 276 0 277 0 267

24

Table 2.5 Choice of Constraint to Improve in the ROW Heuristic

Problem Random MaxViolation
Name Opt. Trials Opt. Trials

nwii 14 284 0 288
nw32 4 285 0 288
nw40 3 286 0 288
nw08 0 281 0 286
nwib 59 139 0 143
nw20 1 256 0 259
nw33 5 272 0 276
aal4 0 212 0 216
nwi8 0 272 0 278

Table 2.6 Best Improving vs. First Improving in the ROW Heuristic

Problem Best First
Name Opt. Trials Opt. Trials

nwdl 3 432 27 428
nw32 1 432 6 429
nw40 0 431 4 430
nw08 0 427 0 427
nwib 26 210 90 215
nw20 2 387 0 387
nw33 0 409 9 412
aal4 0 304 0 334
nwi8 0 405 0 415

Table 2.7 Best Improving vs. First Improving in SSGAROW

Problem Best First

Name Opt. Trials Opt. Trials
nw4l 21 212 53 213
nw32 8 214 34 211
nw40 3 214 16 213
nw08 4 215 15 212
nwib 21 211 47 210
nw20 2 213 4 213
nw33 0 195 7 189
aa04 0 209 0 209
nwi8 0 152 0 154

25

typedef struct {
int cost;
int ncv;
int *cover;

} AMATRIX;

Figure 2.3. Structure for Storing Row and Column Information

2.4 Genetic Algorithm Components
In this section we discuss some aspects of the genetic algorithm we examined.

2.4.1 Problem Data Structures. For solving the large SPP problems that
arise in the airline industry [7, 9], data structures that are memory efficient and lend
themselves to efficient computation are necessary. In the SPP, both the A matrix
and the solution vector are binary, and it is possible to devise special data structures
that make efficient use of memory.

A solution to the SPP problem is given by specifying values for the binary decision
variables ;. The value of one (zero) indicates that column j isincluded (not included)
in the solution. This solution may be represented by a binary vector x! with the
interpretation that ; = 1(0) if bit j is one (zero) in the binary vector.

Representing a SPP solution in a GA is straightforward and natural. A bit in a
GA string is associated with each column j. The bit is one if column j is included
in the solution, and zero otherwise. To make efficient use of memory, we had each
bit in a computer word represent a column. Because most computers today are
byte addressable, this approach improves storage efficiency by at least a factor of
eight compared with integer or character implementations. It does, however, require
the development of specialized functions to set, unset, and toggle a bit and to test
whether a bit is set.

Since the SPP matrix is typically large and sparse and contains only the values
zero and one, it is necessary only to store the indices of the rows and columns where
a;; = 1. At different points in the algorithm we require a list of the rows intersected
by a particular column (P;) or a list of the columns intersected by a particular row
(R;). We use the data structure shown in Figure 2.3 for both cases. In the column
version, this structure holds ¢; in the cost field, |P;| in the ncv field, and P; in the
cover array. The row version holds A; in the cost field, |R;| in the ncv field, and R;
in the cover array.

"We use x interchangeably as the solution to the SPP problem or as a bitstring in the
GA population, that is, x € P(t).

26

—_
[N}
—_
[N}
ot
-~J
—_
ISy
[N}
ISy
9]
ISy
Ne
[N}
[N}
—_
9]
ISy
—_
[N}
—_
[N}
[N}
ot
ISy
—_
ISy

o 100 0 0010 00 0O 1 0 0 0 0 0 0 0
1 100 0 0100 0O 0O 0O 0 1 1 0 0 0 0 1
o 600 0O 1001 1 0O 1 0 0 0 0 0 1 0 0
o o011 1 000O0 OO 1 O 1 1 0 0 0 0 0
o 600 1 0O00O0OO0OCO0OCO0O O OO 1 O 1 0 0 0
1 o000 o0 1101 0 0 0 0 0 0 1 0 0 0 0
o 600 0O O0OO0OCOO0O O 1 1 O O 0O 0 0 0 1 0
1 o000 o0 1011 0 0 0 0 1 0 0 0 0 0 0
1 234 5 6 789 10 11 12 13 14 15 16 17 18 19 20

Figure 2.4. Example A Matrix before Sorting

2.4.2 Block Column Form. A useful initial step is the ordering of the SPP
matrix into block “staircase” form [52]. Block B; is the set of columns that have their
first one in row 2. B; is defined for all rows but may be empty for some. Within B;
the columns are sorted in order of increasing c;.

Figures 2.4 and 2.5 show an example of an SPP matrix before and after sorting
into block staircase format. The numbers at the top of the matrix are the column
costs, ¢;. The numbers at the bottom of the matrix are the column indices. In this

example, [= {1,...,8} and By = {13,8,2},...,B; = {19,11}, and Bg = 0.

Ordering the matrix in this manner is helpful in determining feasibility. In any
block, at most one x; may be set to one. Our algorithm takes advantage of this
ordering in two ways. First, one initialization scheme (randomly) sets at most one z;
per block to one. Second, the block crossover operator defined in Section 2.4.6 takes
advantage of the block column structure.

2.4.3 Evaluation Function. Three functions are of interest: the SPP ob-
jective function, the evaluation function, and the fitness function. It is the SPP
objective function, z, that we wish to have the GA minimize. However, the difficulty
with using z directly is that it does not take into account whether a string is feasi-
ble. Therefore, we introduce an evaluation function to incorporate a cost term and a
penalty term. Since GAs maximize fitness, however, we still must map the evaluation
function (which is being minimized) to a nonnegavtive fitness value. This is the role
of the fitness function.

The SPP objective function (Equation 1.1) is given by the definition of the prob-
lem. The evaluation function and the fitness function, however, are design choices we
must make. Currently, no definitive theory exists to say which choice is best. For the

27

ISy
ISy
—_
[N}
ISy
9]
—_
[N}
—_
[N}
—_
[N}
[N}
ISy
Ne
—_
9]
[N}
ISy
ot
-~J
—_
ISy
ot
[N}
—_
[N}

[e=RNen Rl en i an B e B an B o N
— O O oo oo
OO OO OO = =
SO oo oo —O
OO, OO OO
—R O oo, O~ O
[N e N e I = i
—_— o OO0 o= O
[en BN e B en B en B e B N e B an
[en BN e B en B en B e B N e B an
—_— o, OO, OO
O LR OO P, OO
—_— o, OO, OO
O oo oo oo
O oo oo oo
OO R R OO oD
o oo~ oo oo
[eo BN en B N e B e B e I e B an
[eniE S en B an B an B e B e B an
[eniE S en B an B an B e B e B an

—
w
9]
[N}
DO
<o

7T 14 15 1 10 18 9 12 6 3 4 5

—_
-
—_
D
—_
Ne
—_
—_

Figure 2.5. Example A Matrix after Sorting

evaluation function we investigated three choices, each reflecting a different penalty
term.

The evaluation function measures “how good” a solution to the SPP problem a
string is. This must take into account not just the cost of the columns included in
the solution (the SPP objective function value), but also the degree of (in)feasibility
of a string. Traditional OR algorithms restrict their search to feasible solutions, and
so no additional term is included in the SPP objective function to penalize constraint
violations. In the GA approach, however, the GA operators often produce infeasible
solutions. In fact, since just finding a feasible solution to the SPP is NP-complete
[49], it may be that many or most strings in the population are infeasible. Therefore,
we need an evaluation function that takes into account the degree of infeasibility of
the string. We used as the generic form of our evaluation function

[=e(x) + p(x), (2.1)

where f is the evaluation function; ¢(x), the cost term, is the SPP objective function;
and p(x) is a penalty term. The choice of penalty term can be significant. If the
penalty term is too harsh, infeasible strings that carry useful information but lie
outside the feasible region will be ignored and their information lost. If the penalty
term is not strong enough, the GA may search only among infeasible strings [55]. We
investigated three penalty terms.

The countinfz penalty term is

=1

where

B;(x) = 1 if constraint ¢ is infeasible,
! "] 0 otherwise.

28

The countinfz penalty term indicates whether a constraint is infeasible, but does not
measure the magnitude of the infeasibility.

In Equation (2.2) (and Equation (2.3) below), A; is a scalar weight that penalizes
the violation of constraint ¢. Choosing a suitable value for \; is a difficult problem.
In [55] Richardson et al. studied the choice of A; for the set covering problem (SCP).
In the SCP, the equality in Equation (1.2) is replaced by a > constraint. The SCP,
however, is not a highly constrained problem; in the SCP constraint ¢ is infeasible
only if |r;] = 0. However, it is easily made feasible by (even randomly) selecting an
zj,7 € R; to set to one. For the |r;| = 0 case, however, such an approach will not
work for the SPP, since any z;,j € R; set to one, while it will satisfy constraint ¢,
may introduce infeasibilities into other currently feasible constraints. Similarly, if we
try to make a constraint with |r;| > 1 feasible by setting all but one of the x;,5 € r;
to zero, we may undercover other currently feasible constraints.

A good choice for \; should reflect not just the “costs” associated with making
constraint ¢ feasible, but also the impact on other constraints (in)feasibility. We know
of no method to calculate an optimal value for A;. Therefore, we made the empirical
choice of \; = m]aX{CjU € R;}. This choice is similar to the “P2” penalty in [55],

where it provided an upper bound on the cost to satisfy the violated constraints of
the SCP. In the case of set partitioning, however, the choice of A; provides no such
bound, and it is possible the GA may find infeasible solutions more attractive than
feasible ones (for several problems discussed in the next chapter this situation did
happen.)

The linear penalty term is

m n

DAY lagje; —1]. (2.3)
=1 7=1

This penalty does measure the magnitude of constraint ¢’s infeasibility.

The ST penalty term ([57]) is

m

D (®4(x)/2) [21eas — Zhest] - (2.4)

=1

Here, z4.,s 1s the best feasible objective function value found so far, and zj. is the
best objective function value (feasible or infeasible) found so far. According to Smith

and Tate [57]

...the explicit goal of our penalty function is to favor solutions
which are near a feasible solution over more highly-fit solutions which are
far from any feasible solution.

29

Following Smith and Tate, we used a distance-from-feasibility metric which was de-
pendent on the number of violated constraints, but not the magnitude of their vio-
lations.

Table 2.8 compares the three penalty terms using SSGA. Only the ST penalty
shows a significant result (problems nw41 and nw08.) One point to note, is the paucity
of optimal solutions found with any of the penalties using SSGA by itself. Table 2.9
contains a similar comparison using SSGAROW. Interestingly, the opposite effect is
observed. Both the countinfz and linear penalty terms perform better than the ST
penalty. Compared with each other, the only difference that showed up with the y?
statistic was on nw15 where the linear penalty term performed better.

Table 2.8 Comparison of Penalty Terms in SSGA

Problem Linear Countinf ST
Name Opt. Trials Opt. Trials Opt. Trials

nwél 3 284 4 284 14 286
nw32 3 286 0 282 0 288
nw40 0 284 0 287 1 288
nw08 0 287 0 288 8 287
nwilb 1 286 0 285 0 286
nw20 0 288 1 287 0 285
nw33 0 288 0 286 0 288
aa04 0 277 0 272 0 275
nwl8 0 276 0 276 0 279

Table 2.9 Comparison of Penalty Terms in SSGAROW

Problem Linear Countinf ST

Name Opt. Trials Opt. Trials Opt. Trials
nwél 35 143 28 141 11 141
nw32 18 142 24 142 0 141
nw40 8 143 9 142 2 142
nw08 6 142 8 143 5 142
nwl5 42 139 24 143 2 139
nw20 4 141 2 142 0 143
nw33 2 128 5 129 0 127
aa04 0 144 0 136 0 138
nwl8 0 103 0 103 0 100

2.4.4 Fitness and Selection. The fitness function is used during the selec-
tion phase to determine the expected number of reproductive trials to allocate to a
string. Genetic algorithms require that the fitness function be nonnegative and that
the more highly fit a string, the larger its fitness function value (although see [42] for

30

a discussion of the use of a nonmonotonic fitness function). For the SPP this requires
a mapping from the evaluation function to the fitness function. As has been pointed
out, however, the evaluation function value itself is not an “exact” measure of fitness
[66]. The mapping from the evaluation function to the fitness function “should be
considered a design parameter of the genetic algorithm, not a feature of the opti-
mization problem” [31]. In general, the fitness function is given by u(x) = ¢g(f(x)).

If selection is done via a binary tournament (see below), any fitness function that
reflects the monotonicity of the evaluation function will suffice. If selection is to be
done by calculating the expected number of reproductive trials and then sampling
those, however, the choice of fitness function can play a significant role. We tested
two choices for the fitness function.

A dynamic linear fitness function [26, 30] is given by
u(x) = af(x)+ b(t).

We used ¢ = —1 and b(¢) = 1.1 - max{f(x)|x € P(t)}. De la Maza and Tidor [16]
point out that the choice of b(t) can significantly affect the selective pressure. Our
choice of b(t) is intended to interfere with the selective pressure as little as possible,
while still converting the minimization of f into the maximization of w.

We also tested a linear rank fitness function [5, 66] given by

rank(x,t) — 1

u(x) = Min + (Max — Min) N1 \

(2.5)

where rank(x,t) is the index of x in a list sorted in order of decreasing evaluation
function value. Ranking requires that 1 < Max < 2, and Min + Mazx = 2. We
used Max = 2. The advantage of ranking over other methods, when selection is pro-
portional to a string’s fitness, is that ranking is less prone to premature convergence
caused by a super-individual.

Tables 2.10 contains the results of experiments we did comparing the dynamic fit-
ness function to ranking using SSGAROW. Sampling was done using both stochastic
universal selection and tournament selection. The y? test shows that neither method
performed significantly better than the other on any of the test problems.

The selection phase allocates reproductive trials to strings on the basis of their
fitness. Depending on the type of GA, strings selected from the old generation are
either included directly in the new generation or become the parents of new strings
created by the GA recombination operators. We compared two choices for the selec-
tion algorithm: stochastic universal selection and tournament selection.

Baker’s stochastic universal selection (SUS) is an optimal sampling algorithm

[5]. SUS may be thought of as constructing a roulette wheel using fitness propor-
tionate selection and then spinning the wheel once, where the number of equally

31

Table 2.10 Comparison of Fitness Techniques in SSGAROW

Problem Cmax Ranking

Name Opt. Trials Opt. Trials
nwél 40 213 34 212
nw32 19 210 23 215
nw40 11 213 8 214
nw08 8 214 11 213
nwlb 30 210 38 211
nw20 5 210 1 216
nw33) 196 2 188
aa04 0 209 0 209
nwl8 0 152 0 154

spaced markers on the wheel is equal to the population size. This method guarantees
that each string is allocated |expectedvalue]| reproductive trials and no more than
[expectedvalue].

In binary tournament selection [26, 27] two strings are chosen randomly from the
population. The more fit string is then allocated a reproductive trial. In order to
produce an offspring, two binary tournaments are held, each of which produces one
parent string. These two parent strings then recombine to produce an offspring. A
variation of binary tournament selection is probabilistic binary tournament selection
where the more fit string is selected with a probability py, .5 < p, < 1. [54] Proba-
bilistic binary tournament selection does allow for the possibility that the best string
in the population may be lost. Its advantage is a reduction in the selective pressure.

Table 2.11 contains the results comparing SUS to tournament selection using the
SSGAROW. The y? test again shows that neither method performs better than the
other on any of the problems tested.

2.4.5 Initialization. We tested a total of six initialization schemes. Two are
random, three are heuristics, and one uses the solution to the LP relaxation. The
two random schemes are applied directly to all strings in the population. For the
nonrandom methods we initialize a single string via the method being used and then
randomly modify it to initialize the rest of the population.

Heuristic initialization violates the “usual” GA strategy of trying to achieve a
highly diverse solution space search by random initialization. For quite a while we had
trouble finding feasible solutions, however. Heuristic initialization was an attempt to
bias the search in a more favorable direction. Below we describe the different methods
we tested.

32

Table 2.11 Comparison of Selection Schemes in SSGAROW

Problem SUS Tournament
Name Opt. Trials Opt. Trials
nw41 39 214 35 211
nw32 21 212 21 213
nw40 8 212 11 215
nw08 6 215 13 212
nwib 29 210 39 211
nw20 4 210 2 216
nw33 1 195 6 189
aa04 0 207 0 211
nwi8 0 165 0 141

JChavatal — @

do until (P; = 0,V))
k= min{Aj, /|Bjllz; = 0}
JChavatal — JChavatal U k
P =P —P,

enddo

Figure 2.6. Modified Chavatal Heuristic

2.4.5.1 Modified Chavatal Heuristic. = This method is a modification
of a heuristic proposed by Chavatal [12] for the set covering problem. For the set
covering problem Chavatal notes:

Intuitively, it seems the desirability of including j in an optimal cover
increases with the ratio | P;|/¢; which counts the number of points covered
by P; per unit cost.

Our modification was to use Aj /|P;| as the quantity to minimize. The algorithm
calculates a set of column indices, Jeongvatal, and is given in Figure 2.6.

2.4.5.2 Greedy Heuristic. The greedy heuristic is similar to the modified

Chavatal heuristic. The difference is that the criterion used to decide which column to

next set to one in Figure 2.6 is to use min{A;, |x; = 0} instead of min{A; /| P;||z; =
J J

0}.

2.4.5.3 Gregory’s Heuristic. Gregory’s heuristic [32] is a generalization
of the Vogel approximation method for generating a starting solution to a Hitchcock

33

while(3¢ s.t. r, =0)
for(i=1,m)
lf(r, = @)
A = min{A;|j € R}

Ah = min{A]& |] € RZ?] 7£ k}
J

di — All — Akl
end if
end for
q = min{d; < d;,Vjs.t.r; =0}
g1

end while

Figure 2.7. Gregory’s Heuristic

transportation model. For each row ¢ with r; = (J, the idea is to find the two columns
that minimize A; , 7 € R;, calculate their difference, and find the minimum difference
over all such rows. The algorithm is given in Figure 2.7.

2.4.5.4 Random Initialization. Random initialization sets x; « 1, for
all columns j, with probability 0.5.

2.4.5.5 Block Random Initialization. Block random initialization, based
on a suggestion of Gregory [32], uses information about the expected structure of an
SPP solution. A solution to the SPP typically contains only a few “ones” and is
mostly zeros. We can use this knowledge by randomly setting to one approximately
the same number of columns estimated to be one in the final solution. If the average
number of nonzeros in a column is Psy g, we expect the number of z; = 1 in the
optimal solution to be approximately m/Pay .

We use the ratio of m/ P4y to the number of nonnull blocks as the “probability”
of whether to set to one some z; in block B;. If we do choose some 7 € B; to set to
one, that column is chosen randomly. If the “probability” is > 1, we set to one one
column in every block.

Table 2.12 contains a comparison of four initialization strategies: the three heuris-
tics (Chavatal, Gregory, and Greedy) and block random initialization using the
SSGA. Since the SSGA algorithm by itself was unable to find many optimal solutions,
it is not possible to make meaningful comparisons. However, the results suggested
that Gregory’s heuristic and block random initialization were the two most promising
approaches. These were further compared using SSGAROW; the results are shown
in Table 2.13. The new results are more meaningful; the y? comparison shows that
block random initialization out performs Gregory’s heuristic on five problems (nw41,
nw40, nw15, nw20, nw33) and is outperformed on one (nw32). We conclude that by

34

giving the GA a wider selection of points in the search space to sample from, it does
a better job than if we try to guide it.

In additional testing of block random initialization versus random initialization,
we observed that with random initialization SSGA by itself faired poorly. This result
is explained as follows. Approximately half the initial string will be one bits; however,
a feasible SPP string has only a few one bits. SSGA alone has only mutation to “zero
out” the one bits or crossover to combine “building blocks” of zero bits, and these
processes are too slow.

When we compared block