
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439|||||{ANL-94/23|||||{A Parallel Genetic Algorithmfor the Set Partitioning ProblembyDavid LevineMathematics and Computer Science DivisionMay 1994This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38. It was submitted in partial ful�llment of the require-ments for the degree of Doctor of Philosophy in Computer Science in the Graduate Schoolof the Illinois Institute of Technology, May 1994 (thesis adviser: Dr. Tom Christopher).

ii

TABLE OF CONTENTS PageLIST OF FIGURES : vLIST OF TABLES : viLIST OF ABBREVIATIONS : viiiLIST OF SYMBOLS : ixABSTRACT : xiCHAPTERI. INTRODUCTION : 11.1 The Set Partitioning Problem : : : : : : : : : : : : : 11.2 Parallel Computers : : : : : : : : : : : : : : : : : : : 41.3 Genetic Algorithms : : : : : : : : : : : : : : : : : : : 51.4 Thesis Methodology : : : : : : : : : : : : : : : : : : 13II. SEQUENTIAL GENETIC ALGORITHM : : : : : : : : : : : 162.1 Test Problems : 162.2 The Genetic Algorithm : : : : : : : : : : : : : : : : : 182.3 Local Search Heuristic : : : : : : : : : : : : : : : : : 212.4 Genetic Algorithm Components : : : : : : : : : : : : 262.5 Discussion : 42III. PARALLEL GENETIC ALGORITHM : : : : : : : : : : : : 443.1 The Island Model Genetic Algorithm : : : : : : : : : 443.2 Parameters of the Island Model : : : : : : : : : : : : 453.3 Computational Environment : : : : : : : : : : : : : : 49iii

3.4 Test Problems : 503.5 Parallel Experiments : : : : : : : : : : : : : : : : : : 523.6 Discussion : 55IV. CONCLUSIONS : 66V. FUTURE WORK : 68ACKNOWLEDGMENTS : 71REFERENCES : 72

iv

LIST OF FIGURESFigure Page1.1. Simple Genetic Algorithm : 62.1. Steady-State Genetic Algorithm : : : : : : : : : : : : : : : : : 212.2. ROW Heuristic : 232.3. Structure for Storing Row and Column Information : : : : : : : 262.4. Example A Matrix before Sorting : : : : : : : : : : : : : : : : 272.5. Example A Matrix after Sorting : : : : : : : : : : : : : : : : : 282.6. Modi�ed Chavatal Heuristic : : : : : : : : : : : : : : : : : : : 332.7. Gregory's Heuristic : 342.8. One-Point Crossover : 372.9. Two-Point Crossover : 372.10. Uniform Crossover : 383.1. Island Model Genetic Algorithm : : : : : : : : : : : : : : : : : 47
v

LIST OF TABLESTable Page2.1. Sequential Test Problems : 172.2. Sequential Test Problem Solution Characteristics : : : : : : : : 172.3. Comparison of the Use of Elitism in GRGA : : : : : : : : : : : 192.4. Number of Constraints to Improve in the ROW Heuristic : : : : 242.5. Choice of Constraint to Improve in the ROW Heuristic : : : : : 252.6. Best Improving vs. First Improving in the ROW Heuristic : : : 252.7. Best Improving vs. First Improving in SSGAROW : : : : : : : 252.8. Comparison of Penalty Terms in SSGA : : : : : : : : : : : : : 302.9. Comparison of Penalty Terms in SSGAROW : : : : : : : : : : 302.10. Comparison of Fitness Techniques in SSGAROW : : : : : : : : 322.11. Comparison of Selection Schemes in SSGAROW : : : : : : : : : 332.12. Comparison of Initialization Strategies in SSGA : : : : : : : : : 352.13. Comparison of Initialization Strategies in SSGAROW : : : : : : 362.14. Linear Programming Initialization in SSGAROW : : : : : : : : 362.15. Comparison of Crossover Operators Using SSGAROW : : : : : 392.16. Parameterized Uniform Probability Using SSGAROW : : : : : : 40vi

Table Page2.17. Comparison of Crossover Probabilities in SSGAROW : : : : : : 402.18. Comparison of Algorithms : 433.1. Migrant String Selection Strategies : : : : : : : : : : : : : : : : 483.2. String Deletion Strategies : 493.3. Comparison of Migration Frequency : : : : : : : : : : : : : : : 493.4. Parallel Test Problems : 533.5. Solution Characteristics of the Parallel Test Problems : : : : : : 543.6. Percent from Optimality vs. No. Subpopulations : : : : : : : : 563.7. Best Solution Found vs. No. Subpopulations : : : : : : : : : : 573.8. First Feasible Iteration vs. No. Subpopulations : : : : : : : : : 583.9. First Optimal Iteration vs. No. Subpopulations : : : : : : : : : 593.10. No. of Infeasible Constraints vs. No. Subpopulations : : : : : : 613.11. Comparison of Solution Time : : : : : : : : : : : : : : : : : : 63
vii

LIST OF ABBREVIATIONSAbbreviation TermCPGA Coarse-grained parallel genetic algorithmFPGA Fine-grained parallel genetic algorithmGA Genetic algorithmGRGA Generational replacement genetic algorithmIMGA Island model genetic algorithmIP Integer programmingLP Linear programmingMIMD Multiple-instruction multiple-dataOR Operations researchPE Processing elementPGA Parallel genetic algorithmSCP Set covering problemSIMD Single-instruction multiple-dataSISD Single-instruction single-dataSPP Set partitioning problemSSGA Steady-state genetic algorithmSUS Stochastic Universal Selection
viii

LIST OF SYMBOLSSymbol Meaningaij A binary coe�cient of the set partitioning matrix.cj The cost coe�cient of column j.f The genetic algorithm evaluation function.i A row (constraint) index.j A column (variable) index.m The number of rows (constraints) in the problem.n The number of columns (constraints) in the problem.pb Probabilistic binary tournament selection parameter.pc Crossover probability.pm Mutation probability.pu Uniform crossover probability parameter.ri The set of columns such that ri � Ri and xj = 1.jrij The number of columns in the set ri.t A time index, usually the generation of the genetic algorithm.u The genetic algorithm �tness function.xj A binary decision variable.x A vector of binary decision variables; also used as a bit string.z The set partitioning objective function.Bi The set of column indices that have their �rst one in row i.I The set of row indices.J The set of column indices.N The genetic algorithm population size.Pj The set of row indices that have a one in column j.jPj j The size of the set Pj .PAV G The average value of the jPj j.ix

Symbol MeaningPMAX The maximum value of the jPj j.P (t) The genetic algorithm population at time t.Ri The set of column indices that have a one in row i.jRij The size of the set Ri.RAV G The average value of the jRij.�i Scalar multiplier of the evaluation function's penalty term.�j The change in z when complementing the value of column j.�j1 The change in z when xj is set to one.

x

ABSTRACTIn this dissertation we report on our e�orts to develop a parallel genetic algorithmand apply it to the solution of the set partitioning problem|a di�cult combinatorialoptimization problem used by many airlines as a mathematical model for ight crewscheduling. We developed a distributed steady-state genetic algorithm in conjunctionwith a specialized local search heuristic for solving the set partitioning problem. Thegenetic algorithm is based on an island model where multiple independent subpop-ulations each run a steady-state genetic algorithm on their own subpopulation andoccasionally �t strings migrate between the subpopulations. Tests on forty real-worldset partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallelcomputer. We found that performance, as measured by the quality of the solutionfound and the iteration on which it was found, improved as additional subpopula-tions were added to the computation. With larger numbers of subpopulations thegenetic algorithm was regularly able to �nd the optimal solution to problems havingup to a few thousand integer variables. In two cases, high-quality integer feasiblesolutions were found for problems with 36,699 and 43,749 integer variables, respec-tively. A notable limitation we found was the di�culty solving problems with manyconstraints.
xi

CHAPTER IINTRODUCTIONIn the past decade a number of new and interesting methods have been proposedfor the solution of combinatorial optimization problems. These methods, such as ge-netic algorithms, neural networks, simulated annealing, and tabu search are based onanalogies with physical or biological processes. During the same time period parallelcomputers have matured to the point where, at the high end, they are challenging therole of traditional vector supercomputers as the fastest computers in the world. On adi�erent front, motivated primarily by signi�cant economic considerations, but alsoby advances in computing and operations research technology, many major airlineshave been exploring alternative methods for deciding how ight crews (pilots andight attendants) should be assigned in order to satisfy ight schedules and minimizethe associated crew costs. Our objective in this dissertation was to develop a paral-lel genetic algorithm and apply it to the solution of the set partitioning problem|a di�cult combinatorial optimization problem that is used by many airlines as amathematical model for assigning ight crews to ights.This chapter introduces the major components of this work|the set partitioningproblem, parallel computers, and genetic algorithms|and then discusses our goals.Chapter II describes the sequential genetic algorithm and local search heuristic usedas the basis for the parallel genetic algorithm. Chapter III presents the parallel geneticalgorithm and describes the computational experiments we performed. Chapter IVpresents our conclusions. Chapter V suggests areas of further research.The outline of this chapter is as follows. In the �rst section we describe the setpartitioning problem. We give a mathematical statement of the problem, discussits application to airline crew scheduling, and review previous solution approaches.The second section briey discusses parallel computers. The third section describesgenetic algorithms: their application to function optimization, previous approachesto constrained problems, and di�erent parallel models. The last section discusses themotivation for pursuing this work and our speci�c goals.1.1 The Set Partitioning Problem1.1.1 Mathematical Statement. The set partitioning problem (SPP) maybe stated mathematically as Minimize z = nXj=1 cjxj (1:1)subject to nXj=1 aijxj = 1 for i = 1; : : : ;m (1:2)1

xj = 0 or 1 for j = 1; : : : ; n; (1:3)where aij is binary for all i and j, and cj > 0: The goal is to determine values for thebinary variables xj that minimize the objective function z.The following notation is common in the literature [24, 46]y and motivates thename \set partitioning problem." Let I = f1; : : : ;mg be a set of row indices, J =f1; : : : ; ng a set of column indices, and P = fP1; : : : ; Png, where Pj = fi 2 Ijaij =1g; j 2 J . Pj is the set of row indices that have a one in the jth column. jPj j is thecardinality of Pj . A set J� � J is called a partition if[j2J� Pj = I (1:4)j; k 2 J�; j 6= k) Pj\Pk = ;: (1:5)Associated with any partition J� is a cost given by Pj2J� cj. The objective of theSPP is to �nd the partition with minimal cost.The following additional notation will be used later on. Ri = fj 2 J jaij = 1g isthe (�xed) set of columns that intersect row i. ri = fj 2 Rijxj = 1g is the (changing)set of columns that intersect row i included in the current solution. �j1 is the changein z as a result of setting xj to one. �j is the change in z when complementingxj. �j1 and �j measure both the cost coe�cient, cj, and the impact on constraintfeasibility (see Section 2.4.3.)1.1.2 Applications. Many applications of the SPP have been reported in theliterature. A large number of these are scheduling problems where given a discrete,�nite set of solutions, a set of constraints, and a cost function, one seeks the schedulethat satis�es the constraints at minimum cost. A partial list of these applicationsincludes crew scheduling, tanker routing, switching circuit design, assembly line bal-ancing, capital equipment decisions, and location of o�shore drilling platforms [6].The best-known application of the SPP is airline crew scheduling. In this for-mulation each row (i = 1; : : : ;m) represents a ight leg (a takeo� and landing) thatmust be own. The columns (j = 1; : : : ; n) represent legal round-trip rotations (pair-ings) that an airline crew might y. Associated with each assignment of a crew to aparticular ight leg is a cost, cj.The matrix elements aij are de�ned byaij = (1 if ight leg i is on rotation j0 otherwise. (1:6)yNumbers in square brackets refer to the numbered entries in the references.2

Airline crew scheduling is a very visible and economically signi�cant problem.The operations research (OR) literature contains numerous references to the airlinecrew scheduling problem [2, 3, 4, 7, 25, 36, 46, 47]. Estimates of over a billion dollarsa year for pilot and ight attendant expenses have been reported [1, 7]. Even a smallimprovement over existing solutions can have a large economic bene�t.At one time solutions to the SPP were generated manually. However, airlinecrew scheduling problems have grown signi�cantly in size and complexity. In 1981problems with 400 rows and 30,000 columns were described as \very large" [47].Today, problems with hundreds of thousands of columns are \very large," and onebenchmark problem has been generated with 837 rows and 12,753,313 columns [9].1.1.3 Previous Algorithms. Because of the widespread use of the SPP (andoften the di�culty of its solution) a number of algorithms have been developed. Thesecan be classi�ed into two types: approximate algorithms which try to �nd \good"solutions quickly, and exact algorithms which attempt to solve the SPP to optimality.An important approximate approach (as well as the starting point for most exactapproaches) is to solve the linear programming (LP) relaxation of the SPP. In the LPrelaxation, the integrality restriction on xj is relaxed, but the lower and upper boundsof zero and one are kept. A number of authors [7, 25, 47] have noted that for \small"SPP problems the solution to the LP relaxation is either all integer, in which case itis also the optimal integer solution, or has only a few fractional values that are easilyresolved. However, in recent years it has been noted that as SPP problems grow insize, fractional solutions occur more frequently, and simply rounding or performinga \small" branch-and-bound tree search may not be e�ective [2, 7, 25].Marsten [46] noted twenty years ago that for most algorithms in use at thattime, solving the linear programming relaxation to the SPP was the computationalbottleneck. This is because the LP relaxation is highly degenerate. The past severalyears have seen a number of advances in linear programming algorithms and theapplication of that technology to solving the LP relaxation of very large SPP problems[2, 9].One of the oldest exact methods is implicit enumeration. In this method partialsolutions are generated by taking the columns one at a time and exploring logical im-plications of their assignments. Both Gar�nkel and Nemhauser [24] and Marsten [46]developed implicit enumeration algorithms. Another traditional method is the useof cutting planes (additional constraints) in conjunction with the simplex method.Balas and Padberg [6] note that cutting plane algorithms were moderately successfuleven while using general-purpose cuts and not taking advantage of the shape of theSPP polytope. A third method is column generation, where a specialized version ofthe simplex method produces a sequence of integer solutions that (one hopes) con-verge to the optimal integer solution. Applying a generic branch-and-bound programis also possible. Various bounding strategies have been used, including linear pro-gramming and Lagrangian relaxation. Fischer and Kedia [21] use continuous analogs3

of the greedy and 3�opt methods to provide improved lower bounds. Of recent inter-est is the work of Eckstein [20], who has developed a general-purpose mixed-integerprogramming system for use on the CM-5 parallel computer and applied it to, amongother problems, set partitioning.At the time of this writing the most successful approach appears to be the workof Ho�man and Padberg [36]. They present an exact approach based on the useof branch-and-cut|a branch-and-bound{like scheme where, however, additional pre-processing and constraint generation take place at each node in the search tree. Animportant component of their system is a high-quality linear programming pack-age for solving the linear programming relaxations and a linear programming{basedheuristic for getting good integer solutions quickly. They report optimal solutions fora large set of real-world SPP problems.1.2 Parallel ComputersTraditionally, parallel computers are classi�ed according to Flynn's taxonomy[22]. Flynn's classi�cation distinguishes parallel computers according to the numberof instruction streams and data operands being computed on simultaneously. Thereare three main classi�cations of interest: single-instruction single-data (SISD) com-puters, single-instruction multiple-data (SIMD) computers, and multiple-instructionmultiple-data (MIMD) computers.The SISD model is the traditional sequential computer. A single program counterfetches instructions from memory. The instructions are executed on scalar operands.There is no parallelism in this model.In the SIMD model there is again a single program counter fetching instructionsfrom memory. However, now the operands of the instructions can be one of twotypes: either scalar or array. If the instruction calls for execution involving onlyscalar operands, it is executed by the control processor (i.e., the central processingunit fetching instructions from memory). If, on the other hand, the instruction callsfor execution using array operands, it is broadcast to the processing elements.The processing elements (PEs) are separate computing devices. The PEs donot have their own program counter. Instead, they rely upon the control processorto determine the instructions they will execute. Each PE typically has its own,relatively small, memory in which are stored the unique operands the PE will executethe instruction broadcast by the control processor on. The parallelism arises fromhaving multiple PEs (typically 4K{64K in recent commercial machines) executingthe same instruction, but on di�erent operands. This type of parallel execution isreferred to as synchronous since each PE is always executing the same instruction asother PEs.In a MIMD computer there exist multiple processors each of which has its ownprogram counter. Processors execute independently of each other according to what-4

ever instruction the program counter points to next. MIMD computers are usuallyfurther subdivided according to whether the processors share memory or each has itsown memory.In a shared-memory MIMD computer both the program's instructions and thepart of the program's data to be shared exist within a single shared memory. Addi-tionally, some data may be private to a processor and not be globally accessible byother processors. The processors execute asynchronously of each other. In the mostcommon programming model, they subdivide a computation that is performed on alarge data structure in shared memory, each processor performing a part of the com-putation. Communication and synchronization between the processors are handledby having them each read or write a shared-memory location.A distributed-memory MIMD computer consists of multiple \nodes." A nodeis essentially just a sequential computer, that is, a processor and its own (local)memory (and sometimes a local disk also). The processor's program counter fetchesinstructions from the local memory, and the instructions are executed on data thatalso resides in local memory. The nodes are connected together via some type ofphysical interconnection network that allows them to communicate with each other.Parallelism is achieved by having each processor compute simultaneously on the datain its local memory. Communication and synchronization are handled exclusivelythrough the passing of messages (a destination address and the processor local datato be sent) over the interconnection network.Currently, MIMD computers are more common than SIMD computers. Shared-memory computers are common when only a few processors are being integrated,such as in a multiprocessor workstation. Distributed-memory computers are morecommon when tens or hundreds of processors are being integrated. The tradeo�s in-volved are the (widely perceived) ease of use of shared-memory programming relativeto distributed-memory programming versus the di�culty of cost-e�ectively scalingshared-memory computers to integrate more than a few tens of processors beforememory access bottlenecks arise. It seems likely that in the next several years wewill see the integration of both shared and distributed-memory as \nodes" in a dis-tributed memory computer become themselves shared-memory multiprocessors.Our interest in parallel computers is as an implementation vehicle for our al-gorithm. As we explain later, a parallel genetic algorithm is a model that can beimplemented on both sequential and parallel computers. For the model of a parallelgenetic algorithm we use, a distributed-memory MIMD computer is the most naturalchoice for implementation and the one we pursued.1.3 Genetic AlgorithmsGenetic algorithms (GAs) are search algorithms. They were developed by Holland[37] and are based on an analogy with natural selection and population genetics. Oneimportant use of GAs, and the one we studied, is for �nding approximate solutions to5

t 0initialize P (t)evaluate P (t)foreach generationt t+ 1select P (t+ 1) from P (t)recombine P (t+ 1)evaluate P (t+ 1)endforFigure 1.1. Simple Genetic Algorithmdi�cult optimization problems. As opposed to other optimization methods, geneticalgorithms work with a population of candidate solutions instead of just a singlesolution. In the original GAs of Holland, and the ones we use in this paper, eachsolution may be represented as a string of bitsy, where the interpretation of themeaning of the string is problem speci�c.Genetic algorithms work by assigning a value to each string in the populationaccording to a problem-speci�c �tness function. A \survival-of-the �ttest" step selectsstrings from the old population, according to their �tness. These strings recombineusing operators such as crossover or mutation to produce a new generation of stringsthat are (one hopes) more �t than the previous one. A generic genetic algorithm isshown in Figure 1.1.Two important but competing themes exist in a GA search: the need for selectivepressure so that the GA is able to focus the search on promising areas of the searchspace, and the need for population diversity so that important information (particularbit values) is not lost. Whitley notes [66]:Many of the various parameters that are used to \tune" genetic searchare really indirect means of a�ecting selective pressure and populationdiversity. As selective pressure is increased, the search focuses on the topindividuals in the population, but because of this \exploitation" geneticdiversity is lost. Reducing the selective pressure (or using a larger pop-ulation) increases \exploration" because more genotypes and thus moreschemata are involved in the search.yIn this dissertation we use the terms bit, value, and string instead of the more commonGA terminology gene, allele, and chromosome.6

In the context of function optimization, strong selective pressure may quickly focusthe search on the best individuals at the expense of population diversity, and thelack of diversity can lead the GA to prematurely converge on a suboptimal solution.Conversely, if the selective pressure is relaxed, a high diversity may be maintained,but the search may fail to improve values.Three performance measures for genetic algorithms are in common use: onlineperformance, o�ine performance, and best string found. The online performance isthe average of all function evaluations up to and including the current trial. Thismeasure gauges ongoing performance. The o�ine performance is the average of thebest strings from each generation. The o�ine performance is a running average of allthe best performance values to a particular time. The best string found is the valueof the best string found so far in any generation and is the best metric to measurefunction optimization ability.1.3.1 Constrained Problems. One trait common to many combinatorialproblems solved by GAs is that feasible solutions are easy to construct. For someproblems, however|the SPP in particular|generating a feasible solution that satis-�es the problem constraints is itself a di�cult problem. Three approaches to handlingproblem constraints have been discussed. In the �rst, solutions that violate a con-straint(s) are infeasible and therefore are declared to have no �tness. This approachis impractical because many problems are tightly constrained and �nding a feasiblesolution may be almost as di�cult as �nding the optimal one. Also, infeasible so-lutions often contain valuable information and should not be discarded outright. Inthe second approach, the GA operators are specialized for the problem, so that noconstraints are violated. In the third, a penalty term is incorporated into the �tnessfunction to penalize strings that violate constraints. The idea is to degrade the �tnessof infeasible strings but not throw away valuable information contained in the costterm of the �tness function. Below we discuss some examples of the second and thirdapproaches.Jog, Suh, and Gucht [39] summarize many of the crossover operators used forthe traveling salesperson problem (TSP). In general, these operators try to includeas much of the parent strings as possible in the o�spring, subject to the constraintthat the o�spring contain a valid tour. In the TSP, since all cities are connected toall other cities, it is relatively easy to `�x up" an o�spring that contains either aninvalid tour or a partial tour, by adding missing cities and removing duplicate cities.As an example, Muhlenbein [48] uses a specialized crossover operator for the TSPcalled the maximal preservative crossover operator (MPX). The idea is to retainas many valid edges from the parent strings as possible. MPX works by randomlyselecting an arbitrary length string from one of the parents to initialize the o�spring.Edges are then added from either parent to the o�spring, starting at the last cityin the o�spring, as long as a valid tour is still possible. Otherwise, the next city inone of the parent strings is added. The aim of MPX is to preserve as much of theparent's subtours as possible. 7

Von Laszewsski and Muhlenbein [65] de�ne a structural crossover operator forthe graph partitioning problem that copies whole partitions from one solution toanother. Since the copy process may violate the \equal size partition" constraint, a\repairing" operator is applied to \�x things up." For this problem, mutation mayalso create invalid solutions (mutation is de�ned as the exchange of two numbers inorder to avoid infeasibilities).Penalty methods allow constraints to be violated. Depending on the magnitudeof the violation, however, a penalty that is proportional to the size of the infeasibilityis incurred that degrades the objective function. If the cost is large enough, highlyinfeasible strings will rarely be selected for reproduction, and the GA will concentrateon feasible or near-feasible solutions. A generic evaluation function is of the formc(x) + p(x);where c(x) is a cost term (often the objective function of the problem of interest)and p(x) is a penalty term.Richardson et al. [55] provide advice and experimental results for constructingpenalty functions. The authors suggest not making the penalty too harsh, sinceinfeasible solutions contain information that should not be ignored. As an example,they point out that if one removes a column from the optimal solution to a set coveringproblem, an infeasible solution results. This implies that the optimal solution isseparated from infeasible solutions by a Hamming distance of one. Using a similarargument, they note that a single, one-bit mutation can produce the optimal solutionfrom an infeasible one. They suggest that the cost of the penalty term reect thecost of making an infeasible solution into a feasible one.Siedlecki and Sklansky [56] use a dynamically calculated penalty coe�cient in aGA applied to a pattern recognition problem. Two interesting properties of theirproblem are that (1) the minimum occurs on a boundary point of the feasible region,and (2) the penalty function is monotonically growing. They report that a variablepenalty coe�cient outperforms the �xed coe�cient penalty.Cohoon, Martin, and Richards [13] use a penalty term when solving the K-partition problem. The penalty is exponentially increasing with the degree of con-straint violation. They observe that the GA tends to \exploit" the penalty term byconcentrating its search in a particular part of the search space, willingly incurring asmall penalty if the scalar multiplier of the penalty term is not too large.Smith and Tate [57] suggest a dynamic penalty function for highly constrainedproblems. They apply this to the unequal area facility layout problem. The severityof their penalty varies and depends on the best solution and best feasible solutionfound so far. Their intent is to favor solutions that are near feasibility over solutionsthat are more �t but less feasible. 8

In conjunction with rank-based selection, Powell and Skolnick [53] scale the ob-jective function for their problem so that all the feasible points always have higher�tness than the infeasible points. This approach avoids di�culties with choosing anappropriate penalty function, but still allows infeasible solutions into the population.1.3.2 Parallel Genetic Algorithms. When referring to a parallel geneticalgorithm (PGA) it is important to distinguish between the PGA as a particularmodel of a genetic algorithm and a PGA as a means of implementing a (sequential orparallel model of a) genetic algorithm. In a parallel genetic algorithm model, the fullpopulation exists in a distributed form; either multiple independent subpopulationsexist, or there is one population but each population member interacts only with alimited set of neighbors.One advantage of the PGA model is that traditional genetic algorithms tend toconvergence prematurely, an e�ect that PGAs seem to be able to partially miti-gate because of their ability to maintain more diverse subpopulations by exchanging\genetic material" between subpopulations. Also, in a traditional GA the expectednumber of o�spring of a string depend on the string's �tness relative to all otherstrings in the population. This situation implies a global ranking that is unlike theway natural selection works.Many GA researchers believe a PGA is a more realistic model of species in naturethan a single large population; by analogy with natural selection, a population is typ-ically many independent subpopulations that occasionally interact. Parallel geneticalgorithms also naturally �t the model of the way evolution is viewed as occurring;a large degree of independence exists in the \global" population.Parallel computers are an attractive platform for the implementation of a PGA.The calculations associated with the sequential GA that each subpopulation performsmay be computed in parallel, leading to a signi�cant savings in elapsed time. Thisis important since it allows the global population size, and hence the overall numberof reproductive trials, to grow without much increase in elapsed computation time.A parallel implementation of the traditional sequential genetic algorithm modelis also possible. A simple way to do this is to parallelize the loop that creates thenext generation from the previous one. Most of the steps in this loop (evaluation,crossover, mutation, and, if used, local search) can be executed in parallel. The se-lection step, depending on the selection algorithm, may require a global sum thatcan be a parallel bottleneck. When such an approach has been taken, it is often on adistributed-memory computer. However, unless function evaluation (or local search)is a time-consuming step, the parallel computing overheads associated with distribut-ing data structures to processors, and synchronizing and collecting the results, canmitigate any performance improvements due to multiple processors. Instead, thistype of parallel implementation is an obvious candidate for the \loop-level" paral-lelism common on shared-memory machines. This has important implications foranticipated future parallel computers. Such machines are expected to have multiple9

processors sharing memory on a node, and many such nodes in a distributed-memorycon�guration. It will be natural to map a PGA onto the distributed nodes, and speedthe sequential GA at each node by using the multiple processors to parallelize thegeneration loop.Parallel genetic algorithms can be classi�ed according to the granularity of thedistributed population, coarse grained vs. �ne grained, and the manner in which theGA operators are applied [39]. In a coarse-grained PGA the population is dividedinto several subpopulations, each of which runs a traditional GA independently andin parallel on its own subpopulation. Occasionally, �t strings migrate from onesubpopulation to another. In some implementations migrant strings may move onlyto geographically nearby subpopulations, rather than to any arbitrary subpopulation.In a �ne-grained PGA a single population is divided so that a single string isassigned to each processor. Processors select from, crossover with, and replace onlystrings in their neighborhood. Since neighborhoods overlap, �t strings will migratethroughout the population.1.3.2.1 Coarse-Grained Parallel Genetic Algorithms. In a coarse-grained parallel genetic algorithm (CPGA), also referred to later as an island model,multiple processors each run a sequential GA on their own subpopulation. Processorsexchange strings from their subpopulation with other processors. Some importantchoices in a CPGA are which other processors a processor exchanges strings with,how often processors exchange strings, how many strings processors exchange witheach other, and what strategy is used when selecting strings to exchange.Tanese [62] applied a CPGA to the optimization of Walsh-like functions usinga 64-processor Ncube computer. Periodically, �t strings were selected and sent toneighboring processors for possible inclusion in their future generations. Exchangestook place only among a processor's neighbors in the hypercube. These exchangesvaried over time, taking place over a di�erent dimension of the hypercube each time.Tanese found that the CPGA was able to determine the global maximum of thefunction about as often as the sequential GA. Tanese reported near-linear speedupof the CPGA over the traditional GA for runs of 1,000 generations. In most casesTanese's main metric, the average of which generation the global maximum wasfound on, preferred eight as the optimal number of subpopulations. Tanese alsoexperimented with variable mutation and crossover rates among the subpopulationsand found these results at least as good as earlier results.In [63] Tanese experimented with the partitioned genetic algorithm (a CPGAwith no migration between processors allowed). A total population size of 256 waspartitioned into various power-of-two subpopulation sizes. In all cases the partitionedGA found a better \best �tness value" than the traditional GA, even with smallsubpopulations sizes such as eight or four. The average �tness of the population atthe last generation, however, was consistently worse than that calculated with thetraditional algorithm. 10

Experiments with migration found that a higher average �tness could be obtainedif many migrants were sent infrequently or if only a few migrants were sent morefrequently. Each processor generated extra o�spring during a migration generationand selected migrants uniformly from among the \overfull" population. Often thepartitioned GA found �tter strings than the CPGA with migration. Best results wereachieved with a migration rate such as 20% of each subpopulation migrating every20 iterations.In [60] Starkweather, Whitley, and Mathias describe another CPGA. Each pro-cessor sent copies of its best strings to one of its neighbors, which replaced its worststring with these. A ring topology was used where, on iteration one, p0 sends to p1,p1 sends to p2, etc., and on iteration two, p0 sends to p2, p1 sends to p3, etc. Allsends were done in parallel. In their tests the total population size was �xed, andthey experimented with various-sized partitions of the total population among theprocessors. When no mutation was used, performance improved for two of the fourproblems as the number of subpopulations was increased, but degraded on the othertwo. When adaptive mutation was used, with the mutation probability increasing tosome prede�ned maximum as the similarity of the two parents increased, the runswere more successful and achieved good results relative to the serial runs. The moredistributed the GA, the more often adaptive mutation was invoked, since smaller sub-populations converge more rapidly than larger ones. Their experiments also indicatethat migrating strings too often, or not often enough, degrade performance.Cohoon, Martin, and Richards [13] applied the CPGA to the K-partition problemusing a 16-processor hypercube. Each processor had its own subpopulation of eightystrings, and �fty iterations were run between migrations. An interesting featureof their work was the random choice of scaling coe�cient for the penalty term intheir �tness function c(x) + �p(x). The scaling factor � inuences how much weightinfeasibilities have in evaluating a string's �tness. Two experiments were done. Oneused � = 1 for each subpopulation. In the other, each processor chose a value for �uniformly on the interval (0,1). When the metric \best observed �tness" was applied,the runs with uniformly distributed � were consistently better than those with � �xedat one in each processor.Kroger, Schwenderling, and Vornberger [41] used a CPGA on a network of 32transputers to solve the two-dimensional bin packing problem. At \irregular inter-vals" a processor received strings from neighboring processors. A \parallel elitiststrategy" was used whereby, whenever a processor improved upon the best string inits population, it sent a copy of that string to all other processors in its neighbor-hood. The best results were found with a \medium size" neighborhood and a localpopulation of ten strings.Pettey, Leuze, and Grefenstette [51] ran a CPGA on an Intel iPSC hypercube.Each generation each processor sent its best strings to each neighbor and received itsneighbor's best strings. These were then inserted into each processor's subpopulationby using a replacement scheme. Subpopulation size was �xed at 50 strings; and 1,11

2, 4, 8, and 16 processors were used. They believe their results indicate an increasedlikelihood of premature convergence. This work is at an extreme from most CPGAs,because strings are exchanged every generation and always with the same neighbors.These conditions explain the apparent increased likelihood of premature convergence.Gordon and Whitley [28] compare eight di�erent parallel genetic algorithms and aversion of Goldberg's Simple Genetic Algorithm [26] on several function optimizationtest problems. Among their conclusions is that island models (CPGAs) perform well,particularly on the hardest problems in their test suite.1.3.2.2 Fine-Grained Parallel Genetic Algorithms. In a �ne-grainedparallel genetic algorithm (FPGA) exactly one string is assigned to each processor.In the FPGA the model is of one population in which the strings have only localinteractions and neighborhoods, as opposed to global ones. Choices in an FPGAinclude neighborhood size, processor connection topology, and string replacementscheme.Muhlenbein [48] applied an FPGA to the traveling salesperson problem and thegraph partitioning problem. Each string selected a mate from within a small neigh-borhood of its own processor. Within its neighborhood each processor performedselection, crossover, and mutation without any central control. In addition, eachstring attempted to improve itself by applying a local search heuristic.Muhlenbein's objective was to avoid premature convergence by allowing only slowpropagation of highly �t strings across the full population. This is dependent on thetopology of the processor's neighborhood, which he calls the population structure. Bychoosing a population structure that takes a long time to propagate strings through-out the population, Muhlenbein claimed he avoided premature convergence. Thetopology used was a two-dimensional circular ladder with two strings per \step." Aneighborhood size of eight was used by each string. Some overlap occurred amongneighborhoods, enabling �t strings to propagate through the population.In [65] an FPGA was applied to the graph partitioning problem. Strings weremapped to a 64-processor transputer system. Selection was done independently byeach string within a small neighborhood of the two-dimensional population structure.The parent string was replaced if the o�spring was at least as good as the worststring in the neighborhood. A small neighborhood size in conjunction with a largepopulation size gave the best results.In [29] Gorges-Schleuter implemented an FPGA on a 64-processor Parsytec trans-puter system using a sparse graph as the population topology. An elitist strategy wasused whereby o�spring are accepted for the next generation only if they were more�t than the local parent. A string's �tness was de�ned relative to other strings in itsneighborhood, and neighborhoods could overlap. The algorithm was applied to theTSP problem, using a population size of 64 and a neighborhood size of eight. Results12

showed that, with a small neighborhood size, communication costs were negligible,and linear speedup was achieved.1.3.2.3 Other Parallel Genetic Algorithms. Fogarty and Huang [23]used a transputer array for the parallel evaluation of a population of 250 stringsapplied to a real-time control problem. For this problem, evaluating the �tness of amember of the population takes a relatively long time. A host processor ran the mainGA program and distributed strings for evaluation to the other transputer processorsfor evaluation. Maximum speedups in the range of 25{27 were obtained on 40{72processors. The incremental improvement in speedup was slightly sublinear up toabout 16{20 processors, but then fell o� quickly.Liepens and Baluja [44] used a parallel GA with a central processor phase. Inparallel, 15 subpopulations of ten strings each run a GA on their own subpopulations.Next, during the central processor phase, the most �t string from each subpopulationis gathered along with an additional 15 randomly generated strings. Under the con-trol of the central processor a recombination phase of these 30 strings occurs. Thebest string is then injected into the populations of one-third of the processors. Com-menting about parallelism, Liepens and Baluja believe that smaller subpopulationsremain more heterogeneous.1.4 Thesis MethodologyIn this section we explain the motivation and objectives of this thesis, and theperformance metrics used.1.4.1 Motivation. There were a number of motivations for applying (parallel)genetic algorithms to the set partitioning problem. One was the particularly chal-lenging nature of the problem. The challenges include the NP-completeness of �ndingfeasible solutions in the general case, and the enormous size of problems of currentindustrial interest. Also, because of its use as a model for crew scheduling by mostmajor airlines, there is great practical value in developing a successful algorithm.Genetic algorithms can provide exibility in handling variations of the modelthat may be useful. The evaluation function can be easily modi�ed to handle otherconstraints such as cumulative ight time, mandatory rest periods, or limits on theamount of work allocated to a particular base. More traditional methods may havetrouble accommodating the addition of new constraints as easily. Also, at any it-eration genetic algorithms contain a population of possible solutions. As noted byArabeyre et al. [3],The knowledge of a family of good solutions is far more important thanobtaining an isolated optimum. 13

This reality has been noted also by many operations research practitioners. Often, forpolitical or other reasons, it is not possible to implement the best solution, but it maybe desirable to �nd one with similar behavior. Traditional operations research algo-rithms do not maintain knowledge of solutions other than the current best, whereasGAs maintain the \knowledge of a family of good solutions" in the population.Additionally, the problem has attracted the attention of the operations researchcommunity for over twenty-�ve years, and many real problems exist, so it is possibleto compare genetic algorithms with a number of other algorithmic approaches. Oneadvantage of a GA approach is that since it works directly with integer solutionsthere is no need to solve the LP relaxation.Finally, as parallel computers move into mainstream computing. the challengeto researchers in all areas is to develop algorithms that can exploit the potential ofthese powerful new machines. The model of genetic algorithm parallelism we pursuein this dissertation has, we believe, great potential for scaling to take advantage oflarger and larger numbers of processors. Since we believe the algorithm maps wellto parallel computers, it motivates us to see whether this can help us to solve hardproblems of practical interest.1.4.2 Thesis Objectives. This thesis had several objectives which span the�elds of genetic algorithms, operations research, and parallel computing. The primaryobjective was to determine whether a GA can solve real-world SPP problems. Currentreal-world SPP problems have been generated of almost arbitrary length. Even manysmaller problems have posed signi�cant di�culties for traditional methods. Also, inthe general case, just �nding a feasible solution to the SPP is NP-complete [49]. Wewished to see how well a GA could perform on such a problem.We also wished to identify characteristics of SPP problems that were hard for agenetic algorithm. The SPP is both tightly constrained and, in many cases, very large.It also has a natural bit string representation and so is an interesting problem onwhich to study the e�ectiveness of GAs. Most applications of GAs have traditionallybeen to problems with tens or hundreds of bits. We wished to see whether GAs couldhandle larger problems without the \disruption factor" hindering the search ability.Also, tightly constrained problems have not been the forte of genetic algorithms, andone of our objectives was to see how accurately this limitation carried over to theSPP problem.Finally, we also wished to study aspects of the parallel genetic algorithm model.We wished to determine the role and inuence of parameters such as migration fre-quency and how strings are selected to migrate or be replaced. We were interested inthe algorithmic behavior with the addition of increasing numbers of subpopulations;whether there would be an improvement in the quality of the best solution found, orif it would be found faster, or both. 14

1.4.3 Performance Metrics. The main performance metric we used was the\quality" of the solution found. This was measured by how close to optimality thebest solution found was. A second metric was the \e�ciency" of the parallel geneticalgorithm model we used. As we increased the number of subpopulations (and hencethe total population size) we wished to determine whether the number of GA itera-tions required to �nd a solution decreased. The third metric of interest, \robustness",was the ability of the algorithm to perform consistently well on a wide range of prob-lem types. This was studied by choosing a large set of test problems and trying tocharacterize on di�erent \problem pro�les" how well the GA performed. Finally, wealso compared the parallel GA with traditional operations research methods to seewhich were more e�ective.

15

CHAPTER IISEQUENTIAL GENETIC ALGORITHMThe motivation for the work presented in this chapter was to develop a sequentialgenetic algorithm that worked well on the set partitioning problem. This would thenbe used as a building block upon which to develop the parallel genetic algorithm.Although much theoretical work on GAs exists, and much more is currently beingpursued by the GA community, there does not yet exist a complete theory for GAsthat says which GA operators and their parameter values are best. Often whenimplementing a GA, practitioners rely upon a large body of empirical research thatexists in the literature. In some cases this work is theoretically guided; in others itis the result of extensive experiments or speci�c application case studies. It is in thiscontext that the work in this chapter was performed.In Section 2.1 we discuss the test problems we use in this chapter. Section 2.2discusses the basic genetic algorithm we tested. Section 2.3 discusses the local searchheuristic we developed. Section 2.4 discusses speci�c components of the geneticalgorithm and provides a complexity analysis. Finally, Section 2.5 summarizes theresults.2.1 Test ProblemsThe test problems used in this chapter are given in Table 2.1 where they aresorted by increasing number of columns. These problems are a subset of those usedby Ho�man and Padberg in [36]. They are \real" set partitioning problems providedby the airline industry. The columns in this table are the test problem name, thenumber of rows and columnsy in the problem, the total number of nonzeros in theA matrix, the objective function value for the linear programming relaxation, andthe objective function value for the optimal integer solution. By the standards ofSPP problems solved by the airline industry today, these problems can be classi�edas small (nw41, nw32, nw40, nw08, nw15, nw20), medium (nw33), and large (aa04,nw18), according to the number of rows and columns in the problem. This particularsubset was selected so that we would have several smaller models and a few largerones.We can characterize how di�cult the test problems are in several ways. First,we can look at the problem parameters, such as the number of rows, columns, andnonzeros. In general, we assume that the larger and more dense a problem is, theharder it is to solve. For the GA, this is justi�ed from a complexity standpoint, sincevarious components of the GA and local search heuristic we use have running timeyIn the rest of this dissertation we use rows and columns interchangeably with constraintsand variables. 16

Table 2.1 Sequential Test ProblemsProblem No. No. No. LP IPName Rows Cols Nonzeros Optimal Optimalnw41 17 197 740 10972.5 11307nw32 19 294 1357 14570.0 14877nw40 19 404 2069 10658.3 10809nw08 24 434 2332 35894.0 35894nw15 31 467 2830 67743.0 67743nw20 22 685 3722 16626.0 16812nw33 23 3068 21704 6484.0 6678aa04 426 7195 52121 25877.6 26402nw18 124 10757 91028 338864.3 340160
Table 2.2 Sequential Test Problem Solution CharacteristicsProblem LP LP LP IPName Iters. Nonzeros Ones Nodesnw41 174 7 3 9nw32 174 10 4 9nw40 279 9 0 7nw08 31 12 12 1nw15 43 7 7 1nw20 1240 18 0 15nw33 202 9 1 3aa04 >7428 234 5 >1nw18 >162947 68 27 >6217

of the order of the number of rows or columns, or the number of nonzeros in a rowor column (see Section 2.4.7).We can also gain some insight into the di�culty of the test problems by solvingthem with a traditional operations research algorithm.y The test problems have beensolved using the public-domain lp solve program [8]. lp solve solves linear pro-gramming problems using the simplex method and solves integer programming (IP)problems using the branch-and-bound algorithm. The results are given in Table 2.2.The columns are the test problem name; the number of simplex iterations requiredto solve the LP relaxation, plus the additional simplex iterations when solving LPsubproblems in the branch-and-bound tree; the number of variables in the solutionto the LP relaxation that were not zero; the number of the nonzero variables in thesolution to the LP relaxation that were one (i.e., not fractional); and the number ofnodes searched in the branch-and-bound tree before an optimal solution was found.lp solve found optimal solutions for problems nw41, nw32, nw40, nw08, nw15,nw20, and nw33. lp solve found the optimal solution to the LP relaxation for nw18,but not the optimal integer solution before a CPU time limit was reached. The largenumber of simplex iterations and nodes searched for this problem, relative to theothers (except aa04), indicate (at least for lp solve) it is a hard problem. aa04was the most di�cult|lp solve was not able to solve the associated LP relaxationand, in fact, aborted after over 7,000 simplex iterations. aa04 seems to be a di�cultproblem for others as well [36]. We conclude that the seven smaller problems are\relatively easy," nw18 is more di�cult, and aa04 is very di�cult.2.2 The Genetic AlgorithmOne way to classify genetic algorithms is by the percentage of the population thatis replaced each generation. Two choices, at extremes from each other, are commonin the literature. The �rst, the generational replacement genetic algorithm (GRGA),replaces the entire population each generation and is the traditional genetic algorithmas de�ned by Holland [37] and popularized by Goldberg [26]. The second, the steady-state genetic algorithm (SSGA), replaces only one or two strings each generation andis a more recent development [61, 66, 69].In the GRGA the entire population is replaced each generation by their o�spring.The hope is that the o�spring of the best strings carry the important \buildingblocks" [26] from the best strings forward to the next generation. The basic outlineof the GRGA is given in Figure 1.1. The GRGA allows the possibility that the beststrings in the population do not survive to the next generation. Also, as Davis pointsout [15], many of the best strings may not be allocated any reproductive trials. It isalso possible that mutation or crossover destroy or alter important bit values so thatthey are not propagated into the next generation by the parent's o�spring. ManyyWe defer discussion of a comparison with Ho�man and Padberg to the next chapter.18

Table 2.3 Comparison of the Use of Elitism in GRGAProblem No Elitism ElitismName Opt. Feas. Trials Opt. Feas. Trialsnw41 2 559 863 2 737 864nw32 0 412 840 0 562 841nw40 0 491 864 0 705 864nw08 2 23 860 0 35 861nw15 0 3 856 0 4 862nw20 0 267 863 0 440 863nw33 0 3 575 0 22 576aa04 0 0 859 0 0 858nw18 0 0 473 0 0 474implementations of the GRGA use elitism; if the best string in the old population isnot chosen for inclusion in the new population, it is included in the new populationanyway. The idea is to avoid \accidentally" losing the best string found so far. GApractice has shown this is usually advantageous.Table 2.3 compares the use of elitism in the GRGA. The column Problem Nameis the name of the test problem. The subheadings Opt. and Feas. are the numberof optimal and feasible integer solutions found, out of the number of trials given inthe Trials column, respectively. In these experiments we varied several parameters atonce (elitism, selection algorithm, penalty term, �tness function, crossover operator,crossover probability, and initialization strategy). The population size was �xed at 50and the mutation rate at 1=n. For each choice of parameter value or operator, we per-formed one computer \run" for each test problemy. In each run the random numbergenerator was initialized by using the microsecond portion of the Unix gettimeofdaysystem call as a seed.Comparing the results using as the metric the number of feasible solutions found,we �nd with a �2 testz that elitism is bene�cial on �ve of the problems (nw41, nw32,nw40, nw20, nw33). However, the most obvious result from Table 2.3 is the lack ofoptimal solutions found, even on the smaller problems. The main di�culty was thepopulation's premature convergence, so that all the strings in the population wereduplicates and no new search was occurring (see also [43] for more on our earlierwork). It was this that led us to pursue alternative GA approaches, and in the restof this dissertation we will report results only for the steady-state genetic algorithmwhich we found more successful.yBecause of resource limits, scheduling conicts, and system crashes, not all runs com-pleted for all problems.zAll �2 tests reported in this dissertation use a signi�cance level of 5 percent.19

The steady-state genetic algorithm is an alternative to the GRGA that replacesonly a few individuals at a time, rather than an entire generation. In practice, thenumber of new strings to create each generation is usually one or two. The newstring(s) replace the worst-ranked string(s) in the population. In this way the SSGAallows both parents and their o�spring to coexist in the same population (in fact,this is the usual case).The SSGA has a \built-in" elitism since only the lowest-ranked string is deleted;the best string is automatically kept in the population. Also, the SSGA is immedi-ately able to take advantage of the \genetic material" in a newly generated stringwithout having to wait to generate the rest of the population as in a GRGA. A dis-advantage of the SSGA is that with small populations some bit positions are morelikely to lose their value (i.e., all strings in the population have the same value forthat bit position) than with a GRGA. For this reason, SSGAs are often run withlarge population sizes to o�set this.SSGA practitioners advocate discarding a child string if it is a duplicate of astring currently in the population. By avoiding duplicate strings the population isable to maintain more diversity. In our implementation we do not discard a duplicatestring, but repeatedly mutate it until it is unique. Not allowing duplicates turnedout to be important. Before implementing a method to avoid duplicate strings, wefound SSGA populations experienced a similar problem with premature convergenceas did the GRGA. Avoiding duplicate strings had a noticeable e�ect in avoiding ordelaying premature convergence.Figure 2.1 presents the steady-state genetic algorithm we used. Here, we givea brief outline. Speci�c details of the operators follow in the next several sections.P (t) is the population of strings at generationy t. Each generation one new string isinserted into the population. The �rst step is to pick a random string, xrandom, andapply a local search heuristic (Section 2.3) to it. Next, two parent strings, x1 andx2, are selected (Section 2.4.4), and a random number, r 2 [0; 1], is generated. If ris less than the crossover probability, pc, we create two new o�spring via crossover(Section 2.4.6) and randomly select one of them, xnew, to insert in the population.Otherwise, we randomly select one of the two parent strings, make a copy of it, andapply mutation to ip bits in the copy with probability 1=n. In either case, the newstring is tested to see whether it duplicates a string already in the population. Ifit does, it undergoes (possibly additional) mutation until it is unique. The least-�tstring in the population is deleted, xnew is inserted, and the population is reevaluated.The experiments in this chapter all used a population size of 50.To implement the genetic algorithm and local search heuristic, we wrote a pro-gram in ANSI C. It consists of approximately 10,000 lines of source code (includingcomments) and is portable and runs on all Unix systems it has been tested on. ItyWe use generation and iteration interchangeably.20

t 0initialize P (t)evaluate P (t)foreach generationlocal search (xrandom 2 P (t))select(x1;x2) from P (t)if(r < pc) thenxnew = crossover(x1;x2)else xnew = mutate(x1;x2)endifdelete (xworst 2 P (t))while (xnew 2 P (t))mutate(xnew)P (t+ 1) P (t) [xnewevaluate P (t+ 1)t t+ 1endforFigure 2.1. Steady-State Genetic Algorithmis capable of running on one or more processors. When run on one processor, it isfunctionally equivalent to a sequential program. For the experiments described inthis chapter three di�erent types of computers were used: Sun Sparc 2 workstations,IBM RS/6000 workstations, and an IBM SP1 parallel computer (for these experi-ments, the SP1 was used as if it were a collection of independent workstations|weran multiple sequential jobs, each using one SP1 node with no interaction betweenthe jobs). Details of the parallel aspects of the program are given in the next chapter.2.3 Local Search HeuristicA local search heuristicy attempts to improve a solution by moving to a betterneighbor solution. Whenever the neighboring solution is better than the currentsolution, it replaces the current solution. When no better neighbor solution can befound, the search terminates.Parker and Rardin [50] describe two important neighborhoods. In the k-changeneighborhood, up to k bits are complemented at a time. In the k-interchange neigh-borhood, up to k bits are changed at a time, but in a complementary manner. Trade-o�s exist between speed and solution quality; searching a large neighborhood will pre-sumably lead to a better solution than searching a smaller one, but at an increasedyIn the GA literature such methods often go by the name hill-climbing.21

cost in solution time. A related issue is the extent of a given neighborhood thatshould be searched. At one extreme, every point in the neighborhood is evaluatedand the one that improves the current solution the most accepted as the move. Al-ternatively, we can also make the �rst move found that improves the current solution.We refer to these two choices as best-improving and �rst-improving, respectively.The experimental evidence of many researchers [15, 39, 40, 48] is that hybridizinga genetic algorithm with a local search heuristic is bene�cial. It combines the GAsability to widely sample a search space with a local search heuristic's hill-climbingability. There are, however, theoretical objections to the use of a local search heuris-tic. An important one is that changing the \genetic material" in the population ina nonevolutionary manner will a�ect the schema represented in the population andundermine the GA. Gruau and Whitley [35] comment:Changing the coding of an o�spring's bit string alters the statisticalinformation about hyperplane subpartitions that is implicitly containedin the population. Theoretically, applying local optimization to improveeach o�spring undermines the genetic algorithm's ability to search viahyperplane sampling. The objection to local optimization is that chang-ing inherited information in the o�spring results in a loss of inheritedschemata, and thus a loss of hyperplane information.Hybrid algorithms that incorporate local optimizations may result ingreater reliance on hill-climbing and less emphasis on hyperplane sam-pling. This reliance could result in less global exploration of the searchspace because it is hyperplane sampling that is the basis for the claimthat genetic algorithms globally sample a search space.Our early experience with the GRGA [43], as well as subsequent experience withthe SSGA, was that both methods had trouble �nding optimal (sometimes evenfeasible) solutions (the SSGA was better than the GRGA, but still not satisfactory).This led us to develop a local search heuristic to hybridize with the GA to assist in�nding feasible, or near-feasible, strings to apply the GA operators to.A local search heuristic for the SPP must address the following. First, since theSPP is tightly constrained, an initial feasible solution may be di�cult or impossibleto construct. Second, in considering a k-change or k-interchange move, many ofthe possible moves may destroy or degrade the degree of feasibility. An e�ectivelocal search heuristic for the SPP will most likely not be uniform in the size ofthe neighborhoods it explores, but will vary according to the context of the currentsolution. For example, if no column covers a row, the heuristic may pick a singlecolumn to set to one. For a row that is overcovered, however, the heuristic may tryto set to zero all but one of the columns.We developed a heuristic we call ROW (since it takes a row-oriented view of theproblem). The basic outline is given in Figure 2.2. ROW works as follows. For some22

foreach nitersi = chose row(random or max)improve (i; jrij, best or �rst)endforFigure 2.2. ROW Heuristicnumber of iterations (a parameter of the heuristic), one of the m rows of the problemis selected (another parameter). For any row there are three possibilities: jrij = 0,jrij = 1, and jrij > 1. The action of ROW in these cases varies and also variesaccording to whether we are using a best-improving or �rst-improving strategy. Inthe case of best-improving we apply one of the following rules.I. jrij = 0: For each j 2 Ri calculate �j1 . Set to one the column that minimizes�j1 .II. jrij = 1: Let k be the unique column in ri. Calculate �0j, the change in f whenxk 0 and xj 1; j 2 Ri. If �0j < 0 for at least one j, set xk 0 and xl 1,for �0l < �0j; 8j.III. jrij > 1: For each j 2 ri calculate �00j , the change in f when xk 0;8k 2ri; k 6= j. Set xk 0;8k 2 ri; k 6= j, where �00j < �00k;8k.We note that strictly speaking this is not a best-improving heuristic. The reasonis that in cases I and III we can move to neighboring solutions that degrade thecurrent solution. The reason we allow this is that we know that whenever jrij = 0 orjrij > 1, constraint i is infeasible and we must move from the current solution even ifneighboring solutions are less attractive. The advantage is that the solution \jumpsout" of a locally optimal, but infeasible domain of attraction.The �rst-improving version of ROW di�ers from the best-improving version inthe following ways. If jrij = 0, we select a random column j from Ri and set xj 1.If jrij = 1, we set xk 0 and xj 1 as soon as we �nd any �0j < 0; j 2 Ri. Finally,if jrij > 1, we randomly select a column k 2 ri, leave xk = 1, and set all otherxj = 0; j 2 ri. In the cases where jrij = 0 and jrij > 1, since we have no guaranteewe will �nd a \�rst-improving" solution, but know that we must leave the currentsolution, we make a random move that makes constraint i feasible, without measuringall the implications (cost component and (in)feasibility of other constraints).We compared the di�erent options for ROW. The results are given in Tables 2.4{2.7. In these runs we also varied the initialization scheme and penalty term used.23

Table 2.4 compares the number of iterations (1, 5, and 20) of ROW that wereapplied to try to improve a string. A �2 test shows no di�erence between these onany of the test problems. The explanation appears to be that ROW gets stuck in alocal optimum and cannot escape within the neighborhood de�ned by the possiblemoves speci�ed earlier.Table 2.5 compares two methods for choosing the constraint to apply ROW to.Random means one of the m constraints is selected randomly. MaxViolation meansthat the constraint with the largest value of jPnj=1 aijxj � 1j is selected. The �2 testshows that the results on four problems (nw41, nw32, nw15, nw33) are improved whenthe selected constraint is chosen randomly. In fact, the maximum violation strategynever found an optimal solution. The implication is that the use of randomness playsan important role in escaping local optima.Table 2.6 compares the best-improving and �rst-improving strategies. The �2test shows that the �rst-improving strategy is signi�cantly better on problems nw41,nw40, nw15, and nw33. It appears that the randomness in two of the steps of the�rst-improving strategy helps escape from a locally optimal solution.Table 2.7 shows the hybrid of the SSGA used in combination with the ROWheuristic. We refer to this hybrid as SSGAROW. For six problems (nw41, nw32,nw40, nw08, nw15, nw33), the �rst-improving strategy performs signi�cantly betteraccording to the �2 test. This table is interesting because we could argue that wewould expect exactly the opposite result. That is, since the GA itself introducesrandomness into the search we would expect to do better combining the best solutionfound by ROW rather than the �rst or a random one, which are presumably not asgood. A possible explanation is that the GA has prematurely converged and so theonly new search information being introduced is from the ROW heuristic. ROW,however, in its best-improving mode gets trapped in a local optimum, and so littleadditional search occurs.Table 2.4 Number of Constraints to Improve in the ROW HeuristicProblem 1 5 20Name Opt. Trials Opt. Trials Opt. Trialsnw41 12 288 8 288 10 284nw32 1 288 4 287 2 286nw08 0 285 0 287 0 282nw15 40 142 40 142 36 141nw20 2 259 0 257 0 258nw33 1 280 3 277 5 264aa04 0 225 0 220 0 213nw18 0 276 0 277 0 26724

Table 2.5 Choice of Constraint to Improve in the ROW HeuristicProblem Random MaxViolationName Opt. Trials Opt. Trialsnw41 14 284 0 288nw32 4 285 0 288nw40 3 286 0 288nw08 0 281 0 286nw15 59 139 0 143nw20 1 256 0 259nw33 5 272 0 276aa04 0 212 0 216nw18 0 272 0 278Table 2.6 Best Improving vs. First Improving in the ROW HeuristicProblem Best FirstName Opt. Trials Opt. Trialsnw41 3 432 27 428nw32 1 432 6 429nw40 0 431 4 430nw08 0 427 0 427nw15 26 210 90 215nw20 2 387 0 387nw33 0 409 9 412aa04 0 304 0 334nw18 0 405 0 415Table 2.7 Best Improving vs. First Improving in SSGAROWProblem Best FirstName Opt. Trials Opt. Trialsnw41 21 212 53 213nw32 8 214 34 211nw40 3 214 16 213nw08 4 215 15 212nw15 21 211 47 210nw20 2 213 4 213nw33 0 195 7 189aa04 0 209 0 209nw18 0 152 0 15425

typedef struct {int cost;int ncv;int *cover;} AMATRIX;Figure 2.3. Structure for Storing Row and Column Information2.4 Genetic Algorithm ComponentsIn this section we discuss some aspects of the genetic algorithm we examined.2.4.1 Problem Data Structures. For solving the large SPP problems thatarise in the airline industry [7, 9], data structures that are memory e�cient and lendthemselves to e�cient computation are necessary. In the SPP, both the A matrixand the solution vector are binary, and it is possible to devise special data structuresthat make e�cient use of memory.A solution to the SPP problem is given by specifying values for the binary decisionvariables xj. The value of one (zero) indicates that column j is included (not included)in the solution. This solution may be represented by a binary vector xy with theinterpretation that xj = 1(0) if bit j is one (zero) in the binary vector.Representing a SPP solution in a GA is straightforward and natural. A bit in aGA string is associated with each column j. The bit is one if column j is includedin the solution, and zero otherwise. To make e�cient use of memory, we had eachbit in a computer word represent a column. Because most computers today arebyte addressable, this approach improves storage e�ciency by at least a factor ofeight compared with integer or character implementations. It does, however, requirethe development of specialized functions to set, unset, and toggle a bit and to testwhether a bit is set.Since the SPP matrix is typically large and sparse and contains only the valueszero and one, it is necessary only to store the indices of the rows and columns whereaij = 1. At di�erent points in the algorithm we require a list of the rows intersectedby a particular column (Pj) or a list of the columns intersected by a particular row(Ri). We use the data structure shown in Figure 2.3 for both cases. In the columnversion, this structure holds cj in the cost �eld, jPj j in the ncv �eld, and Pj in thecover array. The row version holds �i in the cost �eld, jRij in the ncv �eld, and Riin the cover array.yWe use x interchangeably as the solution to the SPP problem or as a bitstring in theGA population, that is, x 2 P (t). 26

12 12 5 7 14 24 8 4 9 2 2 18 4 12 12 2 5 4 1 40 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 01 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 10 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 00 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 01 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 01 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Figure 2.4. Example A Matrix before Sorting2.4.2 Block Column Form. A useful initial step is the ordering of the SPPmatrix into block \staircase" form [52]. Block Bi is the set of columns that have their�rst one in row i. Bi is de�ned for all rows but may be empty for some. Within Bithe columns are sorted in order of increasing cj.Figures 2.4 and 2.5 show an example of an SPP matrix before and after sortinginto block staircase format. The numbers at the top of the matrix are the columncosts, cj. The numbers at the bottom of the matrix are the column indices. In thisexample, I = f1; : : : ; 8g and B1 = f13; 8; 2g; : : : ; B7 = f19; 11g, and B8 = ;.Ordering the matrix in this manner is helpful in determining feasibility. In anyblock, at most one xj may be set to one. Our algorithm takes advantage of thisordering in two ways. First, one initialization scheme (randomly) sets at most one xjper block to one. Second, the block crossover operator de�ned in Section 2.4.6 takesadvantage of the block column structure.2.4.3 Evaluation Function. Three functions are of interest: the SPP ob-jective function, the evaluation function, and the �tness function. It is the SPPobjective function, z, that we wish to have the GA minimize. However, the di�cultywith using z directly is that it does not take into account whether a string is feasi-ble. Therefore, we introduce an evaluation function to incorporate a cost term and apenalty term. Since GAs maximize �tness, however, we still must map the evaluationfunction (which is being minimized) to a nonnegavtive �tness value. This is the roleof the �tness function.The SPP objective function (Equation 1.1) is given by the de�nition of the prob-lem. The evaluation function and the �tness function, however, are design choices wemust make. Currently, no de�nitive theory exists to say which choice is best. For the27

4 4 12 4 8 12 12 12 2 4 9 18 24 5 7 14 5 2 1 21 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 00 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 00 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 10 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 013 8 2 20 7 14 15 1 10 18 9 12 6 3 4 5 17 16 19 11Figure 2.5. Example A Matrix after Sortingevaluation function we investigated three choices, each reecting a di�erent penaltyterm.The evaluation function measures \how good" a solution to the SPP problem astring is. This must take into account not just the cost of the columns included inthe solution (the SPP objective function value), but also the degree of (in)feasibilityof a string. Traditional OR algorithms restrict their search to feasible solutions, andso no additional term is included in the SPP objective function to penalize constraintviolations. In the GA approach, however, the GA operators often produce infeasiblesolutions. In fact, since just �nding a feasible solution to the SPP is NP-complete[49], it may be that many or most strings in the population are infeasible. Therefore,we need an evaluation function that takes into account the degree of infeasibility ofthe string. We used as the generic form of our evaluation functionf = c(x) + p(x); (2:1)where f is the evaluation function; c(x); the cost term, is the SPP objective function;and p(x) is a penalty term. The choice of penalty term can be signi�cant. If thepenalty term is too harsh, infeasible strings that carry useful information but lieoutside the feasible region will be ignored and their information lost. If the penaltyterm is not strong enough, the GA may search only among infeasible strings [55]. Weinvestigated three penalty terms.The countinfz penalty term is mXi=1 �i�i(x); (2.2)where �i(x) = (1 if constraint i is infeasible,0 otherwise.28

The countinfz penalty term indicates whether a constraint is infeasible, but does notmeasure the magnitude of the infeasibility.In Equation (2.2) (and Equation (2.3) below), �i is a scalar weight that penalizesthe violation of constraint i. Choosing a suitable value for �i is a di�cult problem.In [55] Richardson et al. studied the choice of �i for the set covering problem (SCP).In the SCP, the equality in Equation (1.2) is replaced by a � constraint. The SCP,however, is not a highly constrained problem; in the SCP constraint i is infeasibleonly if jrij = 0. However, it is easily made feasible by (even randomly) selecting anxj; j 2 Ri to set to one. For the jrij = 0 case, however, such an approach will notwork for the SPP, since any xj; j 2 Ri set to one, while it will satisfy constraint i,may introduce infeasibilities into other currently feasible constraints. Similarly, if wetry to make a constraint with jrij > 1 feasible by setting all but one of the xj; j 2 rito zero, we may undercover other currently feasible constraints.A good choice for �i should reect not just the \costs" associated with makingconstraint i feasible, but also the impact on other constraints (in)feasibility. We knowof no method to calculate an optimal value for �i. Therefore, we made the empiricalchoice of �i = maxj fcj jj 2 Rig. This choice is similar to the \P2" penalty in [55],where it provided an upper bound on the cost to satisfy the violated constraints ofthe SCP. In the case of set partitioning, however, the choice of �i provides no suchbound, and it is possible the GA may �nd infeasible solutions more attractive thanfeasible ones (for several problems discussed in the next chapter this situation didhappen.)The linear penalty term is mXi=1 �i nXj=1 jaijxj � 1j : (2.3)This penalty does measure the magnitude of constraint i's infeasibility.The ST penalty term ([57]) ismXi=1(�i(x)=2) [zfeas � zbest] : (2.4)Here, zfeas is the best feasible objective function value found so far, and zbest is thebest objective function value (feasible or infeasible) found so far. According to Smithand Tate [57]: : : the explicit goal of our penalty function is to favor solutionswhich are near a feasible solution over more highly-�t solutions which arefar from any feasible solution. 29

Following Smith and Tate, we used a distance-from-feasibility metric which was de-pendent on the number of violated constraints, but not the magnitude of their vio-lations.Table 2.8 compares the three penalty terms using SSGA. Only the ST penaltyshows a signi�cant result (problems nw41 and nw08.) One point to note, is the paucityof optimal solutions found with any of the penalties using SSGA by itself. Table 2.9contains a similar comparison using SSGAROW. Interestingly, the opposite e�ect isobserved. Both the countinfz and linear penalty terms perform better than the STpenalty. Compared with each other, the only di�erence that showed up with the �2statistic was on nw15 where the linear penalty term performed better.Table 2.8 Comparison of Penalty Terms in SSGAProblem Linear Countinf STName Opt. Trials Opt. Trials Opt. Trialsnw41 3 284 4 284 14 286nw32 3 286 0 282 0 288nw40 0 284 0 287 1 288nw08 0 287 0 288 8 287nw15 1 286 0 285 0 286nw20 0 288 1 287 0 285nw33 0 288 0 286 0 288aa04 0 277 0 272 0 275nw18 0 276 0 276 0 279Table 2.9 Comparison of Penalty Terms in SSGAROWProblem Linear Countinf STName Opt. Trials Opt. Trials Opt. Trialsnw41 35 143 28 141 11 141nw32 18 142 24 142 0 141nw40 8 143 9 142 2 142nw08 6 142 8 143 5 142nw15 42 139 24 143 2 139nw20 4 141 2 142 0 143nw33 2 128 5 129 0 127aa04 0 144 0 136 0 138nw18 0 103 0 103 0 1002.4.4 Fitness and Selection. The �tness function is used during the selec-tion phase to determine the expected number of reproductive trials to allocate to astring. Genetic algorithms require that the �tness function be nonnegative and thatthe more highly �t a string, the larger its �tness function value (although see [42] for30

a discussion of the use of a nonmonotonic �tness function). For the SPP this requiresa mapping from the evaluation function to the �tness function. As has been pointedout, however, the evaluation function value itself is not an \exact" measure of �tness[66]. The mapping from the evaluation function to the �tness function \should beconsidered a design parameter of the genetic algorithm, not a feature of the opti-mization problem" [31]. In general, the �tness function is given by u(x) = g(f(x)).If selection is done via a binary tournament (see below), any �tness function thatreects the monotonicity of the evaluation function will su�ce. If selection is to bedone by calculating the expected number of reproductive trials and then samplingthose, however, the choice of �tness function can play a signi�cant role. We testedtwo choices for the �tness function.A dynamic linear �tness function [26, 30] is given byu(x) = af(x) + b(t):We used a = �1 and b(t) = 1:1 � maxff(x)jx 2 P (t)g. De la Maza and Tidor [16]point out that the choice of b(t) can signi�cantly a�ect the selective pressure. Ourchoice of b(t) is intended to interfere with the selective pressure as little as possible,while still converting the minimization of f into the maximization of u.We also tested a linear rank �tness function [5, 66] given byu(x) =Min + (Max�Min)rank(x; t)� 1N � 1 ; (2:5)where rank(x; t) is the index of x in a list sorted in order of decreasing evaluationfunction value. Ranking requires that 1 � Max � 2, and Min + Max = 2. Weused Max = 2. The advantage of ranking over other methods, when selection is pro-portional to a string's �tness, is that ranking is less prone to premature convergencecaused by a super-individual.Tables 2.10 contains the results of experiments we did comparing the dynamic �t-ness function to ranking using SSGAROW. Sampling was done using both stochasticuniversal selection and tournament selection. The �2 test shows that neither methodperformed signi�cantly better than the other on any of the test problems.The selection phase allocates reproductive trials to strings on the basis of their�tness. Depending on the type of GA, strings selected from the old generation areeither included directly in the new generation or become the parents of new stringscreated by the GA recombination operators. We compared two choices for the selec-tion algorithm: stochastic universal selection and tournament selection.Baker's stochastic universal selection (SUS) is an optimal sampling algorithm[5]. SUS may be thought of as constructing a roulette wheel using �tness propor-tionate selection and then spinning the wheel once, where the number of equally31

Table 2.10 Comparison of Fitness Techniques in SSGAROWProblem Cmax RankingName Opt. Trials Opt. Trialsnw41 40 213 34 212nw32 19 210 23 215nw40 11 213 8 214nw08 8 214 11 213nw15 30 210 38 211nw20 5 210 1 216nw33 5 196 2 188aa04 0 209 0 209nw18 0 152 0 154spaced markers on the wheel is equal to the population size. This method guaranteesthat each string is allocated bexpectedvaluec reproductive trials and no more thandexpectedvaluee.In binary tournament selection [26, 27] two strings are chosen randomly from thepopulation. The more �t string is then allocated a reproductive trial. In order toproduce an o�spring, two binary tournaments are held, each of which produces oneparent string. These two parent strings then recombine to produce an o�spring. Avariation of binary tournament selection is probabilistic binary tournament selectionwhere the more �t string is selected with a probability pb, :5 � pb < 1. [54] Proba-bilistic binary tournament selection does allow for the possibility that the best stringin the population may be lost. Its advantage is a reduction in the selective pressure.Table 2.11 contains the results comparing SUS to tournament selection using theSSGAROW. The �2 test again shows that neither method performs better than theother on any of the problems tested.2.4.5 Initialization. We tested a total of six initialization schemes. Two arerandom, three are heuristics, and one uses the solution to the LP relaxation. Thetwo random schemes are applied directly to all strings in the population. For thenonrandom methods we initialize a single string via the method being used and thenrandomly modify it to initialize the rest of the population.Heuristic initialization violates the \usual" GA strategy of trying to achieve ahighly diverse solution space search by random initialization. For quite a while we hadtrouble �nding feasible solutions, however. Heuristic initialization was an attempt tobias the search in a more favorable direction. Below we describe the di�erent methodswe tested. 32

Table 2.11 Comparison of Selection Schemes in SSGAROWProblem SUS TournamentName Opt. Trials Opt. Trialsnw41 39 214 35 211nw32 21 212 21 213nw40 8 212 11 215nw08 6 215 13 212nw15 29 210 39 211nw20 4 210 2 216nw33 1 195 6 189aa04 0 207 0 211nw18 0 165 0 141JChavatal = ;do until (Pj = ;;8j)k = minj f�j1=jPj jjxj = 0gJChavatal = JChavatal S kPj = Pj � PkenddoFigure 2.6. Modi�ed Chavatal Heuristic2.4.5.1 Modi�ed Chavatal Heuristic. This method is a modi�cationof a heuristic proposed by Chavatal [12] for the set covering problem. For the setcovering problem Chavatal notes:Intuitively, it seems the desirability of including j in an optimal coverincreases with the ratio jPjj=cj which counts the number of points coveredby Pj per unit cost.Our modi�cation was to use �j1=jPj j as the quantity to minimize. The algorithmcalculates a set of column indices, JChavatal, and is given in Figure 2.6.2.4.5.2 Greedy Heuristic. The greedy heuristic is similar to the modi�edChavatal heuristic. The di�erence is that the criterion used to decide which column tonext set to one in Figure 2.6 is to use minj f�j1jxj = 0g instead of minj f�j1=jPj jjxj =0g. 2.4.5.3 Gregory's Heuristic. Gregory's heuristic [32] is a generalizationof the Vogel approximation method for generating a starting solution to a Hitchcock33

while(9 i s.t. ri = ;)for(i = 1;m)if(ri = ;)�k1 = minj f�j1 jj 2 Rig�l1 = minj f�j1jj 2 Ri; j 6= kgdi �l1 ��k1end ifend forq = mini fdi < dj;8j s.t. rj = ;gxq 1end whileFigure 2.7. Gregory's Heuristictransportation model. For each row i with ri = ;, the idea is to �nd the two columnsthat minimize �j1; j 2 Ri, calculate their di�erence, and �nd the minimumdi�erenceover all such rows. The algorithm is given in Figure 2.7.2.4.5.4 Random Initialization. Random initialization sets xj 1, forall columns j, with probability 0.5.2.4.5.5 Block Random Initialization. Block random initialization, basedon a suggestion of Gregory [32], uses information about the expected structure of anSPP solution. A solution to the SPP typically contains only a few \ones" and ismostly zeros. We can use this knowledge by randomly setting to one approximatelythe same number of columns estimated to be one in the �nal solution. If the averagenumber of nonzeros in a column is PAV G, we expect the number of xj = 1 in theoptimal solution to be approximately m=PAV G.We use the ratio of m=PAV G to the number of nonnull blocks as the \probability"of whether to set to one some xj in block Bi. If we do choose some j 2 Bi to set toone, that column is chosen randomly. If the \probability" is � 1, we set to one onecolumn in every block.Table 2.12 contains a comparison of four initialization strategies: the three heuris-tics (Chavatal, Gregory, and Greedy) and block random initialization using theSSGA. Since the SSGA algorithm by itself was unable to �nd many optimal solutions,it is not possible to make meaningful comparisons. However, the results suggestedthat Gregory's heuristic and block random initialization were the two most promisingapproaches. These were further compared using SSGAROW; the results are shownin Table 2.13. The new results are more meaningful; the �2 comparison shows thatblock random initialization out performs Gregory's heuristic on �ve problems (nw41,nw40, nw15, nw20, nw33) and is outperformed on one (nw32). We conclude that by34

giving the GA a wider selection of points in the search space to sample from, it doesa better job than if we try to guide it.In additional testing of block random initialization versus random initialization,we observed that with random initialization SSGA by itself faired poorly. This resultis explained as follows. Approximately half the initial string will be one bits; however,a feasible SPP string has only a few one bits. SSGA alone has only mutation to \zeroout" the one bits or crossover to combine \building blocks" of zero bits, and theseprocesses are too slow.When we compared block random initialization versus random initialization usingSSGAROW, the results from the two methods were about the same. In this casethe large neighborhood moves ROW makes when jrij > 1, which is true for mostconstraints initially, quickly zeros out most of the one bits. After a few generationsthe number of one bits left in a randomly initialized string quickly approaches thesame number found in a block randomly initialized string.Table 2.12 Comparison of Initialization Strategies in SSGAProblem Chavatal Gregory Greedy BrandomName Opt. Trials Opt. Trials Opt. Trials Opt. Trialsnw41 1 214 13 214 0 212 7 214nw32 0 214 2 214 0 214 1 214nw40 0 215 0 215 0 215 1 214nw08 0 215 8 215 0 216 0 216nw15 0 215 0 214 0 214 1 214nw20 0 214 0 215 0 215 1 216nw33 0 216 0 216 0 214 0 216aa04 0 205 0 208 0 202 0 209nw18 0 207 0 208 0 206 0 2102.4.5.6 Linear Programming Initialization. We also tried initializingthe population using the solution to the LP relaxation of the test problem. The resultsin Table 2.14 were all obtained using the solution to the LP relaxation to initializethe population. This was done in a manner similar to the way the other heuristicswere applied. First, the �rst string in the population was initialized using the LPrelaxation and then was randomly perturbed to seed the rest of the population. Sincethe LP solution can be fractional, we experimented with three ways to \integerize"it. One was to use the nonzero value of a variable in the LP solution as a probability;if the value of a random number, 0 � r � 1, was less than the variable's value, weset the corresponding bit to one, otherwise to zero. This is column Flip. In thesecond case, we set a bit to one if the corresponding value in the solution to the LPrelaxation was � 0:5, otherwise to zero. This is column Round. In the third case, weset to one any bits whose corresponding variable in the solution to the LP relaxationwas nonzero, otherwise to zero. This is column Ceil.35

Table 2.13 Comparison of Initialization Strategies in SSGAROWProblem Gregory BrandomName Opt. Trials Opt. Trialsnw41 11 215 63 210nw32 36 213 6 212nw40 0 216 19 211nw08 7 212 12 215nw15 24 211 44 210nw20 0 213 6 213nw33 0 195 7 189aa04 0 212 0 206nw18 0 155 0 151Between themselves Ceil outperforms Flip and Round on two problems (nw41,nw08) but otherwise none of the other results are signi�cant at the 5 percent levelof the �2 test. A direct comparison of the the Ceil results with the block randomresults in Table 2.13 is not appropriate since the ten trials in Table 2.14 all used aparticular set of parameters, whereas those in Table 2.13 were varied. However, wedo note that for the smaller problems LP initialization does well, but for the largerones (aa04, nw18) it was unable to help SSGAROW �nd a feasible solution to either.Since one of our motivations was to see whether we could develop an algorithm forthe SPP that did not need to solve the LP relaxation as a starting point, we did notpursue LP initialization further.Table 2.14 Linear Programming Initialization in SSGAROWProblem Flip Round CeilName Opt. Trials Opt. Trials Opt. Trialsnw41 3 9 3 9 8 10nw32 4 9 3 9 5 9nw40 2 9 3 8 2 10nw08 4 9 6 9 10 10nw15 8 9 6 8 10 10nw20 1 8 5 9 2 10nw33 2 8 6 8 6 10aa04 0 7 0 8 0 9nw18 0 9 0 9 0 92.4.6 Crossover. The crossover operator takes bits from each parent stringand combines them to create child strings. The motivating idea is that by creatingnew strings from substrings of �t parent strings, new and promising areas of thesearch space will be explored. Figure 2.8 illustrates the classical one-point crossover36

Parent Strings Child Stringsa a a a a a a a a a b b b b b bb b b b b b b b b b a a a a a aFigure 2.8. One-Point CrossoverParent Strings Child Stringsa a a a a a a a a a b b b a a ab b b b b b b b b b a a a b b bFigure 2.9. Two-Point Crossoveroperator. Starting with two parent strings of length n = 8, a crossover site c = 3 ischosen at random. Two new strings are then created; one uses bits 1{2 from the �rstparent string and bits 3{8 from the second parent string; the other string uses thecomplementary bits from the two parent strings.In the past several years, however, GA researchers have preferred either two-pointor uniform crossover. It is these, along with a specialized two-point \block crossover"we developed for the SPP problem, that we compared.2.4.6.1 Two-Point Crossover. Booker [10] cites DeJong [17] who notedthat one-point crossover is really a special form of two-point crossover where thesecond \cut" point is always �xed at the zero location. Figure 2.9 illustrates two-point crossover. Starting with two parent strings of length n = 8, two crossover sitesc1 = 3 and c2 = 6 are chosen at random. Two new strings are then created; one usesbits 1{2 and 6{8 from the �rst parent string and bits 3{5 from the second parentstring; the other string uses the complementary bits from each parent string.Two-point crossover (and one-point crossover) are special cases of n-point crossoveroperators. In the n-point crossover operators, more than one crosspoint is selected,and several substrings from each parent may be exchanged. Experiments by Booker[10] showed a signi�cant improvement in o�-line performance at the expense of on-line performance when using two randomly generated crossover points. In the caseof function optimization, o�-line performance is the more important measure.2.4.6.2 Two-Point Block Crossover. We experimented with a modi�-cation of two-point crossover designed to take advantage of the block staircase formwe sorted the SPP problem into. We de�ne two-point block crossover to be crossoversuch that the crossover columns, c1 and c2, c1 < c2, are always selected to be the �rstcolumns of two blocks, Bi1 and Bi2 .Block crossover was developed as an attempt to preserve feasibility (or at leastnot make a solution more infeasible.) From the de�nition of block Bi we know37

Parent Strings Child Stringsa a a a a a a a b a a b a b b ab b b b b b b b a b b a b a a bFigure 2.10. Uniform Crossoverthat all columns in Bi have their �rst one in row i. It follows that at most onecolumn in any block can be set to one in a feasible solution. The intent of two-pointblock crossover was to avoid introducing additional infeasibilities in the blocks thatcontain the crossover columns, since all columns in that block come from only oneparent. Two-point block crossover can, however, still introduce infeasibilities intoother blocks.2.4.6.3 Uniform Crossover. One way to think of uniform crossover is asrandomly generating a bit-mask that indicates from which parent string to take thenext bit when creating the o�spring [61]. Figure 2.10 illustrates uniform crossover.Starting with two parent strings of length n = 8, the bit-mask 01101001 is randomlygenerated. This mask is applied to the parent strings such that a \1" bit indicatesthat the next bit for the �rst child string should be taken from the �rst parent string,and a \0" bit indicates that the next bit for the �rst child string should be takenfrom the second parent string. The bit-string is then complemented and the processrepeated to create the second child string.Spears and DeJong [59] and Syswerda [61] give evidence to support the claimthat uniform crossover has a better recombination potential|the ability to combinesmaller building blocks into larger ones|than do other crossover operators. Testingby Syswerda showed that uniform crossover performed signi�cantly better than one-or two-point crossover on most problems. DeJong and Spears [19] present empiri-cal results on a set of n-peak problems (those with one global optima, but n � 1local optima) comparing two-point and uniform crossover with varying populationsizes. Their results show that uniform crossover is better than two-point crossoverfor smaller values of n and for smaller values of the population size N . In [58],however, Spears and DeJong note just the opposite e�ect as both n and N increase:This suggests a way to understand the role of multi-point crossover. Withsmaller populations, more disruptive crossover, such as uniform or n-point(n� 2) may yield better results because they help overcome the limitedinformation capacity of smaller populations and the tendency for morehomogeneity. However, with larger populations, less disruptive crossoveroperators (two�point) are more likely to work better, as suggested by thetheoretical analysis.Syswerda [61] notes that uniform crossover replaces the need for the inversionoperator. Inversion moves bits around so that related sets of bits are less likely to38

be disrupted and more likely to be grouped with similar bit groupings. Becauseuniform crossover chooses bits randomly to mask, however, it does not have thesame disrupting e�ect on long de�ning length schemata that n-point crossover does,and so inversion is not necessary. Thus uniform crossover may be advantageous forSPP problems because the long strings associated with large problems may make theinterruption of long de�ning length schemata a serious problem.Table 2.15 contains the results of our tests to compare all three crossover operatorsusing SSGAROW. The �2 test showed no signi�cant di�erence between any of thecrossover operators on any of the problems.Table 2.15 Comparison of Crossover Operators Using SSGAROWProblem Two-Point Uniform Two-Point BlockName Opt. Trials Opt. Trials Opt. Trialsnw41 24 142 24 141 26 142nw32 15 139 16 144 11 142nw40 5 142 8 142 6 143nw08 8 140 6 143 5 144nw15 25 140 22 140 21 141nw20 1 141 1 141 4 144nw33 3 141 1 143 3 100aa04 0 133 0 143 0 142nw18 0 143 0 141 0 22Spears and DeJong [59] suggest parameterizing uniform crossover with a param-eter pu that is the probability of swapping two parents bit values. Normally inuniform crossover pu = 0:5, however, Spears and DeJong note that with pu = 0:1,uniform crossover is less disruptive than two-point crossover with no de�ning lengthbias. They believe this is useful in being able to achieve a proper balance betweenexploration and exploitation. Table 2.16 shows the results of experiments we didto compare three values of pu (0.6, 0.7, and 0.8) with 0.5. The �2 test showed nosigni�cant di�erences among any of the results.Studies of crossover rate suggest that a high rate, which disrupts many stringsselected for reproduction, is important in a small population. Further studies show adecreasing crossover rate as the population size increases. Some classical results usinggenerational replacement GAs have suggested N = 50-100 and pc = 0:6 (DeJong [17]),and N = 80 and pc = 0:45 (Grefenstette [30]) as good values for o�ine performance.More recently, steady-state GAs have become prominent; but no set of parametervalues is yet a default.To try to determine a good crossover rate, we tested three crossover probabilities,0.3, 0.6, and 0.9, in conjunction with the three crossover operators described earlier.The results are shown in Table 2.17. The �2 test shows little conclusive evidence; 0.639

Table 2.16 Parameterized Uniform Probability Using SSGAROWProblem pb = 0:5 pb = 0:6 pb = 0:7 pb = 0:8Name Opt. Trials Opt. Trials Opt. Trials Opt. Trialsnw41 7 10 7 8 6 10 9 10nw32 4 10 0 10 3 9 0 7nw40 5 10 4 10 2 6 2 6nw08 1 9 2 10 3 8 3 10nw15 5 8 8 10 4 9 6 8nw20 0 8 1 9 1 10 0 10nw33 1 9 3 9 4 10 3 10aa04 0 8 0 8 0 6 0 1nw18 0 9 0 8 0 8 0 10superior to 0.9 on two problems (nw41, nw08) and 0.3 superior to 0.6 and 0.9 on oneproblem (nw40).Table 2.17 Comparison of Crossover Probabilities in SSGAROWProblem 30% 60% 90%Name Opt. Trials Opt. Trials Opt. Trialsnw41 23 141 33 142 18 142nw32 13 144 14 139 15 142nw40 12 144 4 140 3 143nw08 7 142 10 144 2 141nw15 24 141 24 141 20 139nw20 2 140 1 142 3 144nw33 3 144 1 136 3 104aa04 0 136 0 141 0 141nw18 0 116 0 95 0 95
40

2.4.7 Computational Complexity.Here we give a complexity analysis for the average cost per iteration for thealgorithm given in Figure 2.1. We note that the analysis is particular to speci�coperator choices we made (e.g., uniform crossover vs. two-point crossover) and alsoreects the particular data structures being used. For the test problems used in thenext chapter, N was 100, m varied from 17 to 823 and was typically 20{40, and nvaried from 197 to 43,749 and was typically 600{3000.The ROW heuristic is applied to one randomly selected string each generation,and one constraint is randomly selected to try to improve. A �rst-improving strategyis used. We de�ne PMAX = maxj fjPj jg � K < m. That is, PMAX is the largestnumber of nonzeros in a column, and is bounded by a constant K, less than thenumber of rows. We will use PMAX below as an upper bound on jPj j. We de�neRAV G to be the average number of nonzeros in a row. Since the choice of constraintis equally likely, we use RAV G when determining complexity terms dependent on thenumber of nonzeros in a row. For the test problems used in the next chapter, PMAXwas typically 7{17, and RAV G was typically 150{200.If jrij = 0, a single column is randomly selected in constant time, and an O(PMAX)step follows to update the count of how many columns cover each row. If jrij = 1, wemust �rst determine which column covers this row in time O(RAV G). Next, we loopover each j 2 Ri (O(RAV G)) and consider a 1-interchange move with the columncurrently one. Each such comparison requires evaluations of the cost to add anddelete the respective columns. Each of these requires a loop over all the rows coveredby that column (O(PMAX)) so the total complexity is O(RAV GPMAX). If jrij > 1, asingle column is randomly selected in constant time. Next, to determine the set ofcolumns in jrij requires a search through Ri, at complexity O(RAV G), to see whichcolumns can cover this row. These are then set to zero, which takes time O(jrij). Weconclude that the complexity of ROW is O(RAV GPMAX).Selection was done using a binary tournament. This requires randomly selectingtwo parents and may be done in constant time. We chose to use uniform crossover,which requires a bit mask for every bit position; its complexity is O(n). Mutationis also O(n), since we call a random number generator for each bit to determinewhether we should ip it. Determining the string to delete required looking throughthe whole population, which takes time O(N).Not allowing duplicate strings requires comparing the new o�spring to each stringin the population (O(N)). Each of these comparisons requires comparing each bitposition (O(n)). Therefore, the total complexity of the comparisons is O(nN). Ifwe do �nd a duplicate, we go through an unknown number of mutate steps, each ofwhich takes time (O(n)), until the string is no longer a duplicate.Function evaluation is done twice each generation, once for the newly createdo�spring of the GA, and once for the string that ROW was applied to. Evaluating41

the function requires determining the cost and penalty terms. Calculating the costcomponent is O(n), since we must test each bit to see which cj to include in the costterm. To determine the penalty term, we must �rst determine jrij for each i 2 I. Todo this, we loop over each column j (O(n)) and, if xj = 1, update ri for all i 2 Pj .So the complexity to calculate the penalty term is O(nPMAX). Using the up-to-datejrij's, we loop over each constraint O(m) to determine the total penalty term. Oncewe have the evaluation function values, we calculate the �tnesses by searching throughthe population O(N) to �nd the least �t string and then calculating Equation (2.4.4)for each string (O(N)).Collecting the largest terms the cost of an average iteration isCAVG = O(nN) +O(RAV GPMAX) +O(m):We make the following empirical observations. First, as described in Section 2.4.1,our implementation works directly with the bits stored in a computer word. If theword length is WL, in many cases steps in the algorithm that have complexity O(n)can be done in time O(n=WL), since we can often test for equality or nonzero bits atthe word level rather than the individual bit level. Since an SPP solution is mostlyzero bits, in practice this will usually be advantageous. Second, we did not keep asorted list of evaluation function values. However, this could be used to reduce thecomplexity to determine the string to delete and calculate the �tness values. Third,it is possible to use some hashing of the indices of the one bits in a string to maketesting for duplicates more e�cient.2.5 DiscussionOne early conclusion we reached was that the generational replacement GA, evenwith elitism, was not very good at �nding solutions to SPP problems. In fact, even�nding feasible solutions to relatively small problems proved a di�cult challenge. Theprimary cause of this was premature convergence. The SSGA proved more successful,particularly at �nding feasible solutions. However, the SSGA still had considerabledi�culty �nding optimal solutions. This situation motivated us to develop a localsearch heuristic to hybridize with the SSGA.The ROW heuristic we developed is specialized for the SPP. ROW has threeparameters: how many iterations it is applied, how to select the constraint to applyit to, and how to select a move to make. In general, the most successful approachwith ROW seems to be to \work quicker, not harder." We found that applying ROWto just one constraint, choosing this constraint randomly, and using a �rst-improvingstrategy (which also introduces randomness when a constraint is infeasible) is moresuccessful than attempts to apply ROW to the most infeasible constraint or �nd thebest-improving solution.The advantages of ROW relative to a best-improving 1-opt heuristic we also im-plemented [43] are its ability to make moves in large neighborhoods such as when42

jrij > 1, its willingness to move downhill to escape infeasibilities, and the random-ness introduced by the �rst-improving strategy. Even with ROW we detected aconvergence in the population after some period of time. When all constraints arefeasible, ROW no longer introduces any randomness since in the case jrij = 1 itis in a \true" �rst-improving strategy mode. When most constraints are feasible,the 1� interchange moves examined degrade the current solution, so ROW remainstrapped in a local optima.Table 2.18 compares the SSGA, the ROW heuristic, and the SSGAROW hybrid.SSGA and ROW are not much di�erent. Using the �2 test, SSGA outperforms ROWon problem nw08, and ROW outperforms SSGA on nw15 and nw33. SSGAROW,however, outperforms both ROW and SSGA on �ve and seven of the test problems,respectively. The search heuristic is able to make good local improvements to thestrings, and the GA's recombination ability allows these local improvements to beincorporated into other strings and thus have a global e�ect.We tested several operator and parameter value choices. In most cases we con-cluded that the di�erent options we compared all worked about the same. Morespeci�cally, the linear amd countinfz penalty terms performed about the same. Therewas no signi�cant di�erence between either �tness techniques or selection method.The di�erent crossover operators and crossover probabilities we tested also all be-haved about the same. An exception was our attempt to initialize the populationusing some type of heuristic method. We found the wide sampling of the initial searchspace provided by block random initialization was preferred.Table 2.18 Comparison of AlgorithmsProblem SSGA ROW SSGAROWName Opt. Trials Opt. Trials Opt. Trialsnw41 21 854 30 860 74 425nw32 3 856 7 861 42 425nw40 1 859 4 861 19 427nw08 8 862 0 854 19 427nw15 1 857 116 425 68 421nw20 1 860 2 774 6 426nw33 0 862 9 821 7 384aa04 0 824 0 649 0 418nw18 0 831 0 820 0 306
43

CHAPTER IIIPARALLEL GENETIC ALGORITHMIn this chapter we discuss the parallel genetic algorithm we developed. First,we give an overview of the island model that is the basis for the parallel geneticalgorithm. Next, we discuss several parameters of the island model and experimentswe carried out to try and determine good ones. Third, we describe the hardware andsoftware environment in which the experiments were performed. Fourth, we presentthe results of our experiments applying the parallel genetic algorithm to a test suiteof set partitioning problems. We conclude with a discussion of our results.3.1 The Island Model Genetic AlgorithmIn population genetics an island model is one where separate and isolated subpop-ulations evolve independently and in parallel. It is believed that multiple distributedsubpopulations, with local rules and interactions, are a more realistic model of speciesin nature than a single large population.The island model genetic algorithm (IMGA) is analogous to the island model ofpopulation genetics. A GA population is divided into several subpopulations, eachof which is randomly initialized and runs an independent sequential GA on its ownsubpopulation. Occasionally, �t strings migrate between subpopulations.The migration of strings between subpopulations is a key feature of the IMGA.First, it allows the distribution and sharing of above average schemata via the stringsthat migrate. This serves to increase the overall selective pressure since additionalreproductive trials are allocated to those strings that are �t enough to migrate [67].At the same time, the introduction of migrant strings into the local population helpsto maintain genetic diversity, since the migrant string arrives from a di�erent sub-population which has evolved independently.The IMGA may be subject to premature convergence pressure if too many copiesof a �t string migrate too often, and to too many subpopulations. It is possible thatafter a certain number of migration steps each subpopulation contains a copy of theglobally �ttest individual, and copies of this string (and only this string) migratebetween subpopulations. In fact, this occurred often in our early experiments whenwe were not checking to see whether the arriving string was a duplicate of one alreadyin the subpopulation. The \�x" was to extend the test for duplicate strings (seeSection 2.2) to the arriving string.The IMGA is itself a logical model. By this we mean that the underlying computerhardware used for the implementation is not speci�ed, only the high-level model. Forexample, an IMGA can be executed on a sequential computer by time-sharing theprocessor over the computations associated with each subpopulation's sequential GA.However, the most natural computer hardware on which to implement an IMGA is a44

distributed-memory parallel computer. In this case each island is mapped to a node,and the processor on that node runs the sequential GA on its subpopulation. Sincethe nodes execute in parallel, it is possible to perform more reproductive trials in a�xed (elapsed) time period as processors are added, assuming the parallel comput-ing overheads associated with communicating migrating strings do not increase thecomputational e�ort signi�cantly. Because selection and other GA operators are ap-plied locally, no global synchronization is required. Finally, strings migrate relativelyinfrequently, and the amount of data sent is usually small. The result is a very low(attractive) communication to computation ratio.A word about terminology. Since we always maintain a one to one mapping ofsubpopulations to processors, in the rest of this thesis we will use the words processor,node, and subpopulation interchangeably. That is, when we say node or processor,we mean the subpopulation that resides on that node or processor.The IMGA is programmed using a single-program multiple-data (SPMD) pro-gramming model; each processor is executing the same program, but on di�erentdata (their respective subpopulations). \Synchronization" occurs between proces-sors only when strings are exchanged. A generic IMGA is shown in Figure 3.1. Thedi�erence between Figure 3.1 and Figure 2.1 is the addition of a test to see whetheron this iteration a string is to be migrated. If so, the neighboring subpopulation tomigrate the string to is determined, and the string to migrate, xmigrate, is selectedand sent to the neighbor. A migrant string, xrecv, is then received from a neighboringpopulation, and the string to delete, xdelete is determined and replaced by xrecv.3.2 Parameters of the Island ModelAn IMGA is characterized by several choices: the type of sequential GA to runon each node, how many strings to migrate and how often to migrate them, how tochoose the string(s) to migrate and the string(s) to replace, the logical topology thesubpopulations are arranged in, and which subpopulations communicate on a migra-tion step. From our work in the previous chapter, we concluded that a steady-stategenetic algorithm in conjunction with the ROW heuristic was an e�ective choice forthe sequential GA. For the other choices, however, a number of possibilities existed.The choice of \communication" parameters in the IMGA echoes the competingthemes of selective pressure and population diversity noted in sequential GAs. Fre-quently migrating many �t strings and deleting the least �t strings serve to increasethe selective pressure, but decrease the population diversity. The choice of logicaltopology and neighbors to communicate with will a�ect how \fast" �t strings maymigrate among subpopulations.We chose to �x the number of strings to migrate to one. There were two reasonsfor this choice. First, it seemed intuitively appealing in conjunction with a SSGA;integrating a single arriving migrant string is similar to how the SSGA integratesits own newly created o�spring. The primary di�erences are that the migrant string45

arrives from a di�erent subpopulation and is presumably of above-average �tness.The second reason was simply to cut down on the size of the parameter space beingexplored and to focus on choices for the other parameters. For a similar reason tothe latter, we also chose to �x the logical topology of the subpopulations to a two-dimensional toroidal mesh. Each processor exchanged strings with its four neighbors,alternating between them each migration generation (i.e., north, east, west, south,north, : : :).To determine suitable values for the other parameters, we performed a set ofexperiments, similar in philosophy to those described in the preceding chapter. Eachof these experiments was performed using eight processors on the IBM SP1. Eachprocessor ran the SSGAROW algorithm on its own subpopulation of size 50. Eachrun was terminated either when an optimal solution was found or when an iterationlimit of 50,000 was reached. Except for the population size and limit on the numberof iterations, all other parameters used in these tests were the same as those used inthe main experiments described in more detail in Section 3.5.We restricted these experiments to the seven smaller problems used in our se-quential tests. Our intention was to reduce the computational e�ort required. Foreach of these seven test problems we ran a total of 72 trials. On each trial we variedone of the parameters: the string to migrate, the string to delete, and the migrationfrequency. Each trial was randomly initialized as described in Section 3.3.3.2.1 String to Migrate. There are two reasons to send a string to anothersubpopulation. One is to increase the �tness of the other subpopulation. The otheris to help the other subpopulation maintain diversity. As in the sequential GA,the competing themes of selective pressure and diversity arise. If a subpopulationconsistently and frequently receives similar, highly �t strings, these strings becomepredominant in the population, and the GA will focus its search on them at theexpense of lost diversity. If, on the other hand, random strings are received, diversitymay be maintained, but the subpopulation's �tness will likely not improve.We compared two ways to choose the string to migrate. In the �rst, the �tteststring in a subpopulation was sent to a neighbor. This strategy tends to increasethe selective pressure. In the second case, the string to migrate was selected via aprobabilistic binary tournament with parameter pb = 0:6. The second choice servesto reduce the selective pressure while still attempting to migrate strings with above-average �tness.Table 3.1 compares the two strategies. The results in the Tournament columnused a probabilistic binary tournament to select the string to migrate. The resultsin the Best column selected the best string in the subpopulation to migrate. Thecolumn labeled OptIter is an average, over all runs where an optimal solution wasfound, of the iteration in which the optimal solution was found. The �2 test shows nosigni�cant di�erence between either strategy using the number of optimal solutionsfound as the comparison metric. From the OptIter column we note that the strategy46

t 0initialize P (t)evaluate P (t)foreach generationlocal search (xrandom 2 P (t))select(x1;x2) from P (t)if(r < pc) thenxnew = crossover(x1;x2)else xnew = mutate(x1;x2)endifdelete (xworst 2 P (t))while (xnew 2 P (t))mutate(xnew)P (t+ 1) P (t) [xnewif (migration generation) thento = neighbor(myid; gen)xmigrate = string to migrate(P(t+1))send string(to;xmigrate)xrecv = recv string ()xdelete = string to delete(P(t+1))replace string(xdelete;xrecv; P (t+ 1))endifevaluate(Pt+1)t t+ 1endforFigure 3.1. Island Model Genetic Algorithm
47

Table 3.1 Migrant String Selection StrategiesProblem Tournament BestName Opt. Trials OptIter Opt. Trials OptIternw41 36 36 601 36 36 586nw32 24 36 4865 22 36 5172nw40 29 36 6596 30 36 4147nw08 34 36 5375 31 36 8135nw15 36 36 986 36 36 942nw20 18 36 10601 18 36 5677nw33 24 36 6807 31 36 4148that is the fastest at �nding an optimal solution varies by problem, although nw40,nw20, and nw33 show the tournament strategy is signi�cantly slower, most likelyimplying less selective pressure. We conclude that both the tournament and beststrategy are e�ective and that the choice is not signi�cant as long as above-average�tness strings are being migrated.3.2.2 String to Delete. We tested two strategies for determining the stringto delete. The �rst was to delete the least �t string in the subpopulation. The otherwas to hold a probabilistic binary tournament with parameter pb = 0:4 and delete the\winner." Deleting the worst-ranked string more aggressively enforces the selectivepressure.Table 3.2 compares the two strategies. The column labeled Tournament wasde�ned previously. The column labeled Worst refers to selecting the least �t stringin the subpopulation to be deleted. The �2 test shows the tournament strategyperforms signi�cantly better on three problems (nw32, nw40, and nw33). From theOptIter column we see that the tournament strategy is again signi�cantly slower at�nding the optimal solution. Here, however, the reduction in selective pressure paysdividends, as this strategy is more successful at �nding the optimal solution.The result on nw20 is interesting. More optimal solutions are found using theworst strategy, although it is just below the 5 percent signi�cance level of the �2 test.From Table 2.2 we note that of the seven smaller test problems, nw20 is in some waysthe hardest; it had an all fractional solution to the linear programming relaxation andrequired the most nodes to be searched in the branch-and-bound tree. It would seemdeleting the worst-ranked subpopulation member more severely enforces selectivepressure than the choice of string to migrate leading to results similar to what hasbeen observed for sequential GAs; the population converges to a solution faster, butthe solution is not necessarily as good as can be found by moderating some of theselective pressure. The increased selective pressure may be necessary on more di�cultproblems, however. 48

Table 3.2 String Deletion StrategiesProblem Tournament WorstName Opt. Trials OptIter Opt. Trials OptIternw41 36 36 638 36 36 549nw32 28 36 5611 18 36 4080nw40 34 36 5857 25 36 4661nw08 33 36 7285 32 36 6079nw15 36 36 978 36 36 950nw20 14 36 8926 22 36 7638nw33 32 36 6202 23 36 4065Table 3.3 Comparison of Migration FrequencyProblem No Migration 100 1000 5000Name Opt. Trials Opt. Trials Opt. Trials Opt. Trialsnw41 24 24 24 24 24 24 24 24nw32 15 24 15 24 17 24 14 24nw40 22 24 17 24 20 24 22 24nw08 0 24 21 24 23 24 21 24nw15 8 24 24 24 24 24 24 24nw20 14 24 14 24 11 24 11 24nw33 15 24 21 24 16 24 18 243.2.3 Frequency of Exchange. We tested three string migration frequenciesand no migration. The results, given in Table 3.3, are not conclusive. The onlysigni�cant result with the �2 test was that all three migration choices performedbetter on nw08 and nw15 than no migration. Even without migration, however, theGA still found a number of optimal solutions.As an example of an ambiguous result, we note that for nw20, which we earlierdescribed as possibly the most di�cult of the seven test problems, the most optimalsolutions were found both by migrating as frequently as possible and by not migratingat all.3.3 Computational EnvironmentThe IBM SP1 parallel computer used to run the multiple independent sequentialtrials described in Chapter II was used in a tightly coupled mode for the parallelexperiments described in this chapter. The IBM SP1 we used had 128 nodes, eachof which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB ofmemory, and a 1 GB disk. Each node ran its own copy of the AIX operating system.The SP1 makes use of a high-performance switch for connecting the nodes.49

The parallel program was initially developed on Unix workstations making use ofthe message passing capabilities of the p4 [11] parallel programming system. For theparallel experiments on the SP1, the code was ported to the Chameleon [34] message-passing system. Chameleon is designed to provide a portable, high-performancemessage-passing system. Chameleon runs on top of many other message passingsystems, both vendor-speci�c and third party, allowing widespread portability. In ourcase Chameleon's p4 interface allowed us to continue development on workstationsand, at the same time, begin experiments on the SP1 where we used Chameleon'sEUIH interface. EUIH is an experimental low-overhead version of IBM's ExternalUser Interface message passing transport layer. The primary advantage of EUIH is itse�ciency for applications that need high-speed communications. Although we do notconsider the PGA such an application, since small amounts of data are communicatedrelatively infrequently, EUIH is the standard transport layer in use on the SP1 systemthat we used at Argonne National Laboratory.The parallel program itself is based on the single-program multiple-data (SPMD)model in common use today on distributed-memory computers. It uses explicit sendsand receives for communicating strings between processors. Broadcasts from proces-sor zero to other processors handle various initialization tasks. A number of statisticalcalculations, not part of the algorithm but used for periodic report writing, are han-dled by collective (global) operations.Random number generation was done using an implementation of the univer-sal random number generator proposed by Marsaglia, Zaman, and Tseng [45], andtranslated to C from James' version [38]. Each time a parallel run was made, all sub-populations were randomly seeded. This was done by having processor zero get andbroadcast the microsecond portion of the Unix gettimeofday system call. Each pro-cessor then added its processor id to the value returned by the Unix gettimeofdayand used this unique value as its random number seed. For the random numbergenerator in [45] each unique seed gives rise to an independent sequence of randomnumbers of size � 1030 [38].3.4 Test ProblemsTo test the parallel genetic algorithm we selected a subset of forty problems fromthe Ho�man and Padberg test set [36]. This included the nine problems used inChapter II and thirty-one others. The test problems are given in Table 3.4, wherethey have been sorted according to increasing numbers of columns. The columns inthis table are the test problem name, the number of rows and columns in the problem,the number of nonzeros in the A matrix, the optimal objective function value for theLP relaxation, and the objective function value of the optimal integer solution.Table 3.5 gives attributes of the solution to the LP relaxation and results from50

solving the integer programming problem with the lp solvey program. The columnsin this table are the name of the test problem, the number of simplex iterationsrequired by lp solve to solve the LP relaxation plus the additional simplex itera-tions required to solve LP subproblems in the branch-and-bound tree, the numberof variables in the solution to the LP relaxation that were not zero, the number ofthe nonzero variables in the solution to the LP relaxation that were one (rather thanhaving a fractional value), and the number of nodes searched by lp solve in itsbranch-and-bound tree search before an optimal solution was found.The optimal integer solution was found by lp solve for all but the followingproblems: aa04, kl01, aa05, aa01, nw18, and kl02, as indicated in Table 3.5 by the\>" sign in front of the number of simplex iterations and number of IP nodes forthese problems. For aa04 and aa01, lp solve terminated before �nding the solutionto the LP relaxation. For aa05, kl01, and kl02, lp solve found the solution tothe LP relaxation but terminated before �nding any integer solution. A nonoptimalinteger solution was found by lp solve for nw18 before it terminated. Terminationoccurred either because the program aborted or because a user-speci�ed resourcelimit was reached.Many of these problems are \long and skinny", that is, they have few rows rel-ative to the number of columns (it is common in the airline industry to generatesubproblems of the complete problem that contain only a subset of the ight legs theairlines are interested in, solve the subproblems, and try to create a solution to thecomplete problem by piecing together the subproblems). Of these test problems, allbut two of the �rst thirty have fewer than 3000 columns (nw33 and nw09 have 3068and 3103 columns, respectively). The last ten problems are signi�cantly larger, notjust because there are more columns, but also because there are more constraints.For lp solve many of the smaller problems are fairly easy, with the integer opti-mal solution being found after only a small branch-and-bound tree search. There are,however, some exceptions where a large tree search is required (nw23, nw28, nw36,nw29, nw30). These problems loosely correlate with a higher number of fractionalvalues in the LP relaxation than many of the smaller problems, although this cor-relation does not always hold true (e.g., nw28 with few fractional values requires a\large" tree search, while nw33 with \many" fractional values does not). For thelarger problems lp solve results are mixed. On the nw problems (nw07, nw06, nw11,nw18, and nw03) the results are quite good, with integer optimal solutions found forall but nw18. Again, the size of the branch-and-bound tree searched seems to corre-late loosely with the degree of fractionality of the solution to the LP relaxation. OnyWe note that as a public-domain program lp solve should not be used as the standardby which to judge the e�ectiveness of linear and integer programming solution methodology.Our interest here was in being able to characterize the solution di�culty of the test problemsand to make a \ballpark" comparison against traditional operations research methodology.For this purpose we believe lp solve was adequate.51

the kl and aa models, lp solve has considerably more di�culty and does not �ndany integer solutions.3.5 Parallel ExperimentsOur hypothesis was that a parallel genetic algorithm could be developed thatwould solve real-world set partitioning problems and, further, that the e�ectivenessof the parallel GA would improve as the number of subpopulations increased.Our work in Chapter II concentrated on �nding a sequential GA that workedwell on the SPP. The work in Section 3.2 concentrated on �nding a good set of\communication" parameters to use with the IMGA. While we do not claim to havefound the optimal set of values in either case, we do believe we have made reasonablygood choices.All the results to be presented were made with the following operators and pa-rameter settings. The sequential GA used was steady-state, with one new individualgenerated each generation. Fitness was calculated using a dynamic linear �tness func-tion. The penalty term used in the evaluation function was the countinfz penalty term(Equation (2.2)). In order to generate a new individual, two strings were selectedby holding two binary tournaments. A random number, 0 � r � 1, was generatedto decide whether a string should undergo crossover or mutation. If r � pc = 0:6,uniform crossover (with pu = 0:7) was performed, and one of the two o�spring wasrandomly selected to insert into the population. If r > pc, one of the two parentstrings was randomly selected, a clone of that parent string was made, and the cloneunderwent mutation. The mutation rate was �xed and set to the reciprocal of thestring length. The least �t string in the population was selected to be deleted. Beforeinserting a new string into the population, it was �rst tested to see whether it wasa duplicate of a string already in the population. If so, mutation was applied to thestring until it was no longer a duplicate of any string in the population.The ROW heuristic was applied to one randomly selected string each generation.A constraint was randomly selected, and ROW attempted to improve the stringwith respect to that constraint. The �rst-improving strategy was used. A run wasterminated either when the optimal solution was foundy or when all subpopulationshad performed 100,000 iterations.For the communication parameters, the best string in a subpopulation was se-lected to migrate to a neighboring subpopulation every 1,000 iterations. The stringto delete was selected by holding a probabilistic binary tournament (with pb = 0:4).Note that the probabilistic deletion strategy allows a chance that the best stringyFor these tests, the value of the (known) optimal solution was stored in the programwhich tested the best feasible solution found each iteration against the optimal solutionand stopped if they were the same. 52

Table 3.4 Parallel Test ProblemsProblem No. No. No. LP IPName Rows Cols Nonzeros Optimal Optimalnw41 17 197 740 10972.5 11307nw32 19 294 1357 14570.0 14877nw40 19 404 2069 10658.3 10809nw08 24 434 2332 35894.0 35894nw15 31 467 2830 67743.0 67743nw21 25 577 3591 7380.0 7408nw22 23 619 3399 6942.0 6984nw12 27 626 3380 14118.0 14118nw39 25 677 4494 9868.5 10080nw20 22 685 3722 16626.0 16812nw23 19 711 3350 12317.0 12534nw37 19 770 3778 9961.5 10068nw26 23 771 4215 6743.0 6796nw10 24 853 4336 68271.0 68271nw34 20 899 5045 10453.5 10488nw43 18 1072 4859 8897.0 8904nw42 23 1079 6533 7485.0 7656nw28 18 1210 8553 8169.0 8298nw25 20 1217 7341 5852.0 5960nw38 23 1220 9071 5552.0 5558nw27 22 1355 9395 9877.0 9933nw24 19 1366 8617 5843.0 6314nw35 23 1709 10494 7206.0 7216nw36 20 1783 13160 7260.0 7314nw29 18 2540 14193 4185.3 4274nw30 26 2653 20436 3726.8 3942nw31 26 2662 19977 7980.0 8038nw19 40 2879 25193 10898.0 10898nw33 23 3068 21704 6484.0 6678nw09 40 3103 20111 67760.0 67760nw07 36 5172 41187 5476.0 5476nw06 50 6774 61555 7640.0 7810aa04 426 7195 52121 25877.6 26402kl01 55 7479 56242 1084.0 1086aa05 801 8308 65953 53735.9 53839nw11 39 8820 57250 116254.5 116256aa01 823 8904 72965 55535.4 56138nw18 124 10757 91028 338864.3 340160kl02 71 36699 212536 215.3 219nw03 59 43749 363939 24447.0 2449253

Table 3.5 Solution Characteristics of the Parallel Test ProblemsProblem LP LP LP IPName Iters Nonzeros Ones Nodesnw41 174 7 3 9nw32 174 10 4 9nw40 279 9 0 7nw08 31 12 12 1nw15 43 7 7 1nw21 109 10 3 3nw22 65 11 2 3nw12 35 15 15 1nw39 131 6 3 5nw20 1240 18 0 15nw23 3050 13 3 57nw37 132 6 2 3nw26 341 9 2 11nw10 44 13 13 1nw34 115 7 2 3nw43 142 9 2 3nw42 274 8 1 9nw28 1008 5 2 39nw25 237 10 1 5nw38 277 8 2 7nw27 118 6 3 3nw24 302 10 4 9nw35 102 8 4 3nw36 74589 7 1 789nw29 5137 13 0 87nw30 2036 10 0 45nw31 573 7 2 7nw19 120 7 7 1nw33 202 9 1 3nw09 146 16 16 1nw07 60 6 6 1nw06 58176 18 2 151aa04 >7428 234 5 >1kl01 >26104 68 0 >37aa05 >6330 202 53 >4nw11 200 21 17 3aa01 >23326 321 17 >1nw18 >162947 68 27 >62kl02 >188116 91 1 >3nw03 4123 17 6 354

in the population is replaced. The logical topology was �xed to a two-dimensionaltoroidal mesh as described earlier in Section 3.2.Each problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations.Each subpopulation was of size 100. As additional subpopulations were added tothe computation, the total number of strings in the global population increased.Our assumption was that even though we were doubling the computational e�ortrequired whenever we added subpopulations, by mapping each subpopulation to anSP1 processor, the total elapsed time would remain relatively constant (except for theparallel computing overheads associated with string migration, which we felt wouldbe relatively small).The results of our experiments are summarized in Tables 3.6{3.9. Table 3.6 showsthe percent from optimality of the best solution found in any of the subpopulationsas a function of the number of subpopulations. An entry of \O" in the table indicatesthe optimal solution was found. An entry of \X" in the table means no integer feasiblesolution was found by any of the subpopulations. A numerical entry is the percentfrom the optimal solution of the best feasible solution found by any subpopulationafter the 100,000 iteration limit was reached. A blank entry means that the testwas not made (usually because of a resource limit or an abort). The solution valuesthemselves are given in Table 3.7. Table 3.8 contains the �rst iteration on whichsome subpopulation found a feasible solution. Table 3.9 is similar except that itcontains the �rst iteration on which some subpopulation found an optimal solution.In Table 3.9 an entry of \F" means a nonoptimal integer feasible solution was found.Entries in the tables marked with a superscript a did not complete. If an entry isgiven, it is from a partially completed run. We give the speci�c results here. Sinceoutput statistics were reported only every 1,000 iterations, that is the resolution withwhich results are reported in Table 3.8. nw10 aborted at 37,000 iterations whenrun using 128 subpopulations. nw12 aborted at 11,000 iterations when run using 128subpopulations. nw09 aborted at 63,000 iterations when run using 64 subpopulations.kl01 aborted at 76,000 iterations when run using 128 subpopulations. kl02 abortedat 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations whenrun using 16 subpopulations. nw03 aborted at 24,000 iterations when run using 1subpopulation, at 50,000 iterations when run using 2 subpopulations, and at 24,000iterations when run using 4 subpopulations.3.6 DiscussionOne way of looking at Table 3.6 is to consider it as consisting of four parts (recallthat the rows of the table are sorted by increasing numbers of columns in the testproblems). The �rst two parts are de�ned by the rows between and including nw41and nw06 (the �rst thirty two problems). We can think of dividing this rectangle intotwo triangular parts by drawing a diagonal line from the upper left part of the table(nw41 with one subpopulation) to the bottom right (nw06 with 128 subpopulations).Most of the results in the \upper triangle" are \O," indicating that an optimal55

Table 3.6 Percent from Optimality vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 O O O O O O O Onw32 0.0006 O 0.0006 O O O O Onw40 O O 0.0036 O O O O Onw08 X 0.0219 O O O O O Onw15 O O O 0.0001 4.4285 O O Onw21 0.0037 0.0037 O O O O O Onw22 0.0735 0.0455 0.0252 O O O O Onw12 0.1375 0.0912 0.0332 0.0218 0.0094 O O 0:0246anw39 0.0425 O O O O O O Onw20 0.0091 O O O O O O Onw23 O O O O 0.0006 O O Onw37 O 0.0163 O O O O O Onw26 0.0011 O O O O O O Onw10 X X X X X X X Xanw34 0.0203 0.0214 O O O O O Onw43 0.0831 0.0626 0.0350 O O O O Onw42 0.2727 0.0229 O O O O O Onw28 0.0469 O O O O O O Onw25 0.1040 0.1137 O O O O O Onw38 0.0323 O O O O O O Onw27 0.0818 0.0567 O 0.0039 O O O Onw24 0.0826 0.0215 O 0.0015 0.0038 O O Onw35 0.0770 O 0.0171 O O O O Onw36 0.0038 0.0010 0.0194 0.0010 0.0019 O O Onw29 0.0580 O O 0.0116 O O O Onw30 0.1116 O O O O O O Onw31 0.0069 0.0069 O O O O O Onw19 0.1559 0.1332 0.0715 0.0880 0.0148 O O Onw33 0.0128 O O O O O O Onw09 0.0398 X 0.0363 0.0231 0.0155 0.0151 0:154a Onw07 0.3089 O O O O O O Onw06 2.0755 0.2532 O 0.1779 0.0448 0.0291 O Oaa04 X X X X Xkl01 0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0:0092aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 0:1004a 0.1004 0.0502 0.0593 0:0593a 0.0410 0.0045nw03 0.2732 0:1125a 0:1371a 0.0481a See text for discussion. 56

Table 3.7 Best Solution Found vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 11307 11307 11307 11307 11307 11307 11307 11307nw32 14886 14877 14886 14877 14877 14877 14877 14877nw40 10809 10809 10848 10809 10809 10809 10809 10809nw08 X 36682 35894 35894 35894 35894 35894 35894nw15 67743 67743 67743 67755 67746 67743 67743 67743nw21 7436 7436 7408 7408 7408 7408 7408 7408nw22 7498 7302 7160 6984 6984 6984 6984 6984nw12 16060 15406 14588 14426 14252 14118 14118 14466anw39 10509 10080 10080 10080 10080 10080 10080 10080nw20 16965 16812 16812 16812 16812 16812 16812 16812nw23 12534 12534 12534 12534 12542 12534 12534 12534nw37 10068 10233 10068 10068 10068 10068 10068 10068nw26 6804 6796 6796 6796 6796 6796 6796 6796nw10 X X X X X X X Xanw34 10701 10713 10488 10488 10488 10488 10488 10488nw43 9644 9462 9216 8904 8904 8904 8904 8904nw42 9744 7832 7656 7656 7656 7656 7656 7656nw28 8688 8298 8298 8298 8298 8298 8298 8298nw25 6580 6638 5960 5960 5960 5960 5960 5960nw38 5738 5558 5558 5558 5558 5558 5558 5558nw27 10746 10497 9933 9972 9933 9933 9933 9933nw24 6836 6450 6314 6324 6338 6314 6314 6314nw35 7772 7216 7340 7216 7216 7216 7216 7216nw36 7342 7322 7456 7322 7328 7314 7314 7314nw29 4522 4274 4274 4324 4274 4274 4274 4274nw30 4382 3942 3942 3942 3942 3942 3942 3942nw31 8094 8094 8038 8038 8038 8038 8038 8038nw19 12598 12350 11678 11858 11060 10898 10898 10898nw33 6764 6678 6678 6678 6678 6678 6678 6678nw09 70462 X 70222 69332 68816 68784 68804a 67760nw07 7168 5476 5476 5476 5476 5476 5476 5476nw06 24020 9788 7810 9200 8160 8038 7810 7810aa04 X X X X Xkl01 1143 1125 1126 1119 1112 1106 1095 1096aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 241a 241 230 232 232a 228 220nw03 31185 27249a 27852a 25671a See text for discussion. 57

Table 3.8 First Feasible Iteration vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 676 299 393 353 233 127 310 89nw32 185 590 520 562 415 373 257 145nw40 376 710 434 384 204 223 211 275nw08 X 5893 33876 8067 6669 8393 6167 4819nw15 2031 1233 1019 1228 766 767 501 624nw21 786 813 618 584 654 627 471 392nw22 860 597 540 504 466 426 143 235nw12 3308 2007 2379 2586 1615 1963 1847 2000anw39 1017 755 923 516 530 347 447 325nw20 1128 895 912 893 380 619 316 324nw23 2291 2089 1686 1498 525 1178 1249 956nw37 734 384 620 544 196 502 361 165nw26 1055 978 971 881 760 331 423 474nw10 X X X X X X X Xanw34 1336 672 865 505 354 436 462 295nw43 1036 989 1025 736 636 675 320 437nw42 1178 936 774 540 460 500 323 361nw28 784 372 494 71 289 199 228 13nw25 474 731 788 221 328 315 356 369nw38 875 1040 873 662 693 418 311 398nw27 874 726 516 658 313 540 437 403nw24 1020 772 898 763 749 670 456 507nw35 1505 1263 1084 926 721 893 812 634nw36 696 625 493 400 390 361 286 104nw29 1070 604 441 556 424 558 342 294nw30 500 622 584 649 481 498 377 356nw31 1447 1118 1029 675 358 369 580 236nw19 1656 807 933 1020 857 812 602 616nw33 986 550 815 645 538 493 296 281nw09 20787 X 18414 11324 11593 11737 8000a 9025nw07 1132 1278 589 1307 928 777 636 677nw06 7472 10036 5658 3920 2846 3440 1788 2385aa04 X X X X Xkl01 3095 5146 3641 4836 3324 3299 3573 4000aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 6000a 4436 6626 4721 4000a 4840 4521nw03 10563 9000a 7000a 3944a See text for discussion. 58

Table 3.9 First Optimal Iteration vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 3845 1451 551 623 758 402 398 362nw32 F 1450 F 3910 2740 2697 2054 1006nw40 540 1597 F 1658 2268 958 979 696nw08 X F 34564 8955 14760 10676 8992 10631nw15 4593 17157 5560 F F 929 692 1321nw21 F F 7875 3929 4251 1818 1868 2514nw22 F F F 29230 3370 3037 2229 1820nw12 F F F F F 62976 34464 Fanw39 F 2345 3738 1079 1396 900 1232 913nw20 F 2420 3018 5279 27568 2295 2282 1654nw23 2591 6566 3437 3452 F 1723 2125 1477nw37 75737 F 1410 1386 1443 1370 835 779nw26 F 84765 52415 24497 13491 1660 1512 2820nw10 X X X X X X X Xanw34 F F 2443 1142 1422 1110 1417 843nw43 F F F 11004 3237 21069 4696 3296nw42 F F 2702 3348 1070 1223 1187 724nw28 F 903 1897 1232 776 718 371 191nw25 F F 2634 70642 4351 5331 1024 1896nw38 F 68564 27383 1431 1177 1093 603 514nw27 F F 610 F 2569 1669 3233 2135nw24 F F 908 F F 11912 2873 4798nw35 F 3659 F 3182 1876 1224 1158 634nw36 F F F F F 3367 2739 4200nw29 F 17212 5085 F 17146 1368 2243 795nw30 F 3058 1777 1154 1650 846 866 949nw31 F F 1646 3085 1287 1890 1682 732nw19 F F F F F 79125 27882 37768nw33 F 1670 1659 7946 1994 2210 829 873nw09 F X F F F F Fa 71198nw07 F 29033 7459 4020 4831 1874 2543 1935nw06 F F 51502 F F F 48215 19165aa04 X X X X Xkl01 F F F F F F F Faaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 Fa F F F Fa F Fnw03 F Fa Fa Fa See text for discussion. 59

solution was found. For these problems the hybrid SSGAROW algorithm was ableto �nd the optimal solution to all but one problem. For approximately two thirds ofthese problems only four subpopulations were necessary before the optimal solutionwas found. For the other one third of the problems, additional subpopulations arenecessary in order to �nd the optimal solution. For numerical entries in the \lowertriangle," we observe that in general the best solution found improves as additionalsubpopulations participate, even if the optimal solution was not reached. Using 64subpopulations, the optimal solution was found for 30 of the �rst 32 test problems.nw06, with 6,774 columns, was the largest problem for which we found an optimalsolution.The next two parts of Table 3.6 are de�ned by rows aa04 to nw18 (kl01 is similarto kl02 and nw03 in that increasingly better integer feasible solutions were found asadditional subpopulations were added, and so we \logically" group kl01 with kl02and nw03) and by the last two problems kl02 and nw03. The �rst of these, aa04through nw18, de�ne the group of problems we were not able to solve. For theseproblems we were unable to �nd any integer feasible solutions. One obvious point tonote from Table 3.4 is the large number of constraints in aa01, aa04, aa05, and nw18(we will return to nw18 in a moment). We note from Table 3.5 that these problemshave relatively high numbers of fractional values in the solution to the LP relaxationand that they were di�cult for lp solve also.For these problems, Table 3.10 summarizes the average number of infeasible con-straints across all strings in all subpopulations as a function of the number of sub-populations. One trend is the general decrease in the average number of infeasibleconstraints as additional subpopulations are added. For the aa problems the incre-mental improvement, however, appears to be decreasing.For nw11 and nw18 (and also nw10 for which no feasible solution was found),the GA was able to �nd infeasible strings with higher �tness than feasible ones andhad concentrated its search on those strings. For these problems the best (infeasible)string had an evaluation function value approximately half that of the optimal integersolution. In this case the GA has little chance of ever �nding a feasible solution. Thisis, of course, simply the GA exploiting the fact that for these problems the penaltyterm used in the evaluation function is not strong enough. For the three aa problemsthis is not the case. On average, near the end of a run an (infeasible) solution has anevaluation function value approximately twice that of the optimal integer solution.The last two problems, kl02 and nw03, have many columns and an increasingnumber of constraints. However, the GA was able to �nd integer feasible solutionson all runs we tried and a very good one for kl02 with 128 subpopulations. The trendhere is similar to all but the infeasible problems. We conjecture that with \enough"subpopulations the GA would compute optimal solutions to these problems also. Wecaution, however, that this is speculation.60

Table 3.10 No. of Infeasible Constraints vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64nw11 1.6 1.7 2.7 2.1 2.1 2.4 2.4nw18 17.7 12.4 14.5 15.2 14.5 14.1 14.2aa04 26.3 22.9 25.5 17.9 16.3aa05 95:0y 84.5 62.2 56.2aa01 70.1 66.0 75.2 70.0 53.0 54.6Table 3.8 shows the �rst iteration when a feasible solution was found by oneof the subpopulations. If we recall that the migration frequency is set to 1,000,we see that even on one processor, over one fourth of the problems �nd feasiblesolutions before any migration takes place. The number of problems for which thisoccurs grows as subpopulations are added. Using 128 subpopulations 27 problemshave feasible solutions before the �rst migration occurs. The ones that do not arethe problems where the penalty term was not strong enough, no feasible solutionwas ever found, or they are the largest problems we tried. The implication is thatthe ROW heuristic does a good job of decreasing the infeasibilities; and by simplyrunning enough copies of a sequential GA, the likelihood of one of them \gettinglucky" increases. The excessive iterations nw08 takes to get feasible is, again, dueto the fact that the penalty term is not strong enough. In this case, however, thepenalty is \almost strong enough"; hence, less �t feasible solutions eventually arefound \in the neighborhood" of the best (infeasible) strings in the population. Asimilar problem occurred with nw09.Table 3.9 is similar to Table 3.8; here it is the iteration when an optimal solutionwas found by one of the subpopulations that is shown. Again, we see a generaltrend of the �rst optimal iteration occurring earlier as we increase the number ofsubpopulations. With one subpopulation an optimal solution was found for only oneproblem (nw40) before migration occurred. With 128 subpopulations the optimalsolution was found for 13 problems before migration occurred. Several problemsshow signi�cant decrease in the iteration count as the number of subpopulationsincreases. As an example, by the time 128 subpopulations are being used to solvenw37, nw38, and nw29, which initially take tens of thousands of iterations to �nd theoptimal solution, the optimal solution has been found before any string migrationhas occurred.Table 3.11 compares the solution value found (the subcolumn Result) and time inCPU seconds (the subcolumn Secs.) of lp solve, the work of Ho�man and Padberg[36] (the column HP), and our work (the column SSGAROW). The subcolumn Resultcontains a \O" if the optimal solution was found, a numerical entry which is thepercentage from optimality of the best suboptimal integer feasible solution found, oran \X" if no feasible solution was found.61

The timings for lp solve were made on an IBM RS/6000 Model 590 workstationusing the Unix time command which had a resolution of one second. These timesinclude the time to convert from the standard MPS format used in linear program-ming to lp solve's input format. The timings for Ho�man and Padberg's work arefrom Tables 3 and 8 in [36]. These runs were made on an IBM RS/6000 Model 550workstation. The results for SSGAROW are the CPU time charged to processor zeroin a run that used the number of processors given in the Nprocs column. This isthe best solution time achieved where an optimal solution was found. If the entryis numerical, it is the percentage from optimality of the best solution found and thenumber of processors used for that run. If no feasible solution was found, it is thetime and number of processors used. When either lp solve or SSGAROW did not�nd the optimal solution, the time is prefaced with a >.We o�er the comparative results in Table 3.11 with the following caveats. All thetimings were done using a heavily instrumented, unoptimized version of our programthat performed many global operations to collect statistics for reporting. A numberof possible areas for performance improvement exist. Additionally, as noted above,the timings in Table 3.11 are all from di�erent model IBM RS/6000 workstationprocessors. As such, the reader should adjust them accordingly (depending on thebenchmark used, the Model 590 is between a factor of 1.67 and 5.02 times fasterthan the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model550). Nevertheless, we include Table 3.11 in the interest of providing some \ballpark"timings to complement the algorithmic behavior.For many of the �rst thirty-two problems, where all three algorithms found op-timal solutions for all problems (except SSGAROW on nw10), we observe that thebranch-and-cut solution times are approximately an order of magnitude faster thanthe branch-and-bound times, and the branch-and-bound times are themselves an or-der of magnitude faster than SSGAROW. For problems where the penalty term was\not strong enough," but the optimal solution was still found (nw08, nw12, nw09) SS-GAROW performs poorly. In two other cases (nw19, nw06) the search simply takesa long time, the problems have larger numbers of columns (2,879 and 6,774, respec-tively), and the complexity of the steps in the algorithm that involve n become quitenoticeable. There are also some smaller problems for which, if we adjust the timesaccording to the performance di�erences due to the hardware, SSGAROW seemscompetitive with branch-and-bound as implemented by lp solve.On the larger problems we observe that branch-and-cut solved all problems tooptimality, in most cases quite quickly. Both lp solve and SSGAROW had troublewith the aa problems, neither found a feasible solution to any of the three problems.For the two kl problems, SSGAROW was able to �nd good integer feasible solutionswhile lp solve did not �nd any feasible solutions. Although SSGAROW's kl com-putations take much more time than is allotted to lp solve, we note from Table 3.8that is was able to �nd less good feasible solutions much earlier in its search. For thelarger nw problems, lp solve did much better than SSGAROW, proving two optimal(nw11, nw03) and �nding a good integer feasible solution to the other. SSGAROW62

Table 3.11 Comparison of Solution TimeProblem lp solve HP SSGAROWName Result Secs.b Result Secs.b Result Secs.b Nprocsnw41 O 1 O 0.1 O 4 4nw32 O 2 O 0.2 O 8 2nw40 O 3 O 0.2 O 1 1nw08 O 2 O 0.1 O 135 8nw15 O 3 O 0.1 O 14 1nw21 O 1 O 0.3 O 43 32nw22 O 1 O 0.3 O 65 64nw12 O 1 O 0.1 O 1188 64nw39 O 1 O 0.2 O 16 8nw20 O 1 O 0.6 O 17 2nw23 O 6 O 0.3 O 9 1nw37 O 1 O 0.2 O 16 4nw26 O 2 O 0.3 O 41 32nw10 O 1 O 0.1 X >431 1nw34 O 2 O 0.3 O 18 8nw43 O 2 O 0.4 O 73 16nw42 O 3 O 1.0 O 23 16nw28 O 6 O 0.4 O 8 2nw25 O 3 O 0.6 O 36 64nw38 O 4 O 1.4 O 23 128nw27 O 3 O 0.3 O 7 4nw24 O 4 O 0.6 O 12 4nw35 O 4 O 0.5 O 33 128nw36 O 237 O 3.7 O 128 64nw29 O 29 O 1.0 O 49 128nw30 O 20 O 0.8 O 33 8nw31 O 10 O 1.4 O 34 4nw19 O 9 O 0.5 O 1727 64nw33 O 26 O 1.5 O 25 2nw09 O 8 O 0.5 O 5442 128nw07 O 16 O 0.7 O 129 32nw06 O 589 O 10.4 O 2544 128aa04 X >3600 O 139337 X >1848 1kl01 X >1000 O 35.4 .0092 >11532 128aa05 X >1200 O 215.3 X >3014 2nw11 O 27 O 2.1 X >2548 1aa01 X >600 O 14441 X >2126 1nw18 .0110 >3600 O 62.5 X >2916 1kl02 X >3600 O 134.4 .0045 >43907 128nw03 O 375 O 24.0 .0481 >64994 128b See text for discussion. 63

has \penalty troubles" with two of these and takes a long time on nw03 to computean integer feasible, but suboptimal solution.We stress that the times given in Table 3.11 are not just when the optimal solutionwas found using either the branch-and-bound or branch-and-cut algorithms, but whenit was proven to be optimal. In the case of SSGAROW we have \cheated" in thesense that for the test problems the optimal solution values are known and we tookadvantage of that knowledge to specify our stopping criteria. This was advantageousin two ways. First, we knew when to stop (or when to keep going). Second, weknew when a solution was optimal, even though SSGAROW inherently provides nosuch mathematical tools to determine this. For use in a \production" environmentthe optimal solutions are typically not known, and an alternative stopping rule wouldneed to be implemented. Conversely, however, we believe that if we had implementeda stopping rule, then in the case of many of the problems we would have given upthe search earlier when it \became clear" that progress was not being made.From Table 3.11 we note that the branch-and-cut work of Ho�man and Padbergclearly provides the best results in all cases. Comparing SSGAROW with lp solve,we see that neither can solve the aa problems: lp solve does better than SSGAROWon most (but not all) of the nw problems, and SSGAROW does better than lp solveon the two kl problems. John Gregory has suggested [33] that the nw models, while\real world," are not indicative of the SPP problems most airlines would like to beable to solve, in that they are relatively easy to solve with little branching and thatmore di�cult models may be in production use now, being \solved" by heuristicsrather than by exact methods.In conclusion, it is clear that the branch-and-cut approach of Ho�man and Pad-berg is superior to both lp solve and SSGAROW in all cases. With respect togenetic algorithms this is not surprising; several leading GA researchers have pointedout that GAs are general-purpose tools that will usually be outperformed when spe-cialized algorithms for a problem exist [15, 18]. Comparing SSGAROW with thebranch-and-bound approach as implemented by lp solve, we �nd that lp solvefares better for many but not all of the test problems. However, the expected scal-ability we believe SSGAROW will exhibit on larger numbers of processors and themore di�cult models that may be in production usage suggest that the parallel ge-netic algorithm approach may still be worthy of additional research.In closing this discussion, we o�er the following caution about the results we havepresented. Each result is stochastic; that is, it depends on the particular randomnumber seed used to initialize the starting populations. Ideally, we would like to beable to present the results as averages for each entry obtained over a large number ofsamples. However, at the time we did this work, computer time on the IBM SP1 wasat a premium, and we were faced with the choice of either running a large number ofrepeated trials on a restricted set of test problems (which itself would raise the issueof which particular test problems to use) or running only a single test at each data64

point (test problem and number of subpopulations), but sampling over a larger setof test problems. We believe the latter approach is more useful.

65

CHAPTER IVCONCLUSIONSThe main conclusions of this thesis are the following.I. The generational replacement genetic algorithm performed poorly on the SPP,even with elitism. Di�culties were experienced just �nding feasible solutionsto SPP problems, let alone optimal ones. The primary cause was prematureconvergence. The SSGA proved more successful, particularly at �nding feasiblesolutions. However, the SSGA still had considerable di�culties �nding optimalsolutions. This situation motivated us to develop a local search heuristic tohybridize with the SSGA.II. The local search heuristic we developed (ROW) is specialized for the SPP. Wefound that ROW was about as e�ective as the SSGA in �nding (feasible oroptimal) solutions. We found that in many cases ROW was more e�ective witha \work quicker, not harder" approach. We found that applying ROW to justone constraint, choosing this constraint randomly, and using a �rst-improvingstrategy (which also introduces randomness when a constraint is infeasible) wasmore successful than attempts to apply ROW to the most infeasible constraintor �nd the best-improving solution. One reason ROW was relatively successfulwas its willingness to degrade the current solution in order to satisfy infeasi-ble constraints. However, when all constraints were feasible, ROW no longerintroduced any randomness and was often trapped in a local optimum.III. A hybrid algorithm that combines the SSGA and ROW heuristic was moree�ective than either one by itself (a combination we called SSGAROW). TheROW heuristic is e�ective at making local improvements, particularly withrespect to infeasibilities, and the SSGA helps to propagate these improvementsto other strings and thus have a global e�ect.IV. Performance of the hybrid algorithm was relatively insensitive to a large numberof operator choices and parameter values tested. In most cases performanceremained essentially una�ected. An exception was the attempts to initializethe population using heuristic methods. We concluded that we were better o�initializing the population randomly and letting SSGAROW take advantage ofthe wider distribution of points to sample from and make its own way throughthe search space. Also, we found that not allowing duplicate strings in thepopulation was important in avoiding or delaying premature convergence.V. The island model genetic algorithm has several parameters related to stringmigration. On a limited set of tests we found that, overall, migration waspreferable to no migration (although on some problems no migration was justas e�ective as migration), but that the migration interval itself made no sig-ni�cant di�erence. To determine the string to migrate (delete), we compared66

the choice of the best- (worst-) ranked string with holding a probabilistic bi-nary tournament. For the choice of string to migrate, we found both choicesperformed about the same. For the choice of string to delete, we found hold-ing a probabilistic binary tournament worked best. Deleting the worst-rankedstring seemed to signi�cantly increase the selective pressure and sometimes ledto premature convergence.VI. Running the hybrid SSGAROW algorithm on each subpopulation in an islandmodel was an e�ective approach for solving real-world SPP problems of upto a few thousand integer variables. For all but one of the thirty-two smalland medium-sized test problems the optimal solution was found. For severallarger problems, good integer feasible solutions were found. We found twolimitations, however. First, for several problems the penalty term was notstrong enough. The GA exploited this by concentrating its search on infeasiblestrings that had (in some cases signi�cantly) better evaluations than a feasiblestring would have had. For these problems, either no feasible solution was everfound or the number of iterations and additional subpopulations required to�nd the optimal solution was much larger than for similar problems for whichthe penalty term worked well. A second limitation was the fact that threeproblems had many constraints. For these problems, even though the penaltyterm seemed adequate, SSGAROW was never able to �nd a feasible solution.VII. Adding additional subpopulations (which increase the global population size)was bene�cial. When an optimal solution was found, it was usually found onan earlier iteration. In cases where the optimal solution was not found, but afeasible one was (i.e., on the largest test problems), the quality of the feasiblesolution improved as additional subpopulations were added to the computation.Also notable was the fact that, as additional subpopulations were added, thenumber of problems for which the optimal solution was found before the �rstmigration occurred continued to increase.VIII. We compared SSGAROWwith implementations of branch-and-cut and branch-and-bound algorithms, looking at the quality of the solutions found and thetime taken. Branch-and-cut was clearly superior to SSGAROW and branch-and-bound, �nding optimal solutions to all test problems in less time. BothSSGAROW and branch-and-bound found optimal solutions to the small andmedium-sized test problems. On larger problems the results were mixed, withboth branch-and-bound and SSGAROW doing better than each other on di�er-ent problems. The branch-and-bound results seem to correlate with how closeto integer feasible the solution to the linear programming relaxation was. Inmany cases branch-and-bound took less time, but we note that the implemen-tation of SSGAROW used was heavily instrumented.In conclusion, as a proof of concept, we have demonstrated that a parallel geneticalgorithm can solve small and medium-sized real-world set partitioning problems.A number of possible areas for further research exist and are discussed in the nextchapter. 67

CHAPTER VFUTURE WORKA number of interesting areas for future research exist. These include algorithmicenhancements, performance improvements, exploitation of operation research meth-ods, and planning for the next generation of parallel computers.I. Most of the progress made by SSGAROW occurs early in the search. Pro�les ofmany runs show that the best solution found rarely changes after about 10,000iterations. This observation seems to hold true irrespective of the number ofsubpopulations. More subpopulations lead to a more e�ective early search, butdo not help beyond that. We believe that both an adaptive mutation rate andfurther work on the ROW heuristic can help.Currently, the mutation rate is �xed at the reciprocal of the string length, awell-known choice from the GA literature where it plays the role of restoring lostbit values, but does not itself act as a search operator. One possibility is to usean adaptive mutation rate that changes based on the value of some GA statis-tic such as population diversity or the Hamming distance between two parentstrings [68]. Several researchers [14, 64] make the case for a high mutation ratewhen mutation is separated from crossover, as it is in our implementation. Ahigh mutation rate may also be more successful in an SSGA since, although itmay disrupt important schemata in the o�spring, those schemata remain intactin the parent strings that remain in the population [64].We found that the random choice of variables to add or delete to the currentstring that the ROW heuristic made when constraints were infeasible helpedthe GA sample new areas of the search space. However, when all constraintsare feasible, ROW no longer introduces any randomness. This is because whenall constraints are feasible, all of the alternative moves ROW considers degradethe current solution. Therefore no move is made and ROW remains trappedin a local optimum. We believe some type of simulated annealing-like move inthis case would help sustain the search.II. One limitation of the SSGAROW algorithm was its inability to �nd feasible so-lutions for six problems. For three of those, and several others for which optimalsolutions were found but with degraded performance, the penalty function wasnot strong enough. A number of possibilities exist for additional research in thisarea, including stronger penalty terms (e.g., quadratic), the ranking approachof Powell and Skolnick [53], and revisiting the ST penalty term for which wehad mixed results. However, for the aa problems, we are less optimistic. Ta-ble 3.10 appears to indicate diminishing returns with respect to the reductionin infeasibilities in these problems as additional subpopulations are added tothe computation. Much further work on penalties remains to be done.68

III. In order to be of practical value, an e�ective termination strategy is needed.Currently, we stop after either a speci�ed number of iterations or, in the casesof the test set, when we �nd the known optimal solution; such an approachis not viable in practice. One approach might be to stop when the evaluationfunction value has not changed in a speci�ed number of iterations. A moreGA-like approach might use some measure of population similarity such as theaverage Hamming distance as a convergence test.IV. Additional work in determining good choices for the parameters of the islandmodel is another area for further research. Selecting the string to migrate ordelete seems closest to what has been studied for sequential genetic algorithms(see, for example, Goldberg and Deb's [27] comments about deleting the worst-ranked string in Genitor, and compare that with our empirical �ndings in Sec-tion 3.2.2). However, the appropriate choice of migration interval remains anopen question. In fact, the results in Table 3.9, where increasing numbers ofproblems are solved before before any migration occurs as subpopulations areadded, raise the questions of whether migration is necessary or even bene�cial.Finally, although we have not explored it here, the choice of logical topologyfor the subpopulations warrants investigation. For example, is it better for asubpopulation to communicate with many other subpopulations or with thesame one?V. The performance of SSGAROW is not currently optimized. We believe perfor-mance improvements are available in several areas. For example, implementa-tion improvements would include incremental updating of certain populationstatistics that are currently recomputed in full each generation, hashing to makethe search for duplicates more e�cient, or a faster random number generator.As an example of an algorithmic improvement, uniform crossover requires O(n)calls to a random number generator to determine the bit mask to apply tothe parent strings, whereas two-point crossover requires only two calls. Also,in the case where a constraint is feasible, it is computationally desirable tohave ROW make a move in constant time, rather than incurring an expensiveO(RAV GPMAX) cost.VI. We might also be able to take advantage of operations research work. Oneexample might be to revisit the use of the solution to the LP relaxation toinitialize (perhaps just some of) the population. Both Fischer and Kedia [21]and Ho�man and Padberg [36] suggest heuristics for �nding integer solutionsto SPP problems that might also be incorporated in the initial population.A number of methods for preprocessing a set partitioning problem and usinglogical reductions to reduce the number of constraints and/or variables havebeen suggested. These make the problem smaller and (intuitively we assume)easier for the GA to solve.VII. The current implementation of the IMGA is synchronous. By this we mean thatafter a string has been migrated from a subpopulation, that subpopulation doesnot continue executing the sequential GA until it receives a migrant string from69

a di�erent subpopulation. An asynchronous implementation is also possible. Inthat case a processor periodically checks its message queue for migrant stringsthat have been sent from other subpopulations. If any are found, they can beintegrated into the subpopulation in the usual manner. If the message queueis empty, the processor continues running the sequential GA on its subpopu-lation and periodically continues checking its message queue. The advantageof this approach is that the processor is not idle while waiting to receive newstrings from neighboring processors, but is instead improving the �tness of itssubpopulation.VIII. We believe the next important class of parallel computer will be distributed-memory MIMD machines, where each node is a shared-memory multiprocessor.From a GA implementation perspective, this raises the question of how best totake advantage of such hardware. \Loop-level" parallelism is available in thegenerational replacement genetic algorithm when creating generation t+1 fromt that can exploit such hardware. For the steady-state genetic algorithm, how-ever, because only one new string is created each generation, no such \outer"loop exists. Perhaps in that case, for long enough strings, a �ne-grained ap-proach that exploits parallelism within an individual GA operation (e.g., mu-tation, function evaluation) would be appropriate.

70

ACKNOWLEDGMENTSI thank my adviser, Tom Christopher, for allowing me the independence to pursuethis work. I thank the members of my committee, Graham Campbell, Peter Greene,Rusty Lusk, and Nick Thomopoulos, for their interest. I am grateful to Argonne Na-tional Laboratory and the Mathematics and Computer Science Division for �nancialsupport, for access to their computing facilities, and for the stimulating environmentthey provide their employees.Although this work is my own, thanks are due to a number of people who helpedme in various ways. Thanks to Greg Astfalk for supplying the airline crew schedulingproblems. Thanks to Bob Bul�n who introduced me to research and academia manyyears ago. Thanks to Tom Can�eld for statistical advice. Thanks to Remy Evardfor help with C macros. Thanks to John Gregory for solving the test problemswith a branch-and-bound program, suggestions for initialization, numerous helpfuldiscussions and advice, and a long and valuable friendship. Thanks to Bill Groppfor LaTEX wizardry and for writing wonderfully useful software tools such as theChameleon library. Thanks to Karla Ho�man for discussions about her branch-and-cut work. Thanks to John Loewy for encouragement and statistical advice. Thanksto Rusty Lusk for many useful suggestions and help with p4. Thanks to Jorge Mor�efor discussions about penalty methods in nonlinear optimization. Thanks to BobOlson for patient and helpful answers to numerous Perl questions. Thanks to GailPieper for her usual outstanding job of technical editing. Thanks to Paul Plassmannfor advice and numerous one liners. Thanks to Nick Radcli�e for helpful answers tomany genetic algorithms queries. Thanks to the computer support group in the MCSDivision at Argonne, a small, but dedicated group who keep a complex computingenvironment working. Thanks to Xiaobai Sun and Stephen Wright for timely helpwith child care. Thanks to David Tate for discussing his penalty function with me.Finally, and most importantly thanks to my parents, Bernard and Sylvia, fortheir love, support, and encouragement through the years. I hope I can be as good aparent to my children as they have been to theirs. D.L.
71

REFERENCES[1] R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent Advances in Crew PairingOptimization at American Airlines. INTERFACES, 21:62{74, 1991.[2] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew PairingOptimization. IBM Systems Journal, 31(1):71{78, 1992.[3] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline CrewScheduling Problem: A Survey. Transportation Science, 3(2):140{163, 1969.[4] E. Baker and M. Fisher. Computational Results for Very Large Air CrewScheduling Problems. OMEGA, 9(6):613{618, 1981.[5] J. Baker. Reducing bias and ine�ciency in the selection algorithm. InJ. Grefenstette, editor, Proceedings of the Second International Conferenceon Genetic Algorithms and Their Applications, pages 14{21, Hillsdale, NewJersey, 1987. Lawrence Erlbaum Associates.[6] E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):710{760, 1976.[7] J. Barutt and T. Hull. Airline Crew Scheduling: Supercomputers andAlgorithms. SIAM News, 23(6), 1990.[8] M. Berkelaar. lp solve, 1993. A public domain linear and integer programmingprogram. Available by anonymous ftp from ftp.es.ele.tue.nl indirectory pub/lp solve, �le lp solve.tar.Z.[9] R. Bixby, J. Gregory, I. Lustig, R. Marsten, and D. Shanno. Very Large-Scale Linear Programming: A Case Study in Combining Interior Point andSimplex Methods. Technical Report CRPC, Rice University, 1991.[10] L. Booker. Improving Search in Genetic Algorithms. In Genetic Algorithms andSimulated Annealing, pages 61{73. Pitman Publishing, London, 1987.[11] R. Butler and E. Lusk. Monitors, Messages, and Clusters: The p4 ParallelProgramming System. Parallel Computing, 20, 1994.[12] V. Chavatal. A Greedy Heuristic for the Set Covering Problem. Mathematics ofOperations Research, 4(3):233{235, 1979.[13] J. Cohoon, W. Martin, and D. Richards. Genetic algorithms and punctuatedequilibria in VLSI. In H. Schwefel and R. Manner, editors, Parallel ProblemSolving from Nature, pages 134{144, Berlin, 1991. Springer-Verlag.[14] L. Davis. Adapting operator probabilities in genetic algorithms. In J. Scha�er,editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 61{69, San Mateo, 1989. Morgan Kaufmann.72

[15] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,1991.[16] M. de la Maza and B. Tidor. An analysis of procedures with particularattention paid to proportional and Boltzmann selection. In S. Forrest, editor,Proceedings of the Fifth International Conference on Genetic Algorithms,pages 124{131, San Mateo, 1993. Morgan Kaufmann.[17] K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.PhD thesis, University of Michigan, Ann Arbor, 1975. Department ofComputer and Communication Sciences.[18] K. DeJong. Genetic algorithms are NOT function optimizers. In D. Whitley,editor, Foundations of Genetic Algorithms -2-, pages 5{17. MorganKaufmann, San Mateo, 1993.[19] K. DeJong and W. Spears. An analysis of the interacting roles of populationsize and crossover in genetic algorithms. In H. Schwefel and R. Manner,editors, Parallel Problem Solving from Nature, pages 38{47, New York, 1991.Springer-Verlag.[20] J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mixed IntegerProgramming on the CM-5. Technical Report TMC-257, Thinking MachinesCorp., 1993.[21] M. Fischer and P. Kedia. Optimal Solution of Set Covering/PartitioningProblems Using Dual Heuristics. Management Science, 36(6):674{688, 1990.[22] M. Flynn. Some Computer Organizations and Their E�ectiveness. IEEETransactions on Computers, 21:948{960, 1972.[23] T. Fogarty and R. Huang. Implementing the genetic algorithm on transputerbased parallel processing systems. In H. Schwefel and R. Manner, editors,Parallel Problem Solving from Nature, pages 145{149, Berlin, 1991. Springer-Verlag.[24] R. Gar�nkel and G. Nemhauser. Integer Programming. John Wiley & Sons Inc.,New York, 1972.[25] I. Gershko�. Optimizing Flight Crew Schedules. INTERFACES, 19:29{43, 1989.[26] D. Goldberg. Genetic Algorithms in Search, Optimization and MachineLearning. Addison-Wesley Publishing Company, Inc., New York, 1989.[27] D. Goldberg and K. Deb. A comparative analysis of selection schemes usedin genetic algorithms. In G. Rawlins, editor, Foundations of GeneticAlgorithms, pages 69{93. Morgan Kaufmann, San Mateo, 1991.73

[28] S. Gordon and D. Whitley. Serial and parallel genetic algorithms as functionoptimizers. In S. Forrest, editor, Proceedings of the Fifth InternationalConference on Genetic Algorithms, pages 177{183, San Mateo, 1993. MorganKaufmann.[29] M. Gorges-Schleuter. Explicit parallelism of genetic algorithms throughpopulation structures. In H. Schwefel and R. Manner, editors, ParallelProblem Solving from Nature, pages 150{159, New York, 1991. Springer-Verlag.[30] J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122{128, 1986.[31] J. Grefenstette and J. Baker. How genetic algorithms work: A critical lookat implicit parallelism. In J. Scha�er, editor, Proceedings of the ThirdInternational Conference on Genetic Algorithms, pages 20{27, San Mateo,1989. Morgan Kaufmann.[32] J. Gregory. Private communication, 1991.[33] J. Gregory. Private communication, 1994.[34] W. Gropp and B. Smith. Chameleon Parallel Programming Tools Users Manual.Technical Report ANL-93/23, Argonne National Laboratory, 1993.[35] F. Gruau and D. Whitley. Adding Learning to the Cellular Developmentof Neural Networks: Evolution and the Baldwin E�ect. EvolutionaryComputation, 1(3):213{233, 1993.[36] K. Ho�man and M. Padberg. Solving Airline Crew-Scheduling Problems byBranch-and-Cut. Management Science, 39(6):657{682, 1993.[37] J. Holland. Adaption in Natural and Arti�cial Systems. The University ofMichigan Press, Ann Arbor, 1975.[38] F. James. A Review of Pseudorandom Number Generators. Computer PhysicsCommunication, 60:329{344, 1990.[39] P. Jog, J. Suh, and D. Gucht. Parallel Genetic Algorithms Applied to theTraveling Salesman Problem. Technical Report No. 314, Indiana University,1990.[40] T. Kido, H. Kitano, and M. Nakanishi. A hybrid search for genetic algorithms:Combining genetic algorithms, tabu search, and simulated annealing. InS. Forrest, editor, Proceedings of the Fifth International Conference onGenetic Algorithms, page 614, San Mateo, 1993. Morgan Kaufmann.[41] B. Kroger, P. Schwenderling, and O. Vornberger. Parallel genetic packing ofrectangles. In H. Schwefel and R. Manner, editors, Parallel Problem Solvingfrom Nature, pages 160{164, Berlin, 1991. Springer-Verlag.74

[42] T. Kuo and S. Hwang. A genetic algorithm with disruptive selection. InS. Forrest, editor, Proceedings of the Fifth International Conference onGenetic Algorithms, pages 65{69, San Mateo, 1993. Morgan Kaufmann.[43] D. Levine. A genetic algorithm for the set partitioning problem. InS. Forrest, editor, Proceedings of the Fifth International Conference onGenetic Algorithms, pages 481{487, San Mateo, 1993. Morgan Kaufmann.[44] G. Liepins and S. Baluja. apGA: An Adaptive Parallel Genetic Algorithm.Technical report, Oak Ridge National Laboratory, 1991.[45] G. Marsaglia, A. Zaman, and W. Tseng. Stat. Prob. Letter, 9(35), 1990.[46] R. Marsten. An Algorithm for Large Set Partitioning Problems. ManagementScience, 20:774{787, 1974.[47] R. Marsten and F. Shepardson. Exact Solution of Crew Scheduling ProblemsUsing the Set Partitioning Model: Recent Successful Applications. Networks,11:165{177, 1981.[48] H. Muhlenbein. Parallel Genetic Algorithms and Combinatorial Optimization.In O. Balci, R. Sharda, and S. Zenios, editors, Computer Science andOperations Research, pages 441{456. Pergamon Press, 1992.[49] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. JohnWiley & Sons, New York, 1988.[50] R. Parker and R. Rardin. Discrete Optimization. Academic Press, San Diego,1988.[51] C. Pettey, M. Leuze, and J. Grefenstette. A parallel genetic algorithm. InJ. Grefenstette, editor, Proceedings of the Second International Conferenceon Genetic Algorithms and Their Applications, pages 155{161, Hillsdale,New Jersey, 1987. Lawrence Erlbaum Associates.[52] J. Pierce. Application of Combinatorial Programming to a Class of All-Zero-OneInteger Programming Problems. Management Science, 15:191{209, 1968.[53] D. Powell and M. Skolnick. Using genetic algorithms in engineering designoptimization with non-linear constraints. In S. Forrest, editor, Proceedingsof the Fifth International Conference on Genetic Algorithms, pages 424{431,San Mateo, 1993. Morgan Kaufmann.[54] N. Radcli�e. Private communication, 1993.[55] J. Richardson, M. Palmer, G. Liepins, and M. Hilliard. Some Guidelinesfor Genetic Algorithms with Penalty Functions. In J. Scha�er, editor,Proceedings of the Third International Conference on Genetic Algorithms,pages 191{197, San Mateo, 1989. Morgan Kaufmann.75

[56] W. Siedlecki and J. Sklansky. Constrained genetic optimization via dynamicreward-penalty balancing and its use in pattern recognition. In J. Scha�er,editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 141{150, San Mateo, 1989. Morgan Kaufmann.[57] A. Smith and D. Tate. Genetic optimization using a penalty function. InS. Forrest, editor, Proceedings of the Fifth International Conference onGenetic Algorithms, pages 499{505, San Mateo, 1993. Morgan Kaufmann.[58] W. Spears and K. DeJong. An Analysis of Multi-Point Crossover. InG. Rawlins, editor, Foundations of Genetic Algorithms, pages 301{315.Morgan Kaufmann, San Mateo, 1991.[59] W. Spears and K. DeJong. On the virtues of parameterized uniform crossover.In R. Belew and L. Booker, editors, Proceedings of the Fourth InternationalConference on Genetic Algorithms, pages 230{236. Morgan Kaufmann, 1991.[60] T. Starkweather, D. Whitley, and K. Mathias. Optimization Using DistributedGenetic Algorithms. In H. Schwefel and R. Manner, editors, Parallel ProblemSolving from Nature, pages 176{185, New York, 1991. Springer-Verlag.[61] G. Syswerda. Uniform crossover in genetic algorithms. In J. Scha�er, editor,Proceedings of the Third International Conference on Genetic Algorithms,pages 2{9, San Mateo, 1989. Morgan Kaufmann.[62] R. Tanese. Parallel genetic algorithms for a hypercube. In J. Grefenstette,editor, Proceedings of the Second International Conference on GeneticAlgorithms and Their Applications, pages 177{183, Hillsdale, New Jersey,1987. Lawrence Erlbaum Associates.[63] R. Tanese. Distributed genetic algorithms. In J. Scha�er, editor, Proceedings ofthe Third International Conference on Genetic Algorithms, pages 434{440,San Mateo, 1989. Morgan Kaufmann.[64] D. Tate and A. Smith. Expected allele coverage and the role of mutationin genetic algorithms. In S. Forrest, editor, Proceedings of the FifthInternational Conference on Genetic Algorithms, pages 31{37, San Mateo,1993. Morgan Kaufmann.[65] G. von Laszewsski and H. Muhlenbein. Partitioning a graph with a parallelgenetic algorithm. In H. Schwefel and R. Manner, editors, Parallel ProblemSolving from Nature, pages 165{169, Berlin, 1991. Springer-Verlag.[66] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-basedallocation of reproductive trials is best. In J. Scha�er, editor, Proceedings ofthe Third International Conference on Genetic Algorithms, pages 116{121,San Mateo, 1989. Morgan Kaufmann.76

[67] D. Whitley. An executable model of a simple genetic algorithm. InD. Whitley, editor, Foundations of Genetic Algorithms -2-, pages 45{62.Morgan Kaufmann, San Mateo, 1993.[68] D. Whitley and T. Hanson. Optimizing neural networks using faster, moreaccurate genetic search. In J. Scha�er, editor, Proceedings of the ThirdInternational Conference on Genetic Algorithms, pages 391{396, San Mateo,1989. Morgan Kaufmann.[69] D. Whitley and J. Kauth. GENITOR: A di�erent genetic algorithm. In RockyMountain Conference on Arti�cial Intelligence, pages 118{130, Denver, 1988.

77

